1
|
Sun Y, Liu J, Pi X, Jiang S, Cheng J, Guo M. Comparison of lipidome profiles in human milk from Chinese Han and Korean ethnic groups based on high-throughput lipidomic techniques. J Dairy Sci 2024; 107:4205-4215. [PMID: 38428489 DOI: 10.3168/jds.2023-23610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
The composition of milk lipids varies across different ethnic sources. The lipidome profiles of Chinese Han human milk (HHM) and Chinese Korean human milk (KHM) were investigated in this study. A total of 741 lipids were identified in HHM and KHM. Twenty-eight differentially expressed lipids (DEL) were screened between the 2 milk groups; among these, 6 triacylglycerols (TG), 13 diacylglycerols (DG), 7 free fatty acids (FFA), and 1 monoglyceride (MG) were upregulated in KHM. Carnitine (CAR) was upregulated in HHM. Most DEL showed a single peak distribution in both groups. The correlations, related pathways and diseases of these DEL were further analyzed. The results demonstrated that DG, MG, and FFA showed highly positive correlations with each other (r > 0.8). The most enriched Kyoto Encyclopedia of Genes and Genomes (https://www.kegg.jp/kegg/) and Human Metabolome Database (http://www.hmdb.ca) pathways were inositol phosphate metabolism, and α-linolenic acid and linolenic acid metabolism, respectively. Major depressive disorder-related FFA (20:5) and FFA (22:6) were more abundant in KHM, whereas HHM showed more obesity-related CAR. These data potentially provide lipidome information regarding human milk from different ethnicities in China.
Collapse
Affiliation(s)
- Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jiafei Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | | | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405.
| |
Collapse
|
2
|
Lee JM, Lim TY, Oh SB, Lee SJ, Bae YS, Jung HS. Ahnak is required to balance calcium ion homeostasis and smooth muscle development in the urinary system. Cell Biosci 2023; 13:108. [PMID: 37308968 DOI: 10.1186/s13578-023-01055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Various renal abnormalities, including hydronephrosis, polycystic kidney disease, and hydroureter, have been reported, and these abnormalities are present in DiGeorge syndrome, renal dysplasia, and acute kidney failure. Previous studies have shown that various genes are associated with renal abnormalities. However, the major target genes of nonobstructive hydronephrosis have not yet been elucidated. RESULTS We examined neuroblast differentiation-associated protein Ahnak localization and analyzed morphogenesis in developing kidney and ureter. To investigated function of Ahnak, RNA-sequencing and calcium imaging were performed in wild type and Ahnak knockout (KO) mice. Ahnak localization was confirmed in the developing mouse kidneys and ureter. An imbalance of calcium homeostasis and hydronephrosis, which involves an expanded renal pelvis and hydroureter, was observed in Ahnak KO mice. Gene Ontology enrichment analysis on RNA-seq results indicated that 'Channel Activity', 'Passive Transmembrane Transporter Activity' and 'Cellular Calcium Ion Homeostasis' were downregulated in Ahnak KO kidney. 'Muscle Tissue Development', 'Muscle Contraction', and 'Cellular Calcium Ion Homeostasis' were downregulated in Ahnak KO ureter. Moreover, peristaltic movement of smooth muscle in the ureter was reduced in Ahnak KO mice. CONCLUSIONS Abnormal calcium homeostasis causes renal disease and is regulated by calcium channels. In this study, we focused on Ahnak, which regulates calcium homeostasis in several organs. Our results indicate that Ahnak plays a pivotal role in kidney and ureter development, and in maintaining the function of the urinary system.
Collapse
Affiliation(s)
- Jong-Min Lee
- Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Tae-Yang Lim
- Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Sang-Bin Oh
- Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Seung-Jun Lee
- Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Woman's University, Seoul, Korea
| | - Han-Sung Jung
- Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| |
Collapse
|
3
|
Yang I, Son Y, Shin JH, Kim IY, Seong JK. Ahnak depletion accelerates liver regeneration by modulating the TGF-β/Smad signaling pathway. BMB Rep 2022. [PMID: 35880432 PMCID: PMC9442348 DOI: 10.5483/bmbrep.2022.55.8.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Insook Yang
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Yeri Son
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor 48109, MI, USA
| | - Il Yong Kim
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
Yang I, Son Y, Shin JH, Kim IY, Seong JK. Ahnak depletion accelerates liver regeneration by modulating the TGF-β/Smad signaling pathway. BMB Rep 2022; 55:401-406. [PMID: 35880432 PMCID: PMC9442348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 06/30/2022] [Indexed: 03/08/2024] Open
Abstract
Ahnak, a large protein first identified as an inhibitor of TGF-β signaling in human neuroblastoma, was recently shown to promote TGF-β in some cancers. The TGF-β signaling pathway regulates cell growth, various biological functions, and cancer growth and metastasis. In this study, we used Ahnak knockout (KO) mice that underwent a 70% partial hepatectomy (PH) to investigate the function of Ahnak in TGF-β signaling during liver regeneration. At the indicated time points after PH, we analyzed the mRNA and protein expression of the TGF -β/Smad signaling pathway and cell cycle-related factors, evaluated the cell cycle through proliferating cell nuclear antigen (PCNA) immunostaining, analyzed the mitotic index by hematoxylin and eosin staining. We also measured the ratio of liver tissue weight to body weight. Activation of TGF-β signaling was confirmed by analyzing the levels of phospho-Smad 2 and 3 in the liver at the indicated time points after PH and was lower in Ahnak KO mice than in WT mice. The expression levels of cyclin B1, D1, and E1; proteins in the Rb/E2F transcriptional pathway, which regulates the cell cycle; and the numbers of PCNA-positive cells were increased in Ahnak KO mice and showed tendencies opposite that of TGF-β expression. During postoperative regeneration, the liver weight to body weight ratio tended to increase faster in Ahnak KO mice. However, 7 days after PH, both groups of mice showed similar rates of regeneration, following which their active regeneration stopped. Analysis of hepatocytes undergoing mitosis showed that there were more mitotic cells in Ahnak KO mice, consistent with the weight ratio. Our findings suggest that Ahnak enhances TGF-β signaling during postoperative liver regeneration, resulting in cell cycle disruption; this highlights a novel role of Ahnak in liver regeneration. These results provide new insight into liver regeneration and potential treatment targets for liver diseases that require surgical treatment. [BMB Reports 2022; 55(8): 401-406].
Collapse
Affiliation(s)
- Insook Yang
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul 08826, USA
| | - Yeri Son
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul 08826, USA
| | - Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor 48109, MI, USA
| | - Il Yong Kim
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, USA
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul 08826, USA
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, USA
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX Institute, Seoul National University, Seoul 08826, Korea, MI, USA
| |
Collapse
|
5
|
Interaction between TMEFF1 and AHNAK proteins in ovarian cancer cells: Implications for clinical prognosis. Int Immunopharmacol 2022; 107:108726. [PMID: 35338959 DOI: 10.1016/j.intimp.2022.108726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022]
Abstract
TMEFF1 is a newly discovered protein involved in the physiological functions of the central nervous system, embryonic development, and other biological processes. Our previous study revealed that TMEFF1 acts as a tumor-promoting gene in ovarian cancer. AHNAK, as a giant scaffolding protein, plays a role in the formation of the blood-brain barrier, cell architecture and the regulation of cardiac calcium channels. However, its role in ovarian cancer remains poorly researched. In this study, we detected the expression of AHNAK and TMEFF1 in 148 different ovarian cancer tissues, determined their relationship with pathological parameters and prognosis, clarified the interaction between the two proteins, and explored the related cancer-promoting mechanisms through immunohistochemistry, immunoprecipitation, immunofluorescence double staining, western blotting, and bioinformatics. The high expression of ANHAK and TMEFF1 in ovarian cancer indicated a higher degree of tumor malignancy and a worse prognosis. Furthermore, the expression of TMEFF1 and AHNAK was significantly positively correlated. The results also showed that AHNAK and TMEFF1 co-localized and interacted with each other in ovarian cancer tissues and cells. And knockdown of AHNAK promoted proliferation, migration and invasion of ovarian cancer cells in vitro. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that AHNAK and related genes were enriched during mitosis regulation, cytoskeleton formation, gene epigenetics, etc., whereas TMEFF1 and related genes are enriched during immune regulation and other processes. We also clarified the network of kinases, microRNA, and transcription factor targets, and the impact of genetic mutations on prognosis. Notably, AHNAK was regulated by the expression of TMEFF1 and can activate the MAPK pathways. Overall, high expression of AHNAK and TMEFF1 in ovarian cancer cells indicated a higher degree of tumor malignancy and a worse prognosis. Therefore, the interaction between AHNAK and TMEFF1 may become a potential anti-tumor target for ovarian cancer treatment.
Collapse
|
6
|
Zardab M, Stasinos K, Grose RP, Kocher HM. The Obscure Potential of AHNAK2. Cancers (Basel) 2022; 14:cancers14030528. [PMID: 35158796 PMCID: PMC8833689 DOI: 10.3390/cancers14030528] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary AHNAK2 is a relatively newly discovered protein. It can interact with many other proteins. This protein is increased in cells of variety of different cancers. AHNAK2 may play a vital role in cancer formation. AHNAK2 may have a role in early detection of cancer. This obscure potential of AHNAK2 is being studied. Abstract AHNAK2 is a protein discovered in 2004, with a strong association with oncogenesis in various epithelial cancers. It has a large 616 kDa tripartite structure and is thought to take part in the formation of large multi-protein complexes. High expression is found in clear cell renal carcinoma, pancreatic ductal adenocarcinoma, uveal melanoma, and lung adenocarcinoma, with a relation to poor prognosis. Little work has been done in exploring the function and relation AHNAK2 has with cancer, with early studies showing promising potential as a future biomarker and therapeutic target.
Collapse
|
7
|
Proprotein convertase subtilisin/kexin Type 9 is required for Ahnak-mediated metastasis of melanoma into lung epithelial cells. Neoplasia 2021; 23:993-1001. [PMID: 34352405 PMCID: PMC8350332 DOI: 10.1016/j.neo.2021.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
Previously we demonstrated that Ahnak mediates transforming growth factor-β (TGFβ)-induced epithelial-mesenchymal transition (EMT) during tumor metastasis. It is well-known that circulating tumor cells (CTCs) invade the vasculature of adjacent target tissues before working to adapt to the host environments. Currently, the molecular mechanism by which infiltrated tumor cells interact with host cells to survive within target tissue environments is far from clear. Here, we show that Ahnak regulates tumor metastasis through PCSK9 expression. To validate the molecular function of Ahnak in metastasis, B16F10 melanoma cells were injected into WT and Ahnak knockout (Ahnak-/-) mice. Ahnak-/- mice were more resistant to the pulmonary metastasis of B16F10 cells compared to wild-type (WT) mice. To investigate the host function of Ahnak in recipient organs against metastasis of melanoma cells, transcriptomic analyses of primary pulmonary endothelial cells from WT or Ahnak-/- mice in the absence or presence of TGFβ stimulation were performed. We found PCSK9, along with several other candidate genes, was involved in the invasion of melanoma cells into lung tissues. PCSK9 expression in the pulmonary artery was higher in WT mice than Ahnak-/- mice. To evaluate the host function of PCSK9 in lung tissues during the metastasis of melanoma cells, we established lung epithelial cell-specific tamoxifen-induced PCSK9 conditional KO mice (Scgb1a1-Cre/PCSK9fl/fl). The pulmonary metastasis of B16F10 cells in Scgb1a1-Cre/PCSK9fl/fl mice was significantly suppressed, indicating that PCSK9 plays an important role in the metastasis of melanoma cells. Taken together, our data demonstrate that Ahnak regulates metastatic colonization through the regulation of PCSK9 expression.
Collapse
|
8
|
AHNAK controls 53BP1-mediated p53 response by restraining 53BP1 oligomerization and phase separation. Mol Cell 2021; 81:2596-2610.e7. [PMID: 33961796 PMCID: PMC8221568 DOI: 10.1016/j.molcel.2021.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/05/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
p53-binding protein 1 (53BP1) regulates both the DNA damage response and p53 signaling. Although 53BP1's function is well established in DNA double-strand break repair, how its role in p53 signaling is modulated remains poorly understood. Here, we identify the scaffolding protein AHNAK as a G1 phase-enriched interactor of 53BP1. We demonstrate that AHNAK binds to the 53BP1 oligomerization domain and controls its multimerization potential. Loss of AHNAK results in hyper-accumulation of 53BP1 on chromatin and enhanced phase separation, culminating in an elevated p53 response, compromising cell survival in cancer cells but leading to senescence in non-transformed cells. Cancer transcriptome analyses indicate that AHNAK-53BP1 cooperation contributes to the suppression of p53 target gene networks in tumors and that loss of AHNAK sensitizes cells to combinatorial cancer treatments. These findings highlight AHNAK as a rheostat of 53BP1 function, which surveys cell proliferation by preventing an excessive p53 response.
Collapse
|
9
|
ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth. BIOLOGY 2021; 10:biology10040346. [PMID: 33923899 PMCID: PMC8072600 DOI: 10.3390/biology10040346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
Integration of cellular responses to extracellular cues is essential for cell survival and adaptation to stress. Extracellular signal-regulated kinase (ERK) 1 and 2 serve an evolutionarily conserved role for intracellular signal transduction that proved critical for cardiomyocyte homeostasis and cardiac stress responses. Considering the importance of ERK1/2 in the heart, understanding how these kinases operate in both normal and disease states is critical. Here, we review the complexity of upstream and downstream signals that govern ERK1/2-dependent regulation of cardiac structure and function. Particular emphasis is given to cardiomyocyte hypertrophy as an outcome of ERK1/2 activation regulation in the heart.
Collapse
|
10
|
Hower S, McCormack R, Bartra SS, Alonso P, Podack ER, Shembade N, Plano GV. LPS modifications and AvrA activity of Salmonella enterica serovar Typhimurium are required to prevent Perforin-2 expression by infected fibroblasts and intestinal epithelial cells. Microb Pathog 2021; 154:104852. [PMID: 33762201 DOI: 10.1016/j.micpath.2021.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Cellular Perforin-2 (MPEG1) is a pore-forming MACPF family protein that plays a critical role in the defense against bacterial pathogens. Macrophages, neutrophils, and several other cell types that are part of the front line of innate defenses constitutively express high levels of Perforin-2; whereas, most other cell types must be induced to express Perforin-2 by interferons (α, β and γ) and/or PAMPs such as LPS. In this study, we demonstrate that many bacterial pathogens can limit the expression of Perforin-2 in cells normally inducible for Perforin-2 expression, while ordinarily commensal or non-pathogenic bacteria triggered high levels of Perforin-2 expression in these same cell types. The mechanisms by which pathogens suppress Perforin-2 expression was explored further using Salmonella enterica serovar Typhimurium and cultured MEFs as well as intestinal epithelial cell lines. These studies identified multiple factors required to minimize the expression of Perforin-2 in cell types inducible for Perforin-2 expression. These included the PmrAB and PhoPQ two-component systems, select LPS modification enzymes and the Type III secretion effector protein AvrA.
Collapse
Affiliation(s)
- Suzanne Hower
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ryan McCormack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Patricia Alonso
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Noula Shembade
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
11
|
Xiang X, Langlois S, St-Pierre ME, Blinder A, Charron P, Graber TE, Fowler SL, Baird SD, Bennett SAL, Alain T, Cowan KN. Identification of pannexin 1-regulated genes, interactome, and pathways in rhabdomyosarcoma and its tumor inhibitory interaction with AHNAK. Oncogene 2021; 40:1868-1883. [PMID: 33564071 PMCID: PMC7946643 DOI: 10.1038/s41388-020-01623-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023]
Abstract
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, is an aggressive cancer with a poor prognosis. Despite current management, the 5-year survival rate for patients with metastatic RMS is ∼30%; underscoring the need to develop better treatment strategies. We have recently reported that pannexin 1 (PANX1) levels are downregulated in RMS and that restoring its expression inhibits RMS progression. Here, we have surveyed and characterized the molecular changes induced by PANX1 re-expression in RMS. We cataloged transcriptomic changes in this context by RNA sequencing. At the protein level, we unveiled PANX1 interactors using BioID, complemented by co-immunoprecipitation coupled to high-performance liquid chromatography/electrospray ionization tandem mass spectrometry performed in PANX1-enriched fractions. Using these data, we generated searchable public databases for the PANX1 interactome and changes to the RMS transcriptome occurring when PANX1 expression is restored. STRING network analyses revealed a PANX1 interactome involving plasma membrane and cytoskeleton-associated proteins including the previously undescribed interactor AHNAK. Indeed, AHNAK knockdown abrogated the PANX1-mediated reduction in RMS cell viability and migration. Using these unbiased approaches, we bring insight to the mechanisms by which PANX1 inhibits RMS progression, identifying the cell migration protein AHNAK as a key modifier of PANX1-mediated changes in RMS malignant properties.
Collapse
Affiliation(s)
- Xiao Xiang
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stéphanie Langlois
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Marie-Eve St-Pierre
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Anna Blinder
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Philippe Charron
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Tyson E Graber
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Stephanie L Fowler
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- UK Dementia Research Institute, University College London, London, UK
| | - Stephen D Baird
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Steffany A L Bennett
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kyle N Cowan
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
12
|
Intensive morphometric analysis of enormous alterations in skeletal bone system with micro-CT for AHNAK -/- mice. Anat Sci Int 2020; 95:323-333. [PMID: 32067190 DOI: 10.1007/s12565-020-00525-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
AHNAK has been reported to be involved in actin cytoskeleton rearrangement of some cell types, calcium homeostasis, and activation of T cells. Although the functional role of AHNAK in muscle cells, epidermis, and brain has been determined, its association with apparent clinical impairment has not been found yet. During phenotypic analysis of AHNAK knock out (KO) mice for many years, we observed that AHNAK KO mice showed very slow growth. Snouts of these animals were very short, and their bones were easily broken compared to normal mice. It is known that AHNAK is closely related to calcium. However, intensive morphological studies on phenotypes of bone have yet been reported for AHNAK. Thus, the objective of the present study was to analyze the morphology of skull, mandibular, limbs, and caudal bones of AHNAK KO mice intensively using micro-CT with many factors for various ages of these mice (6 weeks, 18 weeks, and 40 weeks). As a result, it was found that the facial region of AHNAK KO mouse showed a large difference in mandible than skull. Their both femur and tibia were shortened, and bone strength was also significantly decreased compared to normal mice. Particularly, the tail bone of AHNAK KO mice exhibited morphological abnormality by age. Taken together, these results suggest that AHNAK plays an important role in bone shape, development, and metabolism. Although our results demonstrated that AHNAK has a distinct role in bone, further investigations are needed to determine various features of bone metabolism related to AHNAK in the future.
Collapse
|
13
|
Yan X, Noël F, Marcotte I, DeWolf CE, Warschawski DE, Boisselier E. AHNAK C-Terminal Peptide Membrane Binding-Interactions between the Residues 5654-5673 of AHNAK and Phospholipid Monolayers and Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:362-369. [PMID: 31825630 DOI: 10.1021/acs.langmuir.9b02973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dysferlin membrane repair complex contains a small complex, S100A10-annexin A2, which initiates membrane repair by recruiting the protein AHNAK to the membrane, where it interacts via binding sites in the C-terminal region. However, no molecular data are available for the membrane binding of the various proteins involved in this complex. Therefore, the present study investigated the membrane binding of AHNAK to elucidate its role in the cell membrane repair process. A chemically synthesized peptide (pAHNAK), comprising the 20 amino acids in the C-terminal domain of AHNAK, was applied to Langmuir monolayer models, and the binding parameters and insertion angles were measured with surface tensiometry and ellipsometry. The interaction of pAHNAK with lipid bilayers was studied using 31P solid-state nuclear magnetic resonance. pAHNAK preferentially and strongly interacted with phospholipids that comprised negatively charged polar head groups with unsaturated lipids. This finding provides a better understanding of AHNAK membrane behavior and the parameters that influence its function in membrane repair.
Collapse
Affiliation(s)
- Xiaolin Yan
- Department of Ophthalmology, Faculty of Medicine , Université Laval , Quebec City , QC G1V 0A6 , Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement , CHU de Québec , Quebec City , G1S 4L8 , Canada
| | - Francis Noël
- Department of Ophthalmology, Faculty of Medicine , Université Laval , Quebec City , QC G1V 0A6 , Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement , CHU de Québec , Quebec City , G1S 4L8 , Canada
| | - Isabelle Marcotte
- Department of Chemistry, Faculty of Sciences , Université du Québec à Montréal , Montreal , H2X 2J6 , Canada
| | - Christine E DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research , Concordia University , Montreal , H4B 1R6 , Canada
| | - Dror E Warschawski
- Department of Chemistry, Faculty of Sciences , Université du Québec à Montréal , Montreal , H2X 2J6 , Canada
- UMR 7099, CNRS-Université Paris Diderot, Institut de Biologie Physico-Chimique , Paris 75005 , France
| | - Elodie Boisselier
- Department of Ophthalmology, Faculty of Medicine , Université Laval , Quebec City , QC G1V 0A6 , Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement , CHU de Québec , Quebec City , G1S 4L8 , Canada
| |
Collapse
|
14
|
Caven L, Carabeo RA. Pathogenic Puppetry: Manipulation of the Host Actin Cytoskeleton by Chlamydia trachomatis. Int J Mol Sci 2019; 21:ijms21010090. [PMID: 31877733 PMCID: PMC6981773 DOI: 10.3390/ijms21010090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022] Open
Abstract
The actin cytoskeleton is crucially important to maintenance of the cellular structure, cell motility, and endocytosis. Accordingly, bacterial pathogens often co-opt the actin-restructuring machinery of host cells to access or create a favorable environment for their own replication. The obligate intracellular organism Chlamydia trachomatis and related species exemplify this dynamic: by inducing actin polymerization at the site of pathogen-host attachment, Chlamydiae induce their own uptake by the typically non-phagocytic epithelium they infect. The interaction of chlamydial adhesins with host surface receptors has been implicated in this effect, as has the activity of the chlamydial effector TarP (translocated actin recruitment protein). Following invasion, C. trachomatis dynamically assembles and maintains an actin-rich cage around the pathogen’s membrane-bound replicative niche, known as the chlamydial inclusion. Through further induction of actin polymerization and modulation of the actin-crosslinking protein myosin II, C. trachomatis promotes egress from the host via extrusion of the inclusion. In this review, we present the experimental findings that can inform our understanding of actin-dependent chlamydial pathogenesis, discuss lingering questions, and identify potential avenues of future study.
Collapse
Affiliation(s)
- Liam Caven
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
- Correspondence: ; Tel.: +1-402-836-9778
| |
Collapse
|
15
|
Shafran JS, Andrieu GP, Györffy B, Denis GV. BRD4 Regulates Metastatic Potential of Castration-Resistant Prostate Cancer through AHNAK. Mol Cancer Res 2019; 17:1627-1638. [PMID: 31110158 PMCID: PMC6677600 DOI: 10.1158/1541-7786.mcr-18-1279] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/29/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022]
Abstract
The inevitable progression of advanced prostate cancer to castration resistance, and ultimately to lethal metastatic disease, depends on primary or acquired resistance to conventional androgen deprivation therapy (ADT) and accumulated resistance strategies to evade androgen receptor (AR) suppression. In prostate cancer cells, AR adaptations that arise in response to ADT are not singular, but diverse, and include gene amplification, mutation, and even complete loss of receptor expression. Collectively, each of these AR adaptations contributes to a complex, heterogeneous, ADT-resistant tumor. Here, we examined prostate cancer cell lines that model common castration-resistant prostate cancer (CRPC) subtypes, each with different AR composition, and focused on novel regulators of tumor progression, the Bromodomain and Extraterminal (BET) family of proteins. We found that BRD4 regulates cell migration across all models of CRPC, regardless of aggressiveness and AR status, whereas BRD2 and BRD3 only regulate migration and invasion in less aggressive models that retain AR expression or signaling. BRD4, a coregulator of gene transcription, controls migration and invasion through transcription of AHNAK, a large scaffolding protein linked to promotion of metastasis in a diverse set of cancers. Furthermore, treatment of CRPC cell lines with low doses of MZ1, a small-molecule, BRD4-selective degrader, inhibits metastatic potential. Overall, these results reveal a novel BRD4-AHNAK pathway that may be targetable to treat metastatic CRPC (mCRPC). IMPLICATIONS: BRD4 functions as the dominant regulator of CRPC cell migration and invasion through direct transcriptional regulation of AHNAK, which together offer a novel targetable pathway to treat metastatic CRPC.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/8/1627/F1.large.jpg.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Movement
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Neoplasm Metastasis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Prognosis
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Signal Transduction
- Survival Rate
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jordan S Shafran
- Boston University-Boston Medical Center Cancer Center, Boston, Massachusetts
- Department of Molecular and Translational Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Guillaume P Andrieu
- Boston University-Boston Medical Center Cancer Center, Boston, Massachusetts
| | - Balázs Györffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
- Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Gerald V Denis
- Boston University-Boston Medical Center Cancer Center, Boston, Massachusetts.
- Department of Molecular and Translational Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
16
|
Choi EW, Lee HW, Lee JS, Kim IY, Shin JH, Seong JK. Ahnak-knockout mice show susceptibility to Bartonella henselae infection because of CD4+ T cell inactivation and decreased cytokine secretion. BMB Rep 2019. [PMID: 30940323 PMCID: PMC6507843 DOI: 10.5483/bmbrep.2019.52.4.310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The present study evaluated the role of AHNAK in Bartonella henselae infection. Mice were intraperitoneally inoculated with 2 × 108 colony-forming units of B. henselae Houston-1 on day 0 and subsequently on day 10. Blood and tissue samples of the mice were collected 8 days after the final B. henselae injection. B. henselae infection in the liver of Ahnak-knockout and wild-type mice was confirmed by performing polymerase chain reaction, with Bartonella adhesion A as a marker. The proportion of B. henselae-infected cells increased in the liver of the Ahnak-knockout mice. Granulomatous lesions, inflammatory cytokine levels, and liver enzyme levels were also higher in the liver of the Ahnak-knockout mice than in the liver of the wild-type mice, indicating that Ahnak deletion accelerated B. henselae infection. The proportion of CD4+interferon-γ (IFN-γ)+ and CD4+interleukin (IL)-4+ cells was significantly lower in the B. henselae-infected Ahnak-knockout mice than in the B. henselae-infected wild-type mice. In vitro stimulation with B. henselae significantly increased IFN-γ and IL-4 secretion in the splenocytes obtained from the B. henselae-infected wild-type mice, but did not increase IFN-γ and IL-4 secretion in the splenocytes obtained from the B. henselae-infected Ahnak-KO mice. In contrast, IL-1α, IL-1β, IL-6, IL-10, RANTES, and tumor necrosis factor-α secretion was significantly elevated in the splenocytes obtained from both B. henselae-infected wild-type and Ahnak-knockout mice. These results indicate that Ahnak deletion promotes B. henselae infection. Impaired IFN-γ and IL-4 secretion in the Ahnak-knockout mice suggests the impairment of Th1 and Th2 immunity in these mice.
Collapse
Affiliation(s)
- Eun Wha Choi
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Hee Woo Lee
- Institute of Research and Development, Chaon Corp., Seongnam 13493, Korea
| | - Jun Sik Lee
- Department of Biology, Immunology Research Lab., College of Natural Sciences, Chosun University, Gwangju 61452, Korea
| | - Il Yong Kim
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, and Korea Mouse Phenotyp
| | - Jae Hoon Shin
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, and Korea Mouse Phenotyp
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, and Korea Mouse Phenotyp
- Interdiscplinary Program for Bioinformatics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
17
|
Santos J, Milthorpe BK, Padula MP. Proteomic Analysis of Cyclic Ketamine Compounds Ability to Induce Neural Differentiation in Human Adult Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20030523. [PMID: 30691166 PMCID: PMC6387408 DOI: 10.3390/ijms20030523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 12/28/2022] Open
Abstract
Neural regeneration is of great interest due to its potential to treat traumatic brain injuries and diseases that impact quality of life. Growth factor mediated differentiation can take up to several weeks to months to produce the cell of interest whereas chemical stimulation may be as minimal as a few hours. The smaller time scale is of great clinical relevance. Adipose derived stem cells (ADSCs) were treated for up to 24 h with a novel differentiation media containing the cyclic ketamine compounds to direct neurogenic induction. The extent of differentiation was investigated by proteome changes occurring during the process. The treatments indicated the ADSCs responded favorably to the neurogenic induction media by presenting a number of morphological cues of neuronal phenotype previously seen and a higher cell population post induction compared to previous studies. Furthermore, approximately 3500 proteins were analyzed and identified by mass spectrometric iTRAQ analyses. The bioinformatics analyses revealed hundreds of proteins whose expression level changes were statistically significant and biologically relevant to neurogenesis and annotated as being involved in neurogenic development. Complementing this, the Bioplex cytokine assay profiles present evidence of decreased panel of stress response cytokines and a relative increase in those involved in neurogenesis.
Collapse
Affiliation(s)
- Jerran Santos
- Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
- CIRIMAT, Paul Sabatier, University of Toulouse 3 (INPT), 118 Route de Narbonne, 31062 Toulouse, France.
| | - Bruce Kenneth Milthorpe
- Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
| | - Matthew Paul Padula
- Proteomics Core Facility and School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123 Broadway, Ultimo 2007, Australia.
| |
Collapse
|
18
|
Sohn M, Shin S, Yoo JY, Goh Y, Lee IH, Bae YS. Ahnak promotes tumor metastasis through transforming growth factor-β-mediated epithelial-mesenchymal transition. Sci Rep 2018; 8:14379. [PMID: 30258109 PMCID: PMC6158194 DOI: 10.1038/s41598-018-32796-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/14/2018] [Indexed: 12/28/2022] Open
Abstract
Previously, we reported a molecular mechanism by which Ahnak potentiates transforming growth factor-β (TGFβ) signaling during cell growth. Here, we show that Ahnak induces epithelial-mesenchymal transition (EMT) in response to TGFβ. EMT phenotypes, including altered in cell morphology, and expression patterns of various EMT marker genes were detected in HaCaT keratinocytes transfected with Ahnak-specific siRNA. Knockdown of Ahnak expression in HaCaT keratinocytes resulted in attenuated cell migration and invasion. We found that Ahnak activates TGFβ signaling via Smad3 phosphorylation, leading to enhanced Smad3 transcriptional activity. To validate function of Ahnak in EMT of B16F10 cells having high metastatic and tumorigenic properties, we established B16F10 cells with stable knockdown of Ahnak. N-cadherin expression and Smad3 phosphorylation were significantly decreased in B16F10-shAhnak cells, compared to B16F10-shControl cells after treatment of TGFβ. Moreover, TGFβ failed to induce cell migration and cell invasion in B16F10-shAhnak cells. To determine whether Ahnak regulates the metastatic activity of B16F10 cells, we established a lung metastasis model in C57BL/6 mice via tail vein injection of B16F10-shAhnak cells. Lung metastasis was significantly suppressed in mice injected with B16F10-shAhnak cells, compared to those injected with B16F10-shControl cells. Taken together, we propose that TGFβ-Ahnak signaling axis regulates EMT during tumor metastasis.
Collapse
Affiliation(s)
- Mira Sohn
- Department of Life Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - Sunmee Shin
- Department of Life Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - Jung-Yeon Yoo
- Department of Life Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - Yookyung Goh
- Department of Life Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - In Hye Lee
- Department of Life Sciences, Ewha Womans University, Seoul, 120-750, Korea.
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Womans University, Seoul, 120-750, Korea.
| |
Collapse
|
19
|
Essential role of Ahnak in adipocyte differentiation leading to the transcriptional regulation of Bmpr1α expression. Cell Death Dis 2018; 9:864. [PMID: 30154465 PMCID: PMC6113281 DOI: 10.1038/s41419-018-0873-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/08/2018] [Accepted: 07/09/2018] [Indexed: 01/05/2023]
Abstract
The role of Ahnak in obesity has been reported previously. Loss of Ahnak leads to decreased Bmp4/Smad1 signaling, resulting in the downregulation of adipocyte differentiation. However, the biological significance of Ahnak remains largely unknown. In this study, we demonstrate that Ahnak-mediated impaired adipogenesis results in decreased Bmpr1α transcriptional expression. To confirm this, Ahnak siRNA was used to knock-down Ahnak in C3H10T1/2 and primary stromal vascular fraction cells. Ahnak siRNA transfected cells showed suppression of Bmpr1α expression and decreased BMP4/ Bmpr1α signaling. The differential adipogenesis was further confirmed by knock-down of Bmpr1α in C3H10T1/2 cells, which resulted in reduced adipogenesis. Moreover, stable Ahnak knock-out C3H10T1/2 cells stably transfected with Ahnak CRISPR/Cas9 plasmid suppressed expression of Bmpr1α and prevented differentiation into adipocytes. Furthermore, we developed immortalized pre-adipocytes from wild-type or Ahnak Knock-out mice's stromal vascular fraction (SVF) to confirm the function of Ahnak in pre-adipocyte transition. Immortalized Ahnak knock-out SVF cells showed lower level of Bmpr1α expression, evidence by their impaired BMP4/Bmpr1α signaling. Upon adipogenic induction, immortalized Ahnak knock-out SVF cells exhibited a marked decrease in adipocyte differentiation compared with immortalized wild-type pre-adipocytes. Furthermore, over-expression of Bmpr1α restored the adipogenic activity of Ahnak knock-out C3H10T1/2 cells and immortalized Ahnak knock-out SVF cells. Our data reveal the missing link in Ahnak-mediated adipose tissue remodeling and suggest that precise regulation of Ahnak in adipose tissue might have a therapeutic advantage for metabolic disease treatment.
Collapse
|
20
|
Park JW, Kim IY, Choi JW, Lim HJ, Shin JH, Kim YN, Lee SH, Son Y, Sohn M, Woo JK, Jeong JH, Lee C, Bae YS, Seong JK. AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res 2018; 16:1287-1298. [PMID: 29724814 DOI: 10.1158/1541-7786.mcr-17-0726] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/24/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
AHNAK is known to be a tumor suppressor in breast cancer due to its ability to activate the TGFβ signaling pathway. However, the role of AHNAK in lung tumor development and progression remains unknown. Here, the Ahnak gene was disrupted to determine its effect on lung tumorigenesis and the mechanism by which it triggers lung tumor development was investigated. First, AHNAK protein expression was determined to be decreased in human lung adenocarcinomas compared with matched nonneoplastic lung tissues. Then, Ahnak -/- mice were used to investigate the role of AHNAK in pulmonary tumorigenesis. Ahnak -/- mice showed increased lung volume and thicker alveolar walls with type II pneumocyte hyperplasia. Most importantly, approximately 20% of aged Ahnak -/- mice developed lung tumors, and Ahnak -/- mice were more susceptible to urethane-induced pulmonary carcinogenesis than wild-type mice. Mechanistically, Ahnak deficiency promotes the cell growth of lung epithelial cells by suppressing the TGFβ signaling pathway. In addition, increased numbers of M2-like alveolar macrophages (AM) were observed in Ahnak -/- lungs, and the depletion of AMs in Ahnak -/- lungs alleviated lung hyperplastic lesions, suggesting that M2-like AMs promoted the progression of lung hyperplastic lesions in Ahnak-null mice. Collectively, AHNAK suppresses type II pneumocyte proliferation and inhibits tumor-promoting M2 alternative activation of macrophages in mouse lung tissue. These results suggest that AHNAK functions as a novel tumor suppressor in lung cancer.Implications: The tumor suppressor function of AHNAK, in murine lungs, occurs by suppressing alveolar epithelial cell proliferation and modulating lung microenvironment. Mol Cancer Res; 16(8); 1287-98. ©2018 AACR.
Collapse
Affiliation(s)
- Jun Won Park
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul, Korea
| | - Il Yong Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul, Korea
| | - Ji Won Choi
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Hee Jung Lim
- Korea Mouse Phenotyping Center (KMPC), Seoul, Korea
| | - Jae Hoon Shin
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yo Na Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seo Hyun Lee
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yeri Son
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Mira Sohn
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Jong Kyu Woo
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul, Korea
| | | | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea. .,Korea Mouse Phenotyping Center (KMPC), Seoul, Korea.,Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
21
|
Litichevskiy L, Peckner R, Abelin JG, Asiedu JK, Creech AL, Davis JF, Davison D, Dunning CM, Egertson JD, Egri S, Gould J, Ko T, Johnson SA, Lahr DL, Lam D, Liu Z, Lyons NJ, Lu X, MacLean BX, Mungenast AE, Officer A, Natoli TE, Papanastasiou M, Patel J, Sharma V, Toder C, Tubelli AA, Young JZ, Carr SA, Golub TR, Subramanian A, MacCoss MJ, Tsai LH, Jaffe JD. A Library of Phosphoproteomic and Chromatin Signatures for Characterizing Cellular Responses to Drug Perturbations. Cell Syst 2018; 6:424-443.e7. [PMID: 29655704 PMCID: PMC5951639 DOI: 10.1016/j.cels.2018.03.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/26/2018] [Accepted: 03/14/2018] [Indexed: 01/05/2023]
Abstract
Although the value of proteomics has been demonstrated, cost and scale are typically prohibitive, and gene expression profiling remains dominant for characterizing cellular responses to perturbations. However, high-throughput sentinel assays provide an opportunity for proteomics to contribute at a meaningful scale. We present a systematic library resource (90 drugs × 6 cell lines) of proteomic signatures that measure changes in the reduced-representation phosphoproteome (P100) and changes in epigenetic marks on histones (GCP). A majority of these drugs elicited reproducible signatures, but notable cell line- and assay-specific differences were observed. Using the "connectivity" framework, we compared signatures across cell types and integrated data across assays, including a transcriptional assay (L1000). Consistent connectivity among cell types revealed cellular responses that transcended lineage, and consistent connectivity among assays revealed unexpected associations between drugs. We further leveraged the resource against public data to formulate hypotheses for treatment of multiple myeloma and acute lymphocytic leukemia. This resource is publicly available at https://clue.io/proteomics.
Collapse
Affiliation(s)
| | - Ryan Peckner
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Jacob K Asiedu
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Amanda L Creech
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - John F Davis
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Desiree Davison
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Jarrett D Egertson
- University of Washington, Department of Genome Sciences, 3720 15th Avenue NE, Seattle, WA 98195, USA
| | - Shawn Egri
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Joshua Gould
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Tak Ko
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sarah A Johnson
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - David L Lahr
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Daniel Lam
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Zihan Liu
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Xiaodong Lu
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Brendan X MacLean
- University of Washington, Department of Genome Sciences, 3720 15th Avenue NE, Seattle, WA 98195, USA
| | - Alison E Mungenast
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Adam Officer
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Ted E Natoli
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Jinal Patel
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Vagisha Sharma
- University of Washington, Department of Genome Sciences, 3720 15th Avenue NE, Seattle, WA 98195, USA
| | - Courtney Toder
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Jennie Z Young
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Steven A Carr
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Todd R Golub
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Michael J MacCoss
- University of Washington, Department of Genome Sciences, 3720 15th Avenue NE, Seattle, WA 98195, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jacob D Jaffe
- The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
22
|
McKuen MJ, Mueller KE, Bae YS, Fields KA. Fluorescence-Reported Allelic Exchange Mutagenesis Reveals a Role for Chlamydia trachomatis TmeA in Invasion That Is Independent of Host AHNAK. Infect Immun 2017; 85:e00640-17. [PMID: 28970272 PMCID: PMC5695130 DOI: 10.1128/iai.00640-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
Development of approaches to genetically manipulate Chlamydia is fostering important advances in understanding pathogenesis. Fluorescence-reported allelic exchange mutagenesis (FRAEM) now enables the complete deletion of specific genes in C. trachomatis L2. We have leveraged this technology to delete the coding sequences for a known type III effector. The evidence provided here indicates that CT694/CTL0063 is a virulence protein involved in chlamydial invasion. Based on our findings, we designate the gene product corresponding to ct694-ctl0063translocated membrane-associated effector A (TmeA). Deletion of tmeA did not impact development of intracellular chlamydiae. However, the absence of TmeA manifested as a decrease in infectivity in both tissue culture and murine infection models. The in vitro defect was reflected by impaired invasion of host cells. TmeA binds human AHNAK, and we demonstrate here that AHNAK is transiently recruited by invading chlamydiae. TmeA, however, is not required for endogenous AHNAK recruitment. TmeA also impairs AHNAK-dependent actin bundling activity. This TmeA-mediated effect likely does not explain impaired invasion displayed by the tmeA strain of Chlamydia, since AHNAK-deficient cells revealed no invasion phenotype. Overall, our data indicate the efficacy of FRAEM and reveal a role of TmeA during chlamydial invasion that manifests independently of effects on AHNAK.
Collapse
Affiliation(s)
- M J McKuen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - K E Mueller
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Y S Bae
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - K A Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
23
|
Sinniah A, Yazid S, Flower RJ. The Anti-allergic Cromones: Past, Present, and Future. Front Pharmacol 2017; 8:827. [PMID: 29184504 PMCID: PMC5694476 DOI: 10.3389/fphar.2017.00827] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
The anti-allergic cromones were originally synthesized in the 1960s by Fisons Plc, and the first drug to emerge from this program, disodium cromoglycate was subsequently marketed for the treatment of asthma and other allergic conditions. Whilst early studies demonstrated that the ability of the cromones to prevent allergic reactions was due to their 'mast cell stabilizing' properties, the exact pharmacological mechanism by which this occurred, remained a mystery. Here, we briefly review the history of these drugs, recount some aspects of their pharmacology, and discuss two new explanations for their unique actions. We further suggest how these findings could be used to predict further uses for the cromones.
Collapse
Affiliation(s)
- Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Samia Yazid
- Trio Medicines Ltd., Hammersmith Medicines Research, London, United Kingdom
| | - Roderick J Flower
- Centre for Biochemical Pharmacology, William Harvey Research Institute, St Barts and the Royal London School of Medicine, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
Martín-Ávila A, Medina-Tamayo J, Ibarra-Sánchez A, Vázquez-Victorio G, Castillo-Arellano JI, Hernández-Mondragón AC, Rivera J, Madera-Salcedo IK, Blank U, Macías-Silva M, González-Espinosa C. Protein Tyrosine Kinase Fyn Regulates TLR4-Elicited Responses on Mast Cells Controlling the Function of a PP2A-PKCα/β Signaling Node Leading to TNF Secretion. THE JOURNAL OF IMMUNOLOGY 2016; 196:5075-88. [PMID: 27183589 DOI: 10.4049/jimmunol.1501823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/16/2016] [Indexed: 12/21/2022]
Abstract
Mast cells produce proinflammatory cytokines in response to TLR4 ligands, but the signaling pathways involved are not fully described. In this study, the participation of the Src family kinase Fyn in the production of TNF after stimulation with LPS was evaluated using bone marrow-derived mast cells from wild-type and Fyn-deficient mice. Fyn(-/-) cells showed higher LPS-induced secretion of preformed and de novo-synthesized TNF. In both cell types, TNF colocalized with vesicle-associated membrane protein (VAMP)3-positive compartments. Addition of LPS provoked coalescence of VAMP3 and its interaction with synaptosomal-associated protein 23; those events were increased in the absence of Fyn. Higher TNF mRNA levels were also observed in Fyn-deficient cells as a result of increased transcription and greater mRNA stability after LPS treatment. Fyn(-/-) cells also showed higher LPS-induced activation of TAK-1 and ERK1/2, whereas IκB kinase and IκB were phosphorylated, even in basal conditions. Increased responsiveness in Fyn(-/-) cells was associated with a lower activity of protein phosphatase 2A (PP2A) and augmented activity of protein kinase C (PKC)α/β, which was dissociated from PP2A and increased its association with the adapter protein neuroblast differentiation-associated protein (AHNAK, desmoyokin). LPS-induced PKCα/β activity was associated with VAMP3 coalescence in WT and Fyn-deficient cells. Reconstitution of MC-deficient Wsh mice with Fyn(-/-) MCs produced greater LPS-dependent production of TNF in the peritoneal cavity. Our data show that Fyn kinase is activated after TLR4 triggering and exerts an important negative control on LPS-dependent TNF production in MCs controlling the inactivation of PP2Ac and activation of PKCα/β necessary for the secretion of TNF by VAMP3(+) carriers.
Collapse
Affiliation(s)
- Alejandro Martín-Ávila
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Jaciel Medina-Tamayo
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510 Mexico City, Mexico
| | - Jorge Iván Castillo-Arellano
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Alma Cristal Hernández-Mondragón
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Juan Rivera
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1820; and
| | - Iris K Madera-Salcedo
- INSERM UMRS1149, Faculté de Médecine, Université Paris-Diderot, Site X, Bichat, Paris 75018, France
| | - Ulrich Blank
- INSERM UMRS1149, Faculté de Médecine, Université Paris-Diderot, Site X, Bichat, Paris 75018, France
| | - Marina Macías-Silva
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510 Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico;
| |
Collapse
|
25
|
Kirov A, Kacer D, Conley BA, Vary CPH, Prudovsky I. AHNAK2 Participates in the Stress-Induced Nonclassical FGF1 Secretion Pathway. J Cell Biochem 2016; 116:1522-31. [PMID: 25560297 DOI: 10.1002/jcb.25047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/22/2022]
Abstract
FGF1 is a nonclassically released growth factor that regulates carcinogenesis, angiogenesis, and inflammation. In vitro and in vivo, FGF1 export is stimulated by cell stress. Upon stress, FGF1 is transported to the plasma membrane where it localizes prior to transmembrane translocation. To determine which proteins participate in the submembrane localization of FGF1 and its export, we used immunoprecipitation mass spectrometry to identify novel proteins that associate with FGF1 during heat shock. The heat shock-dependent association of FGF1 with the large protein AHNAK2 was observed. Heat shock induced the translocation of FGF1 and AHNAK2 to the cytoskeletal fraction. In heat-shocked cells, FGF1 and the C-terminal fragment of AHNAK2 colocalized with F-actin in the vicinity of the cell membrane. Depletion of AHNAK2 resulted in a drastic decrease of stress-induced FGF1 export but did not affect spontaneous FGF2 export and FGF1 release induced by the inhibition of Notch signaling. Thus, AHNAK2 is an important element of the FGF1 nonclassical export pathway.
Collapse
Affiliation(s)
- Aleksandr Kirov
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| | - Doreen Kacer
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| | - Barbara A Conley
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| | - Calvin P H Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| | - Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| |
Collapse
|
26
|
AHNAK deficiency promotes browning and lipolysis in mice via increased responsiveness to β-adrenergic signalling. Sci Rep 2016; 6:23426. [PMID: 26987950 PMCID: PMC4796812 DOI: 10.1038/srep23426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 03/04/2016] [Indexed: 01/27/2023] Open
Abstract
In adipose tissue, agonists of the β3-adrenergic receptor (ADRB3) regulate lipolysis, lipid oxidation, and thermogenesis. The deficiency in the thermogenesis induced by neuroblast differentiation-associated protein AHNAK in white adipose tissue (WAT) of mice fed a high-fat diet suggests that AHNAK may stimulate energy expenditure via development of beige fat. Here, we report that AHNAK deficiency promoted browning and thermogenic gene expression in WAT but not in brown adipose tissue of mice stimulated with the ADRB3 agonist CL-316243. Consistent with the increased thermogenesis, Ahnak(-/-) mice exhibited an increase in energy expenditure, accompanied by elevated mitochondrial biogenesis in WAT depots in response to CL-316243. Additionally, AHNAK-deficient WAT contained more eosinophils and higher levels of type 2 cytokines (IL-4/IL-13) to promote browning of WAT in response to CL-316243. This was associated with enhanced sympathetic tone in the WAT via upregulation of adrb3 and tyrosine hydroxylase (TH) in response to β-adrenergic activation. CL-316243 activated PKA signalling and enhanced lipolysis, as evidenced by increased phosphorylation of hormone-sensitive lipase and release of free glycerol in Ahnak(-/-) mice compared to wild-type mice. Overall, these findings suggest an important role of AHNAK in the regulation of thermogenesis and lipolysis in WAT via β-adrenergic signalling.
Collapse
|
27
|
Shin S, Seong JK, Bae YS. Ahnak stimulates BMP2-mediated adipocyte differentiation through Smad1 activation. Obesity (Silver Spring) 2016; 24:398-407. [PMID: 26813528 DOI: 10.1002/oby.21367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Previous reports have indicated that Ahnak-deficient mice were protected from high-fat diet-induced obesity. However, the molecular mechanism in which Ahnak mediates adipocyte differentiation and high-fat diet-induced obesity is unclear. METHODS Adipocytes from Ahnak knockout (Ahnak(-/-) ) mice and knockdown of Ahnak in C3H10T1/2 were used to investigate the function of Ahnak in adipocyte differentiation. Ahnak-induced adipocyte differentiation was analyzed by Oil Red O staining. RESULTS Adipocytes from Ahnak(-/-) mice were smaller than those from wild-type mice. Silencing of Ahnak in C3H10T1/2 and adipose tissue-derived mesenchymal stem cells (ADSCs) from Ahnak(-/-) mice showed severely impaired adipocyte differentiation. Down-regulation of Ahnak in C3H10T1/2 cells and ADSCs from Ahnak(-/-) mice attenuated the phosphorylation and nuclear localization of Smad1 in response to BMP2, whereas Ahnak overexpression in 3T3-L1 cells significantly increased Smad1 activation. Because PPARγ is a well-known transcriptional factor in adipocyte differentiation, the PPARγ expression in Ahnak-mediated adipocyte differentiation was investigated. Transfection of C3H10T1/2 cells with Ahnak siRNA resulted in reduced PPARγ expression apparently through inhibited binding of Smad1 to the Smad1-binding site in the PPARγ promoter. These results suggest that Ahnak regulates adipogenesis by regulating Smad1-dependent PPARγ expression. CONCLUSIONS A molecular mechanism was proposed in which Ahnak regulates adipocyte differentiation through Smad1 activation.
Collapse
Affiliation(s)
- Sunmee Shin
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Daehak-Dong, Gwanak-Gu, Seoul, Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|
28
|
Olsen JB, Cao XJ, Han B, Chen LH, Horvath A, Richardson TI, Campbell RM, Garcia BA, Nguyen H. Quantitative Profiling of the Activity of Protein Lysine Methyltransferase SMYD2 Using SILAC-Based Proteomics. Mol Cell Proteomics 2016; 15:892-905. [PMID: 26750096 DOI: 10.1074/mcp.m115.053280] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 12/13/2022] Open
Abstract
The significance of non-histone lysine methylation in cell biology and human disease is an emerging area of research exploration. The development of small molecule inhibitors that selectively and potently target enzymes that catalyze the addition of methyl-groups to lysine residues, such as the protein lysine mono-methyltransferase SMYD2, is an active area of drug discovery. Critical to the accurate assessment of biological function is the ability to identify target enzyme substrates and to define enzyme substrate specificity within the context of the cell. Here, using stable isotopic labeling with amino acids in cell culture (SILAC) coupled with immunoaffinity enrichment of mono-methyl-lysine (Kme1) peptides and mass spectrometry, we report a comprehensive, large-scale proteomic study of lysine mono-methylation, comprising a total of 1032 Kme1 sites in esophageal squamous cell carcinoma (ESCC) cells and 1861 Kme1 sites in ESCC cells overexpressing SMYD2. Among these Kme1 sites is a subset of 35 found to be potently down-regulated by both shRNA-mediated knockdown of SMYD2 and LLY-507, a selective small molecule inhibitor of SMYD2. In addition, we report specific protein sequence motifs enriched in Kme1 sites that are directly regulated by endogenous SMYD2 activity, revealing that SMYD2 substrate specificity is more diverse than expected. We further show direct activity of SMYD2 toward BTF3-K2, PDAP1-K126 as well as numerous sites within the repetitive units of two unique and exceptionally large proteins, AHNAK and AHNAK2. Collectively, our findings provide quantitative insights into the cellular activity and substrate recognition of SMYD2 as well as the global landscape and regulation of protein mono-methylation.
Collapse
Affiliation(s)
- Jonathan B Olsen
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | - Xing-Jun Cao
- §Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania 19104
| | - Bomie Han
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | - Lisa Hong Chen
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | | | | | - Robert M Campbell
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | - Benjamin A Garcia
- §Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania 19104;
| | - Hannah Nguyen
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285;
| |
Collapse
|
29
|
Lim HJ, Kim J, Park CH, Lee SA, Lee MR, Kim KS, Kim J, Bae YS. Regulation of c-Myc Expression by Ahnak Promotes Induced Pluripotent Stem Cell Generation. J Biol Chem 2015; 291:752-61. [PMID: 26598518 DOI: 10.1074/jbc.m115.659276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 01/01/2023] Open
Abstract
We have previously reported that Ahnak-mediated TGFβ signaling leads to down-regulation of c-Myc expression. Here, we show that inhibition of Ahnak can promote generation of induced pluripotent stem cells (iPSC) via up-regulation of endogenous c-Myc. Consistent with the c-Myc inhibitory role of Ahnak, mouse embryonic fibroblasts from Ahnak-deficient mouse (Ahnak(-/-) MEF) show an increased level of c-Myc expression compared with wild type MEF. Generation of iPSC with just three of the four Yamanaka factors, Oct4, Sox2, and Klf4 (hereafter 3F), was significantly enhanced in Ahnak(-/-) MEF. Similar results were obtained when Ahnak-specific shRNA was applied to wild type MEF. Of note, expressionof Ahnak was significantly induced during the formation of embryoid bodies from embryonic stem cells, suggesting that Ahnak-mediated c-Myc inhibition is involved in embryoid body formation and the initial differentiation of pluripotent stem cells. The iPSC from 3F-infected Ahnak(-/-) MEF cells (Ahnak(-/-)-iPSC-3F) showed expression of all stem cell markers examined and the capability to form three primary germ layers. Moreover, injection of Ahnak(-/-)-iPSC-3F into athymic nude mice led to development of teratoma containing tissues from all three primary germ layers, indicating that iPSC from Ahnak(-/-) MEF are bona fide pluripotent stem cells. Taken together, these data provide evidence for a new role for Ahnak in cell fate determination during development and suggest that manipulation of Ahnak and the associated signaling pathway may provide a means to regulate iPSC generation.
Collapse
Affiliation(s)
- Hee Jung Lim
- From the Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Jusong Kim
- From the Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Chang-Hwan Park
- the Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 133-791, Korea, and
| | - Sang A Lee
- the Soonchunhyang Institute of Medi-bioscience, Soon Chun Hyang University, Cheonan 31538, Korea
| | - Man Ryul Lee
- the Soonchunhyang Institute of Medi-bioscience, Soon Chun Hyang University, Cheonan 31538, Korea
| | - Kye-Seong Kim
- the Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 133-791, Korea, and
| | - Jaesang Kim
- From the Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea,
| | - Yun Soo Bae
- From the Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea,
| |
Collapse
|
30
|
Shin JH, Kim IY, Kim YN, Shin SM, Roh KJ, Lee SH, Sohn M, Cho SY, Lee SH, Ko CY, Kim HS, Choi CS, Bae YS, Seong JK. Obesity Resistance and Enhanced Insulin Sensitivity in Ahnak-/- Mice Fed a High Fat Diet Are Related to Impaired Adipogenesis and Increased Energy Expenditure. PLoS One 2015; 10:e0139720. [PMID: 26466345 PMCID: PMC4605776 DOI: 10.1371/journal.pone.0139720] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/16/2015] [Indexed: 11/18/2022] Open
Abstract
Objective Recent evidence has suggested that AHNAK expression is altered in obesity, although its role in adipose tissue development remains unclear. The objective of this study was to determine the molecular mechanism by which Ahnak influences adipogenesis and glucose homeostasis. Design We investigated the in vitro role of AHNAK in adipogenesis using adipose-derived mesenchymal stem cells (ADSCs) and C3H10T1/2 cells. AHNAK-KO male mice were fed a high-fat diet (HFD; 60% calories from fat) and examined for glucose and insulin tolerances, for body fat compositions, and by hyperinsulinemic-euglycemic clamping. Energy expenditures were assessed using metabolic cages and by measuring the expression levels of genes involved in thermogenesis in white or brown adipose tissues. Results Adipogenesis in ADSCs was impaired in AHNAK-KO mice. The loss of AHNAK led to decreased BMP4/SMAD1 signaling, resulting in the downregulation of key regulators of adipocyte differentiation (P<0.05). AHNAK directly interacted with SMAD1 on the Pparγ2 promoter. Concomitantly, HFD-fed AHNAK-KO mice displayed reduced hepatosteatosis and improved metabolic profiles, including improved glucose tolerance (P<0.001), enhanced insulin sensitivity (P<0.001), and increased energy expenditure (P<0.05), without undergoing alterations in food intake and physical activity. Conclusion AHNAK plays a crucial role in body fat accumulation by regulating adipose tissue development via interaction with the SMAD1 protein and can be involved in metabolic homeostasis.
Collapse
Affiliation(s)
- Jae Hoon Shin
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea
| | - Il Yong Kim
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea
| | - Yo Na Kim
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea
| | - Sun Mee Shin
- Division of Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Kyung Jin Roh
- Lee Gil Ya Cancer and Diabetes Institute and Division of Endocrinology Gil Medical Center, Gachon University of Medicine and Science, Incheon, South Korea
| | - Seo Hyun Lee
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea
| | - Mira Sohn
- Division of Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Soo Young Cho
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea
| | - Sang Hyuk Lee
- Ewha Research Center for Systems Biology, Ewha Womans University, Seoul, South Korea
| | - Chang-Yong Ko
- Department of Biomedical Engineering, College of Health Science, Institute of Medical Engineering, Yonsei University, Wonju, South Korea
| | - Han-Sung Kim
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea
| | - Cheol Soo Choi
- Lee Gil Ya Cancer and Diabetes Institute and Division of Endocrinology Gil Medical Center, Gachon University of Medicine and Science, Incheon, South Korea
| | - Yun Soo Bae
- Division of Life Sciences, Ewha Womans University, Seoul, South Korea
- * E-mail: (JKS); (YSB)
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX Institute, Seoul National University, Seoul, South Korea
- * E-mail: (JKS); (YSB)
| |
Collapse
|
31
|
Plasma membrane and cytoskeleton dynamics during single-cell wound healing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [DOI: 10.1016/j.bbamcr.2015.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Shin JH, Kim YN, Kim IY, Choi DH, Yi SS, Seong JK. Increased Cell Proliferations and Neurogenesis in the Hippocampal Dentate Gyrus of Ahnak Deficient Mice. Neurochem Res 2015; 40:1457-62. [DOI: 10.1007/s11064-015-1615-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
|
33
|
Edelmann MJ, Shack LA, Naske CD, Walters KB, Nanduri B. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles. PLoS One 2014; 9:e114390. [PMID: 25470785 PMCID: PMC4255034 DOI: 10.1371/journal.pone.0114390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/09/2014] [Indexed: 12/03/2022] Open
Abstract
Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.
Collapse
Affiliation(s)
- Mariola J. Edelmann
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, 240 Wise Center Drive, Mississippi State University, Mississippi, United States of America
| | - Leslie A. Shack
- Department of Basic Sciences, College of Veterinary Medicine, 240 Wise Center Drive, Mississippi State University, Mississippi, United States of America
| | - Caitlin D. Naske
- Department of Chemical Engineering, Mississippi State University, Mississippi, United States of America
| | - Keisha B. Walters
- Department of Chemical Engineering, Mississippi State University, Mississippi, United States of America
| | - Bindu Nanduri
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, 240 Wise Center Drive, Mississippi State University, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
34
|
Davis TA, Loos B, Engelbrecht AM. AHNAK: the giant jack of all trades. Cell Signal 2014; 26:2683-93. [PMID: 25172424 DOI: 10.1016/j.cellsig.2014.08.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
Abstract
The nucleoprotein AHNAK is an unusual and somewhat mysterious scaffolding protein characterised by its large size of approximately 700 kDa. Several aspects of this protein remain uncertain, including its exact molecular function and regulation on both the gene and protein levels. Various studies have attempted to annotate AHNAK and, notably, protein interaction and expression analyses have contributed greatly to our current understanding of the protein. The implicated biological processes are, however, very diverse, ranging from a role in the formation of the blood-brain barrier, cell architecture and migration, to the regulation of cardiac calcium channels and muscle membrane repair. In addition, recent evidence suggests that AHNAK might be yet another accomplice in the development of tumour metastasis. This review will discuss the different functional roles of AHNAK, highlighting recent advancements that have added foundation to the proposed roles while identifying ties between them. Implications for related fields of research are noted and suggestions for future research that will assist in unravelling the function of AHNAK are offered.
Collapse
Affiliation(s)
- T A Davis
- Department of Physiological Sciences, University of Stellenbosch, Mike de Vries Building, c/o Merriman Avenue and Bosman Street, Stellenbosch 7600, South Africa.
| | - B Loos
- Department of Physiological Sciences, University of Stellenbosch, Mike de Vries Building, c/o Merriman Avenue and Bosman Street, Stellenbosch 7600, South Africa
| | - A-M Engelbrecht
- Department of Physiological Sciences, University of Stellenbosch, Mike de Vries Building, c/o Merriman Avenue and Bosman Street, Stellenbosch 7600, South Africa
| |
Collapse
|
35
|
Lee IH, Sohn M, Lim HJ, Yoon S, Oh H, Shin S, Shin JH, Oh SH, Kim J, Lee DK, Noh DY, Bae DS, Seong JK, Bae YS. Ahnak functions as a tumor suppressor via modulation of TGFβ/Smad signaling pathway. Oncogene 2014; 33:4675-84. [PMID: 24662814 PMCID: PMC4180639 DOI: 10.1038/onc.2014.69] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 12/15/2013] [Accepted: 12/24/2013] [Indexed: 02/06/2023]
Abstract
We provide detailed mechanisms of Ahnak-mediated potentiation of transforming growth factor β (TGFβ) signaling, which leads to a negative regulation of cell growth. We show that Smad3 interacts with Ahnak through MH2 domain and that Ahnak stimulates Smad3 localization into nucleus leading to potentiating TGFβ-induced transcriptional activity of R-Smad. Moreover, overexpression of Ahnak resulted in growth retardation and cell cycle arrest through downregulation of c-Myc and cyclin D1/D2. We describe results from analyses of Ahnak−/− mouse model expressing middle T antigen in a mammary gland-specific manner (MMTVTg/+Ahnak−/−), which showed significantly progressed hyperplasia of mammary glands compared with MMTVTg/+Ahnak+/+. Finally, we screened multiple human breast cancer tissues and showed that the expression of Ahnak in cancer tissues is lower than that in control tissues by 50%. Taken together, these data indicate that Ahnak mediates a negative regulation of cell growth and acts as novel tumor suppressor through potentiation of TGFβ signaling.
Collapse
Affiliation(s)
- I H Lee
- Department of Life Sciences and GT5 program, Ewha Womans University, Seoul, Korea
| | - M Sohn
- Department of Life Sciences and GT5 program, Ewha Womans University, Seoul, Korea
| | - H J Lim
- Department of Life Sciences and GT5 program, Ewha Womans University, Seoul, Korea
| | - S Yoon
- Department of Life Sciences and GT5 program, Ewha Womans University, Seoul, Korea
| | - H Oh
- Department of Life Sciences and GT5 program, Ewha Womans University, Seoul, Korea
| | - S Shin
- Department of Life Sciences and GT5 program, Ewha Womans University, Seoul, Korea
| | - J H Shin
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - S-H Oh
- College of Pharmacy, Gachon University, Incheon, Korea
| | - J Kim
- Department of Life Sciences and GT5 program, Ewha Womans University, Seoul, Korea
| | - D K Lee
- Department of Life Sciences and GT5 program, Ewha Womans University, Seoul, Korea
| | - D Y Noh
- Department of Surgery, School of Medicine, Seoul National University, Seoul, Korea
| | - D S Bae
- Department of Obstetrics and Gynecology, Samsung Hospital, SungKyunKwan University, Seoul, Korea
| | - J K Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Y S Bae
- Department of Life Sciences and GT5 program, Ewha Womans University, Seoul, Korea
| |
Collapse
|
36
|
Jolly C, Winfree S, Hansen B, Steele-Mortimer O. The Annexin A2/p11 complex is required for efficient invasion of Salmonella Typhimurium in epithelial cells. Cell Microbiol 2014; 16:64-77. [PMID: 23931152 PMCID: PMC3921270 DOI: 10.1111/cmi.12180] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022]
Abstract
The facultative intracellular pathogen, Salmonella enterica, triggers its own uptake into non-phagocytic epithelial cells. Invasion is dependent on a type 3 secretion system (T3SS), which delivers a cohort of effector proteins across the plasma membrane where they induce dynamic actin-driven ruffling of the membrane and ultimately, internalization of the bacteria into a modified phagosome. In eukaryotic cells, the calcium- and phospholipid-binding protein Annexin A2 (AnxA2) functions as a platform for actin remodelling in the vicinity of dynamic cellular membranes. AnxA2 is mostly found in a stable heterotetramer, with p11, which can interact with other proteins such as the giant phosphoprotein AHNAK. We show here that AnxA2, p11 and AHNAK are required for T3SS-mediated Salmonella invasion of cultured epithelial cells and that the T3SS effector SopB is required for recruitment of AnxA2 and AHNAK to Salmonella invasion sites. Altogether this work shows that, in addition to targeting Rho-family GTPases, Salmonella can intersect the host cell actin pathway via AnxA2.
Collapse
Affiliation(s)
- Carrie Jolly
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Seth Winfree
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Bryan Hansen
- Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Olivia Steele-Mortimer
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| |
Collapse
|
37
|
Woo S, Lee A, Denis V, Chen CA, Yum S. Transcript response of soft coral (Scleronephthya gracillimum) on exposure to polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:901-910. [PMID: 23832774 DOI: 10.1007/s11356-013-1958-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the most persistent organic pollutants in worldwide aquatic environments. The extensive isolation of genes responsive to PAH pollution in soft coral (Scleronephthya gracillimum) is described herein. Soft coral colonies were exposed to 100 μg/L of a standard mixture of PAHs. Gene candidates with transcript levels that changed in response to PAH exposure were identified by differential display polymerase chain reaction (DD-PCR). There were 37 types of candidate genes identified, of which 20 were upregulated in expression and 17 were downregulated. The functions of the genes identified included oxidative stress response, ribosomal structure maintenance, molecular chaperone activity, protein kinase activation and tumorigenesis, defense mechanisms, transcription, and other biological responses. mRNA quantification was carried out using real-time quantitative PCR in eight selected genes: cytosolic malate dehydrogenase, protein disulfide isomerase, ribosomal protein L6, ral guanine nucleotide dissociation stimulator-like 1, poly(ADP-ribose) polymerase 4, peptidylglycine α-hydroxylating monooxygenase, a disintegrin and metalloproteinase (ADAM) metallopeptidase protein, and eukaryotic initiation factor 4 gamma 3. Changes in transcript levels were consistent with DD-PCR results. The gene candidates isolated in this study were differentially expressed and therefore have potential as molecular biomarkers for understanding coral responses to environmental stressors.
Collapse
Affiliation(s)
- Seonock Woo
- South Sea Environment Research Division, Korea Institute of Ocean Science and Technology, Geoje, 656-830, Republic of Korea
| | | | | | | | | |
Collapse
|
38
|
Chen RC, Chuang LY, Tseng WL, Tyan YC, Lu CY. Determination of phosphoserine/threonine by nano ultra-performance liquid chromatography-tandem mass spectrometry coupled with microscale labeling. Anal Biochem 2013; 443:187-96. [PMID: 23994561 DOI: 10.1016/j.ab.2013.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 08/17/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022]
Abstract
Protein phosphorylation is an important regulatory post-translational modification in many biochemical processes. The phosphopeptide analysis strategies developed in this study were all at microscale. After using a standard microwave oven to assist protein digestion, phosphoserine and phosphothreonine were tagged with chemical analogues, such as 2-mercaptoethanol and 3-mercapto-1-propanol, to enable simultaneously relative quantitation and identification. This method enabled the use of thio alcohols for direct labeling of phosphorylated sites (not labeled at the mercapto, amino, hydroxyl, or carboxyl groups) of phosphopeptides. Various digestion parameters (e.g., microwave power, reaction time, NH4HCO3 concentration) and derivatization efficiency parameters (e.g., reaction time, labeling tag concentration) were studied and optimized. In both control and experimental samples, microwave-assisted digestion coupled with relative quantitation using analogue tags enabled calculation of phosphopeptide ratios in the same sequence. A non-labeling method was also established for quantifying phosphopeptides in human plasma by using the abundant protein albumin as an internal control for normalizing relative quantities of phosphopeptides. Nano ultra-performance liquid chromatography (nanoUPLC) was combined with LTQ Orbitrap to enable simultaneous protein relative quantitation and identification. These strategies proved to be effective for quantifying phosphopeptides in biological samples.
Collapse
Affiliation(s)
- Rong-Chun Chen
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | | | | | | | | |
Collapse
|
39
|
Li J, Kil C, Considine K, Smarkucki B, Stankewich MC, Balgley B, Vortmeyer AO. Intrinsic indicators for specimen degradation. J Transl Med 2013; 93:242-53. [PMID: 23212099 DOI: 10.1038/labinvest.2012.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Variable degrees of molecular degradation occur in human surgical specimens before clinical examination and severely affect analytical results. We therefore initiated an investigation to identify protein markers for tissue degradation assessment. We exposed 4 cell lines and 64 surgical/autopsy specimens to defined periods of time at room temperature before procurement (experimental cold ischemic time (CIT)-dependent tissue degradation model). Using two-dimensional fluorescence difference gel electrophoresis in conjunction with mass spectrometry, we performed comparative proteomic analyses on cells at different CIT exposures and identified proteins with CIT-dependent changes. The results were validated by testing clinical specimens with western blot analysis. We identified 26 proteins that underwent dynamic changes (characterized by continuous quantitative changes, isoelectric changes, and/or proteolytic cleavages) in our degradation model. These changes are strongly associated with the length of CIT. We demonstrate these proteins to represent universal tissue degradation indicators (TDIs) in clinical specimens. We also devised and implemented a unique degradation measure by calculating the quantitative ratio between TDIs' intact forms and their respective degradation-modified products. For the first time, we have identified protein TDIs for quantitative measurement of specimen degradation. Implementing these indicators may yield a potentially transformative platform dedicated to quality control in clinical specimen analyses.
Collapse
Affiliation(s)
- Jie Li
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Lim HJ, Kang DH, Lim JM, Kang DM, Seong JK, Kang SW, Bae YS. Function of Ahnak protein in aortic smooth muscle cell migration through Rac activation. Cardiovasc Res 2012; 97:302-10. [PMID: 23042471 DOI: 10.1093/cvr/cvs311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Ahnak protein acts as a scaffold protein networking phospholipase C-γ and protein kinase C-α, which subsequently stimulate an extracellular signal-regulated kinase (Erk) pathway. In mouse aortic smooth muscle cells (ASMCs), the activation of the signalling cascade ultimately promotes the cell migration through an unknown mechanism. We aimed to dissect the Ahnak-mediated cell signalling network involved in the migration of ASMCs. METHODS AND RESULTS Migration of ASMCs from wild-type mice was significantly increased by platelet-derived growth factor (PDGF) stimulation in transwell chamber and wound-healing assays, whereas migration of ASMCs from Ahnak knockout mice was reduced. Consistently, stimulation of wild-type ASMCs with PDGF resulted in Rac activation-mediated lamellipodial protrusion in migrating cells. In contrast, Ahnak knockout ASMCs displayed lower activation of Rac in response to PDGF and slow lamellipodial protrusion rate and cell migration. Ahnak signalling complex was analysed by immunoprecipitation with antibody to p21-activated protein kinase (PAK). Ahnak protein was shown to function as the signalling scaffold interacting with the multiple protein complex of Erk, PAK, and p21-activated kinase-interacting exchange factor β. The proposed role of Ahnak in cell migration was examined using a restenosis model in which the carotid arteries of mice were subjected to post-ligation injury. We show neointimal formation and SMC migration after ligation injury in Ahnak knockout mice were significantly retarded compared with wild-type mice. CONCLUSION Ahnak protein plays an important scaffolding function connecting Erk and Rac activation in PDGF-dependent migration of ASMC.
Collapse
Affiliation(s)
- Hee Jung Lim
- Department of Life Science, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul 120-750, Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Pan CQ, Sudol M, Sheetz M, Low BC. Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cell Signal 2012; 24:2143-65. [PMID: 22743133 DOI: 10.1016/j.cellsig.2012.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/22/2012] [Accepted: 06/16/2012] [Indexed: 01/14/2023]
Abstract
Cells coordinate and integrate various functional modules that control their dynamics, intracellular trafficking, metabolism and gene expression. Such capacity is mediated by specific scaffold proteins that tether multiple components of signaling pathways at plasma membrane, Golgi apparatus, mitochondria, endoplasmic reticulum, nucleus and in more specialized subcellular structures such as focal adhesions, cell-cell junctions, endosomes, vesicles and synapses. Scaffold proteins act as "pacemakers" as well as "placemakers" that regulate the temporal, spatial and kinetic aspects of protein complex assembly by modulating the local concentrations, proximity, subcellular dispositions and biochemical properties of the target proteins through the intricate use of their modular protein domains. These regulatory mechanisms allow them to gate the specificity, integration and crosstalk of different signaling modules. In addition to acting as physical platforms for protein assembly, many professional scaffold proteins can also directly modify the properties of their targets while they themselves can be regulated by post-translational modifications and/or mechanical forces. Furthermore, multiple scaffold proteins can form alliances of higher-order regulatory networks. Here, we highlight the emerging themes of scaffold proteins by analyzing their common and distinctive mechanisms of action and regulation, which underlie their functional plasticity in cell signaling. Understanding these mechanisms in the context of space, time and force should have ramifications for human physiology and for developing new therapeutic approaches to control pathological states and diseases.
Collapse
Affiliation(s)
- Catherine Qiurong Pan
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Republic of Singapore.
| | | | | | | |
Collapse
|
42
|
Cheng W, Wang L, Zhang R, Du P, Yang B, Zhuang H, Tang B, Yao C, Yu M, Wang Y, Zhang J, Yin W, Li J, Zheng W, Lu M, Hua Z. Regulation of protein kinase C inactivation by Fas-associated protein with death domain. J Biol Chem 2012; 287:26126-35. [PMID: 22582393 DOI: 10.1074/jbc.m112.342170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein kinase C (PKC) plays important roles in diverse cellular processes. PKC has been implicated in regulating Fas-associated protein with death domain (FADD), an important adaptor protein involved in regulating death receptor-mediated apoptosis. FADD also plays an important role in non-apoptosis processes. The functional interaction of PKC and FADD in non-apoptotic processes has not been examined. In this study, we show that FADD is involved in maintaining the phosphorylation of the turn motif and hydrophobic motif in the activated conventional PKC (cPKC). A phosphoryl-mimicking mutation (S191D) in FADD (FADD-D) abolished the function of FADD in the facilitation of the turn motif and hydrophobic motif dephosphorylation of cPKC, suggesting that phosphorylation of Ser-191 negatively regulates FADD. We show that FADD interacts with PP2A, which is a major phosphatase involved in dephosphorylation of activated cPKC and FADD deficiency abolished PP2A mediated dephosphorylation of cPKC. We show that FADD deficiency leads to increased stability and activity of cPKC, which, in turn, promotes cytoskeleton reorganization, cell motility, and chemotaxis. Collectively, these results reveal a novel function of FADD in a non-apoptotic process by modulating cPKC dephosphorylation, stability, and signaling termination.
Collapse
Affiliation(s)
- Wei Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Uchida Y, Endoh T, Tazaki M, Sueishi K. Chronic bradykinin treatment alters 1α,25-dihydroxyvitamin D3-induced calcium current modulation in pre-osteoblasts. Cell Calcium 2012; 51:383-92. [DOI: 10.1016/j.ceca.2011.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 12/21/2011] [Accepted: 12/24/2011] [Indexed: 11/29/2022]
|
44
|
Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, Li F, Tsang S, Wu K, Wu H, He W, Zeng L, Xing M, Wu R, Jiang H, Liu X, Cao D, Guo G, Hu X, Gui Y, Li Z, Xie W, Sun X, Shi M, Cai Z, Wang B, Zhong M, Li J, Lu Z, Gu N, Zhang X, Goodman L, Bolund L, Wang J, Yang H, Kristiansen K, Dean M, Li Y, Wang J. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 2012; 148:886-95. [PMID: 22385958 DOI: 10.1016/j.cell.2012.02.025] [Citation(s) in RCA: 487] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/15/2011] [Accepted: 02/15/2012] [Indexed: 02/07/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer and has very few mutations that are shared between different patients. To better understand the intratumoral genetics underlying mutations of ccRCC, we carried out single-cell exome sequencing on a ccRCC tumor and its adjacent kidney tissue. Our data indicate that this tumor was unlikely to have resulted from mutations in VHL and PBRM1. Quantitative population genetic analysis indicates that the tumor did not contain any significant clonal subpopulations and also showed that mutations that had different allele frequencies within the population also had different mutation spectrums. Analyses of these data allowed us to delineate a detailed intratumoral genetic landscape at a single-cell level. Our pilot study demonstrates that ccRCC may be more genetically complex than previously thought and provides information that can lead to new ways to investigate individual tumors, with the aim of developing more effective cellular targeted therapies.
Collapse
Affiliation(s)
- Xun Xu
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ahn JH, Kim Y, Kim HS, Greengard P, Nairn AC. Protein kinase C-dependent dephosphorylation of tyrosine hydroxylase requires the B56δ heterotrimeric form of protein phosphatase 2A. PLoS One 2011; 6:e26292. [PMID: 22046270 PMCID: PMC3198769 DOI: 10.1371/journal.pone.0026292] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/24/2011] [Indexed: 11/19/2022] Open
Abstract
Tyrosine hydroxylase, which plays a critical role in regulation of dopamine synthesis, is known to be controlled by phosphorylation at several critical sites. One of these sites, Ser40, is phosphorylated by a number of protein kinases, including protein kinase A. The major protein phosphatase that dephosphorylates Ser40 is protein phosphatase-2A (PP2A). A recent study has also linked protein kinase C to the dephosphorylation of Ser40 [1], but the mechanism is unclear. PP2A isoforms are comprised of catalytic, scaffold, and regulatory subunits, the regulatory B subunits being able to influence cellular localization and substrate selection. In the current study, we find that protein kinase C is able to phosphorylate a key regulatory site in the B56δ subunit leading to activation of PP2A. In turn, activation of the B56δ-containing heterotrimeric form of PP2A is responsible for enhanced dephosphorylation of Ser40 of tyrosine hydroylase in response to stimulation of PKC. In support of this mechanism, down-regulation of B56δ expression in N27 cells using RNAi was found to increase dopamine synthesis. Together these studies reveal molecular details of how protein kinase C is linked to reduced tyrosine hydroxylase activity via control of PP2A, and also add to the complexity of protein kinase/protein phosphatase interactions.
Collapse
Affiliation(s)
- Jung-Hyuck Ahn
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea
- * E-mail: (JHA); (ACN)
| | - Yong Kim
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York, United States of America
| | - Hee-Sun Kim
- Department of Molecular Medicine and Tissue Injury Defense Research Center, Ewha Womans University, School of Medicine, Seoul, Korea
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York, United States of America
| | - Angus C. Nairn
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York, United States of America
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (JHA); (ACN)
| |
Collapse
|
46
|
|
47
|
1H NMR-based metabolomic study on resistance to diet-induced obesity in AHNAK knock-out mice. Biochem Biophys Res Commun 2010; 403:428-34. [DOI: 10.1016/j.bbrc.2010.11.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/14/2010] [Indexed: 11/18/2022]
|
48
|
Alvarez JL, Petzhold D, Pankonien I, Behlke J, Kouno M, Vassort G, Morano I, Haase H. Ahnak1 modulates L-type Ca2+ channel inactivation of rodent cardiomyocytes. Pflugers Arch 2010; 460:719-30. [DOI: 10.1007/s00424-010-0853-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/28/2010] [Accepted: 06/02/2010] [Indexed: 01/21/2023]
|
49
|
Congote LF, Sadvakassova G, Dobocan MC, Difalco MR, Kriazhev L. Biological activities and molecular interactions of the C-terminal residue of thrombospondin-4, an epitome of acidic amphipathic peptides. Peptides 2010; 31:723-35. [PMID: 20006665 DOI: 10.1016/j.peptides.2009.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/04/2009] [Accepted: 12/07/2009] [Indexed: 11/17/2022]
Abstract
C21, the C-terminal residue of thrombospondin-4 (TSP-4), was identified as a peptide growth factor during an investigation concerning erythropoietin-dependent, erythroid stimulating factors of endothelial origin. It is active in cultures of several human hematopoietic stem cells, skin fibroblasts and kidney epithelial cells and stimulates red cell formation in anemic mice. A method of affinity chromatography in the presence of high concentrations of Triton X-100, previously developed for identifying proteins associated with the TSP-1 receptor CD47, was utilized for the detection of C21 binding molecules and their detergent-resistant, associated partners. These experiments helped to delineate two different mechanisms of C21 action, which are compatible with its cell proliferating activity. As a cell matrix peptide, C21 binds to the osteopontin receptor CD44 and could act as an osteopontin antagonist, preventing the inhibition of primitive hematopoietic stem cell proliferation. TSP-1, another matrix protein, binds to C21 and could indirectly act as an antagonist, by shunting C21-CD44 interactions. The second mechanism is a direct effect of C21 on cell proliferation. The extremely rapid internalization and nuclear localization of the peptide could be explained by CD44-mediated internalization, followed by a microtubule-mediated transport towards the nucleus, or, eventually, direct membrane insertion. These alternative hypotheses are supported by previously observed membrane insertion of similar synthetic and viral acidic amphipathic peptides, the presence of microtubule-associated protein 1B (MAP1B) and dynactin in the triton-soluble complexes associated with C21 and the presence in such complexes of dual compartment proteins for nuclei and plasma membranes, such as MAP1B, AHNAK and CD44.
Collapse
Affiliation(s)
- Luis F Congote
- Endocrine Laboratory, McGill University Health Centre, 687 Avenue des Pins, Ouest, Montreal, Canada H3A 1A1.
| | | | | | | | | |
Collapse
|
50
|
Abstract
T lymphocytes require Ca2+ entry though the plasma membrane for their activation and function. Recently, several routes for Ca2+ entry through the T-cell plasma membrane after activation have been described. These include calcium release-activated channels (CRAC), transient receptor potential (TRP) channels, and inositol-1,4,5-trisphosphate receptors (IP3Rs). Herein we review the emergence of a fourth new route for Ca2+ entry, composed of Ca(v) channels (also known as L-type voltage-gated calcium channels) and the scaffold protein AHNAK1 (AHNAK/desmoyokin). Both helper (CD4+) and killer (CD8+) T cells express high levels of Ca(v)1 alpha1 subunits (alpha1S, alpha1C, alpha1D, and alpha1F) and AHNAK1 after their differentiation and require these molecules for Ca2+ entry during an immune response. In this article, we describe the observations and open questions that ultimately suggest the involvement of multiple consecutive routes for Ca2+ entry into lymphocytes, one of which may be mediated by Ca(v) channels and AHNAK1.
Collapse
Affiliation(s)
- Didi Matza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|