1
|
Einhorn V, Haase H, Maares M. Interaction and competition for intestinal absorption by zinc, iron, copper, and manganese at the intestinal mucus layer. J Trace Elem Med Biol 2024; 84:127459. [PMID: 38640745 DOI: 10.1016/j.jtemb.2024.127459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Trace elements such as zinc, manganese, copper, or iron are essential for a wide range of physiological functions. It is therefore crucial to ensure an adequate supply of these elements to the body. Many previous investigations have dealt with the role of transport proteins, in particular their selectivity for, and competition between, different ions. Another so far less well investigated major factor influencing the absorption of trace elements seems to be the intestinal mucus layer. This gel-like substance covers the entire gastrointestinal tract and its physiochemical properties can be mainly assigned to the glycoproteins it contains, so-called mucins. Interaction with mucins has already been demonstrated for some metals. However, knowledge about the impact on the respective bioavailability and competition between those metals is still sketchy. This review therefore aims to summarize the findings and knowledge gaps about potential effects regarding the interaction between gastrointestinal mucins and the trace elements iron, zinc, manganese, and copper. Mucins play an indispensable role in the absorption of these trace elements in the neutral to slightly alkaline environment of the intestine, by keeping them in a soluble form that can be absorbed by enterocytes. Furthermore, the studies so far indicate that the competition between these trace elements for uptake already starts at the intestinal mucus layer, yet further research is required to completely understand this interaction.
Collapse
Affiliation(s)
- Vincent Einhorn
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany
| | - Hajo Haase
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany
| | - Maria Maares
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| |
Collapse
|
2
|
Lee SH, Lee H, You HS, Sung HJ, Hyun SH. Metabolic pathway prediction of core microbiome based on enterotype and orotype. Front Cell Infect Microbiol 2023; 13:1173085. [PMID: 37424791 PMCID: PMC10325833 DOI: 10.3389/fcimb.2023.1173085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Identification of key microbiome components has been suggested to help address the maintenance of oral and intestinal health in humans. The core microbiome is similar in all individuals, whereas the diverse microbiome varies across individuals, based on their unique lifestyles and phenotypic and genotypic determinants. In this study, we aimed to predict the metabolism of core microorganisms in the gut and oral environment based on enterotyping and orotyping. Materials and methods Gut and oral samples were collected from 83 Korean women aged 50 years or older. The extracted DNA was subjected to next-generation sequencing analysis of 16S rRNA hypervariable regions V3-V4. Results Gut bacteria were clustered into three enterotypes, while oral bacteria were clustered into three orotypes. Sixty-three of the core microbiome between the gut and oral population were correlated, and different metabolic pathways were predicted for each type. Eubacterium_g11, Actinomyces, Atopobium, and Enterococcus were significantly positively correlated between the gut and oral abundance. The four bacteria were classified as type 3 in orotype and type 2 in enterotype. Conclusion Overall, the study suggested that collapsing the human body's multidimensional microbiome into a few categories may help characterize the microbiomes better and address health issues more deeply.
Collapse
Affiliation(s)
- Song Hee Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| | - Han Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| | - Hee Sang You
- Laboratory of Gastrointestinal Mucosal Immunology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Ho-joong Sung
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam, Republic of Korea
| | - Sung Hee Hyun
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| |
Collapse
|
3
|
Eckard ML, Marvin E, Conrad K, Oberdörster G, Sobolewski M, Cory-Slechta DA. Neonatal exposure to ultrafine iron but not combined iron and sulfur aerosols recapitulates air pollution-induced impulsivity in mice. Neurotoxicology 2023; 94:191-205. [PMID: 36509212 PMCID: PMC9839645 DOI: 10.1016/j.neuro.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Air pollution (AP) is becoming recognized as a major threat to neurological health across the lifespan with increased risk of both neurodevelopmental and neurodegenerative disorders. AP is a complex mixture of gases and particulate matter, with adsorbed contaminants including metals and trace elements, which may differentially contribute to its neurodevelopmental impacts. Iron (Fe) is one of the most abundant metals found in AP, and Fe concentrations may drive some behavioral deficits observed in children. Furthermore, brains of neonate mice exposed to concentrated ambient ultrafine particulate matter (UFP) show significant brain accumulation of Fe and sulfur (S) supporting the hypothesis that AP exposure may lead to brain metal dyshomeostasis. The current study determined the extent to which behavioral effects of UFP, namely memory deficits and impulsive-like behavior, could be recapitulated with exposure to Fe aerosols with or without concomitant SO2. Male and female neonate mice were either exposed to filtered air or spark discharge-generated ultrafine Fe particles with or without SO2 gas (n = 12/exposure/sex). Inhalation exposures occurred from postnatal day (PND) 4-7 and 10-13 for 4 hr/day, mirroring our previous UFP exposures. Mice were aged to adulthood prior to behavioral testing. While Fe or Fe + SO2 exposure did not affect gross locomotor behavior, Fe + SO2-exposed females displayed consistent thigmotaxis during locomotor testing. Neither exposure affected novel object memory. Fe or Fe + SO2 exposure produced differential outcomes on a fixed-interval reinforcement schedule with males showing higher (Fe-only) or lower (Fe + SO2) response rates and postreinforcement pauses (PRP) and females showing higher (Fe-only) PRP. Lastly, Fe-exposed, but not Fe + SO2-exposed, males showed increased impulsive-like behavior in tasks requiring response inhibition with no such effects in female mice. These findings suggest that: 1) exposure to realistic concentrations of Fe aerosols can recapitulate behavioral effects of UFP exposure, 2) the presence of SO2 can modulate behavioral effects of Fe inhalation, and 3) brain metal dyshomeostasis may be an important factor in AP neurotoxicity.
Collapse
Affiliation(s)
- M L Eckard
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA; Department of Psychology, Radford University, Radford, VA, USA.
| | - E Marvin
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - K Conrad
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - G Oberdörster
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - M Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - D A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| |
Collapse
|
4
|
Renna M, D’Imperio M, Maggi S, Serio F. Soilless biofortification, bioaccessibility, and bioavailability: Signposts on the path to personalized nutrition. Front Nutr 2022; 9:966018. [PMID: 36267903 PMCID: PMC9576840 DOI: 10.3389/fnut.2022.966018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Propelled by an ever-growing awareness about the importance of following dietary recommendations meeting specific biological requirements linked to a person health status, interest in personalized nutrition is on the rise. Soilless biofortification of vegetables has opened the door to the potential for adapting vegetable production to specific dietary requirements. The evolution of vegetables biofortification toward tailored food is examined focusing on some specific categories of people in a context of personalized nutrition instead to simple describe developments in vegetables biofortification with reference to the single element or compound not adequately present in the daily diet. The concepts of bioavailability and bioaccessibility as a useful support tool for the precision biofortification were detailed. Key prospects for challenges ahead aiming to combine product quality and sustainable are also highlighted. Hydroponically cultivation of vegetables with low potassium content may be effective to obtain tailored leafy and fruit vegetable products for people with impaired kidney function. Simultaneous biofortification of calcium, silicon, and boron in the same vegetable to obtain vegetable products useful for bone health deserve further attention. The right dosage of the lithium in the nutrient solution appears essential to obtain tailored vegetables able to positively influence mental health in groups of people susceptible to mental illness. Modulate nitrogen fertilization may reduce or enhance nitrate in vegetables to obtain tailored products, respectively, for children and athletes. Future research are needed to produce nickel-free vegetable products for individuals sensitized to nickel. The multidisciplinary approach toward tailored foods is a winning one and must increasingly include a synergy between agronomic, biological, and medical skills.
Collapse
Affiliation(s)
- Massimiliano Renna
- Department of Soil and Food Science, University of Bari Aldo Moro, Bari, Italy
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Massimiliano D’Imperio
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Stefania Maggi
- Neuroscience Institute, National Research Council of Italy, Padua, Italy
| | - Francesco Serio
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| |
Collapse
|
5
|
Huynh U, Qiao M, King J, Trinh B, Valdez J, Haq M, Zastrow ML. Differential Effects of Transition Metals on Growth and Metal Uptake for Two Distinct Lactobacillus Species. Microbiol Spectr 2022; 10:e0100621. [PMID: 35080431 PMCID: PMC8791193 DOI: 10.1128/spectrum.01006-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lactobacillus is a genus of Gram-positive bacteria and comprises a major part of the lactic acid bacteria group that converts sugars to lactic acid. Lactobacillus species found in the gut microbiota are considered beneficial to human health and commonly used in probiotic formulations, but their molecular functions remain poorly defined. Microbes require metal ions for growth and function and must acquire them from the surrounding environment. Therefore, lactobacilli need to compete with other gut microbes for these nutrients, although their metal requirements are not well-understood. Indeed, the abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like zinc, manganese, and iron, but few studies have investigated the role of metals, especially zinc, in the physiology and metabolism of Lactobacillus species. Here, we investigated metal uptake by quantifying total cellular metal contents and compared how transition metals affect the growth of two distinct Lactobacillus species, Lactobacillus plantarum ATCC 14917 and Lactobacillus acidophilus ATCC 4356. When grown in rich or metal-limited medium, both species took up more manganese, zinc, and iron compared with other transition metals measured. Distinct zinc-, manganese- and iron-dependent patterns were observed in the growth kinetics for these species and while certain levels of each metal promoted the growth kinetics of both Lactobacillus species, the effects depend significantly on the culture medium and growth conditions. IMPORTANCE The gastrointestinal tract contains trillions of microorganisms, which are central to human health. Lactobacilli are considered beneficial microbiota members and are often used in probiotics, but their molecular functions, and especially those which are metal-dependent, remain poorly defined. Abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like manganese, zinc, and iron, but results are complex, sometimes contradictory, and poorly predictable. There is a significant need to understand how host diet and metabolism will affect the microbiota, given that changes in microbiota composition are linked with disease and infection. The significance of our research is in gaining insight to how metals distinctly affect individual Lactobacillus species, which could lead to novel therapeutics and improved medical treatment. Growth kinetics and quantification of metal contents highlights how distinct species can respond differently to varied metal availability and provide a foundation for future molecular and mechanistic studies.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Muxin Qiao
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - John King
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Brittany Trinh
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Juventino Valdez
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Marium Haq
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Melissa L. Zastrow
- Department of Chemistry, University of Houston, Houston, Texas, United States
| |
Collapse
|
6
|
Mittag A, Owesny P, Hoera C, Kämpfe A, Glei M. Effects of Zinc Oxide Nanoparticles on Model Systems of the Intestinal Barrier. TOXICS 2022; 10:49. [PMID: 35202236 PMCID: PMC8880068 DOI: 10.3390/toxics10020049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Zinc oxide nanoparticles (ZnO NP) are often used in the food sector, among others, because of their advantageous properties. As part of the human food chain, they are inevitably taken up orally. The debate on the toxicity of orally ingested ZnO NP continues due to incomplete data. Therefore, the aim of our study was to examine the effects of two differently sized ZnO NP (<50 nm and <100 nm primary particle size; 123-614 µmol/L) on two model systems of the intestinal barrier. Differentiated Caco-2 enterocytes were grown on Transwell inserts in monoculture and also in coculture with the mucus-producing goblet cell line HT29-MTX. Although no comprehensive mucus layer was detectable in the coculture, cellular zinc uptake was clearly lower after a 24-h treatment with ZnO NP than in monocultured cells. ZnO NP showed no influence on the permeability, metabolic activity, cytoskeleton and cell nuclei. The transepithelial electrical resistance was significantly increased in the coculture model after treatment with ≥307 µmol/L ZnO NP. Only small zinc amounts (0.07-0.65 µg/mL) reached the basolateral area. Our results reveal that the cells of an intact intestinal barrier interact with ZnO NP but do not suffer serious damage.
Collapse
Affiliation(s)
- Anna Mittag
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| | - Patricia Owesny
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| | - Christian Hoera
- Swimming and Bathing Pool Water, Chemical Analytics, German Environment Agency, Heinrich-Heine-Straße 12, 08645 Bad Elster, Germany; (C.H.); (A.K.)
| | - Alexander Kämpfe
- Swimming and Bathing Pool Water, Chemical Analytics, German Environment Agency, Heinrich-Heine-Straße 12, 08645 Bad Elster, Germany; (C.H.); (A.K.)
| | - Michael Glei
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| |
Collapse
|
7
|
Aderibigbe AS, Cowieson AJ, Ajuwon KM, Adeola O. Contribution of purified soybean trypsin inhibitor and exogenous protease to endogenous amino acid losses and mineral digestibility. Poult Sci 2021; 100:101486. [PMID: 34731737 PMCID: PMC8567436 DOI: 10.1016/j.psj.2021.101486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/19/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
The primary objective of the current study was to evaluate the impact of trypsin inhibitor (TI) and exogenous protease supplementation on endogenous loss of amino acids (AA) in broiler chickens. A total of 384 Cobb-500 broiler chicks were allocated to 4 nitrogen-free diets, each with 8 replicate cages and 12 birds per replicate. The diets were arranged as a 2 × 2 factorial with factors being dietary TI (0 or 8,000 TIU/g) and exogenous protease (0 or 15,000 PROT/kg). Desired dietary TI concentration was achieved by addition of commercially available, purified soybean TI. There was no effect of TI or exogenous protease or their interaction on growth performance of birds. However, the endogenous loss of nitrogen (N) and all AA increased (P < 0.05) due to dietary TI concentration except for Cys. The increase in endogenous AA due to TI ranged from 17% for Thr to 52.2% for Trp. Exogenous protease had no effect on endogenous loss of N and all AA. There was no effect of TI or exogenous protease or their interaction on the AID of P, however AID of Ca, Fe, Mg, Mn, and Cu was reduced (P < 0.05) due to dietary TI. The AID of Cu (P < 0.01) and K (P < 0.05) improved with exogenous protease supplementation. Significant interactions (P < 0.05) between exogenous protease and TI existed for Zn, Mg, Cu, and Na. The concentration (g/kg DM intake) of crude mucin and sialic acid increased (P < 0.05) with increased dietary TI. Decreased trypsin (P < 0.001) and increased chymotrypsin (P < 0.001) activity in the pancreas were observed as a result of exogenous protease supplementation. In conclusion, the current study showed that TI increases the endogenous loss of AA and reduced the digestibility of minerals in broiler chickens. Furthermore, exogenous protease did not affect endogenous AA flow, irrespective of added purified dietary TI.
Collapse
Affiliation(s)
- A S Aderibigbe
- Department of Animal Sciences, Purdue University, West Lafayette IN 47907, USA
| | - A J Cowieson
- DSM Nutritional Products, Kaiseraugst 4303, Switzerland
| | - K M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette IN 47907, USA
| | - O Adeola
- Department of Animal Sciences, Purdue University, West Lafayette IN 47907, USA.
| |
Collapse
|
8
|
Recent Advances in Understanding the Influence of Zinc, Copper, and Manganese on the Gastrointestinal Environment of Pigs and Poultry. Animals (Basel) 2021; 11:ani11051276. [PMID: 33946674 PMCID: PMC8145729 DOI: 10.3390/ani11051276] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Pigs and poultry, similar to humans, need regular consumption of zinc, copper, and manganese for normal functioning. To ensure adequate dietary intake, and prevent deficiency, their diets are supplemented with sufficient, often excessive, levels of these minerals or even at higher levels, which have been associated with improvements in their health and/or growth. However, if provided in excess, mineral quantities beyond those required are simply excreted from the animal, which is associated with negative consequences for the environment and even the development of antimicrobial resistance. Therefore, it is of great interest to better understand the dynamics of zinc, copper, and manganese in the intestine of pigs and poultry following consumption of supplemented diets, and how the requirements and benefits related to these minerals can be optimized and negative impacts minimized. The intestine of pigs and poultry contains vast numbers of microorganisms, notably bacteria, that continually interact with, and influence, their host. This review explores the influence of zinc, copper, and manganese on these interactions and how novel forms of these minerals have the potential to maximize their delivery and benefits, while limiting any negative consequences. Abstract Zinc, copper, and manganese are prominent essential trace (or micro) minerals, being required in small, but adequate, amounts by pigs and poultry for normal biological functioning. Feed is a source of trace minerals for pigs and poultry but variable bioavailability in typical feed ingredients means that supplementation with low-cost oxides and sulphates has become common practice. Such trace mineral supplementation often provides significant ‘safety margins’, while copper and zinc have been supplemented at supra-nutritional (or pharmacological) levels to improve health and/or growth performance. Regulatory mechanisms ensure that much of this oversupply is excreted by the host into the environment, which can be toxic to plants and microorganisms or promote antimicrobial resistance in microbes, and thus supplying trace minerals more precisely to pigs and poultry is necessary. The gastrointestinal tract is thus central to the maintenance of trace mineral homeostasis and the provision of supra-nutritional or pharmacological levels is associated with modification of the gut environment, such as the microbiome. This review, therefore, considers recent advances in understanding the influence of zinc, copper, and manganese on the gastrointestinal environment of pigs and poultry, including more novel, alternative sources seeking to maintain supra-nutritional benefits with minimal environmental impact.
Collapse
|
9
|
Oliveira APD, Naozuka J. Iron species and proteins distribution in unconventional food plants. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2021. [DOI: 10.1590/1981-6723.29420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The sustainable food valorization is capable to stimulate the local products consumption with quality and nutritional security. In this scenario, Unconventional Food Plants (UFPs) deserve attention representing an alternative for rural communities and contributing to the local and regional economy. This work aimed to add nutritional information, once it evaluates total Fe concentration, Fe-species (water soluble, acid soluble, and inorganic), proteins, and Fe- proteins distribution in beldroega (Portulaca oleracea L.), guasca (Galinsoga parviflora Cav.), ora-pro-nóbis (Pereskia aculeata Mill.), piracá (Vernonia scorpioides (Lam.) Pers.), and trapoeraba (Commelina benghalensis L.). Considering the Fe total concentration, the studied UPFs can be excellent Fe sources, when compared to foods of plant origin widely consumed and cultivated, detaching the guasca leaves (687±19 µg g-1). However, the guasca leaves showed low concentration of Fe associated to macromolecules and Fe soluble species (1.6±0.3 µg g-1). These results may justify the low bioavailability of Fe species. On the other hand, beldroega leaves presented the highest concentration of inorganic Fe (1.3±0.2 µg g-1). In the UFPs, there is high glutelins concentration when compared to the other protein groups, meaning that UFPs can be low-cost alternative to supplementing protein intake. Finally, for majority UFPs, except guasca leaves, Fe is mainly associated to albumins, being a good source of bioavailable Fe species.
Collapse
|
10
|
O'Doherty C, O'Sullivan F, Henry M, Meleady P, Clynes M, Horgan K, Keenan J, Murphy R. LC-MS proteomic profiling of Caco-2 human intestinal cells exposed to the copper-chelating agent, triethylenetetramine: A preliminary study. Biochem Biophys Res Commun 2020; 524:847-852. [PMID: 32046857 DOI: 10.1016/j.bbrc.2020.01.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/01/2022]
Abstract
Homeostasis of metal micronutrients such as copper is tightly regulated to ensure deficiency does not occur while restricting damage resulting from excess accumulation. Using LC-MS the effect on the proteome of intestinal Caco-2 cells of exposure to the chelator triethylenetetramine (TETA) was investigated. Continuous exposure of TETA at 25 μM to Caco-2 cells caused decreased cell yields and morphological changes. These effects were reversed when cells were no longer exposed to TETA. Quantitative proteomic analysis identified 957 mostly low-fold differentially expressed proteins, 41 of these returned towards control Caco-2 expression following recovery. Proteins exhibiting this "reciprocal" behaviour included upregulated deoxyhypusine hydroxylase (DOHH, 15.69- fold), a protein essential for eIF-5A factor hypsuination, a post translational modification responsible for eIF-5A maturation, which in turn is responsible for translation elongation. Exposure to TETA also resulted in 87 proteins, the expression of which was stable and remained differentially expressed following recovery. This study helps to elucidate the stable and transient proteomic effects of TETA exposure in intestinal cells.
Collapse
Affiliation(s)
- Charles O'Doherty
- National Institute for Cellular Biotechnology and SSPC-SFI. Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland.
| | - Finbarr O'Sullivan
- National Institute for Cellular Biotechnology and SSPC-SFI. Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology and SSPC-SFI. Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology and SSPC-SFI. Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology and SSPC-SFI. Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland
| | - Karina Horgan
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| | - Joanne Keenan
- National Institute for Cellular Biotechnology and SSPC-SFI. Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin, D09 NR58, Ireland
| | - Richard Murphy
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| |
Collapse
|
11
|
Maares M, Haase H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of In Vitro Intestinal Models. Nutrients 2020; 12:E762. [PMID: 32183116 PMCID: PMC7146416 DOI: 10.3390/nu12030762] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc absorption in the small intestine is one of the main mechanisms regulating the systemic homeostasis of this essential trace element. This review summarizes the key aspects of human zinc homeostasis and distribution. In particular, current knowledge on human intestinal zinc absorption and the influence of diet-derived factors on bioaccessibility and bioavailability as well as intrinsic luminal and basolateral factors with an impact on zinc uptake are discussed. Their investigation is increasingly performed using in vitro cellular intestinal models, which are continually being refined and keep gaining importance for studying zinc uptake and transport via the human intestinal epithelium. The vast majority of these models is based on the human intestinal cell line Caco-2 in combination with other relevant components of the intestinal epithelium, such as mucin-secreting goblet cells and in vitro digestion models, and applying improved compositions of apical and basolateral media to mimic the in vivo situation as closely as possible. Particular emphasis is placed on summarizing previous applications as well as key results of these models, comparing their results to data obtained in humans, and discussing their advantages and limitations.
Collapse
Affiliation(s)
- Maria Maares
- Technische Universität Berlin, Chair of Food Chemistry and Toxicology, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Hajo Haase
- Technische Universität Berlin, Chair of Food Chemistry and Toxicology, Straße des 17. Juni 135, 10623 Berlin, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany
| |
Collapse
|
12
|
Liu ZD, Li HB, Fang X, Zhang H, Ma LQ, Luo J. Investigating Lead Species and Bioavailability in Contaminated Soils: Coupling DGT Technique with Artificial Gastrointestinal Extraction and in Vivo Bioassay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5717-5724. [PMID: 31009209 DOI: 10.1021/acs.est.8b06918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although strong in vivo-in vitro correlations (IVIVCs) between relative bioavailability (RBA) and bioaccessibility of soil Pb were well reported, knowledge on the fractions of bioaccessible Pb in simulated gastrointestinal (GI) fluids that are available for absorption into the systemic circulation is limited. Here, Pb-RBA in 14 Pb-contaminated soils were assessed using an in vivo mouse bioassay and compared to Pb bioaccessibility by the gastrointestinal phase of the UBM (Unified Bioaccessibility research group of Europe (BARGE) Method) in vitro assay with and without 0.45 μm filtration of GI fluid. Results showed good IVIVC between Pb-RBA and Pb bioaccessibility without filtration ( r 2 = 0.62), while Pb bioaccessibility with filtration provided a poor correlation with Pb-RBA ( r 2 = 0.16). This suggested that besides dissolved Pb ions, Pb-complexes formed in the UBM gastrointestinal fluid might also contribute to bioavailable Pb. To ascertain this, DGT (diffusive gradients in thin-films) devices which can measure both Pb2+ ions and labile inorganic and organic Pb-complexes were introduced to the UBM fluids to measure Pb DGT-bioaccessibility, which showed strong correlation to Pb-RBA ( r 2 = 0.71). With increasing diffusive gel thickness which could enhance release of Pb ions from Pb-complexes, Pb DGT-bioaccessibility increased by 3.4-5.7 times, while inclusion of dialysis membrane within DGT devices significantly decreased Pb DGT-bioaccessibility by inhibiting diffusion of Pb complexes to binding gel. These results confirmed the contribution of Pb-complexes to Pb bioavailability, providing new insights to Pb bioavailability.
Collapse
Affiliation(s)
- Zhao-Dong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Xu Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Hao Zhang
- Lancaster Environment Centre , Lancaster University , Lancaster , LA1 4YQ , United Kingdom
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , People's Republic of China
- Soil and Water Science Department , University of Florida , Gainesville , Florida 32611 , United States
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| |
Collapse
|
13
|
Horniblow RD, Mistry P, Quraishi MN, Beggs AD, Van de Wiele T, Iqbal TH, Tselepis C. The Safety and Tolerability of a Potential Alginate-Based Iron Chelator; Results of A Healthy Participant Study. Nutrients 2019; 11:E674. [PMID: 30901846 PMCID: PMC6471009 DOI: 10.3390/nu11030674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
Evidence supporting the ferro-toxic nature of iron in the progression of inflammatory bowel disease (IBD) is becoming well established. A microbial dysbiosis is observed in IBD patients, and intra-luminal colonic-iron is able to support a more pathogenic community of bacteria; whether this is attributed to the development of IBD and how iron could be mediating these microbial changes is still unknown. Dietary fibres are commonly used in pre-biotic supplements to beneficially affect the host by improving the viability of bacterial communities within the colon. Alginates are a class of biopolymers considered as prebiotics due to their fibre-like composition and are able to bind metal cations, in particular, iron. Considering that iron excess is able to negatively alter the microbiome, the use of alginate as a food supplement could be useful in colonic-iron chelation. As such, this first-in-man study aimed to assess whether the use of alginate as a dietary iron chelator was both safe and well tolerated. In addition, the impact of alginate on the microbiome and iron levels was assessed by using an intestinal model SHIME (Simulation of the Human Intestinal Microbial Ecosystem). Alginate was supplemented into the diets (3 g/day) of healthy volunteers (n = 17) for 28 days. Results from this study suggest that daily ingestion of 3 g alginate was well tolerated with very minor side effects. There were no detrimental changes in a variety of haematological parameters or the intestinal microbiome. The bacterial communities within the SHIME model were also not influenced by iron and or alginate; it is possible that alginate may be susceptible to bacterial or enzymatic degradation within the gastro-intestinal tract.
Collapse
Affiliation(s)
- Richard D Horniblow
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Pritesh Mistry
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK.
| | - Mohammed N Quraishi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- The University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham B15 2TT, UK.
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK.
| | - Tom Van de Wiele
- CMET, Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium.
| | - Tariq H Iqbal
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK.
- The University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham B15 2TT, UK.
| | - Chris Tselepis
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
14
|
Nazem MN, Sajjadian SM, Kheirandish R, Mohammadrezaei H. Histomorphometric analysis of the small intestine of broiler chick embryos injected in ovo with methionine. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study evaluated the histomorphometric effect on the small intestine of the chicken embryo after in ovo methionine injection. On Day 4 of incubation, 50 fertile eggs were allocated into one of the following five groups: control (no treatment) and four treatment groups that received either 20, 30, 40 or 50 mg methionine via their yolk sac. All eggs were incubated until Day 19, at which point the embryos were terminated and 1-cm samples of the duodenum, jejunum and ileum were taken for histology. Sections were stained by haematoxylin and eosin, Alcian blue and periodic acid Schiff methods separately. Morphometric analysis was performed to assess goblet cell number, enterocyte height, muscle-layer thickness as well as villus height, width, area and shape. The ratio of embryo bodyweight to egg weight in methionine treatment groups was more than in controls and this difference was greatest in the 40-mg methionine group. The results showed that villous height, width and area increased in treatment groups, as did enterocyte height, goblet cell number and muscle-layer thickness. The ratio and sequence of the villi was also changed in some treatments. Our results indicated that injecting methionine into the yolk sac can improve intestinal histomorphometrical parameters and that 40-mg methionine injection showed the greatest changes.
Collapse
|
15
|
|
16
|
Maares M, Keil C, Koza J, Straubing S, Schwerdtle T, Haase H. In Vitro Studies on Zinc Binding and Buffering by Intestinal Mucins. Int J Mol Sci 2018; 19:E2662. [PMID: 30205533 PMCID: PMC6164875 DOI: 10.3390/ijms19092662] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
The investigation of luminal factors influencing zinc availability and accessibility in the intestine is of great interest when analyzing parameters regulating intestinal zinc resorption. Of note, intestinal mucins were suggested to play a beneficial role in the luminal availability of zinc. Their exact zinc binding properties, however, remain unknown and the impact of these glycoproteins on human intestinal zinc resorption has not been investigated in detail. Thus, the aim of this study is to elucidate the impact of intestinal mucins on luminal uptake of zinc into enterocytes and its transfer into the blood. In the present study, in vitro zinc binding properties of mucins were analyzed using commercially available porcine mucins and secreted mucins of the goblet cell line HT-29-MTX. The molecular zinc binding capacity and average zinc binding affinity of these glycoproteins demonstrates that mucins contain multiple zinc-binding sites with biologically relevant affinity within one mucin molecule. Zinc uptake into the enterocyte cell line Caco-2 was impaired by zinc-depleted mucins. Yet this does not represent their form in the intestinal lumen in vivo under zinc adequate conditions. In fact, zinc-uptake studies into enterocytes in the presence of mucins with differing degree of zinc saturation revealed zinc buffering by these glycoproteins, indicating that mucin-bound zinc is still available for the cells. Finally, the impact of mucins on zinc resorption using three-dimensional cultures was studied comparing the zinc transfer of a Caco-2/HT-29-MTX co-culture and conventional Caco-2 monoculture. Here, the mucin secreting co-cultures yielded higher fractional zinc resorption and elevated zinc transport rates, suggesting that intestinal mucins facilitate the zinc uptake into enterocytes and act as a zinc delivery system for the intestinal epithelium.
Collapse
Affiliation(s)
- Maria Maares
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| | - Jenny Koza
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| | - Sophia Straubing
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
- TraceAge-DFG Research Unit on Interactions of essential trace elements in healthy and diseased elderly, Potsdam-Berlin-Jena, Germany.
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
- TraceAge-DFG Research Unit on Interactions of essential trace elements in healthy and diseased elderly, Potsdam-Berlin-Jena, Germany.
| |
Collapse
|
17
|
Influencing the adhesion properties and wettability of mucin protein films by variation of the environmental pH. Sci Rep 2018; 8:9660. [PMID: 29942027 PMCID: PMC6018421 DOI: 10.1038/s41598-018-28047-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022] Open
Abstract
Mucins, the main component of the mucus secretions of goblet and epithelial cells, are known for exhibiting a different behaviour in accordance with their surrounding environment (i.e. among others the environmental pH), which induces a drastic change in their measured mechanical properties. In this work, we have first employed Atomic Force Microscopy (AFM) in Force Spectroscopy mode to evaluate the adhesion of porcine mucin films at the nanoscale, and the changes caused in this particular factor by a pH variation between 7.0 and 4.0, both quite common values in biological conditions. Measurements also involved additional varying factors such as the indenting tip chemistry (hydrophobic vs hydrophilic), its residence time on the measured film (0, 1 and/or 2 seconds), and increasing pulling rates (ranging from 0.1 up to 10 µm/s). A second approach regarded the macroscale behaviour of the films, due to their potential applicability in the development of a new set of stimuli-responsive biomaterials. This was possible by means of complementary Wilhelmy plate method (to test the wetting properties) and cell proliferation studies on films previously exposed to the corresponding pH solution. According to our results, treatment with lowest pH (4.0) provides porcine mucin with a more hydrophilic character, showing a much stronger adhesion for analogous chemistries, as well as enhanced capability for cell attachment and proliferation, which opens new pathways for their future use and consideration as scaffold-forming material.
Collapse
|
18
|
Zanetti D, Godoi LA, Estrada MM, Engle TE, Silva BC, Alhadas HM, Chizzotti ML, Prados LF, Rennó LN, Valadares Filho SC. Estimating mineral requirements of Nellore beef bulls fed with or without inorganic mineral supplementation and the influence on mineral balance. J Anim Sci 2017; 95:1696-1706. [PMID: 28464116 DOI: 10.2527/jas.2016.1190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objectives of this study were to quantify the mineral balance of Nellore cattle fed with and without Ca, P, and micromineral (MM) supplementation and to estimate the net and dietary mineral requirement for cattle. Nellore cattle ( = 51; 270.4 ± 36.6 kg initial BW and 8 mo age) were assigned to 1 of 3 groups: reference ( = 5), maintenance ( = 4), and performance ( = 42). The reference group was slaughtered prior to the experiment to estimate initial body composition. The maintenance group was used to collect values of animals at low gain and reduced mineral intake. The performance group was assigned to 1 of 6 treatments: sugarcane as the roughage source with a concentrate supplement composed of soybean meal and soybean hulls with and without Ca, P, and MM supplementation; sugarcane as the roughage source with a concentrate supplement composed of soybean meal and ground corn with and without Ca, P, and MM supplementation; and corn silage as the roughage source with a concentrate supplement composed of soybean meal and ground corn with and without Ca, P, and MM supplementation. Orthogonal contrasts were adopted to compare mineral intake, fecal and urinary excretion, and apparent retention among treatments. Maintenance requirements and true retention coefficients were generated with the aid of linear regression between mineral intake and mineral retention. Mineral composition of the body and gain requirements was assessed using nonlinear regression between body mineral content and mineral intake. Mineral intake and fecal and urinary excretion were measured. Intakes of Ca, P, S, Cu, Zn, Mn, Co, and Fe were reduced in the absence of Ca, P, and MM supplementation ( < 0.05). Fecal excretion of Ca, Cu, Zn, Mn, and Co was also reduced in treatments without supplementation ( < 0.01). Overall, excretion and apparent absorption and retention coefficients were reduced when minerals were not supplied ( < 0.05). The use of the true retention coefficient instead of the true absorption coefficient provided a better estimate of mineral requirements. Dietary mineral requirements were lower for P, Cu, and Zn and greater for Fe compared with previously published recommendations. This study provides useful information about mineral requirements and mineral supplementation to obtain adequate dietary mineral supply of Nellore cattle in tropical conditions.
Collapse
|
19
|
Kaassis AYA, Wei M, Williams GR. New biocompatible hydroxy double salts and their drug delivery properties. J Mater Chem B 2016; 4:5789-5793. [DOI: 10.1039/c6tb01108j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel biocompatible hydroxy double salts (HDSs) have been synthesised, loaded with the drug naproxen, and formulated into tablets.
Collapse
Affiliation(s)
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | | |
Collapse
|
20
|
Shan Y, Xu Q, Ma M. Mg2+ binding affects the structure and activity of ovomucin. Int J Biol Macromol 2014; 70:230-5. [DOI: 10.1016/j.ijbiomac.2014.06.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
|
21
|
Konietzka R, Heinze R, Seiwert M, Dieter HH. The ex-vivo intestinal absorption rate of uranium is a two-phase function of supply. Regul Toxicol Pharmacol 2014; 69:256-62. [DOI: 10.1016/j.yrtph.2014.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/21/2014] [Accepted: 04/23/2014] [Indexed: 11/26/2022]
|
22
|
Pereira DIA, Mergler BI, Faria N, Bruggraber SFA, Aslam MF, Poots LK, Prassmayer L, Lönnerdal B, Brown AP, Powell JJ. Caco-2 cell acquisition of dietary iron(III) invokes a nanoparticulate endocytic pathway. PLoS One 2013; 8:e81250. [PMID: 24278403 PMCID: PMC3836913 DOI: 10.1371/journal.pone.0081250] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/10/2013] [Indexed: 12/19/2022] Open
Abstract
Dietary non-heme iron contains ferrous [Fe(II)] and ferric [Fe(III)] iron fractions and the latter should hydrolyze, forming Fe(III) oxo-hydroxide particles, on passing from the acidic stomach to less acidic duodenum. Using conditions to mimic the in vivo hydrolytic environment we confirmed the formation of nanodisperse fine ferrihydrite-like particles. Synthetic analogues of these (~ 10 nm hydrodynamic diameter) were readily adherent to the cell membrane of differentiated Caco-2 cells and internalization was visualized using transmission electron microscopy. Moreover, Caco-2 exposure to these nanoparticles led to ferritin formation (i.e., iron utilization) by the cells, which, unlike for soluble forms of iron, was reduced (p=0.02) by inhibition of clathrin-mediated endocytosis. Simulated lysosomal digestion indicated that the nanoparticles are readily dissolved under mildly acidic conditions with the lysosomal ligand, citrate. This was confirmed in cell culture as monensin inhibited Caco-2 utilization of iron from this source in a dose dependent fashion (p<0.05) whilet soluble iron was again unaffected. Our findings reveal the possibility of an endocytic pathway for acquisition of dietary Fe(III) by the small intestinal epithelium, which would complement the established DMT-1 pathway for soluble Fe(II).
Collapse
Affiliation(s)
- Dora I. A. Pereira
- Medical Research Council Human Nutrition Research (MRC HNR), Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Bianca I. Mergler
- Medical Research Council Human Nutrition Research (MRC HNR), Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Nuno Faria
- Medical Research Council Human Nutrition Research (MRC HNR), Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Sylvaine F. A. Bruggraber
- Medical Research Council Human Nutrition Research (MRC HNR), Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Mohamad F. Aslam
- Medical Research Council Human Nutrition Research (MRC HNR), Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Lynsey K. Poots
- Medical Research Council Human Nutrition Research (MRC HNR), Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Laura Prassmayer
- Medical Research Council Human Nutrition Research (MRC HNR), Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Bo Lönnerdal
- Department of Nutrition, University of California Davis, Davis, California, United States of America
| | - Andy P. Brown
- Institute for Materials Research, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds, United Kingdom
| | - Jonathan J. Powell
- Medical Research Council Human Nutrition Research (MRC HNR), Elsie Widdowson Laboratory, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Abstract
Human activities have circumvented the efficient geochemical cycling of aluminium within the lithosphere and therewith opened a door, which was previously only ajar, onto the biotic cycle to instigate and promote the accumulation of aluminium in biota and especially humans. Neither these relatively recent activities nor the entry of aluminium into the living cycle are showing any signs of abating and it is thus now imperative that we understand as fully as possible how humans are exposed to aluminium and the future consequences of a burgeoning exposure and body burden. The aluminium age is upon us and there is now an urgent need to understand how to live safely and effectively with aluminium.
Collapse
Affiliation(s)
- Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire, UK.
| |
Collapse
|
24
|
Le TTY, Hendriks AJ. Relationships between absorption efficiency of elements in mammals and chemical properties. Crit Rev Toxicol 2013; 43:800-9. [PMID: 23895340 DOI: 10.3109/10408444.2013.813906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oral absorption efficiency is an important factor to consider in human risk assessment and varies widely between elements. Linking absorption efficiency to chemical properties facilitates the understanding of underlying processes and enables extrapolation across elements. In our study, oral absorption efficiency in humans was predicted for a number of elements based on their ionization energy and electronegativity. Data on oral absorption efficiency in humans were retrieved via a literature survey. A model was developed based on the assumption that ionic species readily react with biotic ligands. Accordingly, ionization energy was presumed to represent the reactivity and absorption of atoms in the gastrointestinal tract. The coefficients of the model were parameterized by fitting the quantitative relationship between absorption efficiency and ionization energy to data collected from well-standardized studies. Generally, absorption efficiency was strongly related to ionization energy, explaining 94% of the variability in absorption efficiency between elements reported by the International Commission on Radiological Protection (ICRP). In addition, the absorption efficiencies predicted based on ionization energy were within a factor of two of those given by the ICRP (ME = -0.05; RMSE = 0.31). However, the model is not applicable to alkaline metals and molybdenum because of the uniquely high solubility of their compounds or the flexible electron configuration of these elements. Approximately 56% of the variability in absorption efficiency between elements could be explained by electronegativity. These strong relationships between absorption efficiency and ionization energy and, to a lesser extent, electronegativity indicate potential for extrapolation across elements using atomic properties.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen , The Netherlands
| | | |
Collapse
|
25
|
|
26
|
Wolber FM, Beck KL, Conlon CA, Kruger MC. Kiwifruit and Mineral Nutrition. NUTRITIONAL BENEFITS OF KIWIFRUIT 2013; 68:233-56. [DOI: 10.1016/b978-0-12-394294-4.00013-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Abstract
Manganese is an important metal for human health, being absolutely necessary for development, metabolism, and the antioxidant system. Nevertheless, excessive exposure or intake may lead to a condition known as manganism, a neurodegenerative disorder that causes dopaminergic neuronal death and parkinsonian-like symptoms. Hence, Mn has a paradoxal effect in animals, a Janus-faced metal. Extensive work has been carried out to understand Mn-induced neurotoxicity and to find an effective treatment. This review focuses on the requirement for Mn in human health as well as the diseases associated with excessive exposure to this metal.
Collapse
Affiliation(s)
- Daiana Silva Avila
- Biochemistry Graduation Program, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil,
| | | | | |
Collapse
|
28
|
Farina M, Avila DS, da Rocha JBT, Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 2012; 62:575-94. [PMID: 23266600 DOI: 10.1016/j.neuint.2012.12.006] [Citation(s) in RCA: 357] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 02/08/2023]
Abstract
Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This review focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as -SH and -SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects.
Collapse
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
29
|
Rahman MA, Rahman B, Ahmad MS, Blann A, Ahmed N. Blood and hair lead in children with different extents of iron deficiency in Karachi. ENVIRONMENTAL RESEARCH 2012; 118:94-100. [PMID: 22917764 DOI: 10.1016/j.envres.2012.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 06/20/2012] [Accepted: 07/05/2012] [Indexed: 06/01/2023]
Abstract
Childhood iron deficiency has a high incidence in Pakistan. Some but not all studies have shown that dietary iron deficiency may cause increased absorption of lead as both compete for the same transporters in the small intestine. Therefore, children in Pakistan, residing in heavily polluted cities like Karachi may be prone to lead poisoning. This hypothesis was tested by investigating blood and hair lead concentrations in children from Karachi who were divided into four groups of iron status; normal, borderline iron deficiency, iron deficiency and iron deficiency anaemia. A prospective observational study was conducted where 269 children were categorized into four groups of iron status using the World Health Organization criteria and one based on soluble transferrin receptor measurements. Blood iron status was determined using a full blood count, serum iron, ferritin, transferrin saturation and soluble transferrin receptor measurements. Blood lead was determined by graphite atomic absorption spectroscopy, whereas hair lead was assessed using an inductively coupled plasma atomic emission spectroscopy technique. Blood lead concentrations were significantly higher in children with iron deficiency anaemia (mean [95% confidence intervals] were 24.9 [22.6-27.2] μg/dL) compared to those with normal iron status (19.1 [16.8-21.4] μg/dL) using WHO criteria. In contrast, hair lead content was not significantly different in children of different iron status. Our findings reinforce the importance of not only reducing environmental lead pollution but also the development of national health strategies to reduce childhood iron deficiency in Pakistan.
Collapse
Affiliation(s)
- Muhammad Ataur Rahman
- Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi-75270, Pakistan
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Sensory attributes of complex tasting divalent salts are mediated by TRPM5 and TRPV1 channels. J Neurosci 2009; 29:2654-62. [PMID: 19244541 DOI: 10.1523/jneurosci.4694-08.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Complex tasting divalent salts (CTDS) are present in our daily diet, contributing to multiple poorly understood taste sensations. CTDS evoking metallic, bitter, salty, and astringent sensations include the divalent salts of iron, zinc, copper, and magnesium. To identify pathways involved with the complex perception of the above salts, taste preference tests (two bottles, brief access) were performed in wild-type (WT) mice and in mice lacking (1) the T1R3 receptor, (2) TRPV1, the capsaicin receptor, or (3) the TRPM5 channel, the latter being necessary for the perception of sweet, bitter, and umami tasting stimuli. At low concentrations, FeSO(4) and ZnSO(4) were perceived as pleasant stimuli by WT mice, and this effect was fully reversed in TRPM5 knock-out mice. In contrast, MgSO(4) and CuSO(4) were aversive to WT mice, but for MgSO(4) the aversion was abolished in TRPM5 knock-out animals, and for CuSO(4), aversion decreased in both TRPV1- and TRPM5-deficient animals. Behavioral tests revealed that the T1R3 subunit of the sweet and umami receptors is implicated in the hedonically positive perception of FeSO(4) and ZnSO(4). For high concentrations of CTDS, the omission of TRPV1 reduced aversion. Imaging studies on heterologously expressed TRPM5 and TRPV1 channels are consistent with the behavioral experiments. Together, these results rationalize the complexity of metallic taste by showing that at low concentrations, compounds such as FeSO(4) and ZnSO(4) stimulate the gustatory system through the hedonically positive T1R3-TRPM5 pathway, and at higher concentrations, their aversion is mediated, in part, by the activation of TRPV1.
Collapse
|
32
|
Bao YM, Choct M. Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: a review. ANIMAL PRODUCTION SCIENCE 2009. [DOI: 10.1071/ea08204] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review critically examines the literature on the current status of trace mineral nutrition and the effect of organically complexed trace minerals, focusing on copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn), on broiler chicken production. The requirements of Cu, Fe, Mn and Zn by broiler chickens need to be redefined due to today’s fast growing birds and the availability of organic trace minerals. Zn is one of the key trace minerals for chickens and although it maintains a relatively stable tissue concentration, dietary deficiency of Zn strongly depresses the feed intake, and hence the growth, of broiler chickens. Based on studies using a semiconventional diet, it is reasonable to conclude that the total Zn requirement for broiler chickens is around 60 mg/kg up until day 14 and 70 mg/kg from 14 day onwards, including the Zn content in the basal diet. However, it is difficult to determine the requirements of other organic trace minerals such as Cu, Fe and Mn because under a Zn adequate condition, it is impossible to produce deficient symptoms of these minerals on the basis of growth response. It also identifies gaps in knowledge of inorganic and organic trace mineral nutrition for the modern broiler chicken.
Collapse
|
33
|
Kwong RWM, Niyogi S. An in vitro examination of intestinal iron absorption in a freshwater teleost, rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 2008; 178:963-75. [PMID: 18542970 DOI: 10.1007/s00360-008-0279-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 05/20/2008] [Accepted: 05/25/2008] [Indexed: 11/25/2022]
Abstract
This study investigated the physiological characteristics of intestinal iron absorption in a freshwater teleost, rainbow trout (Oncorhynchus mykiss). Using an in vitro gastro-intestinal sac technique, we evaluated the spatial pattern and concentration dependent profile of iron uptake, and also the influence of luminal chemistry (pH and chelation) on iron absorption. We demonstrated that the iron uptake rate in the anterior intestine is significantly higher than that in the mid and posterior intestine. Interestingly, absorption of iron in the anterior intestine occurs likely via simple diffusion, whereas a carrier-mediated pathway is apparent in the mid and posterior intestine. The uptake of ferric and ferrous iron appeared to be linear over the entire range of iron concentration tested (0-20 microM), however the uptake of ferrous iron was significantly higher than that of ferric iron at high iron concentrations (>15 microM). An increase in mucosal pH from 7.4 to 8.2 significantly reduced iron absorption in both mid and posterior intestine, implying the involvement of a Fe(2+)/H(+) symporter. Iron chelators (nitrilotriacetic acid and desferrioxamine mesylate) had no effects on iron absorption, which suggests that fish are able to acquire chelated iron via intestine.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Toxicology Center, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B3
| | | |
Collapse
|
34
|
Stähler FN, Odenbreit S, Haas R, Wilrich J, Van Vliet AHM, Kusters JG, Kist M, Bereswill S. The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. Infect Immun 2006; 74:3845-52. [PMID: 16790756 PMCID: PMC1489693 DOI: 10.1128/iai.02025-05] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Maintaining metal homeostasis is crucial for the adaptation of Helicobacter pylori to the gastric environment. Iron, copper, and nickel homeostasis has recently been demonstrated to be required for the establishment of H. pylori infection in animal models. Here we demonstrate that the HP0969-0971 gene cluster encoding the Czc-type metal export pump homologs HP0969, HP0970, and the H. pylori-specific protein HP0971 forms part of a novel H. pylori metal resistance determinant, which is required for gastric colonization and for the modulation of urease activity. Insertional mutagenesis of the HP0971, HP0970, or HP0969 genes in H. pylori reference strain 26695 resulted in increased sensitivity to cadmium, zinc, and nickel (czn), suggesting that the encoded proteins constitute a metal-specific export pump. Accordingly, the genes were designated cznC (HP0971), cznB (HP0970), and cznA (HP0969). The CznC and CznA proteins play a predominant role in nickel homeostasis, since only the cznC and cznA mutants but not the cznB mutant displayed an 8- to 10-fold increase in urease activity. Nickel-specific affinity chromatography demonstrated that recombinant versions of CznC and CznB can bind to nickel and that the purified CznB protein interacted with cadmium and zinc, since both metals competitively inhibited nickel binding. Finally, single cznA, cznB, and cznC mutants did not colonize the stomach in a Mongolian gerbil-based animal model. This demonstrates that the metal export functions of H. pylori cznABC are essential for gastric colonization and underlines the extraordinary importance of metal ion homeostasis for the survival of H. pylori in the gastric environment.
Collapse
Affiliation(s)
- Frank Nils Stähler
- Department of Microbiology and Hygiene, Institute of Medical Microbiology and Hygiene, University Hospital Freiburg, Hermann-Herder-Str. 11, D-79104 Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Cooper CA, Handy RD, Bury NR. The effects of dietary iron concentration on gastrointestinal and branchial assimilation of both iron and cadmium in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 79:167-75. [PMID: 16844240 DOI: 10.1016/j.aquatox.2006.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 05/10/2023]
Abstract
Zebrafish (Danio rerio) were fed either a diet containing 33mgFekg(-1) (low) or 95mgFekg(-1) (normal) for 10 weeks, after which short-term Cd and Fe uptake by the gastrointestinal tract and gill was assessed. Carcass metal content and transcript levels of the iron importer, Divalent Metal Transporter 1 (DMT1) and an iron exporter, ferroportin1, in both the gastrointestinal tract and gill were also measured. Fish fed the low Fe diet accumulated 13 times more Cd into their livers via the gastrointestinal tract than those fed the normal Fe diet. However, no significant increase in liver Fe accumulation was measured. Concomitantly, when exposed to 48nmolCdL(-1) fish fed the low Fe diet exhibited a approximately 4-fold increase in Cd accumulation on the gill and in the liver, compared to those fed a normal diet. In addition, fish fed the low Fe diet also significantly accumulated more Fe on the gill (nine-fold increase) and into the carcass (four-fold increase) when exposed to 96nmolFeL(-1), compared to fish fed a normal diet. Surprisingly, carcass Fe, Ca and Mg concentrations were increased in fish fed the low Fe diet, which suggests that Fe body levels may not be a good indicator of whether a fish is more or less susceptible to increased non-essential metal accumulation via an Fe uptake pathway. However, significantly elevated transcript levels of DMT1 and ferroportin1 (2.7- and 3.8-fold induction, respectively) were seen in the gastrointestinal tract, and DMT1 in the gills (1.8-fold induction) of zebrafish fed a low Fe diet. The correlation between Cd uptake and DMT1 expression suggests that one route of uptake of Cd, either from the diet or from the water, could be via DMT1.
Collapse
Affiliation(s)
- C A Cooper
- Division of Health and Life Sciences, King's College London, 150 Stamford Street, London SE1 9NN, UK.
| | | | | |
Collapse
|
36
|
Alves LC, Wood CM. The chronic effects of dietary lead in freshwater juvenile rainbow trout (Oncorhynchus mykiss) fed elevated calcium diets. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 78:217-32. [PMID: 16630665 DOI: 10.1016/j.aquatox.2006.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 03/11/2006] [Accepted: 03/12/2006] [Indexed: 05/08/2023]
Abstract
This study examined the impact of elevated dietary Ca(2+) on the responses to chronic dietary Pb exposure in juvenile rainbow trout. Trout were fed reference (0.3microgPb/g, approximately 20mgCa(2+)/g) and Pb-enriched diets ( approximately 50 or 500microgPb/g) in the presence of background Ca(2+) ( approximately 20mgCa(2+)/g) or ( approximately 60mgCa(2+)/g) of added Ca(2+) (as CaCO(3)) for 42 days. The quantitative order of Pb accumulation in tissues reflected the exposure pathway of Pb via the diet (per tissue wet weight): gut>bone>kidney>liver>spleen>gill>carcass>brain>white muscle. The anterior intestine accumulated the most Pb per tissue wet weight, while the bone accumulated the most Pb per fish weight. Pb concentrations were much higher in the posterior kidney than the anterior kidney. Simultaneous addition of Ca(2+) to the diet had an overall protective effect in all the tissues analysed in reducing Pb accumulation. The RBCs accumulated 100 times more Pb when compared to the plasma, while the whole blood delta-aminolevulinic acid dehydratase was inhibited in the high treatment group without added Ca(2+), by the end of the exposure. Neither plasma Cl(-), K(+), Mg(2+) nor Na(+), K(+)-ATPase activities in the gills, mid- and posterior intestine were affected. However, there were mild disruptions in plasma Na(+) and Ca(2+) levels in the elevated Pb and Ca(2+) treatment groups, and a significant up-regulation in Na(+), K(+)-ATPase activity at the anterior intestine in fish fed the high Pb diets with background or added Ca(2+). By day 42, Pb levels in most tissues had either stabilized or started to decrease, indicating some capacity for regulation of accumulated loads. We conclude that elevated dietary Ca(2+) levels will be protective in reducing Pb burdens in freshwater juvenile rainbow trout exposed to environments contaminated with waterborne Pb.
Collapse
Affiliation(s)
- Lara C Alves
- McMaster University, Department of Biology, Hamilton, Ont., Canada L8S 4K1.
| | | |
Collapse
|
37
|
Cooper CA, Bury NR, Grosell M. The effects of pH and the iron redox state on iron uptake in the intestine of a marine teleost fish, gulf toadfish (Opsanus beta). Comp Biochem Physiol A Mol Integr Physiol 2006; 143:292-8. [PMID: 16431145 DOI: 10.1016/j.cbpa.2005.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/22/2005] [Accepted: 11/24/2005] [Indexed: 11/26/2022]
Abstract
In the marine teleost intestine the secretion of bicarbonate increases pH of the lumen (pH 8.4 -9.0) and importantly reduces Ca2+ and Mg2+ concentrations by the formation of insoluble divalent ion carbonates. The alkaline intestinal environment could potentially also cause essential metal carbonate formation reducing bioavailability. Iron accumulation was assessed in the Gulf toadfish (Opsanus beta) gut by mounting intestine segments in modified Ussing chambers fitted to a pH-stat titration system. This system titrates to maintain lumen pH constant and in the process prevents bicarbonate accumulation. The luminal saline pH was clamped to pH 5.5 or 7.0 to investigate the effect of proton concentrations on iron uptake. In addition, redox state was altered (gassing with N2, addition of dithiothreitol (DTT) and ascorbate) to evaluate Fe3+ versus Fe2+ uptake, enabling us to compare a marine teleost intestine model for iron uptake to the mammalian system for non-haem bound iron uptake that occurs via a ferrous/proton (Fe2+/H+) symporter called Divalent Metal Transporter 1 (DMT1). None of the redox altering strategies affected iron (Fe3+ or Fe2+) binding to mucus, but the addition of ascorbate resulted in a 4.6-fold increase in epithelium iron accumulation. This indicates that mucus iron binding is irrespective of valency and suggests that ferrous iron is preferentially transported across the apical surface. Altering luminal saline pH from 7.0 to 5.5 did not affect ferric or ferrous iron uptake, suggesting that if iron is entering via DMT1 in marine fish intestine this transporter works efficiently under circumneutral conditions.
Collapse
Affiliation(s)
- C A Cooper
- Division of Health and Life Sciences, King's College London, 150 Stamford Street, London, SE1 9NN, UK.
| | | | | |
Collapse
|
38
|
|
39
|
Silva ALOD, Barrocas PR, Jacob SDC, Moreira JC. Dietary intake and health effects of selected toxic elements. ACTA ACUST UNITED AC 2005. [DOI: 10.1590/s1677-04202005000100007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anthropogenic activities have being contributing to the spread of toxic chemicals into the environment, including several toxic metals and metalloids, increasing the levels of human exposure to many of them. Contaminated food is an important route of human exposure and may represent a serious threat to human health. This mini review covers the health effects caused by toxic metals, especially Cd, Hg, Pb and As, the most relevant toxic elements from a human health point of view.
Collapse
|
40
|
Pereira RC, Diniz ADS, Ferreira LOC. New findings on iron absorption conditioning factors. REVISTA BRASILEIRA DE SAÚDE MATERNO INFANTIL 2004. [DOI: 10.1590/s1519-38292004000300003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The authors focus iron intake regulation in the body and the probable mechanisms related to iron absorption. They analyze the impact of iron absorption deficiency resulting in iron deficiency anemia, a public health issue of great impact in the world influencing child and maternal health risk increase. This paper aims at highlighting the problems affecting the uptake or inhibiting processes of iron absorption in an attempt to correlate information on conditioning factors and current findings. This study is a document based descriptive study comprising literature review. In food, iron has different forms, such as the heme and non-heme forms following different absorption pathways with different efficiency rates, depending on conditioning factors, such as diet profile, physiological aspects, iron chemical state, absorption regulation, transportation, storing, excretion and the presence of disease, They also discuss the current difficulties in dealing with iron nutritional deficiency in vulnerable groups, children and pregnant women, and focus data on iron consumption, adhesion to breast feeding and the frequency of prenatal care visits.
Collapse
|
41
|
Cowieson AJ, Acamovic T, Bedford MR. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. Br Poult Sci 2004; 45:101-8. [PMID: 15115207 DOI: 10.1080/00071660410001668923] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The effects of myo-inositol hexaphosphate (IP6) and phytase (EC 3.1.3.26) on the excretion of endogenous compounds were investigated using growing broiler chickens. 2. A total of 32 female Ross broilers were used in a precision feeding assay involving a 2 x 2 factorial arrangement of treatments. The materials administered were glucose, glucose + 1000 units of phytase activity (FTU), glucose + 1 g of IP6 and glucose + 1 g of IP6 + 1000 FTU. Excreta were collected quantitatively over a 48-h period following intubation of the test materials. The excretion of nitrogen, amino acids, minerals, sialic acid and phytate phosphorus was determined. 3. The ingestion of 1 g of IP6 by broilers increased the excretion of endogenous nitrogen, amino acids, iron, sodium, sulphur and sialic acid compared with birds fed on glucose. Supplementation of IP6 with exogenous phytase reduced the excretion of endogenous amino acids, calcium, sodium, phytate phosphorus and sialic acid compared with birds fed IP6. 4. It can be concluded that IP6 increases the excretion of endogenous minerals and amino acids in broiler chickens. Part of the beneficial effects of the addition of exogenous phytases to the diets of poultry appears to be mediated through a reduction in endogenous losses of these nutrients.
Collapse
Affiliation(s)
- A J Cowieson
- Avian Science Research Centre, Scottish Agricultural College, Ayr, Scotland
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Silvia Miret
- Department of Life Sciences, King's College London, The Franklin-Wilkins Building, London
| | | | | |
Collapse
|
43
|
Uni Z, Smirnov A, Sklan D. Pre- and posthatch development of goblet cells in the broiler small intestine: effect of delayed access to feed. Poult Sci 2003; 82:320-7. [PMID: 12619811 DOI: 10.1093/ps/82.2.320] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mucin glycoproteins play a key role in the regular function of the epithelium of the gastrointestinal tract, and in this study, the ontogenesis and development of mucin producing cells was examined in the broiler. Mucin-producing cells were observed in the small intestine from 3 d before hatch, and at this time contained only acidic mucin. After hatch and until Day 7 posthatch, the proximal, middle, and distal segments of the small intestine contained similar proportions of goblet cells producing acidic and neutral mucins. A gradient of goblet cell density was observed increasing along the duodenal to ileal axis. Delayed access to feed for 48 h posthatch resulted in an increase in intestinal intracellular mucins, which might have been due to impaired mucin secretion or enhanced mucin production. Changes in mucin dynamics could affect absorptive and protective functions of the small intestine.
Collapse
Affiliation(s)
- Z Uni
- The Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel.
| | | | | |
Collapse
|
44
|
Abstract
Transition metals are essential for health, forming integral components of proteins involved in all aspects of biological function. However, in excess these metals are potentially toxic, and to maintain metal homeostasis organisms must tightly coordinate metal acquisition and excretion. The diet is the main source for essential metals, but in aquatic organisms an alternative uptake route is available from the water. This review will assess physiological, pharmacological and recent molecular evidence to outline possible uptake pathways in the gills and intestine of teleost fish involved in the acquisition of three of the most abundant transition metals necessary for life; iron, copper, and zinc.
Collapse
Affiliation(s)
- Nicolas R Bury
- King's College London, School of Health and Life Sciences, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NN, UK.
| | | | | |
Collapse
|
45
|
Waidner B, Melchers K, Ivanov I, Loferer H, Bensch KW, Kist M, Bereswill S. Identification by RNA profiling and mutational analysis of the novel copper resistance determinants CrdA (HP1326), CrdB (HP1327), and CzcB (HP1328) in Helicobacter pylori. J Bacteriol 2002; 184:6700-8. [PMID: 12426358 PMCID: PMC135432 DOI: 10.1128/jb.184.23.6700-6708.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mechanisms involved in maintaining cytoplasmic metal ion homeostasis play a central role in the adaptation of Helicobacter pylori to the changing gastric environment. An investigation of the global regulatory responses to copper ions by using RNA profiling with a threshold factor of 4.0 revealed that copper induces transcription of 19 H. pylori genes and that only the ferritin gene pfr is repressed. The 57-fold copper induction identified the HP1326 gene encoding an H. pylori-specific protein as a candidate for a novel copper resistance determinant. The HP1326 gene is expressed as a monocistronic unit, and two small HP1326 mRNAs are copper induced. The HP1326 protein is secreted and is required for copper resistance maintained by cytoplasmic copper homeostasis, as H. pylori HP1326 mutants were copper sensitive and displayed increased copper induction of HP1326 transcription as well as elevated copper repression of ferritin synthesis. The clear copper-sensitive phenotype displayed by H. pylori HP1327 and HP1328 mutants provides strong evidence that the HP1326 protein, together with the signal peptide site of the H. pylori-specific protein HP1327, whose gene is located downstream from that encoding HP1326, and the CzcB and CzcA metal efflux system component homologs HP1328 and HP1329, constitutes a novel type of copper efflux pump, as discussed below. The HP1329 gene could not be inactivated, but the 14-fold transcriptional copper induction determined by RNA profiling points towards a function of the encoded CzcA homolog in copper resistance. In summary, results from RNA profiling identified the novel H. pylori-specific copper resistance determinants CrdA (HP1326) and CrdB (HP1327), which are required for adaptation to copper-rich environmental conditions.
Collapse
Affiliation(s)
- Barbara Waidner
- Department of Microbiology and Hygiene, Institute of Medical Microbiology and Hygiene, University Hospital Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Evans SM, Ashwood P, Warley A, Berisha F, Thompson RPH, Powell JJ. The role of dietary microparticles and calcium in apoptosis and interleukin-1beta release of intestinal macrophages. Gastroenterology 2002; 123:1543-53. [PMID: 12404229 DOI: 10.1053/gast.2002.36554] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The intestinal mucosa is exposed to micron-sized, man-made exogenous particles (e.g., titanium dioxide) and freshly formed endogenous particles (calcium phosphate). A role for such microparticles in inflammation has been proposed, and here we examined their effects on lamina propria mononuclear cells. METHODS Lamina propria mononuclear cells were isolated from patients with and without inflammatory bowel disease and incubated with lipopolysaccharide, titanium dioxide, and calcium +/- citrate, as well as a conjugate of lipopolysaccharide, calcium, and titanium dioxide. Interleukin-1beta and interleukin-1 receptor antagonist were measured by enzyme-linked immunosorbent assay in culture supernatants and macrophage apoptosis by flow cytometry. Mechanistic studies were undertaken in normal peripheral blood mononuclear cells. RESULTS Baseline levels of interleukin-1beta and macrophage apoptosis were greater in inflammatory bowel disease than in normal lamina propria mononuclear cells. Lipopolysaccharide and titanium dioxide had no additional effect, but calcium, and more so the conjugate, induced interleukin-1beta release in proportion to the degree of inflammation. Citrate, used to prevent in situ calcium phosphate formation, negated lamina propria mononuclear cell stimulation. Macrophage apoptosis was also increased by calcium and the conjugate. In peripheral blood mononuclear cells, inhibition of caspase 1 reduced interleukin-1beta secretion, whereas blockade of phagocytosis inhibited calcium-induced apoptosis and interleukin-1beta release. CONCLUSIONS The endogenous luminal microparticle calcium phosphate Promotes apoptosis of intestinal macrophages. Concomitantly, interleukin-1beta is released, which is enhanced in the presence of inflamed cells and/or exogenous dietary microparticles. Endogenous or exogenous microparticles could aggravate the ongoing inflammation of inflammatory bowel disease.
Collapse
Affiliation(s)
- Stephen M Evans
- Gastrointestinal Laboratory, Rayne Institute, St. Thomas' Hospital, London, England
| | | | | | | | | | | |
Collapse
|
47
|
Cremonesi P, Acebron A, Raja KB, Simpson RJ. Iron absorption: biochemical and molecular insights into the importance of iron species for intestinal uptake. PHARMACOLOGY & TOXICOLOGY 2002; 91:97-102. [PMID: 12427107 DOI: 10.1034/j.1600-0773.2002.910301.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent advances in cloning of proteins involved in intestinal iron absorption can inform design and understanding of therapeutic iron preparations. Redox chemistry of iron is particularly important in iron metabolism, both as a potential source of toxic intermediates and as an essential requirement for efficient iron transport. The initial step in iron absorption (uptake from lumen to mucosa) is particularly important and several pathways involving Fe(III) reduction or transport and Fe(II) transport have been identified. Novel genes associated with iron uptake include Dcytb, a putative iron-regulated reductase and DMT1, a Fe(II) carrier in the brush border membrane. Other mechanisms may also operate, however. We review the recent findings and apply this to understanding the absorption of Fe(III) pharmaceuticals.
Collapse
Affiliation(s)
- Piero Cremonesi
- Italfarmaco Research Center, v. Dei Lavoratori 64 Cinisello B. Milano, Italy
| | | | | | | |
Collapse
|
48
|
Abstract
To evaluate the causative role of environmental aluminum (Al) in the development of neurodegeneration in Kiiamyotrophic lateral sclerosis (ALS), we examined how chronic exposure to a low-Ca/Mg and high-Al diet induced neuronal loss and tau-related neuronal degeneration in experimental animals. Optical microscopic examination showed tau-positive cells, atrophic neurons with darkly stained cytoplasms or swollen perikarya in the cerebrum, hippocampus and the brainstem of mice fed a low-Ca/Mg high-Al diet (Group 3). The neuronal loss was found in the frontal and parietal cortices of the mice and was not due to a classical apoptosis as detected by the terminal de ynucl otidyl transferase-mediated dUTP-digoxigenin nick end-labeling (TUNEL) method. Neuronal degeneration and spheroid formation was also seen in the spinal cord of the Group 3 mice. The Morin fluorescence technique showed Al and Ca deposition in the cortical neurons and vessels in the basal ganglia of these mice. An electron microscopic examination showed intranuclear filamentous structures, intracytoplasmic vacuoles and/or darkly stained cytoplasm in the cortical neurons of Group 3 mice. These findings were seen in mice of the 11-month-experimental period and increased until the 25-month-experimental period. The present findings suggested that chronic exposure to a low-Ca/Mg high Al condition induced an accumulation of hyperphosphorylated tau in the cortical neurons, swelling of the neuronal cytoplasm and loss in the cerebrum and spinal cord of mice. Environmental factors such as a low-Ca/Mg high Al exposure might be one of the risk factors for the development of neuronal degeneration of ALS in the Kii Peninsula.
Collapse
Affiliation(s)
- Tameko Kihira
- Department of Neurology, Wakayama Medical University,Wakayama City, Japan.
| | | | | | | | | |
Collapse
|
49
|
Vaghefi N, Nedjaoum F, Guillochon D, Bureau F, Arhan P, Bouglé D. Influence of the extent of hemoglobin hydrolysis on the digestive absorption of heme iron. An in vitro study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:4969-4973. [PMID: 12166991 DOI: 10.1021/jf0109165] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study was designed to assess the interactions of heme with peptides produced by enzyme hydrolysis of hemoglobin, and their relationship with heme iron absorption. Bovine hemoglobin was hydrolyzed by pepsin or by subtilisin, which differ in their hydrolysis processes. The hydrolysis rate ranged from 0 (native hemoglobin) to 15%. Heme solubility and heme-peptides interactions were compared to iron absorption by the Ussing chamber model, at intestinal pH (7.5). Increasing hemoglobin hydrolysis enhanced iron absorption; the highest value was reached between 8 and 11% hydrolysis, whatever the enzyme used. Comparing the products of hydrolysis of the two enzymes showed that heme iron absorption depends not only on its solubility, but relies mainly on the balance between the strength of heme-peptides and the polymerization rate of heme.
Collapse
Affiliation(s)
- Nikta Vaghefi
- Laboratoire de Physiologie Digestive et Nutritionnelle, CHU, Avenue de la Côte de Nacre, 14033 Caen, France
| | | | | | | | | | | |
Collapse
|
50
|
Lomer MCE, Thompson RPH, Powell JJ. Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn's disease. Proc Nutr Soc 2002; 61:123-30. [PMID: 12002786 DOI: 10.1079/pns2001134] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Crohn's disease is a modern Western disease characterised by transmural inflammation of the gastrointestinal tract. It is of unknown aetiology, but evidence suggests that it results from a combination of genetic predisposition and environmental factors. Bacterial-sized microparticles (0.1-1.0 microm) are potent adjuvants in model antigen-mediated immune responses and are increasingly associated with disease. Microparticles of TiO2 and aluminosilicate accumulate in macrophages of human gut-associated lymphoid tissue where the earliest signs of lesions in Crohn's disease are observed. Dietary microparticles are of endogenous or exogenous origin. Endogenous microparticles dominate and are calcium phosphate (most probably hydroxyapatite), which precipitates in the lumen of the mid-distal gastrointestinal tract due to secretion of Ca and phosphate in the succus entericus. Exogenous dietary microparticles are contaminants (soil and/or dust) and food additives. TiO2, for example, is a food colourant, and aluminosilicates are anti-caking agents, although some aluminosilicates occur as natural contaminants. Food additives alone account for ingestion of approximately 10(12) particles/person per d. Possible mechanisms for the role of exogenous and endogenous dietary microparticles in promoting toleragenic or immune responses of gastrointestinal mucosal phagocytosis are discussed. In a double-blind randomised pilot study we have shown that a diet low in Ca and exogenous microparticles appears to alleviate the symptoms of ileal Crohn's disease, with a significant (P= 0.002) improvement in the Crohn's disease activity index. A multi-centre trial and further mechanistic studies at the cellular level are underway.
Collapse
Affiliation(s)
- Miranda C E Lomer
- Gastrointestinal Laboratory, The Rayne Institute, St Thomas' Hospital, London, UK.
| | | | | |
Collapse
|