1
|
Liu R, Liu N, Ma L, Liu Y, Huang Z, Peng X, Zhuang C, Niu J, Yu J, Du J. Research Progress on NMDA Receptor Enhancement Drugs for the Treatment of Depressive Disorder. CNS Drugs 2024; 38:985-1002. [PMID: 39379772 DOI: 10.1007/s40263-024-01123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Major depressive disorder (MDD) is a severe mental illness with a complex etiology. Currently, many medications employed in clinical treatment exhibit limitations such as delayed onset of action and a high incidence of adverse reactions. Therefore, there is a pressing need to develop antidepressants that exhibit enhanced efficacy and safety. The N-methyl-D-aspartate receptor (NMDAR), a distinctive glutamate-gated ion channel receptor, has been implicated in the onset and progression of depressive disorder, as evidenced by both preclinical and clinical research. The NMDAR antagonist, ketamine, exhibits rapid and sustained antidepressant effects, holding promise as a novel therapeutic approach for depressive disorder. However, its psychotomimetic impact and potential for addiction have restricted its widespread clinical application. Notably, over the past decade, studies have suggested that enhancing NMDAR functionality can produce antidepressant effects with improved safety, especially with the emergence of NMDAR-positive allosteric modulators (PAMs). We view this as a potential novel strategy for treating depression, forming the basis for the narrative review that follows.
Collapse
Affiliation(s)
- Ruyun Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Xiaodong Peng
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| | - Juan Du
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
2
|
Wang HR, Zhang Y, Mo YJ, Zhang Z, Chen R, Lu XB, Huang W. Reshaping tumor microenvironment by regulating local cytokines expression with a portable smart blue-light controlled device. Commun Biol 2024; 7:916. [PMID: 39080467 PMCID: PMC11289142 DOI: 10.1038/s42003-024-06566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Cytokines have attracted sustained attention due to their multi-functional cellular response in immunotherapy. However, their application was limited to their short half-time, narrow therapeutic window, and undesired side effects. To address this issue, we developed a portable smart blue-light controlled (PSLC) device based on optogenetic technology. By combining this PSLC device with blue-light controlled gene modules, we successfully achieved the targeted regulation of cytokine expression within the tumor microenvironment. To alter the tumor microenvironment of solid tumors, pro-inflammatory cytokines were selected as blue-light controlled molecules. The results show that blue-light effectively regulates the expression of pro-inflammatory cytokines both in vitro and in vivo. This strategy leads to enhanced and activated tumor-infiltrating immune cells, which facilitated to overcome the immunosuppressive microenvironment, resulting in significant tumor shrinkage in tumor-bearing mice. Hence, our study offers a unique strategy for cytokine therapy and a convenient device for animal studies in optogenetic immunotherapy.
Collapse
Affiliation(s)
- Hui Rong Wang
- LiShizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, Hubei, China.
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yi Zhang
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Yue Jian Mo
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhan Zhang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Rui Chen
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xi Bin Lu
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wei Huang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Krupp KT, Yaeger JDW, Ledesma LJ, Withanage MHH, Gale JJ, Howe CB, Allen TJ, Sathyanesan M, Newton SS, Summers CH. Single administration of a psychedelic [(R)-DOI] influences coping strategies to an escapable social stress. Neuropharmacology 2024; 252:109949. [PMID: 38636726 PMCID: PMC11073902 DOI: 10.1016/j.neuropharm.2024.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Psychedelic compounds have potentially rapid, long-lasting anxiolytic, antidepressive and anti-inflammatory effects. We investigated whether the psychedelic compound (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI], a selective 5-HT2A receptor partial agonist, decreases stress-related behavior in male mice exposed to repeated social aggression. Additionally, we explored the likelihood that these behavioral changes are related to anti-inflammatory properties of [(R)-DOI]. Animals were subjected to the Stress Alternatives Model (SAM), an escapable social stress paradigm in which animals develop reactive coping strategies - remaining in the SAM arena (Stay) with a social aggressor, or dynamically initiated stress coping strategies that involve utilizing the escape holes (Escape) to avoid aggression. Mice expressing these behavioral phenotypes display behaviors like those in other social aggression models that separate animals into stress-vulnerable (as for Stay) or stress-resilient (as for Escape) groups, which have been shown to have distinct inflammatory responses to social stress. These results show that Stay animals have heightened cytokine gene expression, and both Stay and Escape mice exhibit plasma and neural concentrations of the inflammatory cytokine tumor necrosis factor-α (TNFα) compared to unstressed control mice. Additionally, these results suggest that a single administration of (R)-DOI to Stay animals in low doses, can increase stress coping strategies such as increasing attention to the escape route, promoting escape behavior, and reducing freezing during socially aggressive interaction in the SAM. Lower single doses of (R)-DOI, in addition to shifting behavior to suggest anxiolytic effects, also concomitantly reduce plasma and limbic brain levels of the inflammatory cytokine TNFα.
Collapse
Affiliation(s)
- Kevin T Krupp
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Jazmine D W Yaeger
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Leighton J Ledesma
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | | | - J J Gale
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Chase B Howe
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Trevor J Allen
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Monica Sathyanesan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Samuel S Newton
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
4
|
Hill BD, Zak AJ, Raja S, Bugada LF, Rizvi SM, Roslan SB, Nguyen HN, Chen J, Jiang H, Ono A, Goldstein DR, Wen F. iGATE analysis improves the interpretability of single-cell immune landscape of influenza infection. JCI Insight 2024; 9:e172140. [PMID: 38814732 PMCID: PMC11383363 DOI: 10.1172/jci.insight.172140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Influenza poses a persistent health burden worldwide. To design equitable vaccines effective across all demographics, it is essential to better understand how host factors such as genetic background and aging affect the single-cell immune landscape of influenza infection. Cytometry by time-of-flight (CyTOF) represents a promising technique in this pursuit, but interpreting its large, high-dimensional data remains difficult. We have developed a new analytical approach, in silico gating annotating training elucidating (iGATE), based on probabilistic support vector machine classification. By rapidly and accurately "gating" tens of millions of cells in silico into user-defined types, iGATE enabled us to track 25 canonical immune cell types in mouse lung over the course of influenza infection. Applying iGATE to study effects of host genetic background, we show that the lower survival of C57BL/6 mice compared with BALB/c was associated with a more rapid accumulation of inflammatory cell types and decreased IL-10 expression. Furthermore, we demonstrate that the most prominent effect of aging is a defective T cell response, reducing survival of aged mice. Finally, iGATE reveals that the 25 canonical immune cell types exhibited differential influenza infection susceptibility and replication permissiveness in vivo, but neither property varied with host genotype or aging. The software is available at https://github.com/UmichWenLab/iGATE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Judy Chen
- Program in Immunology
- Department of Internal Medicine
| | | | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Fei Wen
- Department of Chemical Engineering
| |
Collapse
|
5
|
许 光, 高 安, 丛 斌. [Restraint stress induces blood-brain barrier injury in rat amygdala by activating the Rho/ROCK signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:411-419. [PMID: 38597431 PMCID: PMC11006700 DOI: 10.12122/j.issn.1673-4254.2024.03.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To investigate the role of Rho/ROCK signaling pathway in mediating restraint stress-induced blood-brain barrier (BBB) injury in the amygdala of rats. METHODS Sixty male SD rats were randomized equally into control group (with food and water deprivation for 6 h per day), restraint stress group (with restraint for 6 h per day), stress + fasudil treatment (administered by intraperitoneal injection at 1 mg/100 g 30 min before the 6-h restraint) group, and fasudil treatment alone group. The elevated plus-maze test was used to detect behavioral changes of the rats, serum corticosterone and S100B levels were determined with ELISA, and Evans Blue leakage in the brain tissue was examined to evaluate the changes in BBB permeability. The changes in expression levels of tight junction proteins in the amygdala were detected using immunofluorescence assay and Western blotting, and Rho/ROCK pathway activation was detected by Pull-down test and Western blotting. Ultrastructural changes of the cerebral microvascular endothelial cells were observed using transmission electron microscopy. RESULTS Compared with those in the control group, the rats in restrain stress group and stress+fasudil group showed obvious anxiety-like behavior with significantly increased serum corticosterone level (P<0.001). Compared with those in the control group and stress+fasudil group, the rat models of restrain stress showed more obvious Evans Blue leakage and higher S100B expression (P<0.01) but lower expressions of tight junction proteins in the amygdala. Pull-down test and Western blotting confirmed that the expression levels of RhoA-GTP, ROCK2 and P-MLC 2 were significantly higher in stress group than in the control group and stress + fasudil group (P<0.05). Transmission electron microscopy revealed obvious ultrastructural changes in the cerebral microvascular endothelial cells in the rat models of restrain stress. CONCLUSION Restraint stress induces BBB injury in the amygdala of rats by activating the Rho/ROCK signaling pathway.
Collapse
Affiliation(s)
- 光明 许
- 中央司法警官学院法医学教研室,河北 保定 071000Department of Forensic Medicine, National Police University for Criminal Justice, Baoding 071000, China
| | - 安迪 高
- 中央司法警官学院法医学教研室,河北 保定 071000Department of Forensic Medicine, National Police University for Criminal Justice, Baoding 071000, China
| | - 斌 丛
- 河北医科大学法医学院//河北省法医学重点实验室,河北 石家庄 050017College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China
| |
Collapse
|
6
|
Słyk Ż, Wrzesień R, Barszcz S, Gawrychowski K, Małecki M. Adeno-associated virus vector hydrogel formulations for brain cancer gene therapy applications. Biomed Pharmacother 2024; 170:116061. [PMID: 38154269 DOI: 10.1016/j.biopha.2023.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Gelatin-based formulations are utilized in neurosurgical procedures, with Medisponge® serving as an illustration of a secure and biocompatible hemostatic formulation. Noteworthy are combined hemostatic products that integrate pharmacological agents with gelatin. Gelatin matrices, which host biologically active substances, provide a platform for a variety of molecules. Biopolymers function as carriers for chemicals and genes, a facet particularly pertinent in brain cancer therapy, as gene therapy complement conventional approaches. The registration of Zolgensma underscores the efficacy of rAAV vectors in therapeutic gene delivery to the CNS. rAAVs, renowned for their safety, stability, and neuron-targeting capabilities, predominate in CNS gene therapy studies. The effectiveness of rAAV vector therapy varies based on the serotype and administration route. Local gene therapy employing hydrogel (e.g., post-tumor resection) enables the circumvention of the blood-brain barrier and restricts formulation diffusion. This study formulates gelatin rAAV gene formulations and evaluates vector transduction potential. Transduction efficiency was assessed using ex vivo mouse brains and in vitro cancer cell lines. In vitro, the transduction of rAAV vectors in gelatin matrices was quantified through qPCR, measuring the itr and Gfp expression. rAAVDJ and rAAV2 demonstrated superior transduction in ex vivo and in vitro models. Among the cell lines tested (Hs683, B16-F10, NIH:OVCAR-3), gelatin matrix F1 exhibited selective transduction, particularly with Hs683 human glioma cells, surpassing the performance Medisponge®. This research highlights the exploration of local brain cancer therapy, emphasizing the potential of gelatin as an rAAV vector carrier for gene therapy. The functional transduction activity of gelatin rAAV formulations is demonstrated.
Collapse
Affiliation(s)
- Żaneta Słyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland.
| | - Robert Wrzesień
- Central Laboratory of Experimental Animals, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Barszcz
- Department of Neurosurgery, Children's Clinical Hospital, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Gawrychowski
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Davis AB, Lloyd KR, Bollinger JL, Wohleb ES, Reyes TM. Adolescent high fat diet alters the transcriptional response of microglia in the prefrontal cortex in response to stressors in both male and female mice. Stress 2024; 27:2365864. [PMID: 38912878 PMCID: PMC11228993 DOI: 10.1080/10253890.2024.2365864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Both obesity and high fat diets (HFD) have been associated with an increase in inflammatory gene expression within the brain. Microglia play an important role in early cortical development and may be responsive to HFD, particularly during sensitive windows, such as adolescence. We hypothesized that HFD during adolescence would increase proinflammatory gene expression in microglia at baseline and potentiate the microglial stress response. Two stressors were examined, a physiological stressor [lipopolysaccharide (LPS), IP] and a psychological stressor [15 min restraint (RST)]. From 3 to 7 weeks of age, male and female mice were fed standard control diet (SC, 20% energy from fat) or HFD (60% energy from fat). On P49, 1 h before sacrifice, mice were randomly assigned to either stressor exposure or control conditions. Microglia from the frontal cortex were enriched using a Percoll density gradient and isolated via fluorescence-activated cell sorting (FACS), followed by RNA expression analysis of 30 genes (27 target genes, three housekeeping genes) using Fluidigm, a medium throughput qPCR platform. We found that adolescent HFD induced sex-specific transcriptional response in cortical microglia, both at baseline and in response to a stressor. Contrary to our hypothesis, adolescent HFD did not potentiate the transcriptional response to stressors in males, but rather in some cases, resulted in a blunted or absent response to the stressor. This was most apparent in males treated with LPS. However, in females, potentiation of the LPS response was observed for select proinflammatory genes, including Tnfa and Socs3. Further, HFD increased the expression of Itgam, Ikbkb, and Apoe in cortical microglia of both sexes, while adrenergic receptor expression (Adrb1 and Adra2a) was changed in response to stressor exposure with no effect of diet. These data identify classes of genes that are uniquely affected by adolescent exposure to HFD and different stressor modalities in males and females.
Collapse
Affiliation(s)
- Alyshia B Davis
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kelsey R Lloyd
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Justin L Bollinger
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Teresa M Reyes
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
8
|
Khalifa NE, Noreldin AE, Khafaga AF, El-Beskawy M, Khalifa E, El-Far AH, Fayed AHA, Zakaria A. Chia seeds oil ameliorate chronic immobilization stress-induced neurodisturbance in rat brains via activation of the antioxidant/anti-inflammatory/antiapoptotic signaling pathways. Sci Rep 2023; 13:22409. [PMID: 38104182 PMCID: PMC10725506 DOI: 10.1038/s41598-023-49061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Chronic immobilization stress plays a key role in several neuropsychiatric disorders. This investigation assessed the possible ameliorative effect of chia seed oil (CSO) against the neurodisturbance-induced in rats by chronic immobilization. Rats were randomly allocated into control, CSO (1 ml/kg b.wt./orally), restrained (6 h/day), CSO pre-restraint, and CSO post-restraint for 60 days. Results revealed a significant reduction in serum corticosterone level, gene expression of corticotrophin-releasing factor, pro-inflammatory cytokines, and oxidative biomarkers in restrained rats treated with CSO. The histopathological findings revealed restoring necrosis and neuronal loss in CSO-treated-restraint rats. The immunohistochemical evaluation revealed a significant reduction in the immuno-expression of caspase-3, nuclear factor kappa B, interleukin-6, and cyclooxygenase-2 (COX-2), and an elevation of calbindin-28k and synaptophysin expression compared to non-treated restraint rats. The molecular docking showed the CSO high affinity for several target proteins, including caspase-3, COX-2, corticotropin-releasing hormone binding protein, corticotropin-releasing factor receptors 1 and 2, interleukin-1 receptor types 1 and 2, interleukin-6 receptor subunits alpha and beta. In conclusion, CSO emerges as a promising candidate against stress-induced brain disruptions by suppressing inflammatory/oxidative/apoptotic signaling pathways due to its numerous antioxidant and anti-inflammatory components, mainly α-linolenic acid. Future studies are necessary to evaluate the CSO therapeutic impacts in human neurodisturbances.
Collapse
Affiliation(s)
- Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Mohamed El-Beskawy
- Department of Animal Medicine, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Abdel-Hasseb A Fayed
- Department of Physiology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Abdeldayem Zakaria
- Department of Physiology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| |
Collapse
|
9
|
Flynn LT, Gao WJ. DNA methylation and the opposing NMDAR dysfunction in schizophrenia and major depression disorders: a converging model for the therapeutic effects of psychedelic compounds in the treatment of psychiatric illness. Mol Psychiatry 2023; 28:4553-4567. [PMID: 37679470 PMCID: PMC11034997 DOI: 10.1038/s41380-023-02235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Psychedelic compounds are being increasingly explored as a potential therapeutic option for treating several psychiatric conditions, despite relatively little being known about their mechanism of action. One such possible mechanism, DNA methylation, is a process of epigenetic regulation that changes gene expression via chemical modification of nitrogenous bases. DNA methylation has been implicated in the pathophysiology of several psychiatric conditions, including schizophrenia (SZ) and major depressive disorder (MDD). In this review, we propose alterations to DNA methylation as a converging model for the therapeutic effects of psychedelic compounds, highlighting the N-methyl D-aspartate receptor (NMDAR), a crucial mediator of synaptic plasticity with known dysfunction in both diseases, as an example and anchoring point. We review the established evidence relating aberrant DNA methylation to NMDAR dysfunction in SZ and MDD and provide a model asserting that psychedelic substances may act through an epigenetic mechanism to provide therapeutic effects in the context of these disorders.
Collapse
Affiliation(s)
- L Taylor Flynn
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
- MD/PhD program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Wen-Jun Gao
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Sex Differences in the Expression of Neuroimmune Molecules in the Spinal Cord of a Mouse Model of Antiretroviral-Induced Neuropathic Pain. Biomedicines 2023; 11:biomedicines11030875. [PMID: 36979854 PMCID: PMC10045154 DOI: 10.3390/biomedicines11030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs), drugs used to treat HIV infection, can cause neuropathic pain (NP) and neuroinflammation. An NRTI, 2′-3′-dideoxycytidine (ddC), was reported to induce mechanical allodynia and increase proinflammatory cytokines in the brains of female mice. In some models of NP, microglia activation is important for NP pathophysiology in male mice, while T cells are important in female mice. Age-matched female and male mice (BALB/c strain) treated intraperitoneally once daily with ddC for 5 days developed mechanical allodynia. Treatment with ddC increased Cd11b, H2-Aa, Cd3e, Mapk1, Il1b, Tnf, and Il10 mRNA levels in the spinal cords of female, but not male, mice, whereas there was no alteration found in Gfap and Mapk14 transcripts in both sexes on day 7 after ddC administration. The protein expression of CD11b and phospho-p38 MAPK was significantly increased in the spinal cords of ddC-treated female, but not male, mice, whereas Iba1 protein was elevated in ddC-treated male mice. There was no change in GFAP, CD3e, and phospho-p44/42 MAPK protein levels in both sexes. Thus, changes in neuroimmune cells and molecules in the spinal cords during ddC-induced neuroinflammation were sex-dependent, with female mice being more prone to neuroimmune changes than male mice.
Collapse
|
11
|
Larosa A, Wong TP. The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110601. [PMID: 35842073 DOI: 10.1016/j.pnpbp.2022.110601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Understanding the individual variability that comes with the likelihood of developing stress-related psychopathologies is of paramount importance when addressing mechanisms of their neurobiology. This article focuses on the hippocampus as a region that is highly influenced by chronic stress exposure and that has strong ties to the development of related disorders, such as depression and post-traumatic stress disorder. We first outline three commonly used animal models that have been used to separate animals into susceptible and resilient cohorts. Next, we review molecular and functional hippocampal markers of susceptibility and resilience. We propose that the hippocampus plays a crucial role in the differences in the processing and storage of stress-related information in animals with different stress susceptibilities. These hippocampal markers not only help us attain a more comprehensive understanding of the various facets of stress-related pathophysiology, but also could be targeted for the development of new treatments.
Collapse
Affiliation(s)
- Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Dept. of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
DiSabato DJ, Yin W, Biltz RG, Gallagher NR, Oliver B, Nemeth DP, Liu X, Sheridan JF, Quan N, Godbout JP. IL-1 Receptor-1 on Vglut2 + neurons in the hippocampus is critical for neuronal and behavioral sensitization after repeated social stress. Brain Behav Immun Health 2022; 26:100547. [PMID: 36388133 PMCID: PMC9646822 DOI: 10.1016/j.bbih.2022.100547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Myriad findings connect stress and inflammation to mood disorders. Social defeat in mice promotes the convergence of neuronal, central inflammatory (microglia), and peripheral immune (monocytes) pathways causing anxiety, social avoidance, and "stress-sensitization." Stress-sensitization results in augmented inflammation and the recurrence of anxiety after re-exposure to social stress. Different cell compartments, including neurons, may be uniquely sensitized by social defeat-induced interleukin-1 (IL-1) signaling. Therefore, the aim of this study was to determine if glutamatergic neuronal IL-1 receptor signaling was essential in promoting stress-sensitization after social defeat. Here, wild-type (IL-1R1+/+) mice and mice with IL-1 receptor-1 deleted selectively in glutamatergic neurons (Vglut2-IL-1R1-/-) were stress-sensitized by social defeat (6-cycles) and then exposed to acute defeat (1-cycle) at day 30. Acute defeat-induced neuronal activation (ΔFosB and phospo-CREB) in the hippocampus of stress-sensitized mice was dependent on neuronal IL-1R1. Moreover, acute defeat-induced social withdrawal and working memory impairment in stress-sensitized mice were also dependent on neuronal IL-1R1. To address region and time dependency, an AAV2-IL-1 receptor antagonist construct was administered into the hippocampus after sensitization, but prior to acute defeat at day 30. Although stress-sensitized mice had increased hippocampal pCREB and decreased working memory after stress re-exposure, these events were not influenced by AAV2-IL-1 receptor antagonist. Hippocampal ΔFosB induction and corresponding social withdrawal in stress-sensitized mice after stress re-exposure were prevented by the AAV2-IL-1 receptor antagonist. Collectively, IL-1 signaling in glutamatergic neurons of the hippocampus was essential in neuronal-sensitization after social defeat and the recall of social withdrawal.
Collapse
Affiliation(s)
- Damon J. DiSabato
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, 43210, USA
| | - Wenyuan Yin
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, USA
| | - Rebecca G. Biltz
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, USA
| | - Natalie R. Gallagher
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, 43210, USA
| | - Braedan Oliver
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, 43210, USA
| | - Daniel P. Nemeth
- Division of Biosciences, College of Dentistry, The Ohio State University, 43210, USA
| | - Xiaoyu Liu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, 33458, USA
| | - John F. Sheridan
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, 43210, USA
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, 43210, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, 33458, USA
| | - Jonathan P. Godbout
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, USA
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, 43210, USA
| |
Collapse
|
13
|
Acute stress induces severe neural inflammation and overactivation of glucocorticoid signaling in interleukin-18-deficient mice. Transl Psychiatry 2022; 12:404. [PMID: 36151082 PMCID: PMC9508168 DOI: 10.1038/s41398-022-02175-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
Interleukin-18 (IL18) is an inflammatory cytokine that is related to psychiatric disorders such as depression and cognitive impairment. We previously found that IL18 deficiency may cause hippocampal impairment, resulting in depression-like behavioral changes. However, the potential role of IL18 in stressful conditions remains uncertain. In the present study, we examined the effect of IL18 on neural inflammation and stress tolerance during acute stress. Littermate Il18+/+ and Il18-/- mice were exposed to a single restraint stress for 6 h, and all assessments were performed 18 h after the mice were released from the restraint. In Il18-/- mice exposed to acute stress, the immobility times in both the forced swim test and tail suspension test were decreased, although no difference was observed in Il18+/+ mice. Il1β, Il6, and Tnfα expression levels in the hippocampus of stressed Il18-/- mice were significantly higher than those in the other groups. Moreover, the numbers of astrocytes and microglia, including those in the active form, were also increased compared with those in other groups. Regarding the molecular mechanism, the HSF5 and TTR genes were specifically expressed in stressed Il18-/- mice. As a potential treatment, intracerebral administration of IL18 to Il18-/- mice resulted in partial recovery of changes in behavioral assessments. Our results revealed that IL18-deficient mice were more sensitive and had a longer response to acute stress than that in normal mice. In addition, neural inflammation and augmentation of glucocorticoid signals caused by stress were more intense and remained longer in Il18-/- mice, resulting in behavioral changes. In conclusion, IL18 might be an indispensable factor that modulates the stress response and maintains balance between neural inflammation and glucocorticoid signaling.
Collapse
|
14
|
Saez E, Erkoreka L, Moreno-Calle T, Berjano B, Gonzalez-Pinto A, Basterreche N, Arrue A. Genetic variables of the glutamatergic system associated with treatment-resistant depression: A review of the literature. World J Psychiatry 2022; 12:884-896. [PMID: 36051601 PMCID: PMC9331449 DOI: 10.5498/wjp.v12.i7.884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/29/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Depression is a common, recurrent mental disorder and one of the leading causes of disability and global burden of disease worldwide. Up to 15%-40% of cases do not respond to diverse pharmacological treatments and, thus, can be defined as treatment-resistant depression (TRD). The development of biomarkers predictive of drug response could guide us towards personalized and earlier treatment. Growing evidence points to the involvement of the glutamatergic system in the pathogenesis of TRD. Specifically, the N-methyl-D-aspartic acid receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), which are targeted by ketamine and esketamine, are proposed as promising pathways. A literature search was performed to identify studies on the genetics of the glutamatergic system in depression, focused on variables related to NMDARs and AMPARs. Our review highlights GRIN2B, which encodes the NR2B subunit of NMDAR, as a candidate gene in the pathogenesis of TRD. In addition, several studies have associated genes encoding AMPAR subunits with symptomatic severity and suicidal ideation. These genes encoding glutamatergic receptors could, therefore, be candidate genes for understanding the etiopathogenesis of TRD, as well as for understanding the pharmacodynamic mechanisms and response to ketamine and esketamine treatment.
Collapse
Affiliation(s)
- Estela Saez
- Department of Psychiatry, Barrualde-Galdakao Integrated Health Organization, Osakidetza-Basque Health Service, Galdakao 48960, Spain
| | - Leire Erkoreka
- Department of Psychiatry, Barrualde-Galdakao Integrated Health Organization, Osakidetza-Basque Health Service, Galdakao 48960, Spain
- Mental Health Network Group, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Teresa Moreno-Calle
- Department of Psychiatry, Barrualde-Galdakao Integrated Health Organization, Osakidetza-Basque Health Service, Galdakao 48960, Spain
- Mental Health Network Group, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Belen Berjano
- Department of Psychiatry, Barrualde-Galdakao Integrated Health Organization, Osakidetza-Basque Health Service, Galdakao 48960, Spain
| | - Ana Gonzalez-Pinto
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain
- Department of Psychiatry, Araba Integrated Health Organization, Osakidetza-Basque Health Service, CIBERSAM, Vitoria-Gasteiz 01004, Spain
- Severe Mental Disorders Group, Bioaraba Health Research Institute, Vitoria-Gasteiz 01009, Spain
| | - Nieves Basterreche
- Zamudio Hospital, Bizkaia Mental Health Network, Osakidetza-Basque Health Service, Zamudio 48170, Spain
- Integrative Research Group in Mental Health, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Aurora Arrue
- Mental Health Network Group, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Neurochemical Research Unit, Bizkaia Mental Health Network, Osakidetza-Basque Health Service, Barakaldo 48903, Spain
| |
Collapse
|
15
|
Cordner ZA, Marshall-Thomas I, Boersma GJ, Lee RS, Potash JB, Tamashiro KL. Fluoxetine and environmental enrichment similarly reverse chronic social stress-related depression- and anxiety-like behavior, but have differential effects on amygdala gene expression. Neurobiol Stress 2021; 15:100392. [PMID: 34568521 PMCID: PMC8449130 DOI: 10.1016/j.ynstr.2021.100392] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 01/26/2023] Open
Abstract
The adverse effects of stress on brain and behavior have long been known and well-studied, with abundant evidence linking stress to, among other things, mood and anxiety disorders. Likewise, many have investigated potential treatments for stress-related mood and anxiety phenotypes and demonstrated good response to standard antidepressant medications like selective serotonin reuptake inhibitors (SSRIs), as well as environmental manipulations like exercise or enrichment. However, the extent to which stress and various treatments act on overlapping pathways in the brain is less well understood. Here, we used a widely studied social defeat stress paradigm to induce a robust depression- and anxiety-like phenotype and chronic corticosterone elevation that persisted for at least 4 weeks in wild type male mice. When mice were treated with either the SSRI fluoxetine or an enriched environment, both led to similar behavioral recovery from social defeat. We then focused on the amygdala and assessed the effects of social defeat, fluoxetine, and enrichment on 168 genes broadly related to synaptic plasticity or oxidative stress. We found 24 differentially expressed genes in response to social defeat stress. Interestingly, fluoxetine led to broad normalization of the stress-induced expression pattern while enrichment led to expression changes in a separate set of genes. Together, this study provides additional insight into the chronic effects of social defeat stress on behavior and gene expression in the amygdala. The findings also suggest that, for a subset of genes assessed, fluoxetine and environmental enrichment have strikingly divergent effects on expression in the amygdala, despite leading to similar behavioral outcomes.
Collapse
Affiliation(s)
- Zachary A. Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Isaiah Marshall-Thomas
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Gretha J. Boersma
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Richard S. Lee
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - James B. Potash
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Kellie L.K. Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
- Corresponding author. Department of Psychiatry & Behavioral Sciences Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Clement A, Pedersen MM, Stensballe A, Wiborg O, Asuni AA. Chronic stress induces NPD-like behavior in APPPS1 and WT mice with subtle differences in gene expression. GENES BRAIN AND BEHAVIOR 2021; 20:e12766. [PMID: 34382343 PMCID: PMC9285501 DOI: 10.1111/gbb.12766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022]
Abstract
Neuropsychiatric disturbances (NPDs) are considered hallmarks of Alzheimer's disease (AD). Nevertheless, treatment of these symptoms has proven difficult and development of safe and effective treatment options is hampered by the limited understanding of the underlying pathophysiology. Thus, robust preclinical models are needed to increase knowledge of NPDs in AD and develop testable hypotheses and novel treatment options. Abnormal activity of the hypothalamic-pituitary-adrenal (HPA) axis is implicated in many psychiatric symptoms and might contribute to both AD and NPDs development and progression. We aimed to establish a mechanistic preclinical model of NPD-like behavior in the APPPS1 mouse model of AD and wildtype (WT) littermates. In APPPS1 and WT mice, we found that chronic stress increased anxiety-like behavior and altered diurnal locomotor activity suggestive of sleep disturbances. Also, chronic stress activated the HPA axis, which, in WT mice, remained heightened for additional 3 weeks. Chronic stress caused irregular expression of circadian regulatory clock genes (BMAL1, PER2, CRY1 and CRY2) in both APPPS1 and WT mice. Interestingly, APPPS1 and WT mice responded differently to chronic stress in terms of expression of serotonergic markers (5-HT1A receptor and MAOA) and inflammatory genes (IL-6, STAT3 and ADMA17). These findings indicate that, although the behavioral response to chronic stress might be similar, the neurobiochemical response was different in APPPS1 mice, which is an important insight in the efforts to develop safe and effective treatments options for NPDs in AD patients. Further work is needed to substantiate these findings.
Collapse
Affiliation(s)
- Amalie Clement
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Department of Pathology and Fluid Biomarkers, H. Lundbeck A/S, Copenhagen, Denmark
| | - Mads M Pedersen
- Department of Biostatistics, H. Lundbeck A/S, Copenhagen, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ayodeji A Asuni
- Department of Pathology and Fluid Biomarkers, H. Lundbeck A/S, Copenhagen, Denmark
| |
Collapse
|
17
|
Taghadosi Z, Zarifkar A, Razban V, Owjfard M, Aligholi H. Effect of chronically electric foot shock stress on spatial memory and hippocampal blood brain barrier permeability. Behav Brain Res 2021; 410:113364. [PMID: 33992668 DOI: 10.1016/j.bbr.2021.113364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Maintaining blood-brain barrier (BBB) contributes critically to preserving normal brain functions. According to the available evidence, intense or chronic exposure to stress would potentially affect different brain structures, such as the hippocampus, negatively. The purpose of this study was to define the relationship between the BBB permeability of the hippocampus and the performance of spatial learning and memory under chronically electric foot shock stress. Sixteen rats were divided into the control and stress groups equally. Animals in the stress group were exposed to foot shock (1 mA, 1 Hz) for 10-s duration every 60 s (1 h/day) for 10 consecutive days. The anxiety-related behavior, spatial learning, and memory were assessed by an Open Field (OF) and the Morris Water Maze (MWM) respectively. The hippocampal BBB permeability was determined by Evans blue penetration assay. Our results demonstrated that the stress model not only increased locomotor activities in the OF test but reduced spatial learning and memory in MWM. Moreover, these effects coincided with a significant increase in hippocampal BBB permeability. In sum, the stress model can be used in future studies focusing on the relationship between stress and BBB permeability of the hippocampus.
Collapse
Affiliation(s)
- Zohreh Taghadosi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Ma J, He JJ, Wang M, Hou JL, Elsheikha HM, Zhu XQ. Toxoplasma gondii induces metabolic disturbances in the hippocampus of BALB/c mice. Parasitol Res 2021; 120:2805-2818. [PMID: 34219189 DOI: 10.1007/s00436-021-07222-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022]
Abstract
Toxoplasma gondii can cross the blood-brain barrier and infect different regions of the brain including the hippocampus. In the present study, we examined the impact of Toxoplasma gondii infection on the metabolism of the hippocampus of female BALB/c mice compared to control mice using ultra-high-performance liquid chromatography-tandem mass spectrometry. Multivariate analysis revealed significant differences between infected and control hippocampi and identified 25, 82, and 105 differential metabolites (DMs) in the infected hippocampi at 7, 14, and 21 days post-infection (dpi), respectively. One DM (sphingosyl-phosphocholine in the sphingolipid metabolism pathway) and 11 dysregulated pathways were detected at all time points post-infection, suggesting their important roles in the neuropathogenesis of T. gondii infection. These pathways were related to neural activity, such as inflammatory mediator regulation of TRP channels, retrograde endocannabinoid signaling, and arachidonic acid metabolism. Weighted correlation network analysis and receiver operating characteristic analysis identified 33 metabolites significantly associated with T. gondii infection in the hippocampus, and 30 of these were deemed as potential biomarkers for T. gondii infection. This study provides, for the first time, a global view of the metabolic perturbations that occur in the mouse hippocampus during T. gondii infection. The potential relevance of the identified metabolites and pathways to the pathogenesis of cognitive impairment and psychiatric disorders are discussed.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China. .,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, People's Republic of China. .,Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, People's Republic of China.
| |
Collapse
|
19
|
A Grape Juice Supplemented with Natural Grape Extracts Is Well Accepted by Consumers and Reduces Brain Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10050677. [PMID: 33926060 PMCID: PMC8146453 DOI: 10.3390/antiox10050677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases pose a major health problem for developed countries. Stress, which induces oxidation in the brain, has been identified as the main risk factor for these disorders. We have developed an antioxidant-enriched drink and have examined its protective properties against acute oxidative stress. We found that addition of red grape polyphenols and MecobalActive® to grape juice did not provoke changes in juice organoleptic characteristics, and that the pasteurization process did not greatly affect the levels of flavonoids and vitamin B12. Out of all combinations, grape juice with red grape polyphenols was selected by expert judges (28.6% selected it as their first choice). In vivo, oral administration of grape juice supplemented with red grape polyphenols exerted an antioxidant effect in the brain of stressed mice reducing two-fold the expression of genes involved in inflammation and oxidation mechanisms and increasing three-fold the expression of genes related to protection against oxidative stress. In addition, we found that this drink augmented antioxidant enzyme activity (17.8 vs. 8.2 nmol/mg), and prevented lipid peroxidation in the brain (49.7 vs. 96.5 nmol/mg). Therefore, we propose supporting the use of this drink by the general population as a new and global strategy for the prevention of neurodegeneration.
Collapse
|
20
|
Tiwari NK, Sathyanesan M, Kumar V, Newton SS. A Comparative Analysis of Erythropoietin and Carbamoylated Erythropoietin Proteome Profiles. Life (Basel) 2021; 11:life11040359. [PMID: 33921564 PMCID: PMC8073529 DOI: 10.3390/life11040359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 01/24/2023] Open
Abstract
In recent years, erythropoietin (EPO) has emerged as a useful neuroprotective and neurotrophic molecule that produces antidepressant and cognitive-enhancing effects in psychiatric disorders. However, EPO robustly induces erythropoiesis and elevates red blood cell counts. Chronic administration is therefore likely to increase blood viscosity and produce adverse effects in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered modification of EPO, is non-erythropoietic but retains the neurotrophic and neurotrophic activity of EPO. Blood profile analysis after EPO and CEPO administration showed that CEPO has no effect on red blood cell or platelet counts. We conducted an unbiased, quantitative, mass spectrometry-based proteomics study to comparatively investigate EPO and CEPO-induced protein profiles in neuronal phenotype PC12 cells. Bioinformatics enrichment analysis of the protein expression profiles revealed the upregulation of protein functions related to memory formation such as synaptic plasticity, long term potentiation (LTP), neurotransmitter transport, synaptic vesicle priming, and dendritic spine development. The regulated proteins, with roles in LTP and synaptic plasticity, include calcium/calmodulin-dependent protein kinase type 1 (Camk1), Synaptosomal-Associated Protein, 25 kDa (SNAP-25), Sectretogranin-1 (Chgb), Cortactin (Cttn), Elongation initiation factor 3a (Eif3a) and 60S acidic ribosomal protein P2 (Rplp2). We examined the expression of a subset of regulated proteins, Cortactin, Grb2 and Pleiotrophin, by immunofluorescence analysis in the rat brain. Grb2 was increased in the dentate gyrus by EPO and CEPO. Cortactin was induced by CEPO in the molecular layer, and pleiotrophin was increased in the vasculature by EPO. The results of our study shed light on potential mechanisms whereby EPO and CEPO produce cognitive-enhancing effects in clinical and preclinical studies.
Collapse
Affiliation(s)
- Neeraj K. Tiwari
- Pediatrics and Rare Disease Group, Sanford Research, Sioux Falls, SD 57104, USA;
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
- Correspondence: ; Tel.: +1-605-658-6313
| |
Collapse
|
21
|
Jurivich DA, Manocha GD, Trivedi R, Lizakowski M, Rakoczy S, Brown-Borg H. Multifactorial Attenuation of the Murine Heat Shock Response With Age. J Gerontol A Biol Sci Med Sci 2021; 75:1846-1852. [PMID: 31612204 DOI: 10.1093/gerona/glz204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 01/08/2023] Open
Abstract
Age-dependent perturbation of the cellular stress response affects proteostasis and other key functions relevant to cellular action and survival. Central to age-related changes in the stress response is loss of heat shock factor 1 (HSF1)-DNA binding and transactivation properties. This report elucidates how age alters different checkpoints of HSF1 activation related to posttranslational modification and protein interactions. When comparing liver extracts from middle aged (12 M) and old (24 M) mice, significant differences are found in HSF1 phosphorylation and acetylation. HSF1 protein levels and messenger RNA decline with age, but its protein levels are stress-inducible and exempt from age-dependent changes. This surprising adaptive change in the stress response has additional implications for aging and chronic physiological stress that might explain an age-dependent dichotomy of HSF1 protein levels that are low in neurodegeneration and elevated in cancer.
Collapse
Affiliation(s)
- Donald A Jurivich
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Gunjan D Manocha
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Rachana Trivedi
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Mary Lizakowski
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Sharlene Rakoczy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Holly Brown-Borg
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| |
Collapse
|
22
|
Sales AJ, Maciel IS, Suavinha ACDR, Joca SRL. Modulation of DNA Methylation and Gene Expression in Rodent Cortical Neuroplasticity Pathways Exerts Rapid Antidepressant-Like Effects. Mol Neurobiol 2021; 58:777-794. [PMID: 33025509 DOI: 10.1007/s12035-020-02145-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Stress increases DNA methylation, primarily a suppressive epigenetic mechanism catalyzed by DNA methyltransferases (DNMT), and decreases the expression of genes involved in neuronal plasticity and mood regulation. Despite chronic antidepressant treatment decreases stress-induced DNA methylation, it is not known whether inhibition of DNMT would convey rapid antidepressant-like effects. AIM This work tested such a hypothesis and evaluated whether a behavioral effect induced by DNMT inhibitors (DNMTi) corresponds with changes in DNA methylation and transcript levels in genes consistently associated with the neurobiology of depression and synaptic plasticity (BDNF, TrkB, 5-HT1A, NMDA, and AMPA). METHODS Male Wistar rats received intraperitoneal (i.p.) injection of two pharmacologically different DNMTi (5-AzaD 0.2 and 0.6 mg/kg or RG108 0.6 mg/kg) or vehicle (1 ml/kg), 1 h or 7 days before the learned helplessness test (LH). DNA methylation in target genes and the correspondent transcript levels were measured in the hippocampus (HPC) and prefrontal cortex (PFC) using meDIP-qPCR. In parallel separate groups, the antidepressant-like effect of 5-AzaD and RG108 was investigated in the forced swimming test (FST). The involvement of cortical BDNF-TrkB-mTOR pathways was assessed by intra-ventral medial PFC (vmPFC) injections of rapamycin (mTOR inhibitor), K252a (TrkB receptor antagonist), or vehicle (0.2 μl/side). RESULTS We found that both 5-AzaD and RG108 acutely and 7 days before the test decreased escape failures in the LH. LH stress increased DNA methylation and decreased transcript levels of BDNF IV and TrkB in the PFC, effects that were not significantly attenuated by RG108 treatment. The systemic administration of 5-AzaD (0.2 mg/kg) and RG108 (0.2 mg/kg) induced an antidepressant-like effect in FST, which was, however, attenuated by TrkB and mTOR inhibition into the vmPFC. CONCLUSION These findings suggest that acute inhibition of stress-induced DNA methylation promotes rapid and sustained antidepressant effects associated with increased BDNF-TrkB-mTOR signaling in the PFC.
Collapse
Affiliation(s)
- Amanda J Sales
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
- FMRP-USP, Av Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Izaque S Maciel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Angélica C D R Suavinha
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sâmia R L Joca
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- FCFRP-USP, Av Café, sn, Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
23
|
Bobadilla M, García-Sanmartín J, Martínez A. Natural Food Supplements Reduce Oxidative Stress in Primary Neurons and in the Mouse Brain, Suggesting Applications in the Prevention of Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10010046. [PMID: 33401699 PMCID: PMC7824423 DOI: 10.3390/antiox10010046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/23/2022] Open
Abstract
Neurodegenerative diseases pose a major health problem for developed countries, and stress has been identified as one of the main risk factors in the development of these disorders. Here, we have examined the protective properties against oxidative stress of several bioactive natural food supplements. We found that MecobalActive®, Olews®, and red and white grape seed polyphenol extracts may have a neuroprotective effect in vitro, both in the SH-SY 5Y cell line and in hippocampal neuron cultures, mainly by reducing reactive oxygen species levels and decreasing caspase-3 activity. In vivo, we demonstrated that oral administration of the supplements reduces the expression of genes involved in inflammation and oxidation mechanisms, whereas it increments the expression of genes related to protection against oxidative stress. Furthermore, we found that preventive treatment with these natural extracts increases the activity of antioxidant enzymes and prevents lipid peroxidation in the brain of stressed mice. Thus, our results indicate that some natural bioactive supplements may have important protective properties against oxidative stress processes occurring in the brain.
Collapse
|
24
|
Candidate Strategies for Development of a Rapid-Acting Antidepressant Class That Does Not Result in Neuropsychiatric Adverse Effects: Prevention of Ketamine-Induced Neuropsychiatric Adverse Reactions. Int J Mol Sci 2020; 21:ijms21217951. [PMID: 33114753 PMCID: PMC7662754 DOI: 10.3390/ijms21217951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023] Open
Abstract
Non-competitive N-methyl-D-aspartate/glutamate receptor (NMDAR) antagonism has been considered to play important roles in the pathophysiology of schizophrenia. In spite of severe neuropsychiatric adverse effects, esketamine (racemic enantiomer of ketamine) has been approved for the treatment of conventional monoaminergic antidepressant-resistant depression. Furthermore, ketamine improves anhedonia, suicidal ideation and bipolar depression, for which conventional monoaminergic antidepressants are not fully effective. Therefore, ketamine has been accepted, with rigorous restrictions, in psychiatry as a new class of antidepressant. Notably, the dosage of ketamine for antidepressive action is comparable to the dose that can generate schizophrenia-like psychotic symptoms. Furthermore, the psychotropic effects of ketamine precede the antidepressant effects. The maintenance of the antidepressive efficacy of ketamine often requires repeated administration; however, repeated ketamine intake leads to abuse and is consistently associated with long-lasting memory-associated deficits. According to the dissociative anaesthetic feature of ketamine, it exerts broad acute influences on cognition/perception. To evaluate the therapeutic validation of ketamine across clinical contexts, including its advantages and disadvantages, psychiatry should systematically assess the safety and efficacy of either short- and long-term ketamine treatments, in terms of both acute and chronic outcomes. Here, we describe the clinical evidence of NMDAR antagonists, and then the temporal mechanisms of schizophrenia-like and antidepressant-like effects of the NMDAR antagonist, ketamine. The underlying pharmacological rodent studies will also be discussed.
Collapse
|
25
|
Du Toit EF, Tai WS, Cox A, O’Connor D, Griffith TA, Helman T, Wendt L, Peart JN, Stapelberg NJC, Headrick JP. Synergistic effects of low-level stress and a Western diet on metabolic homeostasis, mood, and myocardial ischemic tolerance. Am J Physiol Regul Integr Comp Physiol 2020; 319:R347-R357. [DOI: 10.1152/ajpregu.00322.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
How low-level psychological stress and overnutrition interact in influencing cardiometabolic disease is unclear. Mechanistic overlaps suggest potential synergies; however, findings are contradictory. We test whether low-level stress and Western diet (WD) feeding synergistically influence homeostasis, mood, and myocardial ischemic tolerance. Male C57BL6/J mice were fed a control diet or WD (32%/57%/11% calories from fat/carbohydrates/protein) for 12 wk, with subgroups restrained for 30 min/day over the final 3 wk. Metabolism, behavior, tolerance of perfused hearts to ischemia-reperfusion (I/R), and cardiac “death proteins” were assessed. The WD resulted in insignificant trends toward increased body weight (+5%), glucose (+40%), insulin (+40%), triglycerides (+15%), and cholesterol (+20%) and reduced leptin (−20%) while significantly reducing insulin sensitivity [100% rise in homeostasis model assessment of insulin resistance (HOMA-IR), P < 0.05]. Restraint did not independently influence metabolism while increasing HOMA-IR a further 50% (and resulting in significant elevations in insulin and glucose to 60–90% above control) in WD mice ( P < 0.05), despite blunting weight gain in control and WD mice. Anxiogenesis with restraint or WD was nonadditive, whereas anhedonia (reduced sucrose consumption) only arose with their combination. Neuroinflammation markers (hippocampal TNF-α, Il-1b) were unchanged. Myocardial I/R tolerance was unaltered with stress or WD alone, whereas the combination worsened dysfunction and oncosis [lactate dehydrogenase (LDH) efflux]. Apoptosis (nucleosome accumulation) and death protein expression (BAK, BAX, BCL-2, RIP-1, TNF-α, cleaved caspase-3, and PARP) were unchanged. We conclude that mild, anxiogenic yet cardio-metabolically “benign” stress interacts synergistically with a WD to disrupt homeostasis, promote anhedonia (independently of neuroinflammation), and impair myocardial ischemic tolerance (independently of apoptosis and death protein levels).
Collapse
Affiliation(s)
- Eugene F. Du Toit
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Wei Shan Tai
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Amanda Cox
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Dylan O’Connor
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Tia A. Griffith
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Tessa Helman
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Lauren Wendt
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jason N. Peart
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Nicolas J. C. Stapelberg
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
- Mental Health and Specialist Services, Gold Coast Health, Southport, Queensland, Australia
| | - John P. Headrick
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
26
|
Warden AS, DaCosta A, Mason S, Blednov YA, Mayfield RD, Harris RA. Inbred Substrain Differences Influence Neuroimmune Response and Drinking Behavior. Alcohol Clin Exp Res 2020; 44:1760-1768. [PMID: 32640038 DOI: 10.1111/acer.14410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The inbred mouse strain C57BL/6 is widely used in both models of addiction and immunological disease. However, there are pronounced phenotypic differences in ethanol (EtOH) consumption and innate immune response between C57BL/6 substrains. The focus of this study was to examine the effects of substrain on innate immune response and neuroimmune-induced escalation of voluntary EtOH consumption. The main goal was to identify whether substrain differences in immune response can account for differences in EtOH behavior. METHODS We compared acute innate immune response with a viral dsRNA mimic, polyinosinic:polycytidylic acid (poly(I:C)), in brain using qRT-PCR in both C57BL/6N and C57BL/6J mice. Next, we used a neuroimmune model of escalation using poly(I:C) to compare drinking behavior between substrains. Finally, we compared brain neuroimmune response with both EtOH and repeated poly(I:C) in both substrains as a way to account for differences in EtOH behavior. RESULTS We found that C57BL/6 substrains have differing immune response and drinking behaviors. C57BL/6N mice have a shorter but more robust inflammatory response to acute poly(I:C). In contrast, C57BL/6J mice have a smaller but longer-lasting acute immune response to poly(I:C). In our neuroimmune-induced escalation model, C57BL/6J mice but not C57BL/6N mice escalate EtOH intake after poly(I:C). Finally, only C57BL/6J mice show enhanced proinflammatory transcript abundance after poly(I:C) and EtOH, suggesting that longer-lasting immune responses are critical to neuroimmune drinking phenotypes. CONCLUSIONS Altogether, this work has elucidated additional influences that substrain has on both innate immune response and drinking phenotypes. Our observations highlight the importance of considering and reporting the source and background used for production of transgenic and knockout mice. These data provide further evidence that genetic background must be carefully considered when investigating the role of neuroimmune signaling in EtOH abuse.
Collapse
Affiliation(s)
- Anna S Warden
- From the Waggoner Center for Alcoholism and Addiction Research, The University of Texas at Austin, Austin, Texas, USA.,Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA.,Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Adriana DaCosta
- From the Waggoner Center for Alcoholism and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| | - Sonia Mason
- From the Waggoner Center for Alcoholism and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| | - Yuri A Blednov
- From the Waggoner Center for Alcoholism and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| | - Roy Dayne Mayfield
- From the Waggoner Center for Alcoholism and Addiction Research, The University of Texas at Austin, Austin, Texas, USA.,Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Robert Adron Harris
- From the Waggoner Center for Alcoholism and Addiction Research, The University of Texas at Austin, Austin, Texas, USA.,Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
27
|
Zhu D, Sun M, Liu Q, Yue Y, Lu J, Lin X, Shi J. Angiotensin (1-7) through modulation of the NMDAR-nNOS-NO pathway and serotonergic metabolism exerts an anxiolytic-like effect in rats. Behav Brain Res 2020; 390:112671. [PMID: 32437889 DOI: 10.1016/j.bbr.2020.112671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 01/02/2023]
Abstract
Although recent studies have shown that angiotensin (1-7) (Ang [1-7]) exerts anti-stress and anxiolytic-like effects, the underlying mechanisms remain elusive. The ventral hippocampus (VH) is proposed to be a critical brain region for mood and stress management through the N-methyl-d-aspartate receptor (NMDAR) signaling pathway. However, the role of VH NMDAR signaling in the effects of Ang (1-7) remains unclear. In the present study, Ang (1-7) was injected into the bilateral VH of stressed rats, or in combination with a Fyn kinase inhibitor, NMDAR antagonist, neuronal nitric oxide synthase (nNOS) inhibitor, or nitric oxide (NO) scavenger. Anxiety-like behaviors were assessed using the open field test and elevated plus maze test, while alterations in NMDAR-nNOS-NO signaling and serotonergic metabolism were examined in the VH. After 21 days of chronic restraint stress, anxiety-like behaviors were evident. Levels of phosphorylated NR2B (a key NMDAR subunit), its upstream kinase Fyn, as well as activity of nNOS and monoamine oxidase (MAO) were markedly reduced. In contrast, levels of serotonin were increased. Bilateral VH infusion of Ang (1-7) recovered NMDAR-nNOS-NO signaling and MAO-mediated serotonin metabolism, as well as reducing anxiety-like behaviors in stressed rats. These effects were diminished by blockade of MasR (Ang [1-7]-specific receptor), Fyn kinase, NMDAR, nNOS, or NO production. Altogether, these findings indicate that Ang (1-7) exerts anxiolytic effects through modulation of the NMDAR-nNOS-NO pathway and serotonergic metabolism. Future translational research should focus on the relationship between Ang (1-7), glutamatergic neurotransmission, and serotonergic neurotransmission in the VH.
Collapse
Affiliation(s)
- Donglin Zhu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Ming Sun
- Emergency Department, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Qinqin Liu
- Department of Neurology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Yu Yue
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jie Lu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
28
|
Adell A. Brain NMDA Receptors in Schizophrenia and Depression. Biomolecules 2020; 10:biom10060947. [PMID: 32585886 PMCID: PMC7355879 DOI: 10.3390/biom10060947] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP), dizocilpine (MK-801) and ketamine have long been considered a model of schizophrenia, both in animals and humans. However, ketamine has been recently approved for treatment-resistant depression, although with severe restrictions. Interestingly, the dosage in both conditions is similar, and positive symptoms of schizophrenia appear before antidepressant effects emerge. Here, we describe the temporal mechanisms implicated in schizophrenia-like and antidepressant-like effects of NMDA blockade in rats, and postulate that such effects may indicate that NMDA receptor antagonists induce similar mechanistic effects, and only the basal pre-drug state of the organism delimitates the overall outcome. Hence, blockade of NMDA receptors in depressive-like status can lead to amelioration or remission of symptoms, whereas healthy individuals develop psychotic symptoms and schizophrenia patients show an exacerbation of these symptoms after the administration of NMDA receptor antagonists.
Collapse
Affiliation(s)
- Albert Adell
- Institute of Biomedicine and Biotechnology of Cantabria, IBBTEC (CSIC-University of Cantabria), Calle Albert Einstein 22 (PCTCAN), 39011 Santander, Spain; or
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 39011 Santander, Spain
| |
Collapse
|
29
|
Pezeshki-Nia S, Asle-Rousta M, Mahmazi S. Spinacia oleracea L. extract attenuates hippocampal expression of TNF-α and IL-1β in rats exposed to chronic restraint stress. Med J Islam Repub Iran 2020; 34:10. [PMID: 32284934 PMCID: PMC7139264 DOI: 10.34171/mjiri.34.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 11/06/2022] Open
Abstract
Background: Restraint stress causes inflammation in nervous system that leads to emersion of neurodegenerative diseases. Spinach (Spinacia oleracea L.) contains different agents with antioxidant, antiapoptosis, and hepatoprotective properties. This study examined the effect of spinach hydroalcoholic extract (SHE) on TNF-α and IL-1β expression in hippocampus of male Wistar rats exposed to chronic restraint stress.
Methods: Rats were divided into 6 groups of 5: (1) control (intact); (2) nS-S200; (3) nS-S400; (4) stress; (5) stress-S200; (6) stressS400. Groups 2 and 3 and groups 5 and 6 received S. oleracea leaf hydroalcoholic extract in 200 and 400 mg/kg doses for 21 consecutive days by gavage. Groups 4, 5 and 6 were put in a restrainer 6 hours per day for 21 consecutive days. Then, the expression of IL-1β and TNF-α mRNAs and neuronal death in the hippocampus of rats were assessed by real time PCR and Nissl staining, respectively. Oneway analysis of variance was used for data analysis, and p<0.05 was considered statistically significant.
Results: The results showed that the expression of IL-1β and TNF-α was increased in hippocampus of rats exposed to stress compared to control groups (p<0.001). Furthermore, the expression of these proinflammatory cytokines was decreased in the stress-S200 and stress-S400 groups when compared to stress group (p<0.001). Immobility also caused neuronal death in CA1 region of hippocampus, and SHE reduced damage in CA1 pyramidal neurons layer in stressed rats.
Conclusion: Spinach decreases neuroinflammation in hippocampus of stressed rats, which may be due to its abundant antiinflammatory and antioxidant phytochemicals. The results of this study suggest that spinach may be effective in the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sogand Pezeshki-Nia
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Sanaz Mahmazi
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
30
|
Magaña-Guerrero FS, Quiroz-Mercado J, Garfias-Zenteno N, Garfias Y. Comparative analysis of inflammatory response in the BALB/c and C57BL/6 mouse strains in an endotoxin-induced uveitis model. J Immunol Methods 2019; 476:112677. [PMID: 31626758 DOI: 10.1016/j.jim.2019.112677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/13/2019] [Accepted: 10/02/2019] [Indexed: 01/14/2023]
Abstract
Uveitis is an inflammatory disease associated with diverse systemic and autoimmune diseases, defined as the inflammation of any given segment of the uveal tract, uveitis contributes with 5-20% cases of blindness in the USA/Europe and >25% of cases in third-world countries. To understand its pathogenic mechanisms, BALB/c and C57BL/6 mice were induced to develop the condition by a single intraperitoneal injection of E. coli lipopolysaccharide, the aim of the present work is to determine leukocyte infiltration in an endotoxin-induced uveitis (EIU) in two non-related mouse strains. Histopathological findings and clinical analysis were conducted 24 and 48 h postinjection. Both strains presented conventional clinical signs of uveitis 24 h post LPS injection and the highest inflammatory leukocyte infiltration in the uveal tract was found in the BALB/c mouse strain. This article will give an insight on the difference of the inflammatory response in the EIU model in two different mouse strains and the relationship between the pathologic response.
Collapse
Affiliation(s)
- Fátima Sofía Magaña-Guerrero
- Research Unit, Institute of Ophthalmology, Conde de Valenciana Foundation, Chimalpopoca 14, 06800 Mexico City, Mexico.
| | - Joaquín Quiroz-Mercado
- Department of Medicine, Surgery and Zootechnics for Small Animals, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico
| | - Nicolás Garfias-Zenteno
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis S/N, 11340 Mexico City, Mexico
| | - Yonathan Garfias
- Research Unit, Institute of Ophthalmology, Conde de Valenciana Foundation, Chimalpopoca 14, 06800 Mexico City, Mexico; Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico.
| |
Collapse
|
31
|
Frinchi M, Nuzzo D, Scaduto P, Di Carlo M, Massenti MF, Belluardo N, Mudò G. Anti-inflammatory and antioxidant effects of muscarinic acetylcholine receptor (mAChR) activation in the rat hippocampus. Sci Rep 2019; 9:14233. [PMID: 31578381 PMCID: PMC6775129 DOI: 10.1038/s41598-019-50708-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Recently we found that acute treatment with Oxotremorine (Oxo), a non-selective mAChRs agonist, up-regulates heat shock proteins and activates their transcription factor heat shock factor 1 in the rat hippocampus. Here we aimed to investigate: a) if acute treatment with Oxo may regulate pro-inflammatory or anti-inflammatory cytokines and oxidative stress in the rat hippocampus; b) if chronic restraint stress (CRS) induces inflammatory or oxidative alterations in the hippocampus and whether such alterations may be affected by chronic treatment with Oxo. In the acute experiment, rats were injected with single dose of Oxo (0.4 mg/kg) and sacrificed at 24 h, 48 h and 72 h. In the CRS experiment, the rats were exposed for 21 days to the CRS and then were treated with Oxo (0.2 mg/kg) for further 10 days. The acute Oxo treatment showed an ability to significantly reduce reactive oxygen species (ROS), singlet oxygen (1O2), pro-inflammatory cytokines levels (IL-1β and IL-6) and phosphorylated NF-κB-p65. Acute Oxo treatment also increased superoxide dismutase (SOD)-2 protein levels and stimulated SOD activity. No differences were detected in the anti-inflammatory cytokine levels, including IL-10 and TGF-β1. In the group of rats exposed to the CRS were found increased hippocampal IL-1β and IL-6 levels, together with a reduction of SOD activity level. These changes produced by CRS were counteracted by chronic Oxo treatment. In contrast, the upregulation of ROS and 1O2 levels in the CRS group was not counteracted by chronic Oxo treatment. The results revealed a hippocampal anti-inflammatory and antioxidant effect of Oxo treatment in both basal conditions and anti-inflammatory in the CRS rat model.
Collapse
Affiliation(s)
- Monica Frinchi
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, div. of Human Physiology, University of Palermo, 90134, Palermo, Italy
| | - Domenico Nuzzo
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), 90146, Palermo, Italy
| | - Pietro Scaduto
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, div. of Human Physiology, University of Palermo, 90134, Palermo, Italy
| | - Marta Di Carlo
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), 90146, Palermo, Italy
| | - Maria F Massenti
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, 90134, Palermo, Italy
| | - Natale Belluardo
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, div. of Human Physiology, University of Palermo, 90134, Palermo, Italy
| | - Giuseppa Mudò
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, div. of Human Physiology, University of Palermo, 90134, Palermo, Italy.
| |
Collapse
|
32
|
Towers AE, Oelschlager ML, Lorenz M, Gainey SJ, McCusker RH, Krauklis SA, Freund GG. Handling stress impairs learning through a mechanism involving caspase-1 activation and adenosine signaling. Brain Behav Immun 2019; 80:763-776. [PMID: 31108171 PMCID: PMC6664453 DOI: 10.1016/j.bbi.2019.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Acute stressors can induce fear and physiologic responses that prepare the body to protect from danger. A key component of this response is immune system readiness. In particular, inflammasome activation appears critical to linking stress to the immune system. Here, we show that a novel combination of handling procedures used regularly in mouse research impairs novel object recognition (NOR) and activates caspase-1 in the amygdala. In male mice, this handling-stress paradigm combined weighing, scruffing and sham abdominal injection once per hr. While one round of weigh/scruff/needle-stick had no impact on NOR, two rounds compromised NOR without impacting location memory or anxiety-like behaviors. Caspase-1 knockout (KO), IL-1 receptor 1 (IL-1R1) KO and IL-1 receptor antagonist (IL-RA)-administered mice were resistant to handling stress-induced loss of NOR. In addition, examination of the brain showed that handling stress increased caspase-1 activity 85% in the amygdala without impacting hippocampal caspase-1 activity. To delineate danger signals relevant to handling stress, caffeine-administered and adenosine 2A receptor (A2AR) KO mice were tested and found resistant to impaired learning and caspase-1 activation. Finally, mice treated with the β-adrenergic receptor antagonist, propranolol, were resistant to handling stress-induced loss of NOR and caspase-1 activation. Taken together, these results indicate that handling stress-induced impairment of object learning is reliant on a pathway requiring A2AR-dependent activation of caspase-1 in the amygdala that appears contingent on β-adrenergic receptor functionality.
Collapse
Affiliation(s)
- Albert E Towers
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | | | - Madelyn Lorenz
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Stephen J Gainey
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Robert H McCusker
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Steven A Krauklis
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Gregory G Freund
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Department of Animal Sciences, University of Illinois, Urbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
33
|
Guo Y, Xie JP, Deng K, Li X, Yuan Y, Xuan Q, Xie J, He XM, Wang Q, Li JJ, Luo HR. Prophylactic Effects of Bifidobacterium adolescentis on Anxiety and Depression-Like Phenotypes After Chronic Stress: A Role of the Gut Microbiota-Inflammation Axis. Front Behav Neurosci 2019; 13:126. [PMID: 31275120 PMCID: PMC6591489 DOI: 10.3389/fnbeh.2019.00126] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
Stress disturbs the balance of the gut microbiota and stimulates inflammation-to-brain mechanisms. Moreover, stress leads to anxiety and depressive disorders. Bifidobacterium adolescentis displays distinct anti-inflammatory effects. However, no report has focused on the anxiolytic and antidepressant effects of B. adolescentis related to the gut microbiome and the inflammation on chronic restraint stress (CRS) in mice. We found that pretreatment with B. adolescentis increased the time spent in the center of the open field apparatus, increased the percentage of entries into the open arms of the elevated plus-maze (EPM) and the percentage of time spent in the open arms of the EPM, and decreased the immobility duration in the tail suspension test as well as the forced swimming test (FST). Moreover, B. adolescentis increased the sequence proportion of Lactobacillus and reduced the sequence proportion of Bacteroides in feces. Furthermore, B. adolescentis markedly reduced the protein expression of interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), p-nuclear factor-kappa B (NF-κB) p65 and Iba1 and elevated brain derived neurotrophic factor (BDNF) expression in the hippocampus. We conclude that the anxiolytic and antidepressant effects of B. adolescentis are related to reducing inflammatory cytokines and rebalancing the gut microbiota.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,School of Basic Medical Sciences, Kunming Medical University, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Ke Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xia Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yun Yuan
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Qun Xuan
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Jing Xie
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Ming He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qian Wang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Juan-Juan Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
McWhirt J, Sathyanesan M, Sampath D, Newton SS. Effects of restraint stress on the regulation of hippocampal glutamate receptor and inflammation genes in female C57BL/6 and BALB/c mice. Neurobiol Stress 2019; 10:100169. [PMID: 31193545 PMCID: PMC6535649 DOI: 10.1016/j.ynstr.2019.100169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
The two strains of inbred mice, BALB/c and C57BL/6, are widely used in pre-clinical psychiatry research due to their differences in stress susceptibility. Gene profiling studies in these strains have implicated the inflammation pathway as the main contributor to these differences. We focused our attention on female mice and tested their response to 5- or 10-day exposure to restraint stress. We examined the stress induced changes in the regulation of 11 inflammatory cytokine genes and 12 glutamate receptor genes in the hippocampus of female BALB/c and C57BL/6 mice using quantitative PCR. Elevated proinflammatory cytokine genes include Tumor Necrosis Factor alpha (TNFa), nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB), Interleukin 1 alpha (IL1a), Interleukin 1 receptor (IL1R), Interleukin 10 receptor alpha subunit (IL10Ra), Interleukin 10 receptor beta subunit (IL10Rb), and tumor necrosis factor (TNF) super family members. Our results show that BALB/c and C57BL/6 mice differ in the genes induced in response to stress exposure and the level of gene regulation change. Our results show that the gene regulation in female BALB/c and C57BL/6 mice differs between strains in the genes regulated and the magnitude of the changes.
Collapse
Affiliation(s)
- Joshua McWhirt
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, 57069, USA
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, Sioux Falls VA Healthcare System, Sioux Falls, SD, 57105, USA
| | - Dayalan Sampath
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, Sioux Falls VA Healthcare System, Sioux Falls, SD, 57105, USA
| |
Collapse
|
35
|
Tapp ZM, Godbout JP, Kokiko-Cochran ON. A Tilted Axis: Maladaptive Inflammation and HPA Axis Dysfunction Contribute to Consequences of TBI. Front Neurol 2019; 10:345. [PMID: 31068886 PMCID: PMC6491704 DOI: 10.3389/fneur.2019.00345] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Each year approximately 1.7 million people sustain a traumatic brain injury (TBI) in the US alone. Associated with these head injuries is a high prevalence of neuropsychiatric symptoms including irritability, depression, and anxiety. Neuroinflammation, due in part to microglia, can worsen or even cause neuropsychiatric disorders after TBI. For example, mounting evidence demonstrates that microglia become “primed” or hyper-reactive with an exaggerated pro-inflammatory phenotype following multiple immune challenges. Microglial priming occurs after experimental TBI and correlates with the emergence of depressive-like behavior as well as cognitive dysfunction. Critically, immune challenges are various and include illness, aging, and stress. The collective influence of any combination of these immune challenges shapes the neuroimmune environment and the response to TBI. For example, stress reliably induces inflammation and could therefore be a gateway to altered neuropathology and behavioral decline following TBI. Given the increasing incidence of stress-related psychiatric disorders after TBI, the degree in which stress affects outcome is of particular interest. This review aims to highlight the role of the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of stress-immune pathway communication following TBI. We will first describe maladaptive neuroinflammation after TBI and how stress contributes to inflammation through both anti- and pro-inflammatory mechanisms. Clinical and experimental data describing HPA-axis dysfunction and consequences of altered stress responses after TBI will be discussed. Lastly, we will review common stress models used after TBI that could better elucidate the relationship between HPA axis dysfunction and maladaptive inflammation following TBI. Together, the studies described in this review suggest that HPA axis dysfunction after brain injury is prevalent and contributes to the dynamic nature of the neuroinflammatory response to brain injury. Experimental stressors that directly engage the HPA axis represent important areas for future research to better define the role of stress-immune pathways in mediating outcome following TBI.
Collapse
Affiliation(s)
- Zoe M Tapp
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
36
|
Exposure to a single immobilization or lipopolysaccharide challenge increases expression of genes implicated in the development of Alzheimer's disease in the mice brain cortex. Endocr Regul 2019; 53:100-109. [PMID: 31517627 DOI: 10.2478/enr-2019-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Despite extensive research efforts, mechanisms participating on development of Alzheimer's disease (AD) are covered only partially. Data from the last decades indicate that various stressors, as etiological factors, may play a role of in the AD. Therefore, we investigated the effect of two acute stressors, immobilization (IMO) and lipopolysaccharide (LPS), on the AD-related neuropathology. METHODS Adult C57BL/6J mice males were exposed to a single IMO stress or a single intraperitoneal injection of LPS (250 µg/kg body weight). After terminating the experiments, the brains were removed and their cortices isolated. Gene expression of pro-inflammatory cytokines, as well as expression of genes implicated in the AD neuropathology were determined. In addition, mediators related to the activation of the microglia, monocytes, and perivascular macrophages were determined in brain cortices, as well. RESULTS In comparison with the control animals, we found increased gene expression of proinflammatory mediators in mice brain cortex in both IMO and LPS groups. In stressed animals, we also showed an increased expression of genes related to the AD neuropathology, as well as positive correlations between genes implicated in AD development and associated neuroinflammation. CONCLUSIONS Our data indicate that acute exposure to a strong IMO stressor, composed of the combined physical and psychological challenges, induces similar inflammatory and other ADrelated neuropathological changes as the immune LPS treatment. Our data also indicate that cytokines are most likely released from the peripheral immune cells, as we detected myeloid cells activity, without any microglia response. We hypothesize that stress induces innate immune response in the brain that consequently potentiate the expression of genes implicated in the AD-related neuropathology.
Collapse
|
37
|
Xu G, Li Y, Ma C, Wang C, Sun Z, Shen Y, Liu L, Li S, Zhang X, Cong B. Restraint Stress Induced Hyperpermeability and Damage of the Blood-Brain Barrier in the Amygdala of Adult Rats. Front Mol Neurosci 2019; 12:32. [PMID: 30814927 PMCID: PMC6381322 DOI: 10.3389/fnmol.2019.00032] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/24/2019] [Indexed: 01/05/2023] Open
Abstract
Intense or prolonged exposure to stress can damage various brain structures, including the amygdala and hippocampus, which are associated with emotional-cognitive functions. Furthermore, this deterioration has been linked to a myriad of neurodegenerative and psychiatric disorders, in particular through disruption of the blood-brain barrier (BBB). However, insights remain scarce concerning the effects and mechanisms associated with stress on the BBB in the amygdala. This study explored the effects of restraint stress on the permeability and integrity of the BBB in the amygdala of male adult SD rats. Serum levels of corticosterone (CORT) and S100B were determined through ELISA. The permeability of the BBB was assessed by measuring Evans Blue (EB) leakage in tissue samples from the rats’ amygdala. These samples were immunostained for markers of tight junctions (Claudin-5, Occludin, ZO-1) and adherens junctions (VE-cadherin), as well as GLUT-1 and AQP-4. Staining was evaluated through confocal microscopy, and the level of expression of these proteins was quantified using the Western Blot (WB) technique. The ultrastructure of brain microvascular endothelial cells was assessed with transmission electron microscopy. Moreover, interleukin-1 beta (IL-1β) content in serum and amygdalar tissues were determined by employing ELISA. Exposure to restraint stress was associated with higher serum levels of S100B and EB leakage in amygdala tissues, especially in days 14 and 21 of the experiment, indicating increased permeability of the BBB. After restraint stress, significant decreases in protein expression were detected for tight junctions, adherens junctions and GLUT-1, while a significant increase was observed for AQP-4. The variation trends of fluorescence intensity generally paralleled these results. Following restraint stress, transmission electron microscopy ascertained enlarged gaps in tight junctions and thickened basal membranes in amygdalar capillaries. In addition, increased IL-1β contents in serum and amygdalar tissues were observed in the restraint-stressed groups. These findings suggest that restraint stress mediates time-dependent alterations in the permeability of the BBB, with modifications in the expression of proteins from tight junctions and adherens junctions, as well as ultrastructural changes in brain microvascular endothelial cells. And it was associated with the inflammation. These alterations may be associated with behavioral and cognitive dysfunctions and neurodegenerative disorders.
Collapse
Affiliation(s)
- Guangming Xu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chuan Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhaoling Sun
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Liu
- Forensic Science, Beijing Public Security Bureau, Beijing, China
| | - Shujin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaojing Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
38
|
Tiwari NK, Sathyanesan M, Schweinle W, Newton SS. Carbamoylated erythropoietin induces a neurotrophic gene profile in neuronal cells. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:132-141. [PMID: 30017780 PMCID: PMC6267980 DOI: 10.1016/j.pnpbp.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/21/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
Erythropoietin (EPO), a cytokine molecule, is best-known for its role in erythropoiesis. Preclinical studies have demonstrated that EPO has robust neuroprotective effects that appear to be independent of erythropoiesis. It is also being clinically tested for the treatment of neuropsychiatric illnesses due to its behavioral actions. A major limitation of EPO is that long-term administration results in excessive red blood cell production and increased blood viscosity. A chemical modification of EPO, carbamoylated erythropoietin (CEPO), reproduces the behavioral response of EPO in animal models but does not stimulate erythropoiesis. The molecular mechanisms involved in the behavioral effects of CEPO are not known. To obtain molecular insight we examined CEPO induced gene expression in neuronal cells. PC-12 cells were treated with CEPO followed by genome-wide microarray analysis. We investigated the functional significance of the gene profile by unbiased bioinformatics analysis. The Ingenuity pathway analysis (IPA) software was employed. The results revealed activation of functions such as neuronal number and long-term potentiation. Regulated signaling cascades included categories such as neurotrophin, CREB, NGF and synaptic long-term potentiation signaling. Some of the regulated genes from these pathways are CAMKII, EGR1, FOS, GRIN1, KIF1B, NOTCH1. We also comparatively examined EPO and CEPO-induced gene expression for a subset of genes in the rat dentate gyrus. The CEPO gene profile shows the induction of genes and signaling cascades that have roles in neurogenesis and memory formation, mechanisms that can produce antidepressant and cognitive function enhancing activity.
Collapse
Affiliation(s)
- Neeraj K. Tiwari
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069;
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States.
| | - William Schweinle
- Physician Assistant Program, School of Health Sciences, University of South Dakota, Vermillion, SD 57069, United States.
| | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States.
| |
Collapse
|
39
|
Segiet A, Smykiewicz P, Kwiatkowski P, Żera T. Tumour necrosis factor and interleukin 10 in blood pressure regulation in spontaneously hypertensive and normotensive rats. Cytokine 2019; 113:185-194. [DOI: 10.1016/j.cyto.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/30/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
|
40
|
Liu HY, Yue J, Hu LN, Cheng LF, Wang XS, Wang XJ, Feng B. Chronic minocycline treatment reduces the anxiety-like behaviors induced by repeated restraint stress through modulating neuroinflammation. Brain Res Bull 2018; 143:19-26. [DOI: 10.1016/j.brainresbull.2018.08.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022]
|
41
|
Orexin 2 receptor stimulation enhances resilience, while orexin 2 inhibition promotes susceptibility, to social stress, anxiety and depression. Neuropharmacology 2018; 143:79-94. [PMID: 30240784 DOI: 10.1016/j.neuropharm.2018.09.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023]
Abstract
Knockdown of orexin/hypocretin 2 receptor (Orx2) in the basolateral amygdala (BLA) affects anxious and depressive behavior. We use a new behavioral paradigm, the Stress Alternatives Model (SAM), designed to improve translational impact. The SAM induces social stress in adult male mice by aggression from larger mice, allowing for adaptive decision-making regarding escape. In this model, mice remain (Stay) in the oval SAM arena or escape from social aggression (Escape) via routes only large enough for the smaller mouse. We hypothesized intracerebroventricular (icv) stimulation of Orx2 receptors would be anxiolytic and antidepressive in SAM-related social behavior and the Social Interaction/Preference (SIP) test. Conversely, we predicted that icv antagonism of Orx2 receptors would promote anxious and depressive behavior in these same tests. Anxious behaviors such as freezing (both cued and conflict) and startle are exhibited more often in Stay compared with Escape phenotype mice. Time spent attentive to the escape route is more frequent in Escape mice. In Stay mice, stimulation of Orx2 receptors reduces fear conditioning, conflict freezing and startle, and promotes greater attention to the escape hole. This anxiolysis was accompanied by activation of a cluster of inhibitory neurons in the amygdala. A small percentage of those Stay mice also begin escaping; whereas Escape is reversed by the Orx2 antagonist. Escape mice were also Resilient, and Stay mice Susceptible to stress (SIP), with both conditions reversed by Orx2 antagonism or stimulation respectively. Together, these results suggest that the Orx2 receptor may be a useful potential target for anxiolytic or antidepressive therapeutics.
Collapse
|
42
|
Zhou DX, Zhao Y, Baker JA, Gu Q, Hamre KM, Yue J, Jones BC, Cook MN, Lu L. The effect of alcohol on the differential expression of cluster of differentiation 14 gene, associated pathways, and genetic network. PLoS One 2017; 12:e0178689. [PMID: 28575045 PMCID: PMC5456352 DOI: 10.1371/journal.pone.0178689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/17/2017] [Indexed: 12/13/2022] Open
Abstract
Alcohol consumption affects human health in part by compromising the immune system. In this study, we examined the expression of the Cd14 (cluster of differentiation 14) gene, which is involved in the immune system through a proinflammatory cascade. Expression was evaluated in BXD mice treated with saline or acute 1.8 g/kg i.p. ethanol (12.5% v/v). Hippocampal gene expression data were generated to examine differential expression and to perform systems genetics analyses. The Cd14 gene expression showed significant changes among the BXD strains after ethanol treatment, and eQTL mapping revealed that Cd14 is a cis-regulated gene. We also identified eighteen ethanol-related phenotypes correlated with Cd14 expression related to either ethanol responses or ethanol consumption. Pathway analysis was performed to identify possible biological pathways involved in the response to ethanol and Cd14. We also constructed a genetic network for Cd14 using the top 20 correlated genes and present several genes possibly involved in Cd14 and ethanol responses based on differential gene expression. In conclusion, we found Cd14, along with several other genes and pathways, to be involved in ethanol responses in the hippocampus, such as increased susceptibility to lipopolysaccharides and neuroinflammation.
Collapse
Affiliation(s)
- Diana X. Zhou
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Yinghong Zhao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jessica A. Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Kristin M. Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Byron C. Jones
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Melloni N. Cook
- Department of Psychology, University of Memphis, Memphis, Tennessee, United States of America
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|