1
|
Moran KM, Delville Y. A hamster model for stress-induced weight gain. Horm Behav 2024; 160:105488. [PMID: 38306877 DOI: 10.1016/j.yhbeh.2024.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
This review addresses the translational relevance of animal models of stress and their effects on body weight. In humans, stress, whether chronic or acute, has often been associated with increased food intake and weight gain. In view of the current obesity epidemic, this phenomenon is especially relevant. Such observations contrast with reports with commonly used laboratory animals, especially rats and mice. In these species, it is common to find individuals gaining less weight under stress, even with potent social stressors. However, there are laboratory species that present increased appetite and weight gain under stress, such as golden hamsters. Furthermore, these animals also include metabolic and behavioral similarities with humans, including hoarding behavior which is also enhanced under stress. Consequently, we propose that our comparative perspective provides useful insights for future research on the development of obesity in humans as a consequence of chronic stress exposure.
Collapse
Affiliation(s)
- Kevin M Moran
- Psychology Department, The University of Texas at Austin, USA.
| | - Yvon Delville
- Psychology Department, The University of Texas at Austin, USA
| |
Collapse
|
2
|
Gómez C, Alimajstorovic Z, Othonos N, Winter DV, White S, Lavery GG, Tomlinson JW, Sinclair AJ, Odermatt A. Identification of a human blood biomarker of pharmacological 11β-hydroxysteroid dehydrogenase 1 inhibition. Br J Pharmacol 2024; 181:698-711. [PMID: 37740611 DOI: 10.1111/bph.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND AND PURPOSE 11β-Hydroxysteroid dehydrogenase-1 (11β-HSD1) catalyses the oxoreduction of cortisone to cortisol, amplifying levels of active glucocorticoids. It is a pharmaceutical target in metabolic disease and cognitive impairments. 11β-HSD1 also converts some 7oxo-steroids to their 7β-hydroxy forms. A recent study in mice described the ratio of tauroursodeoxycholic acid (TUDCA)/tauro-7oxolithocholic acid (T7oxoLCA) as a biomarker for decreased 11β-HSD1 activity. The present study evaluates the equivalent bile acid ratio of glycoursodeoxycholic acid (GUDCA)/glyco-7oxolithocholic acid (G7oxoLCA) as a biomarker for pharmacological 11β-HSD1 inhibition in humans and compares it with the currently applied urinary (5α-tetrahydrocortisol + tetrahydrocortisol)/tetrahydrocortisone ((5αTHF + THF)/THE) ratio. EXPERIMENTAL APPROACH Bile acid profiles were analysed by ultra-HPLC tandem-MS in blood samples from two independent, double-blind placebo-controlled clinical studies of the orally administered selective 11β-HSD1 inhibitor AZD4017. The blood GUDCA/G7oxoLCA ratio was compared with the urinary tetrahydro-glucocorticoid ratio for ability to detect 11β-HSD1 inhibition. KEY RESULTS No significant alterations were observed in bile acid profiles following 11β-HSD1 inhibition by AZD4017, except for an increase of the secondary bile acid G7oxoLCA. The enzyme product/substrate ratio GUDCA/G7oxoLCA was found to be more reliable to detect 11β-HSD1 inhibition than the absolute G7oxoLCA concentration in both cohorts. Comparison of the blood GUDCA/G7oxoLCA ratio with the urinary (5αTHF + THF)/THE ratio revealed that both successfully detect 11β-HSD1 inhibition. CONCLUSIONS AND IMPLICATIONS 11β-HSD1 inhibition does not cause major alterations in bile acid homeostasis. The GUDCA/G7oxoLCA ratio represents the first blood biomarker of pharmacological 11β-HSD1 inhibition and may replace or complement the urinary (5αTHF + THF)/THE ratio biomarker.
Collapse
Affiliation(s)
- Cristina Gómez
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Zerin Alimajstorovic
- Metabolic Neurology, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Nantia Othonos
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Denise V Winter
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Sarah White
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Gareth G Lavery
- Department for Biosciences, Nottingham Trent University, Nottingham, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Alexandra J Sinclair
- Metabolic Neurology, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Neurology, University Hospitals Birmingham, Birmingham, UK
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Oestlund I, Snoep J, Schiffer L, Wabitsch M, Arlt W, Storbeck KH. The glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 catalyzes the activation of testosterone. J Steroid Biochem Mol Biol 2024; 236:106436. [PMID: 38035948 DOI: 10.1016/j.jsbmb.2023.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Testosterone biosynthesis from its precursor androstenedione is thought to be exclusively catalysed by the 17β-hydroxysteroid dehydrogenases-HSD17B3 in testes, and AKR1C3 in the ovary, adrenal and peripheral tissues. Here we show for the first time that the glucocorticoid activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1) can also catalyse the 17β-reduction of androstenedione to testosterone, using a combination of in vitro enzyme kinetic assays, mathematical modelling, and molecular docking analysis. Furthermore, we show that co-expression of HSD11B1 and AKR1C3 increases testosterone production several-fold compared to the rate observed with AKR1C3 only, and that HSD11B1 is likely to contribute significantly to testosterone production in peripheral tissues.
Collapse
Affiliation(s)
- Imken Oestlund
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Jacky Snoep
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa; Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Lina Schiffer
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Hospital of Ulm, Ulm, Germany
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK; Medical Research Council Laboratory of Medical Sciences, London, UK
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
4
|
Mahmood T, Miles JR, Minnier J, Tavori H, DeBarber AE, Fazio S, Shapiro MD. Effect of PCSK9 inhibition on plasma levels of small dense low density lipoprotein-cholesterol and 7-ketocholesterol. J Clin Lipidol 2024; 18:e50-e58. [PMID: 37923663 PMCID: PMC10957330 DOI: 10.1016/j.jacl.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Oxidized forms of cholesterol (oxysterols) are implicated in atherogenesis and can accumulate in the body via direct absorption from food or through oxidative reactions of endogenous cholesterol, inducing the formation of LDL particles loaded with oxidized cholesterol. It remains unknown whether drastic reductions in LDL-cholesterol (LDL-C) are associated with changes in circulating oxysterols and whether small dense LDL (sdLDL) are more likely to carry these oxysterols and susceptible to the effects of PCSK9 inhibition (PCSK9i). OBJECTIVE We investigate the effect of LDL-C reduction accomplished via PCSK9i on changes in plasma levels of sdLDL-cholesterol (sdLDL-C) and a common, stable oxysterol, 7-ketocholesterol (7-KC), among 134 patients referred to our Preventive Cardiology clinic. METHODS Plasma lipid panel, sdLDL-C, and 7-KC measurements were obtained from patients before and after initiation of PCSK9i. RESULTS The intervention caused a significant lowering of LDL-C (-55.4 %). The changes in sdLDL-C levels (mean reduction 51.4 %) were highly correlated with the reductions in LDL-C levels (R = 0.829, p < 0.001). Interestingly, whereas changes in plasma free 7-KC levels with PCSK9i treatment were much smaller than (-6.6 %) and did not parallel those of LDL-C and sdLDL-C levels, they did significantly correlate with changes in triglycerides and very low-density lipoprotein-cholesterol (VLDL-C) levels (R = 0.219, p = 0.025). CONCLUSION Our findings suggest a non-preferential clearance of LDL subparticles as a consequence of LDL receptor upregulation caused by PCSK9 inhibition. Moreover, the lack of significant reduction in 7-KC with PCSK9i suggests that 7-KC may be in part carried by VLDL and lost during lipoprotein processing leading to LDL formation.
Collapse
Affiliation(s)
- Tahir Mahmood
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Joshua R Miles
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Jessica Minnier
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio); Oregon Health & Science University, OHSU-PSU School of Public Health, Portland, OR, USA (Dr Minnier)
| | - Hagai Tavori
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Andrea E DeBarber
- Oregon Health & Science University, University Shared Resources, Portland, OR, USA (Dr DeBarber)
| | - Sergio Fazio
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Michael D Shapiro
- Wake Forest University School of Medicine, Section on Cardiovascular Medicine, Center for Prevention of Cardiovascular Disease, Winston-Salem, NC, USA (Dr Shapiro).
| |
Collapse
|
5
|
Kley M, Moser SO, Winter DV, Odermatt A. In vitro methods to assess 11β-hydroxysteroid dehydrogenase type 1 activity. Methods Enzymol 2023; 689:121-165. [PMID: 37802569 DOI: 10.1016/bs.mie.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) converts inactive 11-keto-glucocorticoids to their active 11β-hydroxylated forms. It also catalyzes the oxoreduction of other endogenous and exogenous substrates. The ubiquitously expressed 11β-HSD1 shows high levels in liver and other metabolically active tissues such as brain and adipose tissue. Pharmacological inhibition of 11β-HSD1 was found to ameliorate adverse metabolic effects of elevated glucocorticoids in rodents and humans, improve wound healing and delay skin aging, and enhance memory and cognition in rodent Alzheimer's disease models. Thus, there is an interest to develop 11β-HSD1 inhibitors for therapeutic purposes. This chapter describes in vitro methods to assess 11β-HSD1 enzyme activity for different purposes, be it in disease models, for the assessment of the kinetics of novel substrates or for the screening and characterization of inhibitors. 11β-HSD1 protein expression and preparations of the different biological samples are discussed first, followed by a description of a well-established and easily adaptable 11β-HSD1 enzyme activity assay. Finally, different readout methods are shortly described. This chapter should provide the reader with a toolbox of methods to assess 11β-HSD1 activity with instructions in the form of a decision tree for the choice and implementation of an appropriate enzyme activity assay.
Collapse
Affiliation(s)
- Manuel Kley
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Seraina O Moser
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Denise V Winter
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Cheng ML, Yang CH, Wu PT, Li YC, Sun HW, Lin G, Ho HY. Malonyl-CoA Accumulation as a Compensatory Cytoprotective Mechanism in Cardiac Cells in Response to 7-Ketocholesterol-Induced Growth Retardation. Int J Mol Sci 2023; 24:ijms24054418. [PMID: 36901848 PMCID: PMC10002498 DOI: 10.3390/ijms24054418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The major oxidized product of cholesterol, 7-Ketocholesterol (7KCh), causes cellular oxidative damage. In the present study, we investigated the physiological responses of cardiomyocytes to 7KCh. A 7KCh treatment inhibited the growth of cardiac cells and their mitochondrial oxygen consumption. It was accompanied by a compensatory increase in mitochondrial mass and adaptive metabolic remodeling. The application of [U-13C] glucose labeling revealed an increased production of malonyl-CoA but a decreased formation of hydroxymethylglutaryl-coenzyme A (HMG-CoA) in the 7KCh-treated cells. The flux of the tricarboxylic acid (TCA) cycle decreased, while that of anaplerotic reaction increased, suggesting a net conversion of pyruvate to malonyl-CoA. The accumulation of malonyl-CoA inhibited the carnitine palmitoyltransferase-1 (CPT-1) activity, probably accounting for the 7-KCh-induced suppression of β-oxidation. We further examined the physiological roles of malonyl-CoA accumulation. Treatment with the inhibitor of malonyl-CoA decarboxylase, which increased the intracellular malonyl-CoA level, mitigated the growth inhibitory effect of 7KCh, whereas the treatment with the inhibitor of acetyl-CoA carboxylase, which reduced malonyl-CoA content, aggravated such a growth inhibitory effect. Knockout of malonyl-CoA decarboxylase gene (Mlycd-/-) alleviated the growth inhibitory effect of 7KCh. It was accompanied by improvement of the mitochondrial functions. These findings suggest that the formation of malonyl-CoA may represent a compensatory cytoprotective mechanism to sustain the growth of 7KCh-treated cells.
Collapse
Affiliation(s)
- Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Cheng-Hung Yang
- Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Pei-Ting Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Yi-Chin Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hao-Wei Sun
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Gigin Lin
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung University, Taoyuan City 33302, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hung-Yao Ho
- Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Correspondence: ; Tel.: +886-(3)-2118800 (ext. 3318)
| |
Collapse
|
7
|
Uchikawa T, Matoba T, Kawahara T, Baba I, Katsuki S, Koga JI, Hashimoto Y, Yamasaki R, Ichi I, Akita H, Tsutsui H. Dietary 7-ketocholesterol exacerbates myocardial ischemia-reperfusion injury in mice through monocyte/macrophage-mediated inflammation. Sci Rep 2022; 12:14902. [PMID: 36050346 PMCID: PMC9436973 DOI: 10.1038/s41598-022-19065-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Emerging evidence suggests that 7-ketocholesterol (7-KC), one of the most abundant dietary oxysterols, causes inflammation and cardiovascular diseases. Here we show the deteriorating effects of dietary 7-KC on myocardial ischemia-reperfusion (IR) injury and detailed the molecular mechanisms. A high-fat high-cholesterol diet containing 7-KC (7KWD) for 3 weeks increased the plasma 7-KC level compared with high-fat high-cholesterol diet in mice. In wild-type mice but not in CCR2-/- mice, dietary 7-KC increased the myocardial infarct size after IR. Flow cytometry revealed that the ratio of Ly-6Chigh inflammatory monocytes to total monocytes was increased in the 7KWD group. Unbiased RNA sequencing using murine primary macrophages revealed that 7-KC regulated the expression of transcripts related to inflammation and cholesterol biosynthesis. We further validated that in vitro, 7-KC induced endoplasmic reticulum stress, mitochondrial reactive oxygen species production, and nuclear factor-kappa B activation, which are associated with increased mRNA levels of proinflammatory cytokines. Administration of N-acetyl-L-cysteine or siRNA-mediated knockdown of PKR-like endoplasmic reticulum kinase or endoplasmic reticulum oxidase 1α suppressed the levels of 7-KC-induced inflammation. Dietary 7-KC exacerbates myocardial IR injury through monocyte/macrophage-mediated inflammation. Endoplasmic reticulum stress and oxidative stress are involved in the 7-KC-induced proinflammatory response in macrophages.
Collapse
Affiliation(s)
- Tomoki Uchikawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, Research Institute of Angiocardiology, Kyushu University, Fukuoka, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Takuro Kawahara
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, Research Institute of Angiocardiology, Kyushu University, Fukuoka, Japan
| | - Isashi Baba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, Research Institute of Angiocardiology, Kyushu University, Fukuoka, Japan
| | - Shunsuke Katsuki
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Jun-Ichiro Koga
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yu Hashimoto
- Department of Neurology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| | - Ikuyo Ichi
- Graduate School of Humanities and Science, Ochanomizu University, Tokyo, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, Research Institute of Angiocardiology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Dias IH, Shokr H, Shephard F, Chakrabarti L. Oxysterols and Oxysterol Sulfates in Alzheimer’s Disease Brain and Cerebrospinal Fluid. J Alzheimers Dis 2022; 87:1527-1536. [PMID: 35491790 PMCID: PMC9277668 DOI: 10.3233/jad-220083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background: Brain cholesterol levels are tightly regulated but increasing evidence indicates that cholesterol metabolism may drive Alzheimer’s disease (AD)-associated pathological changes. Recent advances in understanding of mitochondrial dysfunction in AD brain have presented a vital role played by mitochondria in oxysterol biosynthesis and their involvement in pathophysiology. Oxysterol accumulation in brain is controlled by various enzymatic pathways including sulfation. While research into oxysterol is under the areas of active investigation, there is less evidence for oxysterol sulfate levels in human brain. Objective: This study investigates the hypothesis that AD brain oxysterol detoxification via sulfation is impaired in later stages of disease resulting in oxysterol accumulation. Methods: Lipids were extracted from postmortem frozen brain tissue and cerebrospinal (CSF) from late- (Braak stage III-IV) and early- (Braak stage I-II) stage AD patients. Samples were spiked with internal standards prior to lipid extraction. Oxysterols were enriched with a two-step solid phase extraction using a polymeric SPE column and further separation was achieved by LC-MS/MS. Results: Oxysterols, 26-hydroxycholesterol (26-OHC), 25-hydroxycholesterol (25-OHC), and 7-oxycholesterol levels were higher in brain tissue and mitochondria extracted from late-stage AD brain tissue except for 24S-hydroxycholesterol, which was decreased in late AD. However, oxysterol sulfates are significantly lower in the AD frontal cortex. Oxysterols, 25-OHC, and 7-oxocholesterol was higher is CSF but 26-OHC and oxysterol sulfate levels were not changed. Conclusion: Our results show oxysterol metabolism is altered in AD brain mitochondria, favoring synthesis of 26-OHC, 25-OHC, and 7-oxocholesterol, and this may influence brain mitochondrial function and acceleration of the disease.
Collapse
Affiliation(s)
- Irundika H.K. Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Hala Shokr
- Manchester Pharmacy School, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Freya Shephard
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Lisa Chakrabarti
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
9
|
Canzoneri F, Leoni V, Rosso G, Risso D, Menta R, Poli G. Oxysterols as Reliable Markers of Quality and Safety in Cholesterol Containing Food Ingredients and Products. Front Nutr 2022; 9:853460. [PMID: 35252316 PMCID: PMC8890664 DOI: 10.3389/fnut.2022.853460] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/20/2022] Open
Abstract
Cholesterol is a lipid of high nutritional value that easily undergoes oxidation through enzymatic and non-enzymatic pathways, leading to a wide variety of cholesterol oxidation products (COPs), more commonly named oxysterols. The major oxysterols found in animal products are 7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, 5α,6α-epoxycholesterol, 5β,6β-epoxycholesterol, cholestan-3β,5α,6β-triol, and 25-hydroxycholesterol. They are all produced by cholesterol autoxidation, thus belonging to the non-enzymatic oxysterol subfamily, even if 7α-hydroxycholesterol and 25-hydroxycholesterol are, in part, generated enzymatically as well. A further oxysterol of the full enzymatic origin has recently been detected for the first time in milk of both human and bovine origin, namely 27-hydroxycholesterol. Nowadays, gas or liquid chromatography combined to mass spectrometry allows to measure all these oxysterols accurately in raw and in industrially processed food. While non-enzymatic oxysterols often exhibited in vitro relevant cytotoxicity, above all 7β-hydroxycholesterol and 7-ketocholesterol, 27-hydroxycholesterol, as well as 25-hydroxycholesterol, shows a broad spectrum in vitro antiviral activity, inhibition of SARS-CoV-2 included, and might contribute to innate immunity. Quantification of oxysterols was afforded over the years, almost always focused on a few family's compounds. More comprehensive COPs measurements, also including oxysterols of enzymatic origin, are, nowadays, available, which better display the many advantages of systematically adopting this family of compounds as markers of quality, safety, and nutritional value in the selection of ingredients in processing and storage. Regarding foodstuff shelf life, COPs monitoring already provided useful hints for more suitable packaging. The identification of a subset of non-enzymatic and enzymatic oxysterols to be routinely assessed in food production and storage is proposed.
Collapse
Affiliation(s)
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, ASST Brianza, School of Medicine and Surgery, Hospital of Desio, University of Milano Bicocca, Milan, Italy
| | | | - Davide Risso
- Soremartec Italia Srl, Ferrero Group, Alba, Italy
| | | | - Giuseppe Poli
- Unit of General Pathology and Physiopathology, Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Turin, Italy
| |
Collapse
|
10
|
New Function of Cholesterol Oxidation Products Involved in Osteoporosis Pathogenesis. Int J Mol Sci 2022; 23:ijms23042020. [PMID: 35216140 PMCID: PMC8876989 DOI: 10.3390/ijms23042020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic bone disease characterized by decreased bone strength, microarchitectural changes in bone tissues, and increased risk of fracture. Its occurrence is closely related to various factors such as aging, genetic factors, living habits, and nutritional deficiencies as well as the disturbance of bone homeostasis. The dysregulation of bone metabolism is regarded as one of the key influencing factors causing OP. Cholesterol oxidation products (COPs) are important compounds in the maintenance of bone metabolic homeostasis by participating in several important biological processes such as the differentiation of mesenchymal stem cells, bone formation in osteoblasts, and bone resorption in osteoclasts. The effects of specific COPs on mesenchymal stem cells are mainly manifested by promoting osteoblast genesis and inhibiting adipocyte genesis. This review aims to elucidate the biological roles of COPs in OP development, starting from the molecular mechanisms of OP, pointing out opportunities and challenges in current research, and providing new ideas and perspectives for further studies of OP pathogenesis.
Collapse
|
11
|
Tagawa R, Kobayashi M, Sakurai M, Yoshida M, Kaneko H, Mizunoe Y, Nozaki Y, Okita N, Sudo Y, Higami Y. Long-Term Dietary Taurine Lowers Plasma Levels of Cholesterol and Bile Acids. Int J Mol Sci 2022; 23:ijms23031793. [PMID: 35163722 PMCID: PMC8836270 DOI: 10.3390/ijms23031793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cholesterol is an essential lipid in vertebrates, but excess blood cholesterol promotes atherosclerosis. In the liver, cholesterol is metabolized to bile acids by cytochrome P450, family 7, subfamily a, polypeptide 1 (CYP7A1), the transcription of which is negatively regulated by the ERK pathway. Fibroblast growth factor 21 (FGF21), a hepatokine, induces ERK phosphorylation and suppresses Cyp7a1 transcription. Taurine, a sulfur-containing amino acid, reportedly promotes cholesterol metabolism and lowers blood and hepatic cholesterol levels. However, the influence of long-term feeding of taurine on cholesterol levels and metabolism remains unclear. Here, to evaluate the more chronic effects of taurine on cholesterol levels, we analyzed mice fed a taurine-rich diet for 14-16 weeks. Long-term feeding of taurine lowered plasma cholesterol and bile acids without significantly changing other metabolic parameters, but hardly affected these levels in the liver. Moreover, taurine upregulated Cyp7a1 levels, while downregulated phosphorylated ERK and Fgf21 levels in the liver. Likewise, taurine-treated Hepa1-6 cells, a mouse hepatocyte line, exhibited downregulated Fgf21 levels and upregulated promoter activity of Cyp7a1. These results indicate that taurine promotes cholesterol metabolism by suppressing the FGF21/ERK pathway followed by upregulating Cyp7a1 expression. Collectively, this study shows that long-term feeding of taurine lowers both plasma cholesterol and bile acids, reinforcing that taurine effectively prevents hypercholesterolemia.
Collapse
Affiliation(s)
- Ryoma Tagawa
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Masaki Kobayashi
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
- Correspondence: (M.K.); (Y.H.); Tel.: +81-4-7121-3676 (M.K.); +81-4-7121-3675 (Y.H.)
| | - Misako Sakurai
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Maho Yoshida
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Hiroki Kaneko
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Yuhei Mizunoe
- Department of Internal Medicine Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Yuka Nozaki
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Naoyuki Okita
- Division of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi 756-0884, Japan;
| | - Yuka Sudo
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
| | - Yoshikazu Higami
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (R.T.); (M.S.); (M.Y.); (H.K.); (Y.N.); (Y.S.)
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
- Correspondence: (M.K.); (Y.H.); Tel.: +81-4-7121-3676 (M.K.); +81-4-7121-3675 (Y.H.)
| |
Collapse
|
12
|
Griffiths WJ, Wang Y. Cholesterol metabolism: from lipidomics to immunology. J Lipid Res 2022; 63:100165. [PMID: 34953867 PMCID: PMC8953665 DOI: 10.1016/j.jlr.2021.100165] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Oxysterols, the oxidized forms of cholesterol or of its precursors, are formed in the first steps of cholesterol metabolism. Oxysterols have interested chemists, biologists, and physicians for many decades, but their exact biological relevance in vivo, other than as intermediates in bile acid biosynthesis, has long been debated. However, in the first quarter of this century, a role for side-chain oxysterols and their C-7 oxidized metabolites has been convincingly established in the immune system. 25-Hydroxycholesterol has been shown to be synthesized by macrophages in response to the activation of Toll-like receptors and to offer protection against microbial pathogens, whereas 7α,25-dihydroxycholesterol has been shown to act as a chemoattractant to lymphocytes expressing the G protein-coupled receptor Epstein-Barr virus-induced gene 2 and to be important in coordinating the action of B cells, T cells, and dendritic cells in secondary lymphoid tissue. There is a growing body of evidence that not only these two oxysterols but also many of their isomers are of importance to the proper function of the immune system. Here, we review recent findings related to the roles of oxysterols in immunology.
Collapse
Affiliation(s)
| | - Yuqin Wang
- Swansea University Medical School, Swansea, Wales, United Kingdom.
| |
Collapse
|
13
|
Liu Y, Yang X, Xiao F, Jie F, Zhang Q, Liu Y, Xiao H, Lu B. Dietary cholesterol oxidation products: Perspectives linking food processing and storage with health implications. Compr Rev Food Sci Food Saf 2021; 21:738-779. [PMID: 34953101 DOI: 10.1111/1541-4337.12880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Dietary cholesterol oxidation products (COPs) are heterogeneous compounds formed during the processing and storage of cholesterol-rich foods, such as seafood, meat, eggs, and dairy products. With the increased intake of COPs-rich foods, the concern about health implications of dietary COPs is rising. Dietary COPs may exert deleterious effects on human health to induce several inflammatory diseases including atherosclerosis, neurodegenerative diseases, and inflammatory bowel diseases. Thus, knowledge regarding the effects of processing and storage conditions leading to formation of COPs is needed to reduce the levels of COPs in foods. Efficient methodologies to determine COPs in foods are also essential. More importantly, the biological roles of dietary COPs in human health and effects of phytochemicals on dietary COPs-induced diseases need to be established. This review summarizes the recent information on dietary COPs including their formation in foods during their processing and storage, analytical methods of determination of COPs, metabolic fate, implications for human health, and beneficial interventions by phytochemicals. The formation of COPs is largely dependent on the heating temperature, storage time, and food matrices. Alteration of food processing and storage conditions is one of the potent strategies to restrict hazardous dietary COPs from forming, including maintaining relatively low temperatures, shorter processing or storage time, and the appropriate addition of antioxidants. Once absorbed into the circulation, dietary COPs can contribute to the progression of several inflammatory diseases, where the absorbed dietary COPs may induce inflammation, apoptosis, and autophagy in cells in the target organs or tissues. Improved intake of phytochemicals may be an effective strategy to reduce the hazardous effects of dietary COPs.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
14
|
7-Ketocholesterol Induces Lipid Metabolic Reprogramming and Enhances Cholesterol Ester Accumulation in Cardiac Cells. Cells 2021; 10:cells10123597. [PMID: 34944104 PMCID: PMC8700522 DOI: 10.3390/cells10123597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 12/28/2022] Open
Abstract
7-Ketocholesterol (7KCh) is a major oxidized cholesterol product abundant in lipoprotein deposits and atherosclerotic plaques. Our previous study has shown that 7KCh accumulates in erythrocytes of heart failure patients, and further investigation centered on how 7KCh may affect metabolism in cardiomyocytes. We applied metabolomics to study the metabolic changes in cardiac cell line HL-1 after treatment with 7KCh. Mevalonic acid (MVA) pathway-derived metabolites, such as farnesyl-pyrophosphate and geranylgeranyl-pyrophosphate, phospholipids, and triacylglycerols levels significantly declined, while the levels of lysophospholipids, such as lysophosphatidylcholines (lysoPCs) and lysophosphatidylethanolamines (lysoPEs), considerably increased in 7KCh-treated cells. Furthermore, the cholesterol content showed no significant change, but the production of cholesteryl esters was enhanced in the treated cells. To explore the possible mechanisms, we applied mRNA-sequencing (mRNA-seq) to study genes differentially expressed in 7KCh-treated cells. The transcriptomic analysis revealed that genes involved in lipid metabolic processes, including MVA biosynthesis and cholesterol transport and esterification, were differentially expressed in treated cells. Integrated analysis of both metabolomic and transcriptomic data suggests that 7KCh induces cholesteryl ester accumulation and reprogramming of lipid metabolism through altered transcription of such genes as sterol O-acyltransferase- and phospholipase A2-encoding genes. The 7KCh-induced reprogramming of lipid metabolism in cardiac cells may be implicated in the pathogenesis of cardiovascular diseases.
Collapse
|
15
|
Morris DJ, Brem AS, Odermatt A. Modulation of 11β-hydroxysteroid dehydrogenase functions by the cloud of endogenous metabolites in a local microenvironment: The glycyrrhetinic acid-like factor (GALF) hypothesis. J Steroid Biochem Mol Biol 2021; 214:105988. [PMID: 34464733 DOI: 10.1016/j.jsbmb.2021.105988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/08/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023]
Abstract
11β-Hydroxysteroid dehydrogenase (11β-HSD)-dependent conversion of cortisol to cortisone and corticosterone to 11-dehydrocorticosterone are essential in regulating transcriptional activities of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Inhibition of 11β-HSD by glycyrrhetinic acid metabolites, bioactive components of licorice, causes sodium retention and potassium loss, with hypertension characterized by low renin and aldosterone. Essential hypertension is a major disease, mostly with unknown underlying mechanisms. Here, we discuss a putative mechanism for essential hypertension, the concept that endogenous steroidal compounds acting as glycyrrhetinic acid-like factors (GALFs) inhibit 11β-HSD dehydrogenase, and allow for glucocorticoid-induced MR and GR activation with resulting hypertension. Initially, several metabolites of adrenally produced glucocorticoids and mineralocorticoids were shown to be potent 11β-HSD inhibitors. Such GALFs include modifications in the A-ring and/or at positions 3, 7 and 21 of the steroid backbone. These metabolites may be formed in peripheral tissues or by gut microbiota. More recently, metabolites of 11β-hydroxy-Δ4androstene-3,17-dione and 7-oxygenated oxysterols have been identified as potent 11β-HSD inhibitors. In a living system, 11β-HSD isoforms are not exposed to a single substrate but to several substrates, cofactors, and various inhibitors simultaneously, all at different concentrations depending on physical state, tissue and cell type. We propose that this "cloud" of steroids and steroid-like substances in the microenvironment determines the 11β-HSD-dependent control of MR and GR activity. A dysregulated composition of this cloud of metabolites in the respective microenvironment needs to be taken into account when investigating disease mechanisms, for forms of low renin, low aldosterone hypertension.
Collapse
Affiliation(s)
- David J Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Andrew S Brem
- Division of Kidney Diseases and Hypertension, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
16
|
Sul OJ, Li G, Kim JE, Kim ES, Choi HS. 7-ketocholesterol enhances autophagy via the ROS-TFEB signaling pathway in osteoclasts. J Nutr Biochem 2021; 96:108783. [PMID: 34023424 DOI: 10.1016/j.jnutbio.2021.108783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022]
Abstract
Oxysterols play a critical role in human health and diseases associated with high cholesterol and oxidative stress. Given that a positive correlation was observed between cholesterol and collagen type 1 fragment (CTX-1) or serum reactive oxygen species (ROS) in humans, we hypothesized that oxidized cholesterol metabolites may participate in cholesterol-induced bone loss. Therefore, this study aimed to identify the metabolite responsible for cholesterol-associated bone loss and evaluate its effect on osteoclasts (OCs) leading to bone loss. An atherogenic diet in mice increased the levels of the oxysterol, 7-ketocholesterol (7-KC) in bone, as well as serum ROS. 7-KC increased the number and activity of OCs by enhancing autophagy via the ROS-transcription factor EB signaling pathway. These findings suggest that 7-KC acts as a cholesterol metabolite and is at least partially responsible for cholesterol-induced bone loss by inducing autophagy in OCs.
Collapse
Affiliation(s)
- Ok-Joo Sul
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan, Korea
| | - Guoen Li
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan, Korea
| | - Ji-Eun Kim
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan, Korea
| | - Eun-Sook Kim
- Department of Endocrinology, Ulsan University Hospital, Ulsan, Korea
| | - Hye-Seon Choi
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan, Korea.
| |
Collapse
|
17
|
Gomez-Sanchez EP, Gomez-Sanchez CE. 11β-hydroxysteroid dehydrogenases: A growing multi-tasking family. Mol Cell Endocrinol 2021; 526:111210. [PMID: 33607268 PMCID: PMC8108011 DOI: 10.1016/j.mce.2021.111210] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
This review briefly addresses the history of the discovery and elucidation of the three cloned 11β-hydroxysteroid dehydrogenase (11βHSD) enzymes in the human, 11βHSD1, 11βHSD2 and 11βHSD3, an NADP+-dependent dehydrogenase also called the 11βHSD1-like dehydrogenase (11βHSD1L), as well as evidence for yet identified 11βHSDs. Attention is devoted to more recently described aspects of this multi-functional family. The importance of 11βHSD substrates other than glucocorticoids including bile acids, 7-keto sterols, neurosteroids, and xenobiotics is discussed, along with examples of pathology when functions of these multi-tasking enzymes are disrupted. 11βHSDs modulate the intracellular concentration of glucocorticoids, thereby regulating the activation of the glucocorticoid and mineralocorticoid receptors, and 7β-27-hydroxycholesterol, an agonist of the retinoid-related orphan receptor gamma (RORγ). Key functions of this nuclear transcription factor include regulation of immune cell differentiation, cytokine production and inflammation at the cell level. 11βHSD1 expression and/or glucocorticoid reductase activity are inappropriately increased with age and in obesity and metabolic syndrome (MetS). Potential causes for disappointing results of the clinical trials of selective inhibitors of 11βHSD1 in the treatment of these disorders are discussed, as well as the potential for more targeted use of inhibitors of 11βHSD1 and 11βHSD2.
Collapse
Affiliation(s)
| | - Celso E Gomez-Sanchez
- Department of Pharmacology and Toxicology, Jackson, MS, USA; Medicine (Endocrinology), Jackson, MS, USA; University of Mississippi Medical Center and G.V. (Sonny) Montgomery VA Medical Center(3), Jackson, MS, USA
| |
Collapse
|
18
|
Miyamoto S, Lima RS, Inague A, Viviani LG. Electrophilic oxysterols: generation, measurement and protein modification. Free Radic Res 2021; 55:416-440. [PMID: 33494620 DOI: 10.1080/10715762.2021.1879387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cholesterol is an essential component of mammalian plasma membranes. Alterations in sterol metabolism or oxidation have been linked to various pathological conditions, including cardiovascular diseases, cancer, and neurodegenerative disorders. Unsaturated sterols are vulnerable to oxidation induced by singlet oxygen and other reactive oxygen species. This process yields reactive sterol oxidation products, including hydroperoxides, epoxides as well as aldehydes. These oxysterols, in particular those with high electrophilicity, can modify nucleophilic sites in biomolecules and affect many cellular functions. Here, we review the generation and measurement of reactive sterol oxidation products with emphasis on cholesterol hydroperoxides and aldehyde derivatives (electrophilic oxysterols) and their effects on protein modifications.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo S Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas G Viviani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Abdel-Khalik J, Hearn T, Dickson AL, Crick PJ, Yutuc E, Austin-Muttitt K, Bigger BW, Morris AA, Shackleton CH, Clayton PT, Iida T, Sircar R, Rohatgi R, Marschall HU, Sjövall J, Björkhem I, Mullins JGL, Griffiths WJ, Wang Y. Bile acid biosynthesis in Smith-Lemli-Opitz syndrome bypassing cholesterol: Potential importance of pathway intermediates. J Steroid Biochem Mol Biol 2021; 206:105794. [PMID: 33246156 PMCID: PMC7816163 DOI: 10.1016/j.jsbmb.2020.105794] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Bile acids are the end products of cholesterol metabolism secreted into bile. They are essential for the absorption of lipids and lipid soluble compounds from the intestine. Here we have identified a series of unusual Δ5-unsaturated bile acids in plasma and urine of patients with Smith-Lemli-Opitz syndrome (SLOS), a defect in cholesterol biosynthesis resulting in elevated levels of 7-dehydrocholesterol (7-DHC), an immediate precursor of cholesterol. Using liquid chromatography - mass spectrometry (LC-MS) we have uncovered a pathway of bile acid biosynthesis in SLOS avoiding cholesterol starting with 7-DHC and proceeding through 7-oxo and 7β-hydroxy intermediates. This pathway also occurs to a minor extent in healthy humans, but elevated levels of pathway intermediates could be responsible for some of the features SLOS. The pathway is also active in SLOS affected pregnancies as revealed by analysis of amniotic fluid. Importantly, intermediates in the pathway, 25-hydroxy-7-oxocholesterol, (25R)26-hydroxy-7-oxocholesterol, 3β-hydroxy-7-oxocholest-5-en-(25R)26-oic acid and the analogous 7β-hydroxysterols are modulators of the activity of Smoothened (Smo), an oncoprotein that mediates Hedgehog (Hh) signalling across membranes during embryogenesis and in the regeneration of postembryonic tissue. Computational docking of the 7-oxo and 7β-hydroxy compounds to the extracellular cysteine rich domain of Smo reveals that they bind in the same groove as both 20S-hydroxycholesterol and cholesterol, known activators of the Hh pathway.
Collapse
Affiliation(s)
- Jonas Abdel-Khalik
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Thomas Hearn
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Alison L Dickson
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Peter J Crick
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Karl Austin-Muttitt
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Brian W Bigger
- Stem Cell & Neurotherapies, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Andrew A Morris
- Willink Unit, Manchester Centre for Genomic Medicine, Manchester University Hospitals, Manchester, M13 9WL, UK
| | - Cedric H Shackleton
- University of California San Francisco (UCSF) Benioff Children's Hospital, Oakland, CA 94609, USA
| | - Peter T Clayton
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Takashi Iida
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo, 156-8550, Japan
| | - Ria Sircar
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska Academy, Institute of Medicine, Gothenburg, 41345, Sweden
| | - Jan Sjövall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, 14186, Stockholm, Sweden
| | - Jonathan G L Mullins
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
20
|
Wang Y, Yutuc E, Griffiths WJ. Cholesterol metabolism pathways - are the intermediates more important than the products? FEBS J 2021; 288:3727-3745. [PMID: 33506652 PMCID: PMC8653896 DOI: 10.1111/febs.15727] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
Every cell in vertebrates possesses the machinery to synthesise cholesterol and to metabolise it. The major route of cholesterol metabolism is conversion to bile acids. Bile acids themselves are interesting molecules being ligands to nuclear and G protein‐coupled receptors, but perhaps the intermediates in the bile acid biosynthesis pathways are even more interesting and equally important. Here, we discuss the biological activity of the different intermediates generated in the various bile acid biosynthesis pathways. We put forward the hypothesis that the acidic pathway of bile acid biosynthesis has primary evolved to generate signalling molecules and its utilisation by hepatocytes provides an added bonus of producing bile acids to aid absorption of lipids in the intestine.
Collapse
|
21
|
Wang Y, Yutuc E, Griffiths WJ. Neuro-oxysterols and neuro-sterols as ligands to nuclear receptors, GPCRs, ligand-gated ion channels and other protein receptors. Br J Pharmacol 2020; 178:3176-3193. [PMID: 32621622 DOI: 10.1111/bph.15191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022] Open
Abstract
The brain is the most cholesterol rich organ in the body containing about 25% of the body's free cholesterol. Cholesterol cannot pass the blood-brain barrier and be imported or exported; instead, it is synthesised in situ and metabolised to oxysterols, oxidised forms of cholesterol, which can pass the blood-brain barrier. 24S-Hydroxycholesterol is the dominant oxysterol in the brain after parturition, but during development, a myriad of other oxysterols are produced, which persist as minor oxysterols after birth. During both development and in later life, sterols and oxysterols interact with a variety of different receptors, including nuclear receptors, membrane bound GPCRs, the oxysterol/sterol sensing proteins INSIG and SCAP, and the ligand-gated ion channel NMDA receptors found in nerve cells. In this review, we summarise the different oxysterols and sterols found in the CNS whose biological activity is transmitted via these different classes of protein receptors. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School, Swansea, UK
| | - Eylan Yutuc
- Swansea University Medical School, Swansea, UK
| | | |
Collapse
|
22
|
Vejux A, Abed-Vieillard D, Hajji K, Zarrouk A, Mackrill JJ, Ghosh S, Nury T, Yammine A, Zaibi M, Mihoubi W, Bouchab H, Nasser B, Grosjean Y, Lizard G. 7-Ketocholesterol and 7β-hydroxycholesterol: In vitro and animal models used to characterize their activities and to identify molecules preventing their toxicity. Biochem Pharmacol 2020; 173:113648. [DOI: 10.1016/j.bcp.2019.113648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
23
|
Anderson A, Campo A, Fulton E, Corwin A, Jerome WG, O'Connor MS. 7-Ketocholesterol in disease and aging. Redox Biol 2020; 29:101380. [PMID: 31926618 PMCID: PMC6926354 DOI: 10.1016/j.redox.2019.101380] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/08/2023] Open
Abstract
7-Ketocholesterol (7KC) is a toxic oxysterol that is associated with many diseases and disabilities of aging, as well as several orphan diseases. 7KC is the most common product of a reaction between cholesterol and oxygen radicals and is the most concentrated oxysterol found in the blood and arterial plaques of coronary artery disease patients as well as various other disease tissues and cell types. Unlike cholesterol, 7KC consistently shows cytotoxicity to cells and its physiological function in humans or other complex organisms is unknown. Oxysterols, particularly 7KC, have also been shown to diffuse through membranes where they affect receptor and enzymatic function. Here, we will explore the known and proposed mechanisms of pathologies that are associated with 7KC, as well speculate about the future of 7KC as a diagnostic and therapeutic target in medicine.
Collapse
|
24
|
Crick PJ, Yutuc E, Abdel-Khalik J, Saeed A, Betsholtz C, Genove G, Björkhem I, Wang Y, Griffiths WJ. Formation and metabolism of oxysterols and cholestenoic acids found in the mouse circulation: Lessons learnt from deuterium-enrichment experiments and the CYP46A1 transgenic mouse. J Steroid Biochem Mol Biol 2019; 195:105475. [PMID: 31541728 PMCID: PMC6880786 DOI: 10.1016/j.jsbmb.2019.105475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022]
Abstract
While the presence and abundance of the major oxysterols and cholestenoic acids in the circulation is well established, minor cholesterol metabolites may also have biological importance and be of value to investigate. In this study by observing the metabolism of deuterium-labelled cholesterol in the pdgfbret/ret mouse, a mouse model with increased vascular permeability in brain, and by studying the sterol content of plasma from the CYP46A1 transgenic mouse overexpressing the human cholesterol 24S-hydroxylase enzyme we have been able to identify a number of minor cholesterol metabolites found in the circulation, make approximate-quantitative measurements and postulate pathways for their formation. These "proof of principle" data may have relevance when using mouse models to mimic human disease and in respect of the increasing possibility of treating human neurodegenerative diseases with pharmaceuticals designed to enhance the activity of CYP46A1 or by adeno-associated virus delivery of CYP46A1.
Collapse
Affiliation(s)
- Peter J Crick
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Jonas Abdel-Khalik
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Ahmed Saeed
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, Karolinska Institutet, 141 86 Huddinge, Sweden
| | | | - Guillem Genove
- ICMC Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, Karolinska Institutet, 141 86 Huddinge, Sweden
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK.
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK.
| |
Collapse
|
25
|
Griffiths WJ, Yutuc E, Abdel-Khalik J, Crick PJ, Hearn T, Dickson A, Bigger BW, Hoi-Yee Wu T, Goenka A, Ghosh A, Jones SA, Covey DF, Ory DS, Wang Y. Metabolism of Non-Enzymatically Derived Oxysterols: Clues from sterol metabolic disorders. Free Radic Biol Med 2019; 144:124-133. [PMID: 31009661 PMCID: PMC6863434 DOI: 10.1016/j.freeradbiomed.2019.04.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
Abstract
Cholestane-3β,5α,6β-triol (3β,5α,6β-triol) is formed from cholestan-5,6-epoxide (5,6-EC) in a reaction catalysed by cholesterol epoxide hydrolase, following formation of 5,6-EC through free radical oxidation of cholesterol. 7-Oxocholesterol (7-OC) and 7β-hydroxycholesterol (7β-HC) can also be formed by free radical oxidation of cholesterol. Here we investigate how 3β,5α,6β-triol, 7-OC and 7β-HC are metabolised to bile acids. We show, by monitoring oxysterol metabolites in plasma samples rich in 3β,5α,6β-triol, 7-OC and 7β-HC, that these three oxysterols fall into novel branches of the acidic pathway of bile acid biosynthesis becoming (25R)26-hydroxylated then carboxylated, 24-hydroxylated and side-chain shortened to give the final products 3β,5α,6β-trihydroxycholanoic, 3β-hydroxy-7-oxochol-5-enoic and 3β,7β-dihydroxychol-5-enoic acids, respectively. The intermediates in these pathways may be causative of some phenotypical features of, and/or have diagnostic value for, the lysosomal storage diseases, Niemann Pick types C and B and lysosomal acid lipase deficiency. Free radical derived oxysterols are metabolised in human to unusual bile acids via novel branches of the acidic pathway, intermediates in these pathways are observed in plasma.
Collapse
Affiliation(s)
- William J Griffiths
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| | - Eylan Yutuc
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Jonas Abdel-Khalik
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Peter J Crick
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Thomas Hearn
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Alison Dickson
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Brian W Bigger
- Stem Cell & Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Stopford Building, Oxford Road, University of Manchester, Manchester, M13 9PT, UK
| | - Teresa Hoi-Yee Wu
- Manchester Centre for Genomic Medicine, 6th Floor, St Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Anu Goenka
- Manchester Centre for Genomic Medicine, 6th Floor, St Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Arunabha Ghosh
- Manchester Centre for Genomic Medicine, 6th Floor, St Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, 6th Floor, St Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
26
|
Griffiths WJ, Wang Y. Oxysterols as lipid mediators: Their biosynthetic genes, enzymes and metabolites. Prostaglandins Other Lipid Mediat 2019; 147:106381. [PMID: 31698146 PMCID: PMC7081179 DOI: 10.1016/j.prostaglandins.2019.106381] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Pathways of oxysterol biosynthesis. Pathways of oxysterol metabolism. Oxysterols as bioactive molecules. Disorders of oxysterol metabolism.
There is growing evidence that oxysterols are more than simple metabolites in the pathway from cholesterol to bile acids. Recent data has shown oxysterols to be ligands to nuclear receptors and to G protein-coupled receptors, modulators of N-methyl-d-aspartate receptors and regulators of cholesterol biosynthesis. In this mini-review we will discuss the biosynthetic mechanisms for the formation of different oxysterols and the implication of disruption of these mechanisms in health and disease.
Collapse
Affiliation(s)
- William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP Wales, UK.
| |
Collapse
|
27
|
Beck KR, Inderbinen SG, Kanagaratnam S, Kratschmar DV, Jetten AM, Yamaguchi H, Odermatt A. 11β-Hydroxysteroid dehydrogenases control access of 7β,27-dihydroxycholesterol to retinoid-related orphan receptor γ. J Lipid Res 2019; 60:1535-1546. [PMID: 31273032 PMCID: PMC6718442 DOI: 10.1194/jlr.m092908] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/24/2019] [Indexed: 12/15/2022] Open
Abstract
Oxysterols previously were considered intermediates of bile acid and steroid hormone biosynthetic pathways. However, recent research has emphasized the roles of oxysterols in essential physiologic processes and in various diseases. Despite these discoveries, the metabolic pathways leading to the different oxysterols are still largely unknown and the biosynthetic origin of several oxysterols remains unidentified. Earlier studies demonstrated that the glucocorticoid metabolizing enzymes, 11β-hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2, interconvert 7-ketocholesterol (7kC) and 7β-hydroxycholesterol (7βOHC). We examined the role of 11β-HSDs in the enzymatic control of the intracellular availability of 7β,27-dihydroxycholesterol (7β27OHC), a retinoid-related orphan receptor γ (RORγ) ligand. We used microsomal preparations of cells expressing recombinant 11β-HSD1 and 11β-HSD2 to assess whether 7β27OHC and 7-keto,27-hydroxycholesterol (7k27OHC) are substrates of these enzymes. Binding of 7β27OHC and 7k27OHC to 11β-HSDs was studied by molecular modeling. To our knowledge, the stereospecific oxoreduction of 7k27OHC to 7β27OHC by human 11β-HSD1 and the reverse oxidation reaction of 7β27OHC to 7k27OHC by human 11β-HSD2 were demonstrated for the first time. Apparent enzyme affinities of 11β-HSDs for these novel substrates were equal to or higher than those of the glucocorticoids. This is supported by the fact that 7k27OHC and 7β27OHC are potent inhibitors of the 11β-HSD1-dependent oxoreduction of cortisone and the 11β-HSD2-dependent oxidation of cortisol, respectively. Furthermore, molecular docking calculations explained stereospecific enzyme activities. Finally, using an inducible RORγ reporter system, we showed that 11β-HSD1 and 11β-HSD2 controlled RORγ activity. These findings revealed a novel glucocorticoid-independent prereceptor regulation mechanism by 11β-HSDs that warrants further investigation.
Collapse
Affiliation(s)
- Katharina R Beck
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Silvia G Inderbinen
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Sharavan Kanagaratnam
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Denise V Kratschmar
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Anton M Jetten
- Immunity, Inflammation, and Disease Laboratory National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Hideaki Yamaguchi
- Department of Applied Biological Chemistry Meijo University, Nagoya 468-8502, Japan
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
28
|
Wang Y, Li H, Zhu Q, Li X, Lin Z, Ge RS. The cross talk of adrenal and Leydig cell steroids in Leydig cells. J Steroid Biochem Mol Biol 2019; 192:105386. [PMID: 31152782 DOI: 10.1016/j.jsbmb.2019.105386] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Glucocorticoid is secreted by adrenal cortex, which binds to intracellular glucocorticoid and mineralocorticoid receptors to regulate steroidogenesis-related gene expression and testosterone production in Leydig cells. Glucocorticoid receptor activity shows inhibitory action on Leydig cell steroidogenesis, while mineralocorticoid receptor activity shows the stimulatory action. Leydig cells contain two important glucocorticoid-metabolizing enzymes, 11β-hydroxysteroid dehydrogenase type 1 and type 2, regulating the intracellular levels of glucocorticoids by a pre-receptor mechanism. 11β-Hydroxysteroid dehydrogenase type 1 is a bidirectional enzyme, and its direction is regulated by intracellular NADP+/NADPH redox potential. Leydig cells contain many steroidogenic enzymes, possibly regulating NADP+/NADPH redox potential by coupling with 11β-hydroxysteroid dehydrogenase type 1. Here, we review the 11β-hydroxysteroid dehydrogenase regulation and possible consequences in Leydig cell biology and pathology.
Collapse
Affiliation(s)
- Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Zhu
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenkun Lin
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
29
|
Canonica J, Frateschi S, Boscardin E, Ebering A, Sergi C, Jäger Y, Peyrollaz T, Mérillat AM, Maillard M, Klusonova P, Odermatt A, Koesters R, Debonneville A, Staub O, Verouti SN, Hummler E. Lack of Renal Tubular Glucocorticoid Receptor Decreases the Thiazide-Sensitive Na +/Cl - Cotransporter NCC and Transiently Affects Sodium Handling. Front Physiol 2019; 10:989. [PMID: 31474871 PMCID: PMC6702950 DOI: 10.3389/fphys.2019.00989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic glucocorticoid infusion impairs NCC activity and induces a non-dipping profile in mice, suggesting that glucocorticoids are essential for daily blood pressure variations. In this paper, we studied mice lacking the renal tubular glucocorticoid receptor (GR) in adulthood (GR knockouts, Nr3c1Pax8/LC1). Upon standard salt diet, Nr3c1Pax8/LC1 mice grow normally, but show reduced NCC activity despite normal plasma aldosterone levels. Following diet switch to low sodium, Nr3c1Pax8/LC1 mice exhibit a transient but significant reduction in the activity of NCC and expression of NHE3 and NKCC2 accompanied by significant increased Spak activity. This is followed by transiently increased urinary sodium excretion and higher plasma aldosterone concentrations. Plasma corticosterone levels and 11βHSD2 mRNA expression and activity in the whole kidney remain unchanged. High salt diet does not affect whole body Na+ and/or K+ balance and NCC activity is not reduced, but leads to a significant increase in diastolic blood pressure dipping in Nr3c1Pax8/LC1 mice. When high sodium treatment is followed by 48 h of darkness, NCC abundance is reduced in knockout mice although activity is not different. Our data show that upon Na+ restriction renal tubular GR-deficiency transiently affects Na+ handling and transport pathways. Overall, upon standard, low Na+ and high Na+ diet exposure Na+ and K+ balance is maintained as evidenced by normal plasma and urinary Na+ and K+ and aldosterone concentrations.
Collapse
Affiliation(s)
- Jérémie Canonica
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| | - Simona Frateschi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| | - Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| | - Anna Ebering
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Chloé Sergi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Yannick Jäger
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Thibaud Peyrollaz
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Anne-Marie Mérillat
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Marc Maillard
- Department of Nephrology Service, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Petra Klusonova
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Robert Koesters
- Hôpital Tenon, Université Pierre et Marie Curie, Paris, France
| | - Anne Debonneville
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| | - Sophia N Verouti
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Centre of Competence in Research "Kidney.CH", Lausanne, Switzerland
| |
Collapse
|
30
|
Beck KR, Kanagaratnam S, Kratschmar DV, Birk J, Yamaguchi H, Sailer AW, Seuwen K, Odermatt A. Enzymatic interconversion of the oxysterols 7β,25-dihydroxycholesterol and 7-keto,25-hydroxycholesterol by 11β-hydroxysteroid dehydrogenase type 1 and 2. J Steroid Biochem Mol Biol 2019; 190:19-28. [PMID: 30902677 DOI: 10.1016/j.jsbmb.2019.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Oxysterols are cholesterol metabolites derived through either autoxidation or enzymatic processes. They consist of a large family of bioactive lipids that have been associated with the progression of multiple pathologies. In order to unravel (patho-)physiological mechanisms involving oxysterols, it is crucial to elucidate the underlying formation and degradation of oxysterols. A role of 11β-hydroxysteroid dehydrogenases (11β-HSDs) in oxysterol metabolism by catalyzing the interconversion of 7-ketocholesterol (7kC) and 7β-hydroxycholesterol (7βOHC) has already been reported. The present study addresses a function of 11β-HSD1 in the enzymatic generation of 7β,25-dihydroxycholesterol (7β25OHC) from 7-keto,25-hydroxycholesterol (7k25OHC) and tested whether 11β-HSD2 is able to catalyze the reverse reaction. For the first time, using recombinant enzymes, the formation of 7k25OHC from 7kC by cholesterol 25-hydroxylase (CH25H) and further stereospecific oxoreduction to 7β25OHC by human and mouse 11β-HSD1 could be demonstrated. Additionally, experiments using human 11β-HSD2 showed the oxidation of 7β25OHC to 7k25OHC. Molecular modeling provided an explanation for the stereospecific interconversion of 7β25OHC and 7k25OHC. Production of the Epstein-Barr virus-induced gene 2 (EBI2) ligand 7β25OHC from 7k25OHC in challenged tissue by 11β-HSD1 may be important in inflammation. In conclusion, these results demonstrate a novel glucocorticoid-independent pre-receptor regulation mediated by 11β-HSDs.
Collapse
Affiliation(s)
- Katharina R Beck
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Sharavan Kanagaratnam
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Denise V Kratschmar
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Julia Birk
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Hideaki Yamaguchi
- Department of Applied Biological Chemistry, Meijo University, Nagoya 468-8502, Japan
| | - Andreas W Sailer
- Disease Area X, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Klaus Seuwen
- Disease Area X, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
31
|
Meljon A, Crick PJ, Yutuc E, Yau JL, Seckl JR, Theofilopoulos S, Arenas E, Wang Y, Griffiths WJ. Mining for Oxysterols in Cyp7b1-/- Mouse Brain and Plasma: Relevance to Spastic Paraplegia Type 5. Biomolecules 2019; 9:biom9040149. [PMID: 31013940 PMCID: PMC6523844 DOI: 10.3390/biom9040149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 01/19/2023] Open
Abstract
Deficiency in cytochrome P450 (CYP) 7B1, also known as oxysterol 7α-hydroxylase, in humans leads to hereditary spastic paraplegia type 5 (SPG5) and in some cases in infants to liver disease. SPG5 is medically characterized by loss of motor neurons in the corticospinal tract. In an effort to gain a better understanding of the fundamental biochemistry of this disorder, we have extended our previous profiling of the oxysterol content of brain and plasma of Cyp7b1 knockout (-/-) mice to include, amongst other sterols, 25-hydroxylated cholesterol metabolites. Although brain cholesterol levels do not differ between wild-type (wt) and knockout mice, we find, using a charge-tagging methodology in combination with liquid chromatography-mass spectrometry (LC-MS) and multistage fragmentation (MSn), that there is a build-up of the CYP7B1 substrate 25-hydroxycholesterol (25-HC) in Cyp7b1-/- mouse brain and plasma. As reported earlier, levels of (25R)26-hydroxycholesterol (26-HC), 3β-hydroxycholest-5-en-(25R)26-oic acid and 24S,25-epoxycholesterol (24S,25-EC) are similarly elevated in brain and plasma. Side-chain oxysterols including 25-HC, 26-HC and 24S,25-EC are known to bind to INSIG (insulin-induced gene) and inhibit the processing of SREBP-2 (sterol regulatory element-binding protein-2) to its active form as a master regulator of cholesterol biosynthesis. We suggest the concentration of cholesterol in brain of the Cyp7b1-/- mouse is maintained by balancing reduced metabolism, as a consequence of a loss in CYP7B1, with reduced biosynthesis. The Cyp7b1-/- mouse does not show a motor defect; whether the defect in humans is a consequence of less efficient homeostasis of cholesterol in brain has yet to be uncovered.
Collapse
Affiliation(s)
- Anna Meljon
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
- Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
| | - Peter J Crick
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
| | - Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
| | - Joyce L Yau
- Endocrinology Unit, BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Jonathan R Seckl
- Endocrinology Unit, BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Spyridon Theofilopoulos
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | - Ernest Arenas
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
32
|
Oxysterol research: a brief review. Biochem Soc Trans 2019; 47:517-526. [PMID: 30936243 PMCID: PMC6490702 DOI: 10.1042/bst20180135] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
Abstract
In the present study, we discuss the recent developments in oxysterol research. Exciting results have been reported relating to the involvement of oxysterols in the fields of neurodegenerative disease, especially in Huntington's disease, Parkinson's disease and Alzheimer's disease; in signalling and development, in particular, in relation to Hedgehog signalling; and in cancer, with a special focus on (25R)26-hydroxycholesterol. Methods for the measurement of oxysterols, essential for understanding their mechanism of action in vivo, and valuable for diagnosing rare diseases of cholesterol biosynthesis and metabolism are briefly considered.
Collapse
|
33
|
High temperature and heating effect on the oxidative stability of dietary cholesterol in different real food systems arising from eggs. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03266-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Holy P, Kloudova A, Soucek P. Importance of genetic background of oxysterol signaling in cancer. Biochimie 2018; 153:109-138. [DOI: 10.1016/j.biochi.2018.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/27/2018] [Indexed: 12/14/2022]
|
35
|
Bellanti F, Villani R, Tamborra R, Blonda M, Iannelli G, di Bello G, Facciorusso A, Poli G, Iuliano L, Avolio C, Vendemiale G, Serviddio G. Synergistic interaction of fatty acids and oxysterols impairs mitochondrial function and limits liver adaptation during nafld progression. Redox Biol 2018; 15:86-96. [PMID: 29220698 PMCID: PMC5725223 DOI: 10.1016/j.redox.2017.11.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/07/2017] [Accepted: 11/18/2017] [Indexed: 02/08/2023] Open
Abstract
The complete mechanism accounting for the progression from simple steatosis to steatohepatitis in nonalcoholic fatty liver disease (NAFLD) has not been elucidated. Lipotoxicity refers to cellular injury caused by hepatic free fatty acids (FFAs) and cholesterol accumulation. Excess cholesterol autoxidizes to oxysterols during oxidative stress conditions. We hypothesize that interaction of FAs and cholesterol derivatives may primarily impair mitochondrial function and affect biogenesis adaptation during NAFLD progression. We demonstrated that the accumulation of specific non-enzymatic oxysterols in the liver of animals fed high-fat+high-cholesterol diet induces mitochondrial damage and depletion of proteins of the respiratory chain complexes. When tested in vitro, 5α-cholestane-3β,5,6β-triol (triol) combined to FFAs was able to reduce respiration in isolated liver mitochondria, induced apoptosis in primary hepatocytes, and down-regulated transcription factors involved in mitochondrial biogenesis. Finally, a lower protein content in the mitochondrial respiratory chain complexes was observed in human non-alcoholic steatohepatitis. In conclusion, hepatic accumulation of FFAs and non-enzymatic oxysterols synergistically facilitates development and progression of NAFLD by impairing mitochondrial function, energy balance and biogenesis adaptation to chronic injury.
Collapse
Affiliation(s)
- Francesco Bellanti
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Rosanna Villani
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Rosanna Tamborra
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Maria Blonda
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; Institute of Neurology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giuseppina Iannelli
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giorgia di Bello
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Antonio Facciorusso
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino at San Luigi Gonzaga Hospital, 10043 Orbassano, Torino, Italy
| | - Luigi Iuliano
- Laboratory of Vascular Biology and Mass Spectrometry, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Carlo Avolio
- Institute of Neurology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Gianluigi Vendemiale
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Gaetano Serviddio
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.
| |
Collapse
|
36
|
Chemistry, biochemistry, metabolic fate and mechanism of action of 6-oxo-cholestan-3β,5α-diol (OCDO), a tumor promoter and cholesterol metabolite. Biochimie 2018; 153:139-149. [PMID: 29654865 DOI: 10.1016/j.biochi.2018.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
Abstract
Oxygenation products of cholesterol, named oxysterols, were suspected since the 20th century to be involved in carcinogenesis. Among the family of oxysterol molecules, cholesterol-5,6-epoxides (5,6-EC) retained the attention of scientists because they contain a putative alkylating epoxide group. However, studies failed into demonstrating that 5,6-EC were direct carcinogens and revealed a surprising chemical stability and unreactivity towards nucleophiles in standard conditions. Analyses of 5,6-EC metabolism in normal cells showed that they were extensively transformed into cholestane-3β,5α,6β-triol (CT) by the cholesterol-5,6-epoxide hydrolase (ChEH). Studies performed in cancer cells showed that CT was additionally metabolized into an oxysterol identified as the 6-oxo-cholestan-3β,5α-diol (OCDO), by the 11β-hydroxysteroid dehydrogenase of type 2 (HSD2), the enzyme which inactivates cortisol into cortisone. Importantly, OCDO was shown to display tumor promoter properties in breast cancers, by binding to the glucocorticoid receptor, and independently of their estrogen receptor status, revealing the existence of a new tumorigenic pathway centered on 5,6-EC. In breast tumors from patients, OCDO production as well as the expression of the enzymes involved in the pathway producing OCDO, namely ChEH subunits and HSD2, were higher compared to normal tissues, and overexpression of these enzymes correlate with a higher risk of patient death, indicating that this onco-metabolism is of major importance to breast cancer pathology. Herein, we will review the actual knowledge and the future trends in OCDO chemistry, biochemistry, metabolism and mechanism of action and will discuss the impact of OCDO discovery on new anticancer therapeutic strategies.
Collapse
|
37
|
Tang HY, Wang CH, Ho HY, Wu PT, Hung CL, Huang CY, Wu PR, Yeh YH, Cheng ML. Lipidomics reveals accumulation of the oxidized cholesterol in erythrocytes of heart failure patients. Redox Biol 2017; 14:499-508. [PMID: 29101899 PMCID: PMC5675899 DOI: 10.1016/j.redox.2017.10.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
Lipids play an important role in the pathogenesis of cardiovascular disease. Changes in lipids of erythrocytes are indicative of the outcome of pathophysiological processes. In the present study, we assessed whether the lipid profiles of erythrocytes from heart failure (HF) patients are informative of their disease risk. The lipidomes of erythrocytes from 10 control subjects and 29 patients at different HF stages were analyzed using liquid chromatography time-of-flight mass spectrometry. The lipid composition of erythrocytes obtained from HF patients was significantly different from that of normal controls. The levels of phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and sphingomyelins decreased in HF erythrocytes as compared with those of control subjects; however, the levels of lysoPCs, lysoPEs, and ceramides increased in HF erythrocytes. Notably, the oxidized cholesterol 7-ketocholesterol (7KCh) accumulated to higher level in HF erythrocytes than in plasma from the same patients. We further validated our findings with a cohort of 115 subjects of control subjects (n=28) and patients (n=87). Mechanistically, 7KCh promoted reactive oxygen species (ROS) formation in cardiomyocytes; and induced their death, probably through an ATF4-dependent pathway. Our findings suggest that erythrocytic 7KCh can be a risk factor for HF, and is probably implicated in its pathophysiology.
Collapse
Affiliation(s)
- Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan Taiwan
| | - Chao-Hung Wang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Yao Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Clinical Phenome Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Ting Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Ling Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Yu Huang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan Taiwan
| | - Pei-Ru Wu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Division, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Chang-Gung University, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan Taiwan; Clinical Phenome Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
38
|
Tarvainen M, Quirin KW, Kallio H, Yang B. CO 2 Plant Extracts Reduce Cholesterol Oxidation in Fish Patties during Cooking and Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9653-9662. [PMID: 27977183 DOI: 10.1021/acs.jafc.6b03655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cholesterol oxidation products (COPs) in foods may pose risks for human health. Suitable antioxidants can reduce the formation of COPs in industrial products. Consumer awareness of food additives has brought a need for more natural alternatives. This is the first study on the effects of supercritical CO2 extracts of rosemary, oregano, and an antimicrobial blend of seven herbs, tested at two levels (1 and 3 g/kg fish), against cholesterol oxidation in patties made of a widely consumed fish species, Atlantic salmon (Salmo salar), during baking and storage. Cholesterol oxidation was reduced by the extracts as indicated by lowered levels of 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol, which were quantified by GC-MS. The total amount of COPs was smaller in all of the cooked samples containing the plant extracts (<1 μg/g extracted fat) than in the cooked control (14 μg/g). Furthermore, the plant extracts exhibited protective effects also during cold storage for up to 14 days.
Collapse
Affiliation(s)
- Marko Tarvainen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
| | - Karl-Werner Quirin
- Flavex Naturextrakte GmbH , Nordstraße 7, 66780 Rehlingen-Siersburg, Germany
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
- Department of Food Science and Engineering, Jinan University , 510632, Guangzhou, China
| |
Collapse
|
39
|
Mutemberezi V, Guillemot-Legris O, Muccioli GG. Oxysterols: From cholesterol metabolites to key mediators. Prog Lipid Res 2016; 64:152-169. [PMID: 27687912 DOI: 10.1016/j.plipres.2016.09.002] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/13/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
Oxysterols are cholesterol metabolites that can be produced through enzymatic or radical processes. They constitute a large family of lipids (i.e. the oxysterome) involved in a plethora of physiological processes. They can act through GPCR (e.g. EBI2, SMO, CXCR2), nuclear receptors (LXR, ROR, ERα) and through transporters or regulatory proteins. Their physiological effects encompass cholesterol, lipid and glucose homeostasis. Additionally, they were shown to be involved in other processes such as immune regulatory functions and brain homeostasis. First studied as precursors of bile acids, they quickly emerged as interesting lipid mediators. Their levels are greatly altered in several pathologies and some oxysterols (e.g. 4β-hydroxycholesterol or 7α-hydroxycholestenone) are used as biomarkers of specific pathologies. In this review, we discuss the complex metabolism and molecular targets (including binding properties) of these bioactive lipids in human and mice. We also discuss the genetic mouse models currently available to interrogate their effects in pathophysiological settings. We also summarize the levels of oxysterols reported in two key organs in oxysterol metabolism (liver and brain), plasma and cerebrospinal fluid. Finally, we consider future opportunities and directions in the oxysterol field in order to gain a better insight and understanding of the complex oxysterol system.
Collapse
Affiliation(s)
- Valentin Mutemberezi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Belgium.
| |
Collapse
|
40
|
Li X, Mao B, Dong Y, Li Y, Zhan M, Bai Y, Lian Q, Ge RS, Ye L. Effects of Ziram on Rat and Human 11β-Hydroxysteroid Dehydrogenase Isoforms. Chem Res Toxicol 2016; 29:398-405. [PMID: 26859423 DOI: 10.1021/acs.chemrestox.5b00527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoheng Li
- Center of Scientific Research, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Baiping Mao
- Department of Anesthesiology, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yaoyao Dong
- Center of Scientific Research, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuan Li
- Department of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Meizheng Zhan
- Department of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yanfang Bai
- Center of Scientific Research, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Leping Ye
- Department of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
41
|
Odermatt A, Klusonova P. 11β-Hydroxysteroid dehydrogenase 1: Regeneration of active glucocorticoids is only part of the story. J Steroid Biochem Mol Biol 2015; 151:85-92. [PMID: 25151952 DOI: 10.1016/j.jsbmb.2014.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 11/20/2022]
Abstract
11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) is an endoplasmic reticulum membrane enzyme with its catalytic site facing the luminal space. It functions primarily as a reductase, driven by the supply of its cosubstrate NADPH by hexose-6-phosphate dehydrogenase (H6PDH). Extensive research has been performed on the role of 11β-HSD1 in the regeneration of active glucocorticoids and its role in inflammation and metabolic disease. Besides its important role in the fine-tuning of glucocorticoid action, 11β-HSD1 is a multi-functional carbonyl reductase converting several 11- and 7-oxosterols into the respective 7-hydroxylated forms. Moreover, 11β-HSD1 has a role in phase I biotransformation reactions and catalyzes the carbonyl reduction of several non-steroidal xenobiotics. Recent observations from experiments using selective inhibitors and studies with transgenic mice indicated a role for 11β-HSD1 in oxysterol metabolism and in bile acid homeostasis, with evidence for glucocorticoid-independent effects on gene expression. This review focuses on the promiscuity of 11β-HSD1 to accept structurally distinct substrates and discusses recent progress mainly on non-glucocorticoid substrates. This article is part of a Special Issue entitled 'Enzyme Promiscuity and Diversity'.
Collapse
Affiliation(s)
- Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Petra Klusonova
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
42
|
Zarrouk A, Vejux A, Mackrill J, O’Callaghan Y, Hammami M, O’Brien N, Lizard G. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev 2014; 18:148-62. [PMID: 25305550 DOI: 10.1016/j.arr.2014.09.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 12/15/2022]
Abstract
Ageing is accompanied by increasing vulnerability to major pathologies (atherosclerosis, Alzheimer's disease, age-related macular degeneration, cataract, and osteoporosis) which can have similar underlying pathoetiologies. All of these diseases involve oxidative stress, inflammation and/or cell death processes, which are triggered by cholesterol oxide derivatives, also named oxysterols. These oxidized lipids result either from spontaneous and/or enzymatic oxidation of cholesterol on the steroid nucleus or on the side chain. The ability of oxysterols to induce severe dysfunctions in organelles (especially mitochondria) plays key roles in RedOx homeostasis, inflammatory status, lipid metabolism, and in the control of cell death induction, which may at least in part contribute to explain the potential participation of these molecules in ageing processes and in age related diseases. As no efficient treatments are currently available for most of these diseases, which are predicted to become more prevalent due to the increasing life expectancy and average age, a better knowledge of the biological activities of the different oxysterols is of interest, and constitutes an important step toward identification of pharmacological targets for the development of new therapeutic strategies.
Collapse
|
43
|
Slominski AT, Zmijewski MA, Semak I, Zbytek B, Pisarchik A, Li W, Zjawiony J, Tuckey RC. Cytochromes p450 and skin cancer: role of local endocrine pathways. Anticancer Agents Med Chem 2014; 14:77-96. [PMID: 23869782 DOI: 10.2174/18715206113139990308] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/30/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022]
Abstract
Skin is the largest body organ forming a metabolically active barrier between external and internal environments. The metabolic barrier is composed of cytochromes P450 (CYPs) that regulate its homeostasis through activation or inactivation of biologically relevant molecules. In this review we focus our attention on local steroidogenic and secosteroidogenic systems in relation to skin cancer, e.g., prevention, attenuation of tumor progression and therapy. The local steroidogenic system is composed of locally expressed CYPs involved in local production of androgens, estrogens, gluco- and mineralo-corticosteroids from cholesterol (initiated by CYP11A1) or from steroid precursors delivered to the skin, and of their metabolism and/or inactivation. Cutaneous 7-hydroxylases (CYP7A1, CYP7B1 and CYP39) potentially can produce 7-hydroxy/oxy-steroids/sterols with modifying effects on local tumorigenesis. CYP11A1 also transforms 7-dehydrocholesterol (7DHC)→22(OH)7DHC→20,22(OH)2-7DHC→7-dehydropregnenolone, which can be further metabolized to other 5,7- steroidal dienes. These 5,7-dienal intermediates are converted by ultraviolet radiation B (UVB) into secosteroids which show pro-differentiation and anti-cancer properties. Finally, the skin is the site of activation of vitamin D3 through two alternative pathways. The classical one involves sequential hydroxylation at positions 25 and 1 to produce active 1,25(OH)2D3, which is further inactivated through hydroxylation at C24. The novel pathway is initiated by CYP11A1 with predominant production of 20(OH)D3 which is further metabolized to biologically active but non-calcemic D3-hydroxyderivatives. Classical and non-classical (novel) vitamin D analogs show pro-differentiation, anti-proliferative and anticancer properties. In addition, melatonin is metabolized by local CYPs. In conclusion cutaneously expressed CYPs have significant effects on skin physiology and pathology trough regulation of its chemical milieu.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Robert C Tuckey
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 930 Madison Avenue, RM525, Memphis, TN 38163, USA.
| |
Collapse
|
44
|
Penno CA, Morgan SA, Rose AJ, Herzig S, Lavery GG, Odermatt A. 11β-Hydroxysteroid dehydrogenase-1 is involved in bile acid homeostasis by modulating fatty acid transport protein-5 in the liver of mice. Mol Metab 2014; 3:554-64. [PMID: 25061560 PMCID: PMC4099504 DOI: 10.1016/j.molmet.2014.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 12/31/2022] Open
Abstract
11β-Hydroxysteroid dehydrogenase-1 (11β-HSD1) plays a key role in glucocorticoid receptor (GR) activation. Besides, it metabolizes some oxysterols and bile acids (BAs). The GR regulates BA homeostasis; however, the impact of impaired 11β-HSD1 activity remained unknown. We profiled plasma and liver BAs in liver-specific and global 11β-HSD1-deficient mice. 11β-HSD1-deficiency resulted in elevated circulating unconjugated BAs, an effect more pronounced in global than liver-specific knockout mice. Gene expression analyses revealed decreased expression of the BA-CoA ligase Fatp5, suggesting impaired BA amidation. Reduced organic anion-transporting polypeptide-1A1 (Oatp1a1) and enhanced organic solute-transporter-β (Ostb) mRNA expression were observed in livers from global 11β-HSD1-deficient mice. The impact of 11β-HSD1-deficiency on BA homeostasis seems to be GR-independent because intrahepatic corticosterone and GR target gene expression were not substantially decreased in livers from global knockout mice. Moreover, Fatp5 expression in livers from hepatocyte-specific GR knockout mice was unchanged. The results revealed a role for 11β-HSD1 in BA homeostasis.
Collapse
Key Words
- 11β-Hydroxysteroid dehydrogenase
- 11β-hydroxysteroid dehydrogenase 1, 11β-HSD1
- BA coenzyme A: amino acid N-acyltransferase, Baat
- Bile acid conjugation
- Bile acid transport
- Bile acids
- Glucocorticoids
- Na+-taurocholate cotransporting polypeptide, Ntcp
- Organic anion-transporting polypeptide, Oatp
- Organic solute transporter, Ost
- bile acids, BAs
- cholesterol 7α-hydroxylase, Cyp7a1
- farnesoid X receptor, Fxr
- fatty acid transport protein, Fatp
- glucocorticoid receptor, GR
- short heterodimer partner, Shp
- sterol-regulatory element-binding protein 1C, Srebp1c
Collapse
Affiliation(s)
- Carlos A. Penno
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Stuart A. Morgan
- Centre for Endocrinology Diabetes and Metabolism (CEDAM), Institute of Biomedical Research, Medical School Building, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adam J. Rose
- Joint Research Division, Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH), Heidelberg University, Network Aging Research, University Hospital Heidelberg, Germany
| | - Stephan Herzig
- Joint Research Division, Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH), Heidelberg University, Network Aging Research, University Hospital Heidelberg, Germany
| | - Gareth G. Lavery
- Centre for Endocrinology Diabetes and Metabolism (CEDAM), Institute of Biomedical Research, Medical School Building, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
45
|
Abstract
The primary adrenal cortical steroid hormones, aldosterone, and the glucocorticoids cortisol and corticosterone, act through the structurally similar mineralocorticoid (MR) and glucocorticoid receptors (GRs). Aldosterone is crucial for fluid, electrolyte, and hemodynamic homeostasis and tissue repair; the significantly more abundant glucocorticoids are indispensable for energy homeostasis, appropriate responses to stress, and limiting inflammation. Steroid receptors initiate gene transcription for proteins that effect their actions as well as rapid non-genomic effects through classical cell signaling pathways. GR and MR are expressed in many tissues types, often in the same cells, where they interact at molecular and functional levels, at times in synergy, others in opposition. Thus the appropriate balance of MR and GR activation is crucial for homeostasis. MR has the same binding affinity for aldosterone, cortisol, and corticosterone. Glucocorticoids activate MR in most tissues at basal levels and GR at stress levels. Inactivation of cortisol and corticosterone by 11β-HSD2 allows aldosterone to activate MR within aldosterone target cells and limits activation of the GR. Under most conditions, 11β-HSD1 acts as a reductase and activates cortisol/corticosterone, amplifying circulating levels. 11β-HSD1 and MR antagonists mitigate inappropriate activation of MR under conditions of oxidative stress that contributes to the pathophysiology of the cardiometabolic syndrome; however, MR antagonists decrease normal MR/GR functional interactions, a particular concern for neurons mediating cognition, memory, and affect.
Collapse
Affiliation(s)
- Elise Gomez-Sanchez
- G.V.(Sonny) Montgomery V.A. Medical Center and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Celso E. Gomez-Sanchez
- G.V.(Sonny) Montgomery V.A. Medical Center and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
46
|
Tempel W, Grabovec I, MacKenzie F, Dichenko YV, Usanov SA, Gilep AA, Park HW, Strushkevich N. Structural characterization of human cholesterol 7α-hydroxylase. J Lipid Res 2014; 55:1925-32. [PMID: 24927729 DOI: 10.1194/jlr.m050765] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hepatic conversion to bile acids is a major elimination route for cholesterol in mammals. CYP7A1 catalyzes the first and rate-limiting step in classic bile acid biosynthesis, converting cholesterol to 7α-hydroxycholesterol. To identify the structural determinants that govern the stereospecific hydroxylation of cholesterol, we solved the crystal structure of CYP7A1 in the ligand-free state. The structure-based mutation T104L in the B' helix, corresponding to the nonpolar residue of CYP7B1, was used to obtain crystals of complexes with cholest-4-en-3-one and with cholesterol oxidation product 7-ketocholesterol (7KCh). The structures reveal a motif of residues that promote cholest-4-en-3-one binding parallel to the heme, thus positioning the C7 atom for hydroxylation. Additional regions of the binding cavity (most distant from the access channel) are involved to accommodate the elongated conformation of the aliphatic side chain. Structural complex with 7KCh shows an active site rigidity and provides an explanation for its inhibitory effect. Based on our previously published data, we proposed a model of cholesterol abstraction from the membrane by CYP7A1 for metabolism. CYP7A1 structural data provide a molecular basis for understanding of the diversity of 7α-hydroxylases, on the one hand, and cholesterol-metabolizing enzymes adapted for their specific activity, on the other hand.
Collapse
Affiliation(s)
- Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Irina Grabovec
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, 220141 Belarus
| | - Farrell MacKenzie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | | | - Sergey A Usanov
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, 220141 Belarus
| | - Andrei A Gilep
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, 220141 Belarus
| | - Hee-Won Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | | |
Collapse
|
47
|
Slominski AT, Manna PR, Tuckey RC. Cutaneous glucocorticosteroidogenesis: securing local homeostasis and the skin integrity. Exp Dermatol 2014; 23:369-374. [PMID: 24888781 PMCID: PMC4046116 DOI: 10.1111/exd.12376] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2014] [Indexed: 12/15/2022]
Abstract
Human skin has the ability to synthesize glucocorticoids de novo from cholesterol or from steroid intermediates of systemic origin. By interacting with glucocorticoid receptors, they regulate skin immune functions as well as functions and phenotype of the epidermal, dermal and adnexal compartments. Most of the biochemical (enzyme and transporter activities) and regulatory (neuropeptides mediated activation of cAMP and protein kinase A dependent pathways) principles of steroidogenesis in the skin are similar to those operating in classical steroidogenic organs. However, there are also significant differences determined by the close proximity of synthesis and action (even within the same cells) allowing para-, auto- or intracrine modes of regulation. We also propose that ultraviolet light B (UVB) can regulate the availability of 7-dehydrocholesterol for transformation to cholesterol with its further metabolism to steroids, oxysterols or ∆7 steroids, because of its transformation to vitamin D3. In addition, UVB can rearrange locally produced ∆7 steroids to the corresponding secosteroids with a short- or no-side chain. Thus, different mechanisms of regulation occur in the skin that can be either stochastic or structuralized. We propose that local glucocorticosteroidogenic systems and their regulators, in concert with cognate receptors operate to stabilize skin homeostasis and prevent or attenuate skin pathology.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee, Health Science Center, Memphis, TN, USA
- Department of Medicine, Division of Rheumatology and Connective Tissue Diseases, University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
48
|
Björkhem I, Diczfalusy U, Lövgren-Sandblom A, Starck L, Jonsson M, Tallman K, Schirmer H, Ousager LB, Crick PJ, Wang Y, Griffiths WJ, Guengerich FP. On the formation of 7-ketocholesterol from 7-dehydrocholesterol in patients with CTX and SLO. J Lipid Res 2014; 55:1165-72. [PMID: 24771866 DOI: 10.1194/jlr.p048603] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Indexed: 11/20/2022] Open
Abstract
A new mechanism for formation of 7-ketocholesterol was recently described involving cytochrome P-450 (CYP)7A1-catalyzed conversion of 7-dehydrocholesterol into 7-ketocholesterol with cholesterol-7,8-epoxide as a side product. Some patients with cerebrotendinous xanthomatosis (CTX) and all patients with Smith-Lemli-Opitz syndrome (SLO) have markedly increased levels of 7-dehydrocholesterol in plasma and tissues. In addition, the former patients have markedly upregulated CYP7A1. We hypothesized that these patients may produce 7-ketocholesterol from 7-dehydrocholesterol with formation of cholesterol-7,8-epoxide as a side product. In accord with this hypothesis, two patients with CTX were found to have increased levels of 7-ketocholesterol and 7-dehydrocholesterol, as well as a significant level of cholesterol-7,8-epoxide. The latter steroid was not detectable in plasma from healthy volunteers. Downregulation of CYP7A1 activity by treatment with chenodeoxycholic acid reduced the levels of 7-ketocholesterol in parallel with decreased levels of 7-dehydrocholesterol and cholesterol-7,8-epoxide. Three patients with SLO were found to have markedly elevated levels of 7-ketocholesterol as well as high levels of cholesterol-7,8-epoxide. The results support the hypothesis that 7-dehydrocholesterol is a precursor to 7-ketocholesterol in SLO and some patients with CTX.
Collapse
Affiliation(s)
- Ingemar Björkhem
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Ulf Diczfalusy
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Anita Lövgren-Sandblom
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Lena Starck
- Sachs' Children's Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | - Keri Tallman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN
| | - Henrik Schirmer
- Department of Clinical Medicine, Faculty of Health Science, University of Tromsö and Division of Cardiothoracic and Respiratory Medicine, University Hospital North Norway, Tromsö, Norway
| | | | - Peter J Crick
- Institute of Mass Spectrometry, College of Medicine, Swansea University, Singleton Park, Swansea, UK
| | - Yuqin Wang
- Institute of Mass Spectrometry, College of Medicine, Swansea University, Singleton Park, Swansea, UK
| | - William J Griffiths
- Institute of Mass Spectrometry, College of Medicine, Swansea University, Singleton Park, Swansea, UK
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
49
|
Hardy RS, Raza K, Cooper MS. Glucocorticoid metabolism in rheumatoid arthritis. Ann N Y Acad Sci 2014; 1318:18-26. [DOI: 10.1111/nyas.12389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rowan S. Hardy
- Rheumatology Research Group; University of Birmingham; Birmingham United Kingdom
| | - Karim Raza
- Rheumatology Research Group; University of Birmingham; Birmingham United Kingdom
| | - Mark S. Cooper
- ANZAC Research Institute; Concord Repatriation General Hospital; University of Sydney; Sydney Australia
| |
Collapse
|
50
|
The Influence of an Obesogenic Diet on Oxysterol Metabolism in C57BL/6J Mice. CHOLESTEROL 2014; 2014:843468. [PMID: 24672716 PMCID: PMC3941159 DOI: 10.1155/2014/843468] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 11/18/2022]
Abstract
Our current understanding of oxysterol metabolism during different disease states such as obesity and dyslipidemia is limited. Therefore, the aim of this study was to determine the effect of diet-induced obesity on the tissue distribution of various oxysterols and the mRNA expression of key enzymes involved in oxysterol metabolism. To induce obesity, male C57BL/6J mice were fed a high fat-cholesterol diet for 24 weeks. Following diet-induced obesity, plasma levels of 4β-hydroxycholesterol, 5,6α-epoxycholesterol, 5,6β-epoxycholesterol, 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 27-hydroxycholesterol were significantly (P < 0.05) increased. In the liver and adipose tissue of the obese mice, 4β-hydroxycholesterol was significantly (P < 0.05) increased, whereas 27-hydroxycholesterol was increased only in the adipose tissue. No significant changes in either hepatic or adipose tissue mRNA expression were observed for oxysterol synthesizing enzymes 4β-hydroxylase, 27-hydroxylase, or 7α-hydroxylase. Hepatic mRNA expression of SULT2B1b, a key enzyme involved in oxysterol detoxification, was significantly (P < 0.05) elevated in the obese mice. Interestingly, the appearance of the large HDL1 lipoprotein was observed with increased oxysterol synthesis during obesity. In diet-induced obese mice, dietary intake and endogenous enzymatic synthesis of oxysterols could not account for the increased oxysterol levels, suggesting that nonenzymatic cholesterol oxidation pathways may be responsible for the changes in oxysterol metabolism.
Collapse
|