1
|
Chen Y, Zhang S, Sun Y, Zou J, Qiu X, Xi H, Xu Y, Li Y, Chen B, Fan J, Zhu M. Bisphenol A impairs oocyte maturation by dysfunction of cumulus cells. Theriogenology 2025; 233:139-146. [PMID: 39615448 DOI: 10.1016/j.theriogenology.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Bisphenol A (BPA) is a well-known environmental endocrine disruptor that has detrimental effects on reproduction. This study aimed to investigate whether BPA exposure could disrupt the function of cumulus cells and influence oocyte maturation and development. Porcine oocytes at the germinal vesicle stage were exposed to BPA for 44 h. The results revealed that BPA exposure led to dysfunction in cumulus cells by inhibiting meiotic division, inducing endoplasmic reticulum stress, and disrupting steroid synthesis. Furthermore, BPA exposure significantly increased reactive oxygen species and caused abnormal distribution of mitochondria in the oocytes. Notably, matured oocytes in the MII stage from the BPA-exposed groups showed significantly reduced development to the blastocyst stage, along with increased autophagy and apoptosis. These findings suggest that cumulus-oocyte complexes are sensitive to BPA exposure during the germinal vesicle stage, and the toxic effects of BPA on cumulus cells can severely inhibit oocyte and parthenogenetic embryos development.
Collapse
Affiliation(s)
- Yajie Chen
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Shuang Zhang
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yifan Sun
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Jialun Zou
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Xuan Qiu
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Haotong Xi
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yongnan Xu
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yinghua Li
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Bangzhu Chen
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianglin Fan
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.
| | - Maobi Zhu
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.
| |
Collapse
|
2
|
Chen H, Chen S, Tang Y, Ying Y, Wang S, Zhu Y, Wang Y, Ge RS, Duan P. Structure-activity relationship and in silico docking analysis of dicarboximide fungicides on 17β-hydroxysteroid dehydrogenase 1 of human, rat, and pig. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117529. [PMID: 39674025 DOI: 10.1016/j.ecoenv.2024.117529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Dicarboximide fungicides, including captafol, captan, cyclohexylthiophthalimide, folpet, and procymidone, represent a distinct category of fungicides. 17β-Hydroxysteroid dehydrogenase 1 (17β-HSD1) catalyzes the conversion of estrone to estradiol in mammals. Yet, the impact of these fungicides on 17β-HSD1 activity remains unknown. In this study, we investigated their inhibition using human placental cytosols, rat and pig ovarian cytosols. Our observations revealed that dicarboximide fungicides significantly inhibited human 17β-HSD1 activity. Among them, captan showed the strongest potency, with its IC50 of 1.28 μM, whereas procymidone had an IC50 of 100.71 μM. However, both rat and pig 17β-HSD1 enzymes were less sensitive to the inhibition of these fungicides compared to the human enzyme, with captan displaying an IC50 of 5.65 μM for the rat enzyme and 7.36 μM for the pig enzyme. Correlation analysis indicated a positive correlation between IC50 values and LogP. Docking analysis revealed that these fungicides bound to cofactor or between the steroid and cofactor binding sites. The dithiothreitol treatment demonstrated that the formation of irreversible bonds between dicarboximide fungicides and the cysteine residues played a key role in the inhibition of 17β-HSD1 activity. In conclusion, dicarboximide fungicides inhibit 17β-HSD1 depending on lipophilicity, species, and cysteine residue interactions.
Collapse
Affiliation(s)
- Huiqian Chen
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Sailing Chen
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yang Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Male Health and Environment of Wenzhou, Wenzhou Medical University, Zhejiang 325000, China.
| | - Ping Duan
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
3
|
Dai Y, Ding J, Wang Z, Zhang B, Guo Q, Guo J, Qi X, Lu D, Chang X, Wu C, Zhang J, Zhou Z. Associations of prenatal and concurrent exposure to phenols mixture with anthropometric measures and blood pressure during childhood: A time-varying mixture approach. ENVIRONMENTAL RESEARCH 2024; 261:119766. [PMID: 39127330 DOI: 10.1016/j.envres.2024.119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Environmental phenols were recognized as endocrine disrupting chemicals (EDCs). However, their impact on childhood anthropometric measures and blood pressure (BP) is still inconclusive. Limited studies have simultaneously considered prenatal and childhood exposures in analyzing mixtures of phenols. OBJECTIVE We investigated the relationships between combined prenatal and childhood exposures (two periodic exposures) to phenol mixtures and anthropometric measure and BP, to further identify the vulnerable periods of phenol exposure and to explore the important individual contribution of each phenol. METHODS We analyzed 434 mother-child dyads from the Sheyang Mini Birth Cohort Study (SMBCS). The urinary concentrations of 11 phenolic compounds were measured using gas chromatography tandem mass spectrometry. Generalized linear regression models (GLMs) and hierarchical Bayesian Kernel Machine Regression (hBKMR) were used to examine the effects of individual phenolic compounds at each period and of two periodic exposures. RESULTS In the single-chemical analysis, prenatal or childhood exposure to specific phenols, especially Benzopheone-3 (BP3), 4-tert-Octylphenol (4-tOP), and Benzyl paraben (BePB) were associated with BMI z-scores (BAZ), Waist-to-height ratio (WHtR), and BP. In the hBKMR models, two periodic exposures to phenol mixtures had a U-shaped association with WHtR, primarily driven by childhood BePB exposure. Moreover, among the phenol mixtures analysis, childhood 4-tOP exposure was identified as the primary contributor to the positive association with diastolic BP. Concurrent exposure to phenol mixtures resulted in greater susceptibility. CONCLUSIONS We found that prenatal and childhood exposure to phenol mixtures might influence childhood obesity and elevate blood pressure levels. Concurrent exposure to 4-tOP may be the primary driver of the positive associations with BP.
Collapse
Affiliation(s)
- Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Boya Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Qin Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai, 200336, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Ucheana IA, Omeka ME, Ezugwu AL, Agbasi JC, Egbueri JC, Abugu HO, Aralu CC. A targeted review on occurrence, remediation, and risk assessments of bisphenol A in Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1193. [PMID: 39532752 DOI: 10.1007/s10661-024-13337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Bisphenol A (BPA) is a vital raw material used to manufacture various household and commercial goods. However, BPA is a contaminant of emerging concern (CEC) and an endocrine-disrupting chemical (EDC) capable of migrating and bio-accumulating in environmental and biological compartments. At threshold levels, they become toxic causing adverse health and environmental issues. BPA's occurrence in food, food contact materials (FCMs), beverages, water, cosmetics, consumer goods, soil, sediments, and human/biological fluids across Africa was outlined. Unlike most reviews, it further collated data on BPA remediation techniques, including the human and ecological risk assessment studies conducted across Africa. A systematic scrutiny of the major indexing databases was employed extracting relevant data for this study. Results reveal that only 10 out of 54 countries have researched BPA in Africa. BPA levels in water were the most investigated, whereas levels in cosmetics and consumer goods were the least studied. Maximum BPA concentrations found in Africa were 3,590,000 ng/g (cosmetic and consumer goods), 154,820,000 ng/g (soils), 189 ng/mL (water), 1139 ng/g (food), and 208.55 ng/mL (biological fluids). The optimum percentage removal/degradation of BPA was within 70-100%. The potential health and ecological risk levels were assessed by comparing them with recommended limits and were found to fall within safe/low risks to unsafe/high risks. In conclusion, this study revealed that there is still little research on BPA in Africa. Levels detected in some matrices call for increased research, stricter health and environmental regulations, and surveillance.
Collapse
Affiliation(s)
- Ifeanyi Adolphus Ucheana
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Central Science Laboratory, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Michael Ekuru Omeka
- Department of Geology, University of Calabar, Etagbor, 540271, Cross River State, Nigeria
| | - Arinze Longinus Ezugwu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Johnson C Agbasi
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, 431124, Anambra State, Nigeria
| | - Johnbosco C Egbueri
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, 431124, Anambra State, Nigeria
| | - Hillary Onyeka Abugu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Chiedozie Chukwuemeka Aralu
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka, 420007, Anambra State, Nigeria
| |
Collapse
|
5
|
Costa SA, Severo M, Lopes C, Torres D. Association between bisphenol A exposure and cardiometabolic outcomes: A longitudinal approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135000. [PMID: 38909471 DOI: 10.1016/j.jhazmat.2024.135000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Increased cardiometabolic risk is associated with abnormalities in blood biomarkers profile and adiposity measurements. Some substances found in the food matrix and the environment, called endocrine-disrupting chemicals, may impair cardiometabolic health in the early and later stages of life. Bisphenol A (BPA) is a food contaminant that migrates from food contact materials and may act as an endocrine disruptor, negatively affecting human health. The present work aims to longitudinally assess the association between BPA exposure and cardiometabolic outcomes, considering data from Portuguese population-based birth cohort Generation XXI. Blood insulin (0.06stdβ; 95 %CI:0.03,0.09) and insulin resistance (0.05stdβ; 95 %CI:0.02,0.08) presented a significant longitudinal association with BPA daily exposure after adjustment for important variables and energy. The same findings were observed for fat mass (0.03stdβ; 95 %CI 0.01,0.06) and waist circumference (0.06stdβ; 95 %CI:0.04,0.08). For z-BMI, a significant cross-sectional (0.03stdβ; 95 %CI:0.01,0.04) and longitudinal (0.02stdβ; 95 %CI:0.00,0.04) association was found. This was the first study assessing the association between BPA exposure and health outcomes from childhood to adolescence. We found an association between BPA exposure and increased blood insulin level, insulin resistance, fat mass percentage, waist circumference and z-BMI. Our results point to the need to reduce exposure to BPA in the early stages of life.
Collapse
Affiliation(s)
- Sofia Almeida Costa
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal.
| | - Milton Severo
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Carla Lopes
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Departamento de Ciências da Saúde Pública e Forenses, e Educação Médica, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro Porto, Porto 4200-319, Portugal
| | - Duarte Torres
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| |
Collapse
|
6
|
Xiao T, Huang Z, Zheng C, Quach B, Zhu Y, Li F, Liang W, Baker J, Reichetzeder C, Hocher B, Yang Y. Associations of bisphenol A exposure with metabolic syndrome and its components: A systematic review and meta-analysis. Obes Rev 2024; 25:e13738. [PMID: 38491337 DOI: 10.1111/obr.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/21/2024] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Mounting evidence shows that bisphenol A (BPA) is associated with metabolic risk factors. The aim of this study was to review related epidemiologic studies and conduct a meta-analysis to quantitatively estimate the association between BPA and metabolic syndrome. Four electronic databases were systematically searched to identify suitable articles. A total of 47 published studies were finally included. Two studies involved metabolic syndrome. Of the 17, 17, 14, and 13 studies on the relationship between BPA with abdominal obesity, blood pressure, fasting plasma glucose, and dyslipidemia, 10, 6, 3, and 4 studies were included in the meta-analysis, respectively. The results showed that the risk of abdominal obesity increased with the increase of BPA exposure, especially in the group with higher BPA exposure levels (Quartile 2 vs. Quartile 1, pooled OR = 1.16, 95%CI: 1.01, 1.33; Q3 vs. Q1, pooled OR = 1.31, 95%CI: 1.13, 1.51; Q4 vs. Q1, pooled OR = 1.40, 95%CI: 1.21, 1.61). However, there was no significant correlation between BPA exposure and metabolic syndrome components including hypertension, abnormal fasting plasma glucose, and dyslipidemia. The present study found that BPA exposure is significantly associated with a higher risk of abdominal obesity. However, the relationship between BPA with metabolic syndrome and its other components needs further longitudinal studies to verify.
Collapse
Affiliation(s)
- Tianli Xiao
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Zehua Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Chanjuan Zheng
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Binh Quach
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
| | - Yulian Zhu
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Feifei Li
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Wei Liang
- School of Physical Education, Shenzhen University, Shenzhen, China
| | - Julien Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Christoph Reichetzeder
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- HMU - Health and Medical University, Potsdam, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Institute of Medical Diagnostics, IMD, Berlin, Germany
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Yide Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| |
Collapse
|
7
|
Chen S, Wang S, Zheng J, Lu H, Chen H, Tang Y, Wang N, Zhu Y, Wang Y, Duan P, Ge RS. Bisphenol analogues inhibit human and rat 17β-hydroxysteroid dehydrogenase 1: 3D-quantitative structure-activity relationship (3D-QSAR) and in silico docking analysis. Food Chem Toxicol 2023; 181:114052. [PMID: 37758047 DOI: 10.1016/j.fct.2023.114052] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Bisphenols, estrogenic endocrine-disrupting chemicals, disrupt at least one of three endocrine pathways (estrogen, androgen, and thyroid). 17β-Hydroxysteroid dehydrogenase 1 (17β-HSD1) is a steroidogenic enzyme that catalyzes the activation of estradiol from estrone in human placenta and rat ovary. However, whether bisphenols inhibit 17β-HSD1 and the mode of action remains unclear. This study we screened 17 bisphenols for inhibiting human 17β-HSD1 in placental microsomes and rat 17β-HSD1 in ovarian microsomes and determined 3D-quantitative structure-activity relationship (3D-QSAR) and mode of action. We observed some bisphenols with substituents were found to significantly inhibit both human and rat 17β-HSD1 with the most potent inhibition on human enzyme by bisphenol H (IC50 = 0.90 μM) when compared to bisphenol A (IC50 = 113.38 μM). Rat enzyme was less sensitive to the inhibition of bisphenols than human enzyme with bisphenol H (IC50 = 32.94 μM) for rat enzyme. We observed an inverse correlation between IC50 and hydrophobicity (expressed as Log P). Docking analysis showed that they bound steroid-binding site of 17β-HSD1. The 3D-QSAR models demonstrated that hydrophobic region, hydrophobic aromatic, ring aromatic, and hydrogen bond acceptor are key factors for the inhibition of steroid synthesis activity of 17β-HSD1.
Collapse
Affiliation(s)
- Sailing Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jingyi Zheng
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Han Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Huiqian Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Nan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yang Zhu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Male Health and Environment of Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
8
|
Gálvez-Ontiveros Y, Moscoso-Ruiz I, Almazán Fernández de Bobadilla V, Monteagudo C, Giménez-Martínez R, Rodrigo L, Zafra-Gómez A, Rivas A. Levels of Bisphenol A and its analogs in nails, saliva, and urine of children: a case control study. Front Nutr 2023; 10:1226820. [PMID: 37645630 PMCID: PMC10461051 DOI: 10.3389/fnut.2023.1226820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction A growing number of studies link the increase in overweight/obesity worldwide to exposure to certain environmental chemical pollutants that display obesogenic activity (obesogens). Since exposure to obesogens during the first stages of life has been shown to have a more intense and pronounced effect at lower doses, it is imperative to study their possible effects in childhood. The objective here was to study the association of Bisphenol A (BPA) and 11 BPA analogs in children, using three biological matrices (nails, saliva and urine), and overweight and obesity (n = 160). Methods In this case-control study, 59 overweight/obese children and 101 controls were included. The measuring of Bisphenols in the matrices was carried out by ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-MS/MS). Logistic regression was used to study the association between overweight/obesity and Bisphenol exposure. Results The results suggested that BPF in nails is associated with overweight/ obesity in children (OR:4.87; p = 0.020). In saliva, however, the highest detected concentrations of BPAF presented an inverse association (OR: 0.06; p = 0.010) with overweight/obesity. No associations of statistical significance were detected between exposure to BPA or its other analogs and overweight/obesity in any of the biological matrices.
Collapse
Affiliation(s)
- Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
| | - Inmaculada Moscoso-Ruiz
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Department of Analytical Chemistry, University of Granada, Granada, Spain
| | | | - Celia Monteagudo
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
| | - Rafael Giménez-Martínez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Lourdes Rodrigo
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain
| | - Alberto Zafra-Gómez
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Department of Analytical Chemistry, University of Granada, Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
9
|
India Aldana S, Valvi D, Joshi A, Lucchini RG, Placidi D, Petrick L, Horton M, Niedzwiecki M, Colicino E. Salivary Metabolomic Signatures and Body Mass Index in Italian Adolescents: A Pilot Study. J Endocr Soc 2023; 7:bvad091. [PMID: 37457847 PMCID: PMC10341611 DOI: 10.1210/jendso/bvad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 07/18/2023] Open
Abstract
Context Obesity surveillance is scarce in adolescents, and little is known on whether salivary metabolomics data, emerging minimally invasive biomarkers, can characterize metabolic patterns associated with overweight or obesity in adolescents. Objective This pilot study aims to identify the salivary molecular signatures associated with body mass index (BMI) in Italian adolescents. Methods Saliva samples and BMI were collected in a subset of n = 74 young adolescents enrolled in the Public Health Impact of Metal Exposure study (2007-2014). A total of 217 untargeted metabolites were identified using liquid chromatography-high resolution mass spectrometry. Robust linear regression was used to cross-sectionally determine associations between metabolomic signatures and sex-specific BMI-for-age z-scores (z-BMI). Results Nearly 35% of the adolescents (median age: 12 years; 51% females) were either obese or overweight. A higher z-BMI was observed in males compared to females (P = .02). One nucleoside (deoxyadenosine) and 2 lipids (18:0-18:2 phosphatidylcholine and dipalmitoyl-phosphoethanolamine) were negatively related to z-BMI (P < .05), whereas 2 benzenoids (3-hydroxyanthranilic acid and a phthalate metabolite) were positively associated with z-BMI (P < .05). In males, several metabolites including deoxyadenosine, as well as deoxycarnitine, hyodeoxycholic acid, N-methylglutamic acid, bisphenol P, and trigonelline were downregulated, while 3 metabolites (3-hydroxyanthranilic acid, theobromine/theophylline/paraxanthine, and alanine) were upregulated in relation to z-BMI (P < .05). In females, deoxyadenosine and dipalmitoyl-phosphoethanolamine were negatively associated with z-BMI while deoxycarnitine and a phthalate metabolite were positively associated (P < .05). A single energy-related pathway was enriched in the identified associations in females (carnitine synthesis, P = .04). Conclusion Salivary metabolites involved in nucleotide, lipid, and energy metabolism were primarily altered in relation to BMI in adolescents.
Collapse
Affiliation(s)
- Sandra India Aldana
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anu Joshi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roberto G Lucchini
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
- Department of Environmental Health Sciences, School of Public Health, Florida International University, Miami, FL 33199, USA
| | - Donatella Placidi
- Department of Medical Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Lauren Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
10
|
Milanović M, Milošević N, Milić N, Stojanoska MM, Petri E, Filipović JM. Food contaminants and potential risk of diabetes development: A narrative review. World J Diabetes 2023; 14:705-723. [PMID: 37383596 PMCID: PMC10294057 DOI: 10.4239/wjd.v14.i6.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 06/14/2023] Open
Abstract
The number of people diagnosed with diabetes continues to increase, especially among younger populations. Apart from genetic predisposition and lifestyle, there is increasing scientific and public concern that environmental agents may also contribute to diabetes. Food contamination by chemical substances that originate from packaging materials, or are the result of chemical reactions during food processing, is generally recognized as a worldwide problem with potential health hazards. Phthalates, bisphenol A (BPA) and acrylamide (AA) have been the focus of attention in recent years, due to the numerous adverse health effects associated with their exposure. This paper summarizes the available data about the association between phthalates, BPA and AA exposure and diabetes. Although their mechanism of action has not been fully clarified, in vitro, in vivo and epidemiological studies have made significant progress toward identifying the potential roles of phthalates, BPA and AA in diabetes development and progression. These chemicals interfere with multiple signaling pathways involved in glucose and lipid homeostasis and can aggravate the symptoms of diabetes. Especially concerning are the effects of exposure during early stages and the gestational period. Well-designed prospective studies are needed in order to better establish prevention strategies against the harmful effects of these food contaminants.
Collapse
Affiliation(s)
- Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Milica Medić Stojanoska
- Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Vojvodina, University of Novi Sad, Novi Sad 21000, Serbia
| | - Edward Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| | - Jelena Marković Filipović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| |
Collapse
|
11
|
Aja PM, Chiadikaobi CD, Agu PC, Ale BA, Ani OG, Ekpono EU, Ogwoni HA, Awoke JN, Ogbu PN, Aja L, Nwite FE, Ukachi OU, Orji OU, Nweke PC, Egwu CO, Ekpono EU, Ewa GO, Igwenyi IO, Tusubira D, Offor CE, Maduagwuna EK, Alum EU, Uti DE, Njoku A, Atoki VA, Awuchi CG. Cucumeropsis mannii seed oil ameliorates Bisphenol-A-induced adipokines dysfunctions and dyslipidemia. Food Sci Nutr 2023; 11:2642-2653. [PMID: 37324904 PMCID: PMC10261814 DOI: 10.1002/fsn3.3271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
This study demonstrated the therapeutic potentials of Cucumeropsis mannii seed oil (CMSO) capable of alleviating BPA-induced dyslipidemia and adipokine dysfunction. In this study, we evaluated the effects of CMSO on adipokine dysfunctions and dyslipidemia in bisphenol-A (BPA)-induced male Wistar rats. Six-week-old 36 albino rats of 100-200 g weight were assigned randomly to six groups, which received varied doses of BPA and/or CMSO. The administration of BPA and CMSO was done at the same time for 42 days by oral intubation. The adipokine levels and lipid profile were measured in adipose tissue and plasma using standard methods. BPA induced significant (p < .05) increases in triglycerides, cholesterol, leptin, LDL-C, and atherogenic and coronary risk indices in adipose tissue and plasma, as well as a decrease in adiponectin and HDL-C levels in Group II animals. BPA administration significantly (p < .05) elevated Leptin levels and reduced adiponectin levels. BPA plus CMSO reduced triglycerides, cholesterol, leptin, LDL-C, and atherogenic and coronary risk indices while increasing adiponectin levels and HDL-C in adipose tissue and plasma (p < .05). The results showed that BPA exposure increased adipose tissue as well as serum levels of the atherogenic index, triglycerides, cholesterol, coronary risk index, LDL-C, leptin, and body weight with decreased adiponectin levels and HDL-C. Treatment with CMSO reduced the toxicities caused by BPA in rats by modulating the body weight, adiponectin/leptin levels, and lipid profiles in serum and adipose tissue. This study has shown that CMSO ameliorates BPA-induced dyslipidemia and adipokine dysfunctions. We suggest for further clinical trial to establish the clinical applications.
Collapse
Affiliation(s)
- Patrick M. Aja
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
- Department of BiochemistryMbarara University of Science and Technology (MUST)MbararaUganda
- Department of BiochemistryKampala International UniversityBushenyiUganda
| | | | - Peter C. Agu
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Boniface A. Ale
- Department of BiochemistryUniversity of NigeriaNsukkaNigeria
| | - Onyedika G. Ani
- Department of Public Health and NutritionUniversity of ChesterChesterUK
| | - Ezebuilo U. Ekpono
- Department of BiochemistryMbarara University of Science and Technology (MUST)MbararaUganda
| | - Hilary A. Ogwoni
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Joshua N. Awoke
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Patience N. Ogbu
- Department of Medical BiochemistryAlex‐Ekwueme Federal University, Ndufu‐Alike, IkwoAbakalikiEbonyi StateNigeria
| | - Lucy Aja
- Department of Science EducationEbonyi State UniversityAbakalikiNigeria
- Department of BiochemistryFederal University of Health SciencesOtukpoNigeria
| | - Felix E. Nwite
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Oliver U. Ukachi
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Obasi U. Orji
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Peter C. Nweke
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Chinedu O. Egwu
- Department of BiochemistryUniversity of NigeriaNsukkaNigeria
| | - Ejike U. Ekpono
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Gift O. Ewa
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | | | - Deusdedit Tusubira
- Department of BiochemistryMbarara University of Science and Technology (MUST)MbararaUganda
| | | | | | - Esther U. Alum
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Daniel E. Uti
- Department of Science Laboratory TechnologyFederal Polytechnic OkoOkoAnambra StateNigeria
| | | | - Victor A. Atoki
- Department of BiochemistryKampala International UniversityBushenyiUganda
| | - Chinaza G. Awuchi
- Department of BiochemistryKampala International UniversityBushenyiUganda
- School of Natural and Applied Sciences, Kampala International UniversityKampalaUganda
| |
Collapse
|
12
|
Jiang W, Ding K, Huang W, Xu F, Lei M, Yue R. Potential effects of bisphenol A on diabetes mellitus and its chronic complications: A narrative review. Heliyon 2023; 9:e16340. [PMID: 37251906 PMCID: PMC10213369 DOI: 10.1016/j.heliyon.2023.e16340] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease caused by multiple factors such as genetics, environment, and lifestyle. Bisphenol A (BPA), as one of the most common endocrine-disrupting chemicals (EDCs), has been strongly implicated in the development of type 2 diabetes mellitus (T2DM). BPA exposure is associated with target organ damage in DM and may exacerbate the progression of some chronic complications of DM. This paper reviews relevant epidemiological, in vivo, and in vitro studies to better understand BPA's potential risk associations and pathological mechanisms in several chronic diabetic complications.
Collapse
Affiliation(s)
- Wei Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Kaixi Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenjie Huang
- Chengdu University of Technology, College of Ecology and Environment, Chengdu, 610075, China
| | - Feng Xu
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| |
Collapse
|
13
|
Demographic and anthropometric characteristics and their effect on the concentration of heavy metals (arsenic, lead, chromium, zinc) in children and adolescents. Heliyon 2023; 9:e13621. [PMID: 36846698 PMCID: PMC9950940 DOI: 10.1016/j.heliyon.2023.e13621] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Background Biomonitoring is a well-established method for assessing people's exposure to contaminants in the environment. Many non-communicable diseases can be prevented or aggravated by physiologically monitoring heavy metals in biological matrices such as urine, evaluating their association with non-communicable diseases, and attempting to limit exposure to them. The focus of this research was to determine the association between potentially toxic elements (PTE) such as arsenic (As), lead (Pb), chromium (Cr), and zinc (Zn) urine concentrations and anthropometric indices and demographic data in children and adolescents aged 6-18 years in Kerman, Iran. Methods 106 children and adolescents aged 6-18 years in Kerman were randomly selected. A questionnaire was used to acquire demographic information from the participants' parents. Height, weight, and waist circumference (WC) were all assessed, as well as body mass index (BMI) and BMI Z-score. Induced Coupled Plasma Mass Spectrometry (ICP/MS) was used to quantify As, Pb, Cr, and Zn concentrations in participants' urine. Results The geometric mean concentrations were As (38.72 ± 39.30), Pb (19.58 ± 22.91), Cr (1.06 ± 0.28), and Zn (344.72 ± 288.16) μg/creatinine. Boys aged 12-18 years old had higher mean concentration of As than boys aged 6-11 years old (p = 0.019) according to two measurement standards, μg/L, and μg/creatinine, whereas girls had no significant difference. In general, there was a strong association between parental education and metal concentrations of As, Pb, and Cr. As, Pb, and Zn (μg/creatinine) had a significant positive association with BMI z-score and BMI. As, Pb, and Zn metals were shown to have a substantial positive association (p < 0.001). There was no evidence of an association between the metals evaluated and WC. Conclusions The findings of this study generally showed that there was a significant association between demographic characteristics and exposure to these metals in children and adolescents, indicating that these people were exposed to these metals, which can harm their health. As a result, the pathways of exposure to metals must be limited.
Collapse
|
14
|
Dubeau C, Aker A, Caron-Beaudoin É, Ayotte P, Blanchette C, McHugh NGL, Lemire M. Perfluoroalkyl acid and bisphenol-A exposure via food sources in four First Nation communities in Quebec, Canada. Public Health Nutr 2023; 26:106-121. [PMID: 35272726 PMCID: PMC11077462 DOI: 10.1017/s1368980022000581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To document perfluoroalkyl acids (PFAA) and bisphenol-A (BPA) exposure in four First Nation communities in northern Quebec compared with the Canadian Health Measures Survey (CHMS Cycle 5 2016-2017) and examine the associations between dietary consumption and chemical exposure. DESIGN We used cross-sectional data from the JES-YEH! project conducted in collaboration with four First Nation communities in 2015. A FFQ collected information on diet, and PFAA and BPA were measured in biological samples. We used generalised linear models to test the associations between food intake and chemical biomarkers. SETTING Northern Quebec. PARTICIPANTS Youth aged 3-19 years (n 198). RESULTS Mean perfluorononanoic acid (PFNA) levels were significantly higher in JES-YEH! than CHMS, and BPA levels were higher among those aged 12-19 years compared with CHMS. Dairy products were associated with PFNA among Anishinabe and Innu participants (geometric mean ratio 95 % CI: 1·53 (95 % CI 1·03, 2·29) and 1·52 (95 % CI 1·05, 2·20), respectively). PFNA was also associated with ultra-processed foods (1·57 (95 % CI 1·07, 2·31)) among Anishinabe, and with wild fish and berries (1·44 (95 % CI 1·07, 1·94); 1·75 (95 % CI 1·30, 2·36)) among Innu. BPA was associated with cheese (1·72 (95 % CI 1·19, 2·50)) and milk (1·53 (95 % CI 1·02, 2·29)) among Anishinabe, and with desserts (1·71 (95 % CI 1·07, 2·74)), processed meats (1·55 (95 % CI 1·00, 2·38)), wild fish (1·64 (95 % CI 1·07, 2·49)) and wild berries (2·06 (95 % CI 1·37, 3·10)) among Innu. CONCLUSIONS These results highlight the importance of better documenting food-processing and packaging methods, particularly for dairy products, and their contribution to endocrine disruptors exposures as well as to promote minimally processed and unpackaged foods to provide healthier food environments for youth in Indigenous communities and beyond.
Collapse
Affiliation(s)
- Claudelle Dubeau
- Département de Médecine Sociale et Préventive, Institut de
Biologie Intégrative et des Systèms, Université Laval,
Québec, QC, Canada
| | - Amira Aker
- Département de Médecine Sociale et Préventive, Institut de
Biologie Intégrative et des Systèms, Université Laval,
Québec, QC, Canada
- Axe Santé Des Populations et Pratiques Optimales en Santé, Centre
de Recherche du CHU de Québec, Université Laval, 1050 Ch Ste-Foy,
Québec, QCG1S 4L8, Canada
| | - Élyse Caron-Beaudoin
- Department of Health and Society, University of
Toronto Scarborough, Toronto, ON,
Canada
- Centre for Clinical Epidemiology and Evaluation,
University of British Columbia, Vancouver Coastal Health
Research Institute, Research Pavilion, Vancouver, BC,
Canada
| | - Pierre Ayotte
- Axe Santé Des Populations et Pratiques Optimales en Santé, Centre
de Recherche du CHU de Québec, Université Laval, 1050 Ch Ste-Foy,
Québec, QCG1S 4L8, Canada
- Institut National de Santé Publique du
Québec, Quebec, Canada
| | - Caty Blanchette
- Axe Santé Des Populations et Pratiques Optimales en Santé, Centre
de Recherche du CHU de Québec, Université Laval, 1050 Ch Ste-Foy,
Québec, QCG1S 4L8, Canada
| | - Nancy Gros-Louis McHugh
- Commission de Santé et de Services Sociaux Des
Premières Nations Québec Labrador, Wendake, QC,
Canada
| | - Mélanie Lemire
- Département de Médecine Sociale et Préventive, Institut de
Biologie Intégrative et des Systèms, Université Laval,
Québec, QC, Canada
- Axe Santé Des Populations et Pratiques Optimales en Santé, Centre
de Recherche du CHU de Québec, Université Laval, 1050 Ch Ste-Foy,
Québec, QCG1S 4L8, Canada
| |
Collapse
|
15
|
Sung HK, Youn SJ, Choi Y, Eun SW, Shin SM. Body Fat Reduction Effect of Bifidobacterium breve B-3: A Randomized, Double-Blind, Placebo Comparative Clinical Trial. Nutrients 2022; 15:nu15010028. [PMID: 36615686 PMCID: PMC9824586 DOI: 10.3390/nu15010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
This double-blind, randomized clinical trial aimed to evaluate the efficacy and safety of Bifidobacterium breve B-3 (BB-3) for reducing body fat. Healthy individuals were randomized into the BB-3 or placebo group (1:1). Dual-energy X-ray absorptiometry was used to evaluate body fat reduction objectively. In the BB-3 group, body weight was lower than before BB-3 ingestion. Regarding waist circumference, hip circumference, and waist/hip circumference ratio, waist circumference and hip circumference were lower in the BB-3 group than in the placebo group at 12 weeks; the waist/hip circumference ratio was found to decrease at each visit in the BB-3 group, although there was no significant difference in the amount of change after 12 weeks. BB-3 did not cause any severe adverse reactions. Body fat was significantly lower in the BB-3 group than in the placebo group. In conclusion, ingesting BB-3 significantly reduces body weight, waist circumference, and hip circumference. Thus, BB-3 is safe and effective for reducing body fat.
Collapse
Affiliation(s)
- Hyun Kyung Sung
- Department of Pediatrics, College of Korean Medicine, Semyung University, Jecheon 27136, Republic of Korea
| | | | - Yong Choi
- RnBS Corp., Seoul 06032, Republic of Korea
| | - Sang Won Eun
- Daehan Chemtech Co., Ltd., Seoul 01811, Republic of Korea
| | - Seon Mi Shin
- Department of Internal Medicine, College of Korean Medicine, Semyung University, Jecheon 27136, Republic of Korea
- Correspondence: ; Tel.: +82-43-649-1873
| |
Collapse
|
16
|
Savin M, Vrkatić A, Dedić D, Vlaški T, Vorgučin I, Bjelanović J, Jevtic M. Additives in Children's Nutrition-A Review of Current Events. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13452. [PMID: 36294032 PMCID: PMC9603407 DOI: 10.3390/ijerph192013452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Additives are defined as substances added to food with the aim of preserving and improving safety, freshness, taste, texture, or appearance. While indirect additives can be found in traces in food and come from materials used for packaging, storage, and technological processing of food, direct additives are added to food with a special purpose (canning). The use of additives is justified if it is in accordance with legal regulations and does not pose a health or danger to consumers in the prescribed concentration. However, due to the specificity of the child's metabolic system, there is a greater risk that the negative effects of the additive will manifest. Considering the importance of the potential negative impact of additives on children's health and the increased interest in the control and monitoring of additives in food for children, we have reviewed the latest available literature available through PubMed, Scopus, and Google Scholar. Expert data were taken from publicly available documents published from January 2010 to April 2022 by internationally recognized professional organizations. It was found that the most frequently present additives in the food consumed by children are bisphenols, phthalates, perfluoroalkyl chemicals, perchlorates, pesticides, nitrates and nitrites, artificial food colors, monosodium glutamate, and aspartame. Increasing literacy about the presence and potential risk through continuous education of parents and young people as well as active monitoring of newly registered additives and harmonization of existing legal regulations by competent authorities can significantly prevent the unwanted effects of additives on children's health.
Collapse
Affiliation(s)
- Marijana Savin
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Institute for Child and Youth Health Care of Vojvodina, Hajduk Veljkova 10, 21000 Novi Sad, Serbia
| | - Aleksandra Vrkatić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Danijela Dedić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Emergency Service, Community Health Center Šid, Alekse Šantića 1, 22239 Šid, Serbia
| | - Tomislav Vlaški
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Ivana Vorgučin
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Institute for Child and Youth Health Care of Vojvodina, Hajduk Veljkova 10, 21000 Novi Sad, Serbia
| | - Jelena Bjelanović
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Institute of Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
| | - Marija Jevtic
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Institute of Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
- Research Center on Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| |
Collapse
|
17
|
Torres-García JL, Ahuactzin-Pérez M, Fernández FJ, Cortés-Espinosa DV. Bisphenol A in the environment and recent advances in biodegradation by fungi. CHEMOSPHERE 2022; 303:134940. [PMID: 35588877 DOI: 10.1016/j.chemosphere.2022.134940] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a compound used in the manufacture of a wide variety of everyday materials that, when released into the environment, causes multiple detrimental effects on humans and other organisms. The reason for this review is to provide an overview of the presence, distribution, and concentration of BPA in water, soil, sediment, and air, as well as the process of release and migration, biomagnification, and exposure mechanisms that cause various toxic effects in humans. Therefore, it is important to seek efficient and economic strategies that allow its removal from the environment and prevent it from reaching humans through food chains. Likewise, the main removal techniques are analyzed, focusing on biological treatments, particularly the most recent advances in the degradation of BPA in different environmental matrices through the use of ligninolytic fungi, non-ligninolytic fungi and yeasts, as well as the possible routes of metabolic processes that allow their biotransformation or biodegradation due to their efficient extracellular enzyme systems. This review supports the importance of the application of new biotechnological tools for the degradation of BPA.
Collapse
Affiliation(s)
- J L Torres-García
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - M Ahuactzin-Pérez
- Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Autopista Tlaxcala-San Martín Km 10.5, 90120, San Felipe Ixtacuixtla, Tlaxcala, Mexico
| | - F J Fernández
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - Diana V Cortés-Espinosa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada. Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, 90700, Tepetitla de Lardizabal, Tlaxcala, Mexico.
| |
Collapse
|
18
|
Fang R, Yang S, Gu X, Li C, Bi N, Wang HL. Early-life exposure to bisphenol A induces dysregulation of lipid homeostasis by the upregulation of SCD1 in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119201. [PMID: 35341816 DOI: 10.1016/j.envpol.2022.119201] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Exposure of Bisphenol A (BPA) is closely associated with an increased prevalence of obesity-related metabolic syndrome. However, the potential mechanism of BPA-induced adipogenesis remains to be fully elucidated. Herein, potential mechanisms of BPA-induced adipogenesis in 3T3-L1 preadipocytes were evaluated using RNA-Seq. Then, using an early-life BPA exposure model, we further evaluated the effects of BPA exposure on lipid and glucose homeostasis. The results showed that lipid content in 3T3-L1 adipocytes was significantly increased after BPA exposure (p < 0.01) and male C57BL/6 mice with the dose of 500 μg/kg/day BPA by once-a-day oral administration for 8 weeks displayed a NAFLD-like phenotype. RNA-Seq analysis of preadipocytes showed that BPA exposure affected multiple biological processes including glycosphingolipid biosynthesis, regulation of lipolysis in adipocytes, PPAR signaling pathway and fatty acid metabolism. The dysregulation in a series of genes of mice was associated to de novo lipogenesis and lipid transport, which was linked to obesity. Importantly, we also found a significant expression increase of stearoyl-CoA desaturase 1 (SCD1) and a significant decrease of apolipoprotein D (APOD) in both fat (p < 0.01) and livers (p < 0.01) of male mice. Besides, the dysregulation of pro-inflammatory genes (TNF-α,IL-6 and SAA3) showed that BPA exposure promoted progression of hepatic inflammation. In conclusion, this study elucidated a novel mechanism in which obesity associated with BPA exposure by targeting SCD1. Exposure to BPA should be carefully examined in the chronic liver metabolic diseases.
Collapse
Affiliation(s)
- Ruyue Fang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Shaohua Yang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Xiaozhen Gu
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Changqing Li
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Nanxi Bi
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Hui-Li Wang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China.
| |
Collapse
|
19
|
Nasab H, Rajabi S, Eghbalian M, Malakootian M, Hashemi M, Mahmoudi-Moghaddam H. Association of As, Pb, Cr, and Zn urinary heavy metals levels with predictive indicators of cardiovascular disease and obesity in children and adolescents. CHEMOSPHERE 2022; 294:133664. [PMID: 35066075 DOI: 10.1016/j.chemosphere.2022.133664] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Although the basic causes of obesity and cardiovascular illness have been extensively researched, little is known about the influence of environmental variables such as heavy metals on obesity development and cardiovascular disease in children and adolescents. The assumption that arsenic (As), lead (Pb), chromium (Cr), and zinc (Zn) exposure impact obesity and predictors of cardiovascular disease was explored in this study. METHOD A questionnaire was used to gather demographic information as well as certain determinants of exposure to As, Pb, Cr, and Zn from 106 children and adolescents aged 6 to 18. Physical tests (height, weight, waist circumference (WC), BMI, BMI Z-score, Systolic blood pressure (SBP), Diastolic blood pressure (DBP)), blood samples for clinical trials (Fasting Blood Sugar (FBS), Total Cholesterol (TC), Triglyceride (TG), Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL) (, and urine samples for urinary creatinine measurement and measures of As, Pb, Cr, and Zn in urine were obtained using the Inductively coupled plasma mass spectrometry (ICP/MS). RESULTS The average age of the participants in the research was 11.42 ± 3.68. The majority of the participants in the research were boys (56 people). As, Pb, and Zn mean concentrations (μg/L) were greater in obese adults (42.60 ± 22.59, 20.63 ± 14.64, 326 ± 164.82), respectively. After adjusting for possible confounding factors, the data revealed that adolescents aged 12-18 years had higher levels of As and Pb (8.69 and 5.02 μg/L) than children aged 6 to 11. As and Zn metals had significant association with FBS and lipid profile (TC, TG, LDL, HDL), lead had significant correlations with lipid profile, while Cr had significant correlations with WC, SBP, FBS, LDL, TC. CONCLUSION Childhood and adolescent exposure to As, Pb, Cr, and Zn can impact obesity and cardiovascular disease markers. The current research was a cross-sectional study, which necessitates group studies and case studies to evaluate causal relationships.
Collapse
Affiliation(s)
- Habibeh Nasab
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Rajabi
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Eghbalian
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hadi Mahmoudi-Moghaddam
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Yalçin SS, Erdal İ, Oğuz B, Duzova A. Association of urine phthalate metabolites, bisphenol A levels and serum electrolytes with 24-h blood pressure profile in adolescents. BMC Nephrol 2022; 23:141. [PMID: 35410150 PMCID: PMC9004182 DOI: 10.1186/s12882-022-02774-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Among the possible causes of hypertension in adolescence, electrolyte imbalances and environmental pollutants are drawing increasing attention. We aimed to examine the relationship between bisphenol A (BPA), phthalate metabolites, and serum electrolytes and blood pressure. METHODS Eighty-six participants aged 12-15 years were included in the study. Body mass index (BMI), office blood pressure and 24-h ambulatory blood pressure measurements (ABPM), and carotid intima-media thickness were determined. Blood samples were taken for hemogram, renal function tests, and serum electrolytes. Free- and total-BPA and phthalate metabolites were analyzed from urine samples. RESULTS Of the participants, 34 were evaluated as normal blood pressure profile, 33 as white-coat hypertension (WCHT), and 19 as ABPM-hypertension. Adolescents in ABPM- hypertension groups had higher BMI-standard deviation score (SDS), leucocyte, platelet count; but lower serum chloride, compared to the normal blood pressure profile group. The percentage of adolescents with detectable urinary mono-benzyl phthalate (MBzP) was higher in ABPM-hypertension (42.1%) and WCHT groups (33.3%), compared to the normal blood pressure profile group (5.9%, p = 0.004). Associations between MBzP and ABPM- hypertension and WCHT were remained after confounding factor adjustment. Adolescents with detectable MBzP levels had also higher "albumin-corrected calcium" and lower serum phosphate and "albumin-corrected calcium x phosphate product" compared to others. Adolescents with detectable urinary MBzP levels had higher blood pressure profiles in some 24-h (mean arterial pressure-SDS, systolic blood pressure-SDS), daytime (systolic blood pressure-SDS), and night-time (mean arterial pressure-SDS, systolic blood pressure-SDS, and diastolic blood pressure-SDS) measurements, compared to others. WCHT was found to be associated negatively with monomethyl phthalate and the sum of dibutyl phthalate metabolites and ABPM-HT with MCPP. There was no significant association between blood pressure profiles and free- and total-BPA status. CONCLUSION MBzP was associated with adverse blood pressure profiles in adolescence. Additive follow-up studies are necessary for cause-effect relations.
Collapse
Affiliation(s)
- Siddika Songül Yalçin
- Unit of Social Pediatrics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - İzzet Erdal
- Unit of Social Pediatrics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Berna Oğuz
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ali Duzova
- Unit of Pediatric Nephrology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
21
|
Nasab H, Rajabi S, Mirzaee M, Hashemi M. Association of urinary triclosan, methyl triclosan, triclocarban, and 2,4-dichlorophenol levels with anthropometric and demographic parameters in children and adolescents in 2020 (case study: Kerman, Iran). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30754-30763. [PMID: 34993832 PMCID: PMC8739350 DOI: 10.1007/s11356-021-18466-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/29/2021] [Indexed: 05/28/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can be a major risk factor for noncommunicable illnesses, especially when children are exposed to them. The purpose of this study was to assess the urine concentrations of triclosan (TCS), methyl triclosan (MTCS), triclocarban (TCC), and 2,4-dichlorophenol (2,4-DCP) and its association with anthropometric and demographic parameters in children and adolescents aged 6-18 living in Kerman, Iran, in 2020. A GC/MS instrument was used to measure the concentrations of the analytes. TCS, MTCS, TCC, and 2,4-DCP geometric mean concentrations (µg/L) were 4.32 ± 2.08, 1.73 ± 0.88, 4.66 ± 10.25, and 0.19 ± 0.14, respectively. TCS, MTCS, TCC, and 2,4-DCP were shown to have a positive and significant association with BMI z-score and BMI (p-value < 0.01). TCS and MTCS have a positive, strong, and substantial association (p-value < 0.01, r = 0.74). There was no significant association between the waist circumference (WC) and the analytes studied. In addition, there was a close association between analyte concentration and demographic parameters (smoking, education, income, etc.) overall. In Kerman, Iran, the current study was the first to look into the association between TCS, MTCS, TCC, and 2,4-DCP analytes and anthropometric and demographic data. The levels of urinary TCS, MTCS, TCC, 2,4-DCP, and anthropometric parameters in children and adolescents are shown to have a significant association in this study. However, because the current study is cross-sectional and it is uncertain if a single experiment accurately reflects long-term exposure to these analytes, more research is needed to determine the impact of these analyses on the health of children and adolescents.
Collapse
Affiliation(s)
- Habibeh Nasab
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Rajabi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moghaddameh Mirzaee
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
22
|
Murro I, Lisco G, Di Noia C, Lampignano L, Zupo R, Giagulli VA, Guastamacchia E, Triggiani V, De Pergola G. Endocrine Disruptors and Obesity: an Overview. Endocr Metab Immune Disord Drug Targets 2022; 22:798-806. [PMID: 35346017 DOI: 10.2174/1871530322666220328122300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
Obesity is a growing pandemic. Endocrine-disrupting chemicals are widespread in the environment. In this perspective, the authors examine the issue related to the exposure to several chemicals with endocrine-disrupting properties as promoting factors to obesity. Data show that Phthalates, Bisphenol compounds, Persistent Organic Pollutants (POPs), solvents, and personal care products can modify metabolic properties in a dose-response and sex-specific manner. Phthalates and bisphenol compounds increase body mass index, waist circumference, waist to height ratio, and the sum of skinfold thicknesses in women and not in men. Low-dose exposure to Persistent Organic Pollutants is strongly associated with increased body mass index in men and decreased this parameter in women. The mechanism through which these compounds act on anthropometric parameters is not entirely understood. Several studies suggest a possible interference in gonadotropin secretion and the thyroid axis. These inspire a decrease of both total and free testosterone levels in men and FT3 and FT4 levels in women, particularly after a pregnancy. The impact of endocrine disruptor chemicals on adipose tissue inflammation and future cardio-metabolic disorders remains to be elucidated. Therefore, studies involving both healthy and obese individuals are needed to unambiguously confirm results from in vitro and animal models.
Collapse
Affiliation(s)
- Isanna Murro
- Department of Biomedical Science and Human Oncology, University of Bari, School of Medicine, Policlinico, Bari, Italy
| | - Giuseppe Lisco
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari
| | - Carmen Di Noia
- Department of Biomedical Science and Human Oncology, University of Bari, School of Medicine, Policlinico, Bari, Italy
| | - Luisa Lampignano
- Population Health Unit - \'Salus in Apulia Study" National Institute of Gastroenterology \'Saverio de Bellis\', Research Hospital, Castellana Grotte, Bari, Italy
| | - Roberta Zupo
- Population Health Unit - \'Salus in Apulia Study" National Institute of Gastroenterology \'Saverio de Bellis\', Research Hospital, Castellana Grotte, Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari
| | - Giovanni De Pergola
- Department of Biomedical Science and Human Oncology, University of Bari, School of Medicine, Policlinico, Bari, Italy
- Internal Medicine and Geriatrics Unit - National Institute of Gastroenterology \'Saverio de Bellis\', Research Hospital, Castellana Grotte, Bari, Italy
| |
Collapse
|
23
|
Gao D, Zou Z, Li Y, Chen M, Ma Y, Chen L, Wang X, Yang Z, Dong Y, Ma J. Association between urinary phthalate metabolites and dyslipidemia in children: Results from a Chinese cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118632. [PMID: 34906593 DOI: 10.1016/j.envpol.2021.118632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Rising evidence of both experimental and epidemiological studies suggests that phthalate exposure may contribute to increased risks of metabolic disorders. But there is limited research on the childhood dyslipidemia. Our cohort study was conducted in Xiamen city, Fujian Province, China. A total of 829 children (mean age 8.5 years) were included with collection of urine, blood samples and demographic data in May 2018 and followed up once a year from 2018 to 2020. We performed adjusted log-binomial regressions to examine associations between sex-specific tertiles of seven phthalate metabolites and dyslipidemia in visit 1, as well as persistent dyslipidemia and occasional dyslipidemia. We also used generalized estimating equation models (GEE) to explore the relationships between log-transformed phthalate metabolites and lipid profiles. In adjusted models, the prevalence and RRs of dyslipidemia increased with tertile group of mono-n-butyl phthalate (MnBP), mono-2-ethyl-5-oxohexyl phthalate (MEOHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), and summed di-(2-ethylhexyl) phthalate (∑DEHP) metabolites with a dose-response relationship in visit 1, as well as persistent dyslipidemia. Higher MnBP, ∑LMWP, MEHHP, MEOHP, and ∑DEHP concentrations were also associated with higher levels of log-transformed triglycerides (TG). Boys were more vulnerable to phthalates exposure than girls. In conclusion, children in China were widely exposed to phthalates, and phthalates exposure during childhood might significantly increase the risk of dyslipidemia and a higher level of lipid profiles, particularly in boys.
Collapse
Affiliation(s)
- Di Gao
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yanhui Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Ying Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Xijie Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Zhaogeng Yang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
24
|
Tarafdar A, Sirohi R, Balakumaran PA, Reshmy R, Madhavan A, Sindhu R, Binod P, Kumar Y, Kumar D, Sim SJ. The hazardous threat of Bisphenol A: Toxicity, detection and remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127097. [PMID: 34488101 DOI: 10.1016/j.jhazmat.2021.127097] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (or BPA) is a toxic endocrine disrupting chemical that is released into the environment through modern manufacturing practices. BPA can disrupt the production, function and activity of endogenous hormones causing irregularity in the hypothalamus-pituitary-gonadal glands and also the pituitary-adrenal function. BPA has immuno-suppression activity and can downregulate T cells and antioxidant genes. The genotoxicity and cytotoxicity of BPA is paramount and therefore, there is an immediate need to properly detect and remediate its influence. In this review, we discuss the toxic effects of BPA on different metabolic systems in the human body, followed by its mechanism of action. Various novel detection techniques (LC-MS, GC-MS, capillary electrophoresis, immunoassay and sensors) involving a pretreatment step (liquid-liquid microextraction and molecularly imprinted solid-phase extraction) have also been detailed. Mechanisms of various remediation strategies, including biodegradation using native enzymes, membrane separation processes, photocatalytic oxidation, use of nanosorbents and thermal degradation has been detailed. An overview of the global regulations pertaining to BPA has been presented. More investigations are required on the efficiency of integrated remediation technologies rather than standalone methods for BPA removal. The effect of processing operations on BPA in food matrices is also warranted to restrict its transport into food products.
Collapse
Affiliation(s)
- Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Palanisamy Athiyaman Balakumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - R Reshmy
- Department of Chemistry, Bishop Moore College, Mavelikkara 690110, Kerela, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerela, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Yogesh Kumar
- Department of Food Science and Technology, National Institute of Food Technology and Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology and Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
25
|
Aaseth J, Javorac D, Djordjevic AB, Bulat Z, Skalny AV, Zaitseva IP, Aschner M, Tinkov AA. The Role of Persistent Organic Pollutants in Obesity: A Review of Laboratory and Epidemiological Studies. TOXICS 2022; 10:65. [PMID: 35202251 PMCID: PMC8877532 DOI: 10.3390/toxics10020065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022]
Abstract
Persistent organic pollutants (POPs) are considered as potential obesogens that may affect adipose tissue development and functioning, thus promoting obesity. However, various POPs may have different mechanisms of action. The objective of the present review is to discuss the key mechanisms linking exposure to POPs to adipose tissue dysfunction and obesity. Laboratory data clearly demonstrate that the mechanisms associated with the interference of exposure to POPs with obesity include: (a) dysregulation of adipogenesis regulators (PPARγ and C/EBPα); (b) affinity and binding to nuclear receptors; (c) epigenetic effects; and/or (d) proinflammatory activity. Although in vivo data are generally corroborative of the in vitro results, studies in living organisms have shown that the impact of POPs on adipogenesis is affected by biological factors such as sex, age, and period of exposure. Epidemiological data demonstrate a significant association between exposure to POPs and obesity and obesity-associated metabolic disturbances (e.g., type 2 diabetes mellitus and metabolic syndrome), although the existing data are considered insufficient. In conclusion, both laboratory and epidemiological data underline the significant role of POPs as environmental obesogens. However, further studies are required to better characterize both the mechanisms and the dose/concentration-response effects of exposure to POPs in the development of obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Jan Aaseth
- Research Department, Innlandet Hospital Trust, P.O. Box 104, 2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, P.O. Box 400, 2418 Elverum, Norway
| | - Dragana Javorac
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia; (D.J.); (A.B.D.); (Z.B.)
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia; (D.J.); (A.B.D.); (Z.B.)
| | - Zorica Bulat
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia; (D.J.); (A.B.D.); (Z.B.)
| | - Anatoly V. Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Department of Bioelementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia
| | - Irina P. Zaitseva
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
26
|
Measurement of Urinary Triclocarban and 2,4-Dichlorophenol Concentration and Their Relationship with Obesity and Predictors of Cardiovascular Diseases among Children and Adolescents in Kerman, Iran. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:2939022. [PMID: 35096073 PMCID: PMC8794682 DOI: 10.1155/2022/2939022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
Exposure to Endocrine-Disrupting Chemicals (EDCs) at an early age can lead to chronic diseases. 2,4-Dichlorophenol (2,4-DCP) and Triclocarban (TCC) are among EDCs that disrupt the endocrine system and alter the body's metabolism. In the present study, the hypothesis that exposure to 2,4-DCP and TCC affects obesity and predictors of cardiovascular diseases was investigated. Fasting Blood Sugar (FBS), Total Cholesterol (TC), Triglyceride (TG), Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL (tests were performed on 79 children and adolescents. Also, blood pressure, Body Mass Index (BMI), and BMI z-score were measured to examine the hypothesis. Urinary concentrations of TCC and 2,4-DCP were measured by Gas Chromatography-Mass Spectrometry (GC/MS). Mean concentrations of TCC and 2,4-DCP (µg/L) were higher in obese individuals (5.50 ± 2.35, 0.29 ± 0.13, respectively). After adjusting for possible confounding factors, the results showed an increase in TCC concentration among girls and a decrease in 2,4-DCP among boys with increasing age. The 2,4-DCP concentration among girls increased by 0.007 and 0.01 units with a one-unit increase in Diastolic Blood Pressure (DBP) and FBS, respectively. There was a significant relationship between TCC and TG (Odds Ratio (OR) = 1.02,
-value = 0.007), LDL (OR = 1.05,
-value = 0.003), and HDL (OR = 0.88,
-value = 0.002). There was also a significant relationship between 2,4-DCP and TG (OR = 1.02,
-value = 0.002), LDL (OR = 1.12,
-value = 0.007), and HDL (OR = 0.92,
-value = 0.02). Exposure to TCC and 2,4-DCP can increase some heart risk factors and increase the risk of cardiovascular diseases and obesity. However, to confirm the results of the present study, it is necessary to conduct further studies, such as cohort and case-control studies, with a larger sample size to examine the causal relationships.
Collapse
|
27
|
Bourgeade P, Aleya E, Alaoui-Sosse L, Herlem G, Alaoui-Sosse B, Bourioug M. Growth, pigment changes, and photosystem II activity in the aquatic macrophyte Lemna minor exposed to bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68671-68678. [PMID: 34275075 DOI: 10.1007/s11356-021-15422-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
As a result of its high production, bisphenol A (BPA) has become ubiquitous in aquatic and terrestrial habitats. In this study, we investigated the toxicity of BPA at 10 mg L-1 on Lemna minor after 7 days of exposure under controlled conditions according to ISO 20079. BPA statistically reduced the total frond number and frond area, while frond number per colony was significantly elevated in BPA-treated group. However, no change was recorded in root number, while root length was significantly reduced by BPA. BPA also decreased the content of Chl a, Chl b, Chl a + b, and carotenoid by 36%, 44%, 38%, and 32%, respectively, versus the control leading to a decrease in the quantum yield of photosystem II. In addition, non-photochemical quenching (NPQ) values were 2.4- and 4.5-fold higher in light than in dark conditions for control and BPA-treated plants, respectively. Thus, there is a significant activation (61.8%; p<0.01) of PSII photoprotection mechanism (NPQ) in BPA-treated plants compared to control but without removing the negative effect of BPA on PSII. The total amount of soluble sugars was reduced by 40% compared to control, and starch accumulation was mainly observed in fronds exposed to BPA. Even if the response patterns of Lemna minor based on fresh and dry weight measurements were less sensitive in our experiment conditions, further studies should be addressed since BPA represents a threat to the dynamic equilibrium governing aquatic ecosystems.
Collapse
Affiliation(s)
- Pascale Bourgeade
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, F-, 25030, Besançon, France
| | - Enis Aleya
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, F-, 25030, Besançon, France
| | - Laurence Alaoui-Sosse
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, F-, 25030, Besançon, France
| | - Guillaume Herlem
- Laboratoire de Nanomédecine, Université de Bourgogne Franche-Comté, 16 Route de Gray, 25000, Besançon, France
| | - Badr Alaoui-Sosse
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, F-, 25030, Besançon, France
| | - Mohamed Bourioug
- Département d'Agronomie et d'Amélioration des Plantes, Ecole Nationale d'Agriculture de Meknès, km. 10, Route Haj Kaddour, B.P. S/40, 50001, Meknès, Morocco.
| |
Collapse
|
28
|
Facina CH, Campos SGP, Ruiz TFR, Góes RM, Vilamaior PSL, Taboga SR. Protective effect of the association of curcumin with piperine on prostatic lesions: New perspectives on BPA-induced carcinogenesis. Food Chem Toxicol 2021; 158:112700. [PMID: 34838672 DOI: 10.1016/j.fct.2021.112700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is a chemical agent which can exert detrimental effects on the male reproductive system, especially the prostate gland. In this study we described the efficacy of the dietary agent curcumin, alone or combined with piperine, to suppress the impact of BPA on the prostate. Adult gerbils were divided into nine experimental groups (n = 7 each group), regarding control (water and oil), exposed to BPA (50 μg/kg/day in water) or curcumin (100 mg/kg) and/or piperine (20 mg/kg). To evaluate the effects of the phytotherapic agents, the other groups received oral doses every two days, BPA plus curcumin (BCm), piperine (BP), and curcumin + piperine (BCmP). BPA promoted prostatic inflammation and morphological lesions in ventral and dorsolateral prostate lobes, associated with an increase in androgen receptor-positive cells and nuclear atypia, mainly in the ventral lobe. Curcumin and piperine helped to minimize these effects. BPA plus piperine or curcumin showed a reduction in nuclear atypical phenotype, indicating a beneficial effect of phytochemicals. Thus, these phytochemicals minimize the deleterious action of BPA in prostatic lobes, especially when administered in association. The protective action of curcumin and piperine consumption is associated with weight loss, anti-inflammatory potential, and control of prostate epithelial cell homeostasis.
Collapse
Affiliation(s)
- Camila Helena Facina
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Thalles Fernando Rocha Ruiz
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Rejane Maira Góes
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Cristóvão Colombo 2265 Street, Jardim Nazareth, 15054-000, São José Do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
29
|
Amin MM, Ghasemi Z, Khoshhali M, Taheri E, Dehdashti B, Fatehizadeh A, Rafiei N, Kelishadi R. Association of maternal exposure to bisphenol A with her β-hCG level and neonatal anthropometric measures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62809-62815. [PMID: 34215981 DOI: 10.1007/s11356-021-15094-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is one of the organic compounds that might interfere with estrogenic receptors, which would make difficulties in pregnancy hormones and fetal growth. Human chorionic gonadotropin (β-hCG) is one of the important pregnancy hormones that might be affected by environmental pollutants. The aim of this study is to investigate the probable impacts of maternal exposure to BPA on anthropometric measures of newborns. This cross-sectional study was conducted in 2019-2020 in Isfahan, Iran. During the first trimester of pregnancy, we measured the urinary BPA concentration and serum β-hCG level of 120 pregnant women, who were randomly selected from participants of a birth cohort. BPA concentration was measured using gas chromatography-mass spectrometry (GC-MS). Serum blood sample was derived and used for β-hCG analysis. Anthropometric measurement of neonates was conducted at the time of birth. BPA and β-hCG level were grouped by quartiles, and their associations with birth weight, height, and head circumference were tested using multiple linear regression model. The adjustment was done for urine creatinine, gender, and gestational age, as well as maternal age, body mass index, and education level. Data of 119 pairs of mothers and infants were available for the present study. The mean (SD) age of mothers was 29.19 (5.75) years; 56.3% of newborns were boys. Geometric mean of urinary BPA and β-hCG concentrations were 0.36 ng/g crea. (creatinine) and 17736 mIU/ml, respectively. Across the BPA tertiles, the differences in mean values were not significant for none of the anthropometric measurements and gestational age (GA). Furthermore, no significant association existed between unadjusted and adjusted tertiles of BPA and β-hCG with abovementioned birth outcomes. It seems that the non-significant association found in this study is because of low levels of urinary BPA levels than in other studies; the adverse effects on infants might be related to high concentration of BPA passed from placenta. Future longitudinal studies with large sample size are necessary to document the adverse health effects of maternal exposure to endocrine disruptor chemicals including BPA.
Collapse
Affiliation(s)
- Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Ghasemi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehri Khoshhali
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahare Dehdashti
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Rafiei
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Moradnia M, Attar HM, Heidari Z, Mohammadi F, Kelishadi R. Prenatal exposure to chromium (Cr) and nickel (Ni) in a sample of Iranian pregnant women: urinary levels and associated socio-demographic and lifestyle factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63412-63421. [PMID: 34231141 DOI: 10.1007/s11356-021-15201-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/25/2021] [Indexed: 05/22/2023]
Abstract
Heavy metals have been well documented to pose detrimental health effects. The current study aimed to measure the concentration of chromium (Cr) and nickel (Ni) in urinary samples of Iranian pregnant females and determine their potential correlations with different lifestyle variables. The study was conducted in 2019-2020 in Isfahan, Iran, and the urine samples were collected from 140 pregnant women. The concentrations of Cr and Ni in the urinary samples were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). Data on socio-demographic characteristics, use of cleaning products, and lifestyle profiles was collected by validated questionnaires. Cr and Ni were detected in 100% of urinary samples with the mean concentration of 4.1±3.4 and 7.5±4.8 μg/g creatinine, respectively. Significant associations were found between the mean concentration of Cr and Ni with using cooking utensils made of copper, aluminum, Teflon, steel, and enameled, as well as with cosmetic use, and second-hand smoking exposure during pregnancy. The results also showed that the mean urinary Ni and Cr concentrations were significantly different among individuals who consumed seafood and canned food (p-value <0.05). Furthermore, the mean of urinary Cr and Ni concentrations at high levels of physical activity and scratched utensils used was significantly different from the other categories (p-value <0.05). According to our findings, the lifestyle determinants and cosmetic products had superiority to socio-demographic characteristics in predicting urinary heavy metals in Iranian pregnant women.
Collapse
Affiliation(s)
- Maryam Moradnia
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Movahedian Attar
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Zahra Heidari
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
31
|
Zulkifli S, Rahman AA, Kadir SHSA, Nor NSM. Bisphenol A and its effects on the systemic organs of children. Eur J Pediatr 2021; 180:3111-3127. [PMID: 33893858 DOI: 10.1007/s00431-021-04085-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023]
Abstract
For the past two decades, growing research has been pointing to multiple repercussions of bisphenol A (BPA) exposure to human health. BPA is a synthetic oestrogen which primarily targets the endocrine system; however, the compound also disturbs other systemic organ functions, in which the magnitude of impacts in those other systems is as comparable to those in the endocrine system. To date, the discoveries on the association between BPA and health outcomes mainly came from animal and in vitro studies, with limited human studies which emphasised on children's health. In this comprehensive review, we summarised studies on human, in vivo and in vitro models to understand the consequences of pre-, post- and perinatal BPA exposure on the perinatal, children and adult health, encompassing cardiovascular, neurodevelopmental, endocrine and reproductive effects.Conclusion: Evidence from in vitro and animal studies may provide further support and better understanding on the correlation between environmental BPA exposure and its detrimental effects in humans and child development, despite the difficulties to draw direct causal relations of BPA effects on the pathophysiology of the diseases/syndromes in children, due to differences in body system complexity between children and adults, as well as between animal and in vitro models and humans. What is known: • Very limited reviews are available on how BPA adversely affects children's health. • Previous papers mainly covered two systems in children. What is new: • Comprehensive review on the detrimental effects of BPA on children health outcomes, including expectations on adult health outcomes following perinatal BPA exposure, as well as covering a small part of BPA alternatives. • Essentially, BPA exposure during pregnancy has huge impacts on the foetus in which it may cause changes in foetal epigenetic programming, resulting in disease onsets during childhood as well as adulthood.
Collapse
Affiliation(s)
- Sarah Zulkifli
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.,Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Noor Shafina Mohd Nor
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia. .,Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.
| |
Collapse
|
32
|
Darvishmotevalli M, Moradnia M, Hosseini R, Bina B, Feizi A, Ebrahimpour K, Pourzamani H, Feizabadi GK, Kelishadi R. Association between prenatal phthalate exposure and anthropometric measures of newborns in a sample of Iranian population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50696-50706. [PMID: 33966142 DOI: 10.1007/s11356-021-14182-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/26/2021] [Indexed: 05/15/2023]
Abstract
Phthalates or phthalic acid esters (PAEs) are a group of compounds which they can be entered into the human body through the various pathways. The aim of this study was to examine associations between prenatal phthalates exposure with anthropometric measures of neonates. Urine samples were obtained from 121 Iranian pregnant women at their first trimester of pregnancy, and the levels of monobutyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-2-ethylhexyl phthalate (MEHP), and mono (2-ethyl-5hydroxyhexyl) phthalate (MEHHP) metabolites were determined by gas chromatography mass spectrometry (GC/MS). The correlations between the maternal urinary concentrations of phthalate metabolites with anthropometric measures of neonates as well as with the socio-demographic factors of participants (maternal education, age, family income, pre-pregnancy body mass index), their lifestyle variables (smoking habit, food pattern, and physical activity), and use of cleaning products (cosmetic and household cleaning products) were investigated. MBzP, MBP, MEHP, and MEHHP were detected in 100% of the participants with the concentration ranged 120 to 860 μg/g creatinine. Significant correlations were observed between the urinary levels of maternal MBzP (adjusted β = 0.3 (0.001), p = 0.03) and MEHHP (adjusted β = 0.3 (0.001), p = 0.04) with the birth weight of female neonates. MBP (adjusted β = -0.3 (0.02), p = 0.04) and MBzP (adjusted β = -0.3 (0.001), p = 0.02) had negative associations with the head circumference in male and female newborns, respectively. Furthermore, plastic packaging for pickle and passive smoking during pregnancy were identified to be significantly associated with low birth weight (p value < 0.05). Iranian pregnant women had higher concentrations of urinary phthalates compared to the other countries. Based on the findings, the higher prenatal exposure to phthalates could adversely impact the health status of newborns.
Collapse
Affiliation(s)
- Mohammad Darvishmotevalli
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Moradnia
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Reza Hosseini
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bijan Bina
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Pourzamani
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghasem Kiani Feizabadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
33
|
Sex-Specific Effects of Plastic Caging in Murine Viral Myocarditis. Int J Mol Sci 2021; 22:ijms22168834. [PMID: 34445539 PMCID: PMC8396197 DOI: 10.3390/ijms22168834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Myocarditis is an inflammatory heart disease caused by viral infections that can lead to heart failure, and occurs more often in men than women. Since animal studies have shown that myocarditis is influenced by sex hormones, we hypothesized that endocrine disruptors, which interfere with natural hormones, may play a role in the progression of the disease. The human population is exposed to the endocrine disruptor bisphenol A (BPA) from plastics, such as water bottles and plastic food containers. Methods: Male and female adult BALB/c mice were housed in plastic versus glass caging, or exposed to BPA in drinking water versus control water. Myocarditis was induced with coxsackievirus B3 on day 0, and the endpoints were assessed on day 10 post infection. Results: We found that male BALB/c mice that were exposed to plastic caging had increased myocarditis due to complement activation and elevated numbers of macrophages and neutrophils, whereas females had elevated mast cell activation and fibrosis. Conclusions: These findings show that housing mice in traditional plastic caging increases viral myocarditis in males and females, but using sex-specific immune mechanisms.
Collapse
|
34
|
Bisphenol A exposure prenatally delays bone development and bone mass accumulation in female rat offspring via the ERβ/HDAC5/TGFβ signaling pathway. Toxicology 2021; 458:152830. [PMID: 34097993 DOI: 10.1016/j.tox.2021.152830] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022]
Abstract
Previous studies have suggested that bisphenol A (BPA) has a toxic effect on bone development; however, its pathological mechanism has not been fully elucidated. In the present study, pregnant Wistar rats were intragastrically administered BPA (10 μg/kg per day) during gestational days 14-21. Then, bone tissues were obtained from neonatal rats on postnatal day 1 for histological analysis, and the bone mass of adult rat offspring was analyzed by micro-CT at postnatal week 10. Furthermore, osteoprogenitors from neonatal rats were obtained and treated with various concentrations of BPA in vitro to clarify the associated mechanism. In vivo, we found that prenatal BPA exposure reduced body weight and body length in female neonatal rats but not in male neonatal rats. Meanwhile, BPA exposure during pregnancy delayed bone development and reduced bone mass only in female rat offspring. Moreover, BPA exposure during pregnancy inhibited osteogenic function and downregulated the transforming growth factor β (TGF β) signaling pathway in the bone tissue of female neonatal rats. Our in vitro findings further indicated that various concentrations of BPA suppressed the osteogenic function of osteoprogenitors by downregulating the TGFβ signaling pathway. Meanwhile, BPA downregulated H3K9ac and expression levels of TGFβ via the ERβ/HDAC5 signaling pathway. Collectively, this research revealed that prenatal BPA exposure impairs bone development and bone mass accumulation in female rat offspring, which was attributed to inhibitory osteogenic function via the ERβ/HDAC5/TGFβ signaling pathway.
Collapse
|
35
|
Factors Associated with Exposure to Dietary Bisphenols in Adolescents. Nutrients 2021; 13:nu13051553. [PMID: 34062990 PMCID: PMC8147950 DOI: 10.3390/nu13051553] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/17/2023] Open
Abstract
Obesogenic endocrine-disrupting chemicals, such as bisphenol A (BPA) and its analogue bisphenol S (BPS), seem to play an important role in the development of obesity, although contradictory results have been reported. The aim of the present study was to conduct a gender analysis of the factors associated with exposure to dietary bisphenols in 585 Spanish adolescents. Dietary BPA and BPS exposure was assessed using a food frequency questionnaire. Foods and macronutrients accounting for more than 95% of energy intake were selected for analysis. Stepwise regression was used to estimate the foods that most contributed to dietary bisphenol exposure in the sample. Gender-related factors associated with greater dietary bisphenol exposure were evaluated using multivariate logistic regression models. Canned tuna was the main dietary source of BPA and BPS in both adolescent boys and girls. Overweight/obese girls showed a higher risk of high dietary exposure to BPA (odds ratio (OR): 3.38, 95% confidence interval (CI): 1.25-9.07) and total bisphenols (OR: 2.81, 95% CI: 1.03-7.67) in comparison with girls with a BMI lower than 25 kg/m2. Present results indicate a positive association of dietary exposure to both total bisphenols and BPA with being overweight/obese in adolescent girls.
Collapse
|
36
|
Aktağ E, Yurdakök K, Yalçın SS, Kandemir N. Urinary bisphenol A levels in prepubertal children with exogenous obesity according to presence of metabolic syndrome. J Pediatr Endocrinol Metab 2021; 34:495-502. [PMID: 33639044 DOI: 10.1515/jpem-2020-0371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/11/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Recent studies have shown a potential link between chronic exposure to Bisphenol A (BPA) and exogenous obesity, the prevalence of which has been increasing dramatically in all age groups and particularly among children in the last decades. In this study, we aimed at comparing BPA exposure levels between controls and otherwise healthy, drug-naive, pre-pubertal children having exogenous obesity with/without metabolic syndrome. METHODS A total of 63 pre-pubertal children with exogenous obesity whom 27 of them having metabolic syndrome attending Hacettepe University Ihsan Dogramaci Children's Hospital were included in this study. The control group consisted of 34 age- and sex-matched healthy children with no significant underlying medical conditions. Urinary BPA levels were measured using LC-MS/MS (high-performance liquid chromatography coupled with tandem mass spectrometry) methodology. RESULTS Urinary BPA levels among obese children were significantly higher than those of the control group (median: 22.9 μg/g-creatinine and 6.9 μg/g-creatinine, respectively; p=0.0001). When adjusted with generalized linear models for age, gender and z scores of body mass index, obese children having metabolic syndrome had significantly higher urinary BPA levels than obese children without metabolic syndrome and both obese groups had considerably elevated levels of urinary BPA than the controls (estimated marginal mean ± standard error: 42.3 ± 7.4 μg/g-creatinine, 22.6 ± 3.5 μg/g-creatinine and 12.1 ± 2.5 μg/g-creatinine, respectively, p=0.0001). CONCLUSIONS This study shows much higher BPA exposure among obese children with metabolic syndrome during the prepubertal period.
Collapse
Affiliation(s)
- Esra Aktağ
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Kadriye Yurdakök
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Nurgün Kandemir
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
37
|
Catenza CJ, Farooq A, Shubear NS, Donkor KK. A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. CHEMOSPHERE 2021; 268:129273. [PMID: 33352513 DOI: 10.1016/j.chemosphere.2020.129273] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 12/08/2020] [Indexed: 05/26/2023]
Abstract
Due to its widespread applications and its ubiquitous occurrence in the environment, bisphenol A (BPA) and its alternatives have gained increasing attention, especially in terms of human safety. Like BPA, alternatives such as bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF) have also been identified to be endocrine-disrupting chemicals (EDCs). Hence, in this study, we reviewed the literature of BPA and its alternatives mainly published between the period 2018-2020, including their occurrences in the environment, human exposure, and adverse health effects. The review shows that bisphenols are prevalent in the environment with BPA, BPS, and BPF being the most ubiquitous in the environment worldwide, though BPA remains the most abundant bisphenol. However, the levels of BPS and BPF in different environmental media have been constantly increasing and their fates and health risks are being evaluated. The studies show that humans and animals are exposed to bisphenols in many different ways through inhalation and ingestion and the exposure can have serious health effects. Urinary bisphenols (BPs) levels were frequently reported to be positively associated with different health problems such as cancer, infertility, cardiovascular diseases, diabetes and neurodegenerative diseases. Our literature study also shows that BPs generate reactive oxygen species and disrupt various signalling pathways, which could lead to the development of chronic diseases. Activated carbon-based and chitosan-based sorbents have been widely utilized in the removal of BPA in aqueous solutions. In addition, enzymes and microorganisms have also been getting much attention due to their high removal efficiencies.
Collapse
Affiliation(s)
- Cyrene J Catenza
- Department of Physical Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Amna Farooq
- Department of Physical Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Noor S Shubear
- Department of Physical Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Kingsley K Donkor
- Department of Physical Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada.
| |
Collapse
|
38
|
Jang Y, Choi YJ, Lim YH, Lee KS, Kim BN, Shin CH, Lee YA, Kim JI, Hong YC. Associations Between Thyroid Hormone Levels and Urinary Concentrations of Bisphenol A, F, and S in 6-Year-old Children in Korea. J Prev Med Public Health 2021; 54:37-45. [PMID: 33618498 PMCID: PMC7939752 DOI: 10.3961/jpmph.20.310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/23/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Bisphenol A (BPA) is used in the electrical, mechanical, medical, and food industries. Previous studies have suggested that BPA is an endocrine disruptor. Regulation of BPA has led to increased use of bisphenol F (BPF) and bisphenol S (BPS). However, few studies have investigated the associations of BPF and BPS with thyroid dysfunction in children. Our study investigated the associations of prenatal BPA and early childhood BPA, BPF, and BPS exposure with thyroid function in 6-year-old children. METHODS Prenatal BPA concentrations were measured during the second trimester of pregnancy in an established prospective birth cohort. We measured urinary BPA, BPF, and BPS concentrations and thyroid hormone levels (thyroid-stimulating hormone, total T3, and free T4) in 6-year-old children (n=574). We examined the associations between urinary bisphenol concentrations and percentage change of thyroid hormone concentrations using multivariate linear regression. We also compared thyroid hormone levels by dividing the cohort according to BPA, BPF, and BPS concentrations. RESULTS The associations between prenatal BPA and total T3 levels were statistically significant in all models, except for girls when using a crude model. The associations between urinary BPA and BPS concentrations and levels of all thyroid hormones were not statistically significant. However, we observed that lower free T4 levels (-1.94%; 95% confidence interval, -3.82 to -0.03) were associated with higher urinary BPF concentrations in girls only. CONCLUSIONS Our findings identified significant associations between prenatal BPA exposure and total T3 levels in all children and between BPF exposure and free T4 levels in girls only.
Collapse
Affiliation(s)
- Yoonyoung Jang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon-Jung Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea
| | - Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea.,Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | | | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
39
|
Salamanca-Fernández E, Vela-Soria F, Rodríguez-Barranco M, Arrebola-Moreno A, Iribarne-Durán LM, Olea N, Sánchez MJ, Arrebola JP. Serum levels of non-persistent environmental pollutants and risk of incident hypertension in a sub-cohort from the EPIC study. ENVIRONMENTAL RESEARCH 2021; 193:110491. [PMID: 33227247 DOI: 10.1016/j.envres.2020.110491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The prevalence of arterial hypertension (AHT), a well-known risk factor for cardiovascular disease, has considerably increased over last decades. Non-persistent environmental pollutants (npEPs) are a group of ubiquitous chemicals, widely used in consumer products such as food packaging and cosmetics, which have been identified as endocrine disrupting chemicals and obesogens. The aim of this study was to assess the potential associations of serum levels of three groups of npEPs with the risk of incident AHT. METHODS Cohort study within a sub-cohort of Granada EPIC-Spain center (n = 670). We quantified serum concentrations of three groups of npEPs, i.e., bisphenol A (BPA), four parabens: methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP), and two benzophenones: benzophenone 1 (BP1), benzophenone 3 (BP3), in samples collected at recruitment. Statistical analyses were performed by means of Cox Proportional Hazard Models. RESULTS Median follow-up time was 23 years. BPA and MP were found in >80% of the study population. Individuals within the 4th PP quartile (0.53-9.24 ng/ml) showed a statistically significant increased risk of AHT (HR = 1.40, p = 0.015). No associations were found for the rest of pollutants. CONCLUSIONS Overall, we evidenced no associations of most npEPs with AHT risk, with the exception of an increased risk in the highest PP percentiles. Considering the limitations of using one spot serum sample for exposure characterization, further research on the potential contribution of npEPs on the development of AHT risk is warranted.
Collapse
Affiliation(s)
- E Salamanca-Fernández
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - F Vela-Soria
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - M Rodríguez-Barranco
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP). Madrid, Spain
| | | | | | - N Olea
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP). Madrid, Spain; University of Granada, Department of Radiology, School of Medicine, Granada, Spain
| | - M J Sánchez
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP). Madrid, Spain; University of Granada, Department of Preventive Medicine and Public Health, Granada, Spain
| | - J P Arrebola
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP). Madrid, Spain; University of Granada, Department of Preventive Medicine and Public Health, Granada, Spain.
| |
Collapse
|
40
|
Mohanto NC, Ito Y, Kato S, Kamijima M. Life-Time Environmental Chemical Exposure and Obesity: Review of Epidemiological Studies Using Human Biomonitoring Methods. Front Endocrinol (Lausanne) 2021; 12:778737. [PMID: 34858347 PMCID: PMC8632231 DOI: 10.3389/fendo.2021.778737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The exponential global increase in the incidence of obesity may be partly attributable to environmental chemical (EC) exposure. Humans are constantly exposed to ECs, primarily through environmental components. This review compiled human epidemiological study findings of associations between blood and/or urinary exposure levels of ECs and anthropometric overweight and obesity indices. The findings reveal research gaps that should be addressed. We searched MEDLINE (PubMed) for full text English articles published in 2006-2020 using the keywords "environmental exposure" and "obesity". A total of 821 articles were retrieved; 102 reported relationships between environmental exposure and obesity indices. ECs were the predominantly studied environmental exposure compounds. The ECs were grouped into phenols, phthalates, and persistent organic pollutants (POPs) to evaluate obesogenic roles. In total, 106 articles meeting the inclusion criteria were summarized after an additional search by each group of EC combined with obesity in the PubMed and Scopus databases. Dose-dependent positive associations between bisphenol A (BPA) and various obesity indices were revealed. Both individual and summed di(2-ethylhexyl) phthalate (DEHP) and non-DEHP metabolites showed inconsistent associations with overweight and obesity indices, although mono-butyl phthalate (MBP), mono-ethyl phthalate (MEP), and mono-benzyl phthalate (MBzP) seem to have obesogenic roles in adolescents, adults, and the elderly. Maternal exposure levels of individual POP metabolites or congeners showed inconsistent associations, whereas dichlorodiphenyldichloroethylene (DDE) and perfluorooctanoic acid (PFOA) were positively associated with obesity indices. There was insufficient evidence of associations between early childhood EC exposure and the subsequent development of overweight and obesity in late childhood. Overall, human evidence explicitly reveals the consistent obesogenic roles of BPA, DDE, and PFOA, but inconsistent roles of phthalate metabolites and other POPs. Further prospective studies may yield deeper insights into the overall scenario.
Collapse
|
41
|
Salamanca-Fernández E, Rodríguez-Barranco M, Petrova D, Larrañaga N, Guevara M, Moreno-Iribas C, Chirlaque MD, Colorado-Yohar S, Arrebola JP, Vela F, Olea N, Agudo A, Sánchez MJ. Bisphenol A exposure and risk of ischemic heart disease in the Spanish European Prospective Investigation into cancer and nutrition study. CHEMOSPHERE 2020; 261:127697. [PMID: 32731019 DOI: 10.1016/j.chemosphere.2020.127697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/26/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cardiovascular disease, particularly ischemic heart disease (IHD), is the leading cause of mortality worldwide. Bisphenol A (BPA) is considered an endocrine disruptor and obesogen, present in numerous products of daily use. The aim of this study was to assess the potential association of serum BPA concentrations and the risk of incident IHD in a sub-cohort of the Spanish European Prospective Investigation into Cancer and Nutrition (EPIC). METHODS We designed a case-cohort study within the EPIC-Spain cohort. The population consisted of 4636 participants from 4 EPIC-Spain centers (946 IHD cases and 3690 sub-cohort participants). BPA exposure was assessed by means of chemical analyses of serum samples collected at recruitment. Follow-up was performed by linking with national and regional databases and reviewing patients' clinical records. Cox Proportional Hazards Models were used for the statistical analyses. RESULTS Median follow-up time was 16 years and 70% of the participants showed detectable BPA values (>0.2 ng/ml). Geometric mean (GM) values of cases and sub-cohort were 1.22 ng/ml vs 1.19 ng/ml respectively (p = 0.90). Cox regression models showed no significant association of BPA serum levels and IHD, acute myocardial infarction or angina pectoris risk. CONCLUSIONS We evidenced a similar percentage of detection of BPA among cases and sub-cohort participants from our population, and no clear association with IHD risk was observed. However, further investigation is needed to understand the influence of BPA on IHD risk.
Collapse
Affiliation(s)
- Elena Salamanca-Fernández
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Miguel Rodríguez-Barranco
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Dafina Petrova
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nerea Larrañaga
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Public Health Department of Gipuzkoa, Donostia, Spain
| | - Marcela Guevara
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Conchi Moreno-Iribas
- Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Maria Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; Department of Health and Sciences, University of Murcia, Spain
| | - Sandra Colorado-Yohar
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Juan Pedro Arrebola
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Fernando Vela
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Radiology, School of Medicine, University of Granada, Granada, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Maria-José Sánchez
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| |
Collapse
|
42
|
Liakh I, Sledzinski T, Kaska L, Mozolewska P, Mika A. Sample Preparation Methods for Lipidomics Approaches Used in Studies of Obesity. Molecules 2020; 25:E5307. [PMID: 33203044 PMCID: PMC7696154 DOI: 10.3390/molecules25225307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is associated with alterations in the composition and amounts of lipids. Lipids have over 1.7 million representatives. Most lipid groups differ in composition, properties and chemical structure. These small molecules control various metabolic pathways, determine the metabolism of other compounds and are substrates for the syntheses of different derivatives. Recently, lipidomics has become an important branch of medical/clinical sciences similar to proteomics and genomics. Due to the much higher lipid accumulation in obese patients and many alterations in the compositions of various groups of lipids, the methods used for sample preparations for lipidomic studies of samples from obese subjects sometimes have to be modified. Appropriate sample preparation methods allow for the identification of a wide range of analytes by advanced analytical methods, including mass spectrometry. This is especially the case in studies with obese subjects, as the amounts of some lipids are much higher, others are present in trace amounts, and obese subjects have some specific alterations of the lipid profile. As a result, it is best to use a method previously tested on samples from obese subjects. However, most of these methods can be also used in healthy, nonobese subjects or patients with other dyslipidemias. This review is an overview of sample preparation methods for analysis as one of the major critical steps in the overall analytical procedure.
Collapse
Affiliation(s)
- Ivan Liakh
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
| | - Lukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland;
| | - Paulina Mozolewska
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
43
|
Adeyemi JA, Gallimberti M, Olise CC, Rocha BA, Adedire CO, Barbosa F. Evaluation of bisphenol A levels in Nigerian thermal receipts and estimation of daily dermal exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37645-37649. [PMID: 32608004 DOI: 10.1007/s11356-020-09898-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is a high production volume chemical that has wide industrial applications, especially as a color developer in thermal papers. The present study focused on the determination of levels of BPA in thermal receipts collected from different locations in Akure, Nigeria, and the estimation of daily intake of BPA through dermal absorption. Thermal receipts were collected from different locations, and the levels of extracted BPA were determined using fluorescence spectroscopy. The daily intake of BPA was estimated, and the amount was compared with the reference value. BPA was detected in all the samples analyzed with levels ranging from 1.50 to 3.16 mg/g. These values were lower than the values detected in thermal receipts obtained from other countries. The estimated mean daily intakes of BPA by dermal absorption due to handling of thermal receipts were 0.20 and 9.89 μg/day for the general population and the occupationally exposed individuals, respectively, and were much lower than the reference value of 50 μg/kg bw/day provided by the European Food Safety Authority. This indicates that dermal exposure to BPA is not a serious health risk to the population.
Collapse
Affiliation(s)
- Joseph A Adeyemi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, Ribeirão Preto, SP, CEP 14040-903, Brazil.
- Department of Biology, School of Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria.
| | - Matheus Gallimberti
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, Ribeirão Preto, SP, CEP 14040-903, Brazil
| | - Christian C Olise
- Department of Biology, School of Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Bruno Alves Rocha
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua Prof. Artur Riedel, 275, Diadema, SP, CEP 09972-270, Brazil
| | - Chrs O Adedire
- Department of Biology, School of Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, Ribeirão Preto, SP, CEP 14040-903, Brazil
| |
Collapse
|
44
|
Ouyang F, Zhang GH, Du K, Shen L, Ma R, Wang X, Wang X, Zhang J. Maternal prenatal urinary bisphenol A level and child cardio-metabolic risk factors: A prospective cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115008. [PMID: 32574892 PMCID: PMC7456779 DOI: 10.1016/j.envpol.2020.115008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 05/11/2023]
Abstract
Exposure to endocrine disrupting chemicals during the first 1000 days of life may have long-lasting adverse effects on cardio-metabolic risk in later life. This study aimed to examine the associations between maternal prenatal Bisphenol A (BPA) exposure and child cardio-metabolic risk factors at age 2 years in a prospective cohort. During 2012-2013, 218 pregnant women were enrolled at late pregnancy from Shanghai, China. Urinary BPA concentration was measured in prenatal and child 2-year spot urine samples, and classified into high, medium and low tertiles. Child adiposity anthropometric measurements, random morning plasma glucose, serum insulin, and lipids (high-density lipoprotein, low-density lipoprotein, cholesterol, triglyceride), systolic (SBP) and diastolic blood pressure (DBP) were measured. Linear regression was used to evaluate the associations between prenatal BPA and each of the cardio-metabolic risk factors in boys and girls, respectively, adjusting for pertinent prenatal, perinatal and postnatal factors. BPA was detectable (>0.1 μg/L) in 98.2% of mothers prenatally and 99.4% of children at age 2 years. Compared to those with low prenatal BPA, mean SBP was 7.0 (95%CI: 2.9-11.2) mmHg higher, and DBP was 4.4 (95%CI: 1.2-7.5) mmHg higher in girls with high prenatal BPA levels, but these associations were not found in boys. In boys, medium maternal prenatal BPA level was associated with 0.36 (95% CI: 0.04-0.68) mmol/L higher plasma glucose. No associations were found between prenatal BPA and child BMI, skinfold thicknesses, serum lipids, or insulin in either girls or boys. There were no associations between concurrent child urinary BPA and cardio-metabolic risk factors. These results support that BPA exposure during prenatal period, susceptible time for fetal development, may be associated with increase in child BP and plasma glucose in a sex-specific manner. Further independent cohort studies are needed to confirm the findings.
Collapse
Affiliation(s)
- Fengxiu Ouyang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guang-Hui Zhang
- Department of Clinical Laboratory Test, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Du
- Department of Clinical Laboratory Test, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixiao Shen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ma
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Fu X, Xu J, Zhang R, Yu J. The association between environmental endocrine disruptors and cardiovascular diseases: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2020; 187:109464. [PMID: 32438096 DOI: 10.1016/j.envres.2020.109464] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/15/2020] [Accepted: 03/29/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Except for known cardiovascular risk factors, long-term exposure to environmental endocrine disruptors (EEDs) - a class of exogenous chemicals, or a mixture of chemicals, that can interfere with any aspect of hormone action - has been shown to increase the risk of cardiovascular diseases (CVDs), which are still controversial. OBJECTIVE To conduct a comprehensive systematic review and meta-analysis to estimate the association between EEDs, including nonylphenol (NP), bisphenol A (BPA), polychlorinated biphenyl (PCB), organo-chlorine pesticide (OCP) and phthalate (PAE) exposure and CVD risk. METHODS The heterogeneity between different studies was qualitatively and quantitatively evaluated using Q test and I2 statistical magnitude, respectively. Subgroup analysis was performed using chemical homologs - a previously unused grouping method - to extract data and perform meta-analysis to assess their exposure to CVD. RESULTS Twenty-nine literatures were enrolled with a total sample size of 88891. The results indicated that exposure to PCB138 and PCB153 were the risk factors for CVD morbidity (odds ratio (OR) = 1.35, 95% confidence interval (CI): 1.10-1.66; OR = 1.35, 95% CI: 1.13-1.62). Exposure to organo-chlorine pesticide (OCP) (OR = 1.12, 95% CI: 1.00-1.24), as well as with phthalate (PAE) (OR = 1.11, 95% CI: 1.06-1.17) and BPA (OR = 1.19, 95% CI: 1.03-1.37) were positively associated with CVD risk, respectively. BPA exposure concentration had no correlation with total cholesterol (TC), or low-density lipoprotein (LDL), but exhibited a correlation with gender, waist circumference (WC), high-density lipoprotein (HDL), age, and body mass index (BMI) (standardized mean difference (SMD)) = 1.51; 95% CI: =(1.01-2.25); SMD = 0.16; 95% CI: (0.08-0.23); SMD = -0.19; 95% CI: (-0.27-0.12); SMD = -0.78; 95% CI: (-1.42-0.14); SMD = 0.08; 95% CI: (0.00-0.16). CONCLUSIONS EED exposure is a risk factor for CVD. Long-term exposure to EEDs can influence cardiovascular health in humans. A possible synergistic effect may exist between the homologs. The mechanism of which needs to be further explored and demonstrated by additional prospective cohort studies, results of in vitro and in vivo analyses, as well as indices affecting CVD.
Collapse
Affiliation(s)
- Xiangjun Fu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| | - Renyi Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
46
|
Endocrine disruption and obesity: A current review on environmental obesogens. CURRENT RESEARCH IN GREEN AND SUSTAINABLE CHEMISTRY 2020; 3. [PMCID: PMC7326440 DOI: 10.1016/j.crgsc.2020.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Obesity represents an important public health concern because it substantially increases the risk of multiple chronic diseases and thereby contributing to a decline in both quality of life and life expectancy. Besides unhealthy diet, physical inactivity and genetic susceptibility, environmental pollutants also contribute to the rising prevalence of obesity epidemic. An environmental obesogen is defined as a chemical that can alter lipid homeostasis to promote adipogenesis and lipid accumulation whereas an endocrine disrupting chemical (EDC) is defined as a synthetic chemical that can interfere with the endocrine function and cause adverse health effects. Many obesogens are EDCs that interfere with normal endocrine regulation of metabolism, adipose tissue development and maintenance, appetite, weight and energy balance. An expanding body of scientific evidence from animal and epidemiological studies has begun to provide links between exposure to EDCs and obesity. Despite the significance of environmental obesogens in the pathogenesis of metabolic diseases, the contribution of synthetic chemical exposure to obesity epidemic remains largely unrecognised. Hence, the purpose of this review is to provide a current update on the evidences from animal and human studies on the role of fourteen environmental obesogens in obesity, a comprehensive view of the mechanisms of action of these obesogens and current green and sustainable chemistry strategies to overcome chemical exposure to prevent obesity. Designing of safer version of obesogens through green chemistry approaches requires a collaborative undertaking to evaluate the toxicity of endocrine disruptors using appropriate experimental methods, which will help in developing a new generation of inherently safer chemicals. Many environmental obesogens are endocrine disrupting chemicals that interfere with normal endocrine regulation of metabolism. Understanding the role of environmental obesogens in the epidemics of obesity is in an infant stage. Green chemistry approach aims to design a safer version of these chemicals by understanding their hazardous effects. Further studies are necessary to fully establish the hazardous effects of obesogens and their association to human obesity.
Collapse
|
47
|
Salamanca-Fernández E, Iribarne-Durán LM, Rodríguez-Barranco M, Vela-Soria F, Olea N, Sánchez-Pérez MJ, Arrebola JP. Historical exposure to non-persistent environmental pollutants and risk of type 2 diabetes in a Spanish sub-cohort from the European Prospective Investigation into Cancer and Nutrition study. ENVIRONMENTAL RESEARCH 2020; 185:109383. [PMID: 32224340 DOI: 10.1016/j.envres.2020.109383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Environmental factors are believed to account for a substantial burden of type 2 diabetes mellitus (T2DM). Non-persistent environmental pollutants (npEPs) are a group of widely-used chemicals identified as endocrine/metabolic disrupting chemicals and obesogens. The aim of this study was to analyse the potential associations of serum levels of three groups of npEPs with the risk of incident T2DM. METHODS This is a longitudinal study within a sub-sample of Granada EPIC-Spain cohort (n = 670). We quantified serum concentrations of 7 npEPs: four parabens (Methylparaben (MP) ethylparaben (EP), propylparaben (PP) and butilparaben (BP); two benzophenones: Benzophenone 1 (BP1), Benzophenone 3 (BP3); and Bisphenol A (BPA). Exposure was assessed by means of chemical analyses of serum samples collected at recruitment, and information on potential confounders was gathered by using validated questionnaires at baseline. Follow-up was performed by review of patients' clinical records. Cox Proportional Hazards Models were used for the statistical analyses. RESULTS Median follow-up time was 23 years. There were 182 (27%) incident T2DM diagnoses in our sub-cohort. MP was the most frequently detected npEP, 88.42% samples above the limit of detection, and BP showed the lowest percentage of detection (19.21%). Those individuals within the fourth PP quartile (0.53-9.24 ng/ml) showed a statistically significant increased risk of T2DM (HR = 1.668 p = 0.012), while BP1 concentrations showed an inverse non-significant trend with the risk. CONCLUSIONS We evidenced a potential contribution of npEP exposure on T2DM, but no clear trend was observed. However, limitations in relation to exposure estimation might influence our findings and further research is warranted to confirm our results.
Collapse
Affiliation(s)
- E Salamanca-Fernández
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | | | - M Rodríguez-Barranco
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - F Vela-Soria
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - N Olea
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Radiology, School of Medicine, University of Granada, Granada, Spain
| | - M J Sánchez-Pérez
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J P Arrebola
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain.
| |
Collapse
|
48
|
Zeisel SH. Precision (Personalized) Nutrition: Understanding Metabolic Heterogeneity. Annu Rev Food Sci Technol 2020; 11:71-92. [DOI: 10.1146/annurev-food-032519-051736] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
People differ in their requirements for and responses to nutrients and bioactive molecules in the diet. Many inputs contribute to metabolic heterogeneity (including variations in genetics, epigenetics, microbiome, lifestyle, diet intake, and environmental exposure). Precision nutrition is not about developing unique prescriptions for individual people but rather about stratifying people into different subgroups of the population on the basis of biomarkers of the above-listed sources of metabolic variation and then using this stratification to better estimate the different subgroups’ dietary requirements, thereby enabling better dietary recommendations and interventions. The hope is that we will be able to subcategorize people into ever-smaller groups that can be targeted in terms of recommendations, but we will never achieve this at the individual level, thus, the choice of precision nutrition rather than personalized nutrition to designate this new field. This review focuses mainly on genetically related sources of metabolic heterogeneity and identifies challenges that need to be overcome to achieve a full understanding of the complex interactions between the many sources of metabolic heterogeneity that make people differ from one another in their requirements for and responses to foods. It also discusses the commercial applications of precision nutrition.
Collapse
Affiliation(s)
- Steven H. Zeisel
- Nutrition Research Institute, Department of Nutrition, University of North Carolina, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
49
|
Friques AG, Santos FD, Angeli DB, Silva FAC, Dias AT, Aires R, Leal MA, Nogueira BV, Amorim FG, Campagnaro BP, Pereira TMC, Campos-Toimil M, Meyrelles SS, Vasquez EC. Bisphenol A contamination in infant rats: molecular, structural, and physiological cardiovascular changes and the protective role of kefir. J Nutr Biochem 2020; 75:108254. [DOI: 10.1016/j.jnutbio.2019.108254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/15/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
|
50
|
Cheng W, Yang S, Li X, Liang F, Zhou R, Wang H, Feng Y, Wang Y. Low doses of BPA induced abnormal mitochondrial fission and hypertrophy in human embryonic stem cell-derived cardiomyocytes via the calcineurin-DRP1 signaling pathway: A comparison between XX and XY cardiomyocytes. Toxicol Appl Pharmacol 2019; 388:114850. [PMID: 31830493 DOI: 10.1016/j.taap.2019.114850] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023]
Abstract
Humans are inevitably exposed to bisphenol A (BPA) via multiple exposure ways. Thus, attention should be raised to the possible adverse effects related to low doses of BPA. Epidemiological studies have outlined BPA exposure and the increased risk of cardiovascular diseases (such as cardiac hypertrophy), which has been confirmed to be sex-specific in rodent animals and present in few in vitro studies, although the molecular mechanism is still unclear. However, whether BPA at low doses equivalent to human internal exposure level could induce cardiac hypertrophy via the calcineurin-DRP1 signaling pathway by disrupting calcium homeostasis is unknown. To address this, human embryonic stem cell (H1, XY karyotype and H9, XX karyotype)-derived cardiomyocytes (CM) were purified and applied to study the low-dose effects of BPA on cardiomyocyte hypertrophy. In our study, when H1- and H9-CM were exposed to noncytotoxic BPA (8 ng/ml), markedly elevated hypertrophic-related mRNA expression levels (such as NPPA and NPPB), enhanced cellular area and reduced ATP supplementation, demonstrated the hypertrophic cardiomyocyte phenotype in vitro. The excessive fission produced by BPA was promoted by CnAβ-mediated dephosphorylation of DRP1. At the molecular level, the increase in cytosolic Ca2+ levels by low doses of BPA could discriminate between H1- and H9-CM, which may suggest a potential sex-specific hypertrophic risk in cardiomyocytes in terms of abnormal mitochondrial fission and ATP production by impairing CnAβ-DRP1 signaling. In CnAβ-knockdown cardiomyocytes, these changes were highly presented in XX-karyotyped cells, rather than in XY-karyotyped cells.
Collapse
Affiliation(s)
- Wei Cheng
- School of Public Health, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, PR China
| | - Shoufei Yang
- School of Public Health, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, PR China
| | - Xiaolan Li
- School of Public Health, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, PR China
| | - Fan Liang
- School of Public Health, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, PR China
| | - Ren Zhou
- The Ninth People's Hospital of Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, PR China
| | - Hui Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, PR China
| | - Yan Feng
- School of Public Health, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, PR China
| | - Yan Wang
- School of Public Health, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, PR China; The Ninth People's Hospital of Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, PR China; Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|