1
|
Gupta RK, Pipliya S, Karunanithi S, Eswaran U GM, Kumar S, Mandliya S, Srivastav PP, Suthar T, Shaikh AM, Harsányi E, Kovács B. Migration of Chemical Compounds from Packaging Materials into Packaged Foods: Interaction, Mechanism, Assessment, and Regulations. Foods 2024; 13:3125. [PMID: 39410160 PMCID: PMC11475518 DOI: 10.3390/foods13193125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The migration of chemical compounds from packaging polymers to food presents a multifaceted challenge with implications for food safety and public health. This review explores the interaction between packaging materials and food products, focusing on permeation, migration, and sorption processes. The different migration mechanisms of contact migration, gas phase migration, penetration migration, set-off migration, and condensation/distillation migration have been discussed comprehensively. The major migrating compounds are plasticizers, nanoparticles, antioxidants, light stabilizers, thermal stabilizers, monomers, oligomers, printing inks, and adhesives, posing potential health risks due to their association with endocrine disruption and carcinogenic effects. Advanced analytical methods help in the monitoring of migrated compounds, facilitating compliance with regulatory standards. Regulatory agencies enforce guidelines to limit migration, prompting the development of barrier coatings and safer packaging alternatives. Furthermore, there is a need to decipher the migration mechanism for mitigating it along with advancements in analytical techniques for monitoring the migration of compounds.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Sunil Pipliya
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Sangeetha Karunanithi
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Gnana Moorthy Eswaran U
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Sitesh Kumar
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Shubham Mandliya
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; (R.K.G.); (S.P.); (S.K.); (G.M.E.U.); (S.M.); (P.P.S.)
| | | | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Food Science & Nutrition, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary
- World Food Forum, I-00100 Rome, Italy
| | - Endre Harsányi
- Agricultural Research Institutes and Academic Farming (AKIT), Faculty of Agriculture, Food Science and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Food Science & Nutrition, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary
| |
Collapse
|
2
|
Parkinson LV, Geueke B, Muncke J. Potential mammary carcinogens used in food contact articles: implications for policy, enforcement, and prevention. FRONTIERS IN TOXICOLOGY 2024; 6:1440331. [PMID: 39381597 PMCID: PMC11458522 DOI: 10.3389/ftox.2024.1440331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
Many nations have food contact material (FCM) legislation purporting to protect citizens from hazardous chemicals, often specifically by regulating genotoxic carcinogens. Despite such regulations, cancers that are associated with harmful chemical exposures are highly prevalent, especially breast cancer. Using the novel Key Characteristics of Toxicants framework, Kay et al. found 921 substances that are potential mammary carcinogens. By comparing Kay et al.'s chemicals list with our own Database on migrating and extractable food contact chemicals (FCCmigex), we found that 189 (21%) of the potential mammary carcinogens have been measured in FCMs. When limiting these results to migration studies published in 2020-2022, 76 potential mammary carcinogens have been detected to migrate from FCMs sold in markets across the globe, under realistic conditions of use. This implies that chronic exposure of the entire population to potential mammary carcinogens from FCMs is the norm and highlights an important, but currently underappreciated opportunity for prevention. Reducing population-wide exposure to potential mammary carcinogens can be achieved by science-based policy amendments addressing the assessment and management of food contact chemicals.
Collapse
Affiliation(s)
| | | | - Jane Muncke
- Food Packaging Forum Foundation, Zürich, Switzerland
| |
Collapse
|
3
|
Khan R, Perez BA, Toraman HE. Comparative analysis of additive decomposition using one-dimensional and two-dimensional gas chromatography: Part II - Irgafos 168 and zinc stearate. J Chromatogr A 2024; 1732:465244. [PMID: 39142169 DOI: 10.1016/j.chroma.2024.465244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Plastic production has experienced a significant increase in the last sixty years due to its cost-efficiency and adaptable characteristics, leading to the extensive use of additives to improve its performance and longevity. Due to the high demand for plastic, plastic waste production has increased, contaminating the environment and living beings by leaching additives, among other substances. Pyrolysis stands out among recycling techniques because it can handle mixed polymer waste feedstock. However, understanding the pyrolyzates distribution of additives is fundamental to assessing pyrolysis process of plastic waste. This study investigated the pyrolysis product distributions of two commonly used antioxidants, namely, Irgafos 168 and zinc stearate (ZnSt), using one-dimensional gas chromatography equipped with a quadruple mass spectrometer (GC-MS) and two-dimensional gas chromatography coupled to flame ionization detector and time-of-flight mass spectrometer (GC×GC-FID/TOF-MS). While GC separation technique provided limited information on product distribution, GC×GC offered enhanced resolution and identification of the decomposition products. In the pyrolysis of Irgafos 168 at 550 °C, GC identified 18 products, while GC×GC identified 198 products, representing an increase of approximately 11-fold. Similarly, for ZnSt, GC identified 67 products, while GC×GC identified 434 products, representing a 6-fold increase. GC×GC identified decomposition products from 15 different chemical classes for Irgafos 168 and 16 chemical classes for ZnSt, compared to 4 and 11 chemical classes identified by GC, respectively. Phenols and their derivatives were the major chemical class in the decomposition products of Irgafos 168 with a yield of 9.51 wt.%. In contrast, olefinic products were the dominant ones for ZnSt, with a yield of 9.73 wt.%. The major decomposition product of Irgafos 168 and ZnSt was 2‑tert‑butyl‑methylphenol (C11H16O) and C6 olefin (C6H12) with yields of 3.88 wt.%, and 1.13 wt.%, respectively. Utilizing the GC×GC separation method improved the ability to identify decomposition products, which can ultimately lead to a better understanding of antioxidant degradation that occurs during the pyrolysis process. GC×GC also provided thorough characterization of minor and co-eluted products along with major antioxidant degradation products. Additionally, the decomposition product distribution of Irgafos 168 and ZnSt was also compared with the primary antioxidants, Irganox 1010, Irganox 1076, and BHT, studied in part 1. The analysis indicated that the olefinic chemical class was the predominant one in Irganox 1010, Irganox 1076, and ZnSt, while ketones were the major chemical class in the decomposition of BHT and phenolics had the highest yield in Irgafos 168.
Collapse
Affiliation(s)
- Rowfi Khan
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16801, USA
| | - Barbara Alejandra Perez
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16801, USA
| | - Hilal Ezgi Toraman
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16801, USA; Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16801, USA; Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA 16801, USA.
| |
Collapse
|
4
|
Han B, Shang Y, Wang H, Shen Y, Li R, Wang M, Zhuang Z, Wang Z, Fang M, Jing T. Prevalence of synthetic phenolic antioxidants in food contact materials from China and their implications for human dietary exposure through take-away food. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134599. [PMID: 38788569 DOI: 10.1016/j.jhazmat.2024.134599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The application of disposable tableware has increased substantially in recent times due to the rapidly growing food delivery business in China. Synthetic phenolic antioxidants (SPAs) are widely used in food contact materials (FCMs) to delay the process of oxidation; however, their compositions, concentrations, and potential health hazards remain unclear. Therefore, FCMs comprised of five materials obtained from 19 categories (n = 118) in China were analyzed for SPAs concentrations. FCMs have been found to contain a variety of SPAs, with ∑SPAs concentrations ranging from 44.18 to 69,485.12 μg/kg (median: 2615.63 μg/kg). The predominant congeners identified in the sample include 2,4-di-tert-butylphenol (2,4-DTBP), 2,6-di-tert-butylphenol (2,6-DTBP), and 2,6-di-tert-butyl-p-benzoquinone (BHT-Q) with a median concentration of 885.75, 555.45 and of 217.44 μg/kg, respectively. Milky tea paper cups, instant noodle buckets, milky teacups, and disposable cups showed high levels of SPAs. 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (AO 2246) was predominantly detected in polyethylene and polyethylene terephthalate-based products. The migration test identified disposable plastic cups and bowls as the predominant FCMs and 2,4-DTBP as the dominant SPA. The exposure risk of SPAs decreased with age. In children, the estimated daily intake of ∑SPAs from FCMs was determined to be 17.56 ng/kg body weight/day, which was 8.3 times higher than that of phthalic acid esters. The current findings indicate the potential ingestion risk of SPAs during the daily life application of multiple FCM categories.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yinzhu Shang
- Technology Center of Wuhan Customs, #15 Jinyinhu Road, Dongxihu District, Wuhan, Hubei 430050, China
| | - Hui Wang
- Technology Center of Wuhan Customs, #15 Jinyinhu Road, Dongxihu District, Wuhan, Hubei 430050, China
| | - Yang Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ruifang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Mengyi Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhijia Zhuang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Min Fang
- Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
5
|
Stevens S, Bartosova Z, Völker J, Wagner M. Migration of endocrine and metabolism disrupting chemicals from plastic food packaging. ENVIRONMENT INTERNATIONAL 2024; 189:108791. [PMID: 38838488 DOI: 10.1016/j.envint.2024.108791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Plastics constitute a vast array of substances, with over 16000 known plastic chemicals, including intentionally and non-intentionally added substances. Thousands of chemicals, including toxic ones, are extractable from plastics, however, the extent to which these compounds migrate from everyday products into food or water remains poorly understood. This study aims to characterize the endocrine and metabolism disrupting activity, as well as the chemical composition of migrates from plastic food contact articles (FCAs) from four countries as significant sources of human exposure. Fourteen plastic FCAs covering seven polymer types with high global market shares were migrated into water and a water-ethanol mixture as food simulants according to European regulations. The migrates were analyzed using reporter gene assays for nuclear receptors relevant to human health and non-target chemical analysis to characterize the chemical composition. Chemicals migrating from each FCA interfered with at least two nuclear receptors, predominantly targeting pregnane X receptor (24/28 migrates). Moreover, peroxisome proliferator receptor gamma was activated by 19 out of 28 migrates, though mostly with lower potencies. Estrogenic and antiandrogenic activity was detected in eight and seven migrates, respectively. Fewer chemicals and less toxicity migrated into water compared to the water-ethanol mixture. However, 73 % of the 15 430 extractable chemical features also transferred into food simulants, and the water-ethanol migrates exhibited a similar toxicity prevalence compared to methanol extracts. The chemical complexity differed largely between FCAs, with 8 to 10631 chemical features migrating into food simulants. Using stepwise partial least squares regressions, we successfully narrowed down the list of potential active chemicals, identified known endocrine disrupting chemicals, such as triphenyl phosphate, and prioritized chemical features for further identification. This study demonstrates the migration of endocrine and metabolism disrupting chemicals from plastic FCAs into food simulants, rendering a migration of these compounds into food and beverages probable.
Collapse
Affiliation(s)
- Sarah Stevens
- Norwegian University of Science and Technology (NTNU), Department of Biology, 7491 Trondheim, Norway.
| | - Zdenka Bartosova
- Norwegian University of Science and Technology (NTNU), Department of Biology, 7491 Trondheim, Norway
| | - Johannes Völker
- Norwegian University of Science and Technology (NTNU), Department of Biology, 7491 Trondheim, Norway; Innovative Environmental Services (IES) Ltd, Benkenstrasse 260, 4108 Witterswill, Switzerland
| | - Martin Wagner
- Norwegian University of Science and Technology (NTNU), Department of Biology, 7491 Trondheim, Norway.
| |
Collapse
|
6
|
Olewnik-Kruszkowska E, Ferri M, Cardeira MC, Gierszewska M, Rudawska A. Comparison of Polylactide-Based Active Films Containing Berberine and Quercetin as Systems for Maintaining the Quality and Safety of Blueberries. Polymers (Basel) 2024; 16:1577. [PMID: 38891523 PMCID: PMC11174692 DOI: 10.3390/polym16111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Polymeric thin films based on polylactide with an addition of poly(ethylene glycol) as a plasticizer and flavonoids in the form of quercetin and berberine were subjected to tests that were particularly relevant from the point of view of contact with food. A comparative analysis of the effect of individual flavonoids on the antioxidative properties of tested films and blueberry storage was carried out. The influence of active compounds on the water vapor permeability, as well as UV protection, of the obtained materials was investigated. Also, the specific migration of individual flavonoids from obtained materials to food simulants in the form of acetic acid and ethyl alcohol was determined. The crucial point of this study is the storage of blueberries. The obtained results indicate that the selection of packaging, containing individual active compounds, depends on the purpose and requirements that the packaging must meet for particular types of food.
Collapse
Affiliation(s)
- Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Martina Ferri
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Via Terracini 28, 40131 Bologna, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Mariana C. Cardeira
- Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Anna Rudawska
- Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36 Street, 20-618 Lublin, Poland;
| |
Collapse
|
7
|
Kaing V, Guo Z, Sok T, Kodikara D, Breider F, Yoshimura C. Photodegradation of biodegradable plastics in aquatic environments: Current understanding and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168539. [PMID: 37981156 DOI: 10.1016/j.scitotenv.2023.168539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Direct and indirect photolysis are important abiotic processes in aquatic environments through which plastics can be transformed physically and chemically. Transport of biodegradable plastics in water is influenced by vertical mixing and turbulent flow, which make biodegradable plastics remain susceptible to sunlight and photolysis despite their high density. In general, biodegradable plastics are composed of ester containing polymers (e.g., poly(butylene succinate), polyhydroxyalkanoate, and polylactic acid), whereas non-biodegradable plastics are composed of long chains of saturated aliphatic hydrocarbons in their backbones (e.g., polyethylene, polypropylene, and polystyrene). Based on the reviewed knowledge and discussion, we may hypothesize that 1) direct photolysis is more pronounced for non-biodegradation than for biodegradable plastics, 2) smaller plastics such as micro/nano-plastics are more prone to photodegradation and photo-transformation by direct and indirect photolysis, 3) the production rate of reactive oxygen species (ROS) on the surface of biodegradable plastics is higher than that of non-biodegradable plastics, 4) the photodegradation of biodegradable plastics may be promoted by ROS produced from biodegradable plastics themselves, and 5) the subsequent reactions of ROS are more active on biodegradable plastics than non-biodegradable plastics. Moreover, micro/nanoplastics derived from biodegradable plastics serve as more effective carriers of organic pollutants than those from non-biodegradable plastics and thus biodegradable plastics may not necessarily be more ecofriendly than non-biodegradable plastics. However, biodegradable plastics have been largely unexplored from the viewpoint of direct or indirect photolysis. Roles of reactive oxygen species originating from biodegradable plastics should be further explored for comprehensively understanding the photodegradation of biodegradable plastics.
Collapse
Affiliation(s)
- Vinhteang Kaing
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ty Sok
- Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia; Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Dilini Kodikara
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Florian Breider
- EPFL - Ecole Polytechnique Fédérale de Lausanne, Central Environmental Laboratory, Institute of Environmental Engineering, ENAC, station 2, CH-1015 Lausanne, Switzerland
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
8
|
Bhattarai S, Janaswamy S. Biodegradable, UV-blocking, and antioxidant films from lignocellulosic fibers of spent coffee grounds. Int J Biol Macromol 2023; 253:126798. [PMID: 37689289 DOI: 10.1016/j.ijbiomac.2023.126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Plastics are strong, flexible, and inexpensive and hence desirable for packaging. However, as they biodegrade very slowly, their waste remains a global burden and pollution, warranting a search for safer alternatives. Towards this end, residual fibers from biowaste, such as spent coffee grounds (SCGs), stand out for creating biodegradable packaging materials. Herein, lignocellulosic fibers from SCG were extracted, and various amounts (0.6, 0.8, 1.0, and 1.2 g) were solubilized using 68 % ZnCl2 and crosslinked with salt (CaCl2) amounts 0.1, 0.2, 0.3 and 0.4 g and prepared biodegradable films. The films were characterized for their color, thickness, moisture content, tensile strength, elongation at break, water vapor permeability, transmittance of electromagnetic radiation, biodegradability, and antioxidant properties. The results reveal that the films possess the highest tensile strength of 26.8 MPa. The tensile strengths are positively correlated to salt and SCG extract amounts. The percentage of elongation decreased with an increase in the calcium ions but increased with SCG residue increment. The films biodegraded in the soil, and most lost >80 % of their initial weight in 45 and 100 days, respectively, at 30 % and 12 % soil moisture. Biodegradability and water vapor permeability decreased with an increase in salt content. Films also showed antioxidant properties and blocked UV and IR radiation significantly. Overall, this research involving green and recyclable chemicals in preparation of SCG residue fibers is a promising, economical, and sustainable route to produce strong biodegradable films to replace petrochemical plastics and thus is an attractive contribution to the circular bioeconomy.
Collapse
Affiliation(s)
- Sajal Bhattarai
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA; Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Srinivas Janaswamy
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
9
|
Carrión MG, Corripio MAR, Contreras JVH, Marrón MR, Olán GM, Cázares ASH. Optimization and characterization of taro starch, nisin, and sodium alginate-based biodegradable films: antimicrobial effect in chicken meat. Poult Sci 2023; 102:103100. [PMID: 37837678 PMCID: PMC10589887 DOI: 10.1016/j.psj.2023.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/16/2023] Open
Abstract
Biodegradable films based on polymers from renewable resources have become a feasible technology to preserve the quality (texture, color, flavor) and safety of food. The addition of antimicrobial agents to films can prevent the growth of pathogenic microorganisms that affect meat and poultry products. In this study, a biodegradable film with sodium alginate (SA), taro starch (MS), and nisin (Nis) was optimized to have high tensile strength (TS), breaking force (BF), and a low water vapor permeability (WVP) using a Box-Behnken response surface design, and its antimicrobial effect was evaluated in relation to its use as a packaging material for chicken meat. The OB was characterized via analysis of its mechanical, physical, and chemical properties; in addition, the total migration of Nis was also analyzed, along with its retention ability, the kinetics of the release of Nis into food simulants, and its antimicrobial activity against Listeria monocytogenes in vitro and on inoculated chicken meat. The resulting optimal OB was produced with 1.9% MS, 1% glycerol (G), and 2,369 IU/mL of Nis, and displayed adequate TS and WVP. The OB significantly reduced the microbial load and helped extend the shelf life of the chicken meat under refrigeration by up to 15 d. Total migration and the kinetics of the release of Nis showed that the OB can be used on hydrophilic and acidic foods, making it a natural alternative for use in food packaging.
Collapse
Affiliation(s)
| | | | | | - Marcela Rangel Marrón
- Facultad de Química, Universidad Autónoma del Carmen, Ciudad del Carmen, C.P. 24180, Campeche, México
| | - Gema Morales Olán
- Colegio de Postgraduados - Campus Córdoba, Veracruz, C.P. 94953, México
| | | |
Collapse
|
10
|
Freitas F, Cabrita MJ, da Silva MG. A Critical Review of Analytical Methods for the Quantification of Phthalates Esters in Two Important European Food Products: Olive Oil and Wine. Molecules 2023; 28:7628. [PMID: 38005350 PMCID: PMC10673500 DOI: 10.3390/molecules28227628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Phthalic acid esters (PAEs) are a class of chemicals widely used as plasticizers. These compounds, considered toxic, do not bond to the polymeric matrix of plastic and can, therefore, migrate into the surrounding environment, posing a risk to human health. The primary source of human exposure is food, which can become contaminated during cultivation, production, and packaging. Therefore, it is imperative to control and regulate this exposure. This review covers the analytical methods used for their determination in two economically significant products: olive oil and wine. Additionally, it provides a summary and analysis of information regarding the characteristics, toxicity, effects on human health, and current regulations pertaining to PAEs in food. Various approaches for the extraction, purification, and quantification of these analytes are highlighted. Solvent and sorbent-based extraction techniques are reviewed, as are the chromatographic separation and other methods currently applied in the analysis of PAEs in wines and olive oils. The analysis of these contaminants is challenging due to the complexities of the matrices and the widespread presence of PAEs in analytical laboratories, demanding the implementation of appropriate strategies.
Collapse
Affiliation(s)
- Flávia Freitas
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Maria João Cabrita
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Marco Gomes da Silva
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
| |
Collapse
|
11
|
Tang C, Gómez Ramos MJ, Heffernan A, Kaserzon S, Rauert C, Lin CY, Mueller JF, Wang X. Evaluation and identification of chemical migrants leached from baby food pouch packaging. CHEMOSPHERE 2023; 340:139758. [PMID: 37567267 DOI: 10.1016/j.chemosphere.2023.139758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Multilayer plastic pouch (MLPP) has an estimated 9% annual increase of market growth. However, the migrants it can introduce to food has not yet been systematically studied. A total of 79 MLPPs for baby food were purchased from major retail outlets in Australia. The methodology for testing chemical migration followed the design of previous studies using four types of selected simulants according to the European Committee Regulation No. 10/2011 method. Four bisphenols and five phthalic acid diesters (PAEs) were detected, including the ones known for endocrine disrupting effect in human. Three intentionally added and 23 non-intentionally added substances (NIAS) were tentatively identified through a suspect screening procedure. Out of the 23 NIAS, neopentyl glycol - phthalic acid - 1,6-hexanediol - phthalic acid oligomer was identified for the first time with MLPP. A further two NIAS were detected for the first time in baby food related products. For 40% of the pouches where adipic acid - diethylene glycol was detected, the estimated exposure from consuming one pouch of food per day may exceed the threshold of toxicological concern established based on the Cramer classification.
Collapse
Affiliation(s)
- Cheng Tang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, Australia; Minderoo Centre - Plastics and Human Health, University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, Australia.
| | - María José Gómez Ramos
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, Australia; Department of Physics and Chemistry, Agrifood Campus of International Excellence, University of Almería, Carr. Sacramento, S/n, 04120, La Cañada, Almería, Spain.
| | - Amy Heffernan
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, Australia.
| | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, Australia.
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, Australia; Minderoo Centre - Plastics and Human Health, University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, Australia.
| | - Chun-Yin Lin
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, Australia; Minderoo Centre - Plastics and Human Health, University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, Australia.
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, Australia; Minderoo Centre - Plastics and Human Health, University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, Australia.
| | - Xianyu Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, Australia; Minderoo Centre - Plastics and Human Health, University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, Australia.
| |
Collapse
|
12
|
Muzeza C, Ngole-Jeme V, Msagati TAM. The Mechanisms of Plastic Food-Packaging Monomers' Migration into Food Matrix and the Implications on Human Health. Foods 2023; 12:3364. [PMID: 37761073 PMCID: PMC10529129 DOI: 10.3390/foods12183364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The development of packaging technology has become a crucial part of the food industry in today's modern societies, which are characterized by technological advancements, industrialization, densely populated cities, and scientific advancements that have increased food production over the past 50 years despite the lack of agricultural land. Various types of food-packaging materials are utilized, with plastic being the most versatile. However, there are certain concerns with regards to the usage of plastic packaging because of unreacted monomers' potential migration from the polymer packaging to the food. The magnitude of monomer migration depends on numerous aspects, including the monomer chemistry, type of plastic packaging, physical-chemical parameters such as the temperature and pH, and food chemistry. The major concern for the presence of packaging monomers in food is that some monomers are endocrine-disrupting compounds (EDCs) with a capability to interfere with the functioning of vital hormonal systems in the human body. For this reason, different countries have resolved to enforce guidelines and regulations for packaging monomers in food. Additionally, many countries have introduced migration testing procedures and safe limits for packaging monomer migration into food. However, to date, several research studies have reported levels of monomer migration above the set migration limits due to leaching from the food-packaging materials into the food. This raises concerns regarding possible health effects on consumers. This paper provides a critical review on plastic food-contact materials' monomer migration, including that from biodegradable plastic packaging, the monomer migration mechanisms, the monomer migration chemistry, the key factors that affect the migration process, and the associated potential EDC human health risks linked to monomers' presence in food. The aim is to contribute to the existing knowledge and understanding of plastic food-packaging monomer migration.
Collapse
Affiliation(s)
- Celia Muzeza
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Veronica Ngole-Jeme
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
| |
Collapse
|
13
|
Lu L, Li W, Cheng Y, Liu M. Chemical recycling technologies for PVC waste and PVC-containing plastic waste: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:245-258. [PMID: 37196390 DOI: 10.1016/j.wasman.2023.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
The extensive production and consumption of plastics has resulted in significant plastic waste and plastic pollution. Polyvinyl chloride (PVC) waste has a high chlorine content and is the primary source of chlorine in the plastic waste stream, potentially generating hazardous chlorinated organic pollutants if treated improperly. This review discusses PVC synthesis, applications, and the current types and challenges of PVC waste management. Dechlorination is vital for the chemical recycling of PVC waste and PVC-containing plastic waste. We review dehydrochlorination and dechlorination mechanisms of PVC using thermal degradation and wet treatments, and summarize the recent progress in chemical treatments and dechlorination principles. This review provides readers with a comprehensive analysis of chemical recycling technologies for PVC waste and PVC-containing plastic waste to transform them into chemicals, fuels, feedstock, and value-added polymers.
Collapse
Affiliation(s)
- Lihui Lu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Weiming Li
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Ying Cheng
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China.
| |
Collapse
|
14
|
Meng W, Sun H, Su G. Plastic packaging-associated chemicals and their hazards - An overview of reviews. CHEMOSPHERE 2023; 331:138795. [PMID: 37116723 DOI: 10.1016/j.chemosphere.2023.138795] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Plastic packaging contains residues from substances used during manufacturing, such as solvents, as well as non-intentionally added substances (NIAS), such as impurities, oligomers, or degradation products. By searching peer-reviewed literature, we found that at least 10,259 chemicals were related to plastic packaging materials, which include chemicals used during manufacturing and/or present in final packaging items. We then summarized and discussed their chemical structures, analytical instruments, migration characteristics, and hazard categories where possible. For plastic packaging chemicals, examination of the literature reveals gas and liquid chromatography hyphenated to a variety of accurate mass analyzers based on the use of high-resolution mass spectrometry is usually used for the identification of unknown migrants coming from plastic packaging. Chemical migration from food packaging is affected by several parameters, including the nature and complexity of the food, contact time, temperature of the system, type of packaging contact layer, and properties of the migrants. A review of the literature reveals that information on adverse effects is only available for approximately 1600 substances. Among them, it appears that additives are more toxic than monomers to wildlife and humans. Neurotoxicity accounted for the highest proportion of toxicity of all types of chemicals, while benzenoids, organic acids, and derivatives were the most toxic types of chemicals. Furthermore, studies have demonstrated that hydrocarbon derivatives, organic nitrogen compounds, and organometallic compounds have the highest proportions of dermatotoxicity, and organohalogen compounds have the highest proportions of hepatotoxicity. The main contributors to skin sensitization are organic salts. This study provides a basis for comprehensively publicizing information on chemicals in plastics, and could be helpful to better understand their potential risks to the environment and humans.
Collapse
Affiliation(s)
- Weikun Meng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hao Sun
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
15
|
Velickova Nikova E, Temkov M, Rocha JM. Occurrence of meso/micro/nano plastics and plastic additives in food from food packaging. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:41-99. [PMID: 36863841 DOI: 10.1016/bs.afnr.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This chapter focuses on the occurrence of plastic constituents in food due to the contact with different types of plastic packaging, films and coatings. The type of mechanisms occurring during the contamination of food by different packaging materials are described, as well as how the type of food and packaging may influences the extent of contamination. The main types of contaminants phenomena are considered and comprehensively discussed, along with the regulations in force for the use of plastic food packaging. In addition, the types of migration phenomena and factors that may influence such migration are comprehensively highlighted. Moreover, migration components related to the packaging polymers (monomers and oligomers) and the packaging additives are individually discussed in terms of chemical structure, adverse effects on foodstuffs, health, migration factors, as well as regulated residual values of such components.
Collapse
Affiliation(s)
- Elena Velickova Nikova
- Department of Food Technology and Biotechnology, Faculty of Technology and Metallurgy, University Ss. Cyril and Methodius, Skopje, RN, Macedonia
| | - Mishela Temkov
- Department of Food Technology and Biotechnology, Faculty of Technology and Metallurgy, University Ss. Cyril and Methodius, Skopje, RN, Macedonia
| | - João Miguel Rocha
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
16
|
Guan MY, Zhong HN, Wang ZW, Yu WW, Hu CY. Chemical contaminants from food contact materials and articles made from or containing wood and bamboo - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:434-453. [PMID: 36693199 DOI: 10.1080/19440049.2023.2167003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Due to recently introduced 'so-called' bio- and plant-based friendly food contact materials and articles (FCM/FCA), some neglected safety issues need to be raised. In this review, potential chemical contaminants from FCM/FCA made from or containing wood and bamboo are presented. Sources, migration, and analytical issues in determining contaminants including intentionally and non-intentionally added substances (IAS and NIAS, respectively) are reviewed. Most of the contaminants are components from melamine-formaldehyde-resin (MFR), paints and coatings, preservatives, and bleaching agents. Tableware made of MFR containing bamboo fibres as a filler are not always suitable for use as tableware since harmful amounts of melamine and formaldehyde can migrate from the tableware into food and even accelerate the degradation of certain polymers with which they are mixed. In addition, in the EU bamboo in plastic FCM is not authorized under Regulation (EU) 10/2011. Paints and coatings used to provide surface coverage for bamboo and wooden articles also pose a risk of migration of heavy metals. Limits on preservatives in wood FCM are covered by legislation in many countries, nevertheless their contamination should not be ignored. Some wood species are considered 'toxic' or contain 'toxic' constituents that should not be used in contact with food, which are worth considering for legislation. IAS analyses in bamboo and wooden FCM is generally not a problem, but has proven to be more challenging for NIAS. Due to a complex mixture of substances contained in plant-based materials, there is a need to improve databases for non-target screening of such chemicals.
Collapse
Affiliation(s)
- Mu-Ying Guan
- Department of Food Science & Engineering, Jinan University, Guangzhou City, China
| | - Huai-Ning Zhong
- National Reference Laboratory for Food Contact Material (Guangdong), Guangzhou Customs Technology Center, Guangzhou City, China
| | - Zhi-Wei Wang
- Packing Engineering Institute, Jinan University, Zhuhai, China
| | - Wen-Wen Yu
- Department of Food Science & Engineering, Jinan University, Guangzhou City, China
| | - Chang-Ying Hu
- Department of Food Science & Engineering, Jinan University, Guangzhou City, China
| |
Collapse
|
17
|
Gopal J, Muthu M. The COVID-19 pandemic redefining the mundane food packaging material industry? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160463. [PMID: 36503651 PMCID: PMC9701582 DOI: 10.1016/j.scitotenv.2022.160463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 pandemic has been the talk of the globe, as it swept across the world population, changing enumerable aspects. The pandemic affected all sectors directly or indirectly. The food sector took a direct hit. The food packaging sector rose to the occasion to serve and feed the pandemic affected, but there were interactions, reactions, and consequences that evolved through the course of the journey through the pandemic. The aim of this perspective is to address the importance of the food packaging industry (from the COVID-19 point of view) and to highlight the unpreparedness of the food packaging materials, for times as these. As the world has been asked to learn to live with Corona, improvisations are definitely necessary, the lapses in the system need to be rectified, and the entire packaging industry has to go through fortification to co-exist with Corona or confront something worse than Corona. This discussion is set out to understand the gravity of the actual situation, assimilating information available from the scattered shreds of reports. Food packaging materials were used, and plastic wastes were generated in bulks, single-use plastics for fear of contamination gained prominence, leading to an enormous turnover of wastes. Fear of Corona, sprayed overloads of sanitizers and disinfectants on food package material surfaces for surface sterilization. The food packages were tailored for food containment needs, never were they planned for sanitizer sprays. The consequences of these sanitization procedures are unprecedented, neglected and in the post-COVID-19 phase no action appears to have been taken. Corona took us by surprise this time, but next time atleast the food packaging industry needs to be fully equipped. Speculated consequences have been reviewed and plausible suggestions have been proposed. The need for extensive research focus in this direction in exploring the ground-reality has been highlighted.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India.
| |
Collapse
|
18
|
Semple KE, Zhou C, Rojas OJ, Nkeuwa WN, Dai C. Moulded pulp fibers for disposable food packaging: A state-of-the-art review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Etxabide A, Young B, Bremer PJ, Kilmartin PA. Non-permanent primary food packaging materials assessment: Identification, migration, toxicity, and consumption of substances. Compr Rev Food Sci Food Saf 2022; 21:4130-4145. [PMID: 35791070 DOI: 10.1111/1541-4337.13001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 01/28/2023]
Abstract
Almost all processed food comes packaged in either plastic, glass, metal, or paper and paperboard materials, and many packaging materials are disposed of after a single use (linear economy). Based on the concept of a circular economy, the recycling of food packaging materials has become one of the main targets for industries and regulators around the world. However, recycling presents particular challenges, mainly related to the recycled material composition, which determines its reusability, application, functionality, and chemical safety. In this latter matter, it has been demonstrated that the use of recycled food packaging materials increases the number and possible sources of substances that could be present in the packaging material, which is of concern as substances that can migrate into food and cause health hazards upon consumption. This review compiles information regarding substances detected in non-permanent food packaging materials, focusing mainly on plastics, paper, and paperboards. The compilation of literature studies (110 research articles) on the presence of intentionally added substances (IAS) and non-intentionally added substances (NIAS) in food packaging materials, their migration, toxicity, and dietary exposure has been summarized, evaluated, and discussed. In addition, current sustainable food packaging trends have been mentioned. Finally, approaches to reduce the presence, migration, and potential exposure to substances that have migrated from packaging materials into food have been reviewed.
Collapse
Affiliation(s)
- Alaitz Etxabide
- School of Chemical Sciences 302, University of Auckland, Auckland, New Zealand
| | - Brent Young
- School of Chemical Sciences 302, University of Auckland, Auckland, New Zealand
| | - Phil J Bremer
- Department of Food Science, University of Otago, Dunedin, New Zealand.,New Zealand Food Safety Science & Research Centre, Massey University, Palmerston North, New Zealand
| | - Paul A Kilmartin
- School of Chemical Sciences 302, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Chapke K, Gandhi K, Lata K, Sharma R, Mann B, Singh N. Migration study of chemical additives from low density polyethylene (LDPE) into dahi. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3283-3295. [PMID: 35872732 PMCID: PMC9304528 DOI: 10.1007/s13197-022-05453-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Dahi is widely used fermented milk product in India. Low Density Polyethylene (LDPE) is the most extensively used packaging material for Dahi in India. The present study was conducted to develop the analytical methods for extraction and migration of chemical additives from LDPE into dahi. Characterization of dahi packaging materials collected from five different firms was done by Fourier Transform Infrared Spectroscopy. Focused ultrasound solid liquid extraction method was observed to be better as compared to solid liquid extraction method as the former extracted maximum additives from the LDPE. Out of total 76 chemical additives extracted from LDPE, only eight (10.52%) matched with the existing positive list of polyolefins prescribed by Bureau of Indian Standads (BIS). The overall migration of chemical additives from all the LDPE samples was below their maximum limit as given by BIS standards. Chemical additives which migrated into the simulants included the antioxidants, fatty acids and their derivatives, unreacted hydrocarbons, plasticizers, lubricants and surfactant etc.
Collapse
Affiliation(s)
| | | | - Kiran Lata
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Solan, 173229 Himachal Pradesh India
| | | | | | - Nishi Singh
- Dairy Chemistry Division, NDRI, Karnal, India
| |
Collapse
|
21
|
Geueke B, Groh KJ, Maffini MV, Martin OV, Boucher JM, Chiang YT, Gwosdz F, Jieh P, Kassotis CD, Łańska P, Myers JP, Odermatt A, Parkinson LV, Schreier VN, Srebny V, Zimmermann L, Scheringer M, Muncke J. Systematic evidence on migrating and extractable food contact chemicals: Most chemicals detected in food contact materials are not listed for use. Crit Rev Food Sci Nutr 2022; 63:9425-9435. [PMID: 35585831 DOI: 10.1080/10408398.2022.2067828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Food packaging is important for today's globalized food system, but food contact materials (FCMs) can also be a source of hazardous chemicals migrating into foodstuffs. Assessing the impacts of FCMs on human health requires a comprehensive identification of the chemicals they contain, the food contact chemicals (FCCs). We systematically compiled the "database on migrating and extractable food contact chemicals" (FCCmigex) using information from 1210 studies. We found that to date 2881 FCCs have been detected, in a total of six FCM groups (Plastics, Paper & Board, Metal, Multi-materials, Glass & Ceramic, and Other FCMs). 65% of these detected FCCs were previously not known to be used in FCMs. Conversely, of the more than 12'000 FCCs known to be used, only 1013 are included in the FCCmigex database. Plastic is the most studied FCM with 1975 FCCs detected. Our findings expand the universe of known FCCs to 14,153 chemicals. This knowledge contributes to developing non-hazardous FCMs that lead to safer food and support a circular economy.
Collapse
Affiliation(s)
- Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Ksenia J Groh
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | | | | | | | - Yu-Ting Chiang
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | | | - Phoenix Jieh
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Paulina Łańska
- Centre for Pollution Research and Policy, Brunel University, Uxbridge, UK
| | - John Peterson Myers
- Environmental Health Sciences and Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Verena N Schreier
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Srebny
- Biointerfaces Lab, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | | | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland
| |
Collapse
|
22
|
Xi E, Zhao Y, Xie Y, Gao N, Bian Z, Zhu G. Biological Application of Porous Aromatic Frameworks: State of the Art and Opportunities. J Phys Chem Lett 2021; 12:11050-11060. [PMID: 34747622 DOI: 10.1021/acs.jpclett.1c03209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porous aromatic frameworks (PAFs) were first reported in 2009 and have quickly attracted much attention because of their exceptionally ultrahigh specific surface area (5800 m2·g-1). Uniquely, PAFs are constructed from carbon-carbon-bond-linked aromatic-based building units, which render PAFs extremely stable in various environments. At present, PAFs have been applied in many fields, such as adsorption, catalysis, ion exchange, electrochemistry, and so on. However, for such a unique material, its application in the biological fields is still rarely explored. Therefore, this Perspective introduces the reported application of PAFs in biological fields, for instance, diagnosis and treatment of diseases, artificial enzymes, drug delivery, and extraction of bioactive substances. Major challenges and opportunities for future research on PAFs in biology and biomedicine are identified in diagnostic platforms, novel drug carriers/antidotes, and novel artificial enzymes.
Collapse
Affiliation(s)
- Enpeng Xi
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Yue Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Yiling Xie
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Nan Gao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Zheng Bian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| |
Collapse
|
23
|
Identification of Potential Migrants in Polyethylene Terephthalate Samples of Ecuadorian Market. Polymers (Basel) 2021; 13:polym13213769. [PMID: 34771326 PMCID: PMC8588110 DOI: 10.3390/polym13213769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Polyethylene terephthalate (PET) is the plastic packaging material most widely used to produce bottles intended for contact with food and beverages. However, PET is not inert, and therefore, some chemical compounds present in PET could migrate to food or beverages in contact, leading to safety issues. To evaluate the safety of PET samples, the identification of potential migrants is required. In this work, eight PET samples obtained from the Ecuadorian market at different phases of processing were studied using a well-known methodology based on a solvent extraction followed by gas chromatography–mass spectrometry analysis and overall migration test. Several chemical compounds were identified and categorized as lubricants (carboxylic acids with chain length of C12 to C18), plasticizers (triethyl phosphate, diethyl phthalate), thermal degradation products (p-xylene, benzaldehyde, benzoic acid), antioxidant degradation products (from Irgafos 168 and Irganox), and recycling indicator compounds (limonene, benzophenone, alkanes, and aldehydes). Additionally, overall migration experiments were performed in PET bottles, resulting in values lower than the overall migration limit (10 mg/dm2); however, the presence of some compounds identified in the samples could be related to contamination during manufacturing or to the use of recycled PET-contaminated flakes. In this context, the results obtained in this study could be of great significance to the safety evaluation of PET samples in Ecuador and would allow analyzing the PET recycling processes and avoiding contamination by PET flakes from nonfood containers.
Collapse
|
24
|
Wang K. Expanding the definition of healthy eating: Incorporating food packaging, kitchen equipment, and food storage. Explore (NY) 2021; 18:129-130. [PMID: 34785156 DOI: 10.1016/j.explore.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Sarkar T, Salauddin M, Pati S, Chakraborty R, Shariati MA, Rebezov M, Ermolaev V, Mirgorodskaya M, Pateiro M, Lorenzo JM. The Fuzzy Cognitive Map–Based Shelf-life Modelling for Food Storage. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02147-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Incorporation of Natural Blueberry, Red Grapes and Parsley Extract By-Products into the Production of Chitosan Edible Films. Polymers (Basel) 2021; 13:polym13193388. [PMID: 34641203 PMCID: PMC8513039 DOI: 10.3390/polym13193388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/02/2023] Open
Abstract
The aim of the research was to produce edible packaging based on chitosan with the addition of various concentrations of extracts of blueberry, red grape and parsley marcs. Packaging was made from extrudate extracts, which were subsequently analyzed by physicochemical methods: zeta-potential, gas barrier properties, thickness, water content, solubility, swelling degree, textural properties, total polyphenol content (TPC), polyphenols by high pressure liquid chromatography (HPLC), antioxidant activity, attenuated total reflectance Fourier-Transform spectroscopy (FTIR), antimicrobial activity and determination of migration of bioactive substances. The results indicate that a higher content of plant extracts have a statistically significant (p < 0.05) influence on properties of experimentally produced edible films. Edible films produced with the highest concentrations of red grapes marc extracts showed the most advantageous properties since antimicrobial activity against E. coli were the highest in this kind of produced film. The physical properties of edible films were also improved by the addition of extracts; gas permeability toward oxygen can be defined as advantageous, as can swelling degree, which decreased with higher concentrations of extracts. The research emphasized the possibility to use plant foodstuffs by-products in the production of edible/biodegradable films, helping in the overall sustainability and eco-friendliness of food/package production.
Collapse
|
27
|
Han R, Yu C, Tang X, Yu S, Song M, Shen F, Fu P, Hu W, Du L, Wang X, Herrmann H, Wu Y. Release of inhalable particles and viable microbes to the air during packaging peeling: Emission profiles and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117338. [PMID: 34051562 DOI: 10.1016/j.envpol.2021.117338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Packaging is necessary for preserving and delivering products and has significant impacts on human health and the environment. Particle matter (PM) may be released from packages and transferred to the air during a typical peeling process, but little is known about this package-to-air migration route of particles. Here, we investigated the emission profiles of total and biological particles, and the horizontal and vertical dispersion abilities and community structure of viable microbes released from packaging to the air by peeling. The results revealed that a lot of inhalable particles and viable microbes were released from package to the air in different migration directions, and this migration can be regulated by several factors including package material, effective peeling area, peeling speed and angles, as well as the characteristics of the migrant itself. Dispersal of package-borne viable microbes provides direct evidence that viable microbes, including pathogens, can survive the aerosolization caused by peeling and be transferred to air over different distances while remaining alive. Based on the experimental data and visual proof in movies, we speculate that nonbiological particles are package fibers fractured and released to air by the external peeling force exerted on the package and that microbe dispersal is attributed to surface-borne microbe suspension by vibration caused by the peeling force. This investigation provides new information that aerosolized particles can deliver package-borne substances and viable microbes from packaging to the ambient environment, motivating further studies to characterize the health effects of such aerosolized particles and the geographic migration of microbes via packaging.
Collapse
Affiliation(s)
- Ruining Han
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chenglin Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xuening Tang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Song Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Min Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Fangxia Shen
- School of Space and Environment, Beihang University, Beijing, 100083, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Lin Du
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Xinfeng Wang
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Hartmut Herrmann
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research, 04318, Leipzig, Germany
| | - Yan Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
28
|
Alamri M, Qasem AA, Mohamed AA, Hussain S, Ibraheem MA, Shamlan G, Alqah HA, Qasha AS. Food packaging's materials: A food safety perspective. Saudi J Biol Sci 2021; 28:4490-4499. [PMID: 34354435 PMCID: PMC8325021 DOI: 10.1016/j.sjbs.2021.04.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 11/25/2022] Open
Abstract
Food packaging serves purposes of food product safety and easy handling and transport by preventing chemical contamination and enhancing shelf life, which provides convenience for consumers. Various types of materials, including plastics, glass, metals, and papers and their composites, have been used for food packaging. However, owing to consumers' increased health awareness, the significance of transferring harmful materials from packaging materials into foods is of greater concern. This review highlights the interactions of food with packaging materials and elaborates the mechanism, types, and contributing factors of migration of chemical substances from the packaging to foods. Also, various types of chemical migrants from different packaging materials with their possible impacts on food safety and human health are discussed. We conclude with a future outlook based on legislative considerations and ongoing technical contributions to optimization of food-package interactions.
Collapse
Affiliation(s)
- M.S. Alamri
- Department of Food Science and Nutrition, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Akram A.A. Qasem
- Department of Food Science and Nutrition, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdellatif A. Mohamed
- Department of Food Science and Nutrition, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Shahzad Hussain
- Department of Food Science and Nutrition, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mohamed A. Ibraheem
- Department of Food Science and Nutrition, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Hesham A. Alqah
- Department of Food Science and Nutrition, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ali S. Qasha
- Department of Food Science and Nutrition, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
29
|
Katsara K, Kenanakis G, Viskadourakis Z, Papadakis VM. Polyethylene Migration from Food Packaging on Cheese Detected by Raman and Infrared (ATR/FT-IR) Spectroscopy. MATERIALS 2021; 14:ma14143872. [PMID: 34300791 PMCID: PMC8303366 DOI: 10.3390/ma14143872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
For multiple years, food packaging migration has been a major concern in food and health sciences. Plastics, such as polyethylene, are continuously utilized in food packaging for preservation and easy handling purposes during transportation and storage. In this work, three types of cheese, Edam, Kefalotyri and Parmesan, of different hardness were studied under two complementary vibrational spectroscopy methods, ATR-FTIR and Raman spectroscopy, to determine the migration of low-density polyethylene from plastic packaging to the surface of cheese samples. The experimental duration of this study was set to 28 days due to the degradation time of the selected cheese samples, which is clearly visible after 1 month in refrigerated conditions at 4 °C. Raman and ATR-FTIR measurements were performed at a 4–3–4–3 day pattern to obtain comparative results. Initially, consistency/repeatability measurement tests were performed on Day0 for each sample of all cheese specimens to understand if there is any overlap between the characteristic Raman and ATR-FTIR peaks of the cheese with the ones from the low-density polyethylene package. We provide evidence that on Day14, peaks of low-density polyethylene appeared due to polymeric migration in all three cheese types we tested. In all cheese samples, microbial outgrowth started to develop after Day21, as observed visually and under the bright-field microscope, causing peak reverse. Food packaging migration was validated using two different approaches of vibrational spectroscopy (Raman and FT-IR), revealing that cheese needs to be consumed within a short time frame in refrigerated conditions at 4 °C.
Collapse
Affiliation(s)
- Klytaimnistra Katsara
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece;
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece; (G.K.); (Z.V.)
| | - Zacharias Viskadourakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece; (G.K.); (Z.V.)
| | - Vassilis M. Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece;
- Correspondence: ; Tel.: +30-281-03-912-67
| |
Collapse
|
30
|
Kato LS, Conte-Junior CA. Safety of Plastic Food Packaging: The Challenges about Non-Intentionally Added Substances (NIAS) Discovery, Identification and Risk Assessment. Polymers (Basel) 2021; 13:2077. [PMID: 34202594 PMCID: PMC8271870 DOI: 10.3390/polym13132077] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Several food contact materials (FCMs) contain non-intentionally added substances (NIAS), and most of the substances that migrate from plastic food packaging are unknown. This review aimed to situate the main challenges involving unknown NIAS in plastic food packaging in terms of identification, migration tests, prediction, sample preparation, determination methods and risk assessment trials. Most studies have identified NIAS in plastic materials as polyurethane adhesives (PU), polyethylene terephthalate (PET), polyester coatings, polypropylene materials (PP), multilayers materials, plastic films, polyvinyl chloride (PVC), recycled materials, high-density polyethylene (HDPE) and low-density polyethylene (LDPE). Degradation products are almost the primary source of NIAS in plastic FCMs, most from antioxidants as Irganox 1010 and Irgafos 168, following by oligomers and side reaction products. The NIAS assessment in plastics FCMs is usually made by migration tests under worst-case conditions using food simulants. For predicted NIAS, targeted analytical methods are applied using GC-MS based methods for volatile NIAS and GC-MS and LC-MS based methods for semi- and non-volatile NIAS; non-targeted methods to analyze unknown NIAS in plastic FCMs are applied using GC and LC techniques combined with QTOF mass spectrometry (HRMS). In terms of NIAS risk assessment and prioritization, the threshold of toxicological concern (TTC) concept is the most applied tool for risk assessment. Bioassays with sensitive analytical techniques seem to be an efficient method to identify NIAS and their hazard to human exposure; the combination of genotoxicity testing with analytical chemistry could allow the Cramer class III TTC application to prioritize unknown NIAS. The scientific justification for implementing a molecular weight-based cut-off (<1000 Da) in the risk assessment of FCMs should be reevaluated. Although official guides and opinions are being issued on the subject, the whole chain's alignment is needed, and more specific legislation on the steps to follow to get along with NIAS.
Collapse
Affiliation(s)
- Lilian Seiko Kato
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology, (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Carlos A. Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology, (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
31
|
Rodgers K, Mayes WM, Santoro O, Redshaw C, Mccumskay R, Parsons DR. Comparative assessment of marine weathering of ROP-derived biopolymers against conventional plastics. MARINE POLLUTION BULLETIN 2021; 167:112272. [PMID: 33774483 DOI: 10.1016/j.marpolbul.2021.112272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Bio-based plastics were designed to replace single-use plastics and to cause less post-consumer environmental damage. This paper assesses the weathering of four bio-based polymers created by ring opening polymerization (ROP) promoted by a previously reported Ti-based catalyst, to detect any problems before production was scaled up. Samples were aged in seawater to identify degradation products and monitor structural changes. Surfaces evidenced degradation and a range of leaching products was observed. Aside from compounds used in the preparation of the plastics (i.e. residual monomers and benzyl alcohol), the degradation products included carboxylic acids (often found in plastic leachate), oxacyclohexadecan-2-one (potentially toxic to aquatic life) and triphenylmethane (potential carcinogen). Overall, there were fewer structural changes in the fossil fuel based polymer (PS) and in the commercially available bio-based plastic studied for comparison purposes than the lab based bio-based polymers.
Collapse
Affiliation(s)
- Karen Rodgers
- Plastics Collaboratory, Energy and Environment Institute, The University of Hull, Cottingham Road, Hull HU6 7RX, UK.
| | - William M Mayes
- Department of Geography, Geology and Environment, The University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Orlando Santoro
- Plastics Collaboratory, Department of Chemistry, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Carl Redshaw
- Plastics Collaboratory, Department of Chemistry, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Rick Mccumskay
- Plastics Collaboratory, Energy and Environment Institute, The University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Daniel R Parsons
- Plastics Collaboratory, Energy and Environment Institute, The University of Hull, Cottingham Road, Hull HU6 7RX, UK
| |
Collapse
|
32
|
Groh KJ, Geueke B, Martin O, Maffini M, Muncke J. Overview of intentionally used food contact chemicals and their hazards. ENVIRONMENT INTERNATIONAL 2021; 150:106225. [PMID: 33272655 DOI: 10.1016/j.envint.2020.106225] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 05/24/2023]
Abstract
Food contact materials (FCMs) are used to make food contact articles (FCAs) that come into contact with food and beverages during, e.g., processing, storing, packaging, or consumption. FCMs/FCAs can cause chemical contamination of food when migration of their chemical constituents (known as food contact chemicals, FCCs) occurs. Some FCCs are known to be hazardous. However, the total extent of exposure to FCCs, as well as their health and environmental effects, remain unknown, because information on chemical structures, use patterns, migration potential, and health effects of FCCs is often absent or scattered across multiple sources. Therefore, we initiated a research project to systematically collect, analyze, and publicly share information on FCCs. As a first step, we compiled a database of intentionally added food contact chemicals (FCCdb), presented here. The FCCdb lists 12'285 substances that could possibly be used worldwide to make FCMs/FCAs, identified based on 67 FCC lists from publicly available sources, such as regulatory lists and industry inventories. We further explored FCCdb chemicals' hazards using several authoritative sources of hazard information, including (i) classifications for health and environmental hazards under the globally harmonized system for classification and labeling of chemicals (GHS), (ii) the identification of chemicals of concern due to endocrine disruption or persistence related hazards, and (iii) the inclusion on selected EU- or US-relevant regulatory lists of hazardous chemicals. This analysis prioritized 608 hazardous FCCs for further assessment and substitution in FCMs/FCAs. Evaluation based on non-authoritative, predictive hazard data (e.g., by in silico modeling or literature analysis) highlighted an additional 1411 FCCdb substances that could thus present similar levels of concern, but have not been officially classified so far. Lastly, for over a quarter of all FCCdb chemicals no hazard information could be found in the sources consulted, revealing a significant data gap and research need.
Collapse
Affiliation(s)
- Ksenia J Groh
- Food Packaging Forum, Staffelstrasse 10, 8045 Zurich, Switzerland.
| | - Birgit Geueke
- Food Packaging Forum, Staffelstrasse 10, 8045 Zurich, Switzerland
| | - Olwenn Martin
- Institute for the Environment, Health and Societies, Brunel University London, Quad North 17a, Kingston Lane, Uxbridge UB8 3PH, United Kingdom
| | | | - Jane Muncke
- Food Packaging Forum, Staffelstrasse 10, 8045 Zurich, Switzerland
| |
Collapse
|
33
|
De Leo F, Coluccia B, Miglietta PP, Serio F. Food contact materials recalls and international trade relations: an analysis of the nexus between RASFF notifications and product origin. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107518] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Sessa F, Polito R, Monda V, Scarinci A, Salerno M, Carotenuto M, Cibelli G, Valenzano A, Campanozzi A, Mollica MP, Monda M, Messina G. Effects of a Plastic-Free Lifestyle on Urinary Bisphenol A Levels in School-Aged Children of Southern Italy: A Pilot Study. Front Public Health 2021; 9:626070. [PMID: 33598445 PMCID: PMC7882684 DOI: 10.3389/fpubh.2021.626070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine disruptor (ED) frequently used in food packaging. BPA is used as a monomer in the manufacture of some food packaging. This study aimed to evaluate the urinary BPA concentration in an Italian pediatric cohort, testing the levels of this ED over a period of 6 months, evaluating the effects of a diet regimen with a reduction of Plastic Food Packaging (PFP). One hundred thirty Italian children were enrolled and divided into two groups "School Canteen" and "No School Canteen." The first group consumed one meal at school using a plastic-free service for 5 days/weeks, while the other group did not modify their normal meal-time habits. The BPA levels were tested in urine samples at three time points: T0, is the time before the application of the plastic-free regimen diet; T3, 3 months later; and T6, 6 months later. A reduction of urine BPA levels was detected in the "School Canteen" group. In particular, the reduction was significant analyzing both the intra (among the three testing times) group and inter (between "School Canteen" and "No School Canteen") group variability. Our results show the effects of a diet regimen with a reduction of PFP, demonstrating a connection between urinary BPA levels and food packaging.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli,”Naples, Italy
| | - Vincenzo Monda
- Section of Human Physiology and Unit of Dietetics and Sports Medicine, Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli,”Naples, Italy
| | - Alessia Scarinci
- Department of Education Sciences, Psychology, and Communication, University of Bari, Bari, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli,”Naples, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angelo Campanozzi
- Pediatrics, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Maria Pina Mollica
- Section of Human Physiology and Unit of Dietetics and Sports Medicine, Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli,”Naples, Italy
| | - Marcellino Monda
- Section of Human Physiology and Unit of Dietetics and Sports Medicine, Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli,”Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
35
|
Vighi M, Bayo J, Fernández-Piñas F, Gago J, Gómez M, Hernández-Borges J, Herrera A, Landaburu J, Muniategui-Lorenzo S, Muñoz AR, Rico A, Romera-Castillo C, Viñas L, Rosal R. Micro and Nano-Plastics in the Environment: Research Priorities for the Near Future. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 257:163-218. [PMID: 34487249 DOI: 10.1007/398_2021_69] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plastic litter dispersed in the different environmental compartments represents one of the most concerning problems associated with human activities. Specifically, plastic particles in the micro and nano size scale are ubiquitous and represent a threat to human health and the environment. In the last few decades, a huge amount of research has been devoted to evaluate several aspects of micro/nano-plastic contamination: origin and emissions, presence in different compartments, environmental fate, effects on human health and the environment, transfer in the food web and the role of associated chemicals and microorganisms. Nevertheless, despite the bulk of information produced, several knowledge gaps still exist. The objective of this paper is to highlight the most important of these knowledge gaps and to provide suggestions for the main research needs required to describe and understand the most controversial points to better orient the research efforts for the near future. Some of the major issues that need further efforts to improve our knowledge on the exposure, effects and risk of micro/nano-plastics are: harmonization of sampling procedures; development of more accurate, less expensive and less time-consuming analytical methods; assessment of degradation patterns and environmental fate of fragments; evaluating the capabilities for bioaccumulation and transfer to the food web; and evaluating the fate and the impact of chemicals and microorganisms associated with micro/nano-plastics. The major gaps in all sectors of our knowledge, from exposure to potentially harmful effects, refer to small size microplastics and, particularly, to the occurrence, fate and effects of nanoplastics.
Collapse
Affiliation(s)
| | - Javier Bayo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain
| | | | - Jesús Gago
- Instituto Español de Oceanografía (IEO), Vigo, Spain
| | - May Gómez
- EOMAR: Marine Ecophysiology Group, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Alicia Herrera
- EOMAR: Marine Ecophysiology Group, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Soledad Muniategui-Lorenzo
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - Antonio-Román Muñoz
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Andreu Rico
- IMDEA-Water Institute, Madrid, Spain
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Cristina Romera-Castillo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar-CSIC, Barcelona, Spain
| | - Lucía Viñas
- Instituto Español de Oceanografía (IEO), Vigo, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, Madrid, Spain.
| |
Collapse
|
36
|
Wissam Z. Levels of BPA in makdous, a traditional Syrian food, using solid-phase extraction followed by HPLC. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-97902020000419094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
He NX, Bayen S. An overview of chemical contaminants and other undesirable chemicals in alcoholic beverages and strategies for analysis. Compr Rev Food Sci Food Saf 2020; 19:3916-3950. [PMID: 33337040 DOI: 10.1111/1541-4337.12649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022]
Abstract
The presence of chemical contaminant in alcoholic beverages is a widespread and notable problem with potential implications for human health. With the complexity and wide variation in the raw materials, production processes, and contact materials involved, there are a multitude of opportunities for a diverse host of undesirable compounds to make their way into the final product-some of which may currently remain unidentified and undetected. This review provides an overview of the notable contaminants (including pesticides, environmental contaminants, mycotoxins, process-induced contaminants, residues of food contact material [FCM], and illegal additives) that have been detected in alcoholic products thus far based on prior reviews and findings in the literature, and will additionally consider the potential sources for contamination, and finally discuss and identify gaps in current analytical strategies. The findings of this review highlight a need for further investigation into unwanted substances in alcoholic beverages, particularly concerning chemical migrants from FCMs, as well as a need for comprehensive nontargeted analytical techniques capable of determining unanticipated contaminants.
Collapse
Affiliation(s)
- Nancy Xiaohe He
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
38
|
Ong HT, Samsudin H, Soto-Valdez H. Migration of endocrine-disrupting chemicals into food from plastic packaging materials: an overview of chemical risk assessment, techniques to monitor migration, and international regulations. Crit Rev Food Sci Nutr 2020; 62:957-979. [DOI: 10.1080/10408398.2020.1830747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hooi-Theng Ong
- Seberang Perai Selatan District Health Office, Nibong Tebal, Pulau Pinang, Malaysia
| | - Hayati Samsudin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Herlinda Soto-Valdez
- Laboratorio de Envases, Centro de Investigaciόn en Alimentaciόn y Desarrollo, A.C., Hermosillo Sonora, Mexico
| |
Collapse
|
39
|
Tian L, Zheng J, Goodyer CG, Bayen S. Non-targeted screening of plastic-related chemicals in food collected in Montreal, Canada. Food Chem 2020; 326:126942. [DOI: 10.1016/j.foodchem.2020.126942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023]
|
40
|
Giuliani A, Zuccarini M, Cichelli A, Khan H, Reale M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5655. [PMID: 32764471 PMCID: PMC7460375 DOI: 10.3390/ijerph17165655] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
Phthalates are a huge class of chemicals with a wide spectrum of industrial uses, from the manufacture of plastics to food contact applications, children's toys, and medical devices. People and animals can be exposed through different routes (i.e., ingestion, inhalation, dermal, or iatrogenic exposure), as these compounds can be easily released from plastics to water, food, soil, air, making them ubiquitous environmental contaminants. In the last decades, phthalates and their metabolites have proven to be of concern, particularly in products for pregnant women or children. Moreover, many authors reported high concentrations of phthalates in soft drinks, mineral waters, wine, oil, ready-to-eat meals, and other products, as a possible consequence of their accumulation along the food production chain and their accidental release from packaging materials. However, due to their different physical and chemical properties, phthalates do not have the same human and environmental impacts and their association to several human diseases is still under debate. In this review we provide an overview of phthalate toxicity, pointing out the health and legal issues related to their occurrence in several types of food and beverage.
Collapse
Affiliation(s)
- Angela Giuliani
- "G.d'Annunzio" School of Advanced Studies, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Aging Research Center, Ce.S.I., "G. d'Annunzio" University Foundation, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Marcella Reale
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Interuniversity Center on Interactions between Electromagnetic Fields and Biosystems, National Research Council-Institute for Electromagnetic Detection of The Environment, (ICEMB-CNR-IREA), 80124 Naples, Italy
| |
Collapse
|
41
|
Estimation of Dietary Exposure to Contaminants Transferred from the Packaging in Fatty Dry Foods Based on Cereals. Foods 2020; 9:foods9081038. [PMID: 32752291 PMCID: PMC7466214 DOI: 10.3390/foods9081038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Food packaging has received special attention from the food safety standpoint since it could be a potential source of contamination through the migration of chemical substances from the packaging material into food. The assessment of the exposure through the diet to these contaminants from food packaging is necessary. In this work, an estimation of dietary exposure of the young Spanish population (1–17 years) to target chemicals from packaging for fatty dried foods based on cereals was assessed. For this purpose, a gas chromatography coupled to mass spectrometry (GC–MS) method was developed for screening of volatile and semivolatile compounds, potential migrants from the packaging. Then, this technique was used to quantify 8 target analytes, which were previously identified in the packaging (including phthalates, acetyl tributyl citrate (ATBC), butylated hydroxytoluene (BHT) and octocrylene), in composite food samples of fatty cereals prepared according to the consumption data for different age groups. Among the phthalates, exposure to diethyl phthalate (DEP) was the highest for the three groups considered (0.0761–0.545 µg/kg body weight/day), followed by bis(2-ethylhxyl)phathalate (DEHP), while the lowest mean intake was found for di-n-octyl phathalate (DNOP; 0.00463–0.0209 µg/kg body weight/day). The estimated dietary exposures did not exceed for any of the analytes the corresponding established tolerable daily intakes.
Collapse
|
42
|
Li F, Zhang C, Weng Y, Diao X, Zhou Y, Song X. Enhancement of Gas Barrier Properties of Graphene Oxide/Poly (Lactic Acid) Films Using a Solvent-free Method. MATERIALS 2020; 13:ma13133024. [PMID: 32640688 PMCID: PMC7372362 DOI: 10.3390/ma13133024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 11/23/2022]
Abstract
Graphene oxide(GO)/polylactic acid (PLA) nanocomposite, prepared using a solvent-free melt mixing processing, is investigated as a potential oxygen barrier packaging film in this work. In order to disperse GO homogeneously in PLA matrix, hydrophobic silane coupling agent, i.e., γ-(2,3-epoxypropoxy)propyltrimethoxysilane (KH560), is used to modify the graphene oxide sheets. The modified GO is able to be well bonded to the PLA due to the formation of covalent bonds between the epoxy groups of KH560 and the carboxyl and hydroxyl terminal groups of PLA. Furthermore, the thermal stability of GO is enhanced due to the long alkyl side chain of KH560, which could also increase the crystallinity of PLA. As a result, the crystallinity of PLA is significantly improved because of the linear KH560 chains, which can act as nucleating agents to improve the crystallization. The KH560-GO helps to reduce the O2 permeability of KH560-GO/PLA composite films via a dual-action mechanism: (1) providing physical barrier due to their native barrier properties, and (2) by resulting in higher degree of crystallinity. The as-prepared KH560-GO0.75/PLA is able to exhibit ca. 33% and ca. 13% decrease in the PO2 than the neat PLA and GO0.75/PLA film, respectively. Finally, the mechanical properties and impact fractured surfaces indicate that the increase in the tensile strength and elongation at break value of KH560-GO/PLA are due to the strong interfacial adhesion and the strong bonding between the epoxy group of KH560-GO and hydroxyl and carboxyl acid terminal groups of PLA matrix.
Collapse
Affiliation(s)
- Fenfen Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China;
| | - Caili Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China;
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (Y.Z.); (X.S.)
- Correspondence: (C.Z.); (Y.W.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China;
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (Y.Z.); (X.S.)
- Correspondence: (C.Z.); (Y.W.)
| | - Xiaoqian Diao
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (Y.Z.); (X.S.)
| | - Yingxin Zhou
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (Y.Z.); (X.S.)
| | - Xinyu Song
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (Y.Z.); (X.S.)
| |
Collapse
|
43
|
Aliotta L, Vannozzi A, Panariello L, Gigante V, Coltelli MB, Lazzeri A. Sustainable Micro and Nano Additives for Controlling the Migration of a Biobased Plasticizer from PLA-Based Flexible Films. Polymers (Basel) 2020; 12:polym12061366. [PMID: 32560520 PMCID: PMC7361961 DOI: 10.3390/polym12061366] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/21/2022] Open
Abstract
Plasticized poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blend-based films containing chitin nanofibrils (CN) and calcium carbonate were prepared by extrusion and compression molding. On the basis of previous studies, processability was controlled by the use of a few percent of a commercial acrylic copolymer acting as melt strength enhancer and calcium carbonate. Furthermore, acetyl n-tributyl citrate (ATBC), a renewable and biodegradable plasticizer (notoriously adopted in PLA based products) was added to facilitate not only the processability but also to increase the mechanical flexibility and toughness. However, during the storage of these films, a partial loss of plasticizer was observed. The consequence of this is not only correlated to the change of the mechanical properties making the films more rigid but also to the crystallization and development of surficial oiliness. The effect of the addition of calcium carbonate (nanometric and micrometric) and natural nanofibers (chitin nanofibrils) to reduce/control the plasticizer migration was investigated. The prediction of plasticizer migration from the films’ core to the external surface was carried out and the diffusion coefficients, obtained by regression of the experimental migration data plotted as the square root of time, were evaluated for different blends compositions. The results of the diffusion coefficients, obtained thanks to migration tests, showed that the CN can slow the plasticizer migration. However, the best result was achieved with micrometric calcium carbonate while nanometric calcium carbonate results were less effective due to favoring of some bio polyesters’ chain scission. The use of both micrometric calcium carbonate and CN was counterproductive due to the agglomeration phenomena that were observed.
Collapse
Affiliation(s)
- Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (L.A.); (M.-B.C.)
| | - Alessandro Vannozzi
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (L.A.); (M.-B.C.)
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.P.); (V.G.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| |
Collapse
|
44
|
Muncke J, Andersson AM, Backhaus T, Boucher JM, Carney Almroth B, Castillo Castillo A, Chevrier J, Demeneix BA, Emmanuel JA, Fini JB, Gee D, Geueke B, Groh K, Heindel JJ, Houlihan J, Kassotis CD, Kwiatkowski CF, Lefferts LY, Maffini MV, Martin OV, Myers JP, Nadal A, Nerin C, Pelch KE, Fernández SR, Sargis RM, Soto AM, Trasande L, Vandenberg LN, Wagner M, Wu C, Zoeller RT, Scheringer M. Impacts of food contact chemicals on human health: a consensus statement. Environ Health 2020; 19:25. [PMID: 32122363 PMCID: PMC7053054 DOI: 10.1186/s12940-020-0572-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/04/2020] [Indexed: 05/19/2023]
Abstract
Food packaging is of high societal value because it conserves and protects food, makes food transportable and conveys information to consumers. It is also relevant for marketing, which is of economic significance. Other types of food contact articles, such as storage containers, processing equipment and filling lines, are also important for food production and food supply. Food contact articles are made up of one or multiple different food contact materials and consist of food contact chemicals. However, food contact chemicals transfer from all types of food contact materials and articles into food and, consequently, are taken up by humans. Here we highlight topics of concern based on scientific findings showing that food contact materials and articles are a relevant exposure pathway for known hazardous substances as well as for a plethora of toxicologically uncharacterized chemicals, both intentionally and non-intentionally added. We describe areas of certainty, like the fact that chemicals migrate from food contact articles into food, and uncertainty, for example unidentified chemicals migrating into food. Current safety assessment of food contact chemicals is ineffective at protecting human health. In addition, society is striving for waste reduction with a focus on food packaging. As a result, solutions are being developed toward reuse, recycling or alternative (non-plastic) materials. However, the critical aspect of chemical safety is often ignored. Developing solutions for improving the safety of food contact chemicals and for tackling the circular economy must include current scientific knowledge. This cannot be done in isolation but must include all relevant experts and stakeholders. Therefore, we provide an overview of areas of concern and related activities that will improve the safety of food contact articles and support a circular economy. Our aim is to initiate a broader discussion involving scientists with relevant expertise but not currently working on food contact materials, and decision makers and influencers addressing single-use food packaging due to environmental concerns. Ultimately, we aim to support science-based decision making in the interest of improving public health. Notably, reducing exposure to hazardous food contact chemicals contributes to the prevention of associated chronic diseases in the human population.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Justin M Boucher
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Barbara A Demeneix
- Department Adaptation du Vivant, Unité mixte de recherche 7221, CNRS (French National Research Center) and Muséum National d'Histoire Naturelle, Paris, France
| | - Jorge A Emmanuel
- Institute of Environmental & Marine Sciences, Silliman University, Dumaguete, Philippines
| | - Jean-Baptiste Fini
- Department Adaptation du Vivant, Unité mixte de recherche 7221, CNRS (French National Research Center) and Muséum National d'Histoire Naturelle, Paris, France
| | - David Gee
- Institute of Environment, Health and Societies, Brunel University, Uxbridge, UK
| | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Ksenia Groh
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA, USA
| | - Jane Houlihan
- Healthy Babies Bright Futures, Charlottesville, V.A., USA
| | | | | | - Lisa Y Lefferts
- Center for Science in the Public Interest, Washington, DC, USA
| | | | - Olwenn V Martin
- Institute for the Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - John Peterson Myers
- Environmental Health Sciences, Charlottesville, Virginia, USA
- Department of Chemistry, Carnegie, Mellon University, Pittsburgh, PA, USA
| | - Angel Nadal
- IDiBE and CIBERDEM, Universitas Miguel Hernandez, Elche, Spain
| | | | | | | | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ana M Soto
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
- RECETOX, Masaryk University, Brno, Czech Republic
| |
Collapse
|
45
|
Jiang ZW, Yu WW, Li Y, Zhu L, Hu CY. Migration of copper from nanocopper/polypropylene composite films and its functional property. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Plasticizer loss in a complex system (polyamide 12): Kinetics, prediction and its effects on mechanical properties. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.108985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Identification and Migration Studies of Photolytic Decomposition Products of UV-Photoinitiators in Food Packaging. Molecules 2019; 24:molecules24193592. [PMID: 31590450 PMCID: PMC6804238 DOI: 10.3390/molecules24193592] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022] Open
Abstract
UV-curable inks, coatings, and adhesives are being increasingly used in food packaging systems. When exposed to UV energy, UV-photoinitiators (PI's) present in the formulations produce free radicals which catalyze polymerization of monomers and pre-polymers into resins. In addition to photopolymerization, other free radical reactions occur in these systems resulting in the formation of chemically varied photolytic decomposition products, many of which are low molecular weight chemical species with high migration potential. This research conducted model experiments in which 24 commonly used PI's were exposed to UV-energy at the typical upper limit of commercial UV-printing press conditions. UV-irradiated PI's were analyzed by gas chromatography-mass spectrometry (GC-MS) and electrospray-mass spectrometry (ESI-MS) in order to identify photolytic decomposition products. Subsequently, migration studies of 258 UV-cure food packaging samples were conducted using GC-MS; PI's and photolytic decomposition products were found in nearly all samples analyzed. One hundred-thirteen photolytic decomposition products were identified. Eighteen intact PI's and 21 photolytic decomposition products were observed as migrants from the 258 samples analyzed, and these were evaluated for frequency of occurrence and migratory concentration range. The most commonly observed PI's were 2-hydroxy-2-methylpropiophenone and benzophenone. The most commonly observed photolytic decomposition products were 2,4,6-trimethylbenzaldehyde and 1-phenyl-2-butanone. This compilation of PI photolytic decomposition data and associated migration data will aid industry in identifying and tracing non-intentionally added substances (NIAS) in food packaging materials.
Collapse
|
48
|
Migration of styrene monomer from polystyrene packaging materials into foods: Characterization and safety evaluation. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Yuan H, Hao Q, Su R, Qi W, He Z. Migration of phthalates from polyvinyl chloride film to fatty food simulants: experimental studies and model application. J Verbrauch Lebensm 2019. [DOI: 10.1007/s00003-019-01249-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
Banton MI, Bus JS, Collins JJ, Delzell E, Gelbke HP, Kester JE, Moore MM, Waites R, Sarang SS. Evaluation of potential health effects associated with occupational and environmental exposure to styrene - an update. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:1-130. [PMID: 31284836 DOI: 10.1080/10937404.2019.1633718] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potential chronic health risks of occupational and environmental exposure to styrene were evaluated to update health hazard and exposure information developed since the Harvard Center for Risk Analysis risk assessment for styrene was performed in 2002. The updated hazard assessment of styrene's health effects indicates human cancers and ototoxicity remain potential concerns. However, mechanistic research on mouse lung tumors demonstrates these tumors are mouse-specific and of low relevance to human cancer risk. The updated toxicity database supports toxicity reference levels of 20 ppm (equates to 400 mg urinary metabolites mandelic acid + phenylglyoxylic acid/g creatinine) for worker inhalation exposure and 3.7 ppm and 2.5 mg/kg bw/day, respectively, for general population inhalation and oral exposure. No cancer risk value estimates are proposed given the established lack of relevance of mouse lung tumors and inconsistent epidemiology evidence. The updated exposure assessment supports inhalation and ingestion routes as important. The updated risk assessment found estimated risks within acceptable ranges for all age groups of the general population and workers with occupational exposures in non-fiber-reinforced polymer composites industries and fiber-reinforced polymer composites (FRP) workers using closed-mold operations or open-mold operations with respiratory protection. Only FRP workers using open-mold operations not using respiratory protection have risk exceedances for styrene and should be considered for risk management measures. In addition, given the reported interaction of styrene exposure with noise, noise reduction to sustain levels below 85 dB(A) needs be in place.
Collapse
Affiliation(s)
- M I Banton
- a Gorge View Consulting LLC , Hood River , OR , USA
| | - J S Bus
- b Health Sciences , Exponent , Midland , MI , USA
| | - J J Collins
- c Health Sciences , Saginaw Valley State University , Saginaw , MI , USA
| | - E Delzell
- d Private consultant , Birmingham , AL , USA
| | | | - J E Kester
- f Kester Consulting LLC , Wentzville , MO , USA
| | | | - R Waites
- h Sabic , Innovative Plastics US LLC , Mount Vernon , IN , USA
| | - S S Sarang
- i Shell Health , Shell International , Houston , TX , USA
| |
Collapse
|