1
|
Harvey BJ, McElvaney NG. Sex differences in airway disease: estrogen and airway surface liquid dynamics. Biol Sex Differ 2024; 15:56. [PMID: 39026347 PMCID: PMC11264786 DOI: 10.1186/s13293-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland.
- Department of Medicine, RCSI ERC, Beaumont Hospital, Dublin 2, Ireland.
| | - Noel G McElvaney
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
2
|
Harvey BJ, Harvey HM. Sex Differences in Colon Cancer: Genomic and Nongenomic Signalling of Oestrogen. Genes (Basel) 2023; 14:2225. [PMID: 38137047 PMCID: PMC10742859 DOI: 10.3390/genes14122225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Colon cancer (CRC) is a prevalent malignancy that exhibits distinct differences in incidence, prognosis, and treatment responses between males and females. These disparities have long been attributed to hormonal differences, particularly the influence of oestrogen signalling. This review aims to provide a comprehensive analysis of recent advances in our understanding of the molecular mechanisms underlying sex differences in colon cancer and the protective role of membrane and nuclear oestrogen signalling in CRC development, progression, and therapeutic interventions. We discuss the epidemiological and molecular evidence supporting sex differences in colon cancer, followed by an exploration of the impact of oestrogen in CRC through various genomic and nongenomic signalling pathways involving membrane and nuclear oestrogen receptors. Furthermore, we examine the interplay between oestrogen receptors and other signalling pathways, in particular the Wnt/β-catenin proliferative pathway and hypoxia in shaping biological sex differences and oestrogen protective actions in colon cancer. Lastly, we highlight the potential therapeutic implications of targeting oestrogen signalling in the management of colon cancer and propose future research directions to address the current gaps in our understanding of this complex phenomenon.
Collapse
Affiliation(s)
- Brian J. Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Harry M. Harvey
- Princess Margaret Cancer Centre, Toronto, ON M5G 1Z5, Canada;
| |
Collapse
|
3
|
Baldwin SN, Jepps TA, Greenwood IA. Cycling matters: Sex hormone regulation of vascular potassium channels. Channels (Austin) 2023; 17:2217637. [PMID: 37243715 PMCID: PMC10228406 DOI: 10.1080/19336950.2023.2217637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023] Open
Abstract
Sex hormones and the reproductive cycle (estrus in rodents and menstrual in humans) have a known impact on arterial function. In spite of this, sex hormones and the estrus/menstrual cycle are often neglected experimental factors in vascular basic preclinical scientific research. Recent research by our own laboratory indicates that cyclical changes in serum concentrations of sex -hormones across the rat estrus cycle, primary estradiol, have significant consequences for the subcellular trafficking and function of KV. Vascular potassium channels, including KV, are essential components of vascular reactivity. Our study represents a small part of a growing field of literature aimed at determining the role of sex hormones in regulating arterial ion channel function. This review covers key findings describing the current understanding of sex hormone regulation of vascular potassium channels, with a focus on KV channels. Further, we highlight areas of research where the estrus cycle should be considered in future studies to determine the consequences of physiological oscillations in concentrations of sex hormones on vascular potassium channel function.
Collapse
Affiliation(s)
- Samuel N Baldwin
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George’s University of London, London, UK
| |
Collapse
|
4
|
Thomas W, Harvey BJ. Estrogen-induced signalling and the renal contribution to salt and water homeostasis. Steroids 2023; 199:109299. [PMID: 37619674 DOI: 10.1016/j.steroids.2023.109299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The kidney is considered to be one of the most estrogen-responsive, not reproductive organs in the body. Different estrogen receptors (ERs) show sex-specific differences in expression along the nephron and the expression of different ERs also changes with the estrous cycle of the female. The kidney becomes more estrogen-sensitive when estradiol levels are at their highest, just prior to ovulation. This review discusses the different mechanisms by which estradiol can modify the salt and water conservation processes of the kidney through transporter regulation to support the fluid and electrolyte homeostasis changes required in mammalian reproduction. The kidney plays a critical role in regulating blood pressure by controlling fluid homeostasis, and so protects the female cardiovascular system from dramatic changes in whole body fluid volume that occur at critical points in the human menstrual cycle and in pregnancy. This is augmented by the direct actions of estradiol on the cardiovascular system, for example through the direct stimulation of endothelial nitric oxide (NO) synthase, which releases NO to promote vasodilation. This and other mechanisms are less evident in the male and give women a degree of cardiovascular protection up until menopause, when the risks of cardiovascular disease and chronic kidney disease begin to match the risks experienced by males.
Collapse
Affiliation(s)
- Warren Thomas
- Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, Muharraq, Bahrain.
| | - Brian J Harvey
- RCSI University of Medicine & Health Sciences, Faculty of Medicine, St Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
5
|
Wan H, Li J, Chen X, Sellers ZM, Dong H. Divergent roles of estrogen receptor subtypes in regulating estrogen-modulated colonic ion transports and epithelial repair. J Biol Chem 2023; 299:105068. [PMID: 37468102 PMCID: PMC10448179 DOI: 10.1016/j.jbc.2023.105068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Although it was described previously for estrogen (E2) regulation of intestinal epithelial Cl- and HCO3- secretion in sex difference, almost nothing is known about the roles of estrogen receptor (ER) subtypes in regulating E2-modulated epithelial ion transports and epithelial restitution. Here, we aimed to investigate ERα and ERβ subtypes in the regulation of E2-modulated colonic epithelial HCO3- and Cl- secretion and epithelial restitution. Through physiological and biochemical studies, in combination of genetic knockdown, we showed that ERα attenuated female colonic Cl- secretion but promoted Ca2+-dependent HCO3- secretion via store-operated calcium entry (SOCE) mechanism in mice. However, ERβ attenuated HCO3- secretion by inhibiting Ca2+via the SOCE and inhibiting cAMP via protein kinases. Moreover, ERα but not ERβ promoted epithelial cell restitution via SOCE/Ca2+ signaling. ERα also enhanced cyclin D1, proliferating cell nuclear antigen, and β-catenin expression in normal human colonic epithelial cells. All ERα-mediated biological effects could be attenuated by its selective antagonist and genetic knockdown. Finally, both ERα and ERβ were expressed in human colonic epithelial cells and mouse colonic tissues. We therefore conclude that E2 modulates complex colonic epithelial HCO3- and Cl- secretion via ER subtype-dependent mechanisms and that ERα is specifically responsible for colonic epithelial regeneration. This study provides novel insights into the molecular mechanisms of how ERα and ERβ subtypes orchestrate functional homeostasis of normal colonic epithelial cells.
Collapse
Affiliation(s)
- Hanxing Wan
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China; Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junhui Li
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Xiongying Chen
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Zachary M Sellers
- Pediatric Gastroenterology Hepatology & Nutrition, Stanford University School of Medicine, Palo Alto, California, USA.
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China.
| |
Collapse
|
6
|
Baldwin SN, Forrester EA, Homer NZM, Andrew R, Barrese V, Stott JB, Isakson BE, Albert AP, Greenwood IA. Marked oestrous cycle-dependent regulation of rat arterial K V 7.4 channels driven by GPER1. Br J Pharmacol 2023; 180:174-193. [PMID: 36085551 PMCID: PMC10091994 DOI: 10.1111/bph.15947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Kcnq-encoded KV 7 channels (termed KV 7.1-5) regulate vascular smooth muscle cell (VSMC) contractility at rest and as targets of receptor-mediated responses. However, the current data are mostly derived from males. Considering the known effects of sex, the oestrous cycle and sex hormones on vascular reactivity, here we have characterised the molecular and functional properties of KV 7 channels from renal and mesenteric arteries from female Wistar rats separated into di-oestrus and met-oestrus (F-D/M) and pro-oestrus and oestrus (F-P/E). EXPERIMENTAL APPROACH RT-qPCR, immunocytochemistry, proximity ligation assay and wire myography were performed in renal and mesenteric arteries. Circulating sex hormone concentrations were determined by liquid chromatography-tandem mass spectrometry. Whole-cell electrophysiology was undertaken on cells expressing KV 7.4 channels in association with G-protein-coupled oestrogen receptor 1 (GPER1). KEY RESULTS The KV 7.2-5 activators S-1 and ML213 and the pan-KV 7 inhibitor linopirdine were more effective in arteries from F-D/M compared with F-P/E animals. In VSMCs isolated from F-P/E rats, exploratory evidence indicates reduced membrane abundance of KV 7.4 but not KV 7.1, KV 7.5 and Kcne4 when compared with cells from F-D/M. Plasma oestradiol was higher in F-P/E compared with F-D/M, and progesterone showed the converse pattern. Oestradiol/GPER1 agonist G-1 diminished KV 7.4 encoded currents and ML213 relaxations and reduced the membrane abundance of KV 7.4 and interaction between KV 7.4 and heat shock protein 90 (HSP90), in arteries from F-D/M but not F-P/E. CONCLUSIONS AND IMPLICATIONS GPER1 signalling decreased KV 7.4 membrane abundance in conjunction with diminished interaction with HSP90, giving rise to a 'pro-contractile state'.
Collapse
Affiliation(s)
- Samuel N. Baldwin
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Elizabeth A. Forrester
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Natalie Z. M. Homer
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Ruth Andrew
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
- BHF Centre for Cardiovascular Science, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Sciences and DentistryUniversity of Naples Federico IINaplesItaly
| | - Jennifer B. Stott
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Brant E. Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research CentreUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Anthony P. Albert
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Iain A. Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| |
Collapse
|
7
|
Xu L, Huang G, Cong Y, Yu Y, Li Y. Sex-related Differences in Inflammatory Bowel Diseases: The Potential Role of Sex Hormones. Inflamm Bowel Dis 2022; 28:1766-1775. [PMID: 35486387 DOI: 10.1093/ibd/izac094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD), characterized by chronic inflammation of the gastrointestinal tract, is a global health care problem. Compelling evidence shows sex differences regarding the prevalence, pathophysiology, clinical presentation, and treatment outcome of IBD. Sex hormones, including estrogen, progesterone, and androgen, have been proposed to have a role in the pathogenesis of sexual dimorphism in IBD. Clinical and experimental data support the modulatory effects of sex hormones on various clinical characteristics of the disease, including intestinal barrier dysfunction and mucosal immune activation. Additionally, the potential role of sex hormones in the modulation of gut microbiota is attracting increasing attention. Here, we discuss the sex dimorphic disease profile and address the potential mechanisms involved in the sex-specific pathogenesis of IBD. Improved understanding of these sex differences in the clinic could improve the knowledge of patients with IBD with heterogeneous disease profiles.
Collapse
Affiliation(s)
- Leiqi Xu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
8
|
GPER Agonist G1 Prevents Wnt-Induced JUN Upregulation in HT29 Colorectal Cancer Cells. Int J Mol Sci 2022; 23:ijms232012581. [PMID: 36293473 PMCID: PMC9603962 DOI: 10.3390/ijms232012581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Women consistently show lower incidence and mortality rates for colorectal cancer (CRC) compared to men. Epidemiological evidence supports a pivotal role for estrogen in protecting women against CRC. Estrogen protective effects in CRC have been mainly attributed to the estrogen receptor beta (ERβ) however its expression is lost during CRC progression. The role of the G-protein coupled membrane estrogen receptor (GPER/GPER1/GPR30), which remains expressed after ERβ loss in CRC, is currently under debate. We hypothesise that estrogen can protect against CRC progression via GPER by modulating the Wnt/β-catenin proliferative pathway which is commonly hyperactivated in CRC. We sought evidence of sexual dimorphism within the Wnt/β-catenin pathway by conducting Kaplan–Meier analyses based on gene expression of the Wnt receptor FZD1 (Frizzled 1) in multiple public domain CRC patient data sets. High expression of FZD1 was associated with poor relapse-free survival rates in the male but not the female population. In female-derived HT29 CRC cell lines, we show that β-catenin nuclear translocation was not affected by treatment with the GPER agonist G1. However, G1 prevented the Wnt pathway-induced upregulation of the JUN oncogene. These novel findings indicate a mechanistic role for GPER in protecting against CRC progression by selectively reducing the tumorigenic effects of hyperactive Wnt/β-catenin signalling pathways in CRC.
Collapse
|
9
|
Keely SJ, Barrett KE. Intestinal secretory mechanisms and diarrhea. Am J Physiol Gastrointest Liver Physiol 2022; 322:G405-G420. [PMID: 35170355 PMCID: PMC8917926 DOI: 10.1152/ajpgi.00316.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/31/2023]
Abstract
One of the primary functions of the intestinal epithelium is to transport fluid and electrolytes to and from the luminal contents. Under normal circumstances, absorptive and secretory processes are tightly regulated such that absorption predominates, thereby enabling conservation of the large volumes of water that pass through the intestine each day. However, in conditions of secretory diarrhea, this balance becomes dysregulated, so that fluid secretion, driven primarily by Cl- secretion, overwhelms absorptive capacity, leading to increased loss of water in the stool. Secretory diarrheas are common and include those induced by pathogenic bacteria and viruses, allergens, and disruptions to bile acid homeostasis, or as a side effect of many drugs. Here, we review the cellular and molecular mechanisms by which Cl- and fluid secretion in the intestine are regulated, how these mechanisms become dysregulated in conditions of secretory diarrhea, currently available and emerging therapeutic approaches, and how new strategies to exploit intestinal secretory mechanisms are successfully being used in the treatment of constipation.
Collapse
Affiliation(s)
- Stephen J Keely
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Kim E Barrett
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, California
| |
Collapse
|
10
|
Acconcia F, Fiocchetti M, Busonero C, Fernandez VS, Montalesi E, Cipolletti M, Pallottini V, Marino M. The extra-nuclear interactome of the estrogen receptors: implications for physiological functions. Mol Cell Endocrinol 2021; 538:111452. [PMID: 34500041 DOI: 10.1016/j.mce.2021.111452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Over the last decades, a great body of evidence has defined a novel view of the cellular mechanism of action of the steroid hormone 17β-estradiol (E2) through its estrogen receptors (i.e., ERα and ERβ). It is now clear that the E2-activated ERs work both as transcription factors and extra-nuclear plasma membrane-localized receptors. The activation of a plethora of signal transduction cascades follows the E2-dependent engagement of plasma membrane-localized ERs and is required for the coordination of gene expression, which ultimately controls the occurrence of the pleiotropic effects of E2. The definition of the molecular mechanisms by which the ERs locate at the cell surface (i.e., palmitoylation and protein association) determined the quest for understanding the specificity of the extra-nuclear E2 signaling. The use of mice models lacking the plasma membrane ERα localization unveiled that the extra-nuclear E2 signaling is operational in vivo but tissue-specific. However, the underlying molecular details for such ERs signaling diversity in the perspective of the E2 physiological functions in the different cellular contexts are still not understood. Therefore, to gain insights into the tissue specificity of the extra-nuclear E2 signaling to physiological functions, here we reviewed the known ERs extra-nuclear interactors and tried to extrapolate from available databases the ERα and ERβ extra-nuclear interactomes. Based on literature data, it is possible to conclude that by specifically binding to extra-nuclear localized proteins in different sub-cellular compartments, the ERs fine-tune their molecular activities. Moreover, we report that the context-dependent diversity of the ERs-mediated extra-nuclear E2 actions can be ascribed to the great flexibility of the physical structures of ERs and the spatial-temporal organization of the logistics of the cells (i.e., the endocytic compartments). Finally, we provide lists of proteins belonging to the potential ERα and ERβ extra-nuclear interactomes and propose that the systematic experimental definition of the ERs extra-nuclear interactomes in different tissues represents the next step for the research in the ERs field. Such characterization will be fundamental for the identification of novel druggable targets for the innovative treatment of ERs-related diseases.
Collapse
Affiliation(s)
- Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| | - Marco Fiocchetti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Claudia Busonero
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Virginia Solar Fernandez
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Emiliano Montalesi
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Manuela Cipolletti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Valentina Pallottini
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
11
|
Baldwin SN, Forrester EA, McEwan L, Greenwood IA. Sexual dimorphism in prostacyclin-mimetic responses within rat mesenteric arteries: A novel role for K V 7.1 in shaping IP-receptor mediated relaxation. Br J Pharmacol 2021; 179:1338-1352. [PMID: 34766649 PMCID: PMC9340493 DOI: 10.1111/bph.15722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose Prostacyclin mimetics express potent vasoactive effects via prostanoid receptors that are not unequivocally defined, as to date no study has considered sex as a factor. The aim of this study was to determine the contribution of IP and EP3 prostanoid receptors to prostacyclin mimetic iloprost‐mediated responses, whether KV7.1–5 channels represent downstream targets of selective prostacyclin‐IP‐receptor agonist MRE‐269 and the impact of the oestrus cycle on vascular reactivity. Experimental Approach Within second‐order mesenteric arteries from male and female Wistar rats, we determined (1) relative mRNA transcripts for EP1–4 (Ptger1–4), IP (Ptgi) and TXA2 (Tbxa) prostanoid receptors via RT‐qPCR; (2) the effect of iloprost, MRE‐269, isoprenaline and ML277 on precontracted arterial tone in the presence of inhibitors of prostanoid receptors, potassium channels and the molecular interference of KV7.1 via wire‐myograph; (3) oestrus cycle stage via histological changes in cervical cell preparations. Key Results Iloprost evoked a biphasic response in male mesenteric arteries, at concentrations ≤100 nmol·L−1 relaxing, then contracting the vessel at concentration ≥300 nmol·L−1, a process attributed to IP and EP3 receptors respectively. Secondary contraction was absent in the females, which was associated with a reduction in Ptger3. Pharmacological inhibition and molecular interference of KV7.1 significantly attenuated relaxations produced by the selective IP receptor agonist MRE‐269 in male and female Wistar in dioestrus/metoestrus, but not pro‐oestrus/oestrus. Conclusions and Implications Stark sexual dimorphisms in iloprost‐mediated vasoactive responses are present within mesenteric arteries. KV7.1 is implicated in IP receptor‐mediated vasorelaxation and is impaired by the oestrus cycle.
Collapse
Affiliation(s)
- Samuel N Baldwin
- Molecular and clinical sciences research institute, St George's university, Cranmer terrace, London
| | - Elizabeth A Forrester
- Molecular and clinical sciences research institute, St George's university, Cranmer terrace, London
| | - Lauren McEwan
- Molecular and clinical sciences research institute, St George's university, Cranmer terrace, London
| | - Iain A Greenwood
- Molecular and clinical sciences research institute, St George's university, Cranmer terrace, London
| |
Collapse
|
12
|
Balasuriya GK, Nugapitiya SS, Hill-Yardin EL, Bornstein JC. Nitric Oxide Regulates Estrus Cycle Dependent Colonic Motility in Mice. Front Neurosci 2021; 15:647555. [PMID: 34658750 PMCID: PMC8511480 DOI: 10.3389/fnins.2021.647555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
Women are more susceptible to functional bowel disorders than men and the severity of their symptoms such as diarrhea, constipation, abdominal pain and bloating changes over the menstrual cycle, suggesting a role for sex hormones in gastrointestinal function. Nitric oxide (NO) is a major inhibitory neurotransmitter in the gut and blockade of nitric oxide synthase (NOS; responsible for NO synthesis) increases colonic motility in male mice ex vivo. We assessed the effects of NOS inhibition on colonic motility in female mice using video imaging analysis of colonic motor complexes (CMCs). To understand interactions between NO and estrogen in the gut, we also quantified neuronal NOS and estrogen receptor alpha (ERα)-expressing myenteric neurons in estrus and proestrus female mice using immunofluorescence. Mice in estrus had fewer CMCs under control conditions (6 ± 1 per 15 min, n = 22) compared to proestrus (8 ± 1 per 15 min, n = 22, One-way ANOVA, p = 0.041). During proestrus, the NOS antagonist N-nitro-L-arginine (NOLA) increased CMC numbers compared to controls (189 ± 46%). In contrast, NOLA had no significant effect on CMC numbers during estrus. During estrus, we observed more NOS-expressing myenteric neurons (48 ± 2%) than during proestrus (39 ± 1%, n = 3, p = 0.035). Increased nuclear expression of ERα was observed in estrus which coincided with an altered motility response to NOLA in contrast with proestrus when ERα was largely cytoplasmic. In conclusion, we confirm a cyclic and sexually dimorphic effect of NOS activity in female mouse colon, which could be due to genomic effects of estrogens via ERα.
Collapse
Affiliation(s)
- Gayathri K Balasuriya
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Saseema S Nugapitiya
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Elisa L Hill-Yardin
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Abancens M, Bustos V, Harvey H, McBryan J, Harvey BJ. Sexual Dimorphism in Colon Cancer. Front Oncol 2020; 10:607909. [PMID: 33363037 PMCID: PMC7759153 DOI: 10.3389/fonc.2020.607909] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
A higher incidence of colorectal cancer (CRC) is found in males compared to females. Young women (18-44 years) with CRC have a better survival outcome compared to men of the same age or compared to older women (over 50 years), indicating a global incidence of sexual dimorphism in CRC rates and survival. This suggests a protective role for the sex steroid hormone estrogen in CRC development. Key proliferative pathways in CRC tumorigenesis exhibit sexual dimorphism, which confer better survival in females through estrogen regulated genes and cell signaling. Estrogen regulates the activity of a class of Kv channels (KCNQ1:KCNE3), which control fundamental ion transport functions of the colon and epithelial mesenchymal transition through bi-directional interactions with the Wnt/β-catenin signalling pathway. Estrogen also modulates CRC proliferative responses in hypoxia via the novel membrane estrogen receptor GPER and HIF1A and VEGF signaling. Here we critically review recent clinical and molecular insights into sexual dimorphism of CRC biology modulated by the tumor microenvironment, estrogen, Wnt/β-catenin signalling, ion channels, and X-linked genes.
Collapse
Affiliation(s)
- Maria Abancens
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Viviana Bustos
- Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Osorno, Chile
| | - Harry Harvey
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| | - Jean McBryan
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Brian J. Harvey
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Centro de Estudios Cientificos CECs, Valdivia, Chile
| |
Collapse
|
14
|
Abstract
Kv7 channels (Kv7.1-7.5) are voltage-gated K+ channels that can be modulated by five β-subunits (KCNE1-5). Kv7.1-KCNE1 channels produce the slow-delayed rectifying K+ current, IKs, which is important during the repolarization phase of the cardiac action potential. Kv7.2-7.5 are predominantly neuronally expressed and constitute the muscarinic M-current and control the resting membrane potential in neurons. Kv7.1 produces drastically different currents as a result of modulation by KCNE subunits. This flexibility allows the Kv7.1 channel to have many roles depending on location and assembly partners. The pharmacological sensitivity of Kv7.1 channels differs from that of Kv7.2-7.5 and is largely dependent upon the number of β-subunits present in the channel complex. As a result, the development of pharmaceuticals targeting Kv7.1 is problematic. This review discusses the roles and the mechanisms by which different signaling pathways affect Kv7.1 and KCNE channels and could potentially provide different ways of targeting the channel.
Collapse
Affiliation(s)
- Emely Thompson
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - David Fedida
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| |
Collapse
|
15
|
Hynes D, Harvey BJ. Dexamethasone reduces airway epithelial Cl - secretion by rapid non-genomic inhibition of KCNQ1, KCNN4 and KATP K + channels. Steroids 2019; 151:108459. [PMID: 31330137 DOI: 10.1016/j.steroids.2019.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 11/26/2022]
Abstract
Basolateral membrane K+ channels play a key role in basal and agonist stimulated Cl- transport across airway epithelial cells by generating a favourable electrical driving force for Cl- efflux. The K+ channel sub-types and molecular mechanisms of regulation by hormones and secretagoues are still poorly understood. Here we have identified the type of K+ channels involved in cAMP and Ca2+ stimulated Cl- secretion and uncovered a novel anti-secretory effect of dexamethasone mediated by inhibition of basolateral membrane K+ channels in a human airway cell model of 16HBE14o- cells commonly used for ion transport studies. Dexamethasone produced a rapid inhibition of transepithelial chloride ion secretion under steady state conditions and after stimulation with cAMP agonist (forskolin) or a Ca2+ mobilizing agonist (ATP). Our results show three different types of K+ channels are targeted by dexamethasone to reduce airway secretion, namely Ca2+-activated secretion via KCNN4 (KCa3.1) channels and cAMP-activated secretion via KCNQ1 (Kv7.1) and KATP (Kir6.1,6.2) channels. The down-regulation of KCNN4 and KCNQ1 channel activities by dexamethasone involves rapid non-genomic activation of PKCα and PKA signalling pathways, respectively. Dexamethasone signal transduction for PKC and PKA activation was demonstrated to occur through a rapid non-genomic pathway that did not implicate the classical nuclear receptors for glucocorticoids or mineralocorticoids but occurred via a novel signalling cascade involving sequentially a Gi-protein coupled receptor, PKC, adenylyl cyclase Type IV, cAMP, PKA and ERK1/2 activation. The rapid, non-genomic, effects of dexamethasone on airway epithelial ion transport and cell signalling introduces a new paradigm for glucocorticoid actions in lung epithelia which may serve to augment the anti-inflammatory activity of the steroid and enhance its therapeutic potential in treating airway hypersecretion in asthma and COPD.
Collapse
Affiliation(s)
- Darina Hynes
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; Centro di Estudios Cientificos CECs, Valdivia, Chile.
| |
Collapse
|
16
|
Haziman AA, Ravinderan S, Thangavelu T, Thomas W. A novel role for estrogen-induced signaling in the colorectal cancer gender bias. Ir J Med Sci 2018; 188:389-395. [PMID: 30014247 DOI: 10.1007/s11845-018-1867-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a malignancy whose incidence is increasing globally, and there is a gender difference in the increasing risk. Evidence from hormone replacement therapy studies points to a role for circulating estrogens in suppressing the development of CRC. Estrogen receptor-β has been identified as a tumor suppressor, but other actions of estrogen may also contribute to the difference in CRC incidence between men and women. The KCNQ1/KCNE3 potassium channel is regulated by estrogen in order to modulate chloride secretion during the menstrual cycle; the effect of estrogen on the colon is to promote fluid conservation during the implantation window. KCNQ1 is also a tumor suppressor in CRC, and its sustained expression has been linked to suppression of the Wnt/β-catenin signaling pathway that contributes to CRC tumor progression. KCNQ1 regulation may represent a link between the normal physiological actions of estrogen in the colon and the hormone's apparent tumor-suppressive effects in CRC development.
Collapse
Affiliation(s)
- Amirah A Haziman
- Royal College of Surgeons in Ireland School of Medicine, Perdana University, Jalan MAEPS, MARDI Complex, 43400, Serdang, Selangor, Malaysia
| | - Shankarii Ravinderan
- Royal College of Surgeons in Ireland School of Medicine, Perdana University, Jalan MAEPS, MARDI Complex, 43400, Serdang, Selangor, Malaysia
| | - Thanggamalar Thangavelu
- Royal College of Surgeons in Ireland School of Medicine, Perdana University, Jalan MAEPS, MARDI Complex, 43400, Serdang, Selangor, Malaysia
| | - Warren Thomas
- Royal College of Surgeons in Ireland School of Medicine, Perdana University, Jalan MAEPS, MARDI Complex, 43400, Serdang, Selangor, Malaysia. .,Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
17
|
Zhou W, Davis EA, Li K, Nowak RA, Dailey MJ. Sex differences influence intestinal epithelial stem cell proliferation independent of obesity. Physiol Rep 2018; 6:e13746. [PMID: 29952094 PMCID: PMC6021372 DOI: 10.14814/phy2.13746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 12/25/2022] Open
Abstract
The intestinal epithelium is continuously regenerated by cell renewal of intestinal epithelial stem cells (IESCs) located in the intestinal crypts. Obesity affects this process and results in changes in the size and cellular make-up of the tissue, but it remains unknown if there are sex differences in obesity-induced alterations in IESC proliferation and differentiation. We fed male and female mice a 60% high-fat diet (HFD) or a 10% low-fat diet (LFD) for 3 months and investigated the differences in (1) the expression of markers of different intestinal epithelial cell types in vivo, and (2) lasting effects on IESC growth in vitro. We found that the growth of IESCs in vitro were enhanced in females compared with males. HFD induced similar in vivo changes and in vitro early growth of IESCs in males and females. The IESCs isolated and grown in vitro from females, though, showed an enhanced growth that was independent of obesity. To determine whether this effect was driven by sex steroid hormones, we used primary intestinal crypts isolated from male and female mice and investigated the differences in (1) the expression of steroid hormone receptors, and (2) cell proliferation in response to steroid hormones. We found that estrogen receptor α was expressed in crypts from both sexes, but estrogen had no effect on proliferation in either sex. These results suggest that obesity similarly effects IESCs in males and females, but IESCs in females have greater proliferation ability than males, but this is not driven by a direct effect of sex steroid hormones on IESCs or other crypt cells that provide essential niche support for IESCs.
Collapse
Affiliation(s)
- Weinan Zhou
- Department of Animal SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Elizabeth A. Davis
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Kailiang Li
- Department of Animal SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Romana A. Nowak
- Department of Animal SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Megan J. Dailey
- Department of Animal SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Neuroscience ProgramUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| |
Collapse
|
18
|
Jin H, Wen G, Deng S, Wan S, Xu J, Liu X, Xie R, Dong H, Tuo B. Oestrogen upregulates the expression levels and functional activities of duodenal mucosal CFTR and SLC26A6. Exp Physiol 2017; 101:1371-1382. [PMID: 27615377 DOI: 10.1113/ep085803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 09/01/2016] [Indexed: 12/29/2022]
Abstract
NEW FINDINGS What is the central question of this study? Duodenal ulcer is a common disease. A sex-based difference in the incidence of duodenal ulcer has long been observed clinically, but the cause is unclear. What is the main finding and its importance? Duodenal mucosal bicarbonate secretion is the most important protective factor in duodenal mucosa against acid-induced damage. The cystic fibrosis transmembrane conductance regulator (CFTR) and the solute-linked carrier 26 gene family A6 (SLC26A6) are two key bicarbonate transport proteins that mediate duodenal mucosal bicarbonate secretion. We demonstrate that endogenous oestrogen upregulates the expression levels and functional activities of duodenal mucosal CFTR and SLC26A6, which contributes to the sex difference in the prevalence of duodenal ulcer. The incidence of duodenal ulcer is markedly lower in women than men, but the cause of the sex difference is not clear. The cystic fibrosis transmembrane conductance regulator (CFTR) and the solute-linked carrier 26 gene family A6 (SLC26A6) are two key bicarbonate transport proteins that mediate duodenal mucosal bicarbonate secretion, which is an important protective factor against acid-induced duodenal injury. The aim of this study was to investigate the effect of oestrogen on the expressions and functional activities of CFTR and SLC26A6 in duodenal mucosa. We found that the expression levels of duodenal CFTR and SLC26A6 were markedly higher in young (20- to 30-year-old) women than in young men and old (60- to 70-year-old) women and men. The expression levels of CFTR and SLC26A6 in young women were markedly higher in preovulatory phases than in premenstrual phases, which was consistent with the changes of serum estradiol concentrations. Further results showed that duodenal CFTR and SLC26A6 expression levels in female mice were markedly decreased after ovariectomy, and supplementation with estradiol reversed the changes in CFTR and SLC26A6. 17β-Estradiol increased CFTR and SLC26A6 expression levels of human duodenocytes in experiments in vitro. Functional experiments showed that basal and forskolin- and prostaglandin E2 -stimulated duodenal bicarbonate secretion in ovariectomized mice was markedly decreased and, likewise, supplementation with 17β-estradiol reversed the changes. In conclusion, endogenous oestrogen upregulates the expressions and functional activities of CFTR and SLC26A6 in duodenal mucosa, which could contribute to protection of the duodenum and explain the sex difference in the prevalence of duodenal ulcer.
Collapse
Affiliation(s)
- Hai Jin
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Research Center of Medicine and Biology, Zunyi Medical College, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Research Center of Medicine and Biology, Zunyi Medical College, Zunyi, China
| | - Shili Deng
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Shuo Wan
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Research Center of Medicine and Biology, Zunyi Medical College, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Hui Dong
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Research Center of Medicine and Biology, Zunyi Medical College, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China. .,Digestive Disease Institute of Guizhou Province, Zunyi, China. .,Research Center of Medicine and Biology, Zunyi Medical College, Zunyi, China.
| |
Collapse
|
19
|
Kroncke BM, Van Horn WD, Smith J, Kang C, Welch RC, Song Y, Nannemann DP, Taylor KC, Sisco NJ, George AL, Meiler J, Vanoye CG, Sanders CR. Structural basis for KCNE3 modulation of potassium recycling in epithelia. SCIENCE ADVANCES 2016; 2:e1501228. [PMID: 27626070 PMCID: PMC5017827 DOI: 10.1126/sciadv.1501228] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 08/10/2016] [Indexed: 05/25/2023]
Abstract
The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K(+)) channel to enable K(+) recycling coupled to transepithelial chloride ion (Cl(-)) secretion, a physiologically critical cellular transport process in various organs and whose malfunction causes diseases, such as cystic fibrosis (CF), cholera, and pulmonary edema. Structural, computational, biochemical, and electrophysiological studies lead to an atomically explicit integrative structural model of the KCNE3-KCNQ1 complex that explains how KCNE3 induces the constitutive activation of KCNQ1 channel activity, a crucial component in K(+) recycling. Central to this mechanism are direct interactions of KCNE3 residues at both ends of its transmembrane domain with residues on the intra- and extracellular ends of the KCNQ1 voltage-sensing domain S4 helix. These interactions appear to stabilize the activated "up" state configuration of S4, a prerequisite for full opening of the KCNQ1 channel gate. In addition, the integrative structural model was used to guide electrophysiological studies that illuminate the molecular basis for how estrogen exacerbates CF lung disease in female patients, a phenomenon known as the "CF gender gap."
Collapse
Affiliation(s)
- Brett M. Kroncke
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Wade D. Van Horn
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Center for Personalized Diagnostics, Arizona State University, Tempe, AZ 85287, USA
| | - Jarrod Smith
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - CongBao Kang
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Experimental Therapeutics Centre, Agency for Science Technology and Research, Singapore, Singapore
| | - Richard C. Welch
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Yuanli Song
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - David P. Nannemann
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Keenan C. Taylor
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Nicholas J. Sisco
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Center for Personalized Diagnostics, Arizona State University, Tempe, AZ 85287, USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Charles R. Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|
20
|
Kow LM, Pfaff DW. Rapid estrogen actions on ion channels: A survey in search for mechanisms. Steroids 2016; 111:46-53. [PMID: 26939826 PMCID: PMC4929851 DOI: 10.1016/j.steroids.2016.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022]
Abstract
A survey of nearly two hundred reports shows that rapid estrogenic actions can be detected across a range of kinds of estrogens, a range of doses, on a wide range of tissue, cell and ion channel types. Striking is the fact that preparations of estrogenic agents that do not permeate the cell membrane almost always mimic the actions of the estrogenic agents that do permeate the membrane. All kinds of estrogens, ranging from natural ones, through receptor modulators, endocrine disruptors, phytoestrogens, agonists, and antagonists to novel G-1 and STX, have been reported to be effective. For actions on specific types of ion channels, the possibility of opposing actions, in different cases, is the rule, not the exception. With this variety there is no single, specific action mechanism for estrogens per se, although in some cases estrogens can act directly or via some signaling pathways to affect ion channels. We infer that estrogens can bind a large number of substrates/receptors at the membrane surface. As against the variety of subsequent routes of action, this initial step of the estrogen's binding action is the key.
Collapse
Affiliation(s)
- Lee-Ming Kow
- The Rockefeller University, New York, NY 10065, USA.
| | | |
Collapse
|
21
|
Pigrau M, Rodiño-Janeiro BK, Casado-Bedmar M, Lobo B, Vicario M, Santos J, Alonso-Cotoner C. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome. Neurogastroenterol Motil 2016; 28:463-86. [PMID: 26556786 DOI: 10.1111/nmo.12717] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intestinal homeostasis is a dynamic process that takes place at the interface between the lumen and the mucosa of the gastrointestinal tract, where a constant scrutiny for antigens and toxins derived from food and microorganisms is carried out by the vast gut-associated immune system. Intestinal homeostasis is preserved by the ability of the mucus layer and the mucosal barrier to keep the passage of small-sized and antigenic molecules across the epithelium highly selective. When combined and preserved, immune surveillance and barrier's selective permeability, the host capacity of preventing the development of intestinal inflammation is optimized, and viceversa. In addition, the brain-gut-microbiome axis, a multidirectional communication system that integrates distant and local regulatory networks through neural, immunological, metabolic, and hormonal signaling pathways, also regulates intestinal function. Dysfunction of the brain-gut-microbiome axis may induce the loss of gut mucosal homeostasis, leading to uncontrolled permeation of toxins and immunogenic particles, increasing the risk of appearance of intestinal inflammation, mucosal damage, and gut disorders. Irritable bowel syndrome is prevalent stress-sensitive gastrointestinal disorder that shows a female predominance. Interestingly, the role of stress, sex and gonadal hormones in the regulation of intestinal mucosal and the brain-gut-microbiome axis functioning is being increasingly recognized. PURPOSE We aim to critically review the evidence linking sex, and stress to intestinal barrier and brain-gut-microbiome axis dysfunction and the implications for irritable bowel syndrome.
Collapse
Affiliation(s)
- M Pigrau
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - B K Rodiño-Janeiro
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Casado-Bedmar
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - B Lobo
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Vicario
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - J Santos
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - C Alonso-Cotoner
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
22
|
Sex Differences in Gastrointestinal Physiology and Diseases. SEX DIFFERENCES IN PHYSIOLOGY 2016. [DOI: 10.1016/b978-0-12-802388-4.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Astbury S, Mostyn A, Symonds ME, Bell RC. Nutrient availability, the microbiome, and intestinal transport during pregnancy. Appl Physiol Nutr Metab 2015; 40:1100-6. [DOI: 10.1139/apnm-2015-0117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adequate adaptation of the gastrointestinal tract is important during pregnancy to ensure that the increased metabolic demands by the developing fetus are met. These include changes in surface area mediated by villus hypertrophy and enhanced functional capacity of individual nutrient receptors, including those transporting glucose, fructose, leucine, and calcium. These processes are regulated either by the enhanced nutrient demand or are facilitated by changes in the secretion of pregnancy hormones. Our review also covers recent research into the microbiome, and how pregnancy could lead to microbial adaptations, which are beneficial to the mother, yet are also similar to those seen in the metabolic syndrome. The potential role of diet in modulating the microbiome during pregnancy, as well as the potential for the intestinal microbiota to induce pregnancy complications, are examined. Gaps in the current literature are highlighted, including those where only historical evidence is available, and we suggest areas that should be a priority for further research. In summary, although a significant degree of adaptation has been described, there are both well-established processes and more recent discoveries, such as changes within the maternal microbiome, that pose new questions as to how the gastrointestinal tract effectively adapts to pregnancy, especially in conjunction with maternal obesity.
Collapse
Affiliation(s)
- Stuart Astbury
- Department of Agricultural, Food and Nutritional Science, Human Nutrition, Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alison Mostyn
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Michael E. Symonds
- Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Rhonda C. Bell
- Department of Agricultural, Food and Nutritional Science, Human Nutrition, Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
24
|
Leung L, Bhakta A, Cotangco K, Al-Nakkash L. Genistein stimulates jejunum chloride secretion via an Akt-mediated pathway in intact female mice. Cell Physiol Biochem 2015; 35:1317-25. [PMID: 25721972 PMCID: PMC4386721 DOI: 10.1159/000373953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 11/19/2022] Open
Abstract
Background/Aims We have previously shown that daily subcutaneous injections with the naturally occurring phytoestrogen genistein (600 mg genistein/kg body weight/day, 600G) results in a significantly increased basal intestinal chloride, Cl−, secretion (Isc, a measure of transepithelial secretion) in intact C57BL/6J female mice after 1-week of treatment, compared to controls (DMSO vehicle injected). Removal of endogenous estrogen via ovariectomy (OVX) had no effect on the 600G-mediated increase in basal Isc. Methods Given the estrogen-like characteristics of genistein, we compared the effects of daily estradiol (E2) injections (10 mg E2/kg body weight/day, 10E2) on basal Isc in intact and OVX mice. In intact mice, 10E2 was without effect on basal Isc, however, in OVX mice, 10E2 significantly increased basal Isc (mimicked 600G). The goal of the current study was to characterize the intracellular signaling pathways responsible for mediating 600G- or 10E2-stimulated increases in basal Isc in intact female or OVX mice. Results We measured total protein expression in isolated segments of jejunum using western blot from the following six groups of mice; intact or OVX with; 600G, 10E2 or control. The proteins of interest were: Akt, p-Akt, p-PDK1, p-PTEN, p-c-Raf, p-GSK-3β, rap-1 and ERK1/2. All blots were normalized to GAPDH levels (n = 6–18/group). Conclusion These data suggest that the presence of the endogenous sex steroid, estrogen, modifies the intracellular signaling pathway required to mediate Cl− secretion when the intestine is exposed to exogenous 600G or E2. These studies may have relevance for designing pharmacological tools for women with intestinal chloride secretory dysfunctions.
Collapse
Affiliation(s)
- Lana Leung
- Department of Physiology, Midwestern University, Glendale, AZ, USA
| | | | | | | |
Collapse
|
25
|
Yusef YR, Thomas W, Harvey BJ. Estrogen increases ENaC activity via PKCδ signaling in renal cortical collecting duct cells. Physiol Rep 2014; 2:2/5/e12020. [PMID: 24872356 PMCID: PMC4098747 DOI: 10.14814/phy2.12020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The most active estrogen, 17β‐estradiol (E2), has previously been shown to stimulate a female sex‐specific antisecretory response in the intestine. This effect is thought to contribute to the increase in whole body extracellular fluid (ECF) volume which occurs in high estrogen states, such as in the implantation window during estrous cycle. The increased ECF volume may be short‐circuited by a renal compensation unless estrogen exerts a proabsorptive effect in the nephron. Thus, the effect of E2 on ENaC in kidney cortical collecting duct (CCD) cells is of interest to understand estrogen regulation of ECF volume. Previous studies showed a rapid stimulatory effect of estrogen on ENaC in bronchial epithelium. In this study we examined if such a rapid effect on Na+ absorption could occur in the kidney. Experiments were carried out on murine M1‐CCD cell cultures. E2 (25 nmol/L) treatment caused a rapid‐onset (<15 min) and sustained increase in the amiloride‐sensitive Na+ current (INa) in CCD monolayers mounted in Ussing chambers (control, 1.9 ± 0.2 μA/cm2; E2, 4.7 ± 0.3 μA/cm2; n = 43, P < 0.001), without affecting the ouabain‐sensitive Na+/K+ pump current. The INa response to E2 was inhibited by PKCδ activity antagonism with rottlerin (5 μmol/L), inhibition of matrix metalloproteinases activity with GM6001 (1 μmol/L), inhibition of EGFR activity with AG1478 (10 μmol/L), inhibition of PLC activity with U‐73122 (10 μmol/L), and inhibition of estrogen receptors with the general ER antagonist ICI‐182780 (100 nmol/L). The estrogen activation of INa could be mimicked by the ERα agonist PPT (1 nmol/L). The nuclear excluded estrogen dendrimer conjugate (EDC) induced similar stimulatory effects on INa comparable to free E2. The end target for E2 stimulation of PKCδ was shown to be an increased abundance of the γ‐ENaC subunit in the apical plasma membrane of CCD cells. We have demonstrated a novel rapid “nongenomic” function of estrogen to stimulate ENaC via ERα‐EGFR transactivation in kidney CCD cells. We propose that the salt‐retaining effect of estrogen in the kidney together with its antisecretory action in the intestine are the molecular mechanisms causing the expanded ECF volume in high‐estrogen states. Estrogen stimulates sodium absorption in kidney cells. This rapid “nongenomic” response to estrogen is transduced via estrogen receptor transactivation of the epidermal growth factor receptor. The ER‐EGFR transactivation triggers a protein kinase signaling cascade which culminates in the insertion of sodium channel subunits into the cell membrane. Estrogen is a novel salt‐retaining hormone with proabsorptive effects in kidney and antisecretory actions in intestine.
Collapse
Affiliation(s)
- Yamil R Yusef
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Warren Thomas
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
26
|
Wang Q, Ye Q, Lu R, Cao J, Wang J, Ding H, Gao R, Xiao H. Effects of estradiol on high-voltage-activated Ca(2+) channels in cultured rat cortical neurons. Endocr Res 2014; 39:44-9. [PMID: 23879576 DOI: 10.3109/07435800.2013.799485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Estrogen regulates a wide variety of nonreproductive functions in the central nervous system. Cortical neurons contain a diverse range of voltage-gated ion channels, including calcium (Ca(2+)) channels, and Ca(2+) channels play an important role in the regulation of action potential generation and neuronal excitability. In this study, the effect of estradiol (E2) on high-voltage-activated (HVA) Ca(2+) channels in cultured rat cortical neurons was examined. METHODS We used the whole-cell patch-clamp technique to measure the HVA Ca(2+) channels. RESULTS We found that HVA Ca(2+) channel currents was inhibited by 17β-E2 in a rapid, reversible and concentration-dependent manner. Moreover, 17β-E2 shifted the steady-state inactivation curve in the hyperpolarizing direction without changing the activation curve. We also found that the inhibitory effects of 17β-E2 on Ca(2+) currents were unaffected by the estrogen receptor (ER) antagonist ICI 182780; however, the protein kinase C (PKC) inhibitor rottlerin and protein kinase A (PKA) inhibitor H-89 blocked the 17β-E2-induced inhibition of Ca(2+) currents. CONCLUSIONS E2 inhibited HVA Ca(2+) currents via PKC and PKA-dependent signaling pathway in cortical neurons, and the effects of BPA were independent of classical ER.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Preventive Medicine, School of Medical Science and Laboratory Medicine, Jiangsu University , Zhenjiang , China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Girault A, Brochiero E. Evidence of K+ channel function in epithelial cell migration, proliferation, and repair. Am J Physiol Cell Physiol 2013; 306:C307-19. [PMID: 24196531 DOI: 10.1152/ajpcell.00226.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Efficient repair of epithelial tissue, which is frequently exposed to insults, is necessary to maintain its functional integrity. It is therefore necessary to better understand the biological and molecular determinants of tissue regeneration and to develop new strategies to promote epithelial repair. Interestingly, a growing body of evidence indicates that many members of the large and widely expressed family of K(+) channels are involved in regulation of cell migration and proliferation, key processes of epithelial repair. First, we briefly summarize the complex mechanisms, including cell migration, proliferation, and differentiation, engaged after epithelial injury. We then present evidence implicating K(+) channels in the regulation of these key repair processes. We also describe the mechanisms whereby K(+) channels may control epithelial repair processes. In particular, changes in membrane potential, K(+) concentration, cell volume, intracellular Ca(2+), and signaling pathways following modulation of K(+) channel activity, as well as physical interaction of K(+) channels with the cytoskeleton or integrins are presented. Finally, we discuss the challenges to efficient, specific, and safe targeting of K(+) channels for therapeutic applications to improve epithelial repair in vivo.
Collapse
Affiliation(s)
- Alban Girault
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; and
| | | |
Collapse
|
28
|
Non-genomic estrogen regulation of ion transport and airway surface liquid dynamics in cystic fibrosis bronchial epithelium. PLoS One 2013; 8:e78593. [PMID: 24223826 PMCID: PMC3817220 DOI: 10.1371/journal.pone.0078593] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/20/2013] [Indexed: 11/26/2022] Open
Abstract
Male cystic fibrosis (CF) patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL) in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1) and CF (CuFi-1) bronchial epithelial monolayers. Live cell imaging using confocal microscopy revealed that airway surface liquid height was significantly higher in the non-CF cells compared to the CF cells. 17β-estradiol (0.1–10 nM) reduced the airway surface liquid height in non-CF and CF cells after 30 min treatment. Treatment with the nuclear-impeded Estrogen Dendrimer Conjugate mimicked the effect of free estrogen by reducing significantly the airway surface liquid height in CF and non-CF cells. Inhibition of chloride transport or basolateral potassium recycling decreased the airway surface liquid height and 17β-estradiol had no additive effect in the presence of these ion transporter inhibitors. 17β-estradiol decreased bumetanide-sensitive transepithelial short-circuit current in non-CF cells and prevented the forskolin-induced increase in ASL height. 17β-estradiol stimulated an amiloride-sensitive transepithelial current and increased ouabain-sensitive basolateral short-circuit current in CF cells. 17β-estradiol increased PKCδ activity in CF and non-CF cells. These results demonstrate that estrogen dehydrates CF and non-CF ASL, and these responses to 17β-estradiol are non-genomic rather than involving the classical nuclear estrogen receptor pathway. 17β-estradiol acts on the airway surface liquid by inhibiting cAMP-mediated chloride secretion in non-CF cells and increasing sodium absorption via the stimulation of PKCδ, ENaC and the Na+/K+ATPase in CF cells.
Collapse
|
29
|
Roth B, Manjer J, Ohlsson B. Microscopic colitis and reproductive factors related to exposure to estrogens and progesterone. Drug Target Insights 2013; 7:53-62. [PMID: 24137050 PMCID: PMC3795533 DOI: 10.4137/dti.s12889] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Microscopic colitis (MC) often debuts around or after menopause and is divided into lymphocytic- and collagenous colitis. The aim of this study was to examine whether factors influencing sex hormone levels differed between subgroups of MC as well as between patients and controls. A self-administered questionnaire about parity was completed which included questions surrounding age at first childbirth, menarche and menopause, the use of oral contraceptives, and hormonal replacement therapy. Patients with lymphocytic colitis had children less often compared to those with collagenous colitis (OR = 0.20, 95% CI = 0.05-0.86), however no differences were observed between patients with persistent or transient disease. Patients were less often older than 15 years of age at menarche (OR = 0.48, 95% CI = 0.26-0.91) and were younger at menopause (OR = 0.30, 95% CI = 0.16-0.56) compared with controls. Thus, no obvious association between factors influencing sex hormone levels and presence of MC could be found.
Collapse
Affiliation(s)
- Bodil Roth
- Department of Clinical Sciences, Division of Internal Medicine, Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| | | | | |
Collapse
|
30
|
Rapetti-Mauss R, O'Mahony F, Sepulveda FV, Urbach V, Harvey BJ. Oestrogen promotes KCNQ1 potassium channel endocytosis and postendocytic trafficking in colonic epithelium. J Physiol 2013; 591:2813-31. [PMID: 23529131 PMCID: PMC3690688 DOI: 10.1113/jphysiol.2013.251678] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/19/2013] [Indexed: 12/23/2022] Open
Abstract
The cAMP-regulated potassium channel KCNQ1:KCNE3 plays an essential role in transepithelial Cl(-) secretion. Recycling of K(+) across the basolateral membrane provides the driving force necessary to maintain apical Cl(-) secretion. The steroid hormone oestrogen (17β-oestradiol; E2), produces a female-specific antisecretory response in rat distal colon through the inhibition of the KCNQ1:KCNE3 channel. It has previously been shown that rapid inhibition of the channel conductance results from E2-induced uncoupling of the KCNE3 regulatory subunit from the KCNQ1 channel pore complex. The purpose of this study was to determine the mechanism required for sustained inhibition of the channel function. We found that E2 plays a role in regulation of KCNQ1 cell membrane abundance by endocytosis. Ussing chamber experiments have shown that E2 inhibits both Cl(-) secretion and KCNQ1 current in a colonic cell line, HT29cl.19A, when cultured as a confluent epithelium. Following E2 treatment, KCNQ1 was retrieved from the plasma membrane by a clathrin-mediated endocytosis, which involved the association between KCNQ1 and the clathrin adaptor, AP-2. Following endocytosis, KCNQ1 was accumulated in early endosomes. Following E2-induced endocytosis, rather than being degraded, KCNQ1 was recycled by a biphasic mechanism involving Rab4 and Rab11. Protein kinase Cδ and AMP-dependent kinase were rapidly phosphorylated in response to E2 on their activating phosphorylation sites, Ser643 and Thr172, respectively (as previously shown). Both kinases are necessary for the E2-induced endocytosis, because E2 failed to induce KCNQ1 internalization following pretreatment with specific inhibitors of both protein kinase Cδ and AMP-dependent kinase. The ubiquitin ligase Nedd4.2 binds KCNQ1 in response to E2 to induce channel internalization. This study has provided the first demonstration of hormonal regulation of KCNQ1 trafficking. In conclusion, we propose that internalization of KCNQ1 is a key event in the sustained antisecretory response to oestrogen.
Collapse
Affiliation(s)
- Raphael Rapetti-Mauss
- Department of Molecular Medicine, RCSI-ERC, Beaumont Hospital, PO Box 9063, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
31
|
Oliver WT, Wells JE. Lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology in nursery pigs. J Anim Sci 2013; 91:3129-36. [PMID: 23572262 DOI: 10.2527/jas.2012-5782] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lysozyme is a 1,4-β-N-acetylmuramidase that has antimicrobial properties. The objective of this experiment was to determine if lysozyme in nursery diets improved growth performance and gastrointestinal health of pigs weaned from the sow at 24 d of age. Two replicates of 96 pigs (192 total; 96 males, 96 females) were weaned from the sow at 24 d of age, blocked by BW and gender, and then assigned to 1 of 24 pens (4 pigs/pen). Each block was randomly assigned 1 of 3 dietary treatments for 28 d: control (two 14-d phases), control + antibiotics (carbadox/copper sulfate), or control + lysozyme (100 mg/kg diet). Pigs were weighed and blood sampled on d 0, 14, and 28 of treatment. Blood was analyzed for plasma urea nitrogen (PUN) and IgA. At 28 d, pigs were killed, and samples of jejunum and ileum were collected and fixed for intestinal morphology measurements. An additional jejunum sample was taken from the 12 pigs with the median BW per treatment to determine transepithelial electrical resistance (TER). Pigs consuming antibiotics or lysozyme grew at a faster rate than control pigs (0.433 ± 0.009 and 0.421 ± 0.008 vs. 0.398 ± 0.008 kg/d, respectively; P < 0.03), which resulted in heavier ending BW (20.00 ± 0.31, 19.8 ± 0.29, and 18.83 ± 0.32 kg, respectively; P < 0.03). Feed intake was not different (P > 0.48), but G:F was improved in pigs consuming antibiotics or lysozyme (0.756 ± 0.014, 0.750 ± 0.021, and 0.695 ± 0.019 kg/kg; P < 0.05). Immunoglobulin A (P < 0.03) and PUN (P < 0.01) increased during the experiment, regardless of dietary treatment (P > 0.48). Dietary treatment did not affect TER (P > 0.37), but gilts had lower TER compared with barrows (P < 0.04). No differences in villi height or crypt depth were observed in the ileum (P > 0.53). However, jejunum villi height was increased and crypt depth was decreased in pigs consuming antibiotics or lysozyme (P < 0.001), resulting in an increased villi height:crypt depth of 72% (P < 0.001). Thus, we concluded that lysozyme is a suitable alternative to carbadox/copper sulfate diets fed to pigs weaned from the sow at 24 d of age.
Collapse
Affiliation(s)
- W T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA.
| | | |
Collapse
|
32
|
Kampa M, Pelekanou V, Notas G, Stathopoulos EN, Castanas E. The estrogen receptor: two or more molecules, multiple variants, diverse localizations, signaling and functions. Are we undergoing a paradigm-shift as regards their significance in breast cancer? Hormones (Athens) 2013; 12:69-85. [PMID: 23624133 DOI: 10.1007/bf03401288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marilena Kampa
- Department of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
33
|
Braniste V, Houdeau E. L’intestin – une nouvelle cible des perturbateurs endocriniens. CAHIERS DE NUTRITION ET DE DIETETIQUE 2012. [DOI: 10.1016/j.cnd.2012.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Saint-Criq V, Rapetti-Mauss R, Yusef YR, Harvey BJ. Estrogen regulation of epithelial ion transport: Implications in health and disease. Steroids 2012; 77:918-23. [PMID: 22410439 DOI: 10.1016/j.steroids.2012.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/29/2012] [Accepted: 02/23/2012] [Indexed: 02/02/2023]
Abstract
Estrogen, 17β-estradiol (E2), has been shown to modulate the activity of ion channels in a diverse range of epithelial tissues. The channel activation or inhibition responses to E2 are often rapid, occurring in seconds to minutes, independent of protein synthesis and gene transcription ('non-genomic' response). These rapid effects of E2 require activation of specific protein kinases or changes in intracellular calcium and pH which in turn modulate the conductance, open probability or number of channels in the plasmamembrane. Estrogen has also been shown to affect the expression of ion transporters over days ('genotropic' response) causing long-term sustained changes in transepithelial ion transport. It is now accepted that so called non-genomic responses are not stand-alone events and are necessary to prime the latent genomic response and even be critical for the full latent response to occur. In a number of epithelia the non-genomic and genotropic responses to estrogen are sex-specific and variable in potency and sensitivity to E2 depending on the stage of the estrous cycle. Of increasing interest is the effect these rapid and latent actions of E2 on ion transporters have on the physiological functions of epithelia. For example, estrogen regulation of a class of voltage-gated K(+) channels (KCNQ1) can determine the rate of Cl(-) secretion in the intestine. In whole-body terms, the combined effects of estrogen on a variety of ion channels which control fluid and electrolyte transport in the kidney, intestine and lung may be necessary for endometrial expansion and implantation of the blastocyte.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education & Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | |
Collapse
|
35
|
Tuo B, Wen G, Wang X, Xu J, Xie R, Liu X, Dong H. Estrogen potentiates prostaglandin E₂-stimulated duodenal mucosal HCO₃⁻ secretion in mice. Am J Physiol Endocrinol Metab 2012; 303:E111-21. [PMID: 22535744 DOI: 10.1152/ajpendo.00575.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cause of lower prevalence of duodenal ulcer in young women compared with men is largely unknown. We recently found that sex difference in duodenal mucosal HCO₃⁻ secretion existed in humans and mice, but the mechanisms are not clear. Prostaglandin E₂ (PGE₂) is an important endogenous mediator that plays an important role in the regulation of duodenal HCO₃⁻ secretion. Therefore, in the present study, we investigated the effect of estrogen on PGE₂-stimulated duodenal HCO₃⁻ secretion and the underlying mechanisms. The results showed that 17β-estradiol at the physiological concentration (1 nM) had no significant effects on duodenal mucosal HCO₃⁻ secretion or short-circuit current (I(sc)) in mice. However, the pretreatment of 17β-estradiol (1 nM) markedly potentiated PGE₂-stimulated duodenal HCO₃⁻ secretion and I(sc) (P < 0.01 and P < 0.05). Global estrogen receptor (ER) antagonist ICI-182,780 and ERα-specific antagonist MPP, but not the ERβ-specific antagonist PHTPP, abolished estrogen-potentiated PGE₂-stimulated duodenal HCO₃⁻ secretion and I(sc). 17β-Estradiol and PGE₂ additively increased phosphatidylinositol 3-kinase (PI3K) activity and Akt phosphorylation. Wortmannin, a specific PI3K inhibitor, inhibited estrogen-potentiated PGE₂-stimulated duodenal HCO₃⁻ secretion and I(sc). In conclusion, estrogen at the physiological concentration potentiates PGE₂-stimulated duodenal mucosal HCO₃⁻ secretion through the activation of ERα and the PI3K-dependent mechanism, which may contribute to the sex difference in duodenal mucosal HCO₃⁻ secretion and the lower prevalence of duodenal ulcer in young women.
Collapse
Affiliation(s)
- Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Alzamora R, O'Mahony F, Bustos V, Rapetti-Mauss R, Urbach V, Cid LP, Sepúlveda FV, Harvey BJ. Sexual dimorphism and oestrogen regulation of KCNE3 expression modulates the functional properties of KCNQ1 K⁺ channels. J Physiol 2011; 589:5091-107. [PMID: 21911611 DOI: 10.1113/jphysiol.2011.215772] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The KCNQ1 potassium channel associates with various KCNE ancillary subunits that drastically affect channel gating and pharmacology. Co-assembly with KCNE3 produces a current with nearly instantaneous activation, some time-dependent activation at very positive potentials, a linear current-voltage relationship and a 10-fold higher sensitivity to chromanol 293B. KCNQ1:KCNE3 channels are expressed in colonic crypts and mediate basolateral K(+) recycling required for Cl(-) secretion. We have previously reported the female-specific anti-secretory effects of oestrogen via KCNQ1:KCNE3 channel inhibition in colonic crypts. This study was designed to determine whether sex and oestrogen regulate the expression and function of KCNQ1 and KCNE3 in rat distal colon. Colonic crypts were isolated from Sprague-Dawley rats and used for whole-cell patch-clamp and to extract total RNA and protein. Sheets of epithelium were used for short-circuit current recordings. KCNE1 and KCNE3 mRNA and protein abundance were significantly higher in male than female crypts. No expression of KCNE2 was found and no difference was observed in KCNQ1 expression between male and female (at oestrus) colonic crypts. Male crypts showed a 2.2-fold higher level of association of KCNQ1 and KCNE3 compared to female cells. In female colonic crypts, KCNQ1 and KCNE3 protein expression fluctuated throughout the oestrous cycle and 17β-oestradiol (E2 10 nM) produced a rapid (<15 min) dissociation of KCNQ1 and KCNE3 in female crypts only. Whole-cell K(+) currents showed a linear current-voltage relationship in male crypts, while K(+) currents in colonic crypts isolated from females displayed voltage-dependent outward rectification. Currents in isolated male crypts and epithelial sheets were 10-fold more sensitive to specific KCNQ1 inhibitors, such as chromanol 293B and HMR-1556, than in female. The effect of E2 on K(+) currents mediated by KCNQ1 with or without different β-subunits was assayed from current-voltage relations elicited in CHO cells transfected with KCNQ1 and KCNE3 or KCNE1 cDNA. E2 (100 nM) reduced the currents mediated by the KCNQ1:KCNE3 potassium channel and had no effect on currents via KCNQ1:KCNE1 or KCNQ1 alone. Currents mediated by the complex formed by KCNQ1 and the mutant KCNE3-S82A β-subunit (mutation of the site for PKCδ-promoted phosphorylation and modulation of the activity of KCNE3) showed rapid run-down and insensitivity to E2. Together, these data suggest that oestrogen regulates the expression of the KCNE1 and KCNE3 and with it the gating and pharmacological properties of the K(+) conductance required for Cl(-) secretion. The decreased association of the KCNQ1:KCNE3 channel complex promoted by oestrogen exposure underlies the molecular mechanism for the sexual dimorphism and oestrous cycle dependence of the anti-secretory actions of oestrogen in the intestine.
Collapse
Affiliation(s)
- Rodrigo Alzamora
- Department of Molecular Medicine, Education and Research Centre, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Republic of Ireland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tuo B, Wen G, Wei J, Liu X, Wang X, Zhang Y, Wu H, Dong X, Chow JY, Vallon V, Dong H. Estrogen regulation of duodenal bicarbonate secretion and sex-specific protection of human duodenum. Gastroenterology 2011; 141:854-63. [PMID: 21699784 PMCID: PMC3163800 DOI: 10.1053/j.gastro.2011.05.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 05/05/2011] [Accepted: 05/20/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The reason that women have a lower prevalence of duodenal ulcer is not clear. We investigated whether estrogen regulates human duodenal bicarbonate secretion (DBS) and whether this process accounts for sex differences in the prevalence of duodenal ulcer. METHODS We performed an epidemiologic study to correlate duodenal ulcer prevalence with sex and age. Proximal DBS was measured from healthy subjects. Estrogen-receptor expression was examined in human duodenal mucosa by immunoblot and immunohistochemical analyses. RESULTS Among women, the prevalence of duodenal ulcer was significantly lower than among men. The reduced prevalence was greatest among premenopausal women (20-49 y), who were 3.91- to 5.09-fold less likely to develop duodenal ulcers than age-matched men; the difference was reduced to 1.32-fold or less among subjects aged 60 years or older. Premenopausal (20-29 y), but not postmenopausal (60-69 y), women had significantly higher basal and acid-stimulated DBS than the age-matched men. Basal and acid-stimulated DBS in premenopausal women (20-29 y) were significantly higher than in postmenopausal women (60-69 y), whereas there were no significant differences in basal or acid-stimulated DBS between men who were aged 20-29 years or 60-69 years. Serum levels of estradiol changed in parallel with basal and acid-stimulated DBS during the physiological menstrual cycle in premenopausal women. 17β-estradiol-stimulated DBS was independent of age or sex. Estrogen receptors α and β were detected on plasma membranes and in the cytosol of human duodenal epithelial cells. CONCLUSIONS Estrogen regulates human DBS, which could reduce the risk for duodenal ulcer in women and contribute to sex differences in the prevalence of duodenal ulcer.
Collapse
Affiliation(s)
- Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.
| | - Guorong Wen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China
| | - Jinqi Wei
- Department of Gastroenterology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China
| | - Xue Wang
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China
| | - Yalin Zhang
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China
| | - Huichao Wu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China
| | - Xiao Dong
- Department of Medicine, University of California, San Diego, California, USA
| | - Jimmy Y.C. Chow
- Department of Medicine, University of California, San Diego, California, USA
| | - Volker Vallon
- Department of Medicine, University of California, San Diego, California, USA, VA San Diego Healthcare System, San Diego, California, USA
| | - Hui Dong
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China, Department of Medicine, University of California, San Diego, California, USA,Correspondence: Hui Dong, MD, PhD: Division of Gastroenterology, Department of Medicine, 9500 Gilman Drive La Jolla, CA 92093, Tel: 858-534-9862 Fax: 858-534-3338 or Biguang Tuo, MD, PhD: Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Zunyi 563003, China. Tel: +86-852-8609205. Fax: +86-852-8609205
| |
Collapse
|
38
|
Alzamora R, O'Mahony F, Harvey BJ. Estrogen inhibits chloride secretion caused by cholera and Escherichia coli enterotoxins in female rat distal colon. Steroids 2011; 76:867-76. [PMID: 21600231 DOI: 10.1016/j.steroids.2011.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/18/2011] [Accepted: 04/26/2011] [Indexed: 11/26/2022]
Abstract
Excessive Cl(-) secretion is the driving force for secretory diarrhea. 17β-Estradiol has been shown to inhibit Cl(-) secretion in rat distal colon through a nongenomic pathway. We examined whether 17β-estradiol inhibits Cl(-) secretion in an animal model of secretory diarrhea and the downstream effectors involved. The effect of 17β-estradiol on cholera toxin and heat-stable enterotoxin induced Cl(-) secretion in rat colonic mucosal sheets was studied by current-voltage clamping. Selective permeabilization of apical or basolateral membranes with amphotericin B or nystatin was used to isolate basolateral K(+) channel and apical Cl(-) channel activity, respectively. 17β-Estradiol dose-dependently inhibited secretory responses to both toxins with IC(50) values of approximately 1nM. This effect was female-gender specific, with no inhibition observed in male tissues. 17β-Estradiol responses were insensitive to the pure anti-estrogen ICI 182,720. 17β-Estradiol exerted its effects downstream of enterotoxin-induced production of second messengers (cAMP and cGMP) but was dependent on PKCδ activation. In nystatin-permeabilized tissues, apical Cl(-) currents were unaffected by 17β-estradiol treatment while basolateral K(+) current was profoundly inhibited by the hormone. This current was sensitive to the specific KCNQ1 channel inhibitors chromanol 293B and HMR-1556. In conclusion, 17β-estradiol inhibits enterotoxin-induced Cl(-) secretion via a PKCδ-dependent mechanism involving inhibition of basolateral KCNQ1 channels. These data elucidate mechanisms of 17β-estradiol inhibition of Cl(-) secretion induced by enterotoxins in intestinal epithelia, which may be relevant for the treatment of diarrheal diseases.
Collapse
Affiliation(s)
- Rodrigo Alzamora
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, P.O. Box 9063, Dublin 9, Ireland
| | | | | |
Collapse
|
39
|
Collins D, Kopic S, Geibel JP, Hogan AM, Medani M, Baird AW, Winter DC. The flavonone naringenin inhibits chloride secretion in isolated colonic epithelia. Eur J Pharmacol 2011; 668:271-7. [PMID: 21762688 DOI: 10.1016/j.ejphar.2011.06.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 06/19/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023]
Abstract
Studies investigating the activating and inhibitory actions of bioflavonoids on colonic function have yielded conflicting results. At low concentrations, flavonoids may stimulate chloride secretion while at higher concentrations they may have antisecretory actions in the colon. Naringenin (4',5,7-trihydroxyflavanone), found predominantly in citrus fruits, confers a protective effect against colorectal cancer and is purported to modulate secretory function in colonic cell lines. The aim of this study was to investigate the effects of naringenin on ion transport in rat and human colonic mucosae. Naringenin inhibited basal and stimulated chloride secretion in rat and human colonic mucosae mounted in Ussing chambers (IC(50) 330 μMol/L and 360 μMol/L respectively) and did not alter intracellular cAMP generation. Naringenin inhibited chloride secretion in MQAE (N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide) loaded crypts stimulated with forskolin. In BCECF (2',7'-bis-(2-carboxyethyl)-5-(and 6)-carboxyfluorescein acetoxymethyl ester) loaded crypts, naringenin caused an intracellular acidification (ΔpH/min=0.05 ± 0.004) which was sensitive to the Na-K-Cl co-transporter (NKCC) inhibitor bumetanide. In addition, the antisecretory effect of naringenin was not inhibited by blockade of barium sensitive basolateral K(+) transporters or by inhibition of Na+/H(+) exchange by amiloride. We propose that the antisecretory action of naringenin is due to inhibition of basolateral NKCC1 in rat and human colon.
Collapse
Affiliation(s)
- Danielle Collins
- College of Life Sciences & Conway Institute, National University of Ireland, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
40
|
Alzamora R, O'Mahony F, Ko WH, Yip TWN, Carter D, Irnaten M, Harvey BJ. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels. Front Physiol 2011; 2:33. [PMID: 21747769 PMCID: PMC3129074 DOI: 10.3389/fphys.2011.00033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/18/2011] [Indexed: 11/13/2022] Open
Abstract
Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCα-dependent pathway.
Collapse
Affiliation(s)
- Rodrigo Alzamora
- Department of Molecular Medicine, Education and Research Centre, Royal College of Surgeons in Ireland, Beaumont Hospital Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
41
|
Andersen MN, Olesen SP, Rasmussen HB. Kv7.1 surface expression is regulated by epithelial cell polarization. Am J Physiol Cell Physiol 2011; 300:C814-24. [DOI: 10.1152/ajpcell.00390.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The potassium channel KV7.1 is expressed in the heart where it contributes to the repolarization of the cardiac action potential. In addition, KV7.1 is expressed in epithelial tissues where it plays a role in salt and water transport. Mutations in the kcnq1 gene can lead to long QT syndrome and deafness, and several mutations have been described as trafficking mutations. To learn more about the basic mechanisms that regulate KV7.1 surface expression, we have investigated the trafficking of KV7.1 during the polarization process of the epithelial cell line Madin-Darby Canine Kidney (MDCK) using a modified version of the classical calcium switch. We discovered that KV7.1 exhibits a very dynamic localization pattern during the calcium switch. When MDCK cells are kept in low calcium medium, KV7.1 is mainly observed at the plasma membrane. During the first hours of the switch, KV7.1 is removed from the plasma membrane and an intracellular accumulation in the endoplasmic reticulum (ER) is observed. The channel is retained in the ER until the establishment of the lateral membranes at which point KV7.1 is released from the ER and moves to the plasma membrane. Our data furthermore suggest that while the removal of KV7.1 from the cell surface and its accumulation in the ER could involve activation of protein kinase C, the subsequent release of KV7.1 from the ER depends on phosphoinositide 3-kinase (PI3K) activation. In conclusion, our results demonstrate that KV7.1 surface expression is regulated by signaling mechanisms involved in epithelial cell polarization in particular signaling cascades involving protein kinase C and PI3K.
Collapse
Affiliation(s)
- Martin N. Andersen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren-Peter Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne B. Rasmussen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Novak I, Jans IM, Wohlfahrt L. Effect of P2X(7) receptor knockout on exocrine secretion of pancreas, salivary glands and lacrimal glands. J Physiol 2010; 588:3615-27. [PMID: 20643770 DOI: 10.1113/jphysiol.2010.190017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The purinergic P2X(7) receptors are expressed in different cell types where they have varied functions, including regulation of cell survival. The P2X(7) receptors are also expressed in exocrine glands, but their integrated role in secretion is unclear. The aim of our study was to determine whether the P2X(7) receptors affect fluid secretion in pancreas, salivary glands and tear glands. We monitored gland secretions in in vivo preparations of wild-type and P2X(7)(-/-) (Pfizer) mice stimulated with pilocarpine. In cell preparations from pancreas, parotid and lacrimal glands we measured ATP release and intracellular Ca(2+) activity using Fura-2. The data showed that pancreatic secretion and salivary secretions were reduced in P2X(7)(-/-) mice, and in contrast, tear secretion was increased in P2X(7)(-/-) mice. The secretory phenotype was also dependent on the sex of the animal, such that males were more dependent on the P2X(7) receptor expression. ATP release in all cell preparations could be elicited by carbachol and other agonists, and this was independent of the P2X(7) receptor expression. ATP and carbachol increased intracellular Ca(2+) activity, but responses depended on the gland type, presence of the P2X(7) receptor and the sex of the animal. Together, these results demonstrate that cholinergic stimulation leads to release of ATP that can via P2X(7) receptors up-regulate pancreatic and salivary secretion but down-regulate tear secretion. Our data also indicate that there is an interaction between purinergic and cholinergic receptor signalling and that function of the P2X(7) receptor is suppressed in females. We conclude that the P2X(7) receptors are important in short-term physiological regulation of exocrine gland secretion.
Collapse
Affiliation(s)
- Ivana Novak
- Department of Biology, August Krogh Building, Universitetsparken 13, University of Copenhagen, DK 2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
43
|
Chotirmall SH, Greene CM, Oglesby IK, Thomas W, O'Neill SJ, Harvey BJ, McElvaney NG. 17Beta-estradiol inhibits IL-8 in cystic fibrosis by up-regulating secretory leucoprotease inhibitor. Am J Respir Crit Care Med 2010; 182:62-72. [PMID: 20378727 DOI: 10.1164/rccm.201001-0053oc] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RATIONALE An unexplained gender gap is observed in cystic fibrosis (CF). Females have poorer lung function, decreased survival, and earlier Pseudomonas colonization. OBJECTIVES To evaluate the effect of 17beta-estradiol (E(2)) on CF bronchial epithelial cells in vitro and in vivo. METHODS On exposure of CFBE41o- cultures to physiological concentrations of E(2), there was a significant dose-dependent inhibition of IL-8 release induced by toll-like receptor agonists, CF bronchoalveolar lavage fluid, or Pseudomonas-conditioned media. Estrogen receptor (ER)-alpha and -beta expression was quantified in cell lines and bronchial brushings from CF and non-CF patients. MEASUREMENTS AND MAIN RESULTS Both receptors were expressed in vitro and in vivo, although ERbeta expression was significantly higher in CF. Using ER isoform-specific agonists and antagonists, we established that ERbeta mediates the inhibition of CF bronchoalveolar lavage fluid-induced IL-8 release. We also showed that secretory leucoprotease inhibitor gene expression and protein localization to the nucleus increased in response to E(2). Secretory leucoprotease inhibitor knockdown abrogated the inhibitory effects of E(2). CONCLUSIONS E(2) inhibits IL-8 release by ERbeta in CF bronchial epithelial cells through up-regulation of secretory leucoprotease inhibitor, inhibition of nuclear factor (NF)-kappaB, and IL-8 gene expression. These data implicate a novel anti-inflammatory mechanism for E(2) in females with CF, which predisposes to infection and colonization. This could, in part, account for the observed gender dichotomy in CF.
Collapse
Affiliation(s)
- Sanjay H Chotirmall
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
44
|
Levin ER. Plasma membrane estrogen receptors. Trends Endocrinol Metab 2009; 20:477-82. [PMID: 19783454 PMCID: PMC3589572 DOI: 10.1016/j.tem.2009.06.009] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/16/2009] [Accepted: 06/16/2009] [Indexed: 11/29/2022]
Abstract
It is now firmly established that estrogen and all sex steroid receptors exist in discrete cellular pools outside the nucleus. Estrogen receptors (ER) have been localized to the plasma membrane where both ERalpha and ERbeta function in a wide variety of cells and organs. ERs have also been found in discrete cytoplasmic organelles including mitochondria and the endoplasmic reticulum. In ligand-dependent fashion, each ER pool contributes to the overall, integrated effects of estrogens producing biological outcomes. This review highlights the recent work establishing new roles and targets of membrane ER signaling. Such actions include prevention of vascular injury or cardiac hypertrophy, sexual behavior and pain perception mediated through the central nervous system, osteoblast survival, and fluid resorption in the colon.
Collapse
Affiliation(s)
- Ellis R Levin
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, Long Beach, CA 90822, USA.
| |
Collapse
|
45
|
Hogan AM, Collins D, Baird AW, Winter DC. Estrogen and its role in gastrointestinal health and disease. Int J Colorectal Dis 2009; 24:1367-75. [PMID: 19655153 DOI: 10.1007/s00384-009-0785-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2009] [Indexed: 02/06/2023]
Abstract
INTRODUCTION While the concept of a role of estrogen in gastrointestinal (in particular, colonic) malignancy has generated excitement in recent years, no review has examined the role of this potent and omnipresent steroid hormone in physiological states or its contribution to the development of benign pathological processes. Understanding these effects (and mechanisms therein) may provide a platform for a deeper understanding of more complex disease processes. METHODS A literature search was conducted using the PubMed database and the search terms were "estrogen," "estrogen AND gastrointestinal tract," "estrogen AND colon," "estrogen AND esophagus," "estrogen AND small intestine," "estrogen AND stomach," "estrogen AND gallbladder," and "estrogen AND motility." Bibliographies of extracted studies were further cross-referenced. In all, 136 full-text articles were selected for review. A logical organ-based approach was taken to enable extraction of data of clinical relevance and meaningful interpretation thereof. Insight is provided into the hypotheses, theories, controversies, and contradictions generated over the last five decades by extensive investigation of estrogen in human, animal, and cell models using techniques as diverse as autoradiographic studies of baboons to human population analysis. CONCLUSIONS Effects from esophagus through to the colon and rectum are summarized in this first concise collection of data pertaining to estrogenic actions in gastrointestinal health and disease. Mechanisms of these actions are discussed where possible. Undoubtedly, this hormone exerts many actions yet to be elucidated, and its potential therapeutic applications remain, as yet, largely unexplored.
Collapse
Affiliation(s)
- Aisling M Hogan
- Institute for Clinical Outcomes Research and Education (iCORE), St. Vincent's University Hospital, Dublin, 4, Ireland.
| | | | | | | |
Collapse
|
46
|
O'Mahony F, Alzamora R, Chung HL, Thomas W, Harvey BJ. Genomic priming of the antisecretory response to estrogen in rat distal colon throughout the estrous cycle. Mol Endocrinol 2009; 23:1885-99. [PMID: 19846538 DOI: 10.1210/me.2008-0248] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The secretion of Cl(-) across distal colonic crypt cells provides the driving force for the movement of fluid into the luminal space. 17beta-Estradiol (E2) produces a rapid and sustained reduction in secretion in females, which is dependent on the novel protein kinase C delta (PKC delta) isozyme and PKA isoform I targeting of KCNQ1 channels. This sexual dimorphism in the E2 response is associated with a higher expression level of PKC delta in female compared with the male tissue. The present study revealed the antisecretory response is regulated throughout the female reproductive (estrous) cycle and is primed by genomic regulation of the kinases. E2 (1-10 nm) decreased cAMP-dependent secretion in colonic epithelia during the estrus, metestrus, and diestrus stages. A weak inhibition of secretion was demonstrated in the proestrus stage. The expression levels of PKC delta and PKA fluctuated throughout the estrous cycle and correlated with the potency of the antisecretory effect of E2. The expression of PKC delta and PKA were up-regulated by estrogen at a transcriptional level via a PKC delta-MAPK-cAMP response element-binding protein-regulated pathway indicating a genomic priming of the antisecretory response. PK Cdelta was activated by the membrane-impermeant E2-BSA, and this response was inhibited by the estrogen receptor antagonist ICI 182,780. The 66-kDa estrogen receptor-alpha isoform was present at the plasma membrane of female colonic crypt cells with a lower abundance found in male colonic crypts. The study demonstrates estrogen regulation of intestinal secretion both at a rapid and transcriptional level, demonstrating an interdependent relationship between both nongenomic and genomic hormone responses.
Collapse
Affiliation(s)
- Fiona O'Mahony
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre Smurfit Building, Beaumont Hospital, P.O. Box 9063, Dublin 9, Ireland.
| | | | | | | | | |
Collapse
|
47
|
O'Mahony F, Thomas W, Harvey BJ. Novel female sex-dependent actions of oestrogen in the intestine. J Physiol 2009; 587:5039-44. [PMID: 19723780 DOI: 10.1113/jphysiol.2009.177972] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The intestine is an oestrogen responsive organ and circulatory oestrogens suppress Cl(-) secretion across the epithelium of the colon to promote fluid retention at the luteal stage of the menstrual cycle. Ion transporters in the colon which are involved in Cl(-) secretion show differential expression between males and females as do the signalling protein kinase intermediates involved in acutely regulating these transporters. Work from our laboratory has identified the KCNQ1/KCNE3 channel as one of the principal targets for oestrogen-induced signalling cascades in the distal colon. Through inhibition of the KCNQ1 channel, basolateral K(+) recycling is decreased so reducing the favourable electrochemical gradient for Cl(-) extrusion at the apical membrane. The actions of oestrogen on non-reproductive tissues such as the colon, kidney, lung and sweat gland will affect whole body electrolyte and fluid homeostasis and also have consequences for reproductive potential.
Collapse
Affiliation(s)
- Fiona O'Mahony
- Royal College of Surgeons in Ireland, Department of Molecular Medicine, Dublin 17, Ireland.
| | | | | |
Collapse
|
48
|
Braniste V, Leveque M, Buisson-Brenac C, Bueno L, Fioramonti J, Houdeau E. Oestradiol decreases colonic permeability through oestrogen receptor beta-mediated up-regulation of occludin and junctional adhesion molecule-A in epithelial cells. J Physiol 2009; 587:3317-28. [PMID: 19433574 DOI: 10.1113/jphysiol.2009.169300] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oestradiol modulates paracellular permeability and tight junction (TJ) function in endothelia and reproductive tissues, but whether the ovarian hormones and cycle affect the paracellular pathway in the intestinal epithelium remains unclear. Oestrogen receptors (ERs) are expressed in intestinal epithelial cells, and oestradiol regulates epithelium formation. We examined the effects of oestrous cycle stage, oestradiol benzoate (EB), and progesterone (P) on colonic paracellular permeability (CPP) in the female rat, and whether EB affects expression of the TJ proteins in the rat colon and the human colon cell line Caco-2. In cyclic rats, CPP was determined through lumen-to-blood (51)Cr-labelled EDTA clearance, and in Ussing chambers for dextran permeability. CPP was also examined in ovariectomized (OVX) rats treated with P or EB, with and without the ER antagonist ICI 182,780, or with the selective agonists for ER beta (propyl pyrazole triol; PPT) or ER beta (diarylpropionitrile; DPN). In oestrus rats, CPP was reduced (P < 0.01) relative to dioestrus. In OVX rats, EB dose-dependently decreased CPP, an effect mimicked by DPN and blocked by ICI 182,780, whereas P had no effect. Oestradiol increased occludin mRNA and protein in the colon (P < 0.05), but not zona occludens (ZO)-1. Further, EB and DPN enhanced occludin and junctional adhesion molecule (JAM)-A expression in Caco-2 cells without change in ZO-1, an effect blocked by ICI 182,780. These data show that oestrogen reinforces intestinal epithelial barrier through ER beta-mediated up-regulation of the transmembrane proteins occludin and JAM-A determining paracellular spaces. These findings highlight the importance of the ER beta pathway in the control of colonic paracellular transport and mucosal homeostasis.
Collapse
|
49
|
Sweetser S, Busciglio IA, Camilleri M, Bharucha AE, Szarka LA, Papathanasopoulos A, Burton DD, Eckert DJ, Zinsmeister AR. Effect of a chloride channel activator, lubiprostone, on colonic sensory and motor functions in healthy subjects. Am J Physiol Gastrointest Liver Physiol 2009; 296:G295-301. [PMID: 19033530 PMCID: PMC2643920 DOI: 10.1152/ajpgi.90558.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lubiprostone, a bicyclic fatty acid chloride channel activator, is efficacious in treatment of chronic constipation and constipation-predominant irritable bowel syndrome. The study aim was to compare effects of lubiprostone and placebo on colonic sensory and motor functions in humans. In double-blind, randomized fashion, 60 healthy adults received three oral doses of placebo or 24 microg lubiprostone per day in a parallel-group, placebo-controlled trial. A barostat-manometry tube was placed in the left colon by flexible sigmoidoscopy and fluoroscopy. We measured treatment effects on colonic sensation and motility with validated methods, with the following end points: colonic compliance, fasting and postprandial tone and motility indexes, pain thresholds, and sensory ratings to distensions. Among participants receiving lubiprostone or placebo, 26 of 30 and 28 of 30, respectively, completed the study. There were no overall effects of lubiprostone on compliance, fasting tone, motility indexes, or sensation. However, there was a treatment-by-sex interaction effect for compliance (P = 0.02), with lubiprostone inducing decreased fasting compliance in women (P = 0.06) and an overall decreased colonic tone contraction after a standard meal relative to fasting tone (P = 0.014), with greater effect in women (P < 0.01). Numerical differences of first sensation and pain thresholds (P = 0.11 in women) in the two groups were not significant. We concluded that oral lubiprostone 24 microg does not increase colonic motor function. The findings of decreased colonic compliance and decreased postprandial colonic tone in women suggest that motor effects are unlikely to cause accelerated colonic transit with lubiprostone, although they may facilitate laxation. Effects of lubiprostone on sensitivity deserve further study.
Collapse
Affiliation(s)
- Seth Sweetser
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Irene A. Busciglio
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Adil E. Bharucha
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lawrence A. Szarka
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Athanasios Papathanasopoulos
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Duane D. Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Deborah J. Eckert
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Alan R. Zinsmeister
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) Group, College of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
50
|
Muchekehu RW, Harvey BJ. Estradiol rapidly induces the translocation and activation of the intermediate conductance calcium activated potassium channel in human eccrine sweat gland cells. Steroids 2009; 74:212-7. [PMID: 19027769 DOI: 10.1016/j.steroids.2008.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/20/2008] [Accepted: 10/20/2008] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Steroid hormones target K+ channels as a means of regulating electrolyte and fluid transport. In this study, ion transporter targets of Estradiol (E2) were investigated in the human eccrine sweat gland cell line NCL-SG3. RESULTS Whole cell patch-clamp studies revealed E2 (10 nM) rapidly activates a whole cell K+ conductance, which is abolished by clotrimazole (30 microM), an inhibitor of the intermediate conductance calcium activated K+ channel (IKCa). The estrogen receptor (ER) antagonist ICI 182, 780 had no effect on this E2 activated K+ conductance, suggesting an estrogen receptor independent mechanism of activation. Confocal microscopy studies revealed under basal conditions that the IKCa channel is located within the cell cytoplasm and in the presence of E2, rapidly translocates to both the apical and basolateral membrane. In the presence of E2, tyrosine phosphorylation of calmodulin, which is known to regulate trafficking of the IKCa channel, is increased, and treatment of cells with the calmodulin inhibitor trifluoperazine (TFP) prevents the E2-induced translocation. CONCLUSIONS Estradiol rapidly regulates a K+ conductance through the IKCa channel in an estrogen receptor independent manner. E2 stimulates the translocation of IKCa to the cell membrane in a calmodulin dependent manner, representing a novel paradigm of estrogen action in sweat gland epithelial cells.
Collapse
Affiliation(s)
- Ruth W Muchekehu
- Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, RCSI Education and Research Centre, Smurfit Building, Beaumont Hospital, P.O. Box 9063, Dublin 9, Ireland.
| | | |
Collapse
|