1
|
Qin T, He Z, Hassan HM, Wang Q, Shi L, Yu Y, Zhou Y, Zhang W, Yuan Z. Taohe Chengqi decoction improves diabetic cognitive dysfunction by alleviating neural stem cell senescence through HIF1α-driven metabolic signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156219. [PMID: 39520950 DOI: 10.1016/j.phymed.2024.156219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is characterized by numerous long-term complications, in which progressive cognitive decline represents a significant risk factor for dementia and other neurodegenerative disorders. Taohe Chengqi decoction (THCQ) is a common traditional Chinese formula for treating T2DM; however, the neuroprotective effect of THCQ on diabetes-associated cognitive dysfunction remains unclear. Hence, the present study investigated the therapeutic effects of THCQ on cognitive impairment associated with T2DM and elucidated the underlying mechanisms. METHODS A stable high-fat diet (HFD) and streptozotocin (STZ)-induced T2DM mouse model was established and received intragastrical THCQ administration. Blood and tissue samples were investigated for biochemical parameters and neuropathology, whereas hippocampal tissue underwent transcriptome analyses and the role of neural stem cell (NSC) senescence was detected both in vivo and in vitro. Network pharmacology analysis and subsequent primary NSC experiments were conducted to explore the involvement of the HIF1α signaling pathway in THCQ-mediated hippocampal NSC senescence. Furthermore, a lentivirus vector overexpressing HIF1α was used to verify the THCQ potential therapeutic effects on HIF1α/PDKs metabolic signaling that influenced NSC senescence. RESULTS THCQ alleviated cognitive dysfunction and metabolic abnormalities in HFD/STZ mice, and relieved hippocampal neurodegeneration. Transcriptome analyses and validation experiments revealed THCQ-induced neuroprotective effects by targeting high glucose-mediated hippocampal neuropathy and NSC senescence. Bioinformatic analysis indicated that HIF1α signaling played a significant role in THCQ therapeutic outcomes; while HIF1α overexpression impaired the effects of THCQ on high glucose-induced metabolic disorders and NSC senescence. CONCLUSION The present study demonstrated that THCQ improved diabetic cognitive dysfunction and hippocampal neurogenesis, the effects of which were mainly attributed to the restoration of metabolic homeostasis and inhibition of NSC senescence through HIF1α signaling. Our results provide novel insights into the therapeutic framework for diabetic neuropathy and indicate that THCQ might be a promising candidate for the management of T2DM-related cognitive disorders.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Qiqi Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhou
- Henan Provincial Clinical Research Center for Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
2
|
Ahlström FH, Viisanen H, Karhinen L, Velagapudi V, Blomqvist KJ, Lilius TO, Rauhala PV, Kalso EA. Gene expression in the dorsal root ganglion and the cerebrospinal fluid metabolome in polyneuropathy and opioid tolerance in rats. IBRO Neurosci Rep 2024; 17:38-51. [PMID: 38933596 PMCID: PMC11201153 DOI: 10.1016/j.ibneur.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
First-line pharmacotherapy for peripheral neuropathic pain (NP) of diverse pathophysiology consists of antidepressants and gabapentinoids, but only a minority achieve sufficient analgesia with these drugs. Opioids are considered third-line analgesics in NP due to potential severe and unpredictable adverse effects in long-term use. Also, opioid tolerance and NP may have shared mechanisms, raising further concerns about opioid use in NP. We set out to further elucidate possible shared and separate mechanisms after chronic morphine treatment and oxaliplatin-induced and diabetic polyneuropathies, and to identify potential diagnostic markers and therapeutic targets. We analysed thermal nociceptive behaviour, the transcriptome of dorsal root ganglia (DRG) and the metabolome of cerebrospinal fluid (CSF) in these three conditions, in rats. Several genes were differentially expressed, most following oxaliplatin and least after chronic morphine treatment, compared with saline-treated rats. A few genes were differentially expressed in the DRGs in all three models (e.g. Csf3r and Fkbp5). Some, e.g. Alox15 and Slc12a5, were differentially expressed in both diabetic and oxaliplatin models. Other differentially expressed genes were associated with nociception, inflammation, and glial cells. The CSF metabolome was most significantly affected in the diabetic rats. Interestingly, we saw changes in nicotinamide metabolism, which has been associated with opioid addiction and withdrawal, in the CSF of morphine-tolerant rats. Our results offer new hypotheses for the pathophysiology and treatment of NP and opioid tolerance. In particular, the role of nicotinamide metabolism in opioid addiction deserves further study.
Collapse
Affiliation(s)
- Fredrik H.G. Ahlström
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Hanna Viisanen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Leena Karhinen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, University of Helsinki, P.O. Box 20, FI-00014, Finland
| | - Kim J. Blomqvist
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Tuomas O. Lilius
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Tukholmankatu 8C, 00014, Finland
- Department of Emergency Medicine and Services, University of Helsinki and HUS Helsinki University Hospital, Haartmaninkatu 4, Helsinki 00290, Finland
| | - Pekka V. Rauhala
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Eija A. Kalso
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- SleepWell Research Programme, Faculty of Medicine, , University of Helsinki, Haartmaninkatu 3, 00014, Finland
- Department of Anaesthesiology and Intensive Care Medicine, Helsinki University Hospital and University of Helsinki, HUS, Stenbäckinkatu 9, P.O. Box 440, 00029, Finland
| |
Collapse
|
3
|
Yako H, Niimi N, Takaku S, Kato A, Kato K, Sango K. Role of Exogenous Pyruvate in Maintaining Adenosine Triphosphate Production under High-Glucose Conditions through PARP-Dependent Glycolysis and PARP-Independent Tricarboxylic Acid Cycle. Int J Mol Sci 2024; 25:11089. [PMID: 39456870 PMCID: PMC11508270 DOI: 10.3390/ijms252011089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Pyruvate serves as a key metabolite in energy production and as an anti-oxidant. In our previous study, exogenous pyruvate starvation under high-glucose conditions induced IMS32 Schwann cell death because of the reduced glycolysis-tricarboxylic acid (TCA) cycle flux and adenosine triphosphate (ATP) production. Thus, this study focused on poly-(ADP-ribose) polymerase (PARP) to investigate the detailed molecular mechanism of cell death. Rucaparib, a PARP inhibitor, protected Schwann cells against cell death and decreased glycolysis but not against an impaired TCA cycle under high-glucose conditions in the absence of pyruvate. Under such conditions, reduced pyruvate dehydrogenase (PDH) activity and glycolytic and mitochondrial ATP production were observed but not oxidative phosphorylation or the electric transfer chain. In addition, rucaparib supplementation restored glycolytic ATP production but not PDH activity and mitochondrial ATP production. No differences in the increased activity of caspase 3/7 and the localization of apoptosis-inducing factor were found among the experimental conditions. These results indicate that Schwann cells undergo necrosis rather than apoptosis or parthanatos under the aforementioned conditions. Exogenous pyruvate plays a pivotal role in maintaining the flux in PARP-dependent glycolysis and the PARP-independent TCA cycle in Schwann cells under high-glucose conditions.
Collapse
Affiliation(s)
- Hideji Yako
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (N.N.); (S.T.)
| | - Naoko Niimi
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (N.N.); (S.T.)
| | - Shizuka Takaku
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (N.N.); (S.T.)
| | - Ayako Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, Nagoya 464-8650, Japan; (A.K.); (K.K.)
| | - Koichi Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, Nagoya 464-8650, Japan; (A.K.); (K.K.)
| | - Kazunori Sango
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (N.N.); (S.T.)
| |
Collapse
|
4
|
Kim J, Jeon Y, Son J, Pagire HS, Pagire SH, Ahn JH, Uemura A, Lee IK, Park S, Park DH. PDK4-mediated metabolic reprogramming is a potential therapeutic target for neovascular age-related macular degeneration. Cell Death Dis 2024; 15:582. [PMID: 39122684 PMCID: PMC11316003 DOI: 10.1038/s41419-024-06968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Age-related macular degeneration (AMD) causes severe blindness in the elderly due to choroidal neovascularization (CNV), which results from the dysfunction of the retinal pigment epithelium (RPE). While normal RPE depends exclusively on mitochondrial oxidative phosphorylation for energy production, the inflammatory conditions associated with metabolic reprogramming of the RPE play a pivotal role in CNV. Although mitochondrial pyruvate dehydrogenase kinase (PDK) is a central node of energy metabolism, its role in the development of CNV in neovascular AMD has not been investigated. In the present study, we used a laser-induced CNV mouse model to evaluate the effects of Pdk4 gene ablation and treatment with pan-PDK or specific PDK4 inhibitors on fluorescein angiography and CNV lesion area. Among PDK isoforms, only PDK4 was upregulated in the RPE of laser-induced CNV mice, and Pdk4 gene ablation attenuated CNV. Next, we evaluated mitochondrial changes mediated by PDK1-4 inhibition using siRNA or PDK inhibitors in inflammatory cytokine mixture (ICM)-treated primary human RPE (hRPE) cells. PDK4 silencing only in ICM-treated hRPE cells restored mitochondrial respiration and reduced inflammatory cytokine secretion. Likewise, GM10395, a specific PDK4 inhibitor, restored oxidative phosphorylation and decreased ICM-induced upregulation of inflammatory cytokine secretion. In a laser-induced CNV mouse model, GM10395 significantly alleviated CNV. Taken together, we demonstrate that specific PDK4 inhibition could be a therapeutic strategy for neovascular AMD by preventing mitochondrial metabolic reprogramming in the RPE under inflammatory conditions.
Collapse
Affiliation(s)
- Juhee Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
- Kyungpook National University Cell & Matrix Research Institute, Daegu, Republic of Korea
| | - Yujin Jeon
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
- Kyungpook National University Cell & Matrix Research Institute, Daegu, Republic of Korea
| | - Jinyoung Son
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Daegu, Republic of Korea
| | - Haushabhau S Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- R&D center, JD Bioscience Inc, Gwangju, Republic of Korea
| | - Suvarna H Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- R&D center, JD Bioscience Inc, Gwangju, Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- R&D center, JD Bioscience Inc, Gwangju, Republic of Korea
| | - Akiyoshi Uemura
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sungmi Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.
- Kyungpook National University Cell & Matrix Research Institute, Daegu, Republic of Korea.
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Zhang X, Lei Y, Zhou H, Liu H, Xu P. The Role of PKM2 in Multiple Signaling Pathways Related to Neurological Diseases. Mol Neurobiol 2024; 61:5002-5026. [PMID: 38157121 DOI: 10.1007/s12035-023-03901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. It is well known that PKM2 plays a vital role in the proliferation of tumor cells. However, PKM2 can also exert its biological functions by mediating multiple signaling pathways in neurological diseases, such as Alzheimer's disease (AD), cognitive dysfunction, ischemic stroke, post-stroke depression, cerebral small-vessel disease, hypoxic-ischemic encephalopathy, traumatic brain injury, spinal cord injury, Parkinson's disease (PD), epilepsy, neuropathic pain, and autoimmune diseases. In these diseases, PKM2 can exert various biological functions, including regulation of glycolysis, inflammatory responses, apoptosis, proliferation of cells, oxidative stress, mitochondrial dysfunction, or pathological autoimmune responses. Moreover, the complexity of PKM2's biological characteristics determines the diversity of its biological functions. However, the role of PKM2 is not entirely the same in different diseases or cells, which is related to its oligomerization, subcellular localization, and post-translational modifications. This article will focus on the biological characteristics of PKM2, the regulation of PKM2 expression, and the biological role of PKM2 in neurological diseases. With this review, we hope to have a better understanding of the molecular mechanisms of PKM2, which may help researchers develop therapeutic strategies in clinic.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihui Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
6
|
Ma X, Qi Q, Wang W, Huang M, Wang H, Luo L, Xu X, Yuan T, Shi H, Jiang W, Xu T. Astrocytic pyruvate dehydrogenase kinase-lactic acid axis involvement in glia-neuron crosstalk contributes to morphine-induced hyperalgesia in mice. FUNDAMENTAL RESEARCH 2024; 4:820-828. [PMID: 39161415 PMCID: PMC11331729 DOI: 10.1016/j.fmre.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
The activation of spinal astrocytes accounts for opioid-induced hyperalgesia (OIH), but the underlying mechanisms remain elusive. The presence of astrocyte-neuron lactate shuttle (ANLS) makes astrocytes necessary for some neural function and communication. The aim of this study was to explore the role of ANLS in the occurrence and maintenance of OIH. After 7 days consecutive morphine injection, a mice OIH model was established and astrocytic pyruvate dehydrogenase kinase 4 (PDK4), phosphorylated pyruvate dehydrogenase (p-PDH) and accumulation of L-lactate was elevated in the spinal dorsal horn. Intrathecally administration of inhibitors of PDK, lactate dehydrogenase 5 and monocarboxylate transporters to decrease the supply of L-lactate on neurons was observed to attenuate hypersensitivity behaviors induced by repeated morphine administration and downregulate the expression of markers of central sensitization in the spinal dorsal horns. The astrocyte line and the neuronal line were co-cultured to investigate the mechanisms in vitro. In this study, we demonstrated that morphine-induced hyperalgesia was sustained by lactate overload consequent upon aberrant function of spinal ANLS. In this process, PDK-p-PDH-lactate axis serves a pivotal role, which might therefore be a new target to improve long-term opioid treatment strategy in clinical practice.
Collapse
Affiliation(s)
- Xiaqing Ma
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Qi Qi
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wenying Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Min Huang
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Haiyan Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Limin Luo
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiaotao Xu
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Wei Jiang
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou 234000, China
| |
Collapse
|
7
|
Ratan Y, Rajput A, Pareek A, Pareek A, Kaur R, Sonia S, Kumar R, Singh G. Recent Advances in Biomolecular Patho-Mechanistic Pathways behind the Development and Progression of Diabetic Neuropathy. Biomedicines 2024; 12:1390. [PMID: 39061964 PMCID: PMC11273858 DOI: 10.3390/biomedicines12071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic neuropathy (DN) is a neurodegenerative disorder that is primarily characterized by distal sensory loss, reduced mobility, and foot ulcers that may potentially lead to amputation. The multifaceted etiology of DN is linked to a range of inflammatory, vascular, metabolic, and other neurodegenerative factors. Chronic inflammation, endothelial dysfunction, and oxidative stress are the three basic biological changes that contribute to the development of DN. Although our understanding of the intricacies of DN has advanced significantly over the past decade, the distinctive mechanisms underlying the condition are still poorly understood, which may be the reason behind the lack of an effective treatment and cure for DN. The present study delivers a comprehensive understanding and highlights the potential role of the several pathways and molecular mechanisms underlying the etiopathogenesis of DN. Moreover, Schwann cells and satellite glial cells, as integral factors in the pathogenesis of DN, have been enlightened. This work will motivate allied research disciplines to gain a better understanding and analysis of the current state of the biomolecular mechanisms behind the pathogenesis of DN, which will be essential to effectively address every facet of DN, from prevention to treatment.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Rahul Kumar
- Baba Ragav Das Government Medical College, Gorakhpur 273013, Uttar Pradesh, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
8
|
Saleh DO, Sedik AA. Novel drugs affecting diabetic peripheral neuropathy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:657-670. [PMID: 38645500 PMCID: PMC11024403 DOI: 10.22038/ijbms.2024.75367.16334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/27/2023] [Indexed: 04/23/2024]
Abstract
Diabetic peripheral neuropathy (DPN) poses a significant threat, affecting half of the global diabetic population and leading to severe complications, including pain, impaired mobility, and potential amputation. The delayed manifestation of diabetic neuropathy (DN) makes early diagnosis challenging, contributing to its debilitating impact on individuals with diabetes mellitus (DM). This review examines the multifaceted nature of DPN, focusing on the intricate interplay between oxidative stress, metabolic pathways, and the resulting neuronal damage. It delves into the challenges of diagnosing DN, emphasizing the critical role played by hyperglycemia in triggering these cascading effects. Furthermore, the study explores the limitations of current neuropathic pain drugs, prompting an investigation into a myriad of pharmaceutical agents tested in both human and animal trials over the past decade. The methodology scrutinizes these agents for their potential to provide symptomatic relief for DPN. The investigation reveals promising results from various pharmaceutical agents tested for DPN relief, showcasing their efficacy in ameliorating symptoms. However, a notable gap persists in addressing the underlying problem of DPN. The results underscore the complexity of DPN and the challenges in developing therapies that go beyond symptomatic relief. Despite advancements in treating DPN symptoms, there remains a scarcity of options addressing the underlying problem. This review consolidates the state-of-the-art drugs designed to combat DPN, highlighting their efficacy in alleviating symptoms. Additionally, it emphasizes the need for a deeper understanding of the diverse processes and pathways involved in DPN pathogenesis.
Collapse
Affiliation(s)
- Dalia O. Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| | - Ahmed A. Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| |
Collapse
|
9
|
Lin Y, Lee C, Sung J, Chen C. Genetic exploration of roles of acid-sensing ion channel subtypes in neurosensory mechanotransduction including proprioception. Exp Physiol 2024; 109:66-80. [PMID: 37489658 PMCID: PMC10988671 DOI: 10.1113/ep090762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Although acid-sensing ion channels (ASICs) are proton-gated ion channels responsible for sensing tissue acidosis, accumulating evidence has shown that ASICs are also involved in neurosensory mechanotransduction. However, in contrast to Piezo ion channels, evidence of ASICs as mechanically gated ion channels has not been found using conventional mechanoclamp approaches. Instead, ASICs are involved in the tether model of mechanotransduction, with the channels gated via tethering elements of extracellular matrix and intracellular cytoskeletons. Methods using substrate deformation-driven neurite stretch and micropipette-guided ultrasound were developed to reveal the roles of ASIC3 and ASIC1a, respectively. Here we summarize the evidence supporting the roles of ASICs in neurosensory mechanotransduction in knockout mouse models of ASIC subtypes and provide insight to further probe their roles in proprioception.
Collapse
Affiliation(s)
- Yi‐Chen Lin
- Department of Neurology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- The Ph.D. Program for Translational MedicineTaipei Medical University and Academia SinicaNew Taipei CityTaiwan
- Taipei Neuroscience InstituteTaipei Medical UniversityNew Taipei CityTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Cheng‐Han Lee
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
| | - Jia‐Ying Sung
- Department of Neurology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Taipei Neuroscience InstituteTaipei Medical UniversityNew Taipei CityTaiwan
- Department of Neurology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chih‐Cheng Chen
- The Ph.D. Program for Translational MedicineTaipei Medical University and Academia SinicaNew Taipei CityTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
- Taiwan Mouse Clinic – National Comprehensive Mouse Phenotyping and Drug Testing CenterAcademia SinicaTaipeiTaiwan
- TMU Neuroscience Research Center, Taipei Medical UniversityNew Taipei CityTaiwan
| |
Collapse
|
10
|
Li C, Liu C, Zhang J, Lu Y, Jiang B, Xiong H, Li C. Pyruvate dehydrogenase kinase regulates macrophage polarization in metabolic and inflammatory diseases. Front Immunol 2023; 14:1296687. [PMID: 38193078 PMCID: PMC10773690 DOI: 10.3389/fimmu.2023.1296687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024] Open
Abstract
Macrophages are highly heterogeneous and plastic, and have two main polarized phenotypes that are determined by their microenvironment, namely pro- and anti-inflammatory macrophages. Activation of pro-inflammatory macrophages is closely associated with metabolic reprogramming, especially that of aerobic glycolysis. Mitochondrial pyruvate dehydrogenase kinase (PDK) negatively regulates pyruvate dehydrogenase complex activity through reversible phosphorylation and further links glycolysis to the tricarboxylic acid cycle and ATP production. PDK is commonly associated with the metabolism and polarization of macrophages in metabolic and inflammatory diseases. This review examines the relationship between PDK and macrophage metabolism and discusses the mechanisms by which PDK regulates macrophage polarization, migration, and inflammatory cytokine secretion in metabolic and inflammatory diseases. Elucidating the relationships between the metabolism and polarization of macrophages under physiological and pathological conditions, as well as the regulatory pathways involved, may provide valuable insights into the etiology and treatment of macrophage-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Chenyu Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Chuanbin Liu
- Department of Pediatric Dentistry, Jining Stomatological Hospital, Jining, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Yanyu Lu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Bingtong Jiang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
11
|
Liu T, Wu H, Wei J. The Construction and Validation of a Novel Ferroptosis-Related Gene Signature in Parkinson's Disease. Int J Mol Sci 2023; 24:17203. [PMID: 38139032 PMCID: PMC10742934 DOI: 10.3390/ijms242417203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
As a newly discovered regulated cell death mode, ferroptosis is associated with the development of Parkinson's disease (PD) and has attracted much attention. Nonetheless, the relationship between ferroptosis and PD pathogenesis remains unclear. The GSE8397 dataset includes GPL96 and GPL97 platforms. The differential genes were analyzed by immune infiltration and Gene Set Enrichment Analysis (GSEA) (p < 0.05), and differential multiple |logFC| > 1 and weighted gene coexpression network analysis (WGCNA) were used to screen differential expression genes (DEGs). The intersection with 368 ferroptosis-related genes (FRGs) was conducted for gene ontology/Kyoto encyclopedia of gene and genome (GO/KEGG) enrichment analysis, gene expression analysis, correlation analysis, single-cell sequencing analysis, and prognosis analysis (area under the curve, AUC) and to predict relevant miRNAs and construct network diagrams using Cytoscape. The intersection genes of differentially expressed ferroptosis-related genes (DEFRGs) and mitochondrial dysfunction genes were validated in the substantia nigra of MPTP-induced PD mice models by Western blotting and immunohistochemistry, and the protein-binding pocket was predicted using the DoGSiteScorer database. According to the results, the estimated scores were positively correlated with the stromal scores or immune scores in the GPL96 and GPL97 platforms. In the GPL96 platform, the GSEA showed that differential genes were mainly involved in the GnRH signaling pathway, B cell receptor signaling pathway, inositol phosphate metabolism, etc. In the GPL97 platform, the GSEA showed that differential genes were mainly involved in the ubiquitin-mediated proteolysis, axon guidance, Wnt signaling pathway, MAPK signaling pathway, etc. We obtained 26 DEFRGs, including 12 up-regulated genes and 14 down-regulated genes, with good correlation. The area under the prognostic analysis curve (AUC > 0.700) showed a good prognostic ability. We found that they were enriched in different neuronal cells, oligodendrocytes, astrocytes, oligodendrocyte precursor cells, and microglial cells, and their expression scores were positively correlated, and selected genes with an AUC curve ≥0.9 were used to predict miRNA, including miR-214/761/3619-5p, miR-203, miR-204/204b/211, miR-128/128ab, miR-199ab-5p, etc. For the differentially expressed ferroptosis-mitochondrial dysfunction-related genes (DEF-MDRGs) (AR, ISCU, SNCA, and PDK4), in the substantia nigra of mice, compared with the Saline group, the expression of AR and ISCU was decreased (p < 0.05), and the expression of α-Syn and PDK4 was increased (p < 0.05) in the MPTP group. Therapeutic drugs that target SNCA include ABBV-0805, Prasinezumab, Cinpanemab, and Gardenin A. The results of this study suggest that cellular DEF-MDRGs might play an important role in PD. AR, ISCU, SNCA, and PDK4 have the potential to be specific biomarkers for the early diagnosis of PD.
Collapse
Affiliation(s)
| | | | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.L.)
| |
Collapse
|
12
|
Yako H, Niimi N, Takaku S, Sango K. Advantages of omics approaches for elucidating metabolic changes in diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1208441. [PMID: 38089620 PMCID: PMC10715313 DOI: 10.3389/fendo.2023.1208441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Various animal and cell culture models of diabetes mellitus (DM) have been established and utilized to study diabetic peripheral neuropathy (DPN). The divergence of metabolic abnormalities among these models makes their etiology complicated despite some similarities regarding the pathological and neurological features of DPN. Thus, this study aimed to review the omics approaches toward DPN, especially on the metabolic states in diabetic rats and mice induced by chemicals (streptozotocin and alloxan) as type 1 DM models and by genetic mutations (MKR, db/db and ob/ob) and high-fat diet as type 2 DM models. Omics approaches revealed that the pathways associated with lipid metabolism and inflammation in dorsal root ganglia and sciatic nerves were enriched and controlled in the levels of gene expression among these animal models. Additionally, these pathways were conserved in human DPN, indicating the pivotal pathogeneses of DPN. Omics approaches are beneficial tools to better understand the association of metabolic changes with morphological and functional abnormalities in DPN.
Collapse
Affiliation(s)
- Hideji Yako
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | |
Collapse
|
13
|
Yao Y, Shi J, Zhang C, Gao W, Huang N, Liu Y, Yan W, Han Y, Zhou W, Kong L. Pyruvate dehydrogenase kinase 1 protects against neuronal injury and memory loss in mouse models of diabetes. Cell Death Dis 2023; 14:722. [PMID: 37935660 PMCID: PMC10630521 DOI: 10.1038/s41419-023-06249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Hyperglycemia-induced aberrant glucose metabolism is a causative factor of neurodegeneration and cognitive impairment in diabetes mellitus (DM) patients. The pyruvate dehydrogenase kinase (PDK)-lactic acid axis is regarded as a critical link between metabolic reprogramming and the pathogenic process of neurological disorders. However, its role in diabetic neuropathy remains unclear. Here, we found that PDK1 and phosphorylation of pyruvate dehydrogenase (PDH) were obviously increased in high glucose (HG)-stimulated primary neurons and Neuro-2a cell line. Acetyl-coA, a central metabolic intermediate, might enhance PDK1 expression via histone H3K9 acetylation modification in HG condition. The epigenetic regulation of PDK1 expression provided an available negative feedback pattern in response to HG environment-triggered mitochondrial metabolic overload. However, neuronal PDK1 was decreased in the hippocampus of streptozotocin (STZ)-induced diabetic mice. Our data showed that the expression of PDK1 also depended on the hypoxia-inducible factor-1 (HIF-1) transcriptional activation under the HG condition. However, HIF-1 was significantly reduced in the hippocampus of diabetic mice, which might explain the opposite expression of PDK1 in vivo. Importantly, overexpression of PDK1 reduced HG-induced reactive oxygen species (ROS) generation and neuronal apoptosis. Enhancing PDK1 expression in the hippocampus ameliorated STZ-induced cognitive impairment and neuronal degeneration in mice. Together, our study demonstrated that both acetyl-coA-induced histone acetylation and HIF-1 are necessary to direct PDK1 expression, and enhancing PDK1 may have a protective effect on cognitive recovery in diabetic mice. Schematic representation of the protective effect of PDK1 on hyperglycemia-induced neuronal injury and memory loss. High glucose enhanced the expression of PDK1 in an acetyl-coA-dependent histone acetylation modification to avoid mitochondrial metabolic overload and ROS release. However, the decrease of HIF-1 may impair the upregulation of PDK1 under hyperglycemia condition. Overexpression of PDK1 prevented hyperglycemia-induced hippocampal neuronal injury and memory loss in diabetic mice.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiaming Shi
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chunlai Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Gao
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ning Huang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yaobei Liu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Weiwen Yan
- Department of Clinical Laboratory, Zibo Hospital of Traditional Chinese Medicine, Zibo, Shandong, China
| | - Yingguang Han
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjuan Zhou
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liang Kong
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
14
|
Xie H, Li J, Lian N, Xie M, Wu M, Tang K, Kang Y, Lu P, Li T. Defective branched-chain amino acid catabolism in dorsal root ganglia contributes to mechanical pain. EMBO Rep 2023; 24:e56958. [PMID: 37721527 PMCID: PMC10626448 DOI: 10.15252/embr.202356958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Impaired branched-chain amino acid (BCAA) catabolism has recently been implicated in the development of mechanical pain, but the underlying molecular mechanisms are unclear. Here, we report that defective BCAA catabolism in dorsal root ganglion (DRG) neurons sensitizes mice to mechanical pain by increasing lactate production and expression of the mechanotransduction channel Piezo2. In high-fat diet-fed obese mice, we observed the downregulation of PP2Cm, a key regulator of the BCAA catabolic pathway, in DRG neurons. Mice with conditional knockout of PP2Cm in DRG neurons exhibit mechanical allodynia under normal or SNI-induced neuropathic injury conditions. Furthermore, the VAS scores in the plasma of patients with peripheral neuropathic pain are positively correlated with BCAA contents. Mechanistically, defective BCAA catabolism in DRG neurons promotes lactate production through glycolysis, which increases H3K18la modification and drives Piezo2 expression. Inhibition of lactate production or Piezo2 silencing attenuates the pain phenotype of knockout mice in response to mechanical stimuli. Therefore, our study demonstrates a causal role of defective BCAA catabolism in mechanical pain by enhancing metabolite-mediated epigenetic regulation.
Collapse
Affiliation(s)
- Huijing Xie
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Ju Li
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Nan Lian
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan University, Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceChengduChina
| | - Min Xie
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Minming Wu
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Kuo Tang
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Yi Kang
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Peilin Lu
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Tao Li
- Department of Anesthesiology, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduChina
- Laboratory of Mitochondria and Metabolism, National‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
15
|
Kim JH, Han J, Afridi R, Kim JH, Rahman MH, Park DH, Lee WS, Song GJ, Suk K. A multiplexed siRNA screen identifies key kinase signaling networks of brain glia. Life Sci Alliance 2023; 6:e202201605. [PMID: 36878638 PMCID: PMC9990460 DOI: 10.26508/lsa.202201605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
The dynamic behaviors of brain glial cells in various neuroinflammatory conditions and neurological disorders have been reported; however, little is known about the underlying intracellular signaling pathways. Here, we developed a multiplexed kinome-wide siRNA screen to identify the kinases regulating several inflammatory phenotypes of mouse glial cells in culture, including inflammatory activation, migration, and phagocytosis of glia. Subsequent proof-of-concept experiments involving genetic and pharmacological inhibitions indicated the importance of T-cell receptor signaling components in microglial activation and a metabolic shift from glycolysis to oxidative phosphorylation in astrocyte migration. This time- and cost-effective multiplexed kinome siRNA screen efficiently provides exploitable drug targets and novel insight into the mechanisms underlying the phenotypic regulation of glial cells and neuroinflammation. Moreover, the kinases identified in this screen may be relevant in other inflammatory diseases and cancer, wherein kinases play a critical role in disease signaling pathways.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Han
- Department of Biomedical Science, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Biomedical Science, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Hong Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Won Suk Lee
- Neuracle Science Co., Ltd. Seoul, Republic Korea
| | - Gyun Jee Song
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung-si, Republic Korea; Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic Korea
| | - Kyoungho Suk
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Biomedical Science, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
16
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
17
|
Pozzi E, Ballarini E, Rodriguez-Menendez V, Canta A, Chiorazzi A, Monza L, Bossi M, Alberti P, Malacrida A, Meregalli C, Scuteri A, Cavaletti G, Carozzi VA. Paclitaxel, but Not Cisplatin, Affects Satellite Glial Cells in Dorsal Root Ganglia of Rats with Chemotherapy-Induced Peripheral Neurotoxicity. TOXICS 2023; 11:93. [PMID: 36850969 PMCID: PMC9961471 DOI: 10.3390/toxics11020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Chemotherapy-induced peripheral neurotoxicity is one of the most common dose-limiting toxicities of several widely used anticancer drugs such as platinum derivatives (cisplatin) and taxanes (paclitaxel). Several molecular mechanisms related to the onset of neurotoxicity have already been proposed, most of them having the sensory neurons of the dorsal root ganglia (DRG) and the peripheral nerve fibers as principal targets. In this study we explore chemotherapy-induced peripheral neurotoxicity beyond the neuronocentric view, investigating the changes induced by paclitaxel (PTX) and cisplatin (CDDP) on satellite glial cells (SGC) in the DRG and their crosstalk. Rats were chronically treated with PTX (10 mg/Kg, 1qwx4) or CDDP (2 mg/Kg 2qwx4) or respective vehicles. Morpho-functional analyses were performed to verify the features of drug-induced peripheral neurotoxicity. Qualitative and quantitative immunohistochemistry, 3D immunofluorescence, immunoblotting, and transmission electron microscopy analyses were also performed to detect alterations in SGCs and their interconnections. We demonstrated that PTX, but not CDDP, produces a strong activation of SGCs in the DRG, by altering their interconnections and their physical contact with sensory neurons. SGCs may act as principal actors in PTX-induced peripheral neurotoxicity, paving the way for the identification of new druggable targets for the treatment and prevention of chemotherapy-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Eleonora Pozzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Elisa Ballarini
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Virginia Rodriguez-Menendez
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Annalisa Canta
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Alessia Chiorazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Laura Monza
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Mario Bossi
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Paola Alberti
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Alessio Malacrida
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Cristina Meregalli
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Arianna Scuteri
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Guido Cavaletti
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Valentina Alda Carozzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20216 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| |
Collapse
|
18
|
Gupta DP, Park SH, Lee YS, Lee S, Lim S, Byun J, Cho IH, Song GJ. Daphne genkwa flower extract promotes the neuroprotective effects of microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154486. [PMID: 36240609 DOI: 10.1016/j.phymed.2022.154486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Microglia are innate immune cells in the central nervous system that play a crucial role in neuroprotection by releasing neurotrophic factors, removing pathogens through phagocytosis, and regulating brain homeostasis. The constituents extracted from the roots and stems of the Daphne genkwa plant have shown neuroprotective effects in an animal model of Parkinson's disease. However, the effect of Daphne genkwa plant extract on microglia has yet to be demonstrated. PURPOSE To study the anti-inflammatory and neuroprotective effects of Daphne genkwa flower extract (GFE) in microglia and explore the underlying mechanisms. METHODS In-vitro mRNA expression levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase, Arginase1, and brain derived neurotropic factor (BDNF) were analyzed by reverse transcription polymerase chain reaction in microglia cells. Nitric oxide (NO) and TNF-α protein were respectively analyzed by Griess reagent and Enzyme Linked Immunosorbent Assay. Immunoreactivity of Iba-1, Neu-N, and BDNF in mouse brain were analyzed by immunofluorescence staining. Phagocytosis capacity of microglia was examined using fluorescent zymosan-red particles. RESULTS GFE significantly inhibited lipopolysaccharide (LPS)-induced neuroinflammation and promoted neuroprotection both in vitro and in vivo. First, GFE inhibited the LPS-induced inflammatory factors NO, iNOS, and TNF-α in microglial cell lines and primary glial cells, thus demonstrating anti-inflammatory effects. Arginase1 and BDNF mRNA levels were increased in primary glial cells treated with GFE. Phagocytosis was also increased in microglia treated with GFE, suggesting a neuroprotective effect of GFE. In vivo, neuroprotective and anti-neuroinflammatory effects of GFE were also found in the mouse brain, as oral administration of GFE significantly inhibited LPS-induced neuronal loss and inflammatory activation of microglia. CONCLUSION GFE has anti-inflammatory effects and promotes microglial neuroprotective effects. GFE inhibited the pro-inflammatory mediators and enhanced neuroprotective microglia activity by increasing BDNF expression and phagocytosis. These novel findings of the GFE effect on microglia show an innovative approach that can potentially promote neuroprotection for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Deepak Prasad Gupta
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea
| | - Sung Hee Park
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea
| | - Young-Sun Lee
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea; The Convergence Institute of Healthcare and Medical Science, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Korea
| | - Sujin Lim
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| | - Jiin Byun
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
| | - Gyun Jee Song
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea; The Convergence Institute of Healthcare and Medical Science, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea.
| |
Collapse
|
19
|
Zhang M, Du M, Qi X, Wang Y, Li G, Xu C, Zhang X. Retro-inversion follicle-stimulating hormone peptide-modified nanoparticles for delivery of PDK2 shRNA against chemoresistant ovarian cancer by switching glycolysis to oxidative phosphorylation. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Most ovarian cancers are diagnosed at advanced stages characterized by abdominal dissemination and frequently exhibit chemoresistance. Pyruvate dehydrogenase kinase 2 (PDK2) regulates the switch between glycolysis and oxidative phosphorylation and contributes to tumor progression and chemoresistance. Here, we investigated the effects of PDK2 blockade on metabolic reprogramming and cisplatin sensitivity and evaluated the in vivo antitumor effects of PDK2 shRNA in chemoresistant ovarian cancer using retro-inverso follicle-stimulating hormone peptide-modified nanoparticle as carriers.
Methods
The expression of PDK2 was detected by immunohistochemistry, Western blot and real-time PCR. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry. Cell migration was detected by Transwell assay. Seahorse Analyzer was used to evaluate metabolic changes. The cisplatin-resistant ovarian cancer cells A2780cp were used to establish the mouse model of peritoneal metastatic ovarian cancer.
Results
A higher expression level of PDK2 was observed in chemoresistant ovarian cancer tissues and cell lines and was associated with shorter progression-free survival. PDK2 knockdown inhibited proliferation and migration and promoted apoptosis of both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. Cisplatin sensitivity was increased even in cisplatin-resistant ovarian cancer cells. Mechanistically, PDK2 knockdown resulted in an increased oxygen consumption rate and decreased extracellular acidification rate, along with reduced lactate production, increased PDHC activity and increased levels of electron transport chain complexes III and V. The metabolism switched from glycolysis to oxidative phosphorylation. Finally, to specifically and effectively deliver PDK2 shRNA in vivo, we formulated a targeted delivery system containing retro-inverso follicle-stimulating hormone peptide as a targeting moiety and polyethylene glycol–polyethylenimine copolymers as carriers. The nanoparticle complex significantly suppressed tumor growth and peritoneal metastasis of cisplatin-resistant ovarian cancer without obvious toxicities.
Conclusions
Our findings showed the link between metabolic reprogramming and chemoresistance in ovarian cancer and provided an effective targeting strategy for switching metabolic pathways in cancer therapy.
Collapse
|
20
|
Eftekharpour E, Fernyhough P. Oxidative Stress and Mitochondrial Dysfunction Associated with Peripheral Neuropathy in Type 1 Diabetes. Antioxid Redox Signal 2022; 37:578-596. [PMID: 34416846 DOI: 10.1089/ars.2021.0152] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: This review highlights the many intracellular processes generating reactive oxygen species (ROS) in the peripheral nervous system in the context of type 1 diabetes. The major sources of superoxide and hydrogen peroxide (H2O2) are described, and scavenging systems are explained. Important roles of ROS in regulating normal redox signaling and in a disease setting, such as diabetes, contributing to oxidative stress and cellular damage are outlined. The primary focus is the role of hyperglycemia in driving elevated ROS production and oxidative stress contributing to neurodegeneration in diabetic neuropathy (within the dorsal root ganglia [DRG] and peripheral nerve). Recent Advances: Contributors to ROS production under high intracellular glucose concentration such as mitochondria and the polyol pathway are discussed. The primarily damaging impact of ROS on multiple pathways including mitochondrial function, endoplasmic reticulum (ER) stress, autophagy, and epigenetic signaling is covered. Critical Issues: There is a strong focus on mechanisms of diabetes-induced mitochondrial dysfunction and how this may drive ROS production (in particular superoxide). The mitochondrial sites of superoxide/H2O2 production via mitochondrial metabolism and aerobic respiration are reviewed. Future Directions: Areas for future development are highlighted, including the need to clarify diabetes-induced changes in autophagy and ER function in neurons and Schwann cells. In addition, more clarity is needed regarding the sources of ROS production at mitochondrial sites under high glucose concentration (and lack of insulin signaling). New areas of study should be introduced to investigate the role of ROS, nuclear lamina function, and epigenetic signaling under diabetic conditions in peripheral nerve.
Collapse
Affiliation(s)
- Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology and Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul Fernyhough
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| |
Collapse
|
21
|
Xu R, Wang J, Nie H, Zeng D, Yin C, Li Y, Wei H, Liu B, Tai Y, Hu Q, Shao X, Fang J, Liu B. Genome-Wide Expression Profiling by RNA-Sequencing in Spinal Cord Dorsal Horn of a Rat Chronic Postsurgical Pain Model to Explore Potential Mechanisms Involved in Chronic Pain. J Pain Res 2022; 15:985-1001. [PMID: 35411184 PMCID: PMC8994637 DOI: 10.2147/jpr.s358942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chronic postsurgical pain (CPSP) is common among patients receiving major surgeries. CPSP produces suffering in patients, both physically and mentally. However, the mechanisms underlying CPSP remain elusive. Here, a genome-wide expression profiling of ipsilateral spinal cord dorsal horn (SCDH) was performed to identify potential genes related with CPSP. Methods A rat skin/muscle incision and retraction (SMIR) model was established to induce CPSP. Immunostaining was used to study glial cell and neuron activation in ipsilateral SCDH of SMIR model rats. RNA sequencing (RNA-Seq), combined with bioinformatics analysis, was undertaken to explore gene expression profiles. qPCR was applied to validate the expression of some representative genes. Results The SMIR model rats developed persistent mechanical allodynia in ipsilateral hindpaw for up to 14 days. Ipsilateral SCDH of SMIR rats showed remarkable glial cell and neuron activation. A number of differentially expressed genes (DEGs) were identified in ipsilateral SCDH of SMIR rats by RNA-Seq. qPCR confirmed expression of some representative DEGs. Bioinformatics indicated that chemical synaptic transmission, sensory perception of pain and neuroactive ligand-receptor interaction were predominant functions. We compared our dataset with human pain-related genes and found that several genes exclusively participate in pain modulation and mechanisms. Conclusion Our study provided novel understandings of the molecular mechanisms possibly contributing to CPSP. These findings may offer new targets for future treatment of CPSP.
Collapse
Affiliation(s)
- Ruoyao Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, People’s Republic of China
| | - Jie Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, People’s Republic of China
| | - Huimin Nie
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, People’s Republic of China
| | - Danyi Zeng
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, People’s Republic of China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, People’s Republic of China
| | - Yuanyuan Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, People’s Republic of China
| | - Huina Wei
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, People’s Republic of China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, People’s Republic of China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Qimiao Hu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, People’s Republic of China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, People’s Republic of China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, People’s Republic of China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
22
|
Qureshi Z, Ali MN, Khalid M. An Insight into Potential Pharmacotherapeutic Agents for Painful Diabetic Neuropathy. J Diabetes Res 2022; 2022:9989272. [PMID: 35127954 PMCID: PMC8813291 DOI: 10.1155/2022/9989272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/11/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes is the 4th most common disease affecting the world's population. It is accompanied by many complications that deteriorate the quality of life. Painful diabetic neuropathy (PDN) is one of the debilitating consequences of diabetes that effects one-third of diabetic patients. Unfortunately, there is no internationally recommended drug that directly hinders the pathological mechanisms that result in painful diabetic neuropathy. Clinical studies have shown that anticonvulsant and antidepressant therapies have proven fruitful in management of pain associated with PDN. Currently, the FDA approved medications for painful diabetic neuropathies include duloxetine, pregabalin, tapentadol extended release, and capsaicin (for foot PDN only). The FDA has also approved the use of spinal cord stimulation system for the treatment of diabetic neuropathy pain. The drugs recommended by other regulatory bodies include gabapentin, amitriptyline, dextromethorphan, tramadol, venlafaxine, sodium valproate, and 5 % lidocaine patch. These drugs are only partially effective and have adverse effects associated with their use. Treating painful symptoms in diabetic patient can be frustrating not only for the patients but also for health care workers, so additional clinical trials for novel and conventional treatments are required to devise more effective treatment for PDN with minimal side effects. This review gives an insight on the pathways involved in the pathogenesis of PDN and the potential pharmacotherapeutic agents. This will be followed by an overview on the FDA-approved drugs for PDN and commercially available topical analgesic and their effects on painful diabetic neuropathies.
Collapse
Affiliation(s)
- Zunaira Qureshi
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| | - Murtaza Najabat Ali
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| | - Minahil Khalid
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| |
Collapse
|
23
|
Chiba D, Ohyama T, Sasaki E, Daimon M, Nakaji S, Ishibashi Y. Higher fasting blood glucose worsens knee symptoms in patients with radiographic knee osteoarthritis and comorbid central sensitization: an Iwaki cohort study. Arthritis Res Ther 2022; 24:269. [PMID: 36510322 PMCID: PMC9745982 DOI: 10.1186/s13075-022-02951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although cross-sectional and cohort data suggest that higher serum blood glucose levels in patients with knee osteoarthritis (KOA) are associated with more severe knee symptoms, little is known about the longitudinal relationship between serum blood glucose and knee symptoms, particularly considering central sensitization (CS) comorbidity, which also worsens knee symptoms. METHODS We evaluated the longitudinal relationship between serum blood glucose and knee symptoms by dividing the cohort of patients with KOA into those with and without CS. We hypothesized that higher serum blood glucose levels would worsen knee symptoms. A total of 297 participants (mean age: 59.6 years; females: 211; average BMI: 23.7 kg/m2) were enrolled in this study. At baseline, plain radiographs of the bilateral knee joints were evaluated according to the Kellgren-Lawrence grade (KLG). All participants exhibited at least a KLG ≥ 2 in each knee. At baseline, fasting blood glucose (FBG) and Central Sensitization Inventory-9 (CSI-9) were evaluated; ≥ 10 points on the CSI-9 was defined as CS+. Knee injury and Osteoarthritis Outcome Score (KOOS) was evaluated at baseline and at 1-year follow-up; the change in KOOS (ΔKOOS) was calculated by subtracting the KOOS at baseline from that at the 1-year follow-up. Multiple linear regression analysis was conducted with ΔKOOS as the dependent variable and FBG at baseline as the independent variable, adjusted for age, sex, BMI, and CSI-9 at baseline. RESULTS Of the 297 subjects, 48 (16.2 %) were defined as CS+. In the CS - group, there was no association between FBG levels at baseline and ΔKOOS. In contrast, FBG at baseline was negatively associated with ΔKOOS pain (B = - 0.448; p = 0.003), ADL (B = - 0.438; p = 0.003), and sports (B = - 0.706; p = 0.007). CONCLUSIONS In patients with radiographic KOA and CS, higher blood glucose levels were associated with deteriorated knee symptoms during the 1-year follow-up. Healthcare providers should pay attention to controlling blood glucose, particularly in patients with KOA and concurrent CS, to mitigate their knee symptoms. STUDY DESIGN Retrospective cohort study (evidence level: III).
Collapse
Affiliation(s)
- Daisuke Chiba
- grid.257016.70000 0001 0673 6172Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562 Japan
| | - Tetsushi Ohyama
- grid.257016.70000 0001 0673 6172Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562 Japan
| | - Eiji Sasaki
- grid.257016.70000 0001 0673 6172Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562 Japan
| | - Makoto Daimon
- grid.257016.70000 0001 0673 6172Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562 Japan
| | - Shigeyuki Nakaji
- grid.257016.70000 0001 0673 6172Department of Social Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562 Japan
| | - Yasuyuki Ishibashi
- grid.257016.70000 0001 0673 6172Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562 Japan
| |
Collapse
|
24
|
Zhao XF, Huffman LD, Hafner H, Athaiya M, Finneran MC, Kalinski AL, Kohen R, Flynn C, Passino R, Johnson CN, Kohrman D, Kawaguchi R, Yang LJS, Twiss JL, Geschwind DH, Corfas G, Giger RJ. The injured sciatic nerve atlas (iSNAT), insights into the cellular and molecular basis of neural tissue degeneration and regeneration. eLife 2022; 11:80881. [PMID: 36515985 PMCID: PMC9829412 DOI: 10.7554/elife.80881] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Upon trauma, the adult murine peripheral nervous system (PNS) displays a remarkable degree of spontaneous anatomical and functional regeneration. To explore extrinsic mechanisms of neural repair, we carried out single-cell analysis of naïve mouse sciatic nerve, peripheral blood mononuclear cells, and crushed sciatic nerves at 1 day, 3 days, and 7 days following injury. During the first week, monocytes and macrophages (Mo/Mac) rapidly accumulate in the injured nerve and undergo extensive metabolic reprogramming. Proinflammatory Mo/Mac with a high glycolytic flux dominate the early injury response and rapidly give way to inflammation resolving Mac, programmed toward oxidative phosphorylation. Nerve crush injury causes partial leakiness of the blood-nerve barrier, proliferation of endoneurial and perineurial stromal cells, and entry of opsonizing serum proteins. Micro-dissection of the nerve injury site and distal nerve, followed by single-cell RNA-sequencing, identified distinct immune compartments, triggered by mechanical nerve wounding and Wallerian degeneration, respectively. This finding was independently confirmed with Sarm1-/- mice, in which Wallerian degeneration is greatly delayed. Experiments with chimeric mice showed that wildtype immune cells readily enter the injury site in Sarm1-/- mice, but are sparse in the distal nerve, except for Mo. We used CellChat to explore intercellular communications in the naïve and injured PNS and report on hundreds of ligand-receptor interactions. Our longitudinal analysis represents a new resource for neural tissue regeneration, reveals location- specific immune microenvironments, and reports on large intercellular communication networks. To facilitate mining of scRNAseq datasets, we generated the injured sciatic nerve atlas (iSNAT): https://cdb-rshiny.med.umich.edu/Giger_iSNAT/.
Collapse
Affiliation(s)
- Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Lucas D Huffman
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Mitre Athaiya
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Matthew C Finneran
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Ashley L Kalinski
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Corey Flynn
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Craig N Johnson
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - David Kohrman
- Kresge Hearing Institute, University of Michigan–Ann ArborAnn ArborUnited States
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, University of California, Los AngelesLos AngelesUnited States
| | - Lynda JS Yang
- Department of Neurosurgery, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South CarolinaColumbiaUnited States
| | - Daniel H Geschwind
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States,Department of Human Genetics,David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States,Institute of Precision Health, University of California, Los AngelesLos AngelesUnited States
| | - Gabriel Corfas
- Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States,Kresge Hearing Institute, University of Michigan–Ann ArborAnn ArborUnited States,Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States,Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
| |
Collapse
|
25
|
Huang B, Zdora I, de Buhr N, Eikelberg D, Baumgärtner W, Leitzen E. Phenotypical changes of satellite glial cells in a murine model of G M1 -gangliosidosis. J Cell Mol Med 2021; 26:527-539. [PMID: 34877779 PMCID: PMC8743646 DOI: 10.1111/jcmm.17113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Satellite glial cells (SGCs) of dorsal root ganglia (DRG) react in response to various injuries in the nervous system. This study investigates reactive changes within SGCs in a murine model for GM1‐gangliosidosis (GM1). DRG of homozygous β‐galactosidase‐knockout mice and homozygous C57BL/6 wild‐type mice were investigated performing immunostaining on formalin‐fixed, paraffin‐embedded tissue. A marked upregulation of glial fibrillary acidic protein (GFAP), the progenitor marker nestin and Ki67 within SGCs of diseased mice, starting after 4 months at the earliest GFAP, along with intracytoplasmic accumulation of ganglioside within neurons and deterioration of clinical signs was identified. Interestingly, nestin‐positive SGCs were detected after 8 months only. No changes regarding inwardly rectifying potassium channel 4.1, 2, 3‐cyclic nucleotide 3‐phosphodiesterase, Sox2, doublecortin, periaxin and caspase3 were observed in SGCs. Iba1 was only detected in close vicinity of SGCs indicating infiltrating or tissue‐resident macrophages. These results indicate that SGCs of DRG show phenotypical changes during the course of GM1, characterized by GFAP upregulation, proliferation and expression of a neural progenitor marker at a late time point. This points towards an important role of SGCs during neurodegenerative disorders and supports that SGCs represent a multipotent glial precursor cell line with high plasticity and functionality.
Collapse
Affiliation(s)
- Bei Huang
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Deborah Eikelberg
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
26
|
Discrepancy in the Usage of GFAP as a Marker of Satellite Glial Cell Reactivity. Biomedicines 2021; 9:biomedicines9081022. [PMID: 34440226 PMCID: PMC8391720 DOI: 10.3390/biomedicines9081022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Satellite glial cells (SGCs) surrounding the neuronal somas in peripheral sensory ganglia are sensitive to neuronal stressors, which induce their reactive state. It is believed that such induced gliosis affects the signaling properties of the primary sensory neurons and is an important component of the neuropathic phenotype leading to pain and other sensory disturbances. Efforts to understand and manipulate such gliosis relies on reliable markers to confirm induced SGC reactivity and ultimately the efficacy of targeted intervention. Glial fibrillary acidic protein (GFAP) is currently the only widely used marker for such analyses. However, we have previously described the lack of SGC upregulation of GFAP in a mouse model of sciatic nerve injury, suggesting that GFAP may not be a universally suitable marker of SGC gliosis across species and experimental models. To further explore this, we here investigate the regulation of GFAP in two different experimental models in both rats and mice. We found that whereas GFAP was upregulated in both rodent species in the applied inflammation model, only the rat demonstrated increased GFAP in SGCs following sciatic nerve injury; we did not observe any such GFAP upregulation in the mouse model at either protein or mRNA levels. Our results demonstrate an important discrepancy between species and experimental models that prevents the usage of GFAP as a universal marker for SGC reactivity.
Collapse
|
27
|
Kuai L, Jiang JS, Li W, Li B, Yin SY. Long non-coding RNAs in diabetic wound healing: Current research and clinical relevance. Int Wound J 2021; 19:583-600. [PMID: 34337861 PMCID: PMC8874090 DOI: 10.1111/iwj.13655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/15/2021] [Accepted: 06/21/2021] [Indexed: 01/23/2023] Open
Abstract
Diabetic wounds are a protracted complication of diabetes mainly characterised by chronic inflammation, obstruction of epithelialization, damaged blood vessels and collagen production (maturation), as well as neuropathy. As a non‐coding RNA (ncRNA) that lack coding potential, long non‐coding RNAs (lncRNAs) have recently been reported to play a salient role in diabetic wound healing. Here, this review summarises the roles of lncRNAs in the pathology and treatments of diabetic wounds, providing references for its potential clinical diagnostic criteria or therapeutic targets in the future.
Collapse
Affiliation(s)
- Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Si Jiang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuang-Yi Yin
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
28
|
Aghanoori MR, Margulets V, Smith DR, Kirshenbaum LA, Gitler D, Fernyhough P. Sensory neurons derived from diabetic rats exhibit deficits in functional glycolysis and ATP that are ameliorated by IGF-1. Mol Metab 2021; 49:101191. [PMID: 33592336 PMCID: PMC7940986 DOI: 10.1016/j.molmet.2021.101191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE The distal dying-back of the longest nerve fibres is a hallmark of diabetic neuropathy, and impaired provision of energy in the form of adenosine triphosphate (ATP) may contribute to this neurodegenerative process. We hypothesised that energy supplementation via glycolysis and/or mitochondrial oxidative phosphorylation is compromised in cultured dorsal root ganglion (DRG) sensory neurons from diabetic rodents, thus contributing to axonal degeneration. Functional analysis of glycolysis and mitochondrial respiration and real-time measurement of ATP levels in live cells were our specific means to test this hypothesis. METHODS DRG neuron cultures from age-matched control or streptozotocin (STZ)-induced type 1 diabetic rats were used for in vitro studies. Three plasmids containing ATP biosensors of varying affinities were transfected into neurons to study endogenous ATP levels in real time. The Seahorse XF analyser was used for glycolysis and mitochondrial respiration measurements. RESULTS Fluorescence resonance energy transfer (FRET) efficiency (YFP/CFP ratio) of the ATP biosensors AT1.03 (low affinity) and AT1.03YEMK (medium affinity) were significantly higher than that measured using the ATP-insensitive construct AT1.03R122/6K in both cell bodies and neurites of DRG neurons (p < 0.0001). The ATP level was homogenous along the axons but higher in cell bodies in cultured DRG neurons from both control and diabetic rats. Treatment with oligomycin (an ATP synthase inhibitor in mitochondria) decreased the ATP levels in cultured DRG neurons. Likewise, blockade of glycolysis using 2-deoxy-d-glucose (2-DG: a glucose analogue) reduced ATP levels (p < 0.001). Cultured DRG neurons derived from diabetic rats showed a diminishment of ATP levels (p < 0.01), glycolytic capacity, glycolytic reserve and non-glycolytic acidification. Application of insulin-like growth factor-1 (IGF-1) significantly elevated all the above parameters in DRG neurons from diabetic rats. Oligomycin pre-treatment of DRG neurons, to block oxidative phosphorylation, depleted the glycolytic reserve and lowered basal respiration in sensory neurons derived from control and diabetic rats. Depletion was much higher in sensory neurons from diabetic rats compared to control rats. In addition, an acute increase in glucose concentration, in the presence or absence of oligomycin, elevated parameters of glycolysis by 1.5- to 2-fold while having no impact on mitochondrial respiration. CONCLUSION We provide the first functional evidence for decreased glycolytic capacity in DRG neurons derived from type 1 diabetic rats. IGF-1 protected against the loss of ATP supplies in DRG cell bodies and axons in neurons derived from diabetic rats by augmenting various parameters of glycolysis and mitochondrial respiration.
Collapse
Affiliation(s)
- Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Vicky Margulets
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Darrell R Smith
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Lorrie A Kirshenbaum
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada; Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
29
|
Nowak KL, Murray K, You Z, Gitomer B, Brosnahan G, Abebe KZ, Braun W, Chapman A, Harris PC, Miskulin D, Perrone R, Torres V, Steinman T, Yu A, Chonchol M. Pain and Obesity in Autosomal Dominant Polycystic Kidney Disease: A Post Hoc Analysis of the Halt Progression of Polycystic Kidney Disease (HALT-PKD) Studies. Kidney Med 2021; 3:536-545.e1. [PMID: 34401721 PMCID: PMC8350824 DOI: 10.1016/j.xkme.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rationale & Objective Pain is a frequent complication of autosomal dominant polycystic kidney disease (ADPKD) and includes back and abdominal pain. We hypothesized that in adults with early- and late-stage ADPKD, overweight and obesity are independently associated with greater self-reported back, abdominal, and radicular pain at baseline and that weight loss would be associated with decreased pain over a follow-up period. Study Design Post hoc analysis of pooled data from 2 randomized trials. Setting & Participants Participants in the HALT-PKD study A or B. 867 individuals were included in a cross-sectional analysis. 4,248 observations from 871 participants were included in a longitudinal analysis. Predictor Overweight and obesity (cross-sectional); annual change in weight as a time-varying predictor (longitudinal). Outcome Pain (Likert-scale responses; cross-sectional); annual change in pain (binary outcome of worsening pain or not worsening; longitudinal). Analytical Approach Multivariable ordinal logistic regression (cross-sectional); generalized estimating equation analysis (longitudinal). Results Participants were aged 42±10 years and baseline estimated glomerular filtration rate was 71±26 mL/min/1.73 m2. Back, abdominal, and radicular pain were reported more frequently in individuals with increasing body mass index category (all P < 0.05 for trend). After multivariable adjustment, obesity was associated with increased odds of greater back and radicular pain, but not abdominal pain. Associations remained similar after further adjustment for baseline height-adjusted kidney and liver volume (study A only, n = 457); back pain: OR, 1.88 (95% CI, 1.15-3.08); and radicular pain: OR, 2.92 (95% CI, 1.45-5.91). Longitudinally (median follow-up, 5 years), weight loss (annual decrease in weight ≥ 4%) was associated with decreased adjusted odds of worsening back pain (OR, 0.87 [95% CI, 0.76-0.99]) compared with the reference group (stable weight). Limitations Post hoc, associative analysis. Conclusions In early- and late-stage ADPKD, obesity was associated with greater back and radicular pain independent of total kidney/liver volume. Mild weight loss was associated with favorable effects on back pain.
Collapse
Affiliation(s)
| | - Kaleigh Murray
- University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zhiying You
- University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | | | | | | | | | | | | | | | | - Theodore Steinman
- Beth Israel Deaconess Medical Center, Boston, MA.,Emory University School of Medicine, Atlanta, GA
| | - Alan Yu
- University of Kansas Medical Center, Kansas City, KS
| | | |
Collapse
|
30
|
Hagen KM, Ousman SS. Aging and the immune response in diabetic peripheral neuropathy. J Neuroimmunol 2021; 355:577574. [PMID: 33894676 DOI: 10.1016/j.jneuroim.2021.577574] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/27/2022]
Abstract
A large proportion of older individuals with diabetes go on to develop diabetic peripheral neuropathy (DPN). DPN is associated with an increase in inflammatory cells within the peripheral nerve, activation of nuclear factor kappa-light-chain-enhancer of activated B cells and receptors for advanced glycation end products/advanced glycation end products pathways, aberrant cytokine expression, oxidative stress, ischemia, as well as pro-inflammatory changes in the bone marrow; all processes that may be exacerbated with age. We review the immunological features of DPN and discuss whether age-related changes in relevant immunological areas may contribute to age being a risk factor for DPN.
Collapse
Affiliation(s)
- Kathleen M Hagen
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shalina S Ousman
- Departments of Clinical Neurosciences and Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
31
|
Wan L, Su Z, Li F, Gao P, Zhang X. MiR-122-5p suppresses neuropathic pain development by targeting PDK4. Neurochem Res 2021; 46:957-963. [PMID: 33566299 DOI: 10.1007/s11064-020-03213-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
The complex pathogenesis and limited efficacy of available treatment make neuropathic pain difficult for long periods of time. Several findings suggested the regulatory role of microRNA in the development of neuropathic pain. This study aims to investigate the functional role of miR-122-5p in the development of neuropathic pain. Down-regulation of miR-122-5p was observed in spinal cords of rats with neuropathic pain. We also found that overexpressing miR-122-5p by intrathecal injection of miR-122-5p lentivirus in a mouse model of chronic sciatic nerve injury (CCI) prevented neuropathic pain behavior. In HEK-293 T cells, luciferase activity was significantly decreased in the transfection group with mimic-miR-122-5p in wild-type PDK4 reporter, compared with mutant PDK4 reporter. Increased PDK4 expression was also observed during the progression of neuropathic pain. Intrathecal injection of both mimic-miR-122-5p and shPDK4 in CCI mice downregulated PDK4 expression to a lower level when compared with injected with shPDK4. In CCI mice, transfection of shPDK4 suppressed mechanical allodynia and thermal hyperalgesia, while co-transfection of shPDK4 and LV-miR-122-5p resulted in stronger levels of mechanical allodynia and thermal hyperalgesia inhibition. Taken together, the data suggest that miR-122-5p inhibits PDK4 expression, attenuating neuropathic pain. This result suggests the potential role of miR-122-5p acting as a target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Lanlan Wan
- Department of Otolaryngological, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China
| | - Zhen Su
- Department of Anesthesiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China
| | - Fayin Li
- Department of Anesthesiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China
| | - Pengfei Gao
- Department of Anesthesiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China
| | - Xianlong Zhang
- Department of Anesthesiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China.
| |
Collapse
|
32
|
Zheng T, Wang Q, Bian F, Zhao Y, Ma W, Zhang Y, Lu W, Lei P, Zhang L, Hao X, Chen L. Salidroside alleviates diabetic neuropathic pain through regulation of the AMPK-NLRP3 inflammasome axis. Toxicol Appl Pharmacol 2021; 416:115468. [PMID: 33639149 DOI: 10.1016/j.taap.2021.115468] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/01/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022]
Abstract
High glucose (HG)-induced nucleotide-binding and oligomerization (NACHT) domain, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome activation leads to diabetic neuropathic pain. We recently showed that salidroside could suppress NLRP3 inflammasome activation in hepatocytes exposed to HG. The aim of this study was to evaluate the analgesic effect of salidroside on diabetic rats and to explore its underlying mechanisms. Rat models with diabetic neuropathic pain were induced by high-fat diet feeding combined with low dose streptozotocin injections. Doses of salidroside at 50 and 100 mg.kg-1.day-1 were administered by gavage to diabetic rats for 6 weeks. Mechanical allodynia test, thermal hyperalgesia test and biochemical analysis were performed to evaluate therapeutic effects. Primary dorsal root ganglion (DRG) cells exposed to HG at 45 mM were used to further study the effects of salidroside on the AMP-activated protein kinase (AMPK)-NLRP3 inflammasome axis and insulin sensitivity in vitro. Salidroside administration improved hyperglycemia, ameliorated insulin resistance, and alleviated neuropathic pain in diabetic rats. Moreover, salidroside induced AMPK activation and suppressed NLRP3 inflammasome activation in the DRGs of diabetic rats. In addition, salidroside treatment relieved oxidative stress, improved insulin sensitivity and regulated the AMPK-NLRP3 inflammasome axis in HG-treated DRGs in vitro. Furthermore, AMPK inhibition in vivo or AMPK silencing in vitro abolished the beneficial effects of salidroside on diabetic neuropathic pain. Together, these results indicate that salidroside alleviates diabetic neuropathic pain through its regulation of the AMPK-NLRP3 inflammasome axis in DRGs.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Analgesics/pharmacology
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cells, Cultured
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetic Neuropathies/enzymology
- Diabetic Neuropathies/etiology
- Diabetic Neuropathies/physiopathology
- Diabetic Neuropathies/prevention & control
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/enzymology
- Ganglia, Spinal/physiopathology
- Glucosides/pharmacology
- Hypoglycemic Agents/pharmacology
- Inflammasomes/metabolism
- Insulin Resistance
- Male
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Neuralgia/enzymology
- Neuralgia/etiology
- Neuralgia/physiopathology
- Neuralgia/prevention & control
- Oxidative Stress/drug effects
- Pain Threshold/drug effects
- Phenols/pharmacology
- Rats, Sprague-Dawley
- Signal Transduction
- Rats
Collapse
Affiliation(s)
- Tao Zheng
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Qibin Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fang Bian
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yan Zhao
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Weidong Ma
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yonghong Zhang
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wei Lu
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Pan Lei
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lulu Zhang
- Department of Hematology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xincai Hao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Li Chen
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
33
|
Leo M, Schmitt LI, Kutritz A, Kleinschnitz C, Hagenacker T. Cisplatin-induced activation and functional modulation of satellite glial cells lead to cytokine-mediated modulation of sensory neuron excitability. Exp Neurol 2021; 341:113695. [PMID: 33727094 DOI: 10.1016/j.expneurol.2021.113695] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/01/2021] [Accepted: 03/11/2021] [Indexed: 12/23/2022]
Abstract
Cisplatin plays an essential role in the treatment of various cancers. Cisplatin exhibits high efficacy, but it often leads to severe neurotoxic side effects, such as chemotherapy-induced polyneuropathy (CIPN). The pathophysiology of CIPN is not fully understood. There is increasing evidence for damage to satellite glial cells (SGC) and dorsal root ganglion (DRG) neurons. We investigated the influence of cisplatin on the function of SGCs and the direct influence on DRGs. Satellite glial cells were isolated from DRG and exposed to 0.1, 1, 10, or 100 μM cisplatin for 2 h, 4 h, and 24 h. Using immunocytochemical staining and Western blot analysis, the expression of the glial fibrillary acid protein (GFAP), reactive oxygen species (ROS), and inward rectifier potassium channel 4.1 (Kir4.1) was determined. An increase in the immune reactivity (IR) and protein levels of GFAP and ROS was measured, and a reduction of IR and protein level of Kir4.1 was detected. A decrease in these channels' current density was observed using the whole-cell patch-clamp recording. The interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) release of SGCs increased after cisplatin exposure as measured using ELISA, and interleukin-1β (IL-1β) decreased. The SGC-secreted factors in the supernatant after cisplatin treatment led to a modulation of cultured DRG neurons' excitability. Taken together, the modulation and function of different SGC proteins could be linked to a direct impact of cisplatin. Further, SGC-secreted factors influenced the excitability of sensory neurons. Overall, SGCs could be a potential target in preventing and treating chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Markus Leo
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Linda-Isabell Schmitt
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Andrea Kutritz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
34
|
Abstract
Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the nervous system including post-translational modification of proteins by glucose and increased glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.
Collapse
|
35
|
Bhusal A, Lee WH, Suk K. Lipocalin-2 in Diabetic Complications of the Nervous System: Physiology, Pathology, and Beyond. Front Physiol 2021; 12:638112. [PMID: 33613327 PMCID: PMC7892766 DOI: 10.3389/fphys.2021.638112] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Lipocalin-2 (LCN2) is a 25 kDa secreted protein that belongs to the family of lipocalins, a group of transporters of small hydrophobic molecules such as iron, fatty acids, steroids, and lipopolysaccharide in circulation. LCN2 was previously found to be involved in iron delivery, pointing toward a potential role for LCN2 in immunity. This idea was further validated when LCN2 was found to limit bacterial growth during infections in mice by sequestering iron-laden siderophores. Recently, LCN2 was also identified as a critical regulator of energy metabolism, glucose and lipid homeostasis, and insulin function. Furthermore, studies using Lcn2 knockout mice suggest an important role for LCN2 in several biobehavioral responses, including cognition, emotion, anxiety, and feeding behavior. Owing to its expression and influence on multiple metabolic and neurological functions, there has emerged a great deal of interest in the study of relationships between LCN2 and neurometabolic complications. Thorough investigation has demonstrated that LCN2 is involved in several neurodegenerative diseases, while more recent studies have shown that LCN2 is also instrumental for the progression of diabetic complications like encephalopathy and peripheral neuropathy. Preliminary findings have shown that LCN2 is also a promising drug target and diagnostic marker for the treatment of neuropathic complications from diabetes. In particular, future translational research related to LCN2, such as the development of small-molecule inhibitors or neutralizing antibodies against LCN2, appears essential for exploring its potential as a therapeutic target.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
36
|
Wang X, Li Q, Han X, Gong M, Yu Z, Xu B. Electroacupuncture Alleviates Diabetic Peripheral Neuropathy by Regulating Glycolipid-Related GLO/AGEs/RAGE Axis. Front Endocrinol (Lausanne) 2021; 12:655591. [PMID: 34295304 PMCID: PMC8290521 DOI: 10.3389/fendo.2021.655591] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes mellitus (DM) and affects over one-third of all patients. Neuropathic pain and nerve dysfunction induced by DM is related to the increase of advanced glycation end products (AGEs) produced by reactive dicarbonyl compounds in a hyperglycemia environment. AGEs induce the expression of pro-inflammatory cytokines via the main receptor (RAGE), which has been documented to play a crucial role in the pathogenesis of diabetic peripheral neuropathy. Electroacupuncture (EA) has been reported to have a positive effect on paralgesia caused by various diseases, but the mechanism is unclear. In this study, we used high-fat-fed low-dose streptozotocin-induced rats as a model of type 2 diabetes (T2DM). Persistent metabolic disorder led to mechanical and thermal hyperalgesia, as well as intraepidermal nerve fiber density reduction and nerve demyelination. EA improved neurological hyperalgesia, decreased the pro-inflammatory cytokines, reduced the generation of AGEs and RAGE, and regulated the glyoxalase system in the EA group. Taken together, our study suggested that EA plays a role in the treatment of T2DM-induced DPN, and is probably related to the regulation of metabolism and the secondary influence on the GLO/AGE/RAGE axis.
Collapse
Affiliation(s)
| | | | | | | | - Zhi Yu
- *Correspondence: Zhi Yu, ; Bin Xu,
| | - Bin Xu
- *Correspondence: Zhi Yu, ; Bin Xu,
| |
Collapse
|
37
|
Mizukami H, Osonoi S. Pathogenesis and Molecular Treatment Strategies of Diabetic Neuropathy Collateral Glucose-Utilizing Pathways in Diabetic Polyneuropathy. Int J Mol Sci 2020; 22:ijms22010094. [PMID: 33374137 PMCID: PMC7796340 DOI: 10.3390/ijms22010094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic polyneuropathy (DPN) is the most common neuropathy manifested in diabetes. Symptoms include allodynia, pain, paralysis, and ulcer formation. There is currently no established radical treatment, although new mechanisms of DPN are being vigorously explored. A pathophysiological feature of DPN is abnormal glucose metabolism induced by chronic hyperglycemia in the peripheral nerves. Particularly, activation of collateral glucose-utilizing pathways such as the polyol pathway, protein kinase C, advanced glycation end-product formation, hexosamine biosynthetic pathway, pentose phosphate pathway, and anaerobic glycolytic pathway are reported to contribute to the onset and progression of DPN. Inhibitors of aldose reductase, a rate-limiting enzyme involved in the polyol pathway, are the only compounds clinically permitted for DPN treatment in Japan, although their efficacies are limited. This may indicate that multiple pathways can contribute to the pathophysiology of DPN. Comprehensive metabolic analysis may help to elucidate global changes in the collateral glucose-utilizing pathways during the development of DPN, and highlight therapeutic targets in these pathways.
Collapse
Affiliation(s)
- Hiroki Mizukami
- Department Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan;
- Correspondence: ; Tel.: +81-172-39-5025
| | - Sho Osonoi
- Department Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan;
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
38
|
Kim JH, Seo Y, Jo M, Jeon H, Kim YS, Kim EJ, Seo D, Lee WH, Kim SR, Yachie N, Zhong Q, Vidal M, Roth FP, Suk K. Interrogation of kinase genetic interactions provides a global view of PAK1-mediated signal transduction pathways. J Biol Chem 2020; 295:16906-16919. [PMID: 33060198 PMCID: PMC7863907 DOI: 10.1074/jbc.ra120.014831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/23/2020] [Indexed: 12/29/2022] Open
Abstract
Kinases are critical components of intracellular signaling pathways and have been extensively investigated with regard to their roles in cancer. p21-activated kinase-1 (PAK1) is a serine/threonine kinase that has been previously implicated in numerous biological processes, such as cell migration, cell cycle progression, cell motility, invasion, and angiogenesis, in glioma and other cancers. However, the signaling network linked to PAK1 is not fully defined. We previously reported a large-scale yeast genetic interaction screen using toxicity as a readout to identify candidate PAK1 genetic interactions. En masse transformation of the PAK1 gene into 4,653 homozygous diploid Saccharomyces cerevisiae yeast deletion mutants identified ∼400 candidates that suppressed yeast toxicity. Here we selected 19 candidate PAK1 genetic interactions that had human orthologs and were expressed in glioma for further examination in mammalian cells, brain slice cultures, and orthotopic glioma models. RNAi and pharmacological inhibition of potential PAK1 interactors confirmed that DPP4, KIF11, mTOR, PKM2, SGPP1, TTK, and YWHAE regulate PAK1-induced cell migration and revealed the importance of genes related to the mitotic spindle, proteolysis, autophagy, and metabolism in PAK1-mediated glioma cell migration, drug resistance, and proliferation. AKT1 was further identified as a downstream mediator of the PAK1-TTK genetic interaction. Taken together, these data provide a global view of PAK1-mediated signal transduction pathways and point to potential new drug targets for glioma therapy.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yeojin Seo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Myungjin Jo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyejin Jeon
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Young-Seop Kim
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Eun-Jung Kim
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Donggun Seo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Won-Ha Lee
- School of Life Sciences, Brain Korea 21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Sang Ryong Kim
- School of Life Sciences, Brain Korea 21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Nozomu Yachie
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto and Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Quan Zhong
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Frederick P Roth
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto and Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
39
|
Bhusal A, Rahman MH, Lee WH, Lee IK, Suk K. Satellite glia as a critical component of diabetic neuropathy: Role of lipocalin-2 and pyruvate dehydrogenase kinase-2 axis in the dorsal root ganglion. Glia 2020; 69:971-996. [PMID: 33251681 DOI: 10.1002/glia.23942] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of uncontrolled diabetes. The pathogenesis of DPN is associated with chronic inflammation in dorsal root ganglion (DRG), eventually causing structural and functional changes. Studies on DPN have primarily focused on neuronal component, and there is limited knowledge about the role of satellite glial cells (SGCs), although they completely enclose neuronal soma in DRG. Lipocalin-2 (LCN2) is a pro-inflammatory acute-phase protein found in high levels in diverse neuroinflammatory and metabolic disorders. In diabetic DRG, the expression of LCN2 was increased exclusively in the SGCs. This upregulation of LCN2 in SGCs correlated with increased inflammatory responses in DRG and sciatic nerve. Furthermore, diabetes-induced inflammation and morphological changes in DRG, as well as sciatic nerve, were attenuated in Lcn2 knockout (KO) mice. Lcn2 gene ablation also ameliorated neuropathy phenotype as determined by nerve conduction velocity and intraepidermal nerve fiber density. Mechanistically, studies using specific gene KO mice, adenovirus-mediated gene overexpression strategy, and primary cultures of DRG SGCs and neurons have demonstrated that LCN2 enhances the expression of mitochondrial gate-keeping regulator pyruvate dehydrogenase kinase-2 (PDK2) through PPARβ/δ, thereby inhibiting pyruvate dehydrogenase activity and increasing production of glycolytic end product lactic acid in DRG SGCs and neurons of diabetic mice. Collectively, our findings reveal a crucial role of glial LCN2-PPARβ/δ-PDK2-lactic acid axis in progression of DPN. Our results establish a link between pro-inflammatory LCN2 and glycolytic PDK2 in DRG SGCs and neurons and propose a novel glia-based mechanism and drug target for therapy of DPN. MAIN POINTS: Diabetes upregulates LCN2 in satellite glia, which in turn increases pyruvate dehydrogenase kinase-2 (PDK2) expression and lactic acid production in dorsal root ganglia (DRG). Glial LCN2-PDK2-lactic acid axis in DRG plays a crucial role in the pathogenesis of diabetic neuropathy.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, Brain Korea 21 Plus/Kyungpook National University Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.,Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
40
|
Rahman MH, Bhusal A, Kim JH, Jha MK, Song GJ, Go Y, Jang IS, Lee IK, Suk K. Astrocytic pyruvate dehydrogenase kinase-2 is involved in hypothalamic inflammation in mouse models of diabetes. Nat Commun 2020; 11:5906. [PMID: 33219201 PMCID: PMC7680139 DOI: 10.1038/s41467-020-19576-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Hypothalamic inflammation plays an important role in disrupting feeding behavior and energy homeostasis as well as in the pathogenesis of obesity and diabetes. Here, we show that pyruvate dehydrogenase kinase (PDK)-2 plays a role in hypothalamic inflammation and its sequelae in mouse models of diabetes. Cell type-specific genetic ablation and pharmacological inhibition of PDK2 in hypothalamic astrocytes suggest that hypothalamic astrocytes are involved in the diabetic phenotype. We also show that the PDK2-lactic acid axis plays a regulatory role in the observed metabolic imbalance and hypothalamic inflammation in mouse primary astrocyte and organotypic cultures, through the AMPK signaling pathway and neuropeptidergic circuitry governing feeding behavior. Our findings reveal that PDK2 ablation or inhibition in mouse astrocytes attenuates diabetes-induced hypothalamic inflammation and subsequent alterations in feeding behavior. Hypothalamic inflammation is involved in the pathogenesis of diabetes. The underlying mechanisms are unclear. Here, the authors show that astrocytic PDK2 ablation or inhibition attenuates hypothalamic inflammation in mouse models of diabetes.
Collapse
Affiliation(s)
- Md Habibur Rahman
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science and Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Anup Bhusal
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science and Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Hong Kim
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science and Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mithilesh Kumar Jha
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Gyun Jee Song
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung-si, Republic of Korea.,Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Younghoon Go
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 700-412, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Daegu, 700-721, Republic of Korea.,Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, 700-721, Republic of Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science and Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea. .,Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
41
|
Jha MK, Morrison BM. Lactate Transporters Mediate Glia-Neuron Metabolic Crosstalk in Homeostasis and Disease. Front Cell Neurosci 2020; 14:589582. [PMID: 33132853 PMCID: PMC7550678 DOI: 10.3389/fncel.2020.589582] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Research over the last couple of decades has provided novel insights into lactate neurobiology and the implications of lactate transport-driven neuroenergetics in health and diseases of peripheral nerve and the brain. The expression pattern of lactate transporters in glia and neurons has now been described, though notable controversies and discrepancies remain. Importantly, down- and up-regulation experiments are underway to better understand the function of these transporters in different systems. Lactate transporters in peripheral nerves are important for maintenance of axon and myelin integrity, motor end-plate integrity, the development of diabetic peripheral neuropathy (DPN), and the functional recovery following nerve injuries. Similarly, brain energy metabolism and functions ranging from development to synaptic plasticity to axonal integrity are also dependent on lactate transport primarily between glia and neurons. This review is focused on critically analysing the expression pattern and the functions of lactate transporters in peripheral nerves and the brain and highlighting their role in glia-neuron metabolic crosstalk in physiological and pathological conditions.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
42
|
Hanani M, Spray DC. Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci 2020; 21:485-498. [PMID: 32699292 PMCID: PMC7374656 DOI: 10.1038/s41583-020-0333-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Satellite glial cells (SGCs) closely envelop cell bodies of neurons in sensory, sympathetic and parasympathetic ganglia. This unique organization is not found elsewhere in the nervous system. SGCs in sensory ganglia are activated by numerous types of nerve injury and inflammation. The activation includes upregulation of glial fibrillary acidic protein, stronger gap junction-mediated SGC-SGC and neuron-SGC coupling, increased sensitivity to ATP, downregulation of Kir4.1 potassium channels and increased cytokine synthesis and release. There is evidence that these changes in SGCs contribute to chronic pain by augmenting neuronal activity and that these changes are consistent in various rodent pain models and likely also in human pain. Therefore, understanding these changes and the resulting abnormal interactions of SGCs with sensory neurons could provide a mechanistic approach that might be exploited therapeutically in alleviation and prevention of pain. We describe how SGCs are altered in rodent models of four common types of pain: systemic inflammation (sickness behaviour), post-surgical pain, diabetic neuropathic pain and post-herpetic pain.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - David C Spray
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
43
|
Rumora AE, Savelieff MG, Sakowski SA, Feldman EL. Disorders of mitochondrial dynamics in peripheral neuropathy: Clues from hereditary neuropathy and diabetes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:127-176. [PMID: 31208522 PMCID: PMC11533248 DOI: 10.1016/bs.irn.2019.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peripheral neuropathy is a common and debilitating complication of diabetes and prediabetes. Recent clinical studies have identified an association between the development of neuropathy and dyslipidemia in prediabetic and diabetic patients. Despite the prevalence of this complication, studies identifying molecular mechanisms that underlie neuropathy progression in prediabetes or diabetes are limited. However, dysfunctional mitochondrial pathways in hereditary neuropathy provide feasible molecular targets for assessing mitochondrial dysfunction in neuropathy associated with prediabetes or diabetes. Recent studies suggest that elevated levels of dietary saturated fatty acids (SFAs) associated with dyslipidemia impair mitochondrial dynamics in sensory neurons by inducing mitochondrial depolarization, compromising mitochondrial bioenergetics, and impairing axonal mitochondrial transport. This causes lower neuronal ATP and apoptosis. Conversely, monounsaturated fatty acids (MUFAs) restore nerve and sensory mitochondrial function. Understanding the mitochondrial pathways that contribute to neuropathy progression in prediabetes and diabetes may provide therapeutic targets for the treatment of this debilitating complication.
Collapse
Affiliation(s)
- Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Masha G Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
44
|
Song GJ, Rahman MH, Jha MK, Gupta DP, Park SH, Kim JH, Lee SH, Lee IK, Sim T, Bae YC, Lee WH, Suk K. A Bcr-Abl Inhibitor GNF-2 Attenuates Inflammatory Activation of Glia and Chronic Pain. Front Pharmacol 2019; 10:543. [PMID: 31164822 PMCID: PMC6535676 DOI: 10.3389/fphar.2019.00543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/30/2019] [Indexed: 01/01/2023] Open
Abstract
GNF-2 is an allosteric inhibitor of Bcr-Abl. It was developed as a new class of anti-cancer drug to treat resistant chronic myelogenous leukemia. Recent studies suggest that c-Abl inhibition would provide a neuroprotective effect in animal models of Parkinson’s disease as well as in clinical trials. However, the role of c-Abl and effects of GNF-2 in glia-mediated neuroinflammation or pain hypersensitivity has not been investigated. Thus, in the present study, we tested the hypothesis that c-Abl inhibition by GNF-2 may attenuate the inflammatory activation of glia and the ensuing pain behaviors in animal models. Our results show that GNF-2 reduced lipopolysaccharide (LPS)-induced nitric oxide and pro-inflammatory cytokine production in cultured glial cells in a c-Abl-dependent manner. The small interfering ribonucleic acid (siRNA)-mediated knockdown of c-Abl attenuated LPS-induced nuclear factor kappa light chain enhancer of activated B cell (NF-κB) activation and the production of pro-inflammatory mediators in glial cell cultures. Moreover, GNF-2 administration significantly attenuated mechanical and thermal hypersensitivities in experimental models of diabetic and inflammatory pain. Together, our findings suggest the involvement of c-Abl in neuroinflammation and pain pathogenesis and that GNF-2 can be used for the management of chronic pain.
Collapse
Affiliation(s)
- Gyun Jee Song
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung-si, South Korea.,Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, South Korea
| | - Md Habibur Rahman
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Deepak Prasad Gupta
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung-si, South Korea.,Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sung Hee Park
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung-si, South Korea
| | - Jae-Hong Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sun-Hwa Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, and VORONOI Inc., Incheon, South Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Won-Ha Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
45
|
Guo G, Ren S, Kang Y, Liu Y, Duscher D, Machens HG, Chen Z. Microarray analyses of lncRNAs and mRNAs expression profiling associated with diabetic peripheral neuropathy in rats. J Cell Biochem 2019; 120:15347-15359. [PMID: 31025414 DOI: 10.1002/jcb.28802] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is considered to be the most frequent neuropathic complication of diabetes, and severely affects the quality of life of patients. Long noncoding RNAs (lncRNAs) participate in various pathophysiological processes and associate with many diseases. However, the exact impact of lncRNAs on DPN remains obscure. To discover a potential connection, a microarray study was conducted to analyze the expression profiling of lncRNAs and messenger RNAs (mRNAs) in dorsal root ganglia (DRG) from streptozotocin-induced diabetic rats with DPN. As a result, 983 lncRNAs and 1357 mRNAs were aberrantly expressed compared with control samples. Using bioinformatics analyses, we identified 558 Gene Ontology terms and 94 Kyoto Encyclopedia of Genes and Genomes pathways to be significantly enriched. Additionally, the signal-net analysis indicated that integrin receptors, including Itgb3, Itgb1, Itgb8, and Itga6, might be important players in network regulation. Furthermore, the lncRNA-mRNA network analysis showed dynamic interactions between the dysregulated lncRNAs and mRNAs. This is the first study to present an overview of lncRNA and mRNA expressions in DRG tissues from DPN rats. Our results indicate that these differentially expressed lncRNAs may have crucial roles in pathological processes of DPN by regulating their coexpressed mRNAs. The data may provide novel targets for future studies, which should focus on validating their roles in the progression of DPN.
Collapse
Affiliation(s)
- Guojun Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dominik Duscher
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Bhusal A, Rahman MH, Lee IK, Suk K. Role of Hippocampal Lipocalin-2 in Experimental Diabetic Encephalopathy. Front Endocrinol (Lausanne) 2019; 10:25. [PMID: 30761088 PMCID: PMC6363678 DOI: 10.3389/fendo.2019.00025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/15/2019] [Indexed: 01/04/2023] Open
Abstract
Diabetic encephalopathy is a severe diabetes-related complication in the central nervous system (CNS) that is characterized by degenerative neurochemical and structural changes leading to impaired cognitive function. While the exact pathophysiology of diabetic encephalopathy is not well-understood, it is likely that neuroinflammation is one of the key pathogenic mechanisms that cause this complication. Lipocalin-2 (LCN2) is an acute phase protein known to promote neuroinflammation via the recruitment and activation of immune cells and glia, particularly microglia and astrocytes, thereby inducing proinflammatory mediators in a range of neurological disorders. In this study, we investigated the role of LCN2 in multiple aspects of diabetic encephalopathy in mouse models of diabetes. Here, we show that induction of diabetes increased the expression of both Lcn2 mRNA and protein in the hippocampus. Genetic deficiency of Lcn2 significantly reduced gliosis, recruitment of macrophages, and production of inflammatory cytokines in the diabetic mice. Further, diabetes-induced hippocampal toxicity and cognitive decline were both lower in Lcn2 knockout mice than in the wild-type animals. Taken together, our findings highlight the critical role of LCN2 in the pathogenesis of diabetic encephalopathy.
Collapse
Affiliation(s)
- Anup Bhusal
- BK21 Plus KNU Biomedical Convergence Program, Departments of Biomedical Science and Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Md Habibur Rahman
- BK21 Plus KNU Biomedical Convergence Program, Departments of Biomedical Science and Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - In-Kyu Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Departments of Biomedical Science and Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
47
|
Wang L, Chopp M, Lu X, Szalad A, Jia L, Liu XS, Wu KH, Lu M, Zhang ZG. miR-146a mediates thymosin β4 induced neurovascular remodeling of diabetic peripheral neuropathy in type-II diabetic mice. Brain Res 2018; 1707:198-207. [PMID: 30500399 DOI: 10.1016/j.brainres.2018.11.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Diabetes induces neurovascular dysfunction leading to peripheral neuropathy. MicroRNAs (miRNAs) affect many biological processes and the development of diabetic peripheral neuropathy. In the present study, we investigated whether thymosin-β4 (Tβ4) ameliorates diabetic peripheral neuropathy and whether miR-146a mediates the effect of Tβ4 on improved neurovascular function. Male Type II diabetic BKS. Cg-m+/+Leprdb/J (db/db) mice at age 20 weeks were treated with Tβ4 for 8 consecutive weeks, and db/db mice treated with saline were used as a control group. Compared to non-diabetic mice, diabetic mice exhibited substantially reduced miR-146a expression, and increased IL-1R-associated kinase-1 (IRAK1), tumor necrosis factor (TNFR)-associated factor 6 (TRAF6) levels and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) activity in sciatic nerve tissues. Treatment of diabetic mice with Tβ4 significantly elevated miR-146a levels and overcame the effect of diabetes on these proteins. Tβ4 treatment substantially improved motor and sensory conduction velocity of the sciatic nerve, which was associated with improvements in sensory function. Tβ4 treatment significantly increased intraepidermal nerve fiber density and augmented local blood flow and the density of fluorescein isothiocyanate (FITC)-dextran perfused vessels in the sciatic nerve tissue. In vitro, treatment of dorsal root ganglion (DRG) neurons and mouse dermal endothelial cells (MDEs) with Tβ4 significantly increased axonal outgrowth and capillary-like tube formation, whereas blocking miR-146a attenuated Tβ4-induced axonal outgrowth and capillary tube formation, respectively. Our data indicate that miR-146a may mediate Tβ4-induced neurovascular remodeling in diabetic mice, by suppressing pro-inflammatory signals.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States.
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States; Department of Physics, Oakland University, Rochester, MI 48309, United States
| | - XueRong Lu
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States
| | - LongFei Jia
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States
| | - Kuan-Han Wu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States
| | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, United States
| |
Collapse
|
48
|
Beazley-Long N, Moss CE, Ashby WR, Bestall SM, Almahasneh F, Durrant AM, Benest AV, Blackley Z, Ballmer-Hofer K, Hirashima M, Hulse RP, Bates DO, Donaldson LF. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun 2018; 74:49-67. [PMID: 29548992 PMCID: PMC6302073 DOI: 10.1016/j.bbi.2018.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 02/01/2023] Open
Abstract
Chronic pain can develop in response to conditions such as inflammatory arthritis. The central mechanisms underlying the development and maintenance of chronic pain in humans are not well elucidated although there is evidence for a role of microglia and astrocytes. However in pre-clinical models of pain, including models of inflammatory arthritis, there is a wealth of evidence indicating roles for pathological glial reactivity within the CNS. In the spinal dorsal horn of rats with painful inflammatory arthritis we found both a significant increase in CD11b+ microglia-like cells and GFAP+ astrocytes associated with blood vessels, and the number of activated blood vessels expressing the adhesion molecule ICAM-1, indicating potential glio-vascular activation. Using pharmacological interventions targeting VEGFR2 in arthritic rats, to inhibit endothelial cell activation, the number of dorsal horn ICAM-1+ blood vessels, CD11b+ microglia and the development of secondary mechanical allodynia, an indicator of central sensitization, were all prevented. Targeting endothelial VEGFR2 by inducible Tie2-specific VEGFR2 knock-out also prevented secondary allodynia in mice and glio-vascular activation in the dorsal horn in response to inflammatory arthritis. Inhibition of VEGFR2 in vitro significantly blocked ICAM-1-dependent monocyte adhesion to brain microvascular endothelial cells, when stimulated with inflammatory mediators TNF-α and VEGF-A165a. Taken together our findings suggest that a novel VEGFR2-mediated spinal cord glio-vascular mechanism may promote peripheral CD11b+ circulating cell transmigration into the CNS parenchyma and contribute to the development of chronic pain in inflammatory arthritis. We hypothesise that preventing this glio-vascular activation and circulating cell translocation into the spinal cord could be a new therapeutic strategy for pain caused by rheumatoid arthritis.
Collapse
Affiliation(s)
- Nicholas Beazley-Long
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Catherine Elizabeth Moss
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - William Robert Ashby
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Samuel Marcus Bestall
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Fatimah Almahasneh
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexandra Margaret Durrant
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Andrew Vaughan Benest
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Zoe Blackley
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | | | - Masanori Hirashima
- Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Japan
| | - Richard Phillip Hulse
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - David Owen Bates
- Cancer Biology, School of Medicine, QMC, University of Nottingham, Nottingham NG7 2UH, UK,COMPARE University of Birmingham and University of Nottingham Midlands, UK
| | - Lucy Frances Donaldson
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
49
|
Dorsal root ganglia in vivo morphometry and perfusion in female patients with Fabry disease. J Neurol 2018; 265:2723-2729. [DOI: 10.1007/s00415-018-9053-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|
50
|
Guo G, Liu Y, Ren S, Kang Y, Duscher D, Machens HG, Chen Z. Comprehensive analysis of differentially expressed microRNAs and mRNAs in dorsal root ganglia from streptozotocin-induced diabetic rats. PLoS One 2018; 13:e0202696. [PMID: 30118515 PMCID: PMC6097669 DOI: 10.1371/journal.pone.0202696] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/06/2018] [Indexed: 01/22/2023] Open
Abstract
Diabetic peripheral neuropathy is a common complication associated with diabetes mellitus with a pathogenesis that is incompletely understood. By regulating RNA silencing and post-transcriptional gene expression, microRNAs participate in various biological processes and human diseases. However, the relationship between microRNAs and the progress of diabetic peripheral neuropathy still lacks a thorough exploration. Here we used microarray microRNA and mRNA expression profiling to analyze the microRNAs and mRNAs which are aberrantly expressed in dorsal root ganglia from streptozotocin-induced diabetic rats. We found that 37 microRNAs and 1357 mRNAs were differentially expressed in comparison to non-diabetic samples. Bioinformatics analysis indicated that 399 gene ontology terms and 29 Kyoto Encyclopedia of Genes and Genomes pathways were significantly enriched in diabetic rats. Additionally, a microRNA-gene network evaluation identified rno-miR-330-5p, rno-miR-17-1-3p and rno-miR-346 as important players for network regulation. Finally, quantitative real-time polymerase chain reaction analysis was used to confirm the microarray results. In conclusion, this study provides a systematic perspective of microRNA and mRNA expression in dorsal root ganglia from diabetic rats, and suggests that dysregulated microRNAs and mRNAs may be important promotors of peripheral neuropathy. Our results may be the underlying framework of future studies regarding the effect of the aberrantly expressed genes on the pathophysiology of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Guojun Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dominik Duscher
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|