1
|
Zhou H, Hong F, Wang L, Tang X, Guo B, Luo Y, Yu H, Mao D, Liu T, Feng Y, Baima Y, Zhang J, Zhao X. Air pollution and risk of 32 health conditions: outcome-wide analyses in a population-based prospective cohort in Southwest China. BMC Med 2024; 22:370. [PMID: 39256817 PMCID: PMC11389248 DOI: 10.1186/s12916-024-03596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Uncertainty remains about the long-term effects of air pollutants (AP) on multiple diseases, especially subtypes of cardiovascular disease (CVD). We aimed to assess the individual and joint associations of fine particulate matter (PM2.5), along with its chemical components, nitrogen dioxide (NO2) and ozone (O3), with risks of 32 health conditions. METHODS A total of 17,566 participants in Sichuan Province, China, were included in 2018 and followed until 2022, with an average follow-up period of 4.2 years. The concentrations of AP were measured using a machine-learning approach. The Cox proportional hazards model and quantile g-computation were applied to assess the associations between AP and CVD. RESULTS Per interquartile range (IQR) increase in PM2.5 mass, NO2, O3, nitrate, ammonium, organic matter (OM), black carbon (BC), chloride, and sulfate were significantly associated with increased risks of various conditions, with hazard ratios (HRs) ranging from 1.06 to 2.48. Exposure to multiple air pollutants was associated with total cardiovascular disease (HR 1.75, 95% confidence intervals (CIs) 1.62-1.89), hypertensive diseases (1.49, 1.38-1.62), cardiac arrests (1.52, 1.30-1.77), arrhythmia (1.76, 1.44-2.15), cerebrovascular diseases (1.86, 1.65-2.10), stroke (1.77, 1.54-2.03), ischemic stroke (1.85, 1.61-2.12), atherosclerosis (1.77, 1.57-1.99), diseases of veins, lymphatic vessels, and lymph nodes (1.32, 1.15-1.51), pneumonia (1.37, 1.16-1.61), inflammatory bowel diseases (1.34, 1.16-1.55), liver diseases (1.59, 1.43-1.77), type 2 diabetes (1.48, 1.26-1.73), lipoprotein metabolism disorders (2.20, 1.96-2.47), purine metabolism disorders (1.61, 1.38-1.88), anemia (1.29, 1.15-1.45), sleep disorders (1.54, 1.33-1.78), renal failure (1.44, 1.21-1.72), kidney stone (1.27, 1.13-1.43), osteoarthritis (2.18, 2.00-2.39), osteoporosis (1.36, 1.14-1.61). OM had max weights for joint effects of AP on many conditions. CONCLUSIONS Long-term exposure to increased levels of multiple air pollutants was associated with risks of multiple health conditions. OM accounted for substantial weight for these increased risks, suggesting it may play an important role in these associations.
Collapse
Affiliation(s)
- Hanwen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Lele Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuewei Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuying Luo
- Health Information Center of Sichuan Province, Chengdu, Sichuan, China
| | - Hui Yu
- Health Information Center of Sichuan Province, Chengdu, Sichuan, China
| | - Deqiang Mao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Ting Liu
- Chenghua District Center for Disease Control and Prevention, Chengdu, China
| | - Yuemei Feng
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yangji Baima
- School of Medicine, Tibet University, Tibet, China
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Melzi G, van Triel J, Durand E, Crayford A, Ortega IK, Barrellon-Vernay R, Duistermaat E, Delhaye D, Focsa C, Boom DHA, Kooter IM, Corsini E, Marinovich M, Gerlofs-Nijland M, Cassee FR. Toxicological evaluation of primary particulate matter emitted from combustion of aviation fuel. CHEMOSPHERE 2024; 363:142958. [PMID: 39069102 DOI: 10.1016/j.chemosphere.2024.142958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Recently, Sustainable Aviation Fuel (SAF) blends and novel combustion technologies have been introduced to reduce aircraft engine emissions. However, there is limited knowledge about the impact of combustion technology and fuel composition on toxicity of primary Particulate Matter (PM) emissions, comparable to regulated non-volatile PM (nvPM). In this study, primary PM was collected on filters using a standardised approach, from both a Rich-Quench-Lean (RQL) combustion rig and a bespoke liquid fuelled Combustion Aerosol Standard (CAST) Generator burning 12 aviation fuels including conventional Jet-A, SAFs, and blends thereof. The fuels varied in aromatics (0-25.2%), sulphur (0-3000 ppm) and hydrogen (13.43-15.31%) contents. Toxicity of the collected primary PM was studied in vitro utilising Air-Liquid Interface (ALI) exposure of lung epithelial cells (Calu-3) in monoculture and co-culture with macrophages (differentiated THP-1 cells). Cells were exposed to PM extracted from filters and nebulised from suspensions using a cloud-based ALI exposure system. Toxicity readout parameters were analysed 24 h after exposure. Results showed presence of genotoxicity and changes in gene expression at dose levels which did not induce cytotoxicity. DNA damage was detected through Comet assay in cells exposed to CAST generated samples. Real-Time PCR performed to investigate the expression profile of genes involved in oxidative stress and DNA repair pathways showed different behaviours after exposure to the various PM samples. No differences were found in pro-inflammatory interleukin-8 secretion. This study indicates that primary PM toxicity is driven by wider factors than fuel composition, highlighting that further work is needed to substantiate the full toxicity of aircraft exhaust PM inclusive of secondary PM emanating from numerous engine technologies across the power range burning conventional Jet-A and SAF.
Collapse
Affiliation(s)
- Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, 20133, Milan, Italy
| | - Jos van Triel
- National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands.
| | - Eliot Durand
- Cardiff School of Engineering, Cardiff University, Wales, CF24 3AA, UK
| | - Andrew Crayford
- Cardiff School of Engineering, Cardiff University, Wales, CF24 3AA, UK
| | - Ismael K Ortega
- Multi-Physics for Energetics Department, ONERA, Université Paris Saclay, Palaiseau, F-91123, France
| | - Rafael Barrellon-Vernay
- Multi-Physics for Energetics Department, ONERA, Université Paris Saclay, Palaiseau, F-91123, France; University of Lille, CNRS, UMR, 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, Lille, F-59000, France
| | - Evert Duistermaat
- National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands
| | - David Delhaye
- Multi-Physics for Energetics Department, ONERA, Université Paris Saclay, Palaiseau, F-91123, France
| | - Cristian Focsa
- University of Lille, CNRS, UMR, 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, Lille, F-59000, France
| | - Devin H A Boom
- The Netherlands Organization for Applied Scientific Research, Utrecht, the Netherlands
| | - Ingeborg M Kooter
- The Netherlands Organization for Applied Scientific Research, Utrecht, the Netherlands; Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, the Netherlands
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, 20133, Milan, Italy
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, 20133, Milan, Italy
| | - Miriam Gerlofs-Nijland
- National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD, Utrecht, the Netherlands
| |
Collapse
|
3
|
Gogna P, Borghese MM, Villeneuve PJ, Kumarathasan P, Johnson M, Shutt RH, Ashley-Martin J, Bouchard MF, King WD. A cohort study of the multipollutant effects of PM 2.5, NO 2, and O 3 on C-reactive protein levels during pregnancy. Environ Epidemiol 2024; 8:e308. [PMID: 38799262 PMCID: PMC11115979 DOI: 10.1097/ee9.0000000000000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/18/2024] [Indexed: 05/29/2024] Open
Abstract
Background PM2.5, NO2, and O3 contribute to the development of adverse pregnancy complications. While studies have investigated the independent effects of these exposures, literature on their combined effects is limited. Our objective was to study the multipollutant effects of PM2.5, NO2, and O3 on maternal systemic C-reactive protein (CRP) levels. Methods We used data from 1170 pregnant women enrolled in the Maternal-Infant Research on Environmental Chemicals Study (MIREC) study in Canada. Air pollution exposures were assigned to each participant based on residential location. CRP was measured in third-trimester blood samples. We fit multipollutant linear regression models and evaluated the effects of air pollutant mixtures (14-day averages) using repeated-holdout Weighted Quantile Sum (WQS) regression and by calculating the Air Quality Health Index (AQHI). Results In multipollutant models adjusting for NO2, O3, and green space, each interquartile range (IQR) increase in 14-day average PM2.5 (IQR: 6.9 µg/m3) was associated with 27.1% (95% confidence interval [CI] = 6.2, 50.7) higher CRP. In air pollution mixture models adjusting for green space, each IQR increase in AQHI was associated with 37.7% (95% CI = 13.9, 66.5) higher CRP; and an IQR increase in the WQS index was associated with 78.6% (95% CI = 29.7, 146.0) higher CRP. Conclusion PM2.5 has the strongest relationship of the individual pollutants examined with maternal blood CRP concentrations. Mixtures incorporating all three pollutants, assessed using the AQHI and WQS index, showed stronger relationships with CRP compared with individual pollutants and illustrate the importance of conducting multipollutant analyses.
Collapse
Affiliation(s)
- Priyanka Gogna
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Michael M. Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Paul J. Villeneuve
- School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada
| | | | - Markey Johnson
- Water and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Robin H. Shutt
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | - Will D. King
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Zhou H, Liang X, Zhang X, Wu J, Jiang Y, Guo B, Wang J, Meng Q, Ding X, Baima Y, Li J, Wei J, Zhang J, Zhao X. Associations of Long-Term Exposure to Fine Particulate Constituents With Cardiovascular Diseases and Underlying Metabolic Mediations: A Prospective Population-Based Cohort in Southwest China. J Am Heart Assoc 2024; 13:e033455. [PMID: 38761074 PMCID: PMC11179805 DOI: 10.1161/jaha.123.033455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/01/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The health effects of particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) might differ depending on compositional variations. Little is known about the joint effect of PM2.5 constituents on metabolic syndrome and cardiovascular disease (CVD). This study aims to evaluate the combined associations of PM2.5 components with CVD, identify the most detrimental constituent, and further quantify the mediation effect of metabolic syndrome. METHODS AND RESULTS A total of 14 427 adults were included in a cohort study in Sichuan, China, and were followed to obtain the diagnosis of CVD until 2021. Metabolic syndrome was defined by the simultaneous occurrence of multiple metabolic disorders measured at baseline. The concentrations of PM2.5 chemical constituents within a 1-km2 grid were derived based on satellite- and ground-based detection methods. Cox proportional hazard models showed that black carbon, organic matter (OM), nitrate, ammonium, chloride, and sulfate were positively associated with CVD risks, with hazard ratios (HRs) ranging from 1.24 to 2.11 (all P<0.05). Quantile g-computation showed positive associations with 4 types of CVD risks (HRs ranging from 1.48 to 2.25, all P<0.05). OM and chloride had maximum weights for CVD risks. Causal mediation analysis showed that the positive association of OM with total CVD was mediated by metabolic syndrome, with a mediation proportion of 1.3% (all P<0.05). CONCLUSIONS Long-term exposure to PM2.5 chemical constituents is positively associated with CVD risks. OM and chloride appear to play the most responsible role in the positive associations between PM2.5 and CVD. OM is probably associated with CVD through metabolic-related pathways.
Collapse
Affiliation(s)
- Hanwen Zhou
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Xian Liang
- Chengdu Center for Disease Control and Prevention Chengdu Sichuan China
| | - Xueli Zhang
- Health Information Center of Sichuan Province Chengdu Sichuan China
| | - Jialong Wu
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Ye Jiang
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Junhua Wang
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Guizhou Medical University Guiyang China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of Public Health Kunming Medical University Kunming Yunnan China
| | - Xianbin Ding
- Chongqing Municipal Center for Disease Control and Prevention Chongqing China
| | | | - Jingzhong Li
- Tibet Center for Disease Control and Prevention Lhasa Tibet China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center University of Maryland College Park MD USA
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
5
|
Yan H, Tang W, Wang L, Huang S, Lin H, Gu L, He C, Dai Y, Yang L, Pengcuo C, Qin Z, Meng Q, Guo B, Zhao X. Ambient PM2.5 Components Are Associated With Bone Strength: Evidence From a China Multi-Ethnic Study. J Clin Endocrinol Metab 2023; 109:197-207. [PMID: 37467163 DOI: 10.1210/clinem/dgad425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
CONTEXT The relationship between the components of particulate matter with an aerodynamic diameter of 2.5 or less (PM2.5) and bone strength remains unclear. OBJECTIVE Based on a large-scale epidemiologic survey, we investigated the individual and combined associations of PM2.5 and its components with bone strength. METHODS A total of 65 906 individuals aged 30 to 79 years were derived from the China Multi-Ethnic Cohort Annual average concentrations of PM2.5 and its components were estimated using satellite remote sensing and chemical transport models. Bone strength was expressed by the calcaneus quantitative ultrasound index (QUI) measured by quantitative ultrasound. The logistic regression model and weighted quantile sum method were used to estimate the associations of single and joint exposure to PM2.5 and its components with QUI, respectively. RESULTS Our analysis shows that per-SD increase (μg/m3) in 3-year average concentrations of PM2.5 (mean difference [MD] -7.38; 95% CI, -8.35 to -6.41), black carbon (-7.91; -8.90 to -6.92), ammonium (-8.35; -9.37 to -7.34), nitrate (-8.73; -9.80 to -7.66), organic matter (-4.70; -5.77 to -3.64), and soil particles (-5.12; -6.10 to -4.15) were negatively associated with QUI. In addition, these associations were more pronounced in men, and people older than 65 years with a history of smoking and chronic alcohol consumption. CONCLUSION We found that long-term exposure to PM2.5 and its components may lead to reduced bone strength, suggesting that PM2.5 and its components may potentially increase the risk of osteoporosis and even fracture. Nitrate may be responsible for increasing its risk to a greater extent.
Collapse
Affiliation(s)
- Hongyu Yan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenge Tang
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Lele Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shourui Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Lingxi Gu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Congyuan He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingxue Dai
- Infectious Disease Control Department, Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan 610041, China
| | - La Yang
- Plateau Health Science Research Center, Medical School, Tibet University, Lhasa, Tibet 850000, China
| | - Ciren Pengcuo
- Tibet Center for Disease Control and Prevention, Lhasa, Tibet 850002, China
| | - Zixiu Qin
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Kunming, Yunnan 650550, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Pan X, Hong F, Li S, Wu J, Xu H, Yang S, Chen K, Baima K, Nima Q, Meng Q, Xia J, Xu J, Guo B, Lin H, Xie L, Zhang J, Zhao X. Long-term exposure to ambient PM 2.5 constituents is associated with dyslipidemia in Chinese adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115384. [PMID: 37603926 DOI: 10.1016/j.ecoenv.2023.115384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Ambient particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) consists of various toxic constituents. However, the health effect of PM2.5 may differ depending on its constituents, but the joint effect of PM2.5 constituents remains incompletely understood. OBJECTIVE Our goal was to evaluate the joint effect of long-term PM2.5 constituent exposures on dyslipidemia and identify the most hazardous chemical constituent. METHODS This study included 67,015 participants from the China Multi-Ethnic Cohort study. The average yearly levels of PM2.5 constituents for all individuals at their residences were assessed through satellite remote sensing and chemical transport modeling. Dyslipidemia was defined as one or more following abnormal blood lipid concentrations: total cholesterol (TC) ≥ 6.22 mmol/L, triglycerides (TG) ≥ 2.26 mmol/L, high-density lipoprotein cholesterol (HDL-C) < 1.04 mmol/L, and low-density lipoprotein cholesterol (LDL-C) ≥ 4.14 mmol/L. The logistic regression model was utilized to examine the single effect of PM2.5 constituents on dyslipidemia, while the weighted quantile sum regression model for the joint effect. RESULTS The odds ratio with a 95 % confidence interval for dyslipidemia positively related to per-SD increase in the three-year average was 1.29 (1.20-1.38) for PM2.5 mass, 1.25 (1.17-1.34) for black carbon, 1.24 (1.16-1.33) for ammonium, 1.33 (1.24-1.43) for nitrate, 1.34 (1.25-1.44) for organic matter, 1.15 (1.08-1.23) for sulfate, 1.30 (1.22-1.38) for soil particles, and 1.12 (1.05-1.92) for sea salt. Stronger associations were observed in individuals < 65 years of age, males, and those with low physical activity. Joint exposure to PM2.5 constituents was positively related to dyslipidemia (OR: 1.09, 95 %CI: 1.05-1.14). Nitrate was identified as the constituent with the largest weight (weighted at 0.387). CONCLUSIONS Long-term exposure to PM2.5 constituents poses a significant risk to dyslipidemia and nitrate might be the most responsible for the risk. These findings indicate that reducing PM2.5 constituent exposures, especially nitrate, could be beneficial to alleviate the burden of disease attributed to PM2.5-related dyslipidemia.
Collapse
Affiliation(s)
- Xianmou Pan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Sicheng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jialong Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huan Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Institute for Disaster Management and Reconstruction, Sichuan University-The Hongkong Polytechnic University, Chengdu, Sichuan, China
| | - Shaokun Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kejun Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kangzhuo Baima
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Qucuo Nima
- Tibet Center for Disease Control and Prevention, Lhasa, Tibet, China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Jinjie Xia
- Chengdu Center for Disease Control & Prevention, China
| | - Jingru Xu
- Chongqing Municipal Center for Disease Control and Prevention, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
He C, Xie L, Gu L, Yan H, Feng S, Zeng C, Danzhen W, Zhang X, Han M, Li Z, Duoji Z, Guo B, Zhang J, Hong F, Zhao X. Anemia is associated with long-term exposure to PM 2.5 and its components: a large population-based study in Southwest China. Ther Adv Hematol 2023; 14:20406207231189922. [PMID: 37654523 PMCID: PMC10467225 DOI: 10.1177/20406207231189922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
Background Anemia is linked to PM2.5 (particulate matter with aerodynamic diameters of ⩽2.5 μm) exposure, which can increase the risk of various negative health outcomes. It remains unclear which PM2.5 components are associated with anemia and the respective contribution of each component to this association. Objective This study aimed at investigating the association between PM2.5 and anemia in the general population and to identify the most critical PM2.5 toxic components in this association. Design Cross-sectional study. Methods Our study involved a large cohort of 73,511 individuals aged 30-79 from China's multi-ethnic population. We employed satellite observations and the chemical transport model (GEOS-Chem)to estimate the long-term exposure to PM2.5 and its components. Anemia was defined, according to WHO guidelines, as Hb levels below 130 g/L for men and below 120 g/L for women. Through logistic regression, we investigated the association between PM2.5 components and anemia. By utilizing weighted quantile sum (WQS) analysis, we identified key components and gained insights into their combined impact on anemia. Overall, our study sheds light on the relationship between PM2.5 exposure, its constituents, and the risk of anemia in a large cohort. Results PM2.5 and three components, nitrate (NIT), organic matter (OM), and soil particles (SOIL), were associated with anemia. Per-standard deviation increase in the 3-year average concentrations of PM2.5 [odds ratio (OR): 1.14, 95% confidence interval (CI): 1.01, 1.28], NIT (1.20, 1.06, 1.35), OM (1.17, 1.04, 1.32), and SOIL (1.22, 1.11, 1.33) were associated with higher odds of anemia. In WQS regression analysis, the WQS index was associated with anemia (OR: 1.29, 95% CI: 1.13, 1.47). SOIL has the highest weight among all PM2.5 components. Conclusions Long-term exposure to PM2.5 and its constituents is associated with anemia. Moreover, SOIL might be the most critical component of the relationship between PM2.5 and anemia. Our research increases the evidence of the association between PM2.5 and anemia in the general population, and targeted emission control measures should be taken into consideration to mitigate the adverse effects of PM2.5-related anemia.
Collapse
Affiliation(s)
- Congyuan He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingxi Gu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongyu Yan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyu Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunmei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wangjiu Danzhen
- Tibet Center for Disease Control and Prevention CN, Lhasa, Tibet, China
| | - Xuehui Zhang
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Mingming Han
- Chengdu Center for Disease Control & Prevention, Chengdu, Sichuan, China
| | - Zhifeng Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | | | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Chengdu, Sichuan 610041, China
| | - Feng Hong
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, University Town, Guian New Area, Guiyang, Guizhou 550025, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Kang N, Wu R, Liao W, Zhang C, Liu X, Mao Z, Huo W, Hou J, Zhang K, Tian H, Lin H, Wang C. Association of long-term exposure to PM 2.5 constituents with glucose metabolism in Chinese rural population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160364. [PMID: 36427733 DOI: 10.1016/j.scitotenv.2022.160364] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Evidence on the associations of fine particulate matter (PM2.5) constituents and glucose metabolism is limited in resource-limited areas. This study aimed to explore the associations of PM2.5 constituents with glucose metabolism in rural areas, and to further specify the most responsible constituent. METHODS A total of 38,442 adults were recruited from the Henan Rural Cohort Study during 2015-2017. Three-year averaged concentrations of PM2.5 mass and its constituents (black carbon (BC), ammonium (NH4+), nitrate (NO3-), organic matter (OM), inorganic sulfate (SO42-), soil particles (SOIL) and sea salt (SS)) were estimated by a hybrid satellite-based model. Generalized linear model was applied to explore the associations of PM2.5 mass and its constituents with type 2 diabetes mellitus (T2DM), fasting blood glucose (FBG), insulin, and HOMA-β. Proportion and residual analyses were employed to specify the most responsible constituent. RESULTS The adjusted odds ratio (OR) for T2DM associated with 1 μg/m3 increase was 1.02 for PM2.5 mass, 1.28 for BC, 1.15 for NH4+, 1.08 for NO3-, 1.10 for OM, 1.11 for SO42-, and 1.12 for SOIL. Significant associations of PM2.5 mass and its constituents with elevated FBG, decreased insulin and HOMA-β were also observed. Proportion and residual analyses indicated that BC was the most responsible constituent, in which 1 percentage increment in the proportion of BC in PM2.5 corresponded with 1.51-fold risk for T2DM, 0.17 mmol/L increase in FBG, 2.18 μU/mL decrease in insulin, and 38.26 % decrease in HOMA-β; and 1 μg/m3 increment in the PM2.5-adjusted BC corresponded with 1.59-fold risk for T2DM, 0.53 mmol/L increase in FBG, 4.79 μU/mL decrease in insulin, and 91.32 % decrease in HOMA-β. CONCLUSIONS PM2.5 mass and its constituents (BC, NH4+, NO3-, OM, SO42-, SOIL) were associated with T2DM, increased FBG, decreased insulin and HOMA-β, of which BC was most responsible for these associations. TRIAL REGISTRATION The Henan Rural Cohort Study has been registered at Chinese Clinical Trial Register (Registration number: ChiCTR-OOC-15006699). Date of registration: 06 July 2015. http://www.chictr.org.cn/showproj.aspx?proj=11375.
Collapse
Affiliation(s)
- Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruiyu Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Caiyun Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY, USA
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing, China
| | - Hualiang Lin
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Li S, Guo B, Jiang Y, Wang X, Chen L, Wang X, Chen T, Yang L, Silang Y, Hong F, Yin J, Lin H, Zhao X. Long-term Exposure to Ambient PM2.5 and Its Components Associated With Diabetes: Evidence From a Large Population-Based Cohort From China. Diabetes Care 2023; 46:111-119. [PMID: 36383478 PMCID: PMC9918443 DOI: 10.2337/dc22-1585] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Association between particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5) components and diabetes remains unclear. We therefore aimed to investigate the associations of long-term exposure to PM2.5 components with diabetes. RESEARCH DESIGN AND METHODS This study included 69,210 adults with no history of diabetes from a large-scale epidemiologic survey in Southwest China from 2018 to 2019. The annual average concentrations of PM2.5 and its components were estimated using satellite remote sensing and chemical transport modeling. Diabetes was identified as fasting plasma glucose ≥7.0 mmol/L (126 mg/dL) or hemoglobin A1c ≥48 mmol/mol (6.5%). The logistic regression model and weighted quantile sum method were used to estimate the associations of single and joint exposure to PM2.5 and its components with diabetes, respectively. RESULTS Per-SD increases in the 3-year average concentrations of PM2.5 (odds ratio [OR] 1.08, 95% CI 1.01-1.15), black carbon (BC; 1.07, 1.01-1.15), ammonium (1.07, 1.00-1.14), nitrate (1.08, 1.01-1.16), organic matter (OM; 1.09, 1.02-1.16), and soil particles (SOIL; 1.09, 1.02-1.17) were positively associated with diabetes. The associations were stronger in those ≥65 years. Joint exposure to PM2.5 and its components was positively associated with diabetes (OR 1.04, 95% CI 1.01-1.07). The estimated weight of OM was the largest among PM2.5 and its components. CONCLUSIONS Long-term exposure to BC, nitrate, ammonium, OM, and SOIL is positively associated with diabetes. Moreover, OM might be the most responsible for the relationship between PM2.5 and diabetes. This study adds to the evidence of a PM2.5-diabetes association and suggests controlling sources of OM to curb the burden of PM2.5-related diabetes.
Collapse
Affiliation(s)
- Sicheng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Jiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue Wang
- Chenghua Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Ting Chen
- Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - La Yang
- School of Medicine, Tibet University, Tibet, China
| | - Yangzong Silang
- Tibet Center for Disease Control and Prevention, Tibet, China
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Yunnan, China
- Baoshan College of Traditional Chinese Medicine, Yunnan, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Wang W, Mu M, Zou Y, Li B, Cao H, Hu D, Tao X. Inflammation and fibrosis in the coal dust-exposed lung described by confocal Raman spectroscopy. PeerJ 2022; 10:e13632. [PMID: 35765591 PMCID: PMC9233900 DOI: 10.7717/peerj.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/03/2022] [Indexed: 01/17/2023] Open
Abstract
Background Coal workers' pneumoconiosis (CWP) is an occupational disease that severely damages the life and health of miners. However, little is known about the molecular and cellular mechanisms changes associated with lung inflammation and fibrosis induced by coal dust. As a non-destructive technique for measuring biological tissue, confocal Raman spectroscopy provides accurate molecular fingerprints of label-free tissues and cells. Here, the progression of lung inflammation and fibrosis in a murine model of CWP was evaluated using confocal Raman spectroscopy. Methods A mouse model of CWP was constructed and biochemical analysis in lungs exposed to coal dust after 1 month (CWP-1M) and 3 months (CWP-3M) vs control tissues (NS) were used by confocal Raman spectroscopy. H&E, immunohistochemical and collagen staining were used to evaluate the histopathology alterations in the lung tissues. Results The CWP murine model was successfully constructed, and the mouse lung tissues showed progression of inflammation and fibrosis, accompanied by changes in NF-κB, p53, Bax, and Ki67. Meanwhile, significant differences in Raman bands were observed among the different groups, particularly changes at 1,248, 1,448, 1,572, and 746 cm-1. These changes were consistent with collagen, Ki67, and Bax levels in the CWP and NS groups. Conclusion Confocal Raman spectroscopy represented a novel approach to the identification of the biochemical changes in CWP lungs and provides potential biomarkers of inflammation and fibrosis.
Collapse
Affiliation(s)
- Wenyang Wang
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Min Mu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Yuanjie Zou
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Bing Li
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Hangbing Cao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Dong Hu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Xinrong Tao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| |
Collapse
|
11
|
Li X, Bei N, Tie X, Wu J, Liu S, Wang Q, Liu L, Wang R, Li G. Local and transboundary transport contributions to the wintertime particulate pollution in the Guanzhong Basin (GZB), China: A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148876. [PMID: 34311358 DOI: 10.1016/j.scitotenv.2021.148876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Heavy haze with high levels of fine particulate matters (PM2.5) frequently engulfs the Guanzhong Basin (GZB) in northwestern China during wintertime. Although it is an enclosed basin with a narrow opening to the east, prevailing easterly winds during heavy haze episodes have a large potential to bring air pollutants to the GZB from the two highly polluted neighboring provinces of Shanxi and Henan (SX&HN). The source-oriented WRF-Chem model simulations of a persistent and heavy haze episode that occurred in the GZB from December 6 to 21, 2016, reveal that local emissions dominate PM2.5 concentrations in the GZB, with an average near-surface PM2.5 contribution of about 56.0% during the episode. The transboundary transport of emissions from SX&HN accounts for around 22.2% of the total PM2.5 in the GZB. Furthermore, with the deterioration of the air quality in the GZB from being slightly polluted to severely polluted in terms of hourly PM2.5 concentration, transboundary transport of emissions from SX&HN plays an increasingly important role in the particulate pollution, with the average PM2.5 contribution increasing from 8.0% to 27.5%. Compared with the source-oriented method (SOM), the brute force method (BFM) overestimates the contribution of GZB local emissions and transboundary transport of emissions from SX&HN to the total PM2.5 in the GZB. In addition, the BFM-estimated NH3 contribution of transboundary transport of emissions from SX&HN is negative, indicating the limitation of the BFM in source apportionment. Our results suggest that cooperative emission mitigation strategies with neighboring provinces are beneficial for lowering the particulate pollution in the GZB, particularly under severely polluted conditions.
Collapse
Affiliation(s)
- Xia Li
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Naifang Bei
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuexi Tie
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jairui Wu
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Suixin Liu
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Qiyuan Wang
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Lang Liu
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ruonan Wang
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guohui Li
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| |
Collapse
|
12
|
Degrendele C, Kanduč T, Kocman D, Lammel G, Cambelová A, Dos Santos SG, Horvat M, Kukučka P, Holubová Šmejkalová A, Mikeš O, Nuñez-Corcuera B, Přibylová P, Prokeš R, Saňka O, Maggos T, Sarigiannis D, Klánová J. NPAHs and OPAHs in the atmosphere of two central European cities: Seasonality, urban-to-background gradients, cancer risks and gas-to-particle partitioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148528. [PMID: 34328964 PMCID: PMC8434474 DOI: 10.1016/j.scitotenv.2021.148528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 05/24/2023]
Abstract
Derivatives of polycyclic aromatic hydrocarbons (PAHs) such as nitrated- and oxygenated-PAHs (NPAHs and OPAHs) could be even more toxic and harmful for the environment and humans than PAHs. We assessed the spatial and seasonal variations of NPAHs and OPAHs atmospheric levels, their cancer risks and their gas-to-particle partitioning. To this end, about 250 samples of fine particulate matter (PM2.5) and 50 gaseous samples were collected in 2017 in central Europe in the cities of Brno and Ljubljana (two traffic and two urban background sites) as well as one rural site. The average particulate concentrations were ranging from below limit of quantification to 593 pg m-3 for Σ9NPAHs and from 1.64 to 4330 pg m-3 for Σ11OPAHs, with significantly higher concentrations in winter compared to summer. In winter, the particulate levels of NPAHs and OPAHs were higher at the traffic site compared to the urban background site in Brno while the opposite was found in Ljubljana. NPAHs and OPAHs particulate levels were influenced by the meteorological parameters and co-varied with several air pollutants. The significance of secondary formation on the occurrence of some NPAHs and OPAHs is indicated. In winter, 27-47% of samples collected at all sites were above the acceptable lifetime carcinogenic risk. The gas-particle partitioning of NPAHs and OPAHs was influenced by their physico-chemical properties, the season and the site-specific aerosol composition. Three NPAHs and five OPAHs had higher particulate mass fractions at the traffic site, suggesting they could be primarily emitted as particles from vehicle traffic and subsequently partitioning to the gas phase along air transport. This study underlines the importance of inclusion of the gas phase in addition to the particulate phase when assessing the atmospheric fate of polycyclic aromatic compounds and also when assessing the related health risk.
Collapse
Affiliation(s)
| | - Tjaša Kanduč
- Department of Environmental Sciences, Jožef Stefan Institute, Slovenia
| | - David Kocman
- Department of Environmental Sciences, Jožef Stefan Institute, Slovenia
| | | | | | - Saul Garcia Dos Santos
- Área de Contaminación Atmosférica, Centro Nacional de Sanidad Ambiental Instituto de Salud Carlos III, Spain
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Slovenia
| | - Petr Kukučka
- RECETOX Centre, Masaryk University, Czech Republic
| | | | - Ondřej Mikeš
- RECETOX Centre, Masaryk University, Czech Republic
| | - Beatriz Nuñez-Corcuera
- Área de Contaminación Atmosférica, Centro Nacional de Sanidad Ambiental Instituto de Salud Carlos III, Spain
| | | | - Roman Prokeš
- RECETOX Centre, Masaryk University, Czech Republic
| | - Ondřej Saňka
- RECETOX Centre, Masaryk University, Czech Republic
| | - Thomas Maggos
- Atmospheric Chemistry & Innovative Technologies Laboratory, NCSR "Demokritos", Greece
| | - Denis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Centre on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece; University School of Advanced Study, Pavia, Italy
| | - Jana Klánová
- RECETOX Centre, Masaryk University, Czech Republic
| |
Collapse
|
13
|
Airborne Aerosols and Human Health: Leapfrogging from Mass Concentration to Oxidative Potential. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090917] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mass concentration of atmospheric particulate matter (PM) has been systematically used in epidemiological studies as an indicator of exposure to air pollutants, connecting PM concentrations with a wide variety of human health effects. However, these effects can be hardly explained by using one single parameter, especially because PM is formed by a complex mixture of chemicals. Current research has shown that many of these adverse health effects can be derived from the oxidative stress caused by the deposition of PM in the lungs. The oxidative potential (OP) of the PM, related to the presence of transition metals and organic compounds that can induce the production of reactive oxygen and nitrogen species (ROS/RNS), could be a parameter to evaluate these effects. Therefore, estimating the OP of atmospheric PM would allow us to evaluate and integrate the toxic potential of PM into a unique parameter, which is related to emission sources, size distribution and/or chemical composition. However, the association between PM and particle-induced toxicity is still largely unknown. In this commentary article, we analyze how this new paradigm could help to deal with some unanswered questions related to the impact of atmospheric PM over human health.
Collapse
|
14
|
Ahmed CMS, Yang J, Chen JY, Jiang H, Cullen C, Karavalakis G, Lin YH. Toxicological responses in human airway epithelial cells (BEAS-2B) exposed to particulate matter emissions from gasoline fuels with varying aromatic and ethanol levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135732. [PMID: 31818575 DOI: 10.1016/j.scitotenv.2019.135732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/31/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
In this study, we assessed the toxicological potencies of particulate matter (PM) emissions from a modern vehicle equipped with a gasoline direct injection (GDI) engine when operated on eight different fuels with varying aromatic hydrocarbon and ethanol contents. Testing was conducted over the LA92 driving cycle using a chassis dynamometer with a constant volume sampling system, where particles were collected onto Teflon filters. The extracted PM constituents were analyzed for their oxidative potential using the dithiothreitol (DTT) chemical assay and exposure-induced gene expression in human airway epithelial cells (BEAS-2B). Different trends of DTT activities were seen when testing PM samples in 100% aqueous buffer solutions versus elevated fraction of methanol in aqueous buffers (50:50), indicating the effect of solubility of organic PM constituents on the measured oxidative potential. Higher aromatics content in fuels corresponded to higher DTT activities in PM. Exposure to PM exhaust upregulated the expression of HMOX-1, but downregulated the expression of IL-6, TNF-α, CCL5 and NOS2 in BEAS-2B cells. The principal component regression analysis revealed different patterns of correlations. Aromatics content contributed to more significant PAH-mediated IL-6 downregulation, whereas ethanol content was associated with decreased downregulation of IL-6. Our findings highlighted the key role of fuel composition in modulating the toxicological responses to GDI PM emissions.
Collapse
Affiliation(s)
- C M Sabbir Ahmed
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Jiacheng Yang
- Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92521, USA; Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Jin Y Chen
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Huanhuan Jiang
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Cody Cullen
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Georgios Karavalakis
- Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92521, USA; Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Ying-Hsuan Lin
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
15
|
Kaur K, Jaramillo IC, Mohammadpour R, Sturrock A, Ghandehari H, Reilly C, Paine R, Kelly KE. Effect of collection methods on combustion particle physicochemical properties and their biological response in a human macrophage-like cell line. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:1170-1185. [PMID: 31342848 PMCID: PMC6801061 DOI: 10.1080/10934529.2019.1632626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
In vitro studies are a first step toward understanding the biological effects of combustion-derived particulate matter (cdPM). A vast majority of studies expose cells to cdPM suspensions, which requires a method to collect cdPM and suspend it in an aqueous media. The consequences of different particle collection methods on particle physiochemical properties and resulting biological responses are not fully understood. This study investigated the effect of two common approaches (collection on a filter and a cold plate) and one relatively new (direct bubbling in DI water) approach to particle collection. The three approaches yielded cdPM with differences in particle size distribution, surface area, composition, and oxidative potential. The directly bubbled sample retained the smallest sized particles and the bimodal distribution observed in the gas-phase. The bubbled sample contained ∼50% of its mass as dissolved species and lower molecular weight compounds, not found in the other two samples. These differences in the cdPM properties affected the biological responses in THP-1 cells. The bubbled sample showed greater oxidative potential and cellular reactive oxygen species. The scraped sample induced the greatest TNFα secretion. These findings have implications for in vitro studies of air pollution and for efforts to better understand the underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | - Anne Sturrock
- Division of Pulmonary and Critical Care Medicine, University of Utah
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah
- Department of Bioengineering, University of Utah
| | - Christopher Reilly
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmacology and Toxicology, University of Utah
| | - Robert Paine
- Division of Pulmonary and Critical Care Medicine, University of Utah
| | - Kerry E. Kelly
- Department of Chemical Engineering, University of Utah
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
| |
Collapse
|
16
|
Curbani F, de Oliveira Busato F, Marcarini do Nascimento M, Olivieri DN, Tadokoro CE. Inhale, exhale: Why particulate matter exposure in animal models are so acute? Data and facts behind the history. Data Brief 2019; 25:104237. [PMID: 31367664 PMCID: PMC6646918 DOI: 10.1016/j.dib.2019.104237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022] Open
Abstract
We present a dataset obtained by extracting information from an extensive literature search of toxicological experiments using mice and rat animal models to study the effects of exposure to airborne particulate matter (PM). Our dataset covers results reported from 75 research articles considering paper published in 2017 and seminal papers from previous years. The compiled data and normalization were processed with an equation based on a PM dosimetry model. This equation allows the comparison of different toxicological experiments using instillation and inhalation as PM exposure protocols with respect to inhalation rates, concentrations and PM exposure doses of the toxicological experiments performed by different protocols using instillation and inhalation PM as exposure methods. This data complements the discussions and interpretations presented in the research article “Inhale, exhale: why particulate matter exposure in animal models are so acute?” Curbani et al., 2019.
Collapse
Affiliation(s)
- Flávio Curbani
- Programa de Pós-Graduação em Ecologia de Ecossistemas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil.,Departamento de Tecnologia Industrial, Centro Tecnológico, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, CEP 29060-970, Vitória, ES, Brazil
| | - Fernanda de Oliveira Busato
- Laboratory of Immunobiology, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| | - Maynara Marcarini do Nascimento
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| | | | - Carlos Eduardo Tadokoro
- Programa de Pós-Graduação em Ecologia de Ecossistemas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| |
Collapse
|
17
|
Sippula O, Huttunen K, Hokkinen J, Kärki S, Suhonen H, Kajolinna T, Kortelainen M, Karhunen T, Jalava P, Uski O, Yli-Pirilä P, Hirvonen MR, Jokiniemi J. Emissions from a fast-pyrolysis bio-oil fired boiler: Comparison of health-related characteristics of emissions from bio-oil, fossil oil and wood. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:888-897. [PMID: 30856504 DOI: 10.1016/j.envpol.2019.02.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
There is currently great interest in replacing fossil-oil with renewable fuels in energy production. Fast pyrolysis bio-oil (FPBO) made of lignocellulosic biomass is one such alternative to replace fossil oil, such as heavy fuel oil (HFO), in energy boilers. However, it is not known how this fuel change will alter the quantity and quality of emissions affecting human health. In this work, particulate emissions from a real-scale commercially operated FPBO boiler plant are characterized, including extensive physico-chemical and toxicological analyses. These are then compared to emission characteristics of heavy fuel-oil and wood fired boilers. Finally, the effects of the fuel choice on the emissions, their potential health effects and the requirements for flue gas cleaning in small-to medium-sized boiler units are discussed. The total suspended particulate matter and fine particulate matter (PM1) concentrations in FPBO boiler flue gases before filtration were higher than in HFO boilers and lower or on a level similar to wood-fired grate boilers. FPBO particles consisted mainly of ash species and contained less polycyclic aromatic hydrocarbons (PAH) and heavy metals than had previously been measured from HFO combustion. This feature was clearly reflected in the toxicological properties of FPBO particle emissions, which showed less acute toxicity effects on the cell line than HFO combustion particles. The electrostatic precipitator used in the boiler plant efficiently removed flue gas particles of all sizes. Only minor differences in the toxicological properties of particles upstream and downstream of the electrostatic precipitator were observed, when the same particulate mass from both situations was given to the cells.
Collapse
Affiliation(s)
- Olli Sippula
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, P. O. Box 111, FI-80101, Joensuu, Finland.
| | - Kati Huttunen
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Jouni Hokkinen
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Sara Kärki
- Fortum Power and Heat, Keilaniementie 1, 02150, Espoo, Finland
| | - Heikki Suhonen
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Tuula Kajolinna
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Miika Kortelainen
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Tommi Karhunen
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Oskari Uski
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Pasi Yli-Pirilä
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Maija-Riitta Hirvonen
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Jorma Jokiniemi
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
18
|
Velali E, Papachristou E, Pantazaki A, Besis A, Samara C, Labrianidis C, Lialiaris T. In vitro cellular toxicity induced by extractable organic fractions of particles exhausted from urban combustion sources - Role of PAHs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1166-1176. [PMID: 30266006 DOI: 10.1016/j.envpol.2018.09.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Accepted: 09/15/2018] [Indexed: 05/26/2023]
Abstract
The bioactivity of the extractable organic matter (EOM) of particulate matter (PM) exhausted from major urban combustion sources, including residential heating installations (wood-burning fireplace and oil-fired boiler) and vehicular exhaust from gasoline and diesel cars), was investigated in vitro by employing multiple complementary cellular and bacterial assays. Cytotoxic responses were investigated by applying the MTT ((3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide)) bioassay and the lactate dehydrogenase (LDH) release bioassay on human lung cells (MRC-5). Sister Chromatids Exchange (SCE) genotoxicity was measured on human peripheral lymphocytes. Lipid peroxidation potential via reactive oxygen species (ROS) was evaluated on E. coli bacterial cells by measuring the malondialdehyde (MDA) end product. Furthermore, the DNA damage induced by the organic PM fractions was evaluated by the reporter (β-galactosidase) gene expression assay in the bacterial cells, and, by examining the fragmentation of chromosomal DNA on agarose gel electrophoresis. The correlations between the source PM-induced biological endpoints and the PM content in polycyclic aromatic hydrocarbons (PAHs), as typical molecular markers of combustion, were investigated. Fireplace wood smoke particles exhibited by far the highest content in total and carcinogenic PAHs followed by oil boilers, diesel and gasoline emissions. However, in all bioassays, the total EOM-induced toxicity, normalized to PM mass, was highest for diesel cars equipped with Diesel Particle Filter (DPF). No correlation between the toxicological endpoints and the PAHs content was observed suggesting that cytotoxicity and genotoxicity are probably driven by other extractable organic compounds than the commonly measured unsubstituted PAHs. Clearly, further research is needed to elucidate the role of PAHs in the biological effects induced by both, combustion emissions, and ambient air particles.
Collapse
Affiliation(s)
- Ekaterini Velali
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Eleni Papachristou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Anastasia Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| | - Christos Labrianidis
- Department of Genetics, Faculty of Medicine, Demokrition University of Thrace, GR-68100, Alexandroupolis, Greece
| | - Theodore Lialiaris
- Department of Genetics, Faculty of Medicine, Demokrition University of Thrace, GR-68100, Alexandroupolis, Greece
| |
Collapse
|
19
|
Arif AT, Maschowski C, Khanaqa P, Garra P, Garcia-Käufer M, Wingert N, Mersch-Sundermann V, Gminski R, Trouvé G, Gieré R. Characterization and in vitro biological effects of ambient air PM 10 from a rural, an industrial and an urban site in Sulaimani City, Iraq. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2018; 100:373-394. [PMID: 31534295 PMCID: PMC6750222 DOI: 10.1080/02772248.2018.1520234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/31/2018] [Indexed: 06/10/2023]
Abstract
High urban atmospheric pollution is caused by economic and industrial growth, especially in developing countries. The objective of this study was to assess possible relationships between in vitro effects on human alveolar epithelial cells of source-related dust types collected at Sulaimani City (Iraq), and to determine their mineralogical and chemical composition. A passive sampler was used to collect dust particles at a rural, an industrial and an urban sampling site during July and August 2014. The samples were size-fractionated by a low-pressure impactor to obtain respirable dust with aerodynamic diameters of less than 10 μm. The dust was mainly composed of quartz and calcite. Chrysotile fibres (white asbestos) were also found at the urban site. Dust from the industrial and urban sites triggered cytotoxic and genotoxic effects in the cells, whereas only minor effects were observed for the sample from the rural site.
Collapse
Affiliation(s)
- Ali Talib Arif
- Sulaimani Polytechnic University (SPU), Technical College of health, Sulaimani, Iraq
- Institute for Infection Prevention and Hospital Epidemiology, University Medical Center Freiburg, University of Freiburg, Faculty of Medicine, University of Freiburg, D- 79106 Freiburg, Germany
- Institute of Earth and Environmental Sciences-Geochemistry, University of Freiburg, D-79104 Freiburg, Germany
- Kurdistan Institution for Strategic Studies and Scientific Research (KISSR), Qirga - Sulaimani, Iraq
| | - Christoph Maschowski
- Institute of Earth and Environmental Sciences-Geochemistry, University of Freiburg, D-79104 Freiburg, Germany
| | - Polla Khanaqa
- Sulaimani Polytechnic University (SPU), Technical College of health, Sulaimani, Iraq
- Kurdistan Institution for Strategic Studies and Scientific Research (KISSR), Qirga - Sulaimani, Iraq
| | - Patxi Garra
- Laboratoire Gestion des Risques et Environnement (LGRE), Université de Haute-Alsace, F-68093 Mulhouse Cedex, France
- Laboratoire Modélisation Intelligence des Procédés et des Systèmes (MIPS), Université de Haute-Alsace, F-68093 Mulhouse Cedex, France
| | - Manuel Garcia-Käufer
- Institute for Infection Prevention and Hospital Epidemiology, University Medical Center Freiburg, University of Freiburg, Faculty of Medicine, University of Freiburg, D- 79106 Freiburg, Germany
| | - Nadja Wingert
- Institute for Infection Prevention and Hospital Epidemiology, University Medical Center Freiburg, University of Freiburg, Faculty of Medicine, University of Freiburg, D- 79106 Freiburg, Germany
| | - Volker Mersch-Sundermann
- Institute for Infection Prevention and Hospital Epidemiology, University Medical Center Freiburg, University of Freiburg, Faculty of Medicine, University of Freiburg, D- 79106 Freiburg, Germany
| | - Richard Gminski
- Institute for Infection Prevention and Hospital Epidemiology, University Medical Center Freiburg, University of Freiburg, Faculty of Medicine, University of Freiburg, D- 79106 Freiburg, Germany
| | - Gwenaëlle Trouvé
- Laboratoire Gestion des Risques et Environnement (LGRE), Université de Haute-Alsace, F-68093 Mulhouse Cedex, France
| | - Reto Gieré
- Department of Earth and Environmental Science and Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104-6316, USA
| |
Collapse
|
20
|
Rönkkö TJ, Jalava PI, Happo MS, Kasurinen S, Sippula O, Leskinen A, Koponen H, Kuuspalo K, Ruusunen J, Väisänen O, Hao L, Ruuskanen A, Orasche J, Fang D, Zhang L, Lehtinen KEJ, Zhao Y, Gu C, Wang Q, Jokiniemi J, Komppula M, Hirvonen MR. Emissions and atmospheric processes influence the chemical composition and toxicological properties of urban air particulate matter in Nanjing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:1290-1310. [PMID: 29929296 DOI: 10.1016/j.scitotenv.2018.05.260] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 05/13/2023]
Abstract
Ambient inhalable particulate matter (PM) is a serious health concern worldwide, but especially so in China where high PM concentrations affect huge populations. Atmospheric processes and emission sources cause spatial and temporal variations in PM concentration and chemical composition, but their influence on the toxicological characteristics of PM are still inadequately understood. In this study, we report an extensive chemical and toxicological characterization of size-segregated urban air inhalable PM collected in August and October 2013 from Nanjing, and assess the effects of atmospheric processes and likely emission sources. A549 human alveolar epithelial cells were exposed to day- and nighttime PM samples (25, 75, 150, 200, 300 μg/ml) followed by analyses of cytotoxicity, genotoxicity, cell cycle, and inflammatory response. PM10-2.5 and PM0.2 caused the greatest toxicological responses for different endpoints, illustrating that particles with differing size and chemical composition activate distinct toxicological pathways in A549 cells. PM10-2.5 displayed the greatest oxidative stress and genotoxic responses; both were higher for the August samples compared with October. In contrast, PM0.2 and PM2.5-1.0 samples displayed high cytotoxicity and substantially disrupted cell cycle; August samples were more cytotoxic whereas October samples displayed higher cell cycle disruption. Several components associated with combustion, traffic, and industrial emissions displayed strong correlations with these toxicological responses. The lower responses for PM1.0-0.2 compared to PM0.2 and PM2.5-1.0 indicate diminished toxicological effects likely due to aerosol aging and lower proportion of fresh emission particles rich in highly reactive chemical components in the PM1.0-0.2 fraction. Different emission sources and atmospheric processes caused variations in the chemical composition and toxicological responses between PM fractions, sampling campaigns, and day and night. The results indicate different toxicological pathways for coarse-mode particles compared to the smaller particle fractions with typically higher content of combustion-derived components. The variable responses inside PM fractions demonstrate that differences in chemical composition influence the induced toxicological responses.
Collapse
Affiliation(s)
- Teemu J Rönkkö
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Pasi I Jalava
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mikko S Happo
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Stefanie Kasurinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Olli Sippula
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; University of Eastern Finland, Department of Applied Physics, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Hanna Koponen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kari Kuuspalo
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jarno Ruusunen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Olli Väisänen
- University of Eastern Finland, Department of Applied Physics, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Liqing Hao
- University of Eastern Finland, Department of Applied Physics, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Antti Ruuskanen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jürgen Orasche
- German Research Center for Environmental Health, Helmholtz Zentrum München, Munich, Germany; Joint Mass Spectrometry Center, Cooperation Group Comprehensive Molecular Analytics, German Research Center for Environmental Health, Helmholtz Zentrum München, Munich, Germany
| | - Die Fang
- Nanjing University, School of the Environment, Branch 24 Mailbox of Nanjing University Xianlin Campus, No. 163 Xianlin Avenue, Qixia District, 210023 Nanjing, China
| | - Lei Zhang
- Nanjing University, School of the Environment, Branch 24 Mailbox of Nanjing University Xianlin Campus, No. 163 Xianlin Avenue, Qixia District, 210023 Nanjing, China
| | - Kari E J Lehtinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; University of Eastern Finland, Department of Applied Physics, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Yu Zhao
- Nanjing University, School of the Environment, Branch 24 Mailbox of Nanjing University Xianlin Campus, No. 163 Xianlin Avenue, Qixia District, 210023 Nanjing, China
| | - Cheng Gu
- Nanjing University, School of the Environment, Branch 24 Mailbox of Nanjing University Xianlin Campus, No. 163 Xianlin Avenue, Qixia District, 210023 Nanjing, China
| | - Qin'geng Wang
- Nanjing University, School of the Environment, Branch 24 Mailbox of Nanjing University Xianlin Campus, No. 163 Xianlin Avenue, Qixia District, 210023 Nanjing, China
| | - Jorma Jokiniemi
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Maija-Riitta Hirvonen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
21
|
León-Mejía G, Machado MN, Okuro RT, Silva LFO, Telles C, Dias J, Niekraszewicz L, Da Silva J, Henriques JAP, Zin WA. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:589-599. [PMID: 29291573 DOI: 10.1016/j.scitotenv.2017.12.283] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 06/07/2023]
Abstract
Continuous exposure to coal mining particles can cause a variety of lung diseases. We aimed to evaluate the outcomes of exposure to detailed characterized coal and coal fly ash (CFA) particles on DNA, lung and extrapulmonary tissues. Coal samples (COAL11 and COAL16) and CFA samples (CFA11 and CFA16) were included in this study. Intending to enhance the combustion process COAL16 was co-fired with a mixture of fuel oil and diesel oil, producing CFA16. Male BALB/c mice were intratracheally instilled with coal and CFA particles. Measurements were done 24h later. Results showed significant rigidity and obstruction of the central airways only for animals acutely exposed to coal particles. The COAL16 group also showed obstruction of the peripheral airways. Mononuclear cells were recruited in all treatment groups and expression of cytokines, particularly TNF-α and IL-1β, was observed. Only animals exposed to COAL16 showed a significant expression of IL-6 and recruitment of polymorphonuclear cells. DNA damage was demonstrated by Comet assay for all groups. Cr, Fe and Ni were detected in liver, spleen and brain, showing the efficient translocation of metals from the bloodstream to extrapulmonary organs. These effects were associated with particle composition (oxides, hydroxides, phosphates, sulfides, sulphates, silciates, organic-metalic compounds, and polycyclic aromatic hidrocarbons) rather than their size. This work provides state of knowledge on the effects of acute exposure to coal and CFA particles on respiratory mechanics, DNA damage, translocation of metals to other organs and related inflammatory processes.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Unidad de Investigación, Desarrollo e Innovación en Genética y Biología Molecular, Universidad Simón Bolívar, Barranquilla, Colombia; Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Mariana Nascimento Machado
- Universidade Federal do Rio de Janeiro, Instituto de Biofisica Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Renata Tiemi Okuro
- Universidade Federal do Rio de Janeiro, Instituto de Biofisica Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Luis F O Silva
- Research group in Environmental Management and Sustainability, Faculty of Environmental Sciences, Universidad de la Costa, Barranquilla, Colombia; Universidade do Sul de Santa Catarina, Pró-Reitoria de Ensino, de Pesquisa e de Extensão, Pedra Branca, 88137900 Palhoça, SC, Brazil
| | - Claudia Telles
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Química Ambiental e Oleoquímica, Programa de Pós-Graduação em Química, Universidade Federal do Rio Grande dos Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Johnny Dias
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liana Niekraszewicz
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Juliana Da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - João Antônio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Walter Araujo Zin
- Universidade Federal do Rio de Janeiro, Instituto de Biofisica Carlos Chagas Filho, Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
Josino JB, Serra DS, Gomes MDM, Araújo RS, de Oliveira MLM, Cavalcante FSÁ. Changes of respiratory system in mice exposed to PM 4.0 or TSP from exhaust gases of combustion of cashew nut shell. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:1-9. [PMID: 28858710 DOI: 10.1016/j.etap.2017.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Air pollution is a topic discussed all over the world and the search for alternatives to reduce it is of great interest to many researchers. The use of alternative energy sources and biofuels seems to be the environmentally safer solution. In this work, the deleterious effects on the respiratory system of mice exposed to PM4.0 or TSP, present in exhaust gases from the combustion of CNS were investigated, through data from respiratory system mechanics, oxidative stress, histopathology and morphometry of the parenchyma pulmonary. The results show changes in all variables of respiratory system mechanics, in oxidative stress, the histopathological analysis and lung morphometry. The results provide experimental support for epidemiological observations of association between effects on the respiratory system and exposure to PM4.0 or TSP from CNS combustion exhaust gases, even at acute exposure. It can serve as a basis for regulation or adjustment of environmental laws that control the emissions of these gases.
Collapse
|
23
|
Williams LJ, Chen L, Zosky GR. The respiratory health effects of geogenic (earth derived) PM10. Inhal Toxicol 2017; 29:342-355. [DOI: 10.1080/08958378.2017.1367054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lewis J. Williams
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Ling Chen
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Graeme R. Zosky
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| |
Collapse
|
24
|
Uski O, Torvela T, Sippula O, Karhunen T, Koponen H, Peräniemi S, Jalava P, Happo M, Jokiniemi J, Hirvonen MR, Lähde A. In vitro toxicological effects of zinc containing nanoparticles with different physico-chemical properties. Toxicol In Vitro 2017; 42:105-113. [DOI: 10.1016/j.tiv.2017.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/02/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
|
25
|
Huang KL, Liu SY, Chou CCK, Lee YH, Cheng TJ. The effect of size-segregated ambient particulate matter on Th1/Th2-like immune responses in mice. PLoS One 2017; 12:e0173158. [PMID: 28245275 PMCID: PMC5330505 DOI: 10.1371/journal.pone.0173158] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/15/2017] [Indexed: 12/12/2022] Open
Abstract
Background Particulate matter (PM) has been associated with increased pulmonary and cardiovascular mortality and morbidity. Additionally, PM is known to exacerbate asthma. However, whether ambient PM exposure contributes to the onset of asthma, especially in non-atopic children and adults, is less conclusive. The current study aimed to evaluate the effects of size-fractioned PM on lung immune responses in healthy BALB/c mice. Methods and principal findings We collected PM10, PM2.5, PM1 and PM0.1 samples from October 2012 to August 2013 in the Taipei Basin. These PM samples were representative of urban traffic pollution. The samples were extracted and sonicated in phosphate-buffered saline (PBS). Female BALB/c mice were exposed to the samples via intratracheal instillation at three different doses: 1.75 mg/kg (35 μg/per mouse), 5 mg/kg (100 μg/per mouse), and 12.5 mg/kg (250 μg/per mouse). The mice were exposed on days 0 and 7, and PBS alone was used as a control. Following the exposures, the expression profiles of inflammatory cells and cytokines in bronchoalveolar lavage fluid (BALF) were assessed. Exposure to PM10 resulted in inflammatory responses, including the recruitment of neutrophils and the induction of T helper 1 (Th1) cell-related cytokine release, such as TNF-α and IFN-γ. Furthermore, an allergic immune response, including the recruitment of eosinophils and the up-regulation of T helper 2 (Th2) cell-related cytokine release, such as IL-5 and IL-13, was also observed in the BALF of mice exposed to PM10. Conclusions Our study showed that exposure to PM alone caused mixed Th1/Th2 inflammatory responses in healthy mice. These findings support the hypothesis that PM may contribute to the onset of asthma.
Collapse
Affiliation(s)
- Kuo-Liang Huang
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Szu-Yuan Liu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Charles C. K. Chou
- Research Center for Environmental Change, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsin Lee
- Department of Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
26
|
Suraju MO, Lalinde-Barnes S, Sanamvenkata S, Esmaeili M, Shishodia S, Rosenzweig JA. The effects of indoor and outdoor dust exposure on the growth, sensitivity to oxidative-stress, and biofilm production of three opportunistic bacterial pathogens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:949-958. [PMID: 26363607 DOI: 10.1016/j.scitotenv.2015.08.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/09/2015] [Accepted: 08/12/2015] [Indexed: 06/05/2023]
Abstract
Within the last decade, many studies have highlighted the radical changes in the components of indoor and outdoor dust. For example, agents like automobile emitted platinum group elements and different kinds of organic phthalates and esters have been reported to be accumulating in the biosphere. Humans consistently face dermal, respiratory, and dietary exposures to these particles while indoors and outdoors. In fact, dust particulate matter has been associated with close to 500,000 deaths per year in Europe and about 200,000 deaths per year in the United States. To date, there has been limited examination of the physiological impact of indoor and outdoor dust exposure on normal flora microbes. In this study, the effect of indoor- and outdoor-dust exposure on three opportunistic bacterial species (Escherichia coli, Enterococcus faecalis, and Pseudomonas aeruginosa) was assessed. Specifically, bacterial growth, oxidative stress resistance, and biofilm production were measured following indoor- and outdoor-dust exposures. Studies were conducted in nutritionally-rich and -poor environments typically encountered by bacteria. Surprisingly, indoor-dust (200μg/mL), enhanced the growth of all three bacterial species in nutrient-poor conditions, but slowed growth in nutrient-rich conditions. In nutrient-rich medium, 100μg/mL exposure of either indoor- or outdoor-dust resulted in significantly reduced oxidative stress resistance in E. coli. Most interestingly, dust (indoor and outdoor), either in nutrient-rich or -poor conditions, significantly increased biofilm production in all three bacterial species. These data suggest that indoor and outdoor dust, can modify opportunistic bacteria through altering growth, sensitivity to oxidative stress, and their virulence potential through enhanced biofilm formation.
Collapse
Affiliation(s)
- Mohammed O Suraju
- Department of Biology, Texas Southern University, 3100, Cleburne St, Houston, TX 77099, United States
| | - Sloan Lalinde-Barnes
- DeBakey High School for Health Professions, 3100 Shenandoah St, Houston, TX 77021, United States
| | - Sachindra Sanamvenkata
- DeBakey High School for Health Professions, 3100 Shenandoah St, Houston, TX 77021, United States
| | - Mahsa Esmaeili
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77099, United States
| | - Shishir Shishodia
- Department of Biology, Texas Southern University, 3100, Cleburne St, Houston, TX 77099, United States
| | - Jason A Rosenzweig
- Department of Biology, Texas Southern University, 3100, Cleburne St, Houston, TX 77099, United States; Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77099, United States.
| |
Collapse
|
27
|
Choi H, Zdeb M, Perera F, Spengler J. Estimation of chronic personal exposure to airborne polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 527-528:252-61. [PMID: 25965038 PMCID: PMC4508844 DOI: 10.1016/j.scitotenv.2015.04.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 04/16/2015] [Accepted: 04/23/2015] [Indexed: 05/13/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAH) exposure from solid fuel burning represents an important public health issue for the majority of the global population. Yet, understanding of individual-level exposures remains limited. OBJECTIVES To develop regionally adaptable chronic personal exposure model to pro-carcinogenic PAH (c-PAH) for the population in Kraków, Poland. METHODS We checked the assumption of spatial uniformity in eight c-PAH using the coefficients of divergence (COD), a marker of absolute concentration differences. Upon successful validation, we developed personal exposure models for eight pro-carcinogenic PAH by integrating individual-level data with area-level meteorological or pollutant data. We checked the resulting model for accuracy and precision against home outdoor monitoring data. RESULTS During winter, COD of 0.1 for Kraków suggest overall spatial uniformity in the ambient concentration of the eight c-PAH. The three models that we developed were associated with index of agreement approximately equal to 0.9, root mean square error < 2.6 ng/m(3), and 90th percentile of absolute difference ≤ 4 ng/m(3) for the predicted and the observed concentrations for eight pro-carcinogenic PAH. CONCLUSIONS Inexpensive and logistically feasible information could be used to estimate chronic personal exposure to PAH profiles, in lieu of costly and labor-intensive personal air monitoring at wide scale. At the same time, thorough validation through direct personal monitoring and assumption checking are critical for successful model development.
Collapse
Affiliation(s)
- Hyunok Choi
- Department of Environmental Health Sciences, State University of New York at Albany, School of Public Health, United States; Department of Epidemiology and Biostatistics, State University of New York at Albany, School of Public Health, United States.
| | - Michael Zdeb
- Department of Epidemiology and Biostatistics, State University of New York at Albany, School of Public Health, United States
| | - Frederica Perera
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, 12th Floor, New York, NY 10032, United States; Columbia Center for Children's Environmental Health, Columbia University Mailman School of Public Health, 722 W 168th St, 12th Floor, New York, NY 10032, United States.
| | - John Spengler
- Harvard School of Public Health, 401 Park Drive, Landmark Center 4th Floor West, Room 406A, Boston, MA 02215, United States.
| |
Collapse
|
28
|
Jalava PI, Happo MS, Huttunen K, Sillanpää M, Hillamo R, Salonen RO, Hirvonen MR. Chemical and microbial components of urban air PM cause seasonal variation of toxicological activity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:375-87. [PMID: 26245811 DOI: 10.1016/j.etap.2015.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 05/06/2023]
Abstract
The chemical and microbial composition of urban air particulate matter (PM) displays seasonal variation that may affect its harmfulness on human health. We studied the in vitro inflammatory and cellular metabolic activity/cytotoxicity of urban air particulate samples collected in four size-ranges (PM10-2.5, PM2.5-1, PM1-0.2, PM0.2) during four seasons in relatively clean urban environment in Helsinki, Finland. The composition of the same samples were analyzed, including ions, elements, PAH compounds and endotoxins. In addition, microbial contribution on the detected responses was studied by inhibiting the endotoxin-induced responses with Polymyxin B both in the PM samples and by two different bacterial strains representing Gram-positive and -negative bacteria. Macrophage cell line (RAW 264.7) was exposed to the size segregated particulate samples as well as to microbe samples for 24h and markers of inflammation and cytotoxicity were analyzed. The toxicological responses were dependent on the dose as well as size range of the particles, PM10-2.5 being the most potent and smaller size ranges having significantly smaller responses. Samples collected during spring and autumn had in most cases the highest inflammatory activity. Soil components and other non-exhaust particulate emissions from road traffic correlated with inflammatory responses in coarse particles. Instead, PAH-compounds and K(+) had negative associations with the particle-induced inflammatory responses in fine particles, suggesting the role of incomplete biomass combustion. Endotoxin content was the highest in PM10-2.5 samples and correspondingly, the largest decrease in the responses by Polymyxin B was seen with the very same samples. We found also that inhibitory effect of Polymyxin B was not completely specific for Gram-negative bacteria. Thus, in addition to endotoxin, also other microbial components may have a significant effect on the toxicological responses by ambient particulate matter.
Collapse
Affiliation(s)
- Pasi I Jalava
- University of Eastern Finland, Department of Environmental Science, PO Box 1627, FI-70211 Kuopio, Finland.
| | - Mikko S Happo
- University of Eastern Finland, Department of Environmental Science, PO Box 1627, FI-70211 Kuopio, Finland
| | - Kati Huttunen
- University of Eastern Finland, Department of Environmental Science, PO Box 1627, FI-70211 Kuopio, Finland
| | - Markus Sillanpää
- Finnish Meteorological Institute, Air Quality Research, PO Box 503, FI-00101 Helsinki, Finland
| | - Risto Hillamo
- Finnish Meteorological Institute, Air Quality Research, PO Box 503, FI-00101 Helsinki, Finland
| | - Raimo O Salonen
- National Institute for Health and Welfare, Department of Environmental Health, PO Box 95, FI-70701 Kuopio, Finland
| | - Maija-Riitta Hirvonen
- University of Eastern Finland, Department of Environmental Science, PO Box 1627, FI-70211 Kuopio, Finland; National Institute for Health and Welfare, Department of Environmental Health, PO Box 95, FI-70701 Kuopio, Finland
| |
Collapse
|
29
|
Hirota JA, Gold MJ, Hiebert PR, Parkinson LG, Wee T, Smith D, Hansbro PM, Carlsten C, VanEeden S, Sin DD, McNagny KM, Knight DA. The Nucleotide-Binding Domain, Leucine-Rich Repeat Protein 3 Inflammasome/IL-1 Receptor I Axis Mediates Innate, but Not Adaptive, Immune Responses after Exposure to Particulate Matter under 10 μm. Am J Respir Cell Mol Biol 2015; 52:96-105. [DOI: 10.1165/rcmb.2014-0158oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Gray DL, Wallace LA, Brinkman MC, Buehler SS, La Londe C. Respiratory and cardiovascular effects of metals in ambient particulate matter: a critical review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 234:135-203. [PMID: 25385514 DOI: 10.1007/978-3-319-10638-0_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this review, we critically evaluated the epidemiological and toxicological evidence for the role of specific transition metals (As. Cr. Cu. Fe. Mn. Ni. Sc. Ti. V and Zn) in causing or contributing to the respiratory and cardiovascular health effects associated with ambient PM. Although the epidemiologic studies arc suggestive. and both the in vivo and in vitro laboratory studies document the toxicity of specific metals (Fe. Ni. V and Zn). the overall weight of evidence does not convincingly implicate metals as major contributors to health effects. None of the epidemiology studies that we reviewed conclusively implicated specific transition metals as having caused the respiratory and cardiovascular effects associated with ambient levels of PM. However, the studies reviewed tended to be internal ly consistent in identifying some metals (Fe, Ni, V and Zn) more frequently than others (As, Cu, Mn and Sc) as having positive associations wi th health effects. The major problem wi th which the epidemiological studies were faced was classifying and quantifying exposure. Community and population exposures to metals or other components of ambient PM were inferred from centrally- located samplers that may not accurately represent individual level exposures. Only a few authors reported findings that did not support the stated premise of the study; indeed, statistic ally significant associations are not necessarily biologically significant. It is likely that ·'negative studies" are under-represented in the published literature, making it a challenge to achieve a balanced evaluation of the role of metals in causing health effects associated with ambient PM. Both the in vivo and in vitro study results demonstrated that individual metals (Cu. Fe. Ni. V and Zn) and extracts of metals from ambient PM sources can produce acute inflammatory responses. However. the doses administered to laboratory animals were many orders of magnitude greater than what humans experience from breathing ambient air. The studies that used intratracheal instillation have the advantage of delivering a known dose to a specific anatomical location. but arc not analogous to an inhaled dose that is distributed over the surface area of the respiratory tract. Studies. in which laboratory animals or human volunteers inhaled CAPs best represent exposures to the general human population. The in vivo and in vitro studies reviewed provide indications that the probable mechanisms involved in the respiratory and cardiac effects from high metal exposures include: an inflammatory response mediated by formation of ROS, upregulation of genes coding for inflammatory cytokines, altered expression of genes involved in cell signaling pathways and maintenance of metals homeostasis.The fact that doses of metals many orders of magnitude greater than those existing in ambient air were required to produce measurable adverse effects in animals makes it doubtful that metals play any major role in respiratory and cardiovascular effects produced from human exposure to ambient PM. We suggest that future research priorities should focus on testing at more environmentally relevant exposure levels and that any new toxicological studies be written to include dosages in units that can be easily compared to human exposure levels.
Collapse
Affiliation(s)
- Deborah L Gray
- Stantec Consulting Services, Inc., 1500 Lake Shore Drive, Suite 100, Columbus, OH, 43204, USA,
| | | | | | | | | |
Collapse
|
31
|
Happo MS, Sippula O, Jalava PI, Rintala H, Leskinen A, Komppula M, Kuuspalo K, Mikkonen S, Lehtinen K, Jokiniemi J, Hirvonen MR. Role of microbial and chemical composition in toxicological properties of indoor and outdoor air particulate matter. Part Fibre Toxicol 2014; 11:60. [PMID: 25420696 PMCID: PMC4264261 DOI: 10.1186/s12989-014-0060-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/28/2014] [Indexed: 11/10/2022] Open
Abstract
Background Ambient air particulate matter (PM) is increasingly considered to be a causal factor evoking severe adverse health effects. People spend the majority of their time indoors, which should be taken into account especially in future risk assessments, when the role of outdoor air particles transported into indoor air is considered. Therefore, there is an urgent need for characterization of possible sources seasonally for harmful health outcomes both indoors and outdoors. Methods In this study, we collected size-segregated (PM10–2.5, PM2.5–0.2) particulate samples with a high volume cascade impactor (HVCI) simultaneously both indoors and outdoors of a new single family detached house at four different seasons. The chemical composition of the samples was analyzed as was the presence of microbes. Mouse macrophages were exposed to PM samples for 24 hours. Thereafter, the levels of the proinflammatory cytokines, NO-production, cytotoxicity and changes in the cell cycle were investigated. The putative sources of the most toxic groups of constituents were resolved by using the principal component analysis (PCA) and pairwise dependencies of the variables were detected with Spearman correlation. Results Source-related toxicological responses clearly varied according to season. The role of outdoor sources in indoor air quality was significant only in the warm seasons and the significance of outdoor microbes was also larger in the indoor air. During wintertime, the role of indoor sources of the particles was more significant, as was also the case for microbes. With respect to the outdoor sources, soil-derived particles during a road dust episode and local wood combustion in wintertime were the most important factors inducing toxicological responses. Conclusions Even though there were clear seasonal differences in the abilities of indoor and outdoor air to induce inflammatory and cytotoxic responses, there were relatively small differences in the chemical composition of the particles responsible of those effects. Outdoor sources have only a limited effect on indoor air quality in a newly built house with a modern ventilation system at least in a low air pollution environment. The most important sources for adverse health related toxicological effects were related to soil-derived constituents, local combustion emissions and microbes. Electronic supplementary material The online version of this article (doi:10.1186/s12989-014-0060-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mikko S Happo
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Olli Sippula
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Pasi I Jalava
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Helena Rintala
- Mikrobioni Oy, Microkatu 1, P.O. Box 1188, FI-70211, Kuopio, Finland.
| | - Ari Leskinen
- Finnish Meteorological Institute, Atmospheric Research Centre of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Mika Komppula
- Finnish Meteorological Institute, Atmospheric Research Centre of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kari Kuuspalo
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Santtu Mikkonen
- Department of Applied Physics, Kuopio, University of Eastern Finland, P.O.Box 1627, FI-70211, Kuopio, Finland.
| | - Kari Lehtinen
- Finnish Meteorological Institute, Atmospheric Research Centre of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Department of Applied Physics, Kuopio, University of Eastern Finland, P.O.Box 1627, FI-70211, Kuopio, Finland.
| | - Jorma Jokiniemi
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,VTT Technical Research Centre of Finland, Fine Particles, Espoo, P.O. Box 1000, FI-02044, Espoo, Finland.
| | - Maija-Riitta Hirvonen
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Department of Environmental Health, National Institute for Health and Welfare, P.O. Box 95, FI-70701, Kuopio, Finland.
| |
Collapse
|
32
|
Mirowsky J, Hickey C, Horton L, Blaustein M, Galdanes K, Peltier RE, Chillrud S, Chen LC, Ross J, Nadas A, Lippmann M, Gordon T. The effect of particle size, location and season on the toxicity of urban and rural particulate matter. Inhal Toxicol 2014; 25:747-57. [PMID: 24255952 DOI: 10.3109/08958378.2013.846443] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Particulate matter (PM) varies in chemical composition and mass concentration based on a number of factors including location, season, source and particle size. The aim of this study was to evaluate the in vitro and in vivo toxicity of coarse and fine PM simultaneously collected at three rural and two urban sites within the metropolitan New York City (NYC) region during two seasons, and to assess how particle size and elemental composition affect toxicity. Human pulmonary microvascular endothelial (HPMEC-ST1.6R) and bronchial epithelial (BEAS-2B) cell lines were exposed to PM (50 μg/mL) and analyzed for reactive oxygen species (ROS). Mice (FVB/N) were exposed by oropharyngeal aspiration to 50 µg PM, and lavage fluid was analyzed for total protein and PMN influx. The ROS response was greater in the HPMEC-ST1.6R cell line compared to BEAS-2B cells, but the responses were significantly correlated (p < 0.01). The ROS response was affected by location, locale and the location:size interaction in both cell lines, and an additional association for size was observed from HPMEC-ST1.6R cells. Urban fine PM generated the highest ROS response. In the mouse model, inflammation was associated with particle size and by a season:size interaction, with coarse PM producing greater PMN inflammation. This study showed that the aerodynamic size, locale (i.e. urban versus rural), and site of PM samples affected the ROS response in pulmonary endothelial and epithelial cells and the inflammatory response in mice. Importantly, these responses were dependent upon the chemical composition of the PM samples.
Collapse
Affiliation(s)
- Jaime Mirowsky
- Department of Environmental Medicine, New York University School of Medicine , Tuxedo, NY , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang M, Beelen R, Stafoggia M, Raaschou-Nielsen O, Andersen ZJ, Hoffmann B, Fischer P, Houthuijs D, Nieuwenhuijsen M, Weinmayr G, Vineis P, Xun WW, Dimakopoulou K, Samoli E, Laatikainen T, Lanki T, Turunen AW, Oftedal B, Schwarze P, Aamodt G, Penell J, De Faire U, Korek M, Leander K, Pershagen G, Pedersen NL, Östenson CG, Fratiglioni L, Eriksen KT, Sørensen M, Tjønneland A, Bueno-de-Mesquita B, Eeftens M, Bots ML, Meliefste K, Krämer U, Heinrich J, Sugiri D, Key T, de Hoogh K, Wolf K, Peters A, Cyrys J, Jaensch A, Concin H, Nagel G, Tsai MY, Phuleria H, Ineichen A, Künzli N, Probst-Hensch N, Schaffner E, Vilier A, Clavel-Chapelon F, Declerq C, Ricceri F, Sacerdote C, Marcon A, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Katsoulis M, Trichopoulou A, Keuken M, Jedynska A, Kooter IM, Kukkonen J, Sokhi RS, Brunekreef B, Katsouyanni K, Hoek G. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts: results from the ESCAPE and TRANSPHORM projects. ENVIRONMENT INTERNATIONAL 2014; 66:97-106. [PMID: 24561271 DOI: 10.1016/j.envint.2014.01.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/16/2014] [Accepted: 01/27/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only. AIMS The aim of this study was to examine the association of PM composition with cardiovascular mortality. METHODS We used data from 19 European ongoing cohorts within the framework of the ESCAPE (European Study of Cohorts for Air Pollution Effects) and TRANSPHORM (Transport related Air Pollution and Health impacts--Integrated Methodologies for Assessing Particulate Matter) projects. Residential annual average exposure to elemental constituents within particle matter smaller than 2.5 and 10 μm (PM2.5 and PM10) was estimated using Land Use Regression models. Eight elements representing major sources were selected a priori (copper, iron, potassium, nickel, sulfur, silicon, vanadium and zinc). Cohort-specific analyses were conducted using Cox proportional hazards models with a standardized protocol. Random-effects meta-analysis was used to calculate combined effect estimates. RESULTS The total population consisted of 322,291 participants, with 9545 CVD deaths. We found no statistically significant associations between any of the elemental constituents in PM2.5 or PM10 and CVD mortality in the pooled analysis. Most of the hazard ratios (HRs) were close to unity, e.g. for PM10 Fe the combined HR was 0.96 (0.84-1.09). Elevated combined HRs were found for PM2.5 Si (1.17, 95% CI: 0.93-1.47), and S in PM2.5 (1.08, 95% CI: 0.95-1.22) and PM10 (1.09, 95% CI: 0.90-1.32). CONCLUSION In a joint analysis of 19 European cohorts, we found no statistically significant association between long-term exposure to 8 elemental constituents of particles and total cardiovascular mortality.
Collapse
Affiliation(s)
- Meng Wang
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Rob Beelen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | | | - Zorana Jovanovic Andersen
- Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Epidemiology and Screening, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Hoffmann
- IUF, Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; University of Düsseldorf, Düsseldorf, Germany
| | - Paul Fischer
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Danny Houthuijs
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Mark Nieuwenhuijsen
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Gudrun Weinmayr
- University of Düsseldorf, Düsseldorf, Germany; Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Paolo Vineis
- MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Wei W Xun
- MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom; University College London, London, United Kingdom
| | - Konstantina Dimakopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
| | - Tiina Laatikainen
- National Institute for Health and Welfare, Kuopio, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Timo Lanki
- National Institute for Health and Welfare, Kuopio, Finland
| | - Anu W Turunen
- National Institute for Health and Welfare, Kuopio, Finland
| | | | - Per Schwarze
- Norwegian Institute of Public Health, Oslo, Norway
| | - Geir Aamodt
- Norwegian Institute of Public Health, Oslo, Norway
| | - Johanna Penell
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulf De Faire
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michal Korek
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Laura Fratiglioni
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Bas Bueno-de-Mesquita
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands; School of Public Health, Imperial College London, London, United Kingdom
| | - Marloes Eeftens
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ursula Krämer
- IUF, Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center of Environmental Health, Neuherberg, Germany
| | - Dorothea Sugiri
- IUF, Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Timothy Key
- Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Kees de Hoogh
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Kathrin Wolf
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; University of Augsburg, Environmental Science Center, Augsburg, Germany
| | - Andrea Jaensch
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Hans Concin
- Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany; Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Ming-Yi Tsai
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Harish Phuleria
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Alex Ineichen
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Nino Künzli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Emmanuel Schaffner
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Alice Vilier
- Inserm, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, Villejuif, France; University Paris Sud, UMRS 1018, Villejuif, France; IGR, Villejuif, France
| | - Françoise Clavel-Chapelon
- Inserm, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, Villejuif, France; University Paris Sud, UMRS 1018, Villejuif, France; IGR, Villejuif, France
| | - Christophe Declerq
- French Institute for Public Health Surveillance (InVS) 12, Saint-Maurice, France
| | | | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, AO Citta' della Salute e della Scienza, University of Turin and Center for Cancer Prevention, Turin, Italy
| | - Alessandro Marcon
- Unit of Epidemiology & Medical Statistics, Department of Public Health and Community Medicine, University of Verona, Italy
| | - Claudia Galassi
- Unit of Cancer Epidemiology, AO Citta' della Salute e della Scienza, University of Turin and Center for Cancer Prevention, Turin, Italy
| | - Enrica Migliore
- Unit of Cancer Epidemiology, AO Citta' della Salute e della Scienza, University of Turin and Center for Cancer Prevention, Turin, Italy
| | - Andrea Ranzi
- Environmental Health Reference Centre, Regional Agency for Environmental Prevention of Emilia-Romagna, Modena, Italy
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Chiara Badaloni
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | | | | | | | - Menno Keuken
- TNO, Netherlands Organisation for Applied Scientific Research, Utrecht, The Netherlands
| | - Aleksandra Jedynska
- TNO, Netherlands Organisation for Applied Scientific Research, Utrecht, The Netherlands
| | - Ingeborg M Kooter
- TNO, Netherlands Organisation for Applied Scientific Research, Utrecht, The Netherlands
| | | | - Ranjeet S Sokhi
- University of Hertfordshire College Lane, Hatfield, United Kingdom
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
34
|
Alessandria L, Schilirò T, Degan R, Traversi D, Gilli G. Cytotoxic response in human lung epithelial cells and ion characteristics of urban-air particles from Torino, a northern Italian city. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:5554-64. [PMID: 24407785 DOI: 10.1007/s11356-013-2468-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 12/16/2013] [Indexed: 05/26/2023]
Abstract
Recently, much attention has been devoted to urban air pollution because epidemiological studies have reported health impacts related to particulate matter (PM). PM10 and PM2.5 were collected during different seasons in Torino, a northern Italian city, and were characterised by inorganic chemical species (secondary particulates and bio-available iron). The biological effects of aqueous and organic solvent PM extracts on human epithelial lung A549 were evaluated, and the effects on cell proliferation and lactate dehydrogenase (LDH) release were assayed. The average PM10 concentration during the sampling period was 47.9 ± 18.0 μg/m(3); the secondary particles accounted for 49 % ± 9 % of the PM10 total mass, and the bio-available iron concentration was 0.067 ± 0.045 μg/m(3). The PM2.5/PM10 ratio in Torino ranged from 0.47 to 0.90 and was higher in cold months than in warm months. The PM10 and PM2.5 extracts inhibited cell proliferation and induced LDH release in a dose-dependent manner with a seasonal trend. The PM10 extract had a stronger effect on LDH release, whereas the PM2.5 extract more strongly inhibited cell proliferation. No significant differences were observed in the effects induced by the two extracts, and no significant correlations were found between the biological effects and the PM components evaluated in this study, thus emphasising the importance of the entire mixture in inducing a cytotoxic response.
Collapse
Affiliation(s)
- Luca Alessandria
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia, 94, 10126, Torino, Italy
| | | | | | | | | |
Collapse
|
35
|
Venn-Watson S, Smith CR, Jensen ED, Rowles T. Assessing the potential health impacts of the 2003 and 2007 firestorms on bottlenose dolphins (Tursiops trucatus) in San Diego Bay. Inhal Toxicol 2013; 25:481-91. [DOI: 10.3109/08958378.2013.804611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Seasonal variation in the toxicological properties of size-segregated indoor and outdoor air particulate matter. Toxicol In Vitro 2013; 27:1550-61. [DOI: 10.1016/j.tiv.2013.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/12/2013] [Accepted: 04/03/2013] [Indexed: 11/21/2022]
|
37
|
Preexposure to PM2.5 exacerbates acute viral myocarditis associated with Th17 cell. Int J Cardiol 2013; 168:3837-45. [PMID: 23849969 DOI: 10.1016/j.ijcard.2013.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 05/07/2013] [Accepted: 06/20/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND It is increasingly recognized that exposure to ambient fine particles (PM(2.5)) is a risk factor for the development of cardiovascular events. This study was to explore the link between PM(2.5) exposure and viral myocarditis in the functional mechanism of Th17 cells. METHODS Male BALB/c mice were administered an intratracheal (i.t.) instillation of 10 mg/kg b.w. PM(2.5) particles. Twenty-four hours later, the mice were injected intraperitoneally (i.p.) with 100 μl of coxsackievirus B3 (CVB3) diluted in Eagle's minimal essential medium (EMEM). Seven days after the treatment, pulmonary and cardiac tissues were examined. RESULTS The results showed that preexposure to PM(2.5) increased the cardiac and pulmonary injuries and viral replication in the heart of CVB3-infected mice along with an increase in CD4(+) IL-17(+) cells in the spleen and heart. The mRNA expressions of interleukin-17A (IL-17A), perforin, transforming growth factor-β (TGF-β) and RORγt were up-regulated in PM(2.5)-pretreated mice than that in the virus-treated mice. Additionally, compared to virus-treated mice, the cardiac protein expressions of IL-17A and matrix metalloproteinases-2 (MMP-2) were increased, but interferon-γ (IFN-γ) and metalloproteinases-1 (TIMP-1) were decreased in PM(2.5)-pretreated mice. Interestingly, PM(2.5) caused IFN-γ decreased, whereas CVB3 caused a dramatic increase in IFN-γ. Subsequently, preexposure to PM(2.5) induced a slight increase of IFN-γ in the sera of CVB3-infected mice. CONCLUSIONS These results demonstrated that PM(2.5) exposure exacerbated virus-induced myocarditis possibly through the increase in Th17-mediated viral replication, perforin response and imbalance of MMP-2/TIMP-1. These findings provided supportive evidence for the epidemiological research that ambient particles could increase the occurrence and development of cardiovascular diseases.
Collapse
|
38
|
Calderón-Garcidueñas L, Serrano-Sierra A, Torres-Jardón R, Zhu H, Yuan Y, Smith D, Delgado-Chávez R, Cross JV, Medina-Cortina H, Kavanaugh M, Guilarte TR. The impact of environmental metals in young urbanites' brains. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2013; 65:503-11. [PMID: 22436577 PMCID: PMC3383886 DOI: 10.1016/j.etp.2012.02.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/16/2012] [Accepted: 02/21/2012] [Indexed: 01/22/2023]
Abstract
Air pollution exposures are linked to cognitive and olfaction deficits, oxidative stress, neuroinflammation and neurodegeneration including frontal hyperphosphorylated tau and diffuse amyloid plaques in Mexico City children and young adults. Mexico City residents are chronically exposed to fine particulate matter (PM(2.5)) concentrations (containing toxic combustion and industrial metals) above the annual standard (15 μg/m(3)) and to contaminated water and soil. Here, we sought to address the brain-region-specific effects of metals and key neuroinflammatory and DNA repair responses in two air pollution targets: frontal lobe and olfactory bulb from 12 controls vs. 47 Mexico City children and young adults average age 33.06±4.8 SE years. Inductively coupled plasma mass spectrometry (metal analysis) and real time PCR (for COX2, IL1β and DNA repair genes) in target tissues. Mexico City residents had higher concentrations of metals associated with PM: manganese (p=0.003), nickel and chromium (p=0.02) along with higher frontal COX2 mRNA (p=0.008) and IL1β (p=0.0002) and COX2 (p=0.005) olfactory bulb indicating neuroinflammation. Frontal metals correlated with olfactory bulb DNA repair genes and with frontal and hippocampal inflammatory genes. Frontal manganese, cobalt and selenium increased with age in exposed subjects. Together, these findings suggest PM-metal neurotoxicity causes brain damage in young urbanites, the olfactory bulb is a target of air pollution and participates in the neuroinflammatory response and since metal concentrations vary significantly in Mexico City urban sub-areas, place of residency has to be integrated with the risk for CNS detrimental effects particularly in children.
Collapse
|
39
|
Val S, Liousse C, Doumbia EHT, Galy-Lacaux C, Cachier H, Marchand N, Badel A, Gardrat E, Sylvestre A, Baeza-Squiban A. Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation. Part Fibre Toxicol 2013; 10:10. [PMID: 23548138 PMCID: PMC3637552 DOI: 10.1186/1743-8977-10-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 03/12/2013] [Indexed: 01/22/2023] Open
Abstract
Background The involvement of particulate matter (PM) in cardiorespiratory diseases is now established in developed countries whereas in developing areas such as Africa with a high level of specific pollution, PM pollution and its effects are poorly studied. Our objective was to characterize the biological reactivity of urban African aerosols on human bronchial epithelial cells in relation to PM physico-chemical properties to identify toxic sources. Methods Size-speciated aerosol chemical composition was analyzed in Bamako (BK, Mali, 2 samples with one having desert dust event BK1) and Dakar (DK; Senegal) for Ultrafine UF, Fine F and Coarse C PM. PM reactivity was studied in human bronchial epithelial cells investigating six biomarkers (oxidative stress responsive genes and pro-inflammatory cytokines). Results PM mass concentrations were mainly distributed in coarse mode (60%) and were impressive in BK1 due to the desert dust event. BK2 and DK samples showed a high content of total carbon characteristic of urban areas. The DK sample had huge PAH quantities in bulk aerosol compared with BK that had more water soluble organic carbon and metals. Whatever the site, UF and F PM triggered the mRNA expression of the different biomarkers whereas coarse PM had little or no effect. The GM-CSF biomarker was the most discriminating and showed the strongest pro-inflammatory effect of BK2 PM. The analysis of gene expression signature and of their correlation with main PM compounds revealed that PM-induced responses are mainly related to organic compounds. The toxicity of African aerosols is carried by the finest PM as with Parisian aerosols, but when considering PM mass concentrations, the African population is more highly exposed to toxic particulate pollution than French population. Regarding the prevailing sources in each site, aerosol biological impacts are higher for incomplete combustion sources resulting from two-wheel vehicles and domestic fires than from diesel vehicles (Dakar). Desert dust events seem to produce fewer biological impacts than anthropogenic sources. Discussion Our study shows that combustion sources contribute to the high toxicity of F and UF PM of African urban aerosols, and underlines the importance of emission mitigation and the imperative need to evaluate and to regulate particulate pollution in Africa.
Collapse
|
40
|
Happo MS, Uski O, Jalava PI, Kelz J, Brunner T, Hakulinen P, Mäki-Paakkanen J, Kosma VM, Jokiniemi J, Obernberger I, Hirvonen MR. Pulmonary inflammation and tissue damage in the mouse lung after exposure to PM samples from biomass heating appliances of old and modern technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 443:256-266. [PMID: 23201646 DOI: 10.1016/j.scitotenv.2012.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/29/2012] [Accepted: 11/02/2012] [Indexed: 05/28/2023]
Abstract
Current levels of ambient air fine particulate matter (PM(2.5)) are associated with mortality and morbidity in urban populations worldwide. In residential areas wood combustion is one of the main sources of PM(2.5) emissions, especially during wintertime. However, the adverse health effects of particulate emissions from the modern heating appliances and fuels are poorly known. In this study, health related toxicological properties of PM(1) emissions from five modern and two old technology appliances were examined. The PM(1) samples were collected by using a Dekati® Gravimetric Impactor (DGI). The collected samples were weighed and extracted with methanol for chemical and toxicological analyses. Healthy C57BL/6J mice were intratracheally exposed to a single dose of 1, 3, 10 or 15 mg/kg of the particulate samples for 4, 18 or 24h. Thereafter, the lungs were lavaged and bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation, cytotoxicity and genotoxicity. Lungs of 24h exposed mice were collected for inspection of pulmonary tissue damage. There were substantial differences in the combustion qualities of old and modern technology appliances. Modern technology appliances had the lowest PM(1) (mg/MJ) emissions, but they induced the highest inflammatory, cytotoxic and genotoxic activities. In contrast, old technology appliances had clearly the highest PM(1) (mg/MJ) emissions, but their effect in the mouse lungs were the lowest. Increased inflammatory activity was associated with ash related components of the emissions, whereas high PAH concentrations were correlating with the smallest detected responses, possibly due to their immunosuppressive effect.
Collapse
Affiliation(s)
- Mikko S Happo
- Department of Environmental Science, University of Eastern Finland, Kuopio, FI-70211, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Williams KM, Franzi LM, Last JA. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung. Toxicol Appl Pharmacol 2013; 266:48-55. [PMID: 23142465 PMCID: PMC3546532 DOI: 10.1016/j.taap.2012.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 11/15/2022]
Abstract
Our previous work has shown that coarse particulate matter (PM(10-2.5)) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1±3.2pg/mL to 83.9±12.2pg/mL was observed a half-hour after PM instillation. By 1hour after PM instillation, isoprostane values had returned to 30.4±7.6pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5-1hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure.
Collapse
Affiliation(s)
- Keisha M Williams
- Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, University of California, Davis, CA, USA
| | | | | |
Collapse
|
42
|
Tablin F, den Hartigh LJ, Aung HH, Lame MW, Kleeman MJ, Ham W, Norris JW, Pombo M, Wilson DW. Seasonal influences on CAPs exposures: differential responses in platelet activation, serum cytokines and xenobiotic gene expression. Inhal Toxicol 2012; 24:506-17. [PMID: 22746400 DOI: 10.3109/08958378.2012.695815] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Increasing evidence suggests a role for a systemic pro-coagulant state in the pathogenesis of cardiac dysfunction subsequent to inhalation of airborne particulate matter (PM). We evaluated platelet activation, systemic cytokines and pulmonary gene expression in mice exposed to concentrated ambient particulate matter (CAPs) in the summer of 2008 (S08) and winter of 2009 (W09) from the San Joaquin Valley of California, a region with severe PM pollution episodes. Additionally, we characterized the PM from both exposures including organic compounds, metals, and polycyclic aromatic hydrocarbons. Mice were exposed to an average of 39.01 μg/m(3) of CAPs in the winter and 21.7 μg/m3 CAPs in the summer, in a size range less than 2.5 μm for 6 h/day for 5 days per week for 2 weeks. Platelets were analyzed by flow cytometry for relative size, shape, CD41, P-selectin and lysosomal associated membrane protein-1 (LAMP-1) expression. Platelets from W09 CAPs-exposed animals had a greater response to thrombin stimulation than platelets from S08 CAPs-exposed animals. Serum cytokines were analyzed by bead based immunologic assays. W09 CAPs-exposed mice had elevations in IL-2, MIP-1α, and TNFα. Laser capture microdissection (LCM) of pulmonary vasculature, parenchyma and airways all showed increases in CYP1a1 gene expression. Pulmonary vasculature showed increased expression of ICAM-1 and Nox-2. Our findings demonstrate that W09 CAPs exposure generated a greater systemic pro-inflammatory and pro-coagulant response to inhalation of environmentally derived fine and ultrafine PM. Changes in platelet responsiveness to agonists, seen in both exposures, strongly suggests a role for platelet activation in the cardiovascular and respiratory effects of particulate air pollution.
Collapse
Affiliation(s)
- Fern Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Uski OJ, Happo MS, Jalava PI, Brunner T, Kelz J, Obernberger I, Jokiniemi J, Hirvonen MR. Acute systemic and lung inflammation in C57Bl/6J mice after intratracheal aspiration of particulate matter from small-scale biomass combustion appliances based on old and modern technologies. Inhal Toxicol 2012; 24:952-65. [DOI: 10.3109/08958378.2012.742172] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Bølling AK, Totlandsdal AI, Sallsten G, Braun A, Westerholm R, Bergvall C, Boman J, Dahlman HJ, Sehlstedt M, Cassee F, Sandstrom T, Schwarze PE, Herseth JI. Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines. Part Fibre Toxicol 2012; 9:45. [PMID: 23176191 PMCID: PMC3544657 DOI: 10.1186/1743-8977-9-45] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 11/02/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles' physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. RESULTS WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. CONCLUSION The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs.
Collapse
Affiliation(s)
| | | | - Gerd Sallsten
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and Academy, University of Gothenburg, Gothenburg, Sweden
| | - Artur Braun
- Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Roger Westerholm
- Department of Analytical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Christoffer Bergvall
- Department of Analytical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Johan Boman
- Department of Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Hans Jørgen Dahlman
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria Sehlstedt
- Department of Respiratory Medicine and Allergy, University of Umeå, Umeå, Sweden
| | - Flemming Cassee
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Thomas Sandstrom
- Department of Respiratory Medicine and Allergy, University of Umeå, Umeå, Sweden
| | - Per E Schwarze
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Jan Inge Herseth
- Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| |
Collapse
|
45
|
Bølling AK, Totlandsdal AI, Sallsten G, Braun A, Westerholm R, Bergvall C, Boman J, Dahlman HJ, Sehlstedt M, Cassee F, Sandstrom T, Schwarze PE, Herseth JI. Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines. Part Fibre Toxicol 2012. [PMID: 23176191 DOI: 10.1186/1743-8977-9-45/figures/4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles' physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. RESULTS WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. CONCLUSION The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs.
Collapse
|
46
|
Ueda K, Shimizu A, Nitta H, Inoue K. Long-range transported Asian Dust and emergency ambulance dispatches. Inhal Toxicol 2012; 24:858-67. [DOI: 10.3109/08958378.2012.724729] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas. Part Fibre Toxicol 2012; 9:37. [PMID: 23021308 PMCID: PMC3543388 DOI: 10.1186/1743-8977-9-37] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 09/18/2012] [Indexed: 11/10/2022] Open
Abstract
Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used − rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590 + cat or 100% HVO. The emission PM sample from the CNG bus possessed the weakest genotoxic potency but had the strongest oxidative potency of all the fuel and catalyst combinations. The use of 100% HVO fuel had slightly weaker and 100% RME somewhat stronger emission PM induced ROS production, when compared to EN590. Conclusions The harmfulness of the exhaust emissions from vehicle engines cannot be determined merely on basis of the emitted PM mass. The study conditions and the engine type significantly affect the toxicity of the emitted particles. The selected fuels and DOC + POC catalyst affected the PM emission from the heavy EURO IV engine both qualitative and quantitative ways, which influenced their toxicological characteristics. The plain HVO fuel performed very well in emission reduction and in lowering the overall toxicity of emitted PM, but the 30% blend of HVO in EN590 was no better in this respect than the plain EN590. The HVO with a DOC + POC catalyst in the EURO IV engine, performed best with regard to changes in exhaust emissions. However some of the toxicological parameters were significantly increased even with these low emissions.
Collapse
|
48
|
Huttunen K, Siponen T, Salonen I, Yli-Tuomi T, Aurela M, Dufva H, Hillamo R, Linkola E, Pekkanen J, Pennanen A, Peters A, Salonen RO, Schneider A, Tiittanen P, Hirvonen MR, Lanki T. Low-level exposure to ambient particulate matter is associated with systemic inflammation in ischemic heart disease patients. ENVIRONMENTAL RESEARCH 2012; 116:44-51. [PMID: 22541720 DOI: 10.1016/j.envres.2012.04.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 03/21/2012] [Accepted: 04/04/2012] [Indexed: 05/31/2023]
Abstract
Short-term exposure to ambient air pollution is associated with increased cardiovascular mortality and morbidity. This adverse health effect is suggested to be mediated by inflammatory processes. The purpose of this study was to determine if low levels of particulate matter, typical for smaller cities, are associated with acute systemic inflammation. Fifty-two elderly individuals with ischemic heart disease were followed for six months with biweekly clinical visits in the city of Kotka, Finland. Blood samples were collected for the determination of inflammatory markers interleukin (IL)-1β, IL-6, IL-8, IL-12, interferon (IFN)γ, C-reactive protein (CRP), fibrinogen, myeloperoxidase and white blood cell count. Particle number concentration and fine particle (particles with aerodynamic diameters <2.5 μm (PM(2.5))) as well as thoracic particle (particles with aerodynamic diameters <10 μm (PM(10))) mass concentration were measured daily at a fixed outdoor measurement site. Light-absorbance of PM(2.5) filter samples, an indicator of combustion derived particles, was measured with a smoke-stain reflectometer. In addition, personal exposure to PM(2.5) was measured with portable photometers. During the study period, wildfires in Eastern Europe led to a 12-day air pollution episode, which was excluded from the main analyses. Average ambient PM(2.5) concentration was 8.7 μg/m(3). Of the studied pollutants, PM(2.5) and absorbance were most strongly associated with increased levels of inflammatory markers; most notably with C-reactive protein and IL-12 within a few days of exposure. There was also some evidence of an effect of particulate air pollution on fibrinogen and myeloperoxidase. The concentration of IL-12 was considerably (227%) higher during than before the forest fire episode. These findings show that even low levels of particulate air pollution from urban sources are associated with acute systemic inflammation. Also particles from wildfires may exhibit pro-inflammatory effects.
Collapse
Affiliation(s)
- Kati Huttunen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tapanainen M, Jalava PI, Mäki-Paakkanen J, Hakulinen P, Lamberg H, Ruusunen J, Tissari J, Jokiniemi J, Hirvonen MR. Efficiency of log wood combustion affects the toxicological and chemical properties of emission particles. Inhal Toxicol 2012; 24:343-55. [DOI: 10.3109/08958378.2012.671858] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Associations of primary and secondary organic aerosols with airway and systemic inflammation in an elderly panel cohort. Epidemiology 2011; 21:892-902. [PMID: 20811287 DOI: 10.1097/ede.0b013e3181f20e6c] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Exposure-response information about particulate air-pollution constituents is needed to protect sensitive populations. Particulate matter <2.5 mm (PM2.5) components may induce oxidative stress through reactive-oxygen-species generation, including primary organics from combustion sources and secondary organics from photochemically oxidized volatile organic compounds. We evaluated differences in airway versus systemic inflammatory responses to primary versus secondary organic particle components, particle size fractions, and the potential of particles to induce cellular production of reactive oxygen species. METHODS A total of 60 elderly subjects contributed up to 12 weekly measurements of fractional exhaled nitric oxide (NO; airway inflammation biomarker), and plasma interleukin-6 (IL-6; systemic inflammation biomarker). PM2.5 mass fractions were PM0.25 (<0.25 μm) and PM0.25-2.5 (0.25-2.5 μm). Primary organic markers included PM2.5 primary organic carbon, and PM0.25 polycyclic aromatic hydrocarbons and hopanes. Secondary organic markers included PM2.5 secondary organic carbon, and PM0.25 water soluble organic carbon and n-alkanoic acids. Gaseous pollutants included carbon monoxide (CO) and nitrogen oxides (NOx; combustion emissions markers), and ozone (O3; photochemistry marker). To assess PM oxidative potential, we exposed rat alveolar macrophages in vitro to aqueous extracts of PM0.25 filters and measured reactive-oxygen-species production. Biomarker associations with exposures were evaluated with mixed-effects models. RESULTS Secondary organic markers, PM0.25-2.5, and O3 were positively associated with exhaled NO. Primary organic markers, PM0.25, CO, and NOx were positively associated with IL-6. Reactive oxygen species were associated with both outcomes. CONCLUSIONS Particle effects on airway versus systemic inflammation differ by composition, but overall particle potential to induce generation of cellular reactive oxygen species is related to both outcomes.
Collapse
|