1
|
Oh H, Samineni L, Vogler RJ, Yao C, Behera H, Dhiman R, Horner A, Kumar M. Approaching Ideal Selectivity with Bioinspired and Biomimetic Membranes. ACS NANO 2025; 19:31-53. [PMID: 39718215 DOI: 10.1021/acsnano.4c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The applications of polymeric membranes have grown rapidly compared to traditional separation technologies due to their energy efficiency and smaller footprint. However, their potential is not fully realized due, in part, to their heterogeneity, which results in a "permeability-selectivity" trade-off for most membrane applications. Inspired by the intricate architecture and excellent homogeneity of biological membranes, bioinspired and biomimetic membranes (BBMs) aim to emulate biological membranes for practical applications. This Review highlights the potential of BBMs to overcome the limitations of polymeric membranes by utilizing the "division of labor" between well-defined permeable pores and impermeable matrix molecules seen in biological membranes. We explore the exceptional performance of membranes in biological organisms, focusing on their two major components: membrane proteins (biological channels) and lipid matrix molecules. We then discuss how these natural materials can be replaced with artificial mimics for enhanced properties and how macro-scale BBMs are developed. We highlight key demonstrations in the field of BBMs that draw upon the factors responsible for transport through biological membranes. Additionally, current state-of-the-art methods for fabrication of BBMs are reviewed with potential challenges and prospects for future applications. Finally, we provide considerations for future research that could enable BBMs to progress toward scale-up and enhanced applicability.
Collapse
Affiliation(s)
- Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Laxmicharan Samineni
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Ronald J Vogler
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Chenhao Yao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Harekrushna Behera
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Raman Dhiman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Manish Kumar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Selvam B, Paul A, Yu YC, Chen LQ, Shukla D. SWEET family transporters act as water conducting carrier proteins in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.23.600272. [PMID: 38979333 PMCID: PMC11230166 DOI: 10.1101/2024.06.23.600272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dedicated water channels are involved in the facilitated diffusion of water molecules across the cell membrane in plants. Transporter proteins are also known to transport water molecules along with substrates, however the molecular mechanism of water permeation is not well understood in plant transporters. Here, we show plant sugar transporters from the SWEET (Sugar Will Eventually be Exported Transporter) family act as water-conducting carrier proteins via a variety of passive and active mechanisms that allow diffusion of water molecules from one side of the membrane to the other. This study provides a molecular perspective on how plant membrane transporters act as water carrier proteins, a topic that has not been extensively explored in literature. Water permeation in membrane transporters could occur via four distinct mechanisms which form our hypothesis for water transport in SWEETs. These hypothesis are tested using molecular dynamics simulations of the outward-facing, occluded, and inward-facing state of AtSWEET1 to identify the water permeation pathways and the flux associated with them. The hydrophobic gates at the center of the transport tunnel act as a barrier that restricts water permeation. We have performed in silico single and double mutations of the hydrophobic gate residues to examine the changes in the water conductivity. Surprisingly, the double mutant allows the water permeation to the intracellular half of the membrane and forms a continuous water channel. These computational results are validated by experimentally examining the transport of hydrogen peroxide molecules by the AtSWEET family of transporters. We have also shown that the transport of hydrogen peroxide follows the similar mechanism as water transport in AtSWEET1. Finally, we conclude that similar water-conduction states are also present in other SWEET transporters due to the high sequence and structure conservation exhibited by this transporter family.
Collapse
Affiliation(s)
- Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Arnav Paul
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Ya-Chi Yu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
3
|
Bassetto CAZ, Pfeffermann J, Yadav R, Strassgschwandtner S, Glasnov T, Bezanilla F, Pohl P. Photolipid excitation triggers depolarizing optocapacitive currents and action potentials. Nat Commun 2024; 15:1139. [PMID: 38326372 PMCID: PMC10850502 DOI: 10.1038/s41467-024-45403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high infrared light intensities obstruct broad applicability. Now, we propose a very versatile approach: photolipids (azobenzene-containing diacylglycerols) mediate light-triggered cellular de- or hyperpolarization. As planar bilayer experiments show, the respective currents emerge from millisecond-timescale changes in bilayer capacitance. UV light changes photolipid conformation, which awards embedding plasma membranes with increased capacitance and evokes depolarizing currents. They open voltage-gated sodium channels in cells, generating action potentials. Blue light reduces the area per photolipid, decreasing membrane capacitance and eliciting hyperpolarization. If present, mechanosensitive channels respond to the increased mechanical membrane tension, generating large depolarizing currents that elicit action potentials. Membrane self-insertion of administered photolipids and focused illumination allows cell excitation with high spatiotemporal control.
Collapse
Affiliation(s)
- Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Juergen Pfeffermann
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020, Linz, Austria
| | - Rohit Yadav
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020, Linz, Austria
| | | | - Toma Glasnov
- Institute of Chemistry, Karl-Franzens-University, Graz, Austria
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020, Linz, Austria.
| |
Collapse
|
4
|
Bassetto CAZ, Pfeffermann J, Yadav R, Strassgschwandtner S, Glasnov T, Bezanilla F, Pohl P. Photolipid excitation triggers depolarizing optocapacitive currents and action potentials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.552849. [PMID: 37645959 PMCID: PMC10462005 DOI: 10.1101/2023.08.11.552849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high infrared light intensities obstruct broad applicability. Now, we propose a very versatile approach: photolipids (azobenzene-containing diacylglycerols) mediate light-triggered cellular de- or hyperpolarization. As planar bilayer experiments show, the respective currents emerge from millisecond-timescale changes in bilayer capacitance. UV light changes photolipid conformation, which awards embedding plasma membranes with increased capacitance and evokes depolarizing currents. They open voltage-gated sodium channels in cells, generating action potentials. Blue light reduces the area per photolipid, decreasing membrane capacitance and eliciting hyperpolarization. If present, mechanosensitive channels respond to the increased mechanical membrane tension, generating large depolarizing currents that elicit action potentials. Membrane self-insertion of administered photolipids and focused illumination allows cell excitation with high spatiotemporal control.
Collapse
Affiliation(s)
- Carlos A. Z. Bassetto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Juergen Pfeffermann
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Rohit Yadav
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | | | - Toma Glasnov
- Institute of Chemistry, Karl-Franzens-University, Graz, Austria
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| |
Collapse
|
5
|
Sever M, Merzel F. Influence of SGLT1 Sugar Uptake Inhibitors on Water Transport. Molecules 2023; 28:5295. [PMID: 37513169 PMCID: PMC10385929 DOI: 10.3390/molecules28145295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Sodium glucose cotransporters (SGLTs) are cotransporters located in the cell membrane of various epithelia that uptake glucose or galactose and sodium into the cell. Its founding member, SGLT1, represents a major pharmaceutically relevant target protein for development of new antidiabetic drugs, in addition to being the target protein of the oral rehydration therapy. Previous studies focused primarily on the transport of substrates and ions, while our study focuses on the effect of water transport. SGLT1 is implicated in the absorption of water, yet the exact mechanism of how the water absorption occurs or how inhibitors of SGLT1, such as phlorizin, are able to inhibit it is still unclear. Here we present a comprehensive study based on molecular dynamics simulations with the aim of determining the influence of the energetic and dynamic properties of SGLT1, which are influenced by selected sugar uptake inhibitors on water permeation.
Collapse
Affiliation(s)
- Marko Sever
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Franci Merzel
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Wachlmayr J, Fläschner G, Pluhackova K, Sandtner W, Siligan C, Horner A. Entropic barrier of water permeation through single-file channels. Commun Chem 2023; 6:135. [PMID: 37386127 PMCID: PMC10310842 DOI: 10.1038/s42004-023-00919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Facilitated water permeation through narrow biological channels is fundamental for all forms of life. Despite its significance in health and disease as well as for biotechnological applications, the energetics of water permeation are still elusive. Gibbs free energy of activation is composed of an enthalpic and an entropic component. Whereas the enthalpic contribution is readily accessible via temperature dependent water permeability measurements, estimation of the entropic contribution requires information on the temperature dependence of the rate of water permeation. Here, we estimate, by means of accurate activation energy measurements of water permeation through Aquaporin-1 and by determining the accurate single channel permeability, the entropic barrier of water permeation through a narrow biological channel. Thereby the calculated value for [Formula: see text] = 2.01 ± 0.82 J/(mol·K) links the activation energy of 3.75 ± 0.16 kcal/mol with its efficient water conduction rate of ~1010 water molecules/second. This is a first step in understanding the energetic contributions in various biological and artificial channels exhibiting vastly different pore geometries.
Collapse
Affiliation(s)
- Johann Wachlmayr
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Gotthold Fläschner
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule (ETH) Zürich, Basel, Switzerland
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Universitätsstr. 32, 70569, Stuttgart, Germany
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17A, 1090, Vienna, Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
7
|
Sever M, Merzel F. Collective Domain Motion Facilitates Water Transport in SGLT1. Int J Mol Sci 2023; 24:10528. [PMID: 37445706 DOI: 10.3390/ijms241310528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The human sodium-glucose cotransporter protein (SGLT1) is an important representative of the sodium solute symporters belonging to the secondary active transporters that are critical to the homeostasis of sugar, sodium, and water in the cell. The underlying transport mechanism of SGLT1 is based on switching between inward- and outward-facing conformations, known as the alternating access model, which is crucial for substrate transport, and has also been postulated for water permeation. However, the nature of water transport remains unclear and is disputed along the passive and active transport, with the latter postulating the presence of the pumping effect. To better examine the water transport in SGLT1, we performed a series of equilibrium all-atom molecular dynamics simulations, totaling over 6 μs of sample representative conformational states of SGLT1 and its complexes, with the natural substrates, ions, and inhibitors. In addition to elucidating the basic physical factors influencing water permeation, such as channel openings and energetics, we focus on dynamic flexibility and its relationship with domain motion. Our results clearly demonstrate a dependence of instantaneous water flux on the channel opening and local water diffusion in the channel, strongly supporting the existence of a passive water transport in SGLT1. In addition, a strong correlation found between the local water diffusion and protein domain motion, resembling the "rocking-bundle" motion, reveals its facilitating role in the water transport.
Collapse
Affiliation(s)
- Marko Sever
- Theory Departnemt, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Franci Merzel
- Theory Departnemt, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Boytsov D, Brescia S, Chaves G, Koefler S, Hannesschlaeger C, Siligan C, Goessweiner-Mohr N, Musset B, Pohl P. Trapped Pore Waters in the Open Proton Channel H V 1. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205968. [PMID: 36683221 DOI: 10.1002/smll.202205968] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The voltage-gated proton channel, HV 1, is crucial for innate immune responses. According to alternative hypotheses, protons either hop on top of an uninterrupted water wire or bypass titratable amino acids, interrupting the water wire halfway across the membrane. To distinguish between both hypotheses, the water mobility for the putative case of an uninterrupted wire is estimated. The predicted single-channel water permeability 2.3 × 10-12 cm3 s-1 reflects the permeability-governing number of hydrogen bonds between water molecules in single-file configuration and pore residues. However, the measured unitary water permeability does not confirm the predicted value. Osmotic deflation of reconstituted lipid vesicles reveals negligible water permeability of the HV 1 wild-type channel and the D174A mutant open at 0 mV. The conductance of 1400 H+ s-1 per wild-type channel agrees with the calculated diffusion limit for a ≈2 Å capture radius for protons. Removal of a charged amino acid (D174) at the pore mouth decreases H+ conductance by reducing the capture radius. At least one intervening amino acid contributes to H+ conductance while interrupting the water wire across the membrane.
Collapse
Affiliation(s)
- Danila Boytsov
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | - Stefania Brescia
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | - Gustavo Chaves
- Institute of Physiology, Pathophysiology and Biophysics, CPPB, Paracelsus Medical University, 90419, Nuremberg, Germany
| | - Sabina Koefler
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | | | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | | | - Boris Musset
- Institute of Physiology, Pathophysiology and Biophysics, CPPB, Paracelsus Medical University, 90419, Nuremberg, Germany
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| |
Collapse
|
9
|
Peritore-Galve FC, Kaji I, Smith A, Walker LM, Shupe JA, Washington MK, Algood HMS, Dudeja PK, Goldenring JR, Lacy DB. Increased intestinal permeability and downregulation of absorptive ion transporters Nhe3, Dra, and Sglt1 contribute to diarrhea during Clostridioides difficile infection. Gut Microbes 2023; 15:2225841. [PMID: 37350393 PMCID: PMC10291935 DOI: 10.1080/19490976.2023.2225841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND & AIM Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired diarrhea and pseudomembranous colitis. Two protein toxins, TcdA and TcdB, produced by C. difficile are the major determinants of disease. However, the pathophysiological causes of diarrhea during CDI are not well understood. Here, we investigated the effects of C. difficile toxins on paracellular permeability and apical ion transporters in the context of an acute physiological infection. METHODS We studied intestinal permeability and apical membrane transporters in female C57BL/6J mice. Üssing chambers were used to measure paracellular permeability and ion transporter function across the intestinal tract. Infected intestinal tissues were analyzed by immunofluorescence microscopy and RNA-sequencing to uncover mechanisms of transporter dysregulation. RESULTS Intestinal permeability was increased through the size-selective leak pathway in vivo during acute CDI in a 2-day-post infection model. Chloride secretory activity was reduced in the cecum and distal colon during infection by decreased CaCC and CFTR function, respectively. SGLT1 activity was significantly reduced in the cecum and colon, accompanied by ablated SGLT1 expression in colonocytes and increased luminal glucose concentrations. SGLT1 and DRA expression was ablated by either TcdA or TcdB during acute infection, but NHE3 was decreased in a TcdB-dependent manner. The localization of key proteins that link filamentous actin to the ion transporters in the apical plasma membrane was unchanged. However, Sglt1, Nhe3, and Dra were drastically reduced at the transcript level, implicating downregulation of ion transporters in the mechanism of diarrhea during CDI. CONCLUSIONS CDI increases intestinal permeability and decreases apical abundance of NHE3, SGLT1, and DRA. This combination likely leads to dysfunctional water and solute absorption in the large bowel, causing osmotic diarrhea. These findings provide insights into the pathophysiological mechanisms underlying diarrhea and may open novel avenues for attenuating CDI-associated diarrhea.
Collapse
Affiliation(s)
- F. Christopher Peritore-Galve
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anna Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren M. Walker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John A. Shupe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Holly M. Scott Algood
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Veterans Affairs, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - James R. Goldenring
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
10
|
Biophysical quantification of unitary solute and solvent permeabilities to enable translation to membrane science. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Walch E, Fiacco TA. Honey, I shrunk the extracellular space: Measurements and mechanisms of astrocyte swelling. Glia 2022; 70:2013-2031. [PMID: 35635369 PMCID: PMC9474570 DOI: 10.1002/glia.24224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
Abstract
Astrocyte volume fluctuation is a physiological phenomenon tied closely to the activation of neural circuits. Identification of underlying mechanisms has been challenging due in part to use of a wide range of experimental approaches that vary between research groups. Here, we first review the many methods that have been used to measure astrocyte volume changes directly or indirectly. While the field has recently shifted towards volume analysis using fluorescence microscopy to record cell volume changes directly, established metrics corresponding to extracellular space dynamics have also yielded valuable insights. We then turn to analysis of mechanisms of astrocyte swelling derived from many studies, with a focus on volume changes tied to increases in extracellular potassium concentration ([K+ ]o ). The diverse methods that have been utilized to generate the external [K+ ]o environment highlight multiple scenarios of astrocyte swelling mediated by different mechanisms. Classical potassium buffering theories are tempered by many recent studies that point to different swelling pathways optimized at particular [K+ ]o and that depend on local/transient versus more sustained increases in [K+ ]o .
Collapse
Affiliation(s)
- Erin Walch
- Division of Biomedical Sciences, School of MedicineUniversity of California, RiversideRiversideCaliforniaUSA
| | - Todd A. Fiacco
- Department of Molecular, Cell and Systems BiologyUniversity of California, RiversideRiversideCaliforniaUSA
- Center for Glial‐Neuronal InteractionsUniversity of California, RiversideRiversideCaliforniaUSA
| |
Collapse
|
12
|
Barta T, Sandtner W, Wachlmayr J, Hannesschlaeger C, Ebert A, Speletz A, Horner A. Modeling of SGLT1 in Reconstituted Systems Reveals Apparent Ion-Dependencies of Glucose Uptake and Strengthens the Notion of Water-Permeable Apo States. Front Physiol 2022; 13:874472. [PMID: 35784872 PMCID: PMC9242095 DOI: 10.3389/fphys.2022.874472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
The reconstitution of secondary active transporters into liposomes shed light on their molecular transport mechanism. The latter are either symporters, antiporters or exchangers, which use the energy contained in the electrochemical gradient of ions to fuel concentrative uptake of their cognate substrate. In liposomal preparations, these gradients can be set by the experimenter. However, due to passive diffusion of the ions and solutes through the membrane, the gradients are not stable and little is known on the time course by which they dissipate and how the presence of a transporter affects this process. Gradient dissipation can also generate a transmembrane potential (VM). Because it is the effective ion gradient, which together with VM fuels concentrative uptake, knowledge on how these parameters change within the time frame of the conducted experiment is key to understanding experimental outcomes. Here, we addressed this problem by resorting to a modelling approach. To this end, we mathematically modeled the liposome in the assumed presence and absence of the sodium glucose transporter 1 (SGLT1). We show that 1) the model can prevent us from reaching erroneous conclusions on the driving forces of substrate uptake and we 2) demonstrate utility of the model in the assignment of the states of SGLT1, which harbor a water channel.
Collapse
Affiliation(s)
- Thomas Barta
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, Vienna, Austria
| | - Johann Wachlmayr
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Christof Hannesschlaeger
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andrea Ebert
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Armin Speletz
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andreas Horner
- Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
13
|
Funai Y, Takemura M, Inoue K, Shirasaka Y. Effect of Ingested Fluid Volume and Solution Osmolality on Intestinal Drug Absorption: Impact on Drug Interaction with Beverages. Eur J Pharm Sci 2022; 172:106136. [PMID: 35121020 DOI: 10.1016/j.ejps.2022.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/03/2022]
Abstract
It was recently shown that osmolality-dependent fluid movement is a significant factor causing the clinically observed apple juice (AJ)-atenolol interaction. Here we examined whether osmolality-dependent fluid movement may also explain the AJ volume dependence of the AJ-atenolol interaction. In Wistar rats, the luminal fluid volume after administration of different volumes of purified water (0.5 and 1.0 mL) gradually reduced to a similar steady-state level, while that after administration of different volumes of AJ (0.5 and 1.0 mL) increased and attained different apparent steady-state levels. It was hypothesized that osmolality-dependent fluid secretion would account for the volume dependence of the apparent steady-state. Indeed, the luminal concentration of FD-4, a non-permeable compound, after administration in AJ was attenuated depending upon the ingested volume, whereas that after administration in purified water was independent of the ingested fluid volume. An in vivo pharmacokinetic study in rats showed that co-administration of AJ and hyperosmotic solution (adjusted to the osmolality of AJ) with atenolol volume-dependently reduced the AUC and Cmax of atenolol significantly. These results show that osmolality-dependent variations in luminal fluid volume may indirectly influence the absorption characteristics of drugs, and can account for the observed volume dependence of beverage-drug interactions.
Collapse
Affiliation(s)
- Yuta Funai
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.; School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Miyuki Takemura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.; School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Katsuhisa Inoue
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.; School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
14
|
Dextrose 10% drink is superior to sodium-dextrose drink in increasing blood glucose and sprint speed in soccer players: A double-blinded randomized crossover trial study. Sci Sports 2022. [DOI: 10.1016/j.scispo.2020.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Wachlmayr J, Hannesschlaeger C, Speletz A, Barta T, Eckerstorfer A, Siligan C, Horner A. Scattering versus fluorescence self-quenching: more than a question of faith for the quantification of water flux in large unilamellar vesicles? NANOSCALE ADVANCES 2021; 4:58-76. [PMID: 35028506 PMCID: PMC8691418 DOI: 10.1039/d1na00577d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/16/2021] [Indexed: 06/14/2023]
Abstract
The endeavors to understand the determinants of water permeation through membrane channels, the effect of the lipid or polymer membrane on channel function, the development of specific water flow inhibitors, the design of artificial water channels and aquaporins for the use in industrial water filtration applications all rely on accurate ways to quantify water permeabilities (P f). A commonly used method is to reconstitute membrane channels into large unilamellar vesicles (LUVs) and to subject these vesicles to an osmotic gradient in a stopped-flow device. Fast recordings of either scattered light intensity or fluorescence self-quenching signals are taken as a readout for vesicle volume change, which in turn can be recalculated to accurate P f values. By means of computational and experimental data, we discuss the pros and cons of using scattering versus self-quenching experiments or subjecting vesicles to hypo- or hyperosmotic conditions. In addition, we explicate for the first time the influence of the LUVs size distribution, channel distribution between vesicles and remaining detergent after protein reconstitution on P f values. We point out that results such as the single channel water permeability (p f) depend on the membrane matrix or on the direction of the applied osmotic gradient may be direct results of the measurement and analysis procedure.
Collapse
Affiliation(s)
- Johann Wachlmayr
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | | | - Armin Speletz
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Thomas Barta
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Anna Eckerstorfer
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| |
Collapse
|
16
|
Pluhackova K, Horner A. Native-like membrane models of E. coli polar lipid extract shed light on the importance of lipid composition complexity. BMC Biol 2021; 19:4. [PMID: 33441107 PMCID: PMC7807449 DOI: 10.1186/s12915-020-00936-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Lipid-protein interactions stabilize protein oligomers, shape their structure, and modulate their function. Whereas in vitro experiments already account for the functional importance of lipids by using natural lipid extracts, in silico methods lack behind by embedding proteins in single component lipid bilayers. However, to accurately complement in vitro experiments with molecular details at very high spatio-temporal resolution, molecular dynamics simulations have to be performed in natural(-like) lipid environments. RESULTS To enable more accurate MD simulations, we have prepared four membrane models of E. coli polar lipid extract, a typical model organism, each at all-atom (CHARMM36) and coarse-grained (Martini3) representations. These models contain all main lipid headgroup types of the E. coli inner membrane, i.e., phosphatidylethanolamines, phosphatidylglycerols, and cardiolipins, symmetrically distributed between the membrane leaflets. The lipid tail (un)saturation and propanylation stereochemistry represent the bacterial lipid tail composition of E. coli grown at 37∘C until 3/4 of the log growth phase. The comparison of the Simple three lipid component models to the complex 14-lipid component model Avanti over a broad range of physiologically relevant temperatures revealed that the balance of lipid tail unsaturation and propanylation in different positions and inclusion of lipid tails of various length maintain realistic values for lipid mobility, membrane area compressibility, lipid ordering, lipid volume and area, and the bilayer thickness. The only Simple model that was able to satisfactory reproduce most of the structural properties of the complex Avanti model showed worse agreement of the activation energy of basal water permeation with the here performed measurements. The Martini3 models reflect extremely well both experimental and atomistic behavior of the E. coli polar lipid extract membranes. Aquaporin-1 embedded in our native(-like) membranes causes partial lipid ordering and membrane thinning in its vicinity. Moreover, aquaporin-1 attracts and temporarily binds negatively charged lipids, mainly cardiolipins, with a distinct cardiolipin binding site in the crevice at the contact site between two monomers, most probably stabilizing the tetrameric protein assembly. CONCLUSIONS The here prepared and validated membrane models of E. coli polar lipids extract revealed that lipid tail complexity, in terms of double bond and cyclopropane location and varying lipid tail length, is key to stabilize membrane properties over a broad temperature range. In addition, they build a solid basis for manifold future simulation studies on more realistic lipid membranes bridging the gap between simulations and experiments.
Collapse
Affiliation(s)
- Kristyna Pluhackova
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule (ETH) Zürich, Mattenstr. 26, Basel, 4058, Switzerland.
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| |
Collapse
|
17
|
Oliveira TL, Melo IS, Cardoso-Sousa L, Santos IA, El Zoghbi MB, Shimoura CG, Georjutti RP, Castro OW, Goulart LR, Jardim ACG, Cunha TM, Sabino-Silva R. Pathophysiology of SARS-CoV-2 in Lung of Diabetic Patients. Front Physiol 2020; 11:587013. [PMID: 33362575 PMCID: PMC7758507 DOI: 10.3389/fphys.2020.587013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Novel coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its impact on patients with comorbidities is clearly related to fatality cases, and diabetes has been linked to one of the most important causes of severity and mortality in SARS-CoV-2 infected patients. Substantial research progress has been made on COVID-19 therapeutics; however, effective treatments remain unsatisfactory. This unmet clinical need is robustly associated with the complexity of pathophysiological mechanisms described for COVID-19. Several key lung pathophysiological mechanisms promoted by SARS-CoV-2 have driven the response in normoglycemic and hyperglycemic subjects. There is sufficient evidence that glucose metabolism pathways in the lung are closely tied to bacterial proliferation, inflammation, oxidative stress, and pro-thrombotic responses, which lead to severe clinical outcomes. It is also likely that SARS-CoV-2 proliferation is affected by glucose metabolism of type I and type II cells. This review summarizes the current understanding of pathophysiology of SARS-CoV-2 in the lung of diabetic patients and highlights the changes in clinical outcomes of COVID-19 in normoglycemic and hyperglycemic conditions.
Collapse
Affiliation(s)
- Tales Lyra Oliveira
- Heart Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Medical School, Municipal University of São Caetano do Sul, São Paulo, Brazil
| | - Igor Santana Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas, Alagoas, Brazil
| | - Léia Cardoso-Sousa
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Igor Andrade Santos
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Caroline Gusson Shimoura
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Renata Pereira Georjutti
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Olagide Wagner Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas, Alagoas, Brazil
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil.,Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Ana Carolina Gomes Jardim
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Thúlio Marquez Cunha
- Department of Pulmonology, School of Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
18
|
Elferink H, Bruekers JPJ, Veeneman GH, Boltje TJ. A comprehensive overview of substrate specificity of glycoside hydrolases and transporters in the small intestine : "A gut feeling". Cell Mol Life Sci 2020; 77:4799-4826. [PMID: 32506169 PMCID: PMC7658089 DOI: 10.1007/s00018-020-03564-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
The human body is able to process and transport a complex variety of carbohydrates, unlocking their nutritional value as energy source or as important building block. The endogenous glycosyl hydrolases (glycosidases) and glycosyl transporter proteins located in the enterocytes of the small intestine play a crucial role in this process and digest and/or transport nutritional sugars based on their structural features. It is for these reasons that glycosidases and glycosyl transporters are interesting therapeutic targets to combat sugar related diseases (such as diabetes) or to improve drug delivery. In this review we provide a detailed overview focused on the molecular structure of the substrates involved as a solid base to start from and to fuel research in the area of therapeutics and diagnostics.
Collapse
Affiliation(s)
- Hidde Elferink
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands
| | - Jeroen P J Bruekers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands
| | | | - Thomas J Boltje
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
20
|
Wang X, Guo K, Huang B, Lin Z, Cai Z. Role of Glucose Transporters in Drug Membrane Transport. Curr Drug Metab 2020; 21:947-958. [PMID: 32778021 DOI: 10.2174/1389200221666200810125924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glucose is the main energy component of cellular activities. However, as a polar molecule, glucose cannot freely pass through the phospholipid bilayer structure of the cell membrane. Thus, glucose must rely on specific transporters in the membrane. Drugs with a similar chemical structure to glucose may also be transported through this pathway. METHODS This review describes the structure, distribution, action mechanism and influencing factors of glucose transporters and introduces the natural drugs mediated by these transporters and drug design strategies on the basis of this pathway. RESULTS The glucose transporters involved in glucose transport are of two major types, namely, Na+-dependent and Na+-independent transporters. Glucose transporters can help some glycoside drugs cross the biological membrane. The transmembrane potential is influenced by the chemical structure of drugs. Glucose can be used to modify drugs and improve their ability to cross biological barriers. CONCLUSION The membrane transport mechanism of some glycoside drugs may be related to glucose transporters. Glucose modification may improve the oral bioavailability of drugs or achieve targeted drug delivery.
Collapse
Affiliation(s)
- Xin Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kunkun Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Baolin Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zimin Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zheng Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Boytsov D, Hannesschlaeger C, Horner A, Siligan C, Pohl P. Micropipette Aspiration-Based Assessment of Single Channel Water Permeability. Biotechnol J 2020; 15:e1900450. [PMID: 32346982 DOI: 10.1002/biot.201900450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/20/2020] [Indexed: 11/09/2022]
Abstract
Measurements of the unitary hydraulic conductivity of membrane channels, pf , may be hampered by difficulties in producing sufficient quantities of purified and reconstituted proteins. Low yield expression, the purely empiric choice of detergents, as well as protein aggregation and misfolding during reconstitution may result in an average of less than one reconstituted channel per large unilamellar vesicle. This limits their applicability for pf measurements, independent of whether light scattering or fluorescence quenching of encapsulated dyes is monitored. Here the micropipette aspiration technique is adopted because its superb sensitivity allows resolving pf values for one order of magnitude smaller protein densities in sphingomyelin and cholesterol rich giant unilamellar vesicles (GUVs). Protein density is derived from intensity fluctuations that fluorescently labeled channels in the aspirated GUV induce by diffusing through the diffraction limited spot. A perfusion system minimizes unstirred layers in the immediate membrane vicinity as demonstrated by the distribution of both encapsulated and extravesicular aqueous dyes. pf amounted to 2.4 ± 0.1 × 10-13 cm³ s-1 for aquaporin-1 that served as a test case. The new assay paves the way for directly monitoring the effect that interaction of aquaporins with other proteins or inhibitors may have on pf on a single sample.
Collapse
Affiliation(s)
- Danila Boytsov
- Institute of Biophysics, Johannes Kepler University Linz, Linz, 4020, Austria
| | | | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Linz, 4020, Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Linz, 4020, Austria
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Linz, 4020, Austria
| |
Collapse
|
22
|
Schwarz T, Striedner Y, Horner A, Haase K, Kemptner J, Zeppezauer N, Hermann P, Tiemann-Boege I. PRDM9 forms a trimer by interactions within the zinc finger array. Life Sci Alliance 2019; 2:e201800291. [PMID: 31308055 PMCID: PMC6643046 DOI: 10.26508/lsa.201800291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/24/2022] Open
Abstract
PRDM9 is a trans-acting factor directing meiotic recombination to specific DNA-binding sites by its zinc finger (ZnF) array. It was suggested that PRDM9 is a multimer; however, we do not know the stoichiometry or the components inducing PRDM9 multimerization. In this work, we used in vitro binding studies and characterized with electrophoretic mobility shift assays, mass spectrometry, and fluorescence correlation spectroscopy the stoichiometry of the PRDM9 multimer of two different murine PRDM9 alleles carrying different tags and domains produced with different expression systems. Based on the migration distance of the PRDM9-DNA complex, we show that PRDM9 forms a trimer. Moreover, this stoichiometry is adapted already by the free, soluble protein with little exchange between protein monomers. The variable ZnF array of PRDM9 is sufficient for multimerization, and at least five ZnFs form already a functional trimer. Finally, we also show that only one ZnF array within the PRDM9 oligomer binds to the DNA, whereas the remaining two ZnF arrays likely maintain the trimer by ZnF-ZnF interactions.
Collapse
Affiliation(s)
- Theresa Schwarz
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Karin Haase
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Jasmin Kemptner
- Red Cross Blood Transfusion Center Upper Austria, MedCampus II, Johannes Kepler University, Linz, Austria
| | | | - Philipp Hermann
- Institute of Applied Statistics, Johannes Kepler University, Linz, Austria
| | | |
Collapse
|
23
|
Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: An UNGAP review. Eur J Pharm Sci 2019; 134:153-175. [DOI: 10.1016/j.ejps.2019.04.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
|
24
|
The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group. Eur J Pharm Sci 2019; 134:31-59. [PMID: 30974173 DOI: 10.1016/j.ejps.2019.04.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
The simultaneous intake of food and drugs can have a strong impact on drug release, absorption, distribution, metabolism and/or elimination and consequently, on the efficacy and safety of pharmacotherapy. As such, food-drug interactions are one of the main challenges in oral drug administration. Whereas pharmacokinetic (PK) food-drug interactions can have a variety of causes, pharmacodynamic (PD) food-drug interactions occur due to specific pharmacological interactions between a drug and particular drinks or food. In recent years, extensive efforts were made to elucidate the mechanisms that drive pharmacokinetic food-drug interactions. Their occurrence depends mainly on the properties of the drug substance, the formulation and a multitude of physiological factors. Every intake of food or drink changes the physiological conditions in the human gastrointestinal tract. Therefore, a precise understanding of how different foods and drinks affect the processes of drug absorption, distribution, metabolism and/or elimination as well as formulation performance is important in order to be able to predict and avoid such interactions. Furthermore, it must be considered that beverages such as milk, grapefruit juice and alcohol can also lead to specific food-drug interactions. In this regard, the growing use of food supplements and functional food requires urgent attention in oral pharmacotherapy. Recently, a new consortium in Understanding Gastrointestinal Absorption-related Processes (UNGAP) was established through COST, a funding organisation of the European Union supporting translational research across Europe. In this review of the UNGAP Working group "Food-Drug Interface", the different mechanisms that can lead to pharmacokinetic food-drug interactions are discussed and summarised from different expert perspectives.
Collapse
|
25
|
Abstract
Spontaneous solute and solvent permeation through membranes is of vital importance to human life, be it gas exchange in red blood cells, metabolite excretion, drug/toxin uptake, or water homeostasis. Knowledge of the underlying molecular mechanisms is the sine qua non of every functional assignment to membrane transporters. The basis of our current solubility diffusion model was laid by Meyer and Overton. It correlates the solubility of a substance in an organic phase with its membrane permeability. Since then, a wide range of studies challenging this rule have appeared. Commonly, the discrepancies have their origin in ill-used measurement approaches, as we demonstrate on the example of membrane CO2 transport. On the basis of the insight that scanning electrochemical microscopy offered into solute concentration distributions in immediate membrane vicinity of planar membranes, we analyzed the interplay between chemical reactions and diffusion for solvent transport, weak acid permeation, and enzymatic reactions adjacent to membranes. We conclude that buffer reactions must also be considered in spectroscopic investigations of weak acid transport in vesicular suspensions. The evaluation of energetic contributions to membrane translocation of charged species demonstrates the compatibility of the resulting membrane current with the solubility diffusion model. A local partition coefficient that depends on membrane penetration depth governs spontaneous membrane translocation of both charged and uncharged molecules. It is determined not only by the solubility in an organic phase but also by other factors like cholesterol concentration and intrinsic electric membrane potentials.
Collapse
Affiliation(s)
- Christof Hannesschlaeger
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Andreas Horner
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Peter Pohl
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| |
Collapse
|
26
|
Abstract
Water at interfaces governs many processes on the molecular scale from electrochemical and enzymatic reactions to protein folding. Here we focus on water transport through proteinaceous pores that are so narrow that the water molecules cannot overtake each other in the pore. After a short introduction into the single-file transport theory, we analyze experiments in which the unitary water permeability, pf, of water channel proteins (aquaporins, AQPs), potassium channels (KcsA), and antibiotics (gramicidin-A derivatives) has been obtained. A short outline of the underlying methods (scanning electrochemical microscopy, fluorescence correlation spectroscopy, measurements of vesicle light scattering) is also provided. We conclude that pf increases exponentially with a decreasing number NH of hydrogen bond donating or accepting residues in the channel wall. The variance in NH is responsible for a more than hundredfold change in pf. The dehydration penalty at the channel mouth has a smaller effect on pf. The intricate link between pf and the Gibbs activation energy barrier, ΔG‡t, for water flow suggests that conformational transitions of water channels act as a third determinant of pf.
Collapse
Affiliation(s)
- Andreas Horner
- Johannes Kepler University Linz, Institute of Biophysics, Gruberstr. 40, 4020 Linz, Austria.
| | | |
Collapse
|
27
|
Hollingsworth SA, Dror RO. Molecular Dynamics Simulation for All. Neuron 2018; 99:1129-1143. [PMID: 30236283 PMCID: PMC6209097 DOI: 10.1016/j.neuron.2018.08.011] [Citation(s) in RCA: 1128] [Impact Index Per Article: 161.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
The impact of molecular dynamics (MD) simulations in molecular biology and drug discovery has expanded dramatically in recent years. These simulations capture the behavior of proteins and other biomolecules in full atomic detail and at very fine temporal resolution. Major improvements in simulation speed, accuracy, and accessibility, together with the proliferation of experimental structural data, have increased the appeal of biomolecular simulation to experimentalists-a trend particularly noticeable in, although certainly not limited to, neuroscience. Simulations have proven valuable in deciphering functional mechanisms of proteins and other biomolecules, in uncovering the structural basis for disease, and in the design and optimization of small molecules, peptides, and proteins. Here we describe, in practical terms, the types of information MD simulations can provide and the ways in which they typically motivate further experimental work.
Collapse
Affiliation(s)
- Scott A Hollingsworth
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
28
|
Hannesschläger C, Barta T, Siligan C, Horner A. Quantification of Water Flux in Vesicular Systems. Sci Rep 2018; 8:8516. [PMID: 29867158 PMCID: PMC5986868 DOI: 10.1038/s41598-018-26946-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/22/2018] [Indexed: 01/29/2023] Open
Abstract
Water transport across lipid membranes is fundamental to all forms of life and plays a major role in health and disease. However, not only typical water facilitators like aquaporins facilitate water flux, but also transporters, ion channels or receptors represent potent water pathways. The efforts directed towards a mechanistic understanding of water conductivity determinants in transmembrane proteins, the development of water flow inhibitors, and the creation of biomimetic membranes with incorporated membrane proteins or artificial water channels depend on reliable and accurate ways of quantifying water permeabilities Pf. A conventional method is to subject vesicles to an osmotic gradient in a stopped-flow device: Fast recordings of scattered light intensity are converted into the time course of vesicle volume change. Even though an analytical solution accurately acquiring Pf from scattered light intensities exists, approximations potentially misjudging Pf by orders of magnitude are used. By means of computational and experimental data we point out that erroneous results such as that the single channel water permeability pf depends on the osmotic gradient are direct results of such approximations. Finally, we propose an empirical solution of which calculated permeability values closely match those calculated with the analytical solution in the relevant range of parameters.
Collapse
Affiliation(s)
- Christof Hannesschläger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020, Linz, Austria
| | - Thomas Barta
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020, Linz, Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020, Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020, Linz, Austria.
| |
Collapse
|
29
|
Grimm M, Koziolek M, Saleh M, Schneider F, Garbacz G, Kühn JP, Weitschies W. Gastric Emptying and Small Bowel Water Content after Administration of Grapefruit Juice Compared to Water and Isocaloric Solutions of Glucose and Fructose: A Four-Way Crossover MRI Pilot Study in Healthy Subjects. Mol Pharm 2018; 15:548-559. [DOI: 10.1021/acs.molpharmaceut.7b00919] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael Grimm
- Institute
of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, D-17487 Greifswald, Germany
| | - Mirko Koziolek
- Institute
of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, D-17487 Greifswald, Germany
| | - Marwa Saleh
- Institute
of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, D-17487 Greifswald, Germany
| | - Felix Schneider
- Institute
of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, D-17487 Greifswald, Germany
| | | | - Jens-Peter Kühn
- Institute
of Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Department
of Radiology, University Medicine Dresden, 17475 Greifswald, Germany
| | - Werner Weitschies
- Institute
of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, D-17487 Greifswald, Germany
| |
Collapse
|
30
|
Horner A, Siligan C, Cornean A, Pohl P. Positively charged residues at the channel mouth boost single-file water flow. Faraday Discuss 2018; 209:55-65. [PMID: 29972179 PMCID: PMC6161257 DOI: 10.1039/c8fd00050f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Positively charged residues in the vicinity of the channel entrance or exit accelerate single-file water flow.
Water molecules lose two of their four bulk neighbours when entering single-file channels. This process may be sensitive to the presence of positive and negative charges at the channel mouth, since the costs for dehydrating cations and anions differ by a large margin. However, it is not known whether entrance charges affect the single channel water permeability (pf). So far, pf is only known to be governed by H-bond formation between permeating water molecules and wall-lining residues. Here we compare the pf values of five different aquaporin species (AQP1, AQPZ, AQP4 wild type, and two phosphorylation mimicking AQP4 mutants) that offer the same number of hydrogen bond donating and receiving residues in their single-file region but display different entrance charges. The pf measurements were performed with reconstituted lipid vesicles. We assessed (i) the osmotically induced vesicle deflation from the light scattering intensity in a stopped-flow device and (ii) the aquaporin abundance by fluorescence correlation spectroscopy. Substitution of serine at positions 111 and 180 in AQP4 for aspartic acid showed only a marginal effect on pf, suggesting that negative entrance charges are of minor importance. In contrast, the total number of positively charged amino acid side chains at entrances and exits correlates with pf: a total of three, four and seven charges of AQP4, AQPZ, and AQP1 translate into pf values of 1.1, 1.8, and 3.2 × 10–13 cm3 s–1, respectively. Thus, positive interfacial charges boost the pf value of AQP1 to three times the value of AQP4. Nevertheless, the number of hydrogen bond donating and receiving residues in the single-file region remains the major determinant of pf. Their effect on pf may be a hundredfold larger than that of interfacial charges.
Collapse
Affiliation(s)
- Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria.
| | | | | | | |
Collapse
|
31
|
Glykys J, Dzhala V, Egawa K, Kahle KT, Delpire E, Staley K. Chloride Dysregulation, Seizures, and Cerebral Edema: A Relationship with Therapeutic Potential. Trends Neurosci 2017; 40:276-294. [PMID: 28431741 DOI: 10.1016/j.tins.2017.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/18/2022]
Abstract
Pharmacoresistant seizures and cytotoxic cerebral edema are serious complications of ischemic and traumatic brain injury. Intraneuronal Cl- concentration ([Cl-]i) regulation impacts on both cell volume homeostasis and Cl--permeable GABAA receptor-dependent membrane excitability. Understanding the pleiotropic molecular determinants of neuronal [Cl-]i - cytoplasmic impermeant anions, polyanionic extracellular matrix (ECM) glycoproteins, and plasmalemmal Cl- transporters - could help the identification of novel anticonvulsive and neuroprotective targets. The cation/Cl- cotransporters and ECM metalloproteinases may be particularly druggable targets for intervention. We establish here a paradigm that accounts for recent data regarding the complex regulatory mechanisms of neuronal [Cl-]i and how these mechanisms impact on neuronal volume and excitability. We propose approaches to modulate [Cl-]i that are relevant for two common clinical sequela of brain injury: edema and seizures.
Collapse
Affiliation(s)
- Joseph Glykys
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Volodymyr Dzhala
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Hospital, Sapporo 0010019, Japan
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin Staley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Zeuthen T, Gorraitz E, Her K, Wright EM, Loo DDF. Structural and functional significance of water permeation through cotransporters. Proc Natl Acad Sci U S A 2016; 113:E6887-E6894. [PMID: 27791155 PMCID: PMC5098644 DOI: 10.1073/pnas.1613744113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane transporters, in addition to their major role as specific carriers for ions and small molecules, can also behave as water channels. However, neither the location of the water pathway in the protein nor their functional importance is known. Here, we map the pathway for water and urea through the intestinal sodium/glucose cotransporter SGLT1. Molecular dynamics simulations using the atomic structure of the bacterial transporter vSGLT suggest that water permeates the same path as Na+ and sugar. On a structural model of SGLT1, based on the homology structure of vSGLT, we identified and mutated residues lining the sugar transport pathway to cysteine. The mutants were expressed in Xenopus oocytes, and the unitary water and urea permeabilities were determined before and after modifying the cysteine side chain with reversible methanethiosulfonate reagents. The results demonstrate that water and urea follow the sugar transport pathway through SGLT1. The changes in permeability, increases or decreases, with side-chain modifications depend on the location of the mutation in the region of external or internal gates, or the sugar binding site. These changes in permeability are hypothesized to be due to alterations in steric hindrance to water and urea, and/or changes in protein folding caused by mismatching of side chains in the water pathway. Water permeation through SGLT1 and other transporters bears directly on the structural mechanism for the transport of polar solutes through these proteins. Finally, in vitro experiments on mouse small intestine show that SGLT1 accounts for two-thirds of the passive water flow across the gut.
Collapse
Affiliation(s)
- Thomas Zeuthen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, DK 2200N, Copenhagen, Denmark;
| | - Edurne Gorraitz
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095-1751
| | - Ka Her
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095-1751
| | - Ernest M Wright
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095-1751
| | - Donald D F Loo
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095-1751
| |
Collapse
|
33
|
Zhang J, Gao G, Begum G, Wang J, Khanna AR, Shmukler BE, Daubner GM, de los Heros P, Davies P, Varghese J, Bhuiyan MIH, Duan J, Zhang J, Duran D, Alper SL, Sun D, Elledge SJ, Alessi DR, Kahle KT. Functional kinomics establishes a critical node of volume-sensitive cation-Cl - cotransporter regulation in the mammalian brain. Sci Rep 2016; 6:35986. [PMID: 27782176 PMCID: PMC5080614 DOI: 10.1038/srep35986] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
Cell volume homeostasis requires the dynamically regulated transport of ions across the plasmalemma. While the ensemble of ion transport proteins involved in cell volume regulation is well established, the molecular coordinators of their activities remain poorly characterized. We utilized a functional kinomics approach including a kinome-wide siRNA-phosphoproteomic screen, a high-content kinase inhibitor screen, and a kinase trapping-Orbitrap mass spectroscopy screen to systematically identify essential kinase regulators of KCC3 Thr991/Thr1048 phosphorylation - a key signaling event in cell swelling-induced regulatory volume decrease (RVD). In the mammalian brain, we found the Cl--sensitive WNK3-SPAK kinase complex, required for cell shrinkage-induced regulatory volume decrease (RVI) via the stimulatory phosphorylation of NKCC1 (Thr203/Thr207/Thr212), is also essential for the inhibitory phosphorylation of KCC3 (Thr991/Thr1048). This is mediated in vivo by an interaction between the CCT domain in SPAK and RFXV/I domains in WNK3 and NKCC1/KCC3. Accordingly, genetic or pharmacologic WNK3-SPAK inhibition prevents cell swelling in response to osmotic stress and ameliorates post-ischemic brain swelling through a simultaneous inhibition of NKCC1-mediated Cl- uptake and stimulation of KCC3-mediated Cl- extrusion. We conclude that WNK3-SPAK is an integral component of the long-sought "Cl-/volume-sensitive kinase" of the cation-Cl- cotransporters, and functions as a molecular rheostat of cell volume in the mammalian brain.
Collapse
Affiliation(s)
- Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, CT 06511 USA
| | - Geng Gao
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
| | - Arjun R. Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Boris E. Shmukler
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA -022154 USA
- Department of Medicine, Harvard Medical School, Boston, MA -022154, USA
| | - Gerrit M. Daubner
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paola de los Heros
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paul Davies
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Joby Varghese
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | | | - Jinjing Duan
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Jin Zhang
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Daniel Duran
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, CT 06511 USA
| | - Seth L. Alper
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA -022154 USA
- Department of Medicine, Harvard Medical School, Boston, MA -022154, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, USA
| | - Stephen J. Elledge
- Department of Genetics, Harvard University Medical School, Howard Hughes Medical Institute, Boston, Massachusetts 02115 USA
| | - Dario R. Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Kristopher T. Kahle
- Departments of Pediatrics and Cellular & Molecular Physiology; Interdepartmental Neuroscience Program; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06511 USA
| |
Collapse
|
34
|
Nałęcz KA. Solute Carriers in the Blood–Brain Barier: Safety in Abundance. Neurochem Res 2016; 42:795-809. [DOI: 10.1007/s11064-016-2030-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022]
|
35
|
Melo IS, Santos YMO, Costa MA, Pacheco ALD, Silva NKGT, Cardoso-Sousa L, Pereira UP, Goulart LR, Garcia-Cairasco N, Duzzioni M, Gitaí DLG, Tilelli CQ, Sabino-Silva R, Castro OW. Inhibition of sodium glucose cotransporters following status epilepticus induced by intrahippocampal pilocarpine affects neurodegeneration process in hippocampus. Epilepsy Behav 2016; 61:258-268. [PMID: 27429292 DOI: 10.1016/j.yebeh.2016.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/22/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Temporal lobe epilepsy (TLE) is characterized by spontaneous recurrent seizures, starting from secondary functional disorders due to several insults, including self-sustaining continuous seizures identified as status epilepticus (SE). Although hypoglycemia has been associated with SE, the effect of inhibition of the Na(+)/glucose cotransporters (SGLTs) on hippocampus during SE is still unknown. Here we evaluated the functional role of SGLT in the pattern of limbic seizures and neurodegeneration process after pilocarpine (PILO)-induced SE. Vehicle (VEH, 1μL) or phlorizin, a specific SGLT inhibitor (PZN, 1μL, 50μg/μL), was administered in the hippocampus of rats 30min before PILO (VEH+PILO or PZN+PILO, respectively). The limbic seizures were classified using the Racine's scale, and the amount of wet dog shakes (WDS) was quantified before and during SE. Neurodegeneration process was evaluated by Fluoro-Jade C (FJ-C), and FJ-C-positive neurons (FJ-C+) were counted 24h and 15days after SE. The PZN-treated rats showed higher (p<0.05) number of WDS when compared with VEH+PILO. There was no difference in seizure severity between PZN+PILO and VEH+PILO groups. However, the pattern of limbic seizures significantly changed in PZN+PILO. Indeed, the class 5 seizures repeated themselves more times (p<0.05) than the other classes in the PZN group at 50min after SE induction. The PZN+PILO animals had a higher (p<0.05) number of FJ-C+ cells in the dentate gyrus (DG), hilus, and CA3 and CA1 of hippocampus, when compared with VEH+PILO. The PZN+PILO animals had a decreased number (p<0.05) of FJ-C+ cells in CA1 compared with VEH+PILO 15days after SE induction. Taken together, our data suggest that SGLT inhibition with PZN increased the severity of limbic seizures during SE and increased neurodegeneration in hippocampus 24h after SE, suggesting that SGLT1 and SGLT2 could participate in the modulation of earlier stages of epileptogenic processes.
Collapse
Affiliation(s)
- Igor S Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Yngrid M O Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Maísa A Costa
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Amanda L D Pacheco
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Nívea K G T Silva
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - L Cardoso-Sousa
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia, MG, Brazil
| | - U P Pereira
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, MG, Brazil
| | - L R Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, MG, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo Duzzioni
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Daniel L G Gitaí
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Cristiane Q Tilelli
- Campus Centro-Oeste Dona Lindu, Federal University of São João del Rei (UFSJ), Divinópolis, MG, Brazil
| | - Robinson Sabino-Silva
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil; Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia, MG, Brazil.
| | - Olagide W Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil.
| |
Collapse
|