1
|
Goldberg D, Buchshtab N, Charni-Natan M, Goldstein I. Transcriptional cascades during fasting amplify gluconeogenesis and instigate a secondary wave of ketogenic gene transcription. Liver Int 2024; 44:2964-2982. [PMID: 39162082 DOI: 10.1111/liv.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS During fasting, bodily homeostasis is maintained due to hepatic production of glucose (gluconeogenesis) and ketone bodies (ketogenesis). The main hormones governing hepatic fuel production are glucagon and glucocorticoids that initiate transcriptional programs aimed at supporting gluconeogenesis and ketogenesis. METHODS Using primary mouse hepatocytes as an ex vivo model, we employed transcriptomic analysis (RNA-seq), genome-wide profiling of enhancer dynamics (ChIP-seq), perturbation experiments (inhibitors, shRNA), hepatic glucose production measurements and computational analyses. RESULTS We found that in addition to the known metabolic genes transcriptionally induced by glucagon and glucocorticoids, these hormones induce a set of genes encoding transcription factors (TFs) thereby initiating transcriptional cascades. Upon activation by glucocorticoids, the glucocorticoid receptor (GR) induced the genes encoding two TFs: CCAAT/enhancer-binding protein beta (C/EBPβ) and peroxisome proliferator-activated receptor alpha (PPARα). We found that the GR-C/EBPβ cascade mainly serves as a secondary amplifier of primary hormone-induced gene programs. C/EBPβ augmented gluconeogenic gene expression and hepatic glucose production. Conversely, the GR-PPARα cascade initiated a secondary transcriptional wave of genes supporting ketogenesis. The cascade led to synergistic induction of ketogenic genes which is dependent on protein synthesis. Genome-wide analysis of enhancer dynamics revealed numerous enhancers activated by the GR-PPARα cascade. These enhancers were proximal to ketogenic genes, enriched for the PPARα response element and showed increased PPARα binding. CONCLUSION This study reveals abundant transcriptional cascades occurring during fasting. These cascades serve two separated purposes: the amplification of the gluconeogenic transcriptional program and the induction of a gene program aimed at enhancing ketogenesis.
Collapse
Affiliation(s)
- Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nufar Buchshtab
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Zhang Z, Su J, Xue J, Xiao L, Hong L, Cai G, Gu T. The Research Progress of DNA Methylation in the Development and Function of the Porcine Placenta. Int J Mol Sci 2024; 25:10687. [PMID: 39409016 PMCID: PMC11476760 DOI: 10.3390/ijms251910687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The pig is the most widely consumed domestic animal in China, providing over half of the meat supply in food markets. For livestock, a key economic trait is the reproductive performance, which is significantly influenced by placental development. The placenta, a temporary fetal organ, is crucial for establishing maternal-fetal communication and supporting fetal growth throughout pregnancy. DNA methylation is an epigenetic modification that can regulate the gene expression by recruiting proteins involved in gene silencing or preventing transcription factor binding. To enhance our understanding of the molecular mechanisms underlying DNA methylation in porcine placental development, this review summarizes the structure and function of the porcine placenta and the role of DNA methylation in placental development.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Jiawei Su
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Jiaming Xue
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Liyao Xiao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
- Guangdong Provincial Key Laboratory of Agri-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Wang R, Hao J, Cao C, Li J, Zhang X. Molecular Characteristics of the Malate Dehydrogenase (MDH) Gene Family in Spirometra mansoni (Cestoda: Diphyllobothriidea). Int J Mol Sci 2024; 25:8802. [PMID: 39201488 PMCID: PMC11354392 DOI: 10.3390/ijms25168802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
The plerocercoid larva of Spirometra mansoni can cause a parasitic zoonosis-sparganosis. Malate dehydrogenase (MDH) plays a very important role in the life activities of parasites. However, little is known about the MDH family in S. mansoni. We identified eight new MDH members in S. mansoni in this study. Clustering analysis divided SmMDHs into two groups and revealed patterns similar to the conserved motif organization. RT-qPCR suggested that five MDHs were highly expressed in the mature proglottid and that three MDHs were highly expressed in the gravid proglottid. Phylogenetic analysis revealed that SmMDHs contain both conserved family members and members in the process of further diversification. rSmMDH has an NAD binding domain, a dimer interface and a substrate binding domain. Natural SmMDH was immunolocalized in the tissues and follicles around the uterus in the mature or gravid proglottid and eggshells. The maximum forward and reverse reaction activities of rSmMDH were observed at pH 8.5 and 9.0, respectively. The optimum temperature for enzyme activity was 37 °C in the forward reaction and 40 °C in the reverse reaction. These results lay the foundation for studying the molecular functions and mechanisms of MDHs in S. mansoni and related taxa.
Collapse
Affiliation(s)
| | | | | | | | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.W.); (J.H.); (C.C.); (J.L.)
| |
Collapse
|
4
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
5
|
Guadagnin AR, Fehlberg LK, Thomas B, Sugimoto Y, Shinzato I, Cardoso FC. Feeding rumen-protected lysine prepartum alters placental metabolism at a transcriptional level. J Dairy Sci 2023; 106:6567-6576. [PMID: 37532623 DOI: 10.3168/jds.2022-22390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/24/2023] [Indexed: 08/04/2023]
Abstract
Rumen-protected Lys (RPL) fed to Holstein cows prepartum resulted in a greater intake and improved health of their calves during the first 6 wk of life. However, whether increased supply of Lys in late gestation can influence placental tissue and, if so, which pathways are affected remain to be investigated. Therefore, we hypothesize that feeding RPL during late gestation could modulate placental metabolism, allowing for improved passage of nutrients to the fetus and thus influencing the offspring development. Therefore, we aimed to determine the effects of feeding RPL (AjiPro-L Generation 3, Ajinomoto Health and Nutrition North America) prepartum (0.54% DM of TMR) on mRNA gene expression profiles of placental samples of Holstein cows. Seventy multiparous Holstein cows were randomly assigned to 1 of 2 dietary treatments, consisting of TMR top-dressed with RPL (PRE-L) or without (control, CON), fed from 27 ± 5 d prepartum until calving. After natural delivery (6.87 ± 3.32 h), placentas were rinsed with physiological saline (0.9% sodium chloride solution) to clean any dirtiness from the environment and weighed. Then, 3 placentomes were collected, one from each placental region (cranial, central, and caudal), combined and flash-frozen in liquid nitrogen to evaluate the expression of transcripts and proteins related to protein metabolism and inflammation. Placental weights did not differ from cows in PRE-L (15.5 ± 4.03 kg) and cows in CON (14.5 ± 4.03 kg). Feeding RPL prepartum downregulated the expression of NOS3 (nitric oxide synthase 3), involved in vasodilation processes, and SOD1, which encodes the enzyme superoxide dismutase, involved in oxidative stress processes. Additionally, feeding RPL prepartum upregulated the expression of transcripts involved in energy metabolism (SLC2A3, glucose transporter 3; and PCK1, phosphoenolpyruvate carboxykinase 1), placental metabolism and cell proliferation (FGF2, fibroblast growth factor 2; FGF2R, fibroblast growth factor 2 receptor; and PGF, placental growth factor), Met metabolism (MAT2A, methionine adenosyltransferase 2-α), and tended to upregulate IGF2R (insulin-like growth factor 2 receptor). Placental FGF2 and LRP1 (low-density lipoprotein receptor-related protein 1) protein abundance were greater for cows that received RPL prepartum than cows in CON. In conclusion, feeding RPL to prepartum dairy cows altered uteroplacental expression of genes and proteins involved in cell proliferation, and in metabolism and transport of glucose. Such changes are illustrated by increased expression of SLC2A3 and PCK1 and increased protein abundance of FGF2 and LRP1 in uteroplacental tissue of cows consuming RPL.
Collapse
Affiliation(s)
- A R Guadagnin
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL 61801
| | - L K Fehlberg
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL 61801
| | - B Thomas
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL 61801
| | | | | | - F C Cardoso
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL 61801.
| |
Collapse
|
6
|
Sedaka R, Huang J, Yamaguchi S, Lovelady C, Hsu JS, Shinde S, Kasztan M, Crossman DK, Saigusa T. Accelerated cystogenesis by dietary protein load is dependent on, but not initiated by kidney macrophages. Front Med (Lausanne) 2023; 10:1173674. [PMID: 37538309 PMCID: PMC10394241 DOI: 10.3389/fmed.2023.1173674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Background Disease severity of autosomal dominant polycystic kidney disease (ADPKD) is influenced by diet. Dietary protein, a recognized cyst-accelerating factor, is catabolized into amino acids (AA) and delivered to the kidney leading to renal hypertrophy. Injury-induced hypertrophic signaling in ADPKD results in increased macrophage (MФ) activation and inflammation followed by cyst growth. We hypothesize that the cystogenesis-prompting effects of HP diet are caused by increased delivery of specific AA to the kidney, ultimately stimulating MФs to promote cyst progression. Methods Pkd1flox/flox mice with and without Cre (CAGG-ER) were given tamoxifen to induce global gene deletion (Pkd1KO). Pkd1KO mice were fed either a low (LP; 6%), normal (NP; 18%), or high (HP; 60%) protein diet for 1 week (early) or 6 weeks (chronic). Mice were then euthanized and tissues were used for histology, immunofluorescence and various biochemical assays. One week fed kidney tissue was cell sorted to isolate tubular epithelial cells for RNA sequencing. Results Chronic dietary protein load in Pkd1KO mice increased kidney weight, number of kidney infiltrating and resident MФs, chemokines, cytokines and cystic index compared to LP diet fed mice. Accelerated cyst growth induced by chronic HP were attenuated by liposomal clodronate-mediated MФ depletion. Early HP diet fed Pkd1KO mice had larger cystic kidneys compared to NP or LP fed counterparts, but without increases in the number of kidney MФs, cytokines, or markers of tubular injury. RNA sequencing of tubular epithelial cells in HP compared to NP or LP diet group revealed increased expression of sodium-glutamine transporter Snat3, chloride channel Clcnka, and gluconeogenesis marker Pepck1, accompanied by increased excretion of urinary ammonia, a byproduct of glutamine. Early glutamine supplementation in Pkd1KO mice lead to kidney hypertrophy. Conclusion Chronic dietary protein load-induced renal hypertrophy and accelerated cyst growth in Pkd1KO mice is dependent on both infiltrating and resident MФ recruitment and subsequent inflammatory response. Early cyst expansion by HP diet, however, is relient on increased delivery of glutamine to kidney epithelial cells, driving downstream metabolic changes prior to inflammatory provocation.
Collapse
Affiliation(s)
- Randee Sedaka
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jifeng Huang
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shinobu Yamaguchi
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Caleb Lovelady
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jung-Shan Hsu
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sejal Shinde
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Malgorzata Kasztan
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Takamitsu Saigusa
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Costello HM, Krilis G, Grenier C, Severs D, Czopek A, Ivy JR, Nixon M, Holmes MC, Livingstone DEW, Hoorn EJ, Dhaun N, Bailey MA. High salt intake activates the hypothalamic-pituitary-adrenal axis, amplifies the stress response, and alters tissue glucocorticoid exposure in mice. Cardiovasc Res 2023; 119:1740-1750. [PMID: 36368681 PMCID: PMC10325699 DOI: 10.1093/cvr/cvac160] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/09/2022] [Accepted: 09/24/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS High salt intake is common and contributes to poor cardiovascular health. Urinary sodium excretion correlates directly with glucocorticoid excretion in humans and experimental animals. We hypothesized that high salt intake activates the hypothalamic-pituitary-adrenal axis activation and leads to sustained glucocorticoid excess. METHODS AND RESULTS In male C57BL/6 mice, high salt intake for 2-8 weeks caused an increase in diurnal peak levels of plasma corticosterone. After 2 weeks, high salt increased Crh and Pomc mRNA abundance in the hypothalamus and anterior pituitary, consistent with basal hypothalamic-pituitary-adrenal axis activation. Additionally, high salt intake amplified glucocorticoid response to restraint stress, indicative of enhanced axis sensitivity. The binding capacity of Corticosteroid-Binding Globulin was reduced and its encoding mRNA downregulated in the liver. In the hippocampus and anterior pituitary, Fkbp5 mRNA levels were increased, indicating increased glucocorticoid exposure. The mRNA expression of the glucocorticoid-regenerating enzyme, 11β-hydroxysteroid dehydrogenase Type 1, was increased in these brain areas and in the liver. Sustained high salt intake activated a water conservation response by the kidney, increasing plasma levels of the vasopressin surrogate, copeptin. Increased mRNA abundance of Tonebp and Avpr1b in the anterior pituitary suggested that vasopressin signalling contributes to hypothalamic-pituitary-adrenal axis activation by high salt diet. CONCLUSION Chronic high salt intake amplifies basal and stress-induced glucocorticoid levels and resets glucocorticoid biology centrally, peripherally and within cells.
Collapse
Affiliation(s)
- Hannah M Costello
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Georgios Krilis
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Celine Grenier
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - David Severs
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Alicja Czopek
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Jessica R Ivy
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Mark Nixon
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Megan C Holmes
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Dawn E W Livingstone
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Neeraj Dhaun
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Matthew A Bailey
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, The Universtiy of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| |
Collapse
|
8
|
Li YD, Si MR, Jiang SG, Yang QB, Jiang S, Yang LS, Huang JH, Zhou FL. First transcriptome profiling in gill and hepatopancrease tissues of Metapenaeus ensis in response to acute ammonia-N stress. FISH & SHELLFISH IMMUNOLOGY 2023:108926. [PMID: 37406893 DOI: 10.1016/j.fsi.2023.108926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The greasyback shrimp, Metapenaeus ensis, suffers from ammonia-N stress during intensive factory aquaculture. Optimizing ammonia-N stress tolerance has become an important issue in M. ensis breeding. The metabolic and adaptive mechanisms of ammonia-N toxicity in M. ensis have not been comprehensively understood yet. In this study, a large number of potential simple sequence repeats (SSRs) in the transcriptome of M. ensis were identified. Differentially expressed genes (DEGs) in the gill and hepatopancreas at 24 h post-challenges under high concentrations of ammonia-N treatment were detected. We obtained 20,108,851-27,681,918 clean reads from the control and high groups, assembled and clustered a total of 103,174 unigenes with an average of 876 bp and an N50 of 1189 bp. Comparative transcriptome analyses identified 2000 different expressed genes in the gill and 2010 different expressed genes in the hepatopancreas, a large number of which were related to immune function, oxidative stress, metabolic regulation, and apoptosis. The results suggest that M. ensis may counteract ammonia-N toxicity at the transcriptome level by increasing the expression of genes related to immune stress and detoxification metabolism, and that selected genes may serve as molecular indicators of ammonia-N. By exploring the genetic basis of M. ensis' ammonia-N stress adaptation, we constructed the genetic networks for ammonia-N adaptation. These findings will accelerate the understanding of M. ensis' ammonia-N adaptation, contribute to the research of future breeding, and promote the level of factory aquaculture of M. ensis.
Collapse
Affiliation(s)
- Yun-Dong Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, 570228, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Meng-Ru Si
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Qi-Bin Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, China.
| | - Song Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Li-Shi Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Jian-Hua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China.
| | - Fa-Lin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China.
| |
Collapse
|
9
|
Calderón-DuPont D, Torre-Villalvazo I, Díaz-Villaseñor A. Is insulin resistance tissue-dependent and substrate-specific? The role of white adipose tissue and skeletal muscle. Biochimie 2023; 204:48-68. [PMID: 36099940 DOI: 10.1016/j.biochi.2022.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Insulin resistance (IR) refers to a reduction in the ability of insulin to exert its metabolic effects in organs such as adipose tissue (AT) and skeletal muscle (SM), leading to chronic diseases such as type 2 diabetes, hepatic steatosis, and cardiovascular diseases. Obesity is the main cause of IR, however not all subjects with obesity develop clinical insulin resistance, and not all clinically insulin-resistant people have obesity. Recent evidence implies that IR onset is tissue-dependent (AT or SM) and/or substrate-specific (glucometabolic or lipometabolic). Therefore, the aims of the present review are 1) to describe the glucometabolic and lipometabolic activities of insulin in AT and SM in the maintenance of whole-body metabolic homeostasis, 2) to discuss the pathophysiology of substrate-specific IR in AT and SM, and 3) to highlight novel validated tests to assess tissue and substrate-specific IR that are easy to perform in clinical practice. In AT, glucometabolic IR reduces glucose availability for glycerol and fatty acid synthesis, thus decreasing the esterification and synthesis of signaling bioactive lipids. Lipometabolic IR in AT impairs the antilipolytic effect of insulin and lipogenesis, leading to an increase in circulating FFAs and generating lipotoxicity in peripheral tissues. In SM, glucometabolic IR reduces glucose uptake, whereas lipometabolic IR impairs mitochondrial lipid oxidation, increasing oxidative stress and inflammation, all of which lead to metabolic inflexibility. Understanding tissue-dependent and substrate-specific IR is of paramount importance for early detection before clinical manifestations and for the development of more specific treatments or direct interventions to prevent chronic life-threatening diseases.
Collapse
Affiliation(s)
- Diana Calderón-DuPont
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico; Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| | - Ivan Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional en Ciencias Médicas y Nutricíon Salvador Zubirán, Mexico City, 14000, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico.
| |
Collapse
|
10
|
Salehidoost R, Korbonits M. Glucose and lipid metabolism abnormalities in Cushing's syndrome. J Neuroendocrinol 2022; 34:e13143. [PMID: 35980242 DOI: 10.1111/jne.13143] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Prolonged excess of glucocorticoids (GCs) has adverse systemic effects leading to significant morbidities and an increase in mortality. Metabolic alterations associated with the high level of the GCs are key risk factors for the poor outcome. These include GCs causing excess gluconeogenesis via upregulation of key enzymes in the liver, a reduction of insulin sensitivity in skeletal muscle, liver and adipose tissue by inhibiting the insulin receptor signalling pathway, and inhibition of insulin secretion in beta cells leading to dysregulated glucose metabolism. In addition, chronic GC exposure leads to an increase in visceral adipose tissue, as well as an increase in lipolysis resulting in higher circulating free fatty acid levels and in ectopic fat deposition. Remission of hypercortisolism improves these metabolic changes, but very often does not result in full resolution of the abnormalities. Therefore, long-term monitoring of metabolic variables is needed even after the resolution of the excess GC levels.
Collapse
Affiliation(s)
- Rezvan Salehidoost
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Nascimento da Silva J, Calixto Conceição C, Cristina Ramos de Brito G, Costa Santos D, Martins da Silva R, Arcanjo A, Henrique Ferreira Sorgine M, de Oliveira PL, Andrade Moreira L, da Silva Vaz I, Logullo C. Wolbachia pipientis modulates metabolism and immunity during Aedes fluviatilis oogenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 146:103776. [PMID: 35526745 DOI: 10.1016/j.ibmb.2022.103776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Wolbachia pipientis is a maternally transmitted bacterium that mostly colonizes arthropods, including the mosquito Aedes fluviatilis, potentially affecting different aspects of host physiology. This intracellular bacterium prefers gonadal tissue cells, interfering with the reproductive cycle of insects, arachnids, crustaceans, and nematodes. Wolbachia's ability to modulate the host's reproduction is related to its success in prevalence and frequency. Infecting oocytes is essential for vertical propagation, ensuring its presence in the germline. The mosquito Ae. fluviatilis is a natural host for this bacterium and therefore represents an excellent experimental model in the effort to understand host-symbiont interactions and the mutual metabolic regulation. The aim of this study was to comparatively describe metabolic changes in naturally Wolbachia-infected and uninfected ovaries of Ae. fluviatilis during the vitellogenic period of oogenesis, thus increasing the knowledge about Wolbachia parasitic/symbiotic mechanisms.
Collapse
Affiliation(s)
- Jhenifer Nascimento da Silva
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Christiano Calixto Conceição
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Gisely Cristina Ramos de Brito
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Daniel Costa Santos
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Renato Martins da Silva
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Angélica Arcanjo
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Marcos Henrique Ferreira Sorgine
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Pedro L de Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Luciano Andrade Moreira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Logullo
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Verissimo T, Faivre A, Rinaldi A, Lindenmeyer M, Delitsikou V, Veyrat-Durebex C, Heckenmeyer C, Fernandez M, Berchtold L, Dalga D, Cohen C, Naesens M, Ricksten SE, Martin PY, Pugin J, Merlier F, Haupt K, Rutkowski JM, Moll S, Cippà PE, Legouis D, de Seigneux S. Decreased Renal Gluconeogenesis Is a Hallmark of Chronic Kidney Disease. J Am Soc Nephrol 2022; 33:810-827. [PMID: 35273087 PMCID: PMC8970457 DOI: 10.1681/asn.2021050680] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION CKD is associated with alterations of tubular function. Renal gluconeogenesis is responsible for 40% of systemic gluconeogenesis during fasting, but how and why CKD affects this process and the repercussions of such regulation are unknown. METHODS We used data on the renal gluconeogenic pathway from more than 200 renal biopsies performed on CKD patients and from 43 kidney allograft patients, and studied three mouse models, of proteinuric CKD (POD-ATTAC), of ischemic CKD, and of unilateral urinary tract obstruction. We analyzed a cohort of patients who benefitted from renal catheterization and a retrospective cohort of patients hospitalized in the intensive care unit. RESULTS Renal biopsies of CKD and kidney allograft patients revealed a stage-dependent decrease in the renal gluconeogenic pathway. Two animal models of CKD and one model of kidney fibrosis confirm gluconeogenic downregulation in injured proximal tubule cells. This shift resulted in an alteration of renal glucose production and lactate clearance during an exogenous lactate load. The isolated perfused kidney technique in animal models and renal venous catheterization in CKD patients confirmed decreased renal glucose production and lactate clearance. In CKD patients hospitalized in the intensive care unit, systemic alterations of glucose and lactate levels were more prevalent and associated with increased mortality and a worse renal prognosis at follow-up. Decreased expression of the gluconeogenesis pathway and its regulators predicted faster histologic progression of kidney disease in kidney allograft biopsies. CONCLUSION Renal gluconeogenic function is impaired in CKD. Altered renal gluconeogenesis leads to systemic metabolic changes with a decrease in glucose and increase in lactate level, and is associated with a worse renal prognosis.
Collapse
Affiliation(s)
- Thomas Verissimo
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Anna Faivre
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Service of Nephrology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Anna Rinaldi
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vasiliki Delitsikou
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Christelle Veyrat-Durebex
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Carolyn Heckenmeyer
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Marylise Fernandez
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Lena Berchtold
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Service of Nephrology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Delal Dalga
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Clemens Cohen
- Nephrological Center, Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Sven-Erik Ricksten
- Department of Anesthesiology and Intensive Care, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pierre-Yves Martin
- Service of Nephrology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Jérôme Pugin
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Franck Merlier
- Université de Technologie de Compiègne, CNRS Laboratory for Enzyme and Cell Engineering, Compiègne, France
| | - Karsten Haupt
- Université de Technologie de Compiègne, CNRS Laboratory for Enzyme and Cell Engineering, Compiègne, France
| | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas
| | - Solange Moll
- Service of Clinical Pathology, Department of Pathology and Immunology, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Pietro E Cippà
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - David Legouis
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Sophie de Seigneux
- Department of Medicine and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland .,Service of Nephrology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
13
|
Chetri PB, Shukla R, Khan JM, Padhi AK, Tripathi T. Unraveling the structural basis of urea-induced unfolding of Fasciola gigantica cytosolic malate dehydrogenase. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Faivre A, Verissimo T, Auwerx H, Legouis D, de Seigneux S. Tubular Cell Glucose Metabolism Shift During Acute and Chronic Injuries. Front Med (Lausanne) 2021; 8:742072. [PMID: 34778303 PMCID: PMC8585753 DOI: 10.3389/fmed.2021.742072] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Acute and chronic kidney disease are responsible for large healthcare costs worldwide. During injury, kidney metabolism undergoes profound modifications in order to adapt to oxygen and nutrient shortage. Several studies highlighted recently the importance of these metabolic adaptations in acute as well as in chronic phases of renal disease, with a potential deleterious effect on fibrosis progression. Until recently, glucose metabolism in the kidney has been poorly studied, even though the kidney has the capacity to use and produce glucose, depending on the segment of the nephron. During physiology, renal proximal tubular cells use the beta-oxidation of fatty acid to generate large amounts of energy, and can also produce glucose through gluconeogenesis. In acute kidney injury, proximal tubular cells metabolism undergo a metabolic shift, shifting away from beta-oxidation of fatty acids and gluconeogenesis toward glycolysis. In chronic kidney disease, the loss of fatty acid oxidation is also well-described, and data about glucose metabolism are emerging. We here review the modifications of proximal tubular cells glucose metabolism during acute and chronic kidney disease and their potential consequences, as well as the potential therapeutic implications.
Collapse
Affiliation(s)
- Anna Faivre
- Laboratory of Nephrology, Geneva University Hospitals, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Thomas Verissimo
- Laboratory of Nephrology, Geneva University Hospitals, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Hannah Auwerx
- Laboratory of Nephrology, Geneva University Hospitals, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - David Legouis
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Intensive Care Unit, Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Sophie de Seigneux
- Laboratory of Nephrology, Geneva University Hospitals, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Shi B, Tao X, Betancor MB, Lu J, Tocher DR, Meng F, Figueiredo-Silva C, Zhou Q, Jiao L, Jin M. Dietary chromium modulates glucose homeostasis and induces oxidative stress in Pacific white shrimp (Litopenaeus vannamei). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105967. [PMID: 34555743 DOI: 10.1016/j.aquatox.2021.105967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
While chromium (Cr) has been recognized as an essential nutrient for all animals, and dietary supplementation can be beneficial, it can also be toxic. The present study aimed to investigate the contrasting effects of dietary chromium in Pacific white shrimp Litopenaeus vannamei. Five experimental diets were formulated to contain Cr at levels of 0.82 (Cr0.82, unsupplemented diet), 1.01 (Cr1.01), 1.22 (Cu1.22), 1.43 (Cr1.43) and 1.63 (Cr1.63) mg/kg and were fed to shrimp for 8 weeks. Highest weight gain was recorded in shrimp fed the diet containing 1.22 mg/kg Cr. Shrimp fed the diet containing the highest level of Cr (1.63 mg/kg) showed the lowest weight gain and clear signs of oxidative stress and apoptosis as evidenced by higher levels of H2O2, malondialdehyde and 8-hydroxydeoxyguanosine, and expression of caspase 2, 3, 5, and lower contents of total and oxidized glutathione, and expression of Cu/Zn sod, cat, gpx, mt, bcl2. Chromium supplementation promoted glycolysis and inhibited gluconeogenesis as shown by increased activities of hexokinase, phosphofructokinase and pyruvate kinase, and reduced activity of phosphoenolpyruvate carboxykinase in shrimp fed the diet containing 1.43 mg/kg Cr. Shrimp fed the diet with 1.63 mg/kg Cr had lowest contents of crustacean hyperglycemic hormone and insulin like peptide in hemolymph. Expression of genes involved in insulin signaling pathway and glycose metabolism including insr, irs1, pik3ca, pdpk1, akt, acc1, gys, glut1, pk, hk were up-regulated, and foxO1, gsk-3β, g6pc, pepck were down-regulated in shrimp fed the diets supplemented with Cr. This study demonstrated that optimum dietary supplementation of Cr had beneficial effects on glucose homeostasis and growth, whereas excess caused oxidative damage and impaired growth. The results contribute to our understanding of the biological functions of chromium in shrimp.
Collapse
Affiliation(s)
- Bo Shi
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xinyue Tao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Jingjing Lu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Fanyi Meng
- Zinpro Corporation, Eden Prairie, Minnesota, USA
| | | | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
16
|
Kalaivani K, Sankaranarayanan C. Modulatory effect of isopulegol on hepatic key enzymes of glucose metabolism in high-fat diet/streptozotocin-induced diabetic rats. Arch Physiol Biochem 2021; 127:318-326. [PMID: 31291130 DOI: 10.1080/13813455.2019.1638415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To investigate the antidiabetic effect of isopulegol in high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic rats. Animals were made diabetic by feeding HFD for 4 weeks followed by single intraperitoneal injection of STZ (35 mg/kg b.w.; 0.1 M citrate buffer; pH 4.0). Plasma insulin, haemoglobin and glycogen content were decreased while increased glucose and glycated haemoglobin were observed in diabetic rats. An increase in glucose-6-phosphatase, fructose-1,6-bisphosphatase, phosphoenol pyruvate carboxykinase with a decrease in hexokinase, glucose-6-phosphate dehydrogenase and glycogen synthase activities was observed in diabetic rats. The expression of cyclic response element binding protein (CREB) was increased in the hepatic tissue of diabetic rats. Isopulegol dose dependently (50, 100 and 200 mg/kg b.w.) improved insulin secretion, glucose tolerance and decreased glucose levels in diabetic-treated rats. At the effective dose of 100 mg/kg b.w., isopulegol restored the activities of metabolic enzymes and down-regulated CREB expression. Thus, isopulegol restored glucose homeostasis through its insulinotrophic property.
Collapse
Affiliation(s)
- Karunanithi Kalaivani
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | | |
Collapse
|
17
|
Abstract
The reactions of the tricarboxylic acid (TCA) cycle allow the controlled combustion of fat and carbohydrate. In principle, TCA cycle intermediates are regenerated on every turn and can facilitate the oxidation of an infinite number of nutrient molecules. However, TCA cycle intermediates can be lost to cataplerotic pathways that provide precursors for biosynthesis, and they must be replaced by anaplerotic pathways that regenerate these intermediates. Together, anaplerosis and cataplerosis help regulate rates of biosynthesis by dictating precursor supply, and they play underappreciated roles in catabolism and cellular energy status. They facilitate recycling pathways and nitrogen trafficking necessary for catabolism, and they influence redox state and oxidative capacity by altering TCA cycle intermediate concentrations. These functions vary widely by tissue and play emerging roles in disease. This article reviews the roles of anaplerosis and cataplerosis in various tissues and discusses how they alter carbon transitions, and highlights their contribution to mechanisms of disease. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Melissa Inigo
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Stanisław Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
18
|
da Silva RM, Vital WO, Martins RS, Moraes J, Gomes H, Calixto C, Konnai S, Ohashi K, da Silva Vaz I, Logullo C. Differential expression of PEPCK isoforms is correlated to Aedes aegypti oogenesis and embryogenesis. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110618. [PMID: 34015437 DOI: 10.1016/j.cbpb.2021.110618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022]
Abstract
The mosquito Aedes aegypti undertakes a shift in carbohydrate metabolism during embryogenesis, including an increase in the activity of phosphoenolpyruvate carboxykinase (PEPCK), a key gluconeogenic enzyme, at critical steps of embryo development. All eukaryotes studied to date present two PEPCK isoforms, namely PEPCK-M (mitochondrial) and PEPCK-C (cytosolic). In A. aegypti, however, these proteins are so far uncharacterized. In the present work we describe two A. aegypti PEPCK isoforms by sequence alignment, protein modeling, and transcription analysis in different tissues, as well as PEPCK enzymatic activity assays in mitochondrial and cytoplasmic compartments during oogenesis and embryogenesis. First, we characterized the protein sequences compared to other organisms, and identified conserved sites and key amino acids. We also performed structure modeling for AePEPCK(M) and AePEPCK(C), identifying highly conserved structural sites, as well as a signal peptide in AePEPCK(M) localized in a very hydrophobic region. Moreover, after blood meal and during mosquito oogenesis and embryogenesis, both PEPCKs isoforms showed different transcriptional profiles, suggesting that mRNA for the cytosolic form is transmitted maternally, whereas the mitochondrial form is synthesized by the zygote. Collectively, these results improve our understanding of mosquito physiology and may yield putative targets for developing new methods for A. aegypti control.
Collapse
Affiliation(s)
- Renato Martins da Silva
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Wagner Oliveira Vital
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Helga Gomes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Christiano Calixto
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Kita-ku Sapporo 060-0818, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Kita-ku Sapporo 060-0818, Japan
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
19
|
Korenfeld N, Finkel M, Buchshtab N, Bar-Shimon M, Charni-Natan M, Goldstein I. Fasting Hormones Synergistically Induce Amino Acid Catabolism Genes to Promote Gluconeogenesis. Cell Mol Gastroenterol Hepatol 2021; 12:1021-1036. [PMID: 33957303 PMCID: PMC8346669 DOI: 10.1016/j.jcmgh.2021.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Gluconeogenesis from amino acids (AAs) maintains glucose homeostasis during fasting. Although glucagon is known to regulate AA catabolism, the contribution of other hormones to it and the scope of transcriptional regulation dictating AA catabolism are unknown. We explored the role of the fasting hormones glucagon and glucocorticoids in transcriptional regulation of AA catabolism genes and AA-dependent gluconeogenesis. METHODS We tested the RNA expression of AA catabolism genes and glucose production in primary mouse hepatocytes treated with fasting hormones (glucagon, corticosterone) and feeding hormones (insulin, fibroblast growth factor 19). We analyzed genomic data of chromatin accessibility and chromatin immunoprecipitation in mice and primary mouse hepatocytes. We performed chromatin immunoprecipitation in livers of fasted mice to show binding of cAMP responsive element binding protein (CREB) and the glucocorticoid receptor (GR). RESULTS Fasting induced the expression of 31 genes with various roles in AA catabolism. Of them, 15 were synergistically induced by co-treatment of glucagon and corticosterone. Synergistic gene expression relied on the activity of both CREB and GR and was abolished by treatment with either insulin or fibroblast growth factor 19. Enhancers adjacent to synergistically induced genes became more accessible and were bound by CREB and GR on fasting. Akin to the gene expression pattern, gluconeogenesis from AAs was synergistically induced by glucagon and corticosterone in a CREB- and GR-dependent manner. CONCLUSIONS Transcriptional regulation of AA catabolism genes during fasting is widespread and is driven by glucagon (via CREB) and corticosterone (via GR). Glucose production in hepatocytes is also synergistically augmented, showing that glucagon alone is insufficient in fully activating gluconeogenesis.
Collapse
Affiliation(s)
- Noga Korenfeld
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Maya Finkel
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Nufar Buchshtab
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Meirav Bar-Shimon
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition. Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
20
|
Nguyen NT, Bae EH, Do LN, Nguyen TA, Park I, Shin SS. In Vivo Assessment of Metabolic Abnormality in Alport Syndrome Using Hyperpolarized [1- 13C] Pyruvate MR Spectroscopic Imaging. Metabolites 2021; 11:metabo11040222. [PMID: 33917329 PMCID: PMC8067337 DOI: 10.3390/metabo11040222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 01/23/2023] Open
Abstract
Alport Syndrome (AS) is a genetic disorder characterized by impaired kidney function. The development of a noninvasive tool for early diagnosis and monitoring of renal function during disease progression is of clinical importance. Hyperpolarized 13C MRI is an emerging technique that enables non-invasive, real-time measurement of in vivo metabolism. This study aimed to investigate the feasibility of using this technique for assessing changes in renal metabolism in the mouse model of AS. Mice with AS demonstrated a significant reduction in the level of lactate from 4- to 7-week-old, while the levels of lactate were unchanged in the control mice over time. This reduction in lactate production in the AS group accompanied a significant increase of PEPCK expression levels, indicating that the disease progression in AS triggered the gluconeogenic pathway and might have resulted in a decreased lactate pool size and a subsequent reduction in pyruvate-to-lactate conversion. Additional metabolic imaging parameters, including the level of lactate and pyruvate, were found to be different between the AS and control groups. These preliminary results suggest that hyperpolarized 13C MRI might provide a potential noninvasive tool for the characterization of disease progression in AS.
Collapse
Affiliation(s)
- Nguyen-Trong Nguyen
- Department of Biomedical Science, Chonnam National University, Gwangju 61469, Korea;
| | - Eun-Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea;
| | - Luu-Ngoc Do
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
| | - Tien-Anh Nguyen
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
| | - Ilwoo Park
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (I.P.); (S.-S.S.); Tel.: +82-62-220-5744 (I.P.); +82-62-220-5882 (S.-S.S.)
| | - Sang-Soo Shin
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
- Correspondence: (I.P.); (S.-S.S.); Tel.: +82-62-220-5744 (I.P.); +82-62-220-5882 (S.-S.S.)
| |
Collapse
|
21
|
Zhang Q, Koser SL, Donkin SS. Identification of promoter response elements that mediate propionate induction of bovine cytosolic phosphoenolpyruvate carboxykinase (PCK1) gene transcription. J Dairy Sci 2021; 104:7252-7261. [PMID: 33741163 DOI: 10.3168/jds.2020-18993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/08/2020] [Indexed: 11/19/2022]
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is a key enzyme for gluconeogenesis that is positively regulated by propionate in bovines at the transcription level. The specific elements that determine propionate responsiveness within the bovine PCK1 promoter are unknown. In silico promoter analysis of the bovine PCK1 gene revealed several clusters of transcription factor binding sites. In the present study, we determined the essentiality of the putative cyclic AMP response element (CRE) at -94 through -87 bp and the 2 putative hepatic nuclear factor 4α (HNF4α) binding elements at +68 through +72 and -1,078 through -1,074, respectively, in mediating bovine PCK1 promoter responses to propionate and other regulators, including butyrate, cyclic AMP (cAMP), and glucocorticoids. The wild-type bovine PCK1 promoter [PCK1(WT)] was ligated to a luciferase reporter gene and transfected into rat hepatoma (H4IIE) cells. Activities of PCK1(WT) were induced by approximately 2-, 2-, 4-, 8-, 9-, 18-, and 16-fold respectively when exposed to cAMP (as 1.0 mM 8-Br-cAMP), 5.0 μM dexamethasone, cAMP + dexamethasone, 2.5 mM propionate, cAMP + propionate, cAMP + dexamethasone + propionate, and 2.5 mM butyrate. Seven mutants lacking either one single site, 2 of the 3 sites, or all 3 sites, generated by site-directed mutagenesis, were tested. Responses to propionate and all other treatments were completely abolished when CRE at -94 through -87 bp and HNF4α at +68 through +72 bp were both deleted. Our data indicate that these 2 regulatory elements act synergistically to mediate the bovine PCK1 promoter responses to propionate as well as butyrate, cAMP, and dexamethasone. The activation of PCK1 through these regulatory elements serves to activate the metabolic potential of bovine toward gluconeogenesis when the primary substrate for gluconeogenesis, propionate, is also present.
Collapse
Affiliation(s)
- Q Zhang
- Adisseo Life Science Co. Ltd., Shanghai 201204, PR China
| | - S L Koser
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - S S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
22
|
Zhang C, Seong KM, Sun W, Mittapalli O, Qiu B, Clark JM, Pittendrigh BR. The insulin signaling pathway in Drosophila melanogaster: A nexus revealing an "Achilles' heel" in DDT resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104727. [PMID: 33357549 DOI: 10.1016/j.pestbp.2020.104727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/28/2020] [Accepted: 10/10/2020] [Indexed: 06/12/2023]
Abstract
Insecticide resistance is an ongoing challenge in agriculture and disease vector control. Here, we demonstrate a novel strategy to attenuate resistance. We used genomics tools to target fundamental energy-associated pathways and identified a potential "Achilles' heel" for resistance, a resistance-associated protein that, upon inhibition, results in a substantial loss in the resistance phenotype. Specifically, we compared the gene expression profiles and structural variations of the insulin/insulin-like growth factor signaling (IIS) pathway genes in DDT-susceptible (91-C) and -resistant (91-R) Drosophila melanogaster (Drosophila) strains. A total of eight and seven IIS transcripts were up- and down-regulated, respectively, in 91-R compared to 91-C. A total of 114 nonsynonymous mutations were observed between 91-C and 91-R, of which 51.8% were fixed. Among the differentially expressed transcripts, phosphoenolpyruvate carboxykinase (PEPCK), down-regulated in 91-R, encoded the greatest number of amino acid changes, prompting us to perform PEPCK inhibitor-pesticide exposure bioassays. The inhibitor of PEPCK, hydrazine sulfate, resulted in a 161- to 218-fold decrease in the DDT resistance phenotype (91-R) and more than a 4- to 5-fold increase in susceptibility in 91-C. A second target protein, Glycogen synthase kinase 3β (GSK3β-PO), had one amino acid difference between 91-C and 91-R, and the corresponding transcript was also down-regulated in 91-R. A GSK3β-PO inhibitor, lithium chloride, likewise reduced the resistance but to a lesser extent than did hydrazine sulfate for PEPCK. We demonstrate the potential role of IIS genes in DDT resistance and the potential discovery of an "Achilles' heel" against pesticide resistance in this pathway.
Collapse
Affiliation(s)
- Can Zhang
- Department of Eco-Engineering, Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China; Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Keon Mook Seong
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA; Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, Sangju, Republic of Korea
| | - Weilin Sun
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Baoli Qiu
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Barry R Pittendrigh
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
23
|
Cai J, Zhang J, Li S, Lin Y, Xiao X, Guo J. Comprehensive chemical analysis of Zhenshu Tiaozhi formula and its effect on ameliorating glucolipid metabolic disorders in diabetic rats. Biomed Pharmacother 2021; 133:111060. [PMID: 33378969 DOI: 10.1016/j.biopha.2020.111060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022] Open
Abstract
The present study aims to reveal the compositions of Zhenshu TiaoZhi formula (FTZ) comprehensively, and investigate whether FTZ ameliorate glucolipid metabolism disorders in diabetic rats with the involvement of glucocorticoids in peripheral insulin-sensitive tissues. The fingerprint was established based on 11 batches of FTZ samples and chemical compostions of FTZ were identified by ultra performance liquid chromatography-time of flight/mass spectrometry (UPLC-TOF/MS). High-fat diet (HFD) and streptozotocin (STZ) induced diabetic rats were orally administrated with 3 and 6 g/kg body weight of FTZ for 8 weeks. Indices of glucolipid metabolism, including fasting blood glucose (FBG), fasting insulin, insulin resistance index (IRI) and blood lipids were evaluated after treatment of FTZ. The levels of HPA axis hormones were examined. Reverse transcription-polymerase chain reaction (RT-PCR) was adopted to investigate the relative mRNA expressions of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) and glucolipid metabolic indicators. A reference fingerprint was established and 93 compounds of FTZ were tentatively identified. In vivo, FTZ treatment exerted antidiabetic and antidyslipidemic effects while decreased the level of corticotropin releasing hormone (CRH). 11β-HSD1 mRNA showed similar trajectory in both liver, adipose and skeletal muscle tissues, which was up-regulated in diabetic group and ameliorated in FTZ groups. Furthermore, the expressions of glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK) and adipose triglyceride lipase (ATGL) were down-regulated in liver and skeletal muscle. These results elucidated the compositions of FTZ comprehensively and indicated its effect on ameliorating glucolipid metabolism of diabetic rats involved hypothalamus-pituitary-adrenal (HPA) axis homeostasis. Down-regulating 11β-HSD1 in insulin-sensitive tissues might be a potential mechanism of FTZ in treating type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Jinyan Cai
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jingjing Zhang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Shanshan Li
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yanduan Lin
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xue Xiao
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
24
|
Shah AM, Wondisford FE. Tracking the carbons supplying gluconeogenesis. J Biol Chem 2020; 295:14419-14429. [PMID: 32817317 PMCID: PMC7573258 DOI: 10.1074/jbc.rev120.012758] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/12/2020] [Indexed: 11/06/2022] Open
Abstract
As the burden of type 2 diabetes mellitus (T2DM) grows in the 21st century, the need to understand glucose metabolism heightens. Increased gluconeogenesis is a major contributor to the hyperglycemia seen in T2DM. Isotope tracer experiments in humans and animals over several decades have offered insights into gluconeogenesis under euglycemic and diabetic conditions. This review focuses on the current understanding of carbon flux in gluconeogenesis, including substrate contribution of various gluconeogenic precursors to glucose production. Alterations of gluconeogenic metabolites and fluxes in T2DM are discussed. We also highlight ongoing knowledge gaps in the literature that require further investigation. A comprehensive analysis of gluconeogenesis may enable a better understanding of T2DM pathophysiology and identification of novel targets for treating hyperglycemia.
Collapse
Affiliation(s)
- Ankit M Shah
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Fredric E Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
25
|
Huang J, Feng X, Zhu R, Guo D, Wei Y, Cao X, Ma Y, Shi D. Comparative transcriptome analysis reveals that PCK1 is a potential gene affecting IMF deposition in buffalo. BMC Genomics 2020; 21:710. [PMID: 33045988 PMCID: PMC7552535 DOI: 10.1186/s12864-020-07120-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In China, although buffaloes are abundant, beef is mainly obtained from cattle, and this preference is mainly attributed to the low intramuscular fat (IMF) content of buffalo. Genetic factors are an important driver that affects IMF deposition. RESULTS To reveal the intrinsic factors responsible for the low IMF content of buffalo, mRNA expression patterns in muscle and adipose tissue between buffalo and cattle were characterized by RNA sequencing analysis. The IMF content in Nanyang cattle was higher than that in Xinyang buffalo. A total of 1566 mRNAs expressed in adipose tissue showed differential expression between the longissimus dorsi muscles of buffalo and cattle. Functional annotation suggested a difference in the glycolysis/gluconeogenesis pathway between the two species. The results of RT-qPCR analysis and gain-of-function experiments confirmed the positive association between the IMF content and phosphoenolpyruvate carboxykinase 1 (PCK1) expression in buffalo. In both mouse C2C12 cells and cultured bovine myocytes, the activity of the PCK1 promoter in buffalo is lower than that in cattle. However, in mouse 3T3-L1 adipocytes and cultured bovine adipocytes, the activity of PCK1 in buffalo promoter is higher than that in cattle. CONCLUSIONS These results indicate the important role of PCK1 in buffalo IMF deposition and illustrate the differences between buffalo and cattle promoter activity that drive PCK1 expression. This research helps to establish a foundation for further studies investigating IMF deposition in buffalo.
Collapse
Affiliation(s)
- Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, Guangxi, China. .,College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China.
| | - Xue Feng
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Ruirui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, Guangxi, China
| | - Duo Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, Guangxi, China
| | - Yutong Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Xiaodan Cao
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China.,School of Agriculture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, Guangxi, China
| |
Collapse
|
26
|
Chetri PB, Shukla R, Tripathi T. Identification and characterization of cytosolic malate dehydrogenase from the liver fluke Fasciola gigantica. Sci Rep 2020; 10:13372. [PMID: 32770017 PMCID: PMC7415141 DOI: 10.1038/s41598-020-70202-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
The liver fluke zoonoses, Fasciola spp. are parasitic helminths infecting humans and animals globally. Recent sequencing of the genome of Fasciola gigantica has provided a basis to understand the biochemistry of this parasite. Here, we identified the cytosolic malate dehydrogenase in F. gigantica (FgMDH) and characterized the enzyme biochemically and structurally. F. gigantica encodes a single cytosolic MDH, a key enzyme of the citric acid cycle. It catalyzes the reversible oxidation of malate to oxaloacetate using NAD+. The Fgmdh gene was amplified and cloned for expression of the recombinant protein. The purified protein showed a molecular weight of ~ 36 kDa that existed in a dimeric form in solution. The recombinant enzyme was catalytically active as it catalyzed both forward and reverse reactions efficiently. The kinetic parameters were determined for both directions. The structure of FgMDH and human MDH were modeled and validated. The superimposition of both the model structures showed overall structural similarity in the active site loop region, however, the conformation of the residues was different. Molecular docking elucidated the binding sites and affinities of the substrates and cofactors to the enzyme. Simulation of molecular dynamics and principal component analysis indicated the stability of the systems and collective motions, respectively. Understanding the structural and functional properties of MDH is important to better understand the roles of this enzyme in the biochemistry of the parasite.
Collapse
Affiliation(s)
- Purna Bahadur Chetri
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.,Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
27
|
Seenappa V, Joshi MB, Satyamoorthy K. Intricate Regulation of Phosphoenolpyruvate Carboxykinase (PEPCK) Isoforms in Normal Physiology and Disease. Curr Mol Med 2020; 19:247-272. [PMID: 30947672 DOI: 10.2174/1566524019666190404155801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The phosphoenolpyruvate carboxykinase (PEPCK) isoforms are considered as rate-limiting enzymes for gluconeogenesis and glyceroneogenesis pathways. PEPCK exhibits several interesting features such as a) organelle-specific isoforms (cytosolic and a mitochondrial) in vertebrate clade, b) tissue-specific expression of isoforms and c) organism-specific requirement of ATP or GTP as a cofactor. In higher organisms, PEPCK isoforms are intricately regulated and activated through several physiological and pathological stimuli such as corticoids, hormones, nutrient starvation and hypoxia. Isoform-specific transcriptional/translational regulation and their interplay in maintaining glucose homeostasis remain to be fully understood. Mounting evidence indicates the significant involvement of PEPCK isoforms in physiological processes (development and longevity) and in the progression of a variety of diseases (metabolic disorders, cancer, Smith-Magenis syndrome). OBJECTIVE The present systematic review aimed to assimilate existing knowledge of transcriptional and translational regulation of PEPCK isoforms derived from cell, animal and clinical models. CONCLUSION Based on current knowledge and extensive bioinformatics analysis, in this review we have provided a comparative (epi)genetic understanding of PCK1 and PCK2 genes encompassing regulatory elements, disease-associated polymorphisms, copy number variations, regulatory miRNAs and CpG densities. We have also discussed various exogenous and endogenous modulators of PEPCK isoforms and their signaling mechanisms. A comprehensive review of existing knowledge of PEPCK regulation and function may enable identification of the underlying gaps to design new pharmacological strategies and interventions for the diseases associated with gluconeogenesis.
Collapse
Affiliation(s)
- Venu Seenappa
- School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, India
| | - Manjunath B Joshi
- School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, India
| | - Kapaettu Satyamoorthy
- School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, India
| |
Collapse
|
28
|
Nessler J, Hug P, Mandigers PJJ, Leegwater PAJ, Jagannathan V, Das AM, Rosati M, Matiasek K, Sewell AC, Kornberg M, Hoffmann M, Wolf P, Fischer A, Tipold A, Leeb T. Mitochondrial PCK2 Missense Variant in Shetland Sheepdogs with Paroxysmal Exercise-Induced Dyskinesia (PED). Genes (Basel) 2020; 11:genes11070774. [PMID: 32660061 PMCID: PMC7397061 DOI: 10.3390/genes11070774] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023] Open
Abstract
Four female Shetland Sheepdogs with hypertonic paroxysmal dyskinesia, mainly triggered by exercise and stress, were investigated in a retrospective multi-center investigation aiming to characterize the clinical phenotype and its underlying molecular etiology. Three dogs were closely related and their pedigree suggested autosomal dominant inheritance. Laboratory diagnostic findings included mild lactic acidosis and lactaturia, mild intermittent serum creatine kinase (CK) elevation and hypoglycemia. Electrophysiological tests and magnetic resonance imaging of the brain were unremarkable. A muscle/nerve biopsy revealed a mild type II fiber predominant muscle atrophy. While treatment with phenobarbital, diazepam or levetiracetam did not alter the clinical course, treatment with a gluten-free, home-made fresh meat diet in three dogs or a tryptophan-rich, gluten-free, seafood-based diet, stress-reduction, and acetazolamide or zonisamide in the fourth dog correlated with a partial reduction in, or even a complete absence of, dystonic episodes. The genomes of two cases were sequenced and compared to 654 control genomes. The analysis revealed a case-specific missense variant, c.1658G>A or p.Arg553Gln, in the PCK2 gene encoding the mitochondrial phosphoenolpyruvate carboxykinase 2. Sanger sequencing confirmed that all four cases carried the mutant allele in a heterozygous state. The mutant allele was not found in 117 Shetland Sheepdog controls and more than 500 additionally genotyped dogs from various other breeds. The p.Arg553Gln substitution affects a highly conserved residue in close proximity to the GTP-binding site of PCK2. Taken together, we describe a new form of paroxysmal exercise-induced dyskinesia (PED) in dogs. The genetic findings suggest that PCK2:p.Arg553Gln should be further investigated as putative candidate causal variant.
Collapse
Affiliation(s)
- Jasmin Nessler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany; (J.N.); (A.T.)
| | - Petra Hug
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (V.J.)
| | - Paul J. J. Mandigers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.J.L.)
| | - Peter A. J. Leegwater
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.J.L.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (V.J.)
| | - Anibh M. Das
- Department of Pediatrics, Hannover Medical School, 30625 Hannover, Germany;
| | - Marco Rosati
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany; (M.R.); (K.M.)
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany; (M.R.); (K.M.)
| | - Adrian C. Sewell
- Biocontrol, Labor für Veterinärmedizinische Diagnostik, 55218 Ingelheim, Germany;
| | | | | | - Petra Wolf
- Nutritional Physiology and Animal Nutrition, University of Rostock, 18059 Rostock, Germany;
| | - Andrea Fischer
- Section of Neurology, Clinic of Small Animal Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany;
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany; (J.N.); (A.T.)
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (V.J.)
- Correspondence: ; Tel.: +41-316-312-326
| |
Collapse
|
29
|
Nasab SB, Homaei A, Pletschke BI, Salinas-Salazar C, Castillo-Zacarias C, Parra-Saldívar R. Marine resources effective in controlling and treating diabetes and its associated complications. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Goncalves J, Wan Y, Guo X, Rha K, LeBoeuf B, Zhang L, Estler K, Garcia LR. Succinate Dehydrogenase-Regulated Phosphoenolpyruvate Carboxykinase Sustains Copulation Fitness in Aging C. elegans Males. iScience 2020; 23:100990. [PMID: 32240955 PMCID: PMC7115159 DOI: 10.1016/j.isci.2020.100990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/18/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
Dysregulated metabolism accelerates reduced decision-making and locomotor ability during aging. To identify mechanisms for delaying behavioral decline, we investigated how C. elegans males sustain their copulatory behavior during early to mid-adulthood. We found that in mid-aged males, gluco-/glyceroneogenesis, promoted by phosphoenolpyruvate carboxykinase (PEPCK), sustains competitive reproductive behavior. C. elegans' PEPCK paralogs, pck-1 and pck-2, increase in expression during the first 2 days of adulthood. Insufficient PEPCK expression correlates with reduced egl-2-encoded ether-a-go-go K+ channel expression and premature hyper-excitability of copulatory circuits. For copulation, pck-1 is required in neurons, whereas pck-2 is required in the epidermis. However, PCK-2 is more essential, because we found that epidermal PCK-2 likely supplements the copulation circuitry with fuel. We identified the subunit A of succinate dehydrogenase SDHA-1 as a potent modulator of PEPCK expression. We postulate that during mid-adulthood, reduction in mitochondrial physiology signals the upregulation of cytosolic PEPCK to sustain the male's energy demands. C. elegans upregulates pck-1- and pck-2-encoded PEPCK during early adulthood Loss of PEPCK causes premature male copulatory behavior decline Epidermal PEPCK is required to sustain the copulatory fitness Subunit A of succinate dehydrogenase antagonizes PEPCK expression
Collapse
Affiliation(s)
- Jimmy Goncalves
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Yufeng Wan
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoyan Guo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Kyoungsun Rha
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Brigitte LeBoeuf
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Liusuo Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Kerolayne Estler
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - L René Garcia
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
31
|
Marcondes-de-Mello MLDF, Serafim-Costa MC, Alves-E-Silva MM, Oliveira NR, Bertolucci-Caldo NV, Ferraz RK, Chaves VE. Effect of glucocorticoids on glyceroneogenesis in adipose tissue: A systematic review. Biochimie 2019; 168:210-219. [PMID: 31759936 DOI: 10.1016/j.biochi.2019.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/14/2019] [Indexed: 01/23/2023]
Abstract
Glyceroneogenesis is important for the maintenance of fat content in white adipose tissue (WAT). An increase in WAT, and especially the pattern of fat distribution, specifically in visceral depots, potentially contributes to cardiovascular and metabolic diseases, such as type 2 diabetes mellitus, myocardial infarction and hypertension. Recent studies have shown important differences in glyceroneogenesis of different fat sites under the administration of glucocorticoids (GCs). Such differences need to be analysed with criteria evidencing the parameter studied, the type of corticoid, the form of administration and also the tissue studied. PubMed, Scopus and Virtual Health Library were used to search for articles that analysed the effect of GCs on glyceroneogenesis in different sites of adipose tissue in mammals and primary cultures. GCs decrease the glyceroneogenesis in epididymal WAT (EWAT) and also decrease the expression of the mRNA, content and activity of phosphoenolpyruvate carboxykinase (PEPCK-C), key enzyme of glyceroneogenesis. However, in retroperitoneal WAT (RWAT), although there is no consensus about the effect of GCs on PEPCK mRNA, GCs increase PEPCK-C activity and glyceroneogenesis flux. In inguinal WAT (IWAT) an in vitro study showed an increase in the PEPCK mRNA induced by dexamethasone. However, prednisolone does not change glyceroneogenesis flux. In interscapular brown adipose tissue (IBAT) prednisolone or dexamethasone does not change PEPCK-C activity in control diet-fed rats but led to a decrease in PEPCK-C activity in fasted- or high-fat/low-carbohydrate diet-fed rats, as well as in suckling rats. Despite that fact that GCs have different potencies, the same dose of dexamethasone reduces PEPCK-C activity in EWAT, but not in RWAT and IBAT from control-diet fed rats. In summary, the data presented in this article show that GCs differentially regulate glyceroneogenesis in different sites of adipose tissue. Further experiments are needed to firmly establish our hypothesis and clarify the mechanisms involved.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruan Krubniki Ferraz
- Laboratory of Physiology, Federal University of São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Valéria Ernestânia Chaves
- Laboratory of Physiology, Federal University of São João Del-Rei, Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
32
|
Lindquist C, Bjørndal B, Bakke HG, Slettom G, Karoliussen M, Rustan AC, Thoresen GH, Skorve J, Nygård OK, Berge RK. A mitochondria-targeted fatty acid analogue influences hepatic glucose metabolism and reduces the plasma insulin/glucose ratio in male Wistar rats. PLoS One 2019; 14:e0222558. [PMID: 31550253 PMCID: PMC6759202 DOI: 10.1371/journal.pone.0222558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
A fatty acid analogue, 2-(tridec-12-yn-1-ylthio)acetic acid (1-triple TTA), was previously shown to have hypolipidemic effects in rats by targeting mitochondrial activity predominantly in liver. This study aimed to determine if 1-triple TTA could influence carbohydrate metabolism. Male Wistar rats were treated for three weeks with oral supplementation of 100 mg/kg body weight 1-triple TTA. Blood glucose and insulin levels, and liver carbohydrate metabolism gene expression and enzyme activities were determined. In addition, human myotubes and Huh7 liver cells were treated with 1-triple TTA, and glucose and fatty acid oxidation were determined. The level of plasma insulin was significantly reduced in 1-triple TTA-treated rats, resulting in a 32% reduction in the insulin/glucose ratio. The hepatic glucose and glycogen levels were lowered by 22% and 49%, respectively, compared to control. This was accompanied by lower hepatic gene expression of phosphenolpyruvate carboxykinase, the rate-limiting enzyme in gluconeogenesis, and Hnf4A, a regulator of gluconeogenesis. Gene expression of pyruvate kinase, catalysing the final step of glycolysis, was also reduced by 1-triple TTA. In addition, pyruvate dehydrogenase activity was reduced, accompanied by 10-15-fold increased gene expression of its regulator pyruvate dehydrogenase kinase 4 compared to control, suggesting reduced entry of pyruvate into the TCA cycle. Indeed, the NADPH-generating enzyme malic enzyme 1 (ME1) catalysing production of pyruvate from malate, was increased 13-fold at the gene expression level. Despite the decreased glycogen level, genes involved in glycogen synthesis were not affected in livers of 1-triple TTA treated rats. In contrast, the pentose phosphate pathway seemed to be increased as the hepatic gene expression of glucose-6-phosphate dehydrogenase (G6PD) was higher in 1-triple TTA treated rats compared to controls. In human Huh7 liver cells, but not in myotubes, 1-triple-TTA reduced glucose oxidation and induced fatty acid oxidation, in line with previous observations of increased hepatic mitochondrial palmitoyl-CoA oxidation in rats. Importantly, this work recognizes the liver as an important organ in glucose homeostasis. The mitochondrially targeted fatty acid analogue 1-triple TTA seemed to lower hepatic glucose and glycogen levels by inhibition of gluconeogenesis. This was also linked to a reduction in glucose oxidation accompanied by reduced PHD activity and stimulation of ME1 and G6PD, favouring a shift from glucose- to fatty acid oxidation. The reduced plasma insulin/glucose ratio indicate that 1-triple TTA may improve glucose tolerance in rats.
Collapse
Affiliation(s)
- Carine Lindquist
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hege G. Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Grete Slettom
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Marie Karoliussen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar K. Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| |
Collapse
|
33
|
Zhang T, He Y, Zeng J, Zhang L, Zeng F, Mao J, Zhang G. Search for Nutritional Fitness Traits in a Biological Pest Control Agent Harmonia axyridis Using Comparative Transcriptomics. Front Physiol 2019; 10:1148. [PMID: 31620008 PMCID: PMC6760036 DOI: 10.3389/fphys.2019.01148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/26/2019] [Indexed: 01/14/2023] Open
Abstract
Harmonia axyridis is an important natural predator used in the biological control of insect pests. Vitellogenin (Vg) supplementation to artificial diet can improve fecundity of H. axyridis, however, the effects of Vg on physiology of H. axyridis at the molecular level is unclear. This study investigated the effects of Vg on the physiology (digestive enzyme activities) and transcriptome patterns by feeding H. axyridis adults with treatment (artificial diet with Vg supplement) and control (artificial diet supplemented with bovine serum albumin (BSA). The transcriptome sequencing yielded 43.94 Gb of clean data, and 3,946 differentially expressed genes (DEGs) - including 93 upregulated and 3,853 downregulated genes between the treatment and control. Six DEGs related to development and digestive enzyme were chosen for quantitative real-time PCR (qRT-PCR) to validate the accuracy of the RNA-seq results and confirmed that the transcriptome analysis yielded reliable results. The Vg supplement has increased activities of digestive enzymes and related genes expression in H. axyridis. The transcript level of digestive enzyme genes (apolipoprotein D and phosphoenolpyruvate carboxykinase) were much higher in adults fed on diet supplemented with Vg compared with that of the control.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yulong He
- Business School, Huaqiao University, Quanzhou, China
| | - Jianyong Zeng
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Lisheng Zhang
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanrong Zeng
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianjun Mao
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
34
|
Abruzzese GA, Heber MF, Ferrer MJ, Ferreira SR, Silva AF, Motta AB. Effects of in utero androgen excess and metformin treatment on hepatic functions. Mol Cell Endocrinol 2019; 491:110416. [PMID: 30880153 DOI: 10.1016/j.mce.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022]
Abstract
This study aimed to evaluate the role of prenatal hyperandrogenization in liver functions and the extent of metformin as treatment. Pregnant rats were hyperandrogenized with subcutaneous testosterone (1mg/rat) between 16 and 19 of pregnancy. Prenatally hyperandrogenized (PH) female offspring displayed, at the adult life, two phenotypes; a PH irregular ovulatory phenotype (PHiov) and a PH anovulatory (PHanov) phenotype. From day 70 to the moment of sacrifice (90 days of age), 50% of the animals of each group received a daily oral dose of 50 mg/kg of metformin. We found that both PH phenotypes displayed a hepatic disruptions of insulin and glucose pathway and that metformin treatment reversed some of these alterations in a specific-phenotype manner. Our findings show, for the first time, that androgen excess in utero promotes hepatic dysfunctions and that metformin treatment is able to specifically reverse those hepatic alterations and sheds light on the possible mechanisms of metformin action.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Florencia Heber
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - María José Ferrer
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Rocío Ferreira
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Aimé Florencia Silva
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
35
|
Gluconeogenesis in cancer cells - Repurposing of a starvation-induced metabolic pathway? Biochim Biophys Acta Rev Cancer 2019; 1872:24-36. [PMID: 31152822 DOI: 10.1016/j.bbcan.2019.05.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/15/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
Cancer cells constantly face a fluctuating nutrient supply and interference with adaptive responses might be an effective therapeutic approach. It has been discovered that in the absence of glucose, cancer cells can synthesize crucial metabolites by expressing phosphoenolpyruvate carboxykinase (PEPCK, PCK1 or PCK2) using abbreviated forms of gluconeogenesis. Gluconeogenesis, which in essence is the reverse pathway of glycolysis, uses lactate or amino acids to feed biosynthetic pathways branching from glycolysis. PCK1 and PCK2 have been shown to be critical for the growth of certain cancers. In contrast, fructose-1,6-bisphosphatase 1 (FBP1), a downstream gluconeogenesis enzyme, inhibits glycolysis and tumor growth, partly by non-enzymatic mechanisms. This review sheds light on the current knowledge of cancer cell gluconeogenesis and its role in metabolic reprogramming, cancer cell plasticity, and tumor growth.
Collapse
|
36
|
Li X, Zhang Z, Zhang X, Cheng J, Liu D, Yan Y, Wang H. Transcriptomic analysis of the life-extending effect exerted by black rice anthocyanin extract in D. melanogaster through regulation of aging pathways. Exp Gerontol 2019; 119:33-39. [DOI: 10.1016/j.exger.2019.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/25/2018] [Accepted: 01/14/2019] [Indexed: 11/25/2022]
|
37
|
Della Noce B, Carvalho Uhl MVD, Machado J, Waltero CF, de Abreu LA, da Silva RM, da Fonseca RN, de Barros CM, Sabadin G, Konnai S, da Silva Vaz I, Ohashi K, Logullo C. Carbohydrate Metabolic Compensation Coupled to High Tolerance to Oxidative Stress in Ticks. Sci Rep 2019; 9:4753. [PMID: 30894596 PMCID: PMC6427048 DOI: 10.1038/s41598-019-41036-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/26/2019] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) are natural byproducts of metabolism that have toxic effects well documented in mammals. In hematophagous arthropods, however, these processes are not largely understood. Here, we describe that Rhipicephalus microplus ticks and embryonic cell line (BME26) employ an adaptive metabolic compensation mechanism that confers tolerance to hydrogen peroxide (H2O2) at concentrations too high for others organisms. Tick survival and reproduction are not affected by H2O2 exposure, while BME26 cells morphology was only mildly altered by the treatment. Furthermore, H2O2-tolerant BME26 cells maintained their proliferative capacity unchanged. We evaluated several genes involved in gluconeogenesis, glycolysis, and pentose phosphate pathway, major pathways for carbohydrate catabolism and anabolism, describing a metabolic mechanism that explains such tolerance. Genetic and catalytic control of the genes and enzymes associated with these pathways are modulated by glucose uptake and energy resource availability. Transient increase in ROS levels, oxygen consumption, and ROS-scavenger enzymes, as well as decreased mitochondrial superoxide levels, were indicative of cell adaptation to high H2O2 exposure, and suggested a tolerance strategy developed by BME26 cells to cope with oxidative stress. Moreover, NADPH levels increased upon H2O2 challenge, and this phenomenon was sustained mainly by G6PDH activity. Interestingly, G6PDH knockdown in BME26 cells did not impair H2O2 tolerance, but generated an increase in NADP-ICDH transcription. In agreement with the hypothesis of a compensatory NADPH production in these cells, NADP-ICDH knockdown increased G6PDH relative transcript level. The present study unveils the first metabolic evidence of an adaptive mechanism to cope with high H2O2 exposure and maintain redox balance in ticks.
Collapse
Affiliation(s)
- Bárbara Della Noce
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Marcelle Vianna de Carvalho Uhl
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Josias Machado
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Camila Fernanda Waltero
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Leonardo Araujo de Abreu
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Renato Martins da Silva
- Laboratory of Infectious Diseases, Hokkaido University, Sapporo, 060-0818, Japan
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Cintia Monteiro de Barros
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
| | - Gabriela Sabadin
- Centro de Biotecnologia and Faculdade de Veterinária - UFRGS, Porto Alegre, RS, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Hokkaido University, Sapporo, 060-0818, Japan
| | | | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Hokkaido University, Sapporo, 060-0818, Japan
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil.
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
38
|
Gligorovska L, Bursać B, Kovačević S, Veličković N, Matić G, Djordjevic A. Mif deficiency promotes adiposity in fructose-fed mice. J Endocrinol 2019; 240:133-145. [PMID: 30400058 DOI: 10.1530/joe-18-0333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023]
Abstract
The macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in inflammation, regulation of energy metabolism and glucocorticoid action. Chronic low-grade inflammation may be caused by fructose intake, contributing to visceral adipose tissue (VAT) dysfunction. Since MIF is a known antagonist of glucocorticoid signaling, and deregulated glucocorticoid signaling can contribute to lipid metabolism disturbances, we hypothesized that altered MIF signaling might underlie fructose-induced adiposity through glucocorticoid action. We analyzed physiological and biochemical parameters, adipose tissue histology, insulin sensitivity and lipid metabolism in WT and MIF-/- C57Bl/6J mice consuming 20% fructose solution for 9 weeks. Glucocorticoid prereceptor metabolism and glucocorticoid receptor (GR) protein level were examined in VAT, together with the expression of glucocorticoid-target genes involved in lipid metabolism. The expression of adipogenic and lipogenic transcriptional regulators peroxisome proliferator-activated receptor gamma (PPARG) and sterol regulatory element-binding protein 1c (SREBP1c) was also assessed. Results showed disturbed insulin sensitivity in all MIF-/- mice, regardless of the diet. Mice on fructose diet had increased energy intake, but increased visceral adiposity and enlarged adipocytes were observed only in fructose-fed MIF-/- mice. Increased VAT corticosterone level and 11 beta-hydroxysteroid dehydrogenase type 1, hexose-6-phosphate dehydrogenase and GR protein levels were observed in the same animals, together with induced expression of examined lipogenic genes and accumulation of PPARG and SREBP1c. In conclusion, the results showed that dietary fructose was associated with increased visceral adiposity through activation of GR-regulated lipogenic genes, but only in the absence of MIF, which set the state of hyperinsulinemia and insulin resistance.
Collapse
Affiliation(s)
- Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Gordana Matić
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| |
Collapse
|
39
|
Hypometabolic strategy and glucose metabolism maintenance of Aedes aegypti egg desiccation. Comp Biochem Physiol B Biochem Mol Biol 2019; 227:56-63. [DOI: 10.1016/j.cbpb.2018.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 11/21/2022]
|
40
|
Ashraf UM, Sanchez ER, Kumarasamy S. COUP-TFII revisited: Its role in metabolic gene regulation. Steroids 2019; 141:63-69. [PMID: 30481528 PMCID: PMC6435262 DOI: 10.1016/j.steroids.2018.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/10/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023]
Abstract
Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUP-TFII) is an orphan member of the nuclear receptor family of transcriptional regulators. Although hormonal activation of COUP-TFII has not yet been identified, rodent genetic models have uncovered vital and diverse roles for COUP-TFII in biological processes. These include control of cardiac function and angiogenesis, reproduction, neuronal development, cell fate and organogenesis. Recently, an emerging body of evidence has demonstrated COUP-TFII involvement in various metabolic systems such as adipogenesis, lipid metabolism, hepatic gluconeogenesis, insulin secretion, and regulation of blood pressure. The potential relevance of these observations to human pathology has been corroborated by the identification of single nucleotide polymorphism in the human COUP-TFII promoter controlling insulin sensitivity. Of particular interest to metabolism is the ability of COUP-TFII to interact with the Glucocorticoid Receptor (GR). This interaction is known to control gluconeogenesis, principally through direct binding of COUP-TFII/GR complexes to the promoters of gluconeogenic enzyme genes. However, it is likely that this interaction is critical to other metabolic processes, since GR, like COUP-TFII, is an essential regulator of adipogenesis, insulin sensitivity, and blood pressure. This review will highlight these unique roles of COUP-TFII in metabolic gene regulation.
Collapse
Affiliation(s)
- Usman M Ashraf
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Edwin R Sanchez
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA; Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sivarajan Kumarasamy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
41
|
Li XX, Lu XY, Zhang SJ, Chiu AP, Lo LH, Largaespada DA, Chen QB, Keng VW. Sodium tanshinone IIA sulfonate ameliorates hepatic steatosis by inhibiting lipogenesis and inflammation. Biomed Pharmacother 2018; 111:68-75. [PMID: 30576936 DOI: 10.1016/j.biopha.2018.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming an epidemic disease in adults and children worldwide. Importantly, there are currently no approved treatments available for NAFLD. This study aims to investigate the potential applications of sodium tanshinone IIA sulfonate (STS) on improving the NAFLD condition using both in vitro and in vivo approaches. The results showed that STS markedly inhibited lipid accumulation in oleic acid (OA) and palmitic acid (PA) treated HepG2 and primary immortalized human hepatic (PIH) cells. STS suppressed lipogenesis by inhibiting expression of sterol regulatory element binding transcription factor 1 (SREBF1), fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD). In addition, STS reduced inflammation in cells treated with OA-PA, shown by decreased transcriptional levels of tumor necrosis factor (TNF), transforming growth factor beta 1 (TGFB1) and interleukin 1 beta (IL1B). Consistently, protective effects on hepatic steatosis in db/db mice were observed after STS administration, demonstrated by decreased lipid accumulation in mouse hepatocytes. This protective effect might be associated with STS induced activation of sirtuin 1 (SIRT1)/protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1) pathways. Our findings suggest a potential therapeutic role for STS in the treatment of NAFLD.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xin-Yi Lu
- Biological Resource Centre, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Amy P Chiu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Lilian H Lo
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - David A Largaespada
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Qu-Bo Chen
- Biological Resource Centre, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Vincent W Keng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
42
|
Zhang B, Pan Y, Xu L, Tang D, Dorfman RG, Zhou Q, Yin Y, Li Y, Zhou L, Zhao S, Zou X, Wang L, Zhang M. Berberine promotes glucose uptake and inhibits gluconeogenesis by inhibiting deacetylase SIRT3. Endocrine 2018; 62:576-587. [PMID: 30117113 DOI: 10.1007/s12020-018-1689-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Many studies have confirmed the glucose-lowering effect of berberine in type 2 diabetes patients. Although the mechanism of action of berberine involves the improvement of insulin sensitivity, its hypoglycemic mechanism remains elusive. Here we show a new mechanism by which berberine antagonizes glucagon signaling and find that SIRT3 is involved in the hypoglycemic effect of berberine. METHODS Gene knockout and overexpression were used to assess the inhibitory effect of berberine on SIRT3. Downstream signaling pathways and the hypoglycemic effect of SIRT3 were evaluated by immunoblotting and metabolic monitoring. RESULTS We found that berberine led to mitochondrial dysfunction and AMP accumulation by inhibiting deacetylase SIRT3. We confirmed that AMP accumulation activated the AMPK signaling pathway and further promoted glucose uptake. Simultaneously, AMP accumulation reduced cyclic AMP (cAMP) levels and abrogated the phosphorylation of critical protein targets of protein kinase A (PKA). Furthermore, we found that phosphoenolpyruvate carboxykinase 1 (PEPCK1) is a key gluconeogenesis enzyme that can be stabilized by glucagon. Berberine caused significant PEPCK1 ubiquitination and degradation by antagonizing glucagon and was accompanied by high levels of PEPCK1 acetylation. Interestingly, berberine-induced glucagon inhibition is independent of AMPK activation. The in vivo data from sirt3 knockout mice were further confirmed by the in vitro experiments. CONCLUSIONS Berberine promotes glucose uptake and inhibits gluconeogenesis by inhibiting SIRT3, and regulating mitochondria-related pathways may provide a novel approach to the development of antidiabetic drugs.
Collapse
Affiliation(s)
- Bingjie Zhang
- Department of Gastroenterology, Drum Tower hospital affiliated to Nanjing University Medical School, Nanjing University, Nanjing, China
- Department of Endocrinology, Drum Tower hospital affiliated to Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yida Pan
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Xu
- Department of Gastroenterology, Drum Tower hospital affiliated to Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Dehua Tang
- Department of Gastroenterology, Drum Tower hospital affiliated to Nanjing University Medical School, Nanjing University, Nanjing, China
| | | | - Qian Zhou
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yuyao Yin
- Department of Gastroenterology, Drum Tower hospital affiliated to Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yang Li
- Department of Gastroenterology, Drum Tower hospital affiliated to Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Lixing Zhou
- Department of Gastroenterology, Drum Tower hospital affiliated to Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Shimin Zhao
- School of Life Sciences, Fudan University, Shanghai, China
- Key laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Fudan University, Shanghai, China
| | - Xiaoping Zou
- Department of Gastroenterology, Drum Tower hospital affiliated to Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Lei Wang
- Department of Gastroenterology, Drum Tower hospital affiliated to Nanjing University Medical School, Nanjing University, Nanjing, China.
| | - Mingming Zhang
- Department of Gastroenterology, Drum Tower hospital affiliated to Nanjing University Medical School, Nanjing University, Nanjing, China.
- School of Life Sciences, Fudan University, Shanghai, China.
- Key laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Fudan University, Shanghai, China.
| |
Collapse
|
43
|
Martins R, Ruiz N, Fonseca RND, Vaz Junior IDS, Logullo C. The dynamics of energy metabolism in the tick embryo. ACTA ACUST UNITED AC 2018; 27:259-266. [PMID: 30133594 DOI: 10.1590/s1984-296120180051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/12/2018] [Indexed: 02/03/2023]
Abstract
The cattle tick Rhipicephalus (Boophilus) microplus is an ectoparasite capable of transmitting a large number of pathogens, causing considerable losses in the cattle industry, with substantial damage to livestock. Over the years, important stages of its life cycle, such as the embryo, have been largely ignored by researchers. Tick embryogenesis has been typically described as an energy-consuming process, sustaining cell proliferation, differentiation, and growth. During the embryonic stage of arthropods, there is mobilization of metabolites of maternal origin for the development of organs and tissues of the embryo. Glycogen resynthesis in late embryogenesis is considered as an effective indicator of embryonic integrity. In the cattle tick R.(B. (B.) microplus, glycogen resynthesis is sustained by protein degradation through the gluconeogenesis pathway at the end of the embryonic period. Despite recent advancements in research on tick energy metabolism at the molecular level, the dynamics of nutrient utilization during R. (B.) microplus embryogenesis is still poorly understood. The present review aims to describe the regulatory mechanisms of carbohydrate metabolism during maternal-zygotic transition and identify possible new targets for the development of novel drugs and other control measures against R. (B.) microplus infestations.
Collapse
Affiliation(s)
- Renato Martins
- Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense - UENF, Campos dos Goytacazes, RJ, Brasil
| | - Newton Ruiz
- Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense - UENF, Campos dos Goytacazes, RJ, Brasil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro - UFRJ, Campus Macaé, RJ, Brasil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, RJ, Brasil
| | - Itabajara da Silva Vaz Junior
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, RJ, Brasil.,Centro de Biotecnologia e Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brasil
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro - UFRJ, Campus Macaé, RJ, Brasil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
44
|
Morze CV, Allu PKR, Chang GY, Marco-Rius I, Milshteyn E, Wang ZJ, Ohliger MA, Gleason CE, Kurhanewicz J, Vigneron DB, Pearce D. Non-invasive detection of divergent metabolic signals in insulin deficiency vs. insulin resistance in vivo. Sci Rep 2018; 8:2088. [PMID: 29391429 PMCID: PMC5794967 DOI: 10.1038/s41598-018-20264-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/04/2018] [Indexed: 12/04/2022] Open
Abstract
The type 2 diabetic phenotype results from mixed effects of insulin deficiency and insulin resistance, but the relative contributions of these two distinct factors remain poorly characterized, as do the respective roles of the gluconeogenic organs. The purpose of this study was to investigate localized in vivo metabolic changes in liver and kidneys of contrasting models of diabetes mellitus (DM): streptozotocin (STZ)-treated wild-type Zucker rats (T1DM) and Zucker diabetic fatty (ZDF) rats (T2DM). Intermediary metabolism was probed using hyperpolarized (HP) [1-13C]pyruvate MRI of the liver and kidneys. These data were correlated with gene expression data for key mediators, assessed using rtPCR. Increased HP [1-13C]lactate was detected in both models, in association with elevated gluconeogenesis as reflected by increased expression of phosphoenolpyruvate carboxykinase. In contrast, HP [1-13C]alanine diverged between the two models, increasing in ZDF rats, while decreasing in the STZ-treated rats. The differences in liver alanine paralleled differences in key lipogenic mediators. Thus, HP [1-13C]alanine is a marker that can identify phenotypic differences in kidneys and liver of rats with T1DM vs. T2DM, non-invasively in vivo. This approach could provide a powerful diagnostic tool for characterizing tissue metabolic defects and responses to treatment in diabetic patients with ambiguous systemic manifestations.
Collapse
Affiliation(s)
- Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States.
| | - Prasanna K R Allu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, United States
| | - Gene Y Chang
- Division of Nephrology, Department of Medicine, University of California, San Francisco, United States
| | - Irene Marco-Rius
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Catherine E Gleason
- Division of Nephrology, Department of Medicine, University of California, San Francisco, United States
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - David Pearce
- Division of Nephrology, Department of Medicine, University of California, San Francisco, United States
| |
Collapse
|
45
|
Liu T, Liu M, Shang P, Jin X, Liu W, Zhang Y, Li X, Ding Y, Li Y, Wen A. Investigation into the underlying molecular mechanisms of hypertensive nephrosclerosis using bioinformatics analyses. Mol Med Rep 2018; 17:4440-4448. [PMID: 29328390 PMCID: PMC5802219 DOI: 10.3892/mmr.2018.8405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022] Open
Abstract
Hypertensive nephrosclerosis (HNS) is a major risk factor for end-stage renal disease. However, the underlying pathogenesis of HNS remains to be fully determined. The gene expression profile of GSE20602, which consists of 14 glomeruli samples from patients with HNS and 4 normal glomeruli control samples, was obtained from the Gene Expression Omnibus database. Gene ontology (GO) and pathway enrichment analyses were performed in order to investigate the functions and pathways of differentially expressed genes (DEGs). Pathway relation and co‑expression networks were constructed in order to identify key genes and signaling pathways involved in HNS. In total, 483 DEGs were identified to be associated with HNS, including 302 upregulated genes and 181 downregulated genes. Furthermore, GO analysis revealed that DEGs were significantly enriched in the small molecule metabolic process. In addition, pathway analysis also revealed that DEGs were predominantly involved in metabolic pathways. The tricarboxylic acid (TCA) cycle was identified as the hub pathway in the pathway relation network, whereas the sorbitol dehydrogenase (SORD) and cubulin (CUBN) genes were revealed to be the hub genes in the co‑expression network. The present study revealed that the SORD, CUBN and albumin genes as well as the TCA cycle and metabolic pathways are involved in the pathogenesis of HNS. The results of the present study may contribute to the determination of the molecular mechanisms underlying HNS, and provide insight into the exploration of novel targets for the diagnosis and treatment of HNS.
Collapse
Affiliation(s)
- Tianlong Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Minna Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Peijin Shang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xin Jin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wenxing Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yikai Zhang
- Department of Pharmacy, General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Xinfang Li
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuwen Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
46
|
Cao J, Yu Y, Zhang Z, Chen X, Hu Z, Tong Q, Chang J, Feng XH, Lin X. SCP4 Promotes Gluconeogenesis Through FoxO1/3a Dephosphorylation. Diabetes 2018; 67:46-57. [PMID: 28851713 PMCID: PMC5741142 DOI: 10.2337/db17-0546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/21/2017] [Indexed: 11/13/2022]
Abstract
FoxO1 and FoxO3a (collectively FoxO1/3a) proteins regulate a wide array of cellular processes, including hepatic gluconeogenesis. Phosphorylation of FoxO1/3a is a key event that determines its subcellular location and transcriptional activity. During glucose synthesis, the activity of FoxO1/3a is negatively regulated by Akt-mediated phosphorylation, which leads to the cytoplasmic retention of FoxO1/3a. However, the nuclear phosphatase that directly regulates FoxO1/3a remains to be identified. In this study, we discovered a nuclear phosphatase, SCP4/CTDSPL2 (SCP4), that dephosphorylated FoxO1/3a and promoted FoxO1/3a transcription activity. We found that SCP4 enhanced the transcription of FoxO1/3a target genes encoding PEPCK1 and G6PC, key enzymes in hepatic gluconeogenesis. Ectopic expression of SCP4 increased, while knockdown of SCP4 inhibited, glucose production. Moreover, we demonstrated that gene ablation of SCP4 led to hypoglycemia in neonatal mice. Consistent with the positive role of SCP4 in gluconeogenesis, expression of SCP4 was regulated under pathophysiological conditions. SCP4 expression was induced by glucose deprivation in vitro and in vivo and was elevated in obese mice caused by genetic (Avy) and dietary (high-fat) changes. Thus, our findings provided experimental evidence that SCP4 regulates hepatic gluconeogenesis and could serve as a potential target for the prevention and treatment of diet-induced glucose intolerance and type 2 diabetes.
Collapse
Affiliation(s)
- Jin Cao
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Yi Yu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Zhengmao Zhang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Xi Chen
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Zhaoyong Hu
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Qiang Tong
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Jiang Chang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX
| | - Xin-Hua Feng
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| |
Collapse
|
47
|
Prisingkorn W, Prathomya P, Jakovlić I, Liu H, Zhao YH, Wang WM. Transcriptomics, metabolomics and histology indicate that high-carbohydrate diet negatively affects the liver health of blunt snout bream (Megalobrama amblycephala). BMC Genomics 2017; 18:856. [PMID: 29121861 PMCID: PMC5680769 DOI: 10.1186/s12864-017-4246-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Background Global trend of the introduction of high levels of relatively cheap carbohydrates to reduce the amount of costly protein in the aquatic animal feed production has affected the aquaculture of an economically important cyprinid fish, blunt snout bream (Megalobrama amblycephala). This dietary shift has resulted in increased prevalence of metabolic disorders, often causing economic losses. High dietary intake of carbohydrates, associated with obesity, is one of the major causes of non-alcoholic fatty liver disease (NAFLD) in humans. Results We have conducted an eight-week feeding trial to better understand how a high-carbohydrate diet (HCBD) affects the liver health in this fish. Hepatosomatic index and lipid content were significantly (P < 0.05) higher in the HCBD group. Histology results also suggested pathological changes in the livers of HCBD group, with excessive lipid accumulation and indication of liver damage. Metabolomics and serum biochemistry analyses showed that a number of metabolites indicative of liver damage were increased in the HCBD group. This group also exhibited low levels of betaine, which is a metabolite crucial for maintaining the healthy liver functions. Transcriptomic and qPCR analyses indicated that HCBD had a strong impact on the expression of a large number of genes associated with the NAFLD and insulin signalling pathways, which may lead to the development of insulin resistance in hepatocytes, pathological liver changes, and eventually the NAFLD. Conclusions Transcriptomics, metabolomics and histology results all indicate early symptoms of liver damage. However whether these would actually lead to the development of NAFLD after a longer period of time, remains inconclusive. Additionally, a very high number of upregulated genes in the HCBD group associated with several neurodegenerative diseases is a strong indication of neurodegenerative changes caused by the high-carbohydrate diet in blunt snout bream. This suggests that fish might present a good model to study neurodegenerative changes associated with high-carbohydrate diet in humans. Electronic supplementary material The online version of this article (10.1186/s12864-017-4246-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wassana Prisingkorn
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Panita Prathomya
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075, People's Republic of China
| | - Han Liu
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Yu-Hua Zhao
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| | - Wei-Min Wang
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
48
|
Huang S, Zhao Z, Tang D, Zhou Q, Li Y, Zhou L, Yin Y, Wang Y, Pan Y, Dorfman RG, Ling T, Zhang M. Downregulation of SIRT2 Inhibits Invasion of Hepatocellular Carcinoma by Inhibiting Energy Metabolism. Transl Oncol 2017; 10:917-927. [PMID: 28992545 PMCID: PMC5645306 DOI: 10.1016/j.tranon.2017.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common neoplasms, and metastasis is the most important feature for HCC-related deaths. Mounting evidence implies the dynamic regulatory role of SIRT2, a histone deacetylase, in cancer cells. Unfortunately, the role of SIRT2 and the antitumor activity of its inhibition are not known in HCC. The present study aims to evaluate the biological function of SIRT2 in HCC and identify the target of SIRT2 as well as evaluate its therapeutic efficacy. We found that SIRT2 was upregulated in HCC tissues compared to adjacent normal tissues, and this was correlated with reduced patient survival. Although CCK8 and colony-formation assays showed that SIRT2 inhibiton marginally promotes proliferation in HCC cell lines, SIRT2 knockdown decreased the invasion of HCC cells. We demonstrated that downregulation of SIRT2 could inhibit its downstream target phosphoenolpyruvate carboxykinase 1 and glutaminase, which is related to mitochondrial metabolism and the E-Cadherin pathway. These results demonstrate, for the first time that downregulation of SIRT2 decreases migration as well as invasion in human HCC cells, indicating that inhibiting SIRT2 may be an effective therapeutic strategy for treating HCC.
Collapse
Affiliation(s)
- Shan Huang
- Department of Pathology, Anhui Medical University, Hefei, China; Department of Pathology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Zhenguo Zhao
- Department of Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangsu, China
| | - Dehua Tang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Qian Zhou
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yang Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Lixing Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yuyao Yin
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yuming Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yida Pan
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | | | - Tingsheng Ling
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.
| | - Mingming Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China; School of Life Sciences, Fudan University, Shanghai, China; Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Hwang JH, An SM, Kwon S, Park DH, Kim TW, Kang DG, Yu GE, Kim IS, Park HC, Ha J, Kim CW. DNA methylation patterns and gene expression associated with litter size in Berkshire pig placenta. PLoS One 2017; 12:e0184539. [PMID: 28880934 PMCID: PMC5589248 DOI: 10.1371/journal.pone.0184539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 08/26/2017] [Indexed: 11/18/2022] Open
Abstract
Increasing litter size is of great interest to the pig industry. DNA methylation is an important epigenetic modification that regulates gene expression, resulting in livestock phenotypes such as disease resistance, milk production, and reproduction. We classified Berkshire pigs into two groups according to litter size and estimated breeding value: smaller (SLG) and larger (LLG) litter size groups. Genome-wide DNA methylation and gene expression were analyzed using placenta genomic DNA and RNA to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs) associated with litter size. The methylation levels of CpG dinucleotides in different genomic regions were noticeably different between the groups, while global methylation pattern was similar, and excluding intergenic regions they were found the most frequently in gene body regions. Next, we analyzed RNA-Seq data to identify DEGs between the SLG and LLG groups. A total of 1591 DEGs were identified: 567 were downregulated and 1024 were upregulated in LLG compared to SLG. To identify genes that simultaneously exhibited changes in DNA methylation and mRNA expression, we integrated and analyzed the data from bisulfite-Seq and RNA-Seq. Nine DEGs positioned in DMRs were found. The expression of only three of these genes (PRKG2, CLCA4, and PCK1) was verified by RT-qPCR. Furthermore, we observed the same methylation patterns in blood samples as in the placental tissues by PCR-based methylation analysis. Together, these results provide useful data regarding potential epigenetic markers for selecting hyperprolific sows.
Collapse
Affiliation(s)
- Jung Hye Hwang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Sang Mi An
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Seulgi Kwon
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Da Hye Park
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Tae Wan Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Deok Gyeong Kang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Go Eun Yu
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Il-Suk Kim
- Department of Animal Resource Technology, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | | | - Jeongim Ha
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
- * E-mail: (JH); (CWK)
| | - Chul Wook Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
- * E-mail: (JH); (CWK)
| |
Collapse
|
50
|
Ferreira GN, Rossi-Valentim R, Buzelle SL, Paula-Gomes S, Zanon NM, Garófalo MAR, Frasson D, Navegantes LCC, Chaves VE, Kettelhut IDC. Differential regulation of glyceroneogenesis by glucocorticoids in epididymal and retroperitoneal white adipose tissue from rats. Endocrine 2017; 57:287-297. [PMID: 28555305 DOI: 10.1007/s12020-017-1315-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/29/2017] [Indexed: 01/03/2023]
Abstract
PURPOSE Investigate the glycerol-3-phosphate generation pathways in epididymal (EPI) and retroperitoneal (RETRO) adipose tissues from dexamethasone-treated rats. METHODS Rats were treated with dexamethasone for 7 days. Glycerol-3-phosphate generation pathways via glycolysis, glyceroneogenesis and direct phosphorylation of glycerol were evaluated, respectively, by 2-deoxyglucose uptake, phosphoenolpyruvate carboxykinase (PEPCK-C) activity and pyruvate incorporation into triacylglycerol (TAG)-glycerol, and glycerokinase activity and glycerol incorporation into TAG-glycerol. RESULTS Dexamethasone treatment markedly decreased the body weight, but increased the weight and lipid content of EPI and RETRO and plasma insulin, glucose, non-esterified fatty acid and TAG levels. EPI and RETRO from dexamethasone-treated rats showed increased rates of de novo fatty acid synthesis (80 and 100%) and basal lipolysis (20%). In EPI, dexamethasone decreased the 2-deoxyglucose uptake (50%), as well as glyceroneogenesis, evidenced by a decrease of PEPCK-C activity (39%) and TAG-glycerol synthesis from pyruvate (66%), but increased the glycerokinase activity (50%) and TAG-glycerol synthesis from glycerol (72%) in this tissue. In spite of a similar reduction in 2-deoxyglucose uptake in RETRO, dexamethasone treatment increased glyceroneogenesis, evidenced by PEPCK activity (96%), and TAG-glycerol synthesis from pyruvate (110%), accompanied by a decrease in glycerokinase activity (50%) and TAG-glycerol synthesis from glycerol (50%). Dexamethasone effects on RETRO were accompanied by a decrease in p-Akt content and by lower insulin effects on the rates of glycerol release in the presence of isoproterenol and on the rates of glucose uptake in isolated adipocytes. CONCLUSION Our data demonstrated differential regulation of glyceroneogenesis and direct phosphorylation of glycerol by glucocorticoids in EPI and RETRO from rats.
Collapse
Affiliation(s)
- Graziella Nascimento Ferreira
- Departments of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Rossi-Valentim
- Departments of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Samyra Lopes Buzelle
- Biochemistry-Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sílvia Paula-Gomes
- Biochemistry-Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Neusa Maria Zanon
- Departments of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Danúbia Frasson
- Latin American Institute of Life and Nature Science, Federal University of Latin American Integration, Foz do Iguaçu, Paraná, Brazil
| | | | - Valéria Ernestânia Chaves
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.
| | - Isis do Carmo Kettelhut
- Biochemistry-Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|