1
|
Farid MS, Shafique B, Xu R, Łopusiewicz Ł, Zhao C. Potential interventions and interactions of bioactive polyphenols and functional polysaccharides to alleviate inflammatory bowel disease - A review. Food Chem 2025; 462:140951. [PMID: 39213975 DOI: 10.1016/j.foodchem.2024.140951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory bowel disease is a multifaceted condition that is influenced by nutritional, microbial, environmental, genetic, psychological, and immunological factors. Polyphenols and polysaccharides have gained recognition for their therapeutic potential. This review emphasizes the biological effects of polyphenols and polysaccharides, and explores their antioxidant, anti-inflammatory, and microbiome-modulating properties in the management of inflammatory bowel disease (IBD). However, polyphenols encounter challenges, such as low stability and low bioavailability in the colon during IBD treatment. Hence, polysaccharide-based encapsulation is a promising solution to achieve targeted delivery, improved bioavailability, reduced toxicity, and enhanced stability. This review also discusses the significance of covalent and non-covalent interactions, and simple and complex encapsulation between polyphenols and polysaccharides. The administration of these compounds in appropriate quantities has proven beneficial in preventing the development of Crohn's disease and ulcerative colitis, ultimately leading to the management of IBD. The use of polyphenols and polysaccharides has been found to reduce histological scores and colon injury associated with IBD, increase the abundance of beneficial microbes, inhibit the development of colitis-associated cancer, promote the production of microbial end-products, such as short-chain fatty acids (SCFAs), and improve anti-inflammatory properties. Despite the combined effects of polyphenols and polysaccharides observed in both in vitro and in vivo studies, further human clinical trials are needed to comprehend their effectiveness on inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Bakhtawar Shafique
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Rui Xu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Łukasz Łopusiewicz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, 59 Okopowa Str. Warszawa, 01-043, Poland; Institute of Pharmacy, Department Pharmaceutical Biology, Greifswald University, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, Wu Z, Pan D, Liu L, Farag MA, Wang L, Liu L. Research advances in citrus polyphenols: green extraction technologies, gut homeostasis regulation, and nano-targeted delivery system application. Crit Rev Food Sci Nutr 2024; 64:11493-11509. [PMID: 37552798 DOI: 10.1080/10408398.2023.2239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
Collapse
Affiliation(s)
- Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Laoshan District, Qingdao, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Li M, Li X, Ren H, Shao W, Wang C, Huang Y, Zhang S, Han Y, Zhang Y, Yin M, Zhang F, Cheng Y, Yang Y. Preparation and characterization of agarose-sodium alginate hydrogel beads for the co-encapsulation of lycopene and resveratrol nanoemulsion. Int J Biol Macromol 2024; 277:133753. [PMID: 39084974 DOI: 10.1016/j.ijbiomac.2024.133753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
In the study, lycopene and resveratrol nanoemulsion hydrogel beads were prepared by using agarose‑sodium alginate as a carrier and the semi-interpenetrating polymer network technique, characteristics and morphologies were evaluated by scanning electron microscopy, fluorescence microscopy, rheological measurement. The synergistic antioxidant effect of lycopene and resveratrol was confirmed, the best synergistic antioxidant performance is achieved when the ratio of 1:1. To increase the solubility and improve the stability, the lycopene was prepared as solid dispersion added to the nanoemulsion. The encapsulation rate of lycopene and resveratrol reached 93.60 ± 2.94 % and 89.30 ± 1.75 %, respectively, and the cumulative release showed that the addition of agarose slowed down the release rate of the compound, which improves the applicability of lycopene and resveratrol and development of carriers for the delivery of different bioactive ingredients.
Collapse
Affiliation(s)
- Mingyuan Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinyi Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hongmeng Ren
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wanhui Shao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chaojie Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yu Huang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Siqi Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yanqi Han
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mengsi Yin
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Faxin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Cheng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yanfang Yang
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
4
|
Quesada-Vázquez S, Eseberri I, Les F, Pérez-Matute P, Herranz-López M, Atgié C, Lopez-Yus M, Aranaz P, Oteo JA, Escoté X, Lorente-Cebrian S, Roche E, Courtois A, López V, Portillo MP, Milagro FI, Carpéné C. Polyphenols and metabolism: from present knowledge to future challenges. J Physiol Biochem 2024; 80:603-625. [PMID: 39377969 PMCID: PMC11502541 DOI: 10.1007/s13105-024-01046-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/31/2024] [Indexed: 10/25/2024]
Abstract
A diet rich in polyphenols and other types of phytonutrients can reduce the occurrence of chronic diseases. However, a well-established cause-and-effect association has not been clearly demonstrated and several other issues will need to be fully understood before general recommendations will be carried out In the present review, some of the future challenges that the research on phenolic compounds will have to face in the next years are discussed: toxicological aspects of polyphenols and safety risk assessment; synergistic effects between different polyphenols; metabotype-based nutritional advice based on a differential gut microbial metabolism of polyphenols (precision nutrition); combination of polyphenols with other bioactive compounds; innovative formulations to improve the bioavailability of phenolic compounds; and polyphenols in sports nutrition and recovery.Other aspects related to polyphenol research that will have a boost in the next years are: polyphenol and gut microbiota crosstalk, including prebiotic effects and biotransformation of phenolic compounds into bioactive metabolites by gut microorganisms; molecular docking, molecular dynamics simulation, and quantum and molecular mechanics studies on the protein-polyphenol complexes; and polyphenol-based coating films, nanoparticles, and hydrogels to facilitate the delivery of drugs, nucleic acids and proteins.In summary, this article provides some constructive inspirations for advancing in the research of the applications, risk assessment and metabolic effects of dietary polyphenols in humans.
Collapse
Affiliation(s)
- Sergio Quesada-Vázquez
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, 43204, Spain
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, University of Barcelona, Spain, 08034, Barcelona, Spain
| | - Itziar Eseberri
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, 01006, Spain
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, 50830, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - Patricia Pérez-Matute
- Infectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit. Center for Biomedical Research of La Rioja (CIBIR), Logroño, 26006, Spain
| | - María Herranz-López
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), Elche, 03202, Spain
| | - Claude Atgié
- Equipe ClipIn (Colloïdes pour l'Industrie et la Nutrition), Bordeaux INP, Institut CBMN, UMR 5248, Pessac, 33600, France
| | - Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto Aragonés de Ciencias de La Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS)-Aragón, Zaragoza, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Sciences and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, 31008, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - José A Oteo
- Infectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit. Center for Biomedical Research of La Rioja (CIBIR), Logroño, 26006, Spain
- Hospital Universitario San Pedro, Logroño, 26006, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, 43204, Spain
| | - Silvia Lorente-Cebrian
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), 50009, Zaragoza, Spain
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Miguel Hernández University (UMH), Elche, 03202, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, 03010, Spain
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Arnaud Courtois
- Département des Sciences de l'Environnement, Institut des Sciences de la Vigne et du Vin, UMR OEnologie (UMR 1366, INRAE, Bordeaux INP), AXE Molécules à Intérêt Biologique, Bordeaux, 33882, France
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, 50830, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - María Puy Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, 01006, Spain
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, University of Barcelona, Spain, 08034, Barcelona, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Sciences and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, 31008, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, 31008, Spain.
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain.
| | - Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, Toulouse, 31432, France
- Team Dinamix, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, Toulouse, 31432, France
| |
Collapse
|
5
|
Tie S. Microgel delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:147-171. [PMID: 39218501 DOI: 10.1016/bs.afnr.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microgels delivery system have great potential in functional substances encapsulation, protection, release, precise delivery and nutritional intervention. Microgel is a three-dimensional network structure formed by physical or chemical crosslinking of biopolymers, whose characteristics include dispersion and swelling, stable structure, small volume and high specific surface area, and is a special kind of colloid. In this chapter, the common wall materials for preparing food grade microgels, and the main preparation principles, methods, advantages and disadvantages of microgels loaded with functional substances were firstly reviewed. Then the main characteristics of microgel as delivery system, such as deformability, high encapsulation, stimulus-responsive release and targeted delivery, and its potential benefits in intervening chronic diseases were summarized. Finally, the applications of microgel delivery system for functional substance in the field of precision nutrition were discussed. This chapter will help to design of next-generation advanced targeting microgel delivery system, and realize precision nutrition intervention of food functional substances on body health.
Collapse
Affiliation(s)
- Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P.R. China.
| |
Collapse
|
6
|
Enye LA, Edem EE, Onyeogaziri LI, Yusuf A, Ikpade BO, Ikuelogbon DA, Kunlere OE, Adedokun MA. Tiger nut/coconut dietary intervention as antidotal nutritional remediation strategy against neurobehavioural deficits following organophosphate-induced gut-brain axis dysregulation in mice. Toxicol Rep 2024; 12:23-40. [PMID: 38193024 PMCID: PMC10772296 DOI: 10.1016/j.toxrep.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Organophosphate poisoning remains a global health crisis without efficacious treatments to prevent neurotoxicity. We examined whether antidotal tiger nut and coconut dietary intervention could ameliorate neurobehavioral deficits from organophosphate dichlorvos-induced gut-brain axis dysregulation in a mouse model. Mice were divided into groups given control diet, dichlorvos-contaminated diets, or dichlorvos plus nut-enriched diets. They were exposed to a DDVP-contaminated diet for 4 weeks before exposure to the treatment diets for another 8 weeks. This was followed by behavioural assessments for cognitive, motor, anxiety-, and depressive-like behaviours. Faecal samples (pre- and post-treatment), as well as blood, brain, and gut tissues, were collected for biochemical assessments following euthanasia. Dichlorvos-exposed mice displayed impairments in cognition, motor function, and mood along with disrupted inflammatory and antioxidant responses, neurotrophic factor levels, and acetylcholinesterase activity in brain and intestinal tissues. Weight loss and altered short-chain fatty acid levels additionally indicated gut dysfunction. However, intervention with tiger nut and/or coconut- enriched diet after dichlorvos exposure attenuated these neurobehavioral, and biochemical alterations. Our findings demonstrate organophosphate-induced communication disruptions between the gut and brain pathways that manifest in neuropsychiatric disturbances. Overall, incorporating fibre-rich nuts may represent an antidotal dietary strategy to reduce neurotoxicity and prevent brain disorders associated with organophosphate poisoning.
Collapse
Affiliation(s)
- Linus Anderson Enye
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Edem Ekpenyong Edem
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Lydia Ijeoma Onyeogaziri
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Augustine Yusuf
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Bliss Oluwafunmi Ikpade
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | | | - Oladunni Eunice Kunlere
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Mujeeb Adekunle Adedokun
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
7
|
Li H, Liu M, Ju X, Zhang H, Xia N, Wang J, Wang Z, Rayan AM. Physico-Chemical Characteristics of pH-Driven Active Film Loading with Curcumin Based on the Egg White Protein and Sodium Alginate Matrices. Foods 2024; 13:1340. [PMID: 38731711 PMCID: PMC11083475 DOI: 10.3390/foods13091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The low solubility and stability of fat-soluble curcumin in water limit its application in active packaging. This study explored the use of a pH-driven method to investigate the preparation and enhancement of the performance of films loaded with curcumin in a matrix of sodium alginate (Alg) and egg white protein (EWP). In this study, the EWP, Alg, and curcumin primarily bind through hydrogen bonding, electrostatic interactions, and hydrophobic interactions. Compared to EWP films, the films loaded with curcumin through the pH-driven method exhibited enhanced extensibility and water resistance, with an elongation at break (EB) of 103.56 ± 3.13% and a water vapor permeability (WVP) of 1.67 ± 0.03 × 10-10 g·m/m2·Pa·s. The addition of Alg improved the encapsulation efficiency and thermal stability of curcumin, thereby enhancing the antioxidant activity of the film through the addition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, which resulted in 106.95 ± 2.61 μg TE/g and 144.44 ± 8.89 μg TE/g, respectively. It is noteworthy that the detrimental effect of Alg on the color responsiveness of films containing curcumin has also been observed. This study provides a potential strategy and consideration for the loading of low water-soluble active substances and the preparation of active packaging.
Collapse
Affiliation(s)
- Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Xinyi Ju
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Jing Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Ahmed M. Rayan
- Agricultural College, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
8
|
Tomas M, Wen Y, Liao W, Zhang L, Zhao C, McClements DJ, Nemli E, Bener M, Apak R, Capanoglu E. Recent progress in promoting the bioavailability of polyphenols in plant-based foods. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38590257 DOI: 10.1080/10408398.2024.2336051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Polyphenols are important constituents of plant-based foods, exhibiting a range of beneficial effects. However, many phenolic compounds have low bioavailability because of their low water solubility, chemical instability, food matrix effects, and interactions with other nutrients. This article reviews various methods of improving the bioavailability of polyphenols in plant-based foods, including fermentation, natural deep eutectic solvents, encapsulation technologies, co-crystallization and amorphous solid dispersion systems, and exosome complexes. Several innovative technologies have recently been deployed to improve the bioavailability of phenolic compounds. These technologies may be utilized to increase the healthiness of plant-based foods. Further research is required to better understand the mechanisms of action of these novel approaches and their potential to be used in food production.
Collapse
Affiliation(s)
- Merve Tomas
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Liao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lizhu Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Elifsu Nemli
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - Mustafa Bener
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Resat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye
- Turkish Academy of Sciences (TUBA), Ankara, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| |
Collapse
|
9
|
Jin J, Ye X, Huang Z, Jiang S, Lin D. Curcumin@Fe/Tannic Acid Complex Nanoparticles for Inflammatory Bowel Disease Treatment. ACS OMEGA 2024; 9:14316-14322. [PMID: 38559927 PMCID: PMC10976392 DOI: 10.1021/acsomega.3c10214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Inflammatory bowel disease (IBD) is a serious public health issue because of its chronic and incurable nature. Common IBD drugs have limited efficacy and produce adverse effects, leading to an urgent need to develop new drugs and drug delivery systems. Curcumin (Cur) is a natural and nontoxic drug that is increasingly used in the treatment of IBD owing to its anti-inflammatory and antioxidant effects. Metal-polyphenol networks constructed from metal ions and polyphenols exhibit biological functionality while acting as an adhesive nanomaterial to encapsulate nano-Cur, thereby improving its solubility and drug release behavior. In this study, we prepared a Cur@Fe&TA nanodrug delivery system by constructing an Fe3+/tannic acid (TA) metal-polyphenol network with encapsulated Cur. The Cur@Fe&TA nanodrug exhibited good stability, drug release behavior, and biocompatibility. Based on the anti-inflammatory and antioxidant effects of Cur@Fe&TA, the gastrointestinal cytopathology in an IBD mouse model was effectively improved. The proposed Cur@Fe&TA nanomedicine delivery system has promising application and research value for the treatment of IBD by regulating levels of antioxidants and inflammatory cytokines.
Collapse
Affiliation(s)
- Jiman Jin
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| | - Zhenfeng Huang
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| | - Shicui Jiang
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| | - Dini Lin
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| |
Collapse
|
10
|
Liu D, Chen X, Yi Z, Tong Q, Ma L, Tan Y, Cao X, Li X. pH-Responsive Carrier-Free Polyphenol Nanoparticles Assembled by Oxidative Polymerization with Enhanced Stability and Antioxidant Activity for Improved Bioaccessibility. ACS APPLIED BIO MATERIALS 2024; 7:1763-1777. [PMID: 38377541 DOI: 10.1021/acsabm.3c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Encapsulation of plant polyphenols with micro-/nano-carriers for enhanced bioavailability has been well documented, but the preparation of these carriers and subsequent loading of polyphenols is a multiple process, which is generally complicated with potentially unexpected negative effects on the bioactivity of the polyphenols. Here, we reported a convenient method to assemble carrier-free polyphenol nanoparticles (NPs) based on oxidative coupling polymerization. The effectiveness was assessed with five different polyphenols including pyrocatechol (PY), catechin (CA), epigallocatechin gallate (EGCG), tannic acid (TA), and proanthocyanidin (PC). The structural characteristics of these assembled nanoparticles (PY NPs, CA NPs, EG NPs, TA NPs, and PC NPs) were systematically analyzed with dynamic light scattering (DLS), transmission electron microscopy (TEM), UV-visible spectroscopy, and Fourier transform infrared spectroscopy (FTIR). All NPs were colloidally stable with varying NaCl concentrations from 0 to 300 mM, were acid-resistant and alkali-intolerant, and were suitable for oral administration. An array of antioxidant assays further confirmed the superior antioxidant capabilities of NPs over Trolox and polyphenol monomers, indicating that the oxidative polymerization of polyphenols did not compromise the polyphenol activity of NPs. The in vitro simulated digestion studies validated that these responsive NPs were actually gastrointestinal pH-responsive and applicable to the gastrointestinal physiological environment. The bioaccessibility assessments by using a static in vitro digestion model revealed that better results were achieved with NPs than polyphenol monomers, with TA NPs showing about 1.5-fold higher bioaccessibility than other polyphenol nanoparticles. The present study with five polyphenols demonstrated that the oxidative polymerization of polyphenols provides an effective platform to assemble various carrier-free NPs with enhanced antioxidant activity, favorable stability, and improved bioaccessibility, which could be used promisingly as a functional food ingredient in food matrices or as oral drug delivery candidates for helping to manage human health or treating various gastrointestinal disorders in both the pharmaceutical and nutritional fields.
Collapse
Affiliation(s)
- Danni Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Xiaoyu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
11
|
Meng T, Wang Z, Zhang H, Zhao Z, Huang W, Xu L, Liu M, Li J, Yan H. In Silico Investigations on the Synergistic Binding Mechanism of Functional Compounds with Beta-Lactoglobulin. Molecules 2024; 29:956. [PMID: 38474468 DOI: 10.3390/molecules29050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Piceatannol (PIC) and epigallocatechin gallate (EGCG) are polyphenolic compounds with applications in the treatment of various diseases such as cancer, but their stability is poor. β-lactoglobulin (β-LG) is a natural carrier that provides a protective effect to small molecule compounds and thus improves their stability. To elucidate the mechanism of action of EGCG, PIC, and palmitate (PLM) in binding to β-LG individually and jointly, this study applied molecular docking and molecular dynamics simulations combined with in-depth analyses including noncovalent interaction (NCI) and binding free energy to investigate the binding characteristics between β-LG and compounds of PIC, EGCG, and PLM. Simulations on the binary complexes of β-LG + PIC, β-LG + EGCG, and β-LG + PLM and ternary complexes of (β-LG + PLM) + PIC, (β-LG + PLM) + EGCG, β-LG + PIC) + EGCG, and (β-LG + EGCG) + PIC were performed for comparison and characterizing the interactions between binding compounds. The results demonstrated that the co-bound PIC and EGCG showed non-beneficial effects on each other. However, the centrally located PLM was revealed to be able to adjust the binding conformation of PIC, which led to the increase in binding affinity with β-LG, thus showing a synergistic effect on the co-bound PIC. The current study of β-LG co-encapsulated PLM and PIC provides a theoretical basis and research suggestions for improving the stability of polyphenols.
Collapse
Affiliation(s)
- Tong Meng
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Zhang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Zhen Zhao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Wanlin Huang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Liucheng Xu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jun Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Hui Yan
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
12
|
Li Z, Li Z, Ma H, Fu S, Liu G, Hao C, Liu Y. Molecular insight into binding behavior of caffeine with lactoferrin: Spectroscopic, molecular docking, and simulation study. J Dairy Sci 2023; 106:8249-8261. [PMID: 37641325 DOI: 10.3168/jds.2023-23631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/31/2023]
Abstract
The majority of bioactive substances in the human diet come from polyphenols. Here, we use spectroscopy, molecular docking, molecular dynamics simulations, and in vitro digestion to look at the relationship between caffeine (CAF) and bovine lactoferrin (BLF). The correlation analysis of the CAF-BLF fluorescence quenching process revealed that the reaction was spontaneous and that the CAF-BLF fluorescence quenching process may have been static. The predominant intrinsic binding forces were hydrogen bonds and van der Waals forces, which were also supported by molecular docking and molecular dynamics simulations. Through Fourier infrared and circular dichroism spectroscopy experiments, it was found that CAF changed the secondary structure of BLF and might bind to the hydrophobic amino acids of BLF. Compared with BLF, CAF-BLF showed inhibitory effects on digestion in simulated in vitro digestion. It will be helpful to better understand the interaction between CAF and BLF and provide the basis for the development of innovative dairy products.
Collapse
Affiliation(s)
- Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zhixi Li
- College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Haorui Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Shangchen Fu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Guanxu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Changchun Hao
- College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
13
|
Chen S, Guo Q. Preparation, Characterization and Application of the Delivery System for Food Products. Foods 2023; 12:4187. [PMID: 38231571 DOI: 10.3390/foods12234187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024] Open
Abstract
In the dynamic and evolving landscape of food science and technology, the quest to develop innovative and effective delivery systems for bioactive compounds remains a focal point of research and development [...].
Collapse
Affiliation(s)
- Shuai Chen
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Qing Guo
- School of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
14
|
Zhang Y, Tian X, Teng A, Li Y, Jiao Y, Zhao K, Wang Y, Li R, Yang N, Wang W. Polyphenols and polyphenols-based biopolymer materials: Regulating iron absorption and availability from spontaneous to controllable. Crit Rev Food Sci Nutr 2023; 63:12341-12359. [PMID: 35852177 DOI: 10.1080/10408398.2022.2101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Iron is an important trace element in the body, and it will seriously affect the body's normal operation if it is taken too much or too little. A large number of patients around the world are suffering from iron disorders. However, there are many problems using drugs to treat iron overload and causing prolonged and unbearable suffering for patients. Controlling iron absorption and utilization through diet is becoming the acceptable, safe and healthy method. At present, many literatures have reported that polyphenols can interact with iron ions and can be expected to chelate iron ions, depending on their types and structures. Besides, polyphenols often interact with other macromolecules in the diet, which may complicate this phenols-Fe behavior and give rise to the necessity of building phenolic based biopolymer materials. The biopolymer materials, constructed by self-assembly (non-covalent) or chemical modification (covalent), show excellent properties such as good permeability, targeting, biocompatibility, and high chelation ability. It is believed that this review can greatly facilitate the development of polyphenols-based biopolymer materials construction for regulating iron and improving the well-being of patients.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Anguo Teng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuzhen Jiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Kaixuan Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ruonan Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
15
|
Cheng X, Zou Q, Zhang H, Zhu J, Hasan M, Dong F, Liu X, Li J, Wu Y, Lv X, Wang K, Deng X, Liu Z, Jiang X. Effects of a chitosan nanoparticles encapsulation on the properties of litchi polyphenols. Food Sci Biotechnol 2023; 32:1861-1871. [PMID: 37781058 PMCID: PMC10541391 DOI: 10.1007/s10068-023-01303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 10/03/2023] Open
Abstract
Litchi polyphenols have very specific biological activities. Nevertheless, the low and inconsistent oral bioavailability and instability hinder the further application of litchi polyphenols in food systems. This work prepared litchi polyphenols loaded chitosan nanoparticles (LP-CSNPs) by ionic gelation method to enhance the encapsulation on the properties of litchi polyphenols. The optimum conditions of formation via single factors and the Box-Behnken design were chitosan (CS) concentration 1.065 mg/mL, sodium tripolyphosphate (TPP) concentration 0.975 mg/mL, and the mass ratios of polyphenols and CS 1:1 with encapsulation efficiency (EE%) of 45.53%. LP-CSNPs presented the nanosized range of particle size (mean 170 nm), excellent polydispersity index (PDI) (0.156 ± 0.025), and zeta potential values (+ 35.44 ± 0.59). The in vitro release in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8) during 100 h was 58.34% and 81.68%, respectively. LP-CSNPs could effectively improve the storage stability and had great antibacterial activity compared with unencapsulated litchi polyphenols.
Collapse
Affiliation(s)
- Xingan Cheng
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Qiwen Zou
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Hanhui Zhang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Jianwei Zhu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Murtaza Hasan
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Fangyun Dong
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Xin Liu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Junjie Li
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Yuehua Wu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Xiaojing Lv
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Keqiang Wang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Xiangling Deng
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| | - Zhanmei Liu
- Department of Teaching and Research, Guangzhou Nanyang Polytechnic College, Guangzhou, 510900 Guangdong China
| | - Xuhong Jiang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 China
| |
Collapse
|
16
|
Zhang X, Hu S, Huang L, Chen X, Wang X, Fu YN, Sun H, Li G, Wang X. Advance Progress in Assembly Mechanisms of Carrier-Free Nanodrugs for Cancer Treatment. Molecules 2023; 28:7065. [PMID: 37894544 PMCID: PMC10608994 DOI: 10.3390/molecules28207065] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nanocarriers have been widely studied and applied in the field of cancer treatment. However, conventional nanocarriers still suffer from complicated preparation processes, low drug loading, and potential toxicity of carriers themselves. To tackle the hindrance, carrier-free nanodrugs with biological activity have received increasing attention in cancer therapy. Extensive efforts have been made to exploit new self-assembly methods and mechanisms to expand the scope of carrier-free nanodrugs with enhanced therapeutic performance. In this review, we summarize the advanced progress and applications of carrier-free nanodrugs based on different types of assembly mechanisms and strategies, which involved noncovalent interactions, a combination of covalent bonds and noncovalent interactions, and metal ions-coordinated self-assembly. These carrier-free nanodrugs are introduced in detail according to their assembly and antitumor applications. Finally, the prospects and existing challenges of carrier-free nanodrugs in future development and clinical application are discussed. We hope that this comprehensive review will provide new insights into the rational design of more effective carrier-free nanodrug systems and advancing clinical cancer and other diseases (e.g., bacterial infections) infection treatment.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuyang Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lifei Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiyue Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ya-nan Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Sun
- Department of Hepatology, Tongliao Infectious Disease Hospital, Tongliao 028000, China
- Department of Interventional Ultrasound, PLA Medical College & Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Keyvani‐Ghamsari S, Rahimi M, Khorsandi K. An update on the potential mechanism of gallic acid as an antibacterial and anticancer agent. Food Sci Nutr 2023; 11:5856-5872. [PMID: 37823155 PMCID: PMC10563697 DOI: 10.1002/fsn3.3615] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 10/13/2023] Open
Abstract
Drug resistance to antibacterial and anticancer drugs is one of the most important global problems in the treatment field that is constantly expanding and hinders the recovery and survival of patients. Therefore, it is necessary to identify compounds that have antibacterial and anticancer properties or increase the effectiveness of existing drugs. One of these approaches is using natural compounds that have few side effects and are effective. Gallic acid (GA) has been identified as one of the most important plant polyphenols that health-promoting effects in various aspects such as bacterial and viral infections, cancer, inflammatory, neuropsychological, gastrointestinal, and metabolic disease. Various studies have shown that GA inhibits bacterial growth by altering membrane structure, and bacterial metabolism, and inhibits biofilm formation. Also, GA inhibits cancer cell growth by targeting different signaling pathways in apoptosis, increasing reactive oxygen species (ROS) production, targeting the cell cycle, and inhibiting oncogenes and matrix metalloproteinases (MMPs) expression. Due to the powerful function of GA against bacteria and cancer cells. In this review, we describe the latest findings in the field of the sources and chemical properties of GA, its pharmacological properties and bioavailability, the antibacterial and anticancer activities of GA, and its derivatives alone, in combination with other drugs and in the form of nanoformulation. This review can be a comprehensive perspective for scientists to use medicinal compounds containing GA in future research and expand its clinical applications.
Collapse
Affiliation(s)
- Saeedeh Keyvani‐Ghamsari
- Clinical Cares and Health Promotion Research Center, Karaj BranchIslamic Azad UniversityKarajIran
| | - Maryam Rahimi
- Clinical Cares and Health Promotion Research Center, Karaj BranchIslamic Azad UniversityKarajIran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research CenterYara Institute, ACECRTehranIran
| |
Collapse
|
18
|
Wu Z, Tang X, Liu S, Li S, Zhao X, Wang Y, Wang X, Li H. Mechanism underlying joint loading and controlled release of β-carotene and curcumin by octenylsuccinated Gastrodia elata starch aggregates. Food Res Int 2023; 172:113136. [PMID: 37689900 DOI: 10.1016/j.foodres.2023.113136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/20/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023]
Abstract
This study aimed to fabricate a novel codelivery system to simultaneously load β-carotene and curcumin in a controlled and synergistic manner. We hypothesized that the aggregates of octenylsuccinated Gastrodia elata starch (OSGES) could efficiently load and control the release of β-carotene and curcumin in combination. Mechanisms underlying the self-assembly of OSGES, coloading, and corelease of β-carotene and curcumin by relevant aggregates were studied. The OSGES could form aggregates with a size of 120.2 nm containing hydrophobic domains surrounded by hydrophilic domains. For coloading, the increased solubilities were attributed to favorable interactions between β-carotene and curcumin as well as interactions with octenyl and starch moieties via hydrophobic and hydrogen-bond interactions, respectively. The β-carotene and curcumin molecules occupied the interior and periphery of hydrophobic domains of OSGES aggregates, respectively, and they did not exist in isolation but interacted with each other. The β-carotene and curcumin combination-loaded OSGES aggregates with a size of 310.5 nm presented a more compact structure than β-carotene-only and curcumin-only loaded OSGES aggregates with sizes of 463.5 and 202.9 nm respectively, suggesting that a transition from a loose cluster to a compact cluster was accompanied by coloading. During in vitro digestion, the joint effect of β-carotene and curcumin prolonged their release and increased their bioaccessibility due to competition between favorable hydrophobic and hydrogen-bond interactions and the unfavorable structure erosion and relaxation of the loaded aggregates. Therefore, OSGES aggregates were designed for the codelivery of β-carotene and curcumin, indicating their potential to be applied in functional foods and dietary supplements.
Collapse
Affiliation(s)
- Zhen Wu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China.
| | - Xin Tang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Simei Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Sheng Li
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Xiaowan Zhao
- College of Light Industry and Materials, Chengdu Textile College, Chengdu 611731, PR China
| | - Yongde Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Xiaogang Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Hong Li
- National Key Laboratory of Market Supervision (Condiment Supervision Technology), Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China.
| |
Collapse
|
19
|
Cheng HL, Chang WT, Lin JL, Tsai CT, Cheng MC, Huang SC, Wong YC, Hsu CL. Mei-Gin Formula Ameliorates Obesity through Lipolysis, Fatty Oxidation, and Thermogenesis in High-Fat Diet-Induced Obese Rats. Foods 2023; 12:3539. [PMID: 37835191 PMCID: PMC10573010 DOI: 10.3390/foods12193539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity is a metabolic dysfunction characterized by excessive body fat deposition as a consequence of an energy imbalance. Novel therapeutic strategies have emerged that are safe and have comparatively low side effects for obesity treatment. Functional foods and nutraceuticals have recently received a great deal of attention because of their components with the properties of antimetabolic syndrome. Based on our previous in vitro and in vivo investigations on anti-adipogenesis activity and improved body fat accumulation in serials, the combination of three ingredients (including bainiku-ekisu, black garlic, and Mesona procumbens Hemsl), comprising the Mei-Gin formula (MGF), was eventually selected as a novel inhibitor that exhibited preventive effects against obesity. Herein, we verify the anti-obesity effects of MGF in obese rats induced by a high-fat diet and discuss the potential molecular mechanisms underlying obesity development. Oral administration of MGF significantly suppressed the final body weight, weight change, energy and water intake, subcutaneous and visceral fat mass, liver weight, hepatic total lipids and triglycerides (TG), and serum levels of TG, triglycerides (TC), low-density lipoprotein cholesterol (LDL-C), alanine transaminase (AST), uric acid, and ketone bodies and augmented fecal total lipids, TG, and cholesterol excretion in the high-dose MGF-supplemented groups. Furthermore, the corresponding lipid metabolic pathways revealed that MGF supplementation effectively increased lipolysis and fatty acid oxidation gene expression and attenuated fatty acid synthesis gene expression in the white adipose tissue (WAT) and liver and it also increased mitochondrial activation and thermogenic gene expression in the brown adipose tissue (BAT) of rats with obesity induced by a high-fat diet (HFD). These results demonstrate that the intake of MGF can be beneficial for the suppression of HFD-induced obesity in rats through the lipolysis, fatty oxidation, and thermogenesis pathway. In conclusion, these results demonstrate the anti-obesity efficacy of MGF in vivo and suggest that MGF may act as a potential therapeutic agent against obesity.
Collapse
Affiliation(s)
- Hsin-Lin Cheng
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (H.-L.C.); (J.-L.L.); (C.-T.T.); (S.-C.H.); (Y.-C.W.)
| | - Wei-Tang Chang
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei 11114, Taiwan;
| | - Jiun-Ling Lin
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (H.-L.C.); (J.-L.L.); (C.-T.T.); (S.-C.H.); (Y.-C.W.)
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chun-Tse Tsai
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (H.-L.C.); (J.-L.L.); (C.-T.T.); (S.-C.H.); (Y.-C.W.)
| | - Ming-Ching Cheng
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 51591, Taiwan;
| | - Shih-Chien Huang
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (H.-L.C.); (J.-L.L.); (C.-T.T.); (S.-C.H.); (Y.-C.W.)
| | - Yue-Ching Wong
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (H.-L.C.); (J.-L.L.); (C.-T.T.); (S.-C.H.); (Y.-C.W.)
| | - Chin-Lin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan; (H.-L.C.); (J.-L.L.); (C.-T.T.); (S.-C.H.); (Y.-C.W.)
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
20
|
Csuti A, Zheng B, Zhou H. Post pH-driven encapsulation of polyphenols in next-generation foods: principles, formation and applications. Crit Rev Food Sci Nutr 2023:1-15. [PMID: 37722872 DOI: 10.1080/10408398.2023.2258214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
To meet the needs of a growing global population (∼10 billion by 2050), there is an urgent demand for sustainable, healthy, delicious, and affordable next-generation foods. Natural polyphenols, which are abundant in edible plants, have emerged as promising food additives due to their potential health benefits. However, incorporating polyphenols into food products presents various challenges, including issues related to crystallization, low water-solubility, limited bioavailability, and chemical instability. pH-driven or pH-shifting approaches have been proposed to incorporate polyphenols into the delivery systems. Nevertheless, it is unclear whether they can be generally used for the encapsulation of polyphenols into next-generation foods. Here, we highlight a post pH-driven (PPD) approach as a viable solution. The PPD approach inherits several advantages, such as simplicity, speed, and environmental friendliness, as it eliminates the need for heat, organic solvents, and complex equipment. Moreover, the PPD approach can be widely applied to different polyphenols and food systems, enhancing its versatility while also potentially contributing to reducing food waste. This review article aims to accelerate the implementation of the PPD approach in the development of polyphenol-fortified next-generation foods by providing a comprehensive understanding of its fundamental principles, encapsulation techniques, and potential applications in plant-based foods.
Collapse
Affiliation(s)
- Aron Csuti
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Bingjing Zheng
- Research and Development, GNT Group, Dallas, North Carolina, USA
| | - Hualu Zhou
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| |
Collapse
|
21
|
Chen Y, Yao M, Peng S, Fang Y, Wan L, Shang W, Xiang D, Zhang W. Development of protein-polyphenol particles to stabilize high internal phase Pickering emulsions by polyphenols' structure. Food Chem 2023; 428:136773. [PMID: 37423104 DOI: 10.1016/j.foodchem.2023.136773] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/07/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Protein-polyphenol colloidal particles are promising stabilizers for high internal phase Pickering emulsions (HIPPEs). However, the relationship between the structure of the polyphenols and its ability to stabilize HIPPEs has not been studied thus far. In this study, bovine serum albumin (BSA)-polyphenols (B-P) complexes were prepared, and their ability to stabilize HIPPEs was investigated. The polyphenols were bound to BSA via non-covalent interactions. Optically isomeric polyphenols formed similar bonds with BSA, whereas a greater number of trihydroxybenzoyl groups or hydroxyl groups in the dihydroxyphenyl moieties of polyphenols increased the B-P interactions. Polyphenols also reduced the interfacial tension and enhanced the wettability at the oil-water interface. The HIPPE stabilized by BSA-tannic acid complex exhibited the highest stability among the B-P complexes and resisted demixing and aggregation during centrifugation. This study promotes the potential applications of polyphenol-protein colloidal particles-stabilized HIPPEs in the food industry.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Mengying Yao
- Public Inspection and Testing Center of Gong'an County, Jingzhou 434300, China
| | - Su Peng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yajing Fang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Liting Wan
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wenting Shang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Dong Xiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China.
| |
Collapse
|
22
|
Avram I, Pelinescu D, Gatea F, Ionescu R, Barcan A, Rosca R, Zanfirescu A, Vamanu E. Boletus edulis Extract-A New Modulator of Dysbiotic Microbiota. Life (Basel) 2023; 13:1481. [PMID: 37511858 PMCID: PMC10381576 DOI: 10.3390/life13071481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The regular administration of antibiotics is a public concern due to the prejudices of large population groups and the high frequency with which antimicrobial products are prescribed. The current study aimed to evaluate the in vitro effect of a new extract from Boletus edulis (BEE) on the human microbiota. One of the disadvantages of this extensive use is the disruption of the human microbiota, leading to potential negative health consequences. The in vitro evaluation of BEE consisted in determining its cytotoxicity, influence on the concentration of four types of cytokines (IL-6, IL-10, IL-1β, TNFα), and capacity to modulate the human microbiota after administering antibiotics. The latter was assessed by microbiome analysis and the evaluation of short-chain fatty acid synthesis (SCFAs). Simultaneously, the content of total polyphenols, the antioxidant capacity, and the compositional analysis of the extract (individual polyphenols composition) were determined. The results showed that BEE modulates the microbial pattern and reduces inflammatory progression. The data demonstrated antioxidant properties correlated with the increase in synthesizing some biomarkers, such as SCFAs, which mitigated antibiotic-induced dysbiosis without using probiotic products.
Collapse
Affiliation(s)
- Ionela Avram
- Department of Genetics, University of Bucharest, 36-46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania
| | - Diana Pelinescu
- Department of Genetics, University of Bucharest, 36-46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania
| | - Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania
| | - Robertina Ionescu
- Department of Genetics, University of Bucharest, 36-46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania
| | - Alexandru Barcan
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Razvan Rosca
- Anoom Laboratories SRL, București, 28 Vintila Mihaileanu Sector 1, 024023 Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| |
Collapse
|
23
|
Santini G, Klimanova Y, Pucciarelli S, Polzonetti V, Cespi M, Romano Perinelli D, Polidori P, Cognigni L, Fioretti L, Renzi S, Vincenzetti S. Effects of different steam injection conditions on cappuccino's nutritional profile. Food Chem 2023; 428:136757. [PMID: 37413839 DOI: 10.1016/j.foodchem.2023.136757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
The quality parameters of cappuccinos prepared with pasteurized milk or ultra-high-temperature milk steam-injected at different temperatures by a professional coffee machine have been assessed. In particular, the protein profile, the content of vitamins and lactose, the lipid peroxidation process, and the involvement of milk proteins in the foam formation were evaluated. The nutritional quality of milk seems not affected by the steam injection treatment carried out at a temperature of 60-65 °C, but at higher temperatures a decrement of lactoperoxidase, vitamin B6 and folic acid was observed. The milk used in cappuccino preparation is very important: pasteurized milk can form a more consistent and lasting foam with respect to ultra-high-temperature milk because of the presence of β-lactoglobulin and lactoferrin, both playing an important role in the foam formation and stability. This work would provide additional information to the coffee industry for the preparation of high nutritional and organoleptic quality cappuccinos.
Collapse
Affiliation(s)
- Giuseppe Santini
- School of Biosciences and Veterinary Medicine via Gentile III da Varano, University of Camerino, 62032 Camerino, MC, Italy; Simonelli Group, Via Emilio Betti, 62020, Belforte del Chienti, MC, Italy
| | - Yulia Klimanova
- School of Biosciences and Veterinary Medicine via Gentile III da Varano, University of Camerino, 62032 Camerino, MC, Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine via Gentile III da Varano, University of Camerino, 62032 Camerino, MC, Italy
| | - Valeria Polzonetti
- School of Biosciences and Veterinary Medicine via Gentile III da Varano, University of Camerino, 62032 Camerino, MC, Italy
| | - Marco Cespi
- School of Pharmacy, Via Madonna delle Carceri, University of Camerino, 62032 Camerino, MC, Italy
| | - Diego Romano Perinelli
- School of Pharmacy, Via Madonna delle Carceri, University of Camerino, 62032 Camerino, MC, Italy
| | - Paolo Polidori
- School of Pharmacy, Via Madonna delle Carceri, University of Camerino, 62032 Camerino, MC, Italy
| | - Luca Cognigni
- Simonelli Group, Via Emilio Betti, 62020, Belforte del Chienti, MC, Italy
| | - Lauro Fioretti
- Simonelli Group, Via Emilio Betti, 62020, Belforte del Chienti, MC, Italy
| | - Sofia Renzi
- School of Biosciences and Veterinary Medicine via Gentile III da Varano, University of Camerino, 62032 Camerino, MC, Italy
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine via Gentile III da Varano, University of Camerino, 62032 Camerino, MC, Italy.
| |
Collapse
|
24
|
Jain S, Lenaghan S, Dia V, Zhong Q. Co-delivery of curcumin and quercetin in shellac nanocapsules for the synergistic antioxidant properties and cytotoxicity against colon cancer cells. Food Chem 2023; 428:136744. [PMID: 37423108 DOI: 10.1016/j.foodchem.2023.136744] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Synergistic bioactivity of dietary polyphenols can enhance functional food development to prevent chronic diseases like cancer. In this study, physicochemical properties and cytotoxicity of curcumin and quercetin co-encapsulated in shellac nanocapsules at different mass ratios were investigated and compared to nanocapsules with one polyphenol and their unencapsulated counterparts. At curcumin and quercetin mass ratio of 4:1, encapsulation efficiency was approximately 80% for both polyphenols, and the nanocapsules showed the highest synergistic antioxidant properties and cytotoxicity for HT-29 and HCT-116 colorectal cancer cells. The nanocapsules had discrete structures smaller than 50 nm and remained stable during 4-week refrigerated storage, and the encapsulated polyphenols were amorphous. After simulated digestions, 48% of the encapsulated curcumin and quercetin were bioaccessible, the digesta retained nanocapsule structures and cytotoxicity, and the cytotoxicity was higher than nanocapsules with only one polyphenol and free polyphenol controls. This study provides insights on utilizing multiple polyphenols as promising anti-cancer agents.
Collapse
Affiliation(s)
- Surangna Jain
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Scott Lenaghan
- Department of Food Science, University of Tennessee, Knoxville, TN, USA; Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Vermont Dia
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
25
|
Zhang M, Jiang H, Ou S, Qian M, Qi H, Chen J, Zeng X, Bai W, Xiao G. Dietary sinensetin and polymethoxyflavonoids: Bioavailability and potential metabolic syndrome-related bioactivity. Crit Rev Food Sci Nutr 2023; 64:9992-10008. [PMID: 37283048 DOI: 10.1080/10408398.2023.2219758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sinensetin is among the most ubiquitous polyphenols in citrus fruit and recently has been extensively studied for its ability to prevent or treat diseases. The current literature on the bioavailability of sinensetin and its derivatives was reviewed and the potential ameliorative effects of metabolic syndrome in humans were evaluated. Sinensetin and its derivatives mainly aggregated in the large intestine and extensively metabolized through gut microbiota (GM) and the liver. So intestinal microorganisms had a significant influence on the absorption and metabolism of sinensetin. Interestingly, not only GM acted on sinensetin to metabolize them, but sinensetin also regulated the composition of GM. Thus, sinensetin was metabolized as methyl, glucuronide and sulfate metabolites in the blood and urine. Furthermore, sinensetin was reported to have the beneficial effect of ameliorating metabolic syndromes, including disorders of lipid metabolism (obesity, NAFLD, atherosclerosis), glucose metabolism disorder (insulin resistant) and inflammation, in terms of improving the composition of intestinal flora and modulating metabolic pathway factors in relevant tissues. The present work strongly elucidated the potential mechanism of sinensetin in improving metabolic disorders and supported the contribution of sinensetin to health benefits, thus offering a better perspective in understanding the role played by sinensetin in human health.
Collapse
Affiliation(s)
- Mutang Zhang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hao Jiang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shaobi Ou
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Min Qian
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Heming Qi
- Science and Technology Research Center of China Customs, Beijing, China
| | | | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
26
|
Cornebise C, Perus M, Hermetet F, Valls-Fonayet J, Richard T, Aires V, Delmas D. Red Wine Extract Prevents Oxidative Stress and Inflammation in ARPE-19 Retinal Cells. Cells 2023; 12:1408. [PMID: 37408242 DOI: 10.3390/cells12101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is one of the most commonly occurring ocular diseases worldwide. This degenerative condition affects the retina and leads to the loss of central vision. The current treatments are focused on the late stage of the disease, but recent studies have highlighted the importance and benefits of preventive treatments and how good dietary habits can reduce the risk of progression to an advanced form of the disease. In this context, we studied whether resveratrol (RSV) or a polyphenolic cocktail, red wine extract (RWE), are able to prevent the initiating events of AMD (i.e., oxidative stress and inflammation) in human ARPE-19 retinal pigment epithelial (RPE) cells and macrophages. This study highlights that RWE and RSV can prevent hydrogen peroxide (H2O2) or 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress and can subsequently prevent DNA damage via the inhibition of the ATM (ataxia telangiectasia-mutated)/Chk2 (checkpoint kinase 2) or Chk1 signaling pathways, respectively. Moreover, ELISA assays show that RWE and RSV can prevent the secretion of proinflammatory cytokines in RPE cells and in human macrophages. Interestingly, RWE exhibits a greater protective impact compared to RSV alone, even though RSV was more concentrated when used alone than in the red wine extract. Our results suggest that RWE and RSV may have potential interest as preventive nutritional supplementations against AMD.
Collapse
Affiliation(s)
- Clarisse Cornebise
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Maude Perus
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - François Hermetet
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Josep Valls-Fonayet
- Université de Bordeaux, Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d'Ornon, France
| | - Tristan Richard
- Université de Bordeaux, Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d'Ornon, France
| | - Virginie Aires
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Dominique Delmas
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
- Centre de Lutte Contre le Cancer Georges François Leclerc Center, 21000 Dijon, France
| |
Collapse
|
27
|
Uyanga VA, Ejeromedoghene O, Lambo MT, Alowakennu M, Alli YA, Ere-Richard AA, Min L, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Chitosan and chitosan‑based composites as beneficial compounds for animal health: Impact on gastrointestinal functions and biocarrier application. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
28
|
Li L, Peng P, Ding N, Jia W, Huang C, Tang Y. Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease? Antioxidants (Basel) 2023; 12:antiox12040967. [PMID: 37107341 PMCID: PMC10135842 DOI: 10.3390/antiox12040967] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term, progressive, and recurrent intestinal inflammatory disorder. The pathogenic mechanisms of IBD are multifaceted and associated with oxidative stress, unbalanced gut microbiota, and aberrant immune response. Indeed, oxidative stress can affect the progression and development of IBD by regulating the homeostasis of the gut microbiota and immune response. Therefore, redox-targeted therapy is a promising treatment option for IBD. Recent evidence has verified that Chinese herbal medicine (CHM)-derived polyphenols, natural antioxidants, are able to maintain redox equilibrium in the intestinal tract to prevent abnormal gut microbiota and radical inflammatory responses. Here, we provide a comprehensive perspective for implementing natural antioxidants as potential IBD candidate medications. In addition, we demonstrate novel technologies and stratagems for promoting the antioxidative properties of CHM-derived polyphenols, including novel delivery systems, chemical modifications, and combination strategies.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peilan Peng
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ning Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenhui Jia
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yong Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
29
|
Mihai E, Negreanu-Pirjol BS, Craciunescu O, Ciucan T, Iosageanu A, Seciu-Grama AM, Prelipcean AM, Utoiu E, Coroiu V, Ghenea AM, Negreanu-Pirjol T. In Vitro Hypoglycemic Potential, Antioxidant and Prebiotic Activity after Simulated Digestion of Combined Blueberry Pomace and Chia Seed Extracts. Processes (Basel) 2023. [DOI: 10.3390/pr11041025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
This study aimed to evaluate the hypoglycemic potential, antioxidant activity and prebiotic activity of a hydroalcoholic extract of blueberry pomace (BP), an aqueous extract of chia seeds (CS) and a novel combination of BP–CS extracts (BCM) for further use as ingredient of functional food. Spectrometric and HPLC analyses were used to characterize the total phenolic and flavonoid content and composition of BP, while CS was analyzed for total carbohydrate content. Data showed that the BCM mixture exerted an inhibition of α-amylase activity, which was 1.36 times higher than that of BP and 1.25 higher than CS extract. The mixture also showed better scavenging activity of free DPPH radicals than individual extracts, and had an IC50 value of 603.12 µg/mL. In vitro testing indicated that both serum- and colon-reaching products of simulated intestinal digestion of BCM presented the capacity to protect Caco-2 intestinal cells against oxidative stress by inhibition of reactive oxygen species production. In addition, the colon-reaching product of BCM digestion had the capacity to significantly (p < 0.05) stimulate the growth of Lactobacillus rhamnosus and Lactobacillus acidophilus, revealing a prebiotic potential. All these results indicated that improved biological activity of the novel combination of BP and CS extracts could be due to the synergistic action of constituents. The combination is recommended for further testing and the development of novel functional food for controlling type 2 diabetes and gastrointestinal conditions.
Collapse
|
30
|
Liu F, McClements DJ, Ma C, Liu X. Novel Colloidal Food Ingredients: Protein Complexes and Conjugates. Annu Rev Food Sci Technol 2023; 14:35-61. [PMID: 36972160 DOI: 10.1146/annurev-food-060721-023522] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Food proteins, polysaccharides, and polyphenols are natural ingredients with different functional attributes. For instance, many proteins are good emulsifiers and gelling agents, many polysaccharides are good thickening and stabilizing agents, and many polyphenols are good antioxidants and antimicrobials. These three kinds of ingredients can be combined into protein, polysaccharide, and/or polyphenol conjugates or complexes using covalent or noncovalent interactions to create novel multifunctional colloidal ingredients with new or improved properties. In this review, the formation, functionality, and potential applications of protein conjugates and complexes are discussed. In particular, the utilization of these colloidal ingredients to stabilize emulsions, control lipid digestion, encapsulate bioactive ingredients, modify textures, and form films is highlighted. Finally, future research needs in this area are briefly proposed. The rational design of protein complexes and conjugates may lead to the development of new functional ingredients that can be used to create more nutritious, sustainable, and healthy foods.
Collapse
Affiliation(s)
- Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China; ,
| |
Collapse
|
31
|
Cheng H, Chen W, Jiang J, Khan MA, Wusigale, Liang L. A comprehensive review of protein-based carriers with simple structures for the co-encapsulation of bioactive agents. Compr Rev Food Sci Food Saf 2023; 22:2017-2042. [PMID: 36938993 DOI: 10.1111/1541-4337.13139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/28/2023] [Accepted: 02/21/2023] [Indexed: 03/21/2023]
Abstract
The rational design and fabrication of edible codelivery carriers are important to develop functional foods fortified with a plurality of bioactive agents, which may produce synergistic effects in increasing bioactivity and functionality to target specific health benefits. Food proteins possess considerable functional attributes that make them suitable for the delivery of a single bioactive agent in a wide range of platforms. Among the different types of protein-based carriers, protein-ligand nanocomplexes, micro/nanoparticles, and oil-in-water (O/W) emulsions have increasingly attracted attention in the codelivery of multiple bioactive agents, due to the simple and convenient preparation procedure, high stability, matrix compatibility, and dosage flexibility. However, the successful codelivery of bioactive agents with diverse physicochemical properties by using these simple-structure carriers is a daunting task. In this review, some effective strategies such as combined functional properties of proteins, self-assembly, composite, layer-by-layer, and interfacial engineering are introduced to redesign the carrier structure and explore the encapsulation of multiple bioactive agents. It then highlights success stories and challenges in the co-encapsulation of multiple bioactive agents within protein-based carriers with a simple structure. The partition, protection, and release of bioactive agents in these protein-based codelivery carriers are considered and discussed. Finally, safety and application as well as challenges of co-encapsulated bioactive agents in the food industry are also discussed. This work provides a state-of-the-art overview of protein-based particles and O/W emulsions in co-encapsulating bioactive agents, which is essential for the design and development of novel functional foods containing multiple bioactive agents.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanwen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiang Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Wusigale
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
32
|
R JA, Narayan S. A Systematic Review of Different Classes of Biopolymers and Their Use as Antimicrobial Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
33
|
Fan J, Yu H, Lu X, Xue R, Guan J, Xu Y, Qi Y, He L, Yu W, Abay S, Li Z, Huo S, Li L, Lv M, Li W, Chen W, Han B. Overlooked Spherical Nanoparticles Exist in Plant Extracts: From Mechanism to Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8854-8871. [PMID: 36757908 DOI: 10.1021/acsami.2c19065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To date, plant medicine research has focused mainly on the chemical compositions of plant extracts and their medicinal effects. However, the therapeutic or toxic effects of nanoparticles in plant extracts remain unclear. In this study, large numbers of spherical nanoparticles were discovered in some plant extracts. Nanoparticles in Turkish galls extracts were used as an example to examine their pH responsiveness, free radical scavenging, and antibacterial capabilities. By utilizing the underlying formation mechanism of these nanoparticles, a general platform to produce spherical nanoparticles via direct self-assembly of Turkish gall extracts and various functional proteins was developed. The results showed that the nanoparticles retained both the antibacterial ability and intracellular carrier ability of the original protein or catechol. This work introduces a new member of the plant-derived edible nanoparticle (PDEN) family, establishes a simple and versatile platform for mass production nanoparticles, and provides new insight into the formation mechanism of nanoparticles during plant extraction.
Collapse
Affiliation(s)
- Jingmin Fan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Hang Yu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Xin Lu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Rui Xue
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Jiawei Guan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Yu Xu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Yunyun Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Linyun He
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Wei Yu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Sirapil Abay
- Xinjiang Institute of Traditional Uygur Medicine, Urumqi 830049, China
| | - Zhijian Li
- Xinjiang Institute of Traditional Uygur Medicine, Urumqi 830049, China
| | - Shixia Huo
- Xinjiang Institute of Traditional Uygur Medicine, Urumqi 830049, China
| | - Le Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Mengying Lv
- Department of Pharmacy/The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Wenxin Li
- Laboratory of Nano-biology and Medicine, Shanghai Institute of Applied Physics, Shanghai 201800, China
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| |
Collapse
|
34
|
Takemoto K, Hao L, Narukawa T, Iji M, Koyama T, Watanabe H. Inhibition of Colorectal Cancer Cell Proliferation by Treatment with Itadori Leaf Extract. J Oleo Sci 2023; 72:199-209. [PMID: 36631102 DOI: 10.5650/jos.ess22245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Treatment with itadori extract inhibited the growth of mouse colon cancer cells (Colon-26) in mice. In addition, it induced DNA fragmentation and caspase 3/7 activation in Colon-26 cells, suggesting potent induction of apoptosis. Itadori extracts are rich in neochlorogenic acid and rutin and also contain quercetin and piceatannol. These polyphenols are thought to be involved in the observed DNA fragmentation and caspase 3/7 activation in colon cancer cells and may thus have anticancer effects. There is hence scope for development of the leaf of itadori, which currently has only a few known uses, as a novel anti-tumor therapeutic.
Collapse
Affiliation(s)
| | - Luo Hao
- University of Kochi, Faculty of Nutrition
| | | | - Masaki Iji
- University of Kochi, Faculty of Nutrition
| | | | | |
Collapse
|
35
|
Co-delivery of curcumin and epigallocatechin gallate in W/O/W emulsions stabilized by protein fibril-cellulose complexes. Colloids Surf B Biointerfaces 2023; 222:113072. [PMID: 36525750 DOI: 10.1016/j.colsurfb.2022.113072] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Hydrophobic curcumin and hydrophilic epigallocatechin gallate (EGCG) are reported to exhibit a variety of biological activities and may exhibit synergistic effects when used in combination. A co-encapsulation system was developed to improve their applicability and bioavailability. This delivery system consisted of a water-in-oil-in-water (W1/O/W2) double emulsion stabilized by whey protein isolate fibrils (WPIFs) and cellulose nanocrystals (CNCs). Double emulsions were fabricated using a two-step emulsification method using either WPIF-CNC complexes or WPIF alone. The physicochemical stability, encapsulation performance, and digestive properties of the delivery systems were then investigated. The double emulsions stabilized by the WPIF-CNC complexes were more resistant to heat and salt stress, exhibited greater encapsulation stability, and had a higher bioaccessibility for curcumin (67.8%) and EGCG (68.9%) than those stabilized by WPIFs. This research shows that the stability and bioaccessibility of curcumin and EGCG can be enhanced by co-encapsulating them in emulsion-based delivery systems using nanostructured protein-polysaccharide complexes.
Collapse
|
36
|
Luo ED, Jiang HM, Chen W, Wang Y, Tang M, Guo WM, Diao HY, Cai NY, Yang X, Bian Y, Xing SS. Advancements in lead therapeutic phytochemicals polycystic ovary syndrome: A review. Front Pharmacol 2023; 13:1065243. [PMID: 36699064 PMCID: PMC9868606 DOI: 10.3389/fphar.2022.1065243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases in women of reproductive age and features complex pathological symptoms and mechanisms. Existing medical treatments have, to some extent, alleviated the deterioration of PCOS. However, these strategies only temporarily control symptoms, with a few side effects and no preventive effect. Phytochemicals extracted from medicinal herbs and plants are vital for discovering novel drugs. In recent years, many kinds of research have proven that phytochemicals isolated from traditional Chinese medicine (TCM) and medicinal plants show significant potential in preventing, alleviating, and treating PCOS. Nevertheless, compared to the abundance of experimental literature and minimal specific-topic reviews related to PCOS, there is a lack of systematic reviews to summarize these advancements in this promising field. Under this background, we systematically document the progress of bioactive phytochemicals from TCM and medicinal plants in treating PCOS, including flavonoids, polyphenols, and alkaloids. According to the literature, these valuable phytochemicals demonstrated therapeutic effects on PCOS supported by in vivo and in vitro experiments, mainly depending on anti-inflammatory, antioxidation, improvement of hormone disorder and insulin resistance (IR), and alleviation of hyperinsulinemia. Based on the current progress, future research directions should emphasize 1) exploring bioactive phytochemicals that potentially mediate bone metabolism for the treatment of PCOS; 2) improving unsatisfactory bioavailability by using advanced drug delivery systems such as nanoparticles and antibody-conjugated drugs, as well as a chemical modification; 3) conducting in-depth research on the pathogenesis of PCOS to potentially impact the gut microbiota and its metabolites in the evolution of PCOS; 4) revealing the pharmacological effects of these bioactive phytochemicals on PCOS at the genetic level; and 5) exploring the hypothetical and unprecedented functions in regulating PCOS by serving as proteolysis-targeting chimeras and molecular glues compared with traditional small molecule drugs. In brief, this review aims to provide detailed mechanisms of these bioactive phytochemicals and hopefully practical and reliable insight into clinical applications concerning PCOS.
Collapse
Affiliation(s)
- Er-Dan Luo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hai-Mei Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Chen
- Traditional Chinese Medicine Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Mi Tang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen-Mei Guo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao-Yang Diao
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ning-Yuan Cai
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Sha-Sha Xing
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
37
|
De Leo V, Maurelli AM, Giotta L, Daniello V, Di Gioia S, Conese M, Ingrosso C, Ciriaco F, Catucci L. Polymer Encapsulated Liposomes for Oral Co-Delivery of Curcumin and Hydroxytyrosol. Int J Mol Sci 2023; 24:ijms24010790. [PMID: 36614233 PMCID: PMC9821336 DOI: 10.3390/ijms24010790] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Curcumin (Cur) is a hydrophobic polyphenol from the rhizome of Curcuma spp., while hydroxytyrosol (HT) is a water-soluble polyphenol from Olea europaea. Both show outstanding antioxidant properties but suffer from scarce bioavailability and low stability in biological fluids. In this work, the co-encapsulation of Cur and HT into liposomes was realized, and the liposomal formulation was improved using polymers to increase their survival in the gastrointestinal tract. Liposomes with different compositions were formulated: Type 1, composed of phospholipids and cholesterol; Type 2, also with a PEG coating; and Type 3 providing an additional shell of Eudragit® S100, a gastro-resistant polymer. Samples were characterized in terms of size, morphology, ζ-potential, encapsulation efficiency, and loading capacity. All samples were subjected to a simulated in vitro digestion and their stability was investigated. The Eudragit®S100 coating demonstrated prevention of early releases of HT in the mouth and gastric phases, while the PEG shell reduced bile salts and pancreatin effects during the intestinal digestion. In vitro antioxidant activity showed a cumulative effect for Cur and HT loaded in vesicles. Finally, liposomes with HT concentrations up to 40 μM and Cur up to 4.7 μM, alone or in combination, did not show cytotoxicity against Caco-2 cells.
Collapse
Affiliation(s)
- Vincenzo De Leo
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- Correspondence: (V.D.L.); (L.C.)
| | - Anna Maria Maurelli
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Valeria Daniello
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy
| | - Chiara Ingrosso
- CNR-IPCF S.S. Bari, c/o Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Fulvio Ciriaco
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Lucia Catucci
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- Correspondence: (V.D.L.); (L.C.)
| |
Collapse
|
38
|
Recent Progress in Research on Mechanisms of Action of Natural Products against Alzheimer's Disease: Dietary Plant Polyphenols. Int J Mol Sci 2022; 23:ijms232213886. [PMID: 36430365 PMCID: PMC9695301 DOI: 10.3390/ijms232213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system and the most common type of dementia in the elderly. Despite years of extensive research efforts, our understanding of the etiology and pathogenesis of AD is still highly limited. Nevertheless, several hypotheses related to risk factors for AD have been proposed. Moreover, plant-derived dietary polyphenols were also shown to exert protective effects against neurodegenerative diseases such as AD. In this review, we summarize the regulatory effects of the most well-known plant-derived dietary polyphenols on several AD-related molecular mechanisms, such as amelioration of oxidative stress injury, inhibition of aberrant glial cell activation to alleviate neuroinflammation, inhibition of the generation and promotion of the clearance of toxic amyloid-β (Aβ) plaques, inhibition of cholinesterase enzyme activity, and increase in acetylcholine levels in the brain. We also discuss the issue of bioavailability and the potential for improvement in this regard. This review is expected to encourage further research on the role of natural dietary plant polyphenols in the treatment of AD.
Collapse
|
39
|
Chitosan-Polyphenol Conjugates for Human Health. Life (Basel) 2022; 12:life12111768. [DOI: 10.3390/life12111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Human health deteriorates due to the generation and accumulation of free radicals that induce oxidative stress, damaging proteins, lipids, and nucleic acids; this has become the leading cause of many deadly diseases such as cardiovascular, cancer, neurodegenerative, diabetes, and inflammation. Naturally occurring polyphenols have tremendous therapeutic potential, but their short biological half-life and rapid metabolism limit their use. Recent advancements in polymer science have provided numerous varieties of natural and synthetic polymers. Chitosan is widely used due to its biomimetic properties which include biodegradability, biocompatibility, inherent antimicrobial activity, and antioxidant properties. However, due to low solubility in water and the non-availability of the H-atom donor, the practical use of chitosan as an antioxidant is limited. Therefore, chitosan has been conjugated with polyphenols to overcome the limitations of both chitosan and polyphenol, along with increasing the potential synergistic effects of their combination for therapeutic applications. Though many methods have been evolved to conjugate chitosan with polyphenol through activated ester-modification, enzyme-mediated, and free radical induced are the most widely used strategies. The therapeutic efficiency of chitosan-polyphenol conjugates has been investigated for various disease treatments caused by ROS that have shown favorable outcomes and tremendous results. Hence, the present review focuses on the recent advancement of different strategies of chitosan-polyphenol conjugate formation with their advantages and limitations. Furthermore, the therapeutic applicability of the combinatorial efficiency of chitosan-based conjugates formed using Gallic Acid, Curcumin, Catechin, and Quercetin in human health has been described in detail.
Collapse
|
40
|
Ubeyitogullari A, Ahmadzadeh S, Kandhola G, Kim JW. Polysaccharide-based porous biopolymers for enhanced bioaccessibility and bioavailability of bioactive food compounds: Challenges, advances, and opportunities. Compr Rev Food Sci Food Saf 2022; 21:4610-4639. [PMID: 36199178 DOI: 10.1111/1541-4337.13049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 01/28/2023]
Abstract
Bioactive food compounds, such as lycopene, curcumin, phytosterols, and resveratrol, have received great attention due to their potential health benefits. However, these bioactive compounds (BCs) have poor chemical stability during processing and low bioavailability after consumption. Several delivery systems have been proposed for enhancing their stability and bioavailability. Among these methods, porous biopolymers have emerged as alternative encapsulation materials, as they have superior properties like high surface area, porosity, and tunable surface chemistry to entrap BCs. This reduces the crystallinity (especially for the lipophilic ones) and particle size, and in turn, increases solubilization and bioavailability. Also, loading BCs into the porous matrix can protect them against environmental stresses such as light, heat, oxygen, and pH. This review introduces polysaccharide-based porous biopolymers for improving the bioaccessibility/bioavailability of bioactive food compounds and discusses their recent applications in the food industry. First, bioaccessibility and bioavailability are described with a special emphasis on the factors affecting them. Then, porous biopolymer fabrication methods, including supercritical carbon dioxide (SC-CO2 ) drying, freeze-drying, and electrospinning and electrospraying, are thoroughly discussed. Finally, common polysaccharide-based biopolymers (i.e., starch, nanocellulose, alginate, and pectin) used for generating porous materials are reviewed, and their current and potential future food applications are critically discussed.
Collapse
Affiliation(s)
- Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA.,Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
41
|
Polyphenols in Metabolic Diseases. Molecules 2022; 27:molecules27196280. [PMID: 36234817 PMCID: PMC9570923 DOI: 10.3390/molecules27196280] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023] Open
Abstract
Polyphenols (PPs) are a large group of phytochemicals containing phenolic rings with two or more hydroxyl groups. They possess powerful antioxidant properties, multiple therapeutic effects, and possible health benefits in vivo and in vitro, as well as reported clinical studies. Considering their free-radical scavenging and anti-inflammatory properties, these substances can be used to treat different kinds of conditions associated with metabolic disorders. Many symptoms of metabolic syndrome (MtS), including obesity, dyslipidemia, atherosclerosis, elevated blood sugar, accelerating aging, liver intoxication, hypertension, as well as cancer and neurodegenerative disorders, are substantially relieved by dietary PPs. The present study explores the bioprotective properties and associated underlying mechanisms of PPs. A detailed understanding of these natural compounds will open up new opportunities for producing unique natural PP-rich dietary and medicinal plans, ultimately affirming their health benefits.
Collapse
|
42
|
Liu Y, Liu C, Kou X, Wang Y, Yu Y, Zhen N, Jiang J, Zhaxi P, Xue Z. Synergistic Hypolipidemic Effects and Mechanisms of Phytochemicals: A Review. Foods 2022; 11:2774. [PMID: 36140902 PMCID: PMC9497508 DOI: 10.3390/foods11182774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia, a chronic disorder of abnormal lipid metabolism, can induce obesity, diabetes, and cardiovascular and cerebrovascular diseases such as coronary heart disease, atherosclerosis, and hypertension. Increasing evidence indicates that phytochemicals may serve as a promising strategy for the prevention and management of hyperlipidemia and its complications. At the same time, the concept of synergistic hypolipidemic and its application in the food industry is rapidly increasing as a practical approach to preserve and improve the health-promoting effects of functional ingredients. The current review focuses on the effects of single phytochemicals on hyperlipidemia and its mechanisms. Due to the complexity of the lipid metabolism regulatory network, the synergistic regulation of different metabolic pathways or targets may be more effective than single pathways or targets in the treatment of hyperlipidemia. This review summarizes for the first time the synergistic hypolipidemic effects of different combinations of phytochemicals such as combinations of the same category of phytochemicals and combinations of different categories of phytochemicals. In addition, based on the different metabolic pathways or targets involved in synergistic effects, the possible mechanisms of synergistic hypolipidemic effects of the phytochemical combination are illustrated in this review. Hence, this review provides clues to boost more phytochemical synergistic hypolipidemic research and provides a theoretical basis for the development of phytochemicals with synergistic effects on hyperlipidemia and its complications.
Collapse
Affiliation(s)
- Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Chunlong Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Dynamiker Biotechnology (Tianjin) Co., Ltd., Tianjin 300450, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yumeng Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ni Zhen
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Jingyu Jiang
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Puba Zhaxi
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
43
|
Cheng Z, Wang Y, Li B. Dietary Polyphenols Alleviate Autoimmune Liver Disease by Mediating the Intestinal Microenvironment: Challenges and Hopes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10708-10737. [PMID: 36005815 DOI: 10.1021/acs.jafc.2c02654] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Autoimmune liver disease is a chronic liver disease caused by an overactive immune response in the liver that imposes a significant health and economic cost on society. Due to the side effects of existing medicinal medications, there is a trend toward seeking natural bioactive compounds as dietary supplements. Currently, dietary polyphenols have been proven to have the ability to mediate gut-liver immunity and control autoimmune liver disease through modulating the intestinal microenvironment. Based on the preceding, this Review covers the many forms of autoimmune liver illnesses, their pathophysiology, and the modulatory effects of polyphenols on immune disorders. Finally, we focus on how polyphenols interact with the intestinal milieu to improve autoimmune liver disease. In conclusion, we suggest that dietary polyphenols have the potential as gut-targeted modulators for the prevention and treatment of autoimmune liver disease and highlight new perspectives and critical issues for future pharmacological applications.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| |
Collapse
|
44
|
Zhang Z, Meng F, Wang B, Cao Y. Effects of antioxidants on physicochemical properties and odorants in heat processed beef flavor and their antioxidant activity under different storage conditions. Front Nutr 2022; 9:966697. [PMID: 36110401 PMCID: PMC9468785 DOI: 10.3389/fnut.2022.966697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Heat processed beef flavor (HPBF) is a common thermal process flavoring, whose flavor properties can be affected by lipid oxidation during storage. Addition of antioxidants is an option to avoid the changes of HPBF induced by lipid oxidation. In this study, the effects of three antioxidants, tert-butylhydroquinone (TBHQ), tea polyphenol (TP), and L-ascorbyl palmitate (L-AP), on volatile components, physicochemical properties, and antioxidant activities of HPBF were studied over 168 days at different temperatures (4, 20, and 50°C). Although all three antioxidants had little effect on browning, acidity, water activity, and secondary lipid oxidation products, L-AP and TBHQ showed greater capabilities to prevent the formation of primary lipid oxidation products than TP. According to the results of oxidation reduction potential and DPPH radical scavenging experiments, TBHQ had better antioxidant ability compared to L-AP and TP during the storage. Of note, TBHQ affected the flavor profiles of HPBF, mainly on volatile odorants produced by lipid degradation. TBHQ could mitigate the development of unfavorable odorants. This study indicated TBHQ would enhance lipid oxidation stability and maintain physicochemical properties and flavor profiles of HPBF during storage. It suggested that TBHQ could be applied as an alternative additive to improve the quality of HPBF related thermal process flavorings.
Collapse
|
45
|
Formation of mucus-permeable nanoparticles from soy protein isolate by partial enzymatic hydrolysis coupled with thermal and pH-shifting treatment. Food Chem 2022; 398:133851. [DOI: 10.1016/j.foodchem.2022.133851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
|
46
|
Characterization and Encapsulation of Natural Antioxidants: Interaction, Protection, and Delivery. Antioxidants (Basel) 2022; 11:antiox11081434. [PMID: 35892636 PMCID: PMC9332303 DOI: 10.3390/antiox11081434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
|
47
|
Chen L, Zhu M, Hu X, Pan J, Zhang G. Exploring the binding mechanism of ferulic acid and ovalbumin: insights from spectroscopy, molecular docking and dynamics simulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3835-3846. [PMID: 34927253 DOI: 10.1002/jsfa.11733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ferulic acid (FA), a phenolic acid widely occurring in nature, has attracted extensive attention because of its biological activity. Ovalbumin (OVA) is a commonly used carrier protein. The mechanism of FA binding with OVA was investigated by utilizing a variety of spectral analyses, accompanied by computer simulation. RESULTS It was discovered that the fluorescence quenching mechanism of OVA by FA was a static mode as a result of the formation of an FA-OVA complex, which was verified by the concentration distributions and pure spectrum of the constituents decomposed from the high overlap spectrum signals using multivariate curve resolution-alternate least squares algorithm. Hydrogen bonds and Van der Waals forces drove the formation of FA-OVA complex with a binding constant of 1.69 × 104 L mol-1 . The presence of FA induced the loose structure of OVA with an attenuation of α-helix content and improved the thermal stability of OVA. Computer docking indicated that FA interacted with the amino acid residues Arg84, Asn88, Leu101 and Ser103 of OVA through hydrogen bonds. Molecular dynamics simulation proved that the combination of FA with OVA boosted the conformational stability of OVA and hydrogen bonds brought a crucial part in stabilizing the structure of the complex. CONCLUSIONS The study may supply the theoretical basis for the design of FA transport system using OVA as carrier protein to improve the instability and low bioavailability of FA. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Miao Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Junhui Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
48
|
Polyphenols for the Treatment of Ischemic Stroke: New Applications and Insights. Molecules 2022; 27:molecules27134181. [PMID: 35807426 PMCID: PMC9268254 DOI: 10.3390/molecules27134181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Currently, the main therapeutic strategy involves the use of intravenous thrombolysis to restore cerebral blood flow to prevent the transition of the penumbra to the infarct core. However, due to various limitations and complications, including the narrow time window in which this approach is effective, less than 10% of patients benefit from such therapy. Thus, there is an urgent need for alternative therapeutic strategies, with neuroprotection against the ischemic cascade response after IS being one of the most promising options. In the past few decades, polyphenolic compounds have shown great potential in animal models of IS because of their high biocompatibility and ability to target multiple ischemic cascade signaling pathways, although low bioavailability is an issue that limits the applications of several polyphenols. Here, we review the pathophysiological changes following cerebral ischemia and summarize the research progress regarding the applications of polyphenolic compounds in the treatment of IS over the past 5 years. Furthermore, we discuss several potential strategies for improving the bioavailability of polyphenolic compounds as well as some essential issues that remain to be addressed for the translation of the related therapies to the clinic.
Collapse
|
49
|
Liu Q, Sun Y, Cheng J, Zhang X, Guo M. Changes in conformation and functionality of whey proteins induced by the interactions with soy isoflavones. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Xiu T, Liu P, Zhang S, Du D, Xue C, Hu Y, Yang S, Dongye Z, Kang M, Li Z, Wang L. Polyphenol nanoparticles of millet, rice and wheat: extraction, identification, functional and morphological characteristics. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Tiantian Xiu
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Peng Liu
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs No. 12, Zhongguancun South Street Beijing 100081 China
| | - Shuangling Zhang
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Dehong Du
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Changhui Xue
- Chemistry and Pharmaceutical Sciences College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Yue Hu
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Shuo Yang
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Zixuan Dongye
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Mengchen Kang
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Zhenru Li
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| | - Li Wang
- Food Science and Engineering College Qingdao Agricultural University No. 700, Changcheng Road Qingdao 266109 China
| |
Collapse
|