1
|
Yu M, Vieta-Ferrer ER, Bakdalieh A, Tsai T. The Role of Visual Electrophysiology in Systemic Hereditary Syndromes. Int J Mol Sci 2025; 26:957. [PMID: 39940729 PMCID: PMC11816691 DOI: 10.3390/ijms26030957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Visual electrophysiology is a valuable tool for evaluating the visual system in various systemic syndromes. This review highlights its clinical application in a selection of syndromes associated with hearing loss, mitochondrial dysfunction, obesity, and other multisystem disorders. Techniques such as full-field electroretinography (ffERG), multifocal electroretinography (mfERG), pattern electroretinography (PERG), visual evoked potentials (VEP), and electrooculography (EOG) offer insights into retinal and optic nerve function, often detecting abnormalities before clinical symptoms manifest. In hearing loss syndromes like Refsum disease, Usher syndrome (USH), and Wolfram syndrome (WS), electrophysiology facilitates the detection of early retinal changes that precede the onset of visual symptoms. For mitochondrial disorders such as maternally-inherited diabetes and deafness (MIDD), Kearns-Sayre syndrome (KSS), and neuropathy, ataxia, and retinitis pigmentosa (NARP) syndrome, these tests can be useful in characterizing retinal degeneration and optic neuropathy. In obesity syndromes, including Bardet-Biedl syndrome (BBS), Alström syndrome, and Cohen syndrome, progressive retinal degeneration is a hallmark feature. Electrophysiological techniques aid in pinpointing retinal dysfunction and tracking disease progression. Other syndromes, such as Alagille syndrome (AGS), abetalipoproteinemia (ABL), Cockayne syndrome (CS), Joubert syndrome (JS), mucopolysaccharidosis (MPS), Neuronal ceroid lipofuscinoses (NCLs), and Senior-Løken syndrome (SLS), exhibit significant ocular involvement that can be evaluated using these methods. This review underscores the role of visual electrophysiology in diagnosing and monitoring visual system abnormalities across a range of syndromes, potentially offering valuable insights for early diagnosis, monitoring of progression, and management.
Collapse
Affiliation(s)
- Minzhong Yu
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye Institute, Case Western Reserve University, Cleveland, OH 44106, USA
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | | | - Anas Bakdalieh
- College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| | - Travis Tsai
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
2
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Paredes DI, Bello NR, Capasso JE, Procopio R, Levin AV. Mutations in AGBL5 associated with Retinitis pigmentosa. Ophthalmic Genet 2024; 45:275-280. [PMID: 38078364 DOI: 10.1080/13816810.2023.2291687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 08/09/2024]
Abstract
BACKGROUND Retinitis pigmentosa (RP) is the leading cause of heritable retinal visual impairment. Clinically, it is characterized by a variable onset of progressive night blindness and visual field constriction. RP is characterized by wide genetic heterogeneity with a broad range of potential genes involved in the genesis of this disease. Very few cases have been reported of RP due to pathogenic variants in AGBL5. MATERIALS AND METHODS We report two patients with RP and bilallelic pathogenic variants in AGBL5. RESULTS Genetic sequencing showed one homozygous AGBL5 missense variant in one patient and a homozygous nonsense variant in the other. These patients presented with progressive peripheral vision loss and nyctalopia. Their RP phenotypes were similar to previous reports in literature. CONCLUSION These two cases provide further evidence regarding the relationship of pathogenic variants in AGBL5 as a cause of autosomal recessive RP.
Collapse
Affiliation(s)
- Diego I Paredes
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, University of Rochester, Rochester, New York, USA
- Departamento de Oftalmologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago de Chile, Chile
| | - Nicholas R Bello
- Pediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital, Philadelphia, Pennsylvania, USA
| | - Jenina E Capasso
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, University of Rochester, Rochester, New York, USA
| | - Rebecca Procopio
- Pediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital, Philadelphia, Pennsylvania, USA
| | - Alex V Levin
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, University of Rochester, Rochester, New York, USA
- Clinical Genetics, Golisano Children's Hospital, University of Rochester, Rochester, New York, USA
| |
Collapse
|
4
|
Han S, Hu Y, Jia D, Lv Y, Liu M, Wang D, Chao J, Xia X, Wang Q, Liu P, Cai Y, Ren X. IFT27 regulates the long-term maintenance of photoreceptor outer segments in zebrafish. Gene 2024; 905:148237. [PMID: 38310983 DOI: 10.1016/j.gene.2024.148237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Approximately a quarter of Retinitis Pigmentosa (RP) is caused by mutations in transport-related genes in cilia. IFT27 (Intraflagellar Transport 27), a core component of the ciliary intraflagellar transport (IFT) system, has been implicated as a significant pathogenic gene in RP. The pathogenic mechanisms and subsequent pathology related to IFT27 mutations in RP are largely obscure. Here, we utilized TALEN technology to create an ift27 knockout (ift27-/-) zebrafish model. Electroretinography (ERG) detection showed impaired vision in this model. Histopathological examinations disclosed that ift27 mutations cause progressive degeneration of photoreceptors in zebrafish, and this degeneration was late-onset. Immunofluorescence labeling of outer segments showed that rods degenerated before cones, aligning with the conventional characterization of RP. In cultured human retinal pigment epithelial cells, we found that IFT27 was involved in maintaining ciliary morphology. Furthermore, decreased IFT27 expression resulted in the inhibition of the Hedgehog (Hh) signaling pathway, including decreased expression of key factors in the Hh pathway and abnormal localization of the ciliary mediator Gli2. In summary, we generated an ift27-/- zebrafish line with retinal degeneration which mimicked the symptoms of RP patients, highlighting IFT27's integral role in the long-term maintenance of cilia via the Hh signaling pathway. This work may furnish new insights into the treatment or delay of RP caused by IFT27 mutations.
Collapse
Affiliation(s)
- Shanshan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China.
| | - Yue Hu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Danna Jia
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Yuexia Lv
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Jin Chao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Qiong Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Pei Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Yu Cai
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Lorrai R, Cavaterra D, Giammaria S, Sbardella D, Tundo GR, Boccaccini A. Eye Diseases: When the Solution Comes from Plant Alkaloids. PLANTA MEDICA 2024; 90:426-439. [PMID: 38452806 DOI: 10.1055/a-2283-2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Plants are an incredible source of metabolites showing a wide range of biological activities. Among these, there are the alkaloids, which have been exploited for medical purposes since ancient times. Nowadays, many plant-derived alkaloids are the main components of drugs used as therapy for different human diseases. This review deals with providing an overview of the alkaloids used to treat eye diseases, describing the historical outline, the plants from which they are extracted, and the clinical and molecular data supporting their therapeutic activity. Among the different alkaloids that have found application in medicine so far, atropine and pilocarpine are the most characterized ones. Conversely, caffeine and berberine have been proposed for the treatment of different eye disorders, but further studies are still necessary to fully understand their clinical value. Lastly, the alkaloid used for managing hypertension, reserpine, has been recently identified as a potential drug for ameliorating retinal disorders. Other important aspects discussed in this review are different solutions for alkaloid production. Given that the industrial production of many of the plant-derived alkaloids still relies on extraction from plants, and the chemical synthesis can be highly expensive and poorly efficient, alternative methods need to be found. Biotechnologies offer a multitude of possibilities to overcome these issues, spanning from genetic engineering to synthetic biology for microorganisms and bioreactors for plant cell cultures. However, further efforts are needed to completely satisfy the pharmaceutical demand.
Collapse
Affiliation(s)
- Riccardo Lorrai
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Dario Cavaterra
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Rome, Italy
| | | | | | - Grazia Raffaella Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Rome, Italy
| | | |
Collapse
|
6
|
McDonald A, Wijnholds J. Retinal Ciliopathies and Potential Gene Therapies: A Focus on Human iPSC-Derived Organoid Models. Int J Mol Sci 2024; 25:2887. [PMID: 38474133 PMCID: PMC10932180 DOI: 10.3390/ijms25052887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The human photoreceptor function is dependent on a highly specialised cilium. Perturbation of cilial function can often lead to death of the photoreceptor and loss of vision. Retinal ciliopathies are a genetically diverse range of inherited retinal disorders affecting aspects of the photoreceptor cilium. Despite advances in the understanding of retinal ciliopathies utilising animal disease models, they can often lack the ability to accurately mimic the observed patient phenotype, possibly due to structural and functional deviations from the human retina. Human-induced pluripotent stem cells (hiPSCs) can be utilised to generate an alternative disease model, the 3D retinal organoid, which contains all major retinal cell types including photoreceptors complete with cilial structures. These retinal organoids facilitate the study of disease mechanisms and potential therapies in a human-derived system. Three-dimensional retinal organoids are still a developing technology, and despite impressive progress, several limitations remain. This review will discuss the state of hiPSC-derived retinal organoid technology for accurately modelling prominent retinal ciliopathies related to genes, including RPGR, CEP290, MYO7A, and USH2A. Additionally, we will discuss the development of novel gene therapy approaches targeting retinal ciliopathies, including the delivery of large genes and gene-editing techniques.
Collapse
Affiliation(s)
- Andrew McDonald
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
7
|
Murgiano L, Niggel JK, Benedicenti L, Cortellari M, Bionda A, Crepaldi P, Liotta L, Aguirre GK, Beltran WA, Aguirre GD. Frameshift Variant in AMPD2 in Cirneco dell'Etna Dogs with Retinopathy and Tremors. Genes (Basel) 2024; 15:238. [PMID: 38397227 PMCID: PMC10887799 DOI: 10.3390/genes15020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
While the manifestations of many inherited retinal disorders are limited to loss of vision, others are part of a syndrome that affects multiple tissues, particularly the nervous system. Most syndromic retinal disorders are thought to be recessively inherited. Two dogs out of a litter of Cirneco dell' Etna dogs, both males, showed signs of retinal degeneration, along with tremors and signs described as either atypical seizures or paroxysmal dyskinesias, while the other two male littermates were normal. We named this oculo-neurological syndrome CONS (Cirneco oculo-neurological syndrome), and undertook homozygosity mapping and whole-genome sequencing to determine its potential genetic etiology. Notably, we detected a 1-bp deletion in chromosome 6 that was predicted to cause a frameshift and premature stop codon within the canine AMPD2 gene, which encodes adenosine monophosphate deaminase, an enzyme that converts adenosine 5'-monophosphate (AMP) to inosine 5'-monophosphate (IMP). Genotyping of the available Cirneco population suggested perfect segregation between cases and controls for the variant. Moreover, this variant was absent in canine genomic databases comprised of thousands of unaffected dogs. The AMPD2 genetic variant we identified in dogs presents with retinal manifestations, adding to the spectrum of neurological manifestations associated with AMPD2 variants in humans.
Collapse
Affiliation(s)
- Leonardo Murgiano
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.N.); (W.A.B.); (G.D.A.)
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica K. Niggel
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.N.); (W.A.B.); (G.D.A.)
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leontine Benedicenti
- Matthew J. Ryan Veterinary Hospital, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Matteo Cortellari
- Department of Agricultural and Environmental Sciences—Production, Territory, Agroenergy, University of Milan, 20133 Milan, Italy; (M.C.); (A.B.); (P.C.)
| | - Arianna Bionda
- Department of Agricultural and Environmental Sciences—Production, Territory, Agroenergy, University of Milan, 20133 Milan, Italy; (M.C.); (A.B.); (P.C.)
| | - Paola Crepaldi
- Department of Agricultural and Environmental Sciences—Production, Territory, Agroenergy, University of Milan, 20133 Milan, Italy; (M.C.); (A.B.); (P.C.)
| | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Geoffrey K. Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - William A. Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.N.); (W.A.B.); (G.D.A.)
| | - Gustavo D. Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.N.); (W.A.B.); (G.D.A.)
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Grudzinska Pechhacker MK, Molnar A, Pekkola Pacheco N, Thonberg H, Querat L, Birkeldh U, Nordgren A, Lindstrand A. Reduced cone photoreceptor function and subtle systemic manifestations in two siblings with loss of SCLT1. Ophthalmic Genet 2024; 45:95-102. [PMID: 37246745 DOI: 10.1080/13816810.2023.2215332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The sodium channel and clathrin linker 1 gene (SCLT1) has been involved in the pathogenesis of various ciliopathy disorders such as Bardet-Biedl syndrome, orofaciodigital syndrome type IX, and Senior-Løken syndrome. Detailed exams are warranted to outline all clinical features. Here, we present a family with a milder phenotype of SCLT1-related disease. MATERIAL AND METHODS Comprehensive eye examination including fundus images, OCT, color vision, visual fields and electroretinography were performed. Affected individuals were assessed by a pediatrician and a medical geneticist for systemic features of ciliopathy. Investigations included echocardiography, abdominal ultrasonography, blood work-up for diabetes, liver and kidney function. Genetic testing included NGS retinal dystrophy panel, segregation analysis and transcriptome sequencing. RESULTS Two male children, age 10 and 8 years, were affected with attention deficit hyperactivity disorder (ADHD), obesity and mild photophobia. The ophthalmic exam revealed reduced best-corrected visual acuity (BCVA), strabismus, hyperopia, astigmatism and moderate red-green defects. Milder changes suggesting photoreceptors disease were found on retinal imaging. Electroretinogram confirmed cone photoreceptors dysfunction. Genetic testing revealed a homozygous likely pathogenic, splice-site variant in SCLT1 gene NM_144643.3: c.1439 + 1del in the proband and in the affected brother. The unaffected parents were heterozygous for the SCLT1 variant. Transcriptome sequencing showed retention of intron 16 in the proband. CONCLUSIONS In this report, we highlight the importance of further extensive diagnostics in patients with unexplained reduced vision, strabismus, refractive errors and ADHD spectrum disorders. SCLT1-related retinal degeneration is very rare and isolated reduced function of cone photoreceptors has not previously been observed.
Collapse
Affiliation(s)
- Monika K Grudzinska Pechhacker
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Ophthalmology, Strabismus and Electrophysiology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Anna Molnar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Ophthalmology, Strabismus and Electrophysiology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Nadja Pekkola Pacheco
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Thonberg
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Laurence Querat
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Ophthalmology, Strabismus and Electrophysiology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Ulrika Birkeldh
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Ophthalmology, Strabismus and Electrophysiology, St. Erik Eye Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lindstrand
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Han RC, Taylor LJ, Martinez-Fernandez de la Camara C, Henderson RH, Thompson DA, Cehajic-Kapetanovic J, MacLaren RE. Is RPGR-related retinal dystrophy associated with systemic disease? A case series. Ophthalmic Genet 2023; 44:577-584. [PMID: 36602268 DOI: 10.1080/13816810.2022.2163405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Ciliopathies responsible for retinitis pigmentosa can also cause systemic manifestations. RPGR is a ciliary gene and pathogenic variants in RPGR cause a retinal ciliopathy, the commonest cause of X-linked recessive retinitis pigmentosa. The RPGR protein interacts with numerous other ciliary proteins present in the transition zone of both motile and sensory cilia, and may play an important role in regulating ciliary protein transport. There has been a growing, putative association of RPGR variants with systemic ciliopathies: mainly sino-respiratory infections and primary ciliary dyskinesia. MATERIALS AND METHODS Retrospective case series of patients with RPGR-RP presenting to Oxford Eye Hospital with systemic disease. RESULTS We report three children with RPGR-related rod-cone dystrophy, all of whom have mutations in the N-terminus of RPGR. Two cases co-presented with confirmed diagnoses of primary ciliary dyskinesia and one case with multiple sino-respiratory symptoms strongly suggestive of primary ciliary dyskinesia. These and all previously reported RPGR co-pathologies relate to ciliopathies and have no other systemic associations. CONCLUSIONS The link between RPGR variants and a systemic ciliopathy remains plausible, but currently unproven.
Collapse
Affiliation(s)
- Ruofan Connie Han
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura J Taylor
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Robert H Henderson
- Department of Ophthalmology, Great Ormond Street Children's Hospital, London, UK
| | - Dorothy A Thompson
- Department of Ophthalmology, Great Ormond Street Children's Hospital, London, UK
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Tasaki K, Zhou Z, Ishida Y, Katoh Y, Nakayama K. Compound heterozygous IFT81 variations in a skeletal ciliopathy patient cause Bardet-Biedl syndrome-like ciliary defects. Hum Mol Genet 2023; 32:2887-2900. [PMID: 37427975 DOI: 10.1093/hmg/ddad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
Owing to their crucial roles in development and homeostasis, defects in cilia cause ciliopathies with diverse clinical manifestations. The intraflagellar transport (IFT) machinery, containing the IFT-A and IFT-B complexes, mediates not only the intraciliary bidirectional trafficking but also import and export of ciliary proteins together with the kinesin-2 and dynein-2 motor complexes. The BBSome, containing eight subunits encoded by causative genes of Bardet-Biedl syndrome (BBS), connects the IFT machinery to ciliary membrane proteins to mediate their export from cilia. Although mutations in subunits of the IFT-A and dynein-2 complexes cause skeletal ciliopathies, mutations in some IFT-B subunits are also known to cause skeletal ciliopathies. We here show that compound heterozygous variations of an IFT-B subunit, IFT81, found in a patient with skeletal ciliopathy cause defects in its interactions with other IFT-B subunits, and in ciliogenesis and ciliary protein trafficking when one of the two variants was expressed in IFT81-knockout (KO) cells. Notably, we found that IFT81-KO cells expressing IFT81(Δ490-519), which lacks the binding site for the IFT25-IFT27 dimer, causes ciliary defects reminiscent of those found in BBS cells and those in IFT74-KO cells expressing a BBS variant of IFT74, which forms a heterodimer with IFT81. In addition, IFT81-KO cells expressing IFT81(Δ490-519) in combination with the other variant, IFT81 (L645*), which mimics the cellular conditions of the above skeletal ciliopathy patient, demonstrated essentially the same phenotype as those expressing only IFT81(Δ490-519). Thus, our data indicate that BBS-like defects can be caused by skeletal ciliopathy variants of IFT81.
Collapse
Affiliation(s)
- Koshi Tasaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Zhuang Zhou
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Khan S, Focșa IO, Budișteanu M, Stoica C, Nedelea F, Bohîlțea L, Caba L, Butnariu L, Pânzaru M, Rusu C, Jurcă C, Chirita-Emandi A, Bănescu C, Abbas W, Sadeghpour A, Baig SM, Bălgrădean M, Davis EE. Exome sequencing in a Romanian Bardet-Biedl syndrome cohort revealed an overabundance of causal BBS12 variants. Am J Med Genet A 2023; 191:2376-2391. [PMID: 37293956 PMCID: PMC10524726 DOI: 10.1002/ajmg.a.63322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Bardet-Biedl syndrome (BBS), is an emblematic ciliopathy hallmarked by pleiotropy, phenotype variability, and extensive genetic heterogeneity. BBS is a rare (~1/140,000 to ~1/160,000 in Europe) autosomal recessive pediatric disorder characterized by retinal degeneration, truncal obesity, polydactyly, cognitive impairment, renal dysfunction, and hypogonadism. Twenty-eight genes involved in ciliary structure or function have been implicated in BBS, and explain the molecular basis for ~75%-80% of individuals. To investigate the mutational spectrum of BBS in Romania, we ascertained a cohort of 24 individuals in 23 families. Following informed consent, we performed proband exome sequencing (ES). We detected 17 different putative disease-causing single nucleotide variants or small insertion-deletions and two pathogenic exon disruptive copy number variants in known BBS genes in 17 pedigrees. The most frequently impacted genes were BBS12 (35%), followed by BBS4, BBS7, and BBS10 (9% each) and BBS1, BBS2, and BBS5 (4% each). Homozygous BBS12 p.Arg355* variants were present in seven pedigrees of both Eastern European and Romani origin. Our data show that although the diagnostic rate of BBS in Romania is likely consistent with other worldwide cohorts (74%), we observed a unique distribution of causal BBS genes, including overrepresentation of BBS12 due to a recurrent nonsense variant, that has implications for regional diagnostics.
Collapse
Affiliation(s)
- Sheraz Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ina Ofelia Focșa
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Cytogenomic Medical Laboratory, Bucharest, Romania
| | - Magdalena Budișteanu
- Psychiatry Research Laboratory, "Prof. Dr. Alexandru Obregia" Clinical Hospital of Psychiatry, Bucharest, Romania
- Medical Genetic Laboratory, "Victor Babeș" National Institute of Pathology, Bucharest, Romania
- Department of Medical Genetics, Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| | - Cristina Stoica
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Pediatrics, Clinical Institute Fundeni, Bucharest, Romania
| | - Florina Nedelea
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Genetics Department, Clinical Hospital Filantropia, Bucharest, Romania
| | | | - Lavinia Caba
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Lăcrămioara Butnariu
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Monica Pânzaru
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Cristina Rusu
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Claudia Jurcă
- Department of Genetics, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Department of Pediatrics, "Dr. Gavril Curteanu" Municipal Clinical Hospital, Oradea, Romania
| | - Adela Chirita-Emandi
- Emergency Hospital for Children Louis Turcanu, Regional Center of Medical Genetics Timis, Timisoara, Romania
- Victor Babes University of Medicine and Pharmacy Timisoara, Department of Microscopic Morphology Genetics, Center for Genomic Medicine, Timisoara, Romania
| | - Claudia Bănescu
- "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, Târgu Mureş, Romania
| | - Wasim Abbas
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Azita Sadeghpour
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
- Duke Precision Medicine Program, Department of Medicine, Division of General Internal Medicine, Duke University Medical Center, Durham, NC, USA
| | - Shahid Mahmood Baig
- Pakistan Science Foundation (PSF), Islamabad, Pakistan
- Department of Biological and Biomedical Sciences, Agha Khan University Karachi, Karachi, Pakistan
| | - Mihaela Bălgrădean
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children "Maria Skłodowska Curie", Bucharest, Romania
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
12
|
Gawron P, Hoksza D, Piñero J, Peña-Chilet M, Esteban-Medina M, Fernandez-Rueda JL, Colonna V, Smula E, Heirendt L, Ancien F, Groues V, Satagopam VP, Schneider R, Dopazo J, Furlong LI, Ostaszewski M. Visualization of automatically combined disease maps and pathway diagrams for rare diseases. FRONTIERS IN BIOINFORMATICS 2023; 3:1101505. [PMID: 37502697 PMCID: PMC10369067 DOI: 10.3389/fbinf.2023.1101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/05/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/.
Collapse
Affiliation(s)
- Piotr Gawron
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - David Hoksza
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
- Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Janet Piñero
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
- MedBioinformatics Solutions SL, Barcelona, Spain
| | - Maria Peña-Chilet
- Computational Medicine Platform, Fundacion Progreso y Salud, Sevilla, Spain
- Spanish Network of Research in Rare Diseases (CIBERER), Sevilla, Spain
| | | | | | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council of Italy, Naples, Rome
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ewa Smula
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Laurent Heirendt
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - François Ancien
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Valentin Groues
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Venkata P. Satagopam
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Joaquin Dopazo
- Computational Medicine Platform, Fundacion Progreso y Salud, Sevilla, Spain
- Spanish Network of Research in Rare Diseases (CIBERER), Sevilla, Spain
| | - Laura I. Furlong
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
- MedBioinformatics Solutions SL, Barcelona, Spain
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
13
|
Mizumoto K, Kato K, Fujinami K, Sugita T, Sugita I, Hattori A, Saitoh S, Ueno S, Tsunoda K, Iwata T, Kondo M. A Japanese boy with Bardet-Biedl syndrome caused by a novel homozygous variant in the ARL6 gene who was initially diagnosed with retinitis punctata albescens: A case report. Medicine (Baltimore) 2022; 101:e32161. [PMID: 36550847 PMCID: PMC9771268 DOI: 10.1097/md.0000000000032161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Bardet-Biedl Syndrome (BBS) is an autosomal recessive systemic disorder characterized by retinitis pigmentosa, polydactyly, obesity, intellectual disability, renal impairments, and hypogonadism. The purpose of this study was to determine the ocular characteristics of a boy with BBS caused by a novel homozygous variant in the ARL6 (alternative named BBS3) gene who had been originally diagnosed with retinitis punctata albescens. METHODS This was an observational case study. The patient underwent ophthalmological examinations, electroretinography, and genetic analyses using whole-exome sequencing. RESULTS A 7-year-old boy was examined in our hospital with complaints of a progressive reduction of his visual acuity and night blindness in both eyes. There was no family history of eye diseases and no consanguineous marriage. Fundus examinations showed numerous white spots in the deep retina and retinal pigment epithelium. Fundus autofluorescence showed hypofluorescence consistent with these spots. Both the scotopic and photopic components of the full-field electroretinographies were non-detectable. Based on these clinical findings, this boy was suspected to have retinitis punctata albescens. Subsequent genetic testing using whole-exome sequencing revealed a novel homozygous variants in the ARL6/BBS3 gene (NM_001278293.3:c.528G>A, (p.Trp176Ter)). A systemic examination by the pediatric department revealed that this boy had a history of a surgical excision of polydactyly on his left foot when he was born, and that he was mildly obese. There were no prominent intellectual or gonadal dysfunctions, no craniofacial or dental abnormalities, no congenital heart disease, and no hearing impairment. He was then clinically and genetically diagnosed with BBS. CONCLUSION AND IMPORTANCE In children with night blindness and progressive visual dysfunction, it is important for ophthalmologists to consult clinical geneticists and pediatricians to rule out the possibility of systemic diseases such as BBS.
Collapse
Affiliation(s)
- Keitaro Mizumoto
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kumiko Kato
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
- *Correspondence: Kumiko Kato, Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan (e-mail: )
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Tadasu Sugita
- Department of Ophthalmology, Sugita Eye Hospital, Nagoya, Japan
| | - Iichiro Sugita
- Department of Ophthalmology, Sugita Eye Hospital, Nagoya, Japan
| | - Ayako Hattori
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
14
|
Brewer KM, Brewer KK, Richardson NC, Berbari NF. Neuronal cilia in energy homeostasis. Front Cell Dev Biol 2022; 10:1082141. [PMID: 36568981 PMCID: PMC9773564 DOI: 10.3389/fcell.2022.1082141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
A subset of genetic disorders termed ciliopathies are associated with obesity. The mechanisms behind cilia dysfunction and altered energy homeostasis in these syndromes are complex and likely involve deficits in both development and adult homeostasis. Interestingly, several cilia-associated gene mutations also lead to morbid obesity. While cilia have critical and diverse functions in energy homeostasis, including their roles in centrally mediated food intake and peripheral tissues, many questions remain. Here, we briefly discuss syndromic ciliopathies and monogenic cilia signaling mutations associated with obesity. We then focus on potential ways neuronal cilia regulate energy homeostasis. We discuss the literature around cilia and leptin-melanocortin signaling and changes in ciliary G protein-coupled receptor (GPCR) signaling. We also discuss the different brain regions where cilia are implicated in energy homeostasis and the potential for cilia dysfunction in neural development to contribute to obesity. We close with a short discussion on the challenges and opportunities associated with studies looking at neuronal cilia and energy homeostasis. This review highlights how neuronal cilia-mediated signaling is critical for proper energy homeostasis.
Collapse
Affiliation(s)
- Kathryn M. Brewer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Katlyn K. Brewer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Nicholas C. Richardson
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Nicolas F. Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
15
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
16
|
Ceravolo I, Granata F, Gitto E, Iapadre G, Chimenz R, Giannitto N, Mancuso A, Ceravolo MD, Macchia TL, Rissotto F, Farello G, Cuppari C. Ophthalmological Findings in Joubert Syndrome and Related Disorders. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractJoubert syndrome (JS) is a rare genetic condition characterized by congenital malformation of the mid-hindbrain, cerebellar ataxia, hypotonia, oculomotor apraxia, hypoplasia of the cerebellar vermis resulting in breathing defects, ataxia, and delayed development. Ophthalmological examination reveals eye involvement with nystagmus and retinal defects. Genetic counseling is important for the prevention of new cases. Great advances have been made in recent years. Management is symptomatic and multidisciplinary. In the present review, we discussed the most frequent ophthalmological anomalies associated with JS and speculated on the role of ciliary physiology in eye development.
Collapse
Affiliation(s)
- Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Roberto Chimenz
- Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Nino Giannitto
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Tommaso La Macchia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federico Rissotto
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore, Coppito (AQ), Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
17
|
Higgins K, Moore BA, Berberovic Z, Adissu HA, Eskandarian M, Flenniken AM, Shao A, Imai DM, Clary D, Lanoue L, Newbigging S, Nutter LMJ, Adams DJ, Bosch F, Braun RE, Brown SDM, Dickinson ME, Dobbie M, Flicek P, Gao X, Galande S, Grobler A, Heaney JD, Herault Y, de Angelis MH, Chin HJG, Mammano F, Qin C, Shiroishi T, Sedlacek R, Seong JK, Xu Y, Lloyd KCK, McKerlie C, Moshiri A. Analysis of genome-wide knockout mouse database identifies candidate ciliopathy genes. Sci Rep 2022; 12:20791. [PMID: 36456625 PMCID: PMC9715561 DOI: 10.1038/s41598-022-19710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
We searched a database of single-gene knockout (KO) mice produced by the International Mouse Phenotyping Consortium (IMPC) to identify candidate ciliopathy genes. We first screened for phenotypes in mouse lines with both ocular and renal or reproductive trait abnormalities. The STRING protein interaction tool was used to identify interactions between known cilia gene products and those encoded by the genes in individual knockout mouse strains in order to generate a list of "candidate ciliopathy genes." From this list, 32 genes encoded proteins predicted to interact with known ciliopathy proteins. Of these, 25 had no previously described roles in ciliary pathobiology. Histological and morphological evidence of phenotypes found in ciliopathies in knockout mouse lines are presented as examples (genes Abi2, Wdr62, Ap4e1, Dync1li1, and Prkab1). Phenotyping data and descriptions generated on IMPC mouse line are useful for mechanistic studies, target discovery, rare disease diagnosis, and preclinical therapeutic development trials. Here we demonstrate the effective use of the IMPC phenotype data to uncover genes with no previous role in ciliary biology, which may be clinically relevant for identification of novel disease genes implicated in ciliopathies.
Collapse
Affiliation(s)
- Kendall Higgins
- The University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Bret A Moore
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL, 32608, USA
| | - Zorana Berberovic
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | | | - Mohammad Eskandarian
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Andy Shao
- University of Reno, Nevada, School of Medicine, Reno, NV, 89557, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, U.C. Davis, Davis, 95616, USA
| | - Dave Clary
- Mouse Biology Program, U.C. Davis, Davis, CA, 95618, USA
| | - Louise Lanoue
- Mouse Biology Program, U.C. Davis, Davis, CA, 95618, USA
| | - Susan Newbigging
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - David J Adams
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Fatima Bosch
- Centre of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | | | - Steve D M Brown
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Mary E Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael Dobbie
- Phenomics Australia, The Australian National University, 131 Garran Rd, Acton, Canberra, ACT, 2601, Australia
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
| | - Sanjeev Galande
- Indian Institutes of Science Education and Research, Dr. Homi Bhabha Rd, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra, 411008, India
| | - Anne Grobler
- Faculty of Health Sciences, PCDDP North-West University, North-West University Potchefstroom Campus 11 Hoffman Street, Potchefstroom, 2531, South Africa
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67400, Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, Université of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Hsian-Jean Genie Chin
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), 3F., No. 106, Sec. 2, Heping E. Rd., Da'an Dist., Taipei City, 106214, Taiwan (R.O.C.)
| | - Fabio Mammano
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Adriano Buzzati-Traverso Campus, Via Ramarini, 00015, Monterotondo Scalo, Italy
| | - Chuan Qin
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Beijing, China
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science, 5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | | | - Radislav Sedlacek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, IMG BIOCEV Building SO.02 Prumyslova 595, 252 50, Vestec, Czech Republic
| | - J-K Seong
- Korea Mouse Phenotyping Consortium (KMPC) and BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea
| | - Ying Xu
- CAM-SU Genomic Resource Center, Soochow University, Organization Planning of No. 1 Shizi Street, Suzhou, 215123, China
| | - K C Kent Lloyd
- Mouse Biology Program, U.C. Davis, Davis, CA, 95618, USA
- Department of Surgery, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA
| | - Colin McKerlie
- The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children (SickKids), The Centre for Phenogenomics, Faculty of Medicine, University of Toronto, 25 Orde Street, Toronto, ON, M5T 3H7, USA.
| | - Ala Moshiri
- Department of Ophthalmology and Vision Science, School of Medicine, U.C. Davis Eye Center, 4860 Y. Street, Suite 2400, Sacramento, CA, 95817, USA.
| |
Collapse
|
18
|
Caba L, Florea L, Braha EE, Lupu VV, Gorduza EV. Monitoring and Management of Bardet-Biedl Syndrome: What the Multi-Disciplinary Team Can Do. J Multidiscip Healthc 2022; 15:2153-2167. [PMID: 36193191 PMCID: PMC9526427 DOI: 10.2147/jmdh.s274739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bardet – Biedl syndrome is a rare autosomal recessive multisystem non-motile ciliopathy. It has heterogeneous clinical manifestations. It is caused by mutations in 26 genes encoding BBSome proteins, chaperonines, and IFT complex. The main clinical features are: retinal cone-rod dystrophy, central obesity, postaxial polydactyly, cognitive impairment, hypogonadism and genitourinary anomalies, and kidney disease. The onset of clinical manifestations is variable which makes the diagnosis difficult in some patients. Because of the multiple system involvement, a multidisciplinary approach is necessary. The purpose of this review is to provide monitoring and management directions for a better approach to these patients.
Collapse
Affiliation(s)
- Lavinia Caba
- Department of Mother and Child Medicine – Medical Genetics, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
- Correspondence: Lavinia Caba, Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, Iasi, 700115, Romania, Email
| | - Laura Florea
- Department of Nephrology - Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Valeriu Vasile Lupu
- Department of Mother and Child Medicine – Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| | - Eusebiu Vlad Gorduza
- Department of Mother and Child Medicine – Medical Genetics, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|
19
|
Kowal TJ, Dhande OS, Wang B, Wang Q, Ning K, Liu W, Berbari NF, Hu Y, Sun Y. Distribution of prototypical primary cilia markers in subtypes of retinal ganglion cells. J Comp Neurol 2022; 530:2176-2187. [PMID: 35434813 PMCID: PMC9219574 DOI: 10.1002/cne.25326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/27/2022] [Accepted: 03/21/2022] [Indexed: 11/07/2022]
Abstract
Loss of retinal ganglion cells (RGCs) underlies several forms of retinal disease including glaucomatous optic neuropathy, a leading cause of irreversible blindness. Several rare genetic disorders associated with cilia dysfunction have retinal degeneration as a clinical hallmark. Much of the focus of ciliopathy associated blindness is on the connecting cilium of photoreceptors; however, RGCs also possess primary cilia. It is unclear what roles RGC cilia play, what proteins and signaling machinery localize to RGC cilia, or how RGC cilia are differentiated across the subtypes of RGCs. To better understand these questions, we assessed the presence or absence of a prototypical cilia marker Arl13b and a widely distributed neuronal cilia marker AC3 in different subtypes of mouse RGCs. Interestingly, not all RGC subtype cilia are the same and there are significant differences even among these standard cilia markers. Alpha-RGCs positive for osteopontin, calretinin, and SMI32 primarily possess AC3-positive cilia. Directionally selective RGCs that are CART positive or Trhr positive localize either Arl13b or AC3, respectively, in cilia. Intrinsically photosensitive RGCs differentially localize Arl13b and AC3 based on melanopsin expression. Taken together, we characterized the localization of gold standard cilia markers in different subtypes of RGCs and conclude that cilia within RGC subtypes may be differentially organized. Future studies aimed at understanding RGC cilia function will require a fundamental ability to observe the cilia across subtypes as their signaling protein composition is elucidated. A comprehensive understanding of RGC cilia may reveal opportunities to understanding how their dysfunction leads to retinal degeneration.
Collapse
Affiliation(s)
- Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Onkar S. Dhande
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Biao Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Qing Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Wendy Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Nicolas F. Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202 USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
- Palo Alto Veterans Administration, Palo Alto, CA 94304
| |
Collapse
|
20
|
Zhu Y, Cao B, Tolone A, Yan J, Christensen G, Arango-Gonzalez B, Ueffing M, Paquet-Durand F. In vitro Model Systems for Studies Into Retinal Neuroprotection. Front Neurosci 2022; 16:938089. [PMID: 35873807 PMCID: PMC9301112 DOI: 10.3389/fnins.2022.938089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Therapy development for neurodegenerative diseases of the retina constitutes a major unmet medical need, and this may be particularly relevant for inherited diseases of the retina, which are largely untreatable to this day. Therapy development necessitates appropriate models to improve the understanding of the underlying degenerative mechanisms, as well as for the testing and evaluation of novel treatment approaches. This review provides an overview of various in vitro model systems used to study retinal neuroprotection. The in vitro methods and technologies discussed range from primary retinal cell cultures and cell lines, to retinal organoids and organotypic retinal explants, to the cultivation of whole eyeballs. The advantages and disadvantages of these methods are compared and evaluated, also in view of the 3R principles (i.e., the refinement, reduction, and replacement of live animal testing), to identify suitable in vitro alternatives for in vivo experimentation. The article further expands on the use of in vitro models to test and evaluate neuroprotective treatments and to aid the development of retinal drug delivery systems. Among the pharmacological agents tested and characterized in vitro are such that interfere with aberrant cyclic guanosine monophosphate (cGMP) -signaling or such that inhibit the activities of poly (ADP-ribose) polymerase (PARP), histone deacetylases (HDAC), calpain-type proteases, as well as unfolded protein response-related stress. We then introduce nanoparticle-based drug delivery systems and discuss how different in vitro systems may be used to assess their efficacy in the treatment of retinal diseases. The summary provides a brief comparison of available in vitro models and relates their advantages and limitations to the various experimental requirements, for instance, for studies into disease mechanisms, novel treatments, or retinal toxicity. In many cases, combinations of different in vitro models may be required to obtain a comprehensive view of the efficacy of a given retinal neuroprotection approach.
Collapse
Affiliation(s)
- Yu Zhu
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Bowen Cao
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Arianna Tolone
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Jie Yan
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Gustav Christensen
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Blanca Arango-Gonzalez
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- *Correspondence: Marius Ueffing,
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- François Paquet-Durand,
| |
Collapse
|
21
|
Yang Y, Shuai P, Li X, Sun K, Jiang X, Liu W, Le W, Jiang H, Liu Y, Zhu X. Mettl14-mediated m6A modification is essential for visual function and retinal photoreceptor survival. BMC Biol 2022; 20:140. [PMID: 35698136 PMCID: PMC9195452 DOI: 10.1186/s12915-022-01335-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background As the most abundant epigenetic modification of eukaryotic mRNA, N6-methyladenosine (m6A) modification has been shown to play a role in mammalian nervous system development and function by regulating mRNA synthesis and degeneration. However, the role of m6A modification in retinal photoreceptors remains unknown. Results We generated the first retina-specific Mettl14-knockout mouse models using the Rho-Cre and HRGP-Cre lines and investigated the functions of Mettl14 in retinal rod and cone photoreceptors. Our data showed that loss of Mettl14 in rod cells causes a weakened scotopic photoresponse and rod degeneration. Further study revealed the ectopic accumulation of multiple outer segment (OS) proteins in the inner segment (IS). Deficiency of Mettl14 in cone cells led to the mislocalization of cone opsin proteins and the progressive death of cone cells. Moreover, Mettl14 depletion resulted in drastic decreases in METTL3/WTAP levels and reduced m6A methylation levels. Mechanistically, transcriptomic analyses in combination with MeRIP-seq illustrated that m6A depletion via inactivation of Mettl14 resulted in reduced expression levels of multiple phototransduction- and cilium-associated genes, which subsequently led to compromised ciliogenesis and impaired synthesis and transport of OS-residing proteins in rod cells. Conclusions Our data demonstrate that Mettl14 plays an important role in regulating phototransduction and ciliogenesis events and is essential for photoreceptor function and survival, highlighting the importance of m6A modification in visual function. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01335-x.
Collapse
Affiliation(s)
- Yeming Yang
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 61007, Sichuan, China.,The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.,Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, Qinghai, China
| | - Ping Shuai
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 61007, Sichuan, China.,The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Xiao Li
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 61007, Sichuan, China.,The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Kuanxiang Sun
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 61007, Sichuan, China
| | - Xiaoyan Jiang
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 61007, Sichuan, China
| | - Wenjing Liu
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 61007, Sichuan, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.,Department of Neurology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Haisong Jiang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China. .,Department of Neurology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| | - Yuping Liu
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 61007, Sichuan, China.
| | - Xianjun Zhu
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 61007, Sichuan, China. .,The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China. .,Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, Qinghai, China. .,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China. .,Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
22
|
Ren ZL, Zhang HB, Li L, Yang ZL, Jiang L. Characterization of two novel knock-in mouse models of syndromic retinal ciliopathy carrying hypomorphic Sdccag8 mutations. Zool Res 2022; 43:442-456. [PMID: 35503560 PMCID: PMC9113982 DOI: 10.24272/j.issn.2095-8137.2021.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/07/2022] Open
Abstract
Mutations in serologically defined colon cancer autoantigen protein 8 ( SDCCAG8) were first identified in retinal ciliopathy families a decade ago with unknown function. To investigate the pathogenesis of SDCCAG8-associated retinal ciliopathies in vivo, we employed CRISPR/Cas9-mediated homology-directed recombination (HDR) to generate two knock-in mouse models, Sdccag8Y236X/Y236X and Sdccag8E451GfsX467/E451GfsX467 , which carry truncating mutations of the mouse Sdccag8, corresponding to mutations that cause Bardet-Biedl syndrome (BBS) and Senior-Løken syndrome (SLS) (c.696T>G p.Y232X and c.1339-1340insG p.E447GfsX463) in humans, respectively. The two mutant Sdccag8 knock-in mice faithfully recapitulated human SDCCAG8-associated BBS phenotypes such as rod-cone dystrophy, cystic renal disorder, polydactyly, infertility, and growth retardation, with varied age of onset and severity depending on the hypomorphic strength of the Sdccag8 mutations. To the best of our knowledge, these knock-in mouse lines are the first BBS mouse models to present with the polydactyly phenotype. Major phototransduction protein mislocalization was also observed outside the outer segment after initiation of photoreceptor degeneration. Impaired cilia were observed in the mutant photoreceptors, renal epithelial cells, and mouse embryonic fibroblasts derived from the knock-in mouse embryos, suggesting that SDCCAG8 plays an essential role in ciliogenesis, and cilium defects are a primary driving force of SDCCAG8-associated retinal ciliopathies.
Collapse
Affiliation(s)
- Zhi-Lin Ren
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Hou-Bin Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Zheng-Lin Yang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China. E-mail:
| | - Li Jiang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China . E-mail:
| |
Collapse
|
23
|
Nandamuri SP, Lusk S, Kwan KM. Loss of zebrafish dzip1 results in inappropriate recruitment of periocular mesenchyme to the optic fissure and ocular coloboma. PLoS One 2022; 17:e0265327. [PMID: 35286359 PMCID: PMC8920261 DOI: 10.1371/journal.pone.0265327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 01/13/2023] Open
Abstract
Cilia are essential for the development and function of many different tissues. Although cilia machinery is crucial in the eye for photoreceptor development and function, a role for cilia in early eye development and morphogenesis is still somewhat unclear: many zebrafish cilia mutants retain cilia at early stages due to maternal deposition of cilia components. An eye phenotype has been described in the mouse Arl13 mutant, however, zebrafish arl13b is maternally deposited, and an early role for cilia proteins has not been tested in zebrafish eye development. Here we use the zebrafish dzip1 mutant, which exhibits a loss of cilia throughout stages of early eye development, to examine eye development and morphogenesis. We find that in dzip1 mutants, initial formation of the optic cup proceeds normally, however, the optic fissure subsequently fails to close and embryos develop the structural eye malformation ocular coloboma. Further, neural crest cells, which are implicated in optic fissure closure, do not populate the optic fissure correctly, suggesting that their inappropriate localization may be the underlying cause of coloboma. Overall, our results indicate a role for dzip1 in proper neural crest localization in the optic fissure and optic fissure closure.
Collapse
Affiliation(s)
- Sri Pratima Nandamuri
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Kristen M. Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
24
|
Inaba A, Yoshida A, Maeda A, Kawai K, Kosugi S, Takahashi M. Perception of genetic testing among patients with inherited retinal disease: Benefits and challenges in a Japanese population. J Genet Couns 2022; 31:860-867. [PMID: 35106875 DOI: 10.1002/jgc4.1556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/10/2022]
Abstract
Inherited retinal disease (IRD) is clinically and genetically heterogeneous. Awareness of the importance of genetic testing for IRD in the clinical setting is increasing with the recent development of new therapeutic strategies, such as gene therapy. Here, the perception of genetic testing, including its benefits and potential challenges, among patients with IRD was investigated to establish strategies for IRD genetic testing and counseling practices that can meet the requirements of the patients in Japan. An anonymous self-administered questionnaire was distributed to 275 patients with IRD who underwent genetic testing after clinical consultation and genetic counseling to investigate the motivations for genetic testing, benefits, challenges, status of communication of results to family, and attitude to timing of genetic testing. In total, 228 (82.9%) responses were analyzed. Several major motivations for genetic testing were identified, including gaining information on future treatment options and clarification of the inheritance pattern, among others. No association was found between the sharing of results with family members and the results of genetic testing. Moreover, according to patients who received positive results, the benefits of genetic testing included information on the inheritance pattern, additional information on the diagnosis, and mental preparation for the future. Even patients who received negative or inconclusive (variant of uncertain significance) results reported certain informative and psychological benefits. Altogether, these findings suggest that provisions for genetic testing and genetic counseling are necessary within a certain period after clinical diagnosis and it is necessary to facilitate appropriate family communication about genetic testing results while paying attention to the background of family relationships. Moreover, the benefits of genetic testing can be influenced by the careful interpretation and information provided on the test results during genetic counseling and consultation.
Collapse
Affiliation(s)
- Akira Inaba
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan.,Laboratory for Retinal Regeneration, RIKEN, Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Medical Ethics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiko Yoshida
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan.,Laboratory for Retinal Regeneration, RIKEN, Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan.,Laboratory for Retinal Regeneration, RIKEN, Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kanako Kawai
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan.,Laboratory for Retinal Regeneration, RIKEN, Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shinji Kosugi
- Department of Medical Ethics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayo Takahashi
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan.,Laboratory for Retinal Regeneration, RIKEN, Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
25
|
Chandra B, Tung ML, Hsu Y, Scheetz T, Sheffield VC. Retinal ciliopathies through the lens of Bardet-Biedl Syndrome: Past, present and future. Prog Retin Eye Res 2021; 89:101035. [PMID: 34929400 DOI: 10.1016/j.preteyeres.2021.101035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The primary cilium is a highly specialized and evolutionary conserved organelle in eukaryotes that plays a significant role in cell signaling and trafficking. Over the past few decades tremendous progress has been made in understanding the physiology of cilia and the underlying pathomechanisms of various ciliopathies. Syndromic ciliopathies consist of a group of disorders caused by ciliary dysfunction or abnormal ciliogenesis. These disorders have multiorgan involvement in addition to retinal degeneration underscoring the ubiquitous distribution of primary cilia in different cell types. Genotype-phenotype correlation is often challenging due to the allelic heterogeneity and pleiotropy of these disorders. In this review, we discuss the clinical and genetic features of syndromic ciliopathies with a focus on Bardet-Biedl syndrome (BBS) as a representative disorder. We discuss the structure and function of primary cilia and their role in retinal photoreceptors. We describe the progress made thus far in understanding the functional and genetic characterization including expression quantitative trait locus (eQTL) analysis of BBS genes. In the future directions section, we discuss the emerging technologies, such as gene therapy, as well as anticipated challenges and their implications in therapeutic development for ciliopathies.
Collapse
Affiliation(s)
- Bharatendu Chandra
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Moon Ley Tung
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Todd Scheetz
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Val C Sheffield
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
26
|
Chiu N, Lee W, Liu PK, Levi SR, Wang HH, Chen N, Kang EYC, Seo GH, Lee H, Liu L, Wu WC, Tsai SH, Wang NK. A homozygous in-frame duplication within the LRRCT consensus sequence of CFAP410 causes cone-rod dystrophy, macular staphyloma and short stature. Ophthalmic Genet 2021; 43:378-384. [PMID: 34915818 DOI: 10.1080/13816810.2021.2010773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ciliopathies are a group of genetic dystrophies causing syndromic and non-syndromic retinal degeneration. We identified CFAP410 as the causative gene in a patient with childhood-onset retinal dystrophy without other systemic symptoms at the age of 20. This 20-year-old man presented with cone-rod dystrophy and CFAP410 homozygous in-frame duplication variants (c.340_351dup). His clinical features included early subnormal vision, posterior pole staphyloma, and short stature. Unlike the previously reported features of retinal ciliopathy, our patient showed no obvious retinal pigmentation and only a slight hyper-autofluorescent parafoveal ring at the 16-year follow up. This case report aims to characterize the clinical features in a patient with novel, homozygous and likely pathogenic in-frame duplication variants in the CFAP410 gene. Ultimately, this report will help contribute to the understanding of CFAP410-associated ciliopathies.
Collapse
Affiliation(s)
- Ning Chiu
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Winston Lee
- Department of Genetics and Development, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Pei-Kang Liu
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Sarah R Levi
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Hung-Hsi Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Nelson Chen
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Eugene Yu-Chuan Kang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Go Hun Seo
- Division of Medical Genetics, 3billion Inc., Seoul, South Korea
| | - Hane Lee
- Division of Medical Genetics, 3billion Inc., Seoul, South Korea
| | - Laura Liu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Wei-Chi Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Shawn H Tsai
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Optometry, Chung Shan Medical University, Taichung, Taiwan.,Department of Optometry, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Nan-Kai Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
27
|
Yahalom C, Volovelsky O, Macarov M, Altalbishi A, Alsweiti Y, Schneider N, Hanany M, Khan MI, Cremers FPM, Anteby I, Banin E, Sharon D, Khateb S. SENIOR-LØKEN SYNDROME: A Case Series and Review of the Renoretinal Phenotype and Advances of Molecular Diagnosis. Retina 2021; 41:2179-2187. [PMID: 33512896 DOI: 10.1097/iae.0000000000003138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To report genetic and clinical findings in a case series of 10 patients from eight unrelated families diagnosed with Senior-Løken syndrome. METHODS A retrospective study of patients with Senior-Løken syndrome. Data collected included clinical findings electroretinography and ocular imaging. Genetic analysis was based on molecular inversion probes, whole-exome sequencing (WES), and Sanger sequencing. RESULTS All patients who underwent electrophysiology (8/10) had widespread photoreceptor degeneration. Genetic analysis revealed two mutations in NPHP1, two mutations in NPHP4, and two mutations in IQCB1 (NPHP5). Five of the six mutations identified in the current study were found in a single family each in our cohort. The IQCB1-p.R461* mutation has been identified in 3 families. Patients harboring mutations in IQCB1 were diagnosed with Leber congenital amaurosis, while patients with NPHP4 and NPHP1 mutations showed early and sector retinitis pigmentosa, respectively. Full-field electroretinography was extinct for 6 of 10 patients, moderately decreased for two, and unavailable for another 2 subjects. Renal involvement was evident in 7/10 patients at the time of diagnosis. Kidney function was normal (based on serum creatinine) in patients younger than 10 years. Mutations in IQCB1 were associated with high hypermetropia, whereas mutations in NPHP4 were associated with high myopia. CONCLUSION Patients presenting with infantile inherited retinal degeneration are not universally screened for renal dysfunction. Modern genetic tests can provide molecular diagnosis at an early age and therefore facilitate early diagnosis of renal disease with recommended periodic screening beyond childhood and family planning.
Collapse
Affiliation(s)
- Claudia Yahalom
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oded Volovelsky
- Pediatric Nephrology Unit, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Macarov
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alaa Altalbishi
- St John of Jerusalem Eye Hospital Group, East Jerusalem, Israel
| | - Yahya Alsweiti
- St John of Jerusalem Eye Hospital Group, East Jerusalem, Israel
| | - Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands ; and
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands ; and
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Irene Anteby
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
28
|
Yang C, Georgiou M, Atkinson R, Collin J, Al-Aama J, Nagaraja-Grellscheid S, Johnson C, Ali R, Armstrong L, Mozaffari-Jovin S, Lako M. Pre-mRNA Processing Factors and Retinitis Pigmentosa: RNA Splicing and Beyond. Front Cell Dev Biol 2021; 9:700276. [PMID: 34395430 PMCID: PMC8355544 DOI: 10.3389/fcell.2021.700276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal disease characterized by progressive degeneration of photoreceptors and/or retinal pigment epithelium that eventually results in blindness. Mutations in pre-mRNA processing factors (PRPF3, 4, 6, 8, 31, SNRNP200, and RP9) have been linked to 15–20% of autosomal dominant RP (adRP) cases. Current evidence indicates that PRPF mutations cause retinal specific global spliceosome dysregulation, leading to mis-splicing of numerous genes that are involved in a variety of retina-specific functions and/or general biological processes, including phototransduction, retinol metabolism, photoreceptor disk morphogenesis, retinal cell polarity, ciliogenesis, cytoskeleton and tight junction organization, waste disposal, inflammation, and apoptosis. Importantly, additional PRPF functions beyond RNA splicing have been documented recently, suggesting a more complex mechanism underlying PRPF-RPs driven disease pathogenesis. The current review focuses on the key RP-PRPF genes, depicting the current understanding of their roles in RNA splicing, impact of their mutations on retinal cell’s transcriptome and phenome, discussed in the context of model species including yeast, zebrafish, and mice. Importantly, information on PRPF functions beyond RNA splicing are discussed, aiming at a holistic investigation of PRPF-RP pathogenesis. Finally, work performed in human patient-specific lab models and developing gene and cell-based replacement therapies for the treatment of PRPF-RPs are thoroughly discussed to allow the reader to get a deeper understanding of the disease mechanisms, which we believe will facilitate the establishment of novel and better therapeutic strategies for PRPF-RP patients.
Collapse
Affiliation(s)
- Chunbo Yang
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Georgiou
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert Atkinson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jumana Al-Aama
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Colin Johnson
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Robin Ali
- King's College London, London, United Kingdom
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
29
|
Focșa IO, Budișteanu M, Bălgrădean M. Clinical and genetic heterogeneity of primary ciliopathies (Review). Int J Mol Med 2021; 48:176. [PMID: 34278440 PMCID: PMC8354309 DOI: 10.3892/ijmm.2021.5009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023] Open
Abstract
Ciliopathies comprise a group of complex disorders, with involvement of the majority of organs and systems. In total, >180 causal genes have been identified and, in addition to Mendelian inheritance, oligogenicity, genetic modifications, epistatic interactions and retrotransposon insertions have all been described when defining the ciliopathic phenotype. It is remarkable how the structural and functional impairment of a single, minuscule organelle may lead to the pathogenesis of highly pleiotropic diseases. Thus, combined efforts have been made to identify the genetic substratum and to determine the pathophysiological mechanism underlying the clinical presentation, in order to diagnose and classify ciliopathies. Yet, predicting the phenotype, given the intricacy of the genetic cause and overlapping clinical characteristics, represents a major challenge. In the future, advances in proteomics, cell biology and model organisms may provide new insights that could remodel the field of ciliopathies.
Collapse
Affiliation(s)
- Ina Ofelia Focșa
- Department of Medical Genetics, University of Medicine and Pharmacy 'Carol Davila', 021901 Bucharest, Romania
| | - Magdalena Budișteanu
- Department of Pediatric Neurology, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Mihaela Bălgrădean
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children 'Maria Skłodowska Curie', 077120 Bucharest, Romania
| |
Collapse
|
30
|
Sánchez-Bellver L, Toulis V, Marfany G. On the Wrong Track: Alterations of Ciliary Transport in Inherited Retinal Dystrophies. Front Cell Dev Biol 2021; 9:623734. [PMID: 33748110 PMCID: PMC7973215 DOI: 10.3389/fcell.2021.623734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
Ciliopathies are a group of heterogeneous inherited disorders associated with dysfunction of the cilium, a ubiquitous microtubule-based organelle involved in a broad range of cellular functions. Most ciliopathies are syndromic, since several organs whose cells produce a cilium, such as the retina, cochlea or kidney, are affected by mutations in ciliary-related genes. In the retina, photoreceptor cells present a highly specialized neurosensory cilium, the outer segment, stacked with membranous disks where photoreception and phototransduction occurs. The daily renewal of the more distal disks is a unique characteristic of photoreceptor outer segments, resulting in an elevated protein demand. All components necessary for outer segment formation, maintenance and function have to be transported from the photoreceptor inner segment, where synthesis occurs, to the cilium. Therefore, efficient transport of selected proteins is critical for photoreceptor ciliogenesis and function, and any alteration in either cargo delivery to the cilium or intraciliary trafficking compromises photoreceptor survival and leads to retinal degeneration. To date, mutations in more than 100 ciliary genes have been associated with retinal dystrophies, accounting for almost 25% of these inherited rare diseases. Interestingly, not all mutations in ciliary genes that cause retinal degeneration are also involved in pleiotropic pathologies in other ciliated organs. Depending on the mutation, the same gene can cause syndromic or non-syndromic retinopathies, thus emphasizing the highly refined specialization of the photoreceptor neurosensory cilia, and raising the possibility of photoreceptor-specific molecular mechanisms underlying common ciliary functions such as ciliary transport. In this review, we will focus on ciliary transport in photoreceptor cells and discuss the molecular complexity underpinning retinal ciliopathies, with a special emphasis on ciliary genes that, when mutated, cause either syndromic or non-syndromic retinal ciliopathies.
Collapse
Affiliation(s)
- Laura Sánchez-Bellver
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
| | - Vasileios Toulis
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
- CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Koyanagi Y, Ueno S, Ito Y, Kominami T, Komori S, Akiyama M, Murakami Y, Ikeda Y, Sonoda KH, Terasaki H. Relationship Between Macular Curvature and Common Causative Genes of Retinitis Pigmentosa in Japanese Patients. Invest Ophthalmol Vis Sci 2021; 61:6. [PMID: 32749464 PMCID: PMC7441377 DOI: 10.1167/iovs.61.10.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine the relationship between the macular curvature and the causative genes of retinitis pigmentosa (RP). Methods We examined the medical records of the right eyes of 65 cases with RP (31 men and 34 women; average age, 47.6 years). There were 31 cases with the EYS variants, 11 cases with the USH2A variants, six cases with the RPGR variants, 13 cases with the RP1 variants, and four cases with the RP1L1 variants. The mean curvature of Bruch's membrane was calculated within 6 mm of the fovea as the mean macular curvature index (MMCI, 1/µm). We used multiple linear regression analysis to determine the independence of the causative genes contributing to the MMCIs after adjustments for age, sex, axial length, and width of the ellipsoid zone. Results The median MMCI was −31.2 × 10−5/µm for the RPGR eyes, −16.5 × 10−5/µm for the RP1L1 eyes, −13.0 × 10−5/µm for the RP1 eyes, −9.8 × 10−5/µm for the EYS eyes, and −9.0 × 10−5/µm for the USH2A eyes. Compared with the EYS gene as the reference gene, the RPGR gene was significantly related to the MMCI values after adjusting for the other parameters (P = 5.30 × 10−6). In contrast, the effects of the other genes, USH2A, RP1, and RP1L1, were not significantly different from that of the EYS gene (P = 0.26, P = 0.49, and P = 0.92, respectively). Conclusions The RPGR gene had a stronger effect on the steep macular curvature than the other ciliopathy-related genes.
Collapse
|
32
|
Sablok A, Thakur S, Sharma A, Kaul A. Prenatal Diagnosis of Bardet-Biedl Syndrome: A Case Study and Review of Literature. JOURNAL OF FETAL MEDICINE 2020. [DOI: 10.1007/s40556-020-00278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
CCDC66 frameshift variant associated with a new form of early-onset progressive retinal atrophy in Portuguese Water Dogs. Sci Rep 2020; 10:21162. [PMID: 33273526 PMCID: PMC7712861 DOI: 10.1038/s41598-020-77980-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Aberrant photoreceptor function or morphogenesis leads to blinding retinal degenerative diseases, the majority of which have a genetic aetiology. A variant in PRCD previously identified in Portuguese Water Dogs (PWDs) underlies prcd (progressive rod-cone degeneration), an autosomal recessive progressive retinal atrophy (PRA) with a late onset at 3–6 years of age or older. Herein, we have identified a new form of early-onset PRA (EOPRA) in the same breed. Pedigree analysis suggested an autosomal recessive inheritance. Four PWD full-siblings affected with EOPRA diagnosed at 2–3 years of age were genotyped (173,661 SNPs) along with 2 unaffected siblings, 2 unaffected parents, and 15 unrelated control PWDs. GWAS, linkage analysis and homozygosity mapping defined a 26-Mb candidate region in canine chromosome 20. Whole-genome sequencing in one affected dog and its obligatory carrier parents identified a 1 bp insertion (CFA20:g.33,717,704_33,717,705insT (CanFam3.1); c.2262_c.2263insA) in CCDC66 predicted to cause a frameshift and truncation (p.Val747SerfsTer8). Screening of an extended PWD population confirmed perfect co-segregation of this genetic variant with the disease. Western blot analysis of COS-1 cells transfected with recombinant mutant CCDC66 expression constructs showed the mutant transcript translated into a truncated protein. Furthermore, in vitro studies suggest that the mutant CCDC66 is mislocalized to the nucleus relative to wild type CCDC66. CCDC66 variants have been associated with inherited retinal degenerations (RDs) including canine and murine ciliopathies. As genetic variants affecting the primary cilium can cause ciliopathies in which RD may be either the sole clinical manifestation or part of a syndrome, our findings further support a role for CCDC66 in retinal function and viability, potentially through its ciliary function.
Collapse
|
34
|
Bales KL, Bentley MR, Croyle MJ, Kesterson RA, Yoder BK, Gross AK. BBSome Component BBS5 Is Required for Cone Photoreceptor Protein Trafficking and Outer Segment Maintenance. Invest Ophthalmol Vis Sci 2020; 61:17. [PMID: 32776140 PMCID: PMC7441369 DOI: 10.1167/iovs.61.10.17] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023] Open
Abstract
Purpose To identify the role of the BBSome protein Bardet-Biedl syndrome 5 (BBS5) in photoreceptor function, protein trafficking, and structure using a congenital mutant mouse model. Methods Bbs5-/- mice (2 and 9 months old) were used to assess retinal function and morphology. Hematoxylin and eosin staining of retinal sections was performed to visualize histology. Electroretinography was used to analyze rod and cone photoreceptor function. Retinal protein localization was visualized using immunofluorescence (IF) within retinal cryosections. TUNEL staining was used to quantify cell death. Transmission electron microscopy (TEM) was used to examine retinal ultrastructure. Results In the Bbs5-/- retina, there was a significant loss of nuclei in the outer nuclear layer accompanied by an increase in cell death. Through electroretinography, Bbs5-/- mice showed complete loss of cone photoreceptor function. IF revealed mislocalization of the cone-specific proteins M- and S-opsins, arrestin-4, CNGA3, and GNAT2, as well as a light-dependent arrestin-1 mislocalization, although perpherin-2 was properly localized. TEM revealed abnormal outer segment disk orientation in Bbs5-/-. Conclusions Collectively, these data suggest that, although BBS5 is a core BBSome component expressed in all ciliated cells, its role within the retina mediates specific photoreceptor protein cargo transport. In the absence of BBS5, cone-specific protein mislocalization and a loss of cone photoreceptor function occur.
Collapse
Affiliation(s)
- Katie L. Bales
- Department of Optometry and Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Melissa R. Bentley
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mandy J. Croyle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Robert A. Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Alecia K. Gross
- Department of Optometry and Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
35
|
Lin J, Hu J, Schlotterer A, Wang J, Kolibabka M, Awwad K, Dietrich N, Breitschopf K, Wohlfart P, Kannt A, Lorenz K, Feng Y, Popp R, Hoffmann S, Fleming I, Hammes HP. Protective effect of Soluble Epoxide Hydrolase Inhibition in Retinal Vasculopathy associated with Polycystic Kidney Disease. Am J Cancer Res 2020; 10:7857-7871. [PMID: 32685025 PMCID: PMC7359083 DOI: 10.7150/thno.43154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Vasoregression secondary to glial activation develops in various retinal diseases, including retinal degeneration and diabetic retinopathy. Photoreceptor degeneration and subsequent retinal vasoregression, characterized by pericyte loss and acellular capillary formation in the absence diabetes, are also seen in transgenic rats expressing the polycystic kidney disease (PKD) gene. Activated Müller glia contributes to retinal vasodegeneration, at least in part via the expression of the soluble epoxide hydrolase (sEH). Given that an increase in sEH expression triggered vascular destabilization in diabetes, and that vasoregression is similar in diabetic mice and PKD rats, the aim of the present study was to determine whether sEH inhibition could prevent retinal vasoregression in the PKD rat. Methods: One-month old male homozygous transgenic PKD rats were randomly allocated to receive vehicle or a sEH inhibitor (sEH-I; Sar5399, 30 mg/kg) for four weeks. Wild-type Sprague-Dawley (SD) littermates received vehicle as controls. Retinal sEH expression and activity were measured by Western blotting and LC-MS, and vasoregression was quantified in retinal digestion preparations. Microglial activation and immune response cytokines were assessed by immunofluorescence and quantitative PCR, respectively. 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP) mediated Notch signaling, microglial activation and migration were assessed in vivo and in vitro. Results: This study demonstrates that sEH expression and activity were increased in PKD retinae, which led to elevated production of 19,20-DHDP and the depression of Notch signaling. The latter changes elicited pericyte loss and the recruitment of CD11b+/CD74+ microglia to the perivascular region. Microglial activation increased the expression of immune-response cytokines, and reduced levels of Notch3 and delta-like ligand 4 (Dll4). Treatment with Sar5399 decreased 19,20-DHDP generation and increased Notch3 expression. Sar5399 also prevented vasoregression by reducing pericyte loss and suppressed microglial activation as well as the expression of immune-response cytokines. Mechanistically, the activation of Notch signaling by Dll4 maintained a quiescent microglial cell phenotype, i.e. reduced both the surface presentation of CD74 and microglial migration. In contrast, in retinal explants, 19,20-DHDP and Notch inhibition both promoted CD74 expression and reversed the Dll4-induced decrease in migration. Conclusions: Our data indicate that 19,20-DHDP-induced alterations in Notch-signaling result in microglia activation and pericyte loss and contribute to retinal vasoregression in polycystic kidney disease. Moreover, sEH inhibition can ameliorate vasoregression through reduced activity of inflammatory microglia. sEH inhibition is thus an attractive new therapeutic approach to prevent retinal vasoregression.
Collapse
|
36
|
Ropelewski P, Imanishi Y. RPE Cells Engulf Microvesicles Secreted by Degenerating Rod Photoreceptors. eNeuro 2020; 7:ENEURO.0507-19.2020. [PMID: 32376599 PMCID: PMC7242815 DOI: 10.1523/eneuro.0507-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 01/11/2023] Open
Abstract
Rhodopsin is mislocalized to the inner segment plasma membrane (IS PM) in various blinding disorders including autosomal-dominant retinitis pigmentosa caused by class I rhodopsin mutations. In these disorders, rhodopsin-laden microvesicles are secreted into the extracellular milieu by afflicted photoreceptor cells. Using a Xenopus laevis model expressing class I mutant rhodopsin or Na+/K+-ATPase (NKA) fused to Dendra2, we fluorescently labeled the microvesicles and found retinal pigment epithelial (RPE) cells are capable of engulfing microvesicles containing rhodopsin. A unique sorting mechanism allows class I mutant rhodopsin, but not NKA, to be packaged into the microvesicles. Under normal physiological conditions, NKA is not shed as microvesicles to the extracellular space, but is degraded intracellularly. Those studies provide novel insights into protein homeostasis in the photoreceptor IS PM.
Collapse
Affiliation(s)
- Philip Ropelewski
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Yoshikazu Imanishi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
37
|
Zhang C, Li C, Siu GKY, Luo X, Yu S. Distinct Roles of TRAPPC8 and TRAPPC12 in Ciliogenesis via Their Interactions With OFD1. Front Cell Dev Biol 2020; 8:148. [PMID: 32258032 PMCID: PMC7090148 DOI: 10.3389/fcell.2020.00148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/21/2020] [Indexed: 01/08/2023] Open
Abstract
The transport protein particle (TRAPP) complex was initially identified as a tethering factor for COPII vesicle. Subsequently, three forms (TRAPPI, II, and III) have been found and TRAPPIII has been reported to serve as a regulator in autophagy. This study investigates a new role of mammalian TRAPPIII in ciliogenesis. We found a ciliopathy protein, oral-facial-digital syndrome 1 (OFD1), interacting with the TRAPPIII-specific subunits TRAPPC8 and TRAPPC12. TRAPPC8 is necessary for the association of OFD1 with pericentriolar material 1 (PCM1). Its depletion reduces the extent of colocalized signals between OFD1 and PCM1, but does not compromise the structural integrity of centriolar satellites. The interaction between TRAPPC8 and OFD1 inhibits that between OFD1 and TRAPPC12, suggesting different roles of TRAPPIII-specific subunits in ciliogenesis and explaining the differences in cilium lengths in TRAPPC8-depleted and TRAPPC12-depleted hTERT-RPE1 cells. On the other hand, TRAPPC12 depletion causes increased ciliary length because TRAPPC12 is required for the disassembly of primary cilia. Overall, this study has revealed different roles of TRAPPC8 and TRAPPC12 in the assembly of centriolar satellites and demonstrated a possible tethering role of TRAPPIII during ciliogenesis.
Collapse
Affiliation(s)
- Caiyun Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, China
| | - Chunman Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Gavin Ka Yu Siu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, China
| | - Xiaomin Luo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, China
| | - Sidney Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, China
| |
Collapse
|
38
|
Phosphoinositides in Retinal Function and Disease. Cells 2020; 9:cells9040866. [PMID: 32252387 PMCID: PMC7226789 DOI: 10.3390/cells9040866] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Phosphatidylinositol and its phosphorylated derivatives, the phosphoinositides, play many important roles in all eukaryotic cells. These include modulation of physical properties of membranes, activation or inhibition of membrane-associated proteins, recruitment of peripheral membrane proteins that act as effectors, and control of membrane trafficking. They also serve as precursors for important second messengers, inositol (1,4,5) trisphosphate and diacylglycerol. Animal models and human diseases involving defects in phosphoinositide regulatory pathways have revealed their importance for function in the mammalian retina and retinal pigmented epithelium. New technologies for localizing, measuring and genetically manipulating them are revealing new information about their importance for the function and health of the vertebrate retina.
Collapse
|
39
|
Barabino A, Flamier A, Hanna R, Héon E, Freedman BS, Bernier G. Deregulation of Neuro-Developmental Genes and Primary Cilium Cytoskeleton Anomalies in iPSC Retinal Sheets from Human Syndromic Ciliopathies. Stem Cell Reports 2020; 14:357-373. [PMID: 32160518 PMCID: PMC7066374 DOI: 10.1016/j.stemcr.2020.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 01/22/2023] Open
Abstract
Ciliopathies are heterogeneous genetic diseases affecting primary cilium structure and function. Meckel-Gruber (MKS) and Bardet-Biedl (BBS) syndromes are severe ciliopathies characterized by skeletal and neurodevelopment anomalies, including polydactyly, cognitive impairment, and retinal degeneration. We describe the generation and molecular characterization of human induced pluripotent stem cell (iPSC)-derived retinal sheets (RSs) from controls, and MKS (TMEM67) and BBS (BBS10) cases. MKS and BBS RSs displayed significant common alterations in the expression of hundreds of developmental genes and members of the WNT and BMP pathways. Induction of crystallin molecular chaperones was prominent in MKS and BBS RSs suggesting a stress response to misfolded proteins. Unique to MKS photoreceptors was the presence of supernumerary centrioles and cilia, and aggregation of ciliary proteins. Unique to BBS photoreceptors was the accumulation of DNA damage and activation of the mitotic spindle checkpoint. This study reveals how combining cell reprogramming, organogenesis, and next-generation sequencing enables the elucidation of mechanisms involved in human ciliopathies.
Collapse
Affiliation(s)
- Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada
| | - Anthony Flamier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada
| | - Roy Hanna
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada
| | - Elise Héon
- Hospital for Sick Children, Department of Ophthalmology and Vision Sciences, Program of Genetics and Genome Biology, 555 University av., Toronto, ON M5G 1X8, Canada
| | - Benjamin S Freedman
- Department of Medicine, Division of Nephrology, Kidney Research Institute, and Institute of Stem Cell and Regenerative Medicine, and Department of Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada; Department of Neurosciences, University of Montreal, Montreal, QC H3C 3J7, Canada; Department of Ophthalmology, University of Montreal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
40
|
Long H, Huang K. Transport of Ciliary Membrane Proteins. Front Cell Dev Biol 2020; 7:381. [PMID: 31998723 PMCID: PMC6970386 DOI: 10.3389/fcell.2019.00381] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Cilia and flagella are highly conserved organelles in eukaryotic cells that drive cell movement and act as cell antennae that receive and transmit signals. In addition to receiving and transducing external signals that activate signal cascades, cilia also secrete ciliary ectosomes that send signals to recipient cells, and thereby mediate cell–cell communication. Abnormal ciliary function leads to various ciliopathies, and the precise transport and localization of ciliary membrane proteins are essential for cilium function. This review summarizes current knowledge about the transport processes of ciliary membrane proteins after their synthesis at the endoplasmic reticulum: modification and sorting in the Golgi apparatus, transport through vesicles to the ciliary base, entrance into cilia through the diffusion barrier, and turnover by ectosome secretion. The molecular mechanisms and regulation involved in each step are also discussed. Transport of ciliary membrane proteins is a complex, precise cellular process coordinated among multiple organelles. By systematically analyzing the existing research, we identify topics that should be further investigated to promote progress in this field of research.
Collapse
Affiliation(s)
- Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
41
|
Defining the layers of a sensory cilium with STORM and cryoelectron nanoscopy. Proc Natl Acad Sci U S A 2019; 116:23562-23572. [PMID: 31690665 DOI: 10.1073/pnas.1902003116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary cilia carry out numerous signaling and sensory functions, and defects in them, "ciliopathies," cause a range of symptoms, including blindness. Understanding of their nanometer-scale ciliary substructures and their disruptions in ciliopathies has been hindered by limitations of conventional microscopic techniques. We have combined cryoelectron tomography, enhanced by subtomogram averaging, with superresolution stochastic optical reconstruction microscopy (STORM) to define subdomains within the light-sensing rod sensory cilium of mouse retinas and reveal previously unknown substructures formed by resident proteins. Domains are demarcated by structural features such as the axoneme and its connections to the ciliary membrane, and are correlated with molecular markers of subcompartments, including the lumen and walls of the axoneme, the membrane glycocalyx, and the intervening cytoplasm. Within this framework, we report spatial distributions of key proteins in wild-type (WT) mice and the effects on them of genetic deficiencies in 3 models of Bardet-Biedl syndrome.
Collapse
|
42
|
Huang KC, Wang ML, Chen SJ, Kuo JC, Wang WJ, Nhi Nguyen PN, Wahlin KJ, Lu JF, Tran AA, Shi M, Chien Y, Yarmishyn AA, Tsai PH, Yang TC, Jane WN, Chang CC, Peng CH, Schlaeger TM, Chiou SH. Morphological and Molecular Defects in Human Three-Dimensional Retinal Organoid Model of X-Linked Juvenile Retinoschisis. Stem Cell Reports 2019; 13:906-923. [PMID: 31668851 PMCID: PMC6895767 DOI: 10.1016/j.stemcr.2019.09.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022] Open
Abstract
X-linked juvenile retinoschisis (XLRS), linked to mutations in the RS1 gene, is a degenerative retinopathy with a retinal splitting phenotype. We generated human induced pluripotent stem cells (hiPSCs) from patients to study XLRS in a 3D retinal organoid in vitro differentiation system. This model recapitulates key features of XLRS including retinal splitting, defective retinoschisin production, outer-segment defects, abnormal paxillin turnover, and impaired ER-Golgi transportation. RS1 mutation also affects the development of photoreceptor sensory cilia and results in altered expression of other retinopathy-associated genes. CRISPR/Cas9 correction of the disease-associated C625T mutation normalizes the splitting phenotype, outer-segment defects, paxillin dynamics, ciliary marker expression, and transcriptome profiles. Likewise, mutating RS1 in control hiPSCs produces the disease-associated phenotypes. Finally, we show that the C625T mutation can be repaired precisely and efficiently using a base-editing approach. Taken together, our data establish 3D organoids as a valid disease model. hiPSC-derived retinal organoid model recapitulates key features of XLRS CRISPR/Cas9 correction normalizes RS1 secretion and retinal development Transcriptome analysis links XLRS to other hereditary retinopathies
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan; Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan; School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan
| | - Shih-Jen Chen
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Phan Nguyen Nhi Nguyen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Karl J Wahlin
- Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Jyh-Feng Lu
- School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Audrey A Tran
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Shi
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chi-Hsien Peng
- Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital & Fu-Jen Catholic University, Taipei 11101, Taiwan
| | - Thorsten M Schlaeger
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan; School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
43
|
Brun A, Yu X, Obringer C, Ajoy D, Haser E, Stoetzel C, Roux MJ, Messaddeq N, Dollfus H, Marion V. In vivo phenotypic and molecular characterization of retinal degeneration in mouse models of three ciliopathies. Exp Eye Res 2019; 186:107721. [DOI: 10.1016/j.exer.2019.107721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 05/29/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
|
44
|
Takahashi VKL, Xu CL, Takiuti JT, Apatoff MBL, Duong JK, Mahajan VB, Tsang SH. Comparison of structural progression between ciliopathy and non-ciliopathy associated with autosomal recessive retinitis pigmentosa. Orphanet J Rare Dis 2019; 14:187. [PMID: 31370859 PMCID: PMC6676605 DOI: 10.1186/s13023-019-1163-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND To evaluate and compare the progression of ciliopathy and non-ciliopathy autosomal recessive Retinitis Pigmentosa patients (arRP) by measuring the constriction of hyperautofluorescent rings in fundus autofluorescence (FAF) images and the progressive shortening of the ellipsoid zone line width obtained by spectral-domain optical coherence tomography (SD-OCT). RESULTS For the ciliopathy group, the estimated mean shortening of the ellipsoid zone line was 259 μm per year and the ring area decreased at a rate of 2.46 mm2 per year. For the non-ciliopathy group, the estimated mean shortening of the ellipsoid zone line was 84 μm per year and the ring area decreased at a rate of 0.7 mm2 per year. CONCLUSIONS Our study was able to quantify and compare the loss of EZ line width and short-wavelength autofluorescence (SW-AF) ring constriction progression over time for ciliopathy and non-ciliopathy arRP genes. These results may serve as a basis for modeling RP disease progression, and furthermore, they could potentially be used as endpoints in clinical trials seeking to promote cone and rod survival in RP patients.
Collapse
Affiliation(s)
- Vitor K L Takahashi
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and the Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology & Cell Biology, Columbia Stem Cell Initiative, Institute of Human Nutrition, Columbia University, New York, NY, USA.,Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Christine L Xu
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and the Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology & Cell Biology, Columbia Stem Cell Initiative, Institute of Human Nutrition, Columbia University, New York, NY, USA
| | - Júlia T Takiuti
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and the Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology & Cell Biology, Columbia Stem Cell Initiative, Institute of Human Nutrition, Columbia University, New York, NY, USA.,Division of Ophthalmology, University of São Paulo Medical School, São Paulo, Brazil
| | - Mary Ben L Apatoff
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and the Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology & Cell Biology, Columbia Stem Cell Initiative, Institute of Human Nutrition, Columbia University, New York, NY, USA
| | - Jimmy K Duong
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Vinit B Mahajan
- Byers Eye Institute, Omics Laboratory, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, NY, USA. .,Jonas Children's Vision Care, and the Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology & Cell Biology, Columbia Stem Cell Initiative, Institute of Human Nutrition, Columbia University, New York, NY, USA. .,Department of Pathology & Cell Biology, Stem Cell Initiative (CSCI), Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA. .,Harkness Eye Institute, Columbia University Medical Center, 635 West 165th Street, Box 212, New York, NY, 10032, USA.
| |
Collapse
|
45
|
Ropelewski P, Imanishi Y. Disrupted Plasma Membrane Protein Homeostasis in a Xenopus Laevis Model of Retinitis Pigmentosa. J Neurosci 2019; 39:5581-5593. [PMID: 31061086 PMCID: PMC6616295 DOI: 10.1523/jneurosci.3025-18.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/23/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
Rhodopsin mislocalization is frequently observed in retinitis pigmentosa (RP) patients. For example, class I mutant rhodopsin is deficient in the VxPx trafficking signal, mislocalizes to the plasma membrane (PM) of rod photoreceptor inner segments (ISs), and causes autosomal dominant RP. Mislocalized rhodopsin causes photoreceptor degeneration in a manner independent of light-activation. In this manuscript, we took advantage of Xenopus laevis models of both sexes expressing wild-type human rhodopsin or its class I Q344ter mutant fused to Dendra2 fluorescent protein to characterize a novel light-independent mechanism of photoreceptor degeneration caused by mislocalized rhodopsin. We found that rhodopsin mislocalized to the PM is actively internalized and transported to lysosomes where it is degraded. This degradation process results in the downregulation of a crucial component of the photoreceptor IS PM: the sodium-potassium ATPase α-subunit (NKAα). The downregulation of NKAα is not because of decreased NKAα mRNA, but due to cotransport of mislocalized rhodopsin and NKAα to lysosomes or autophagolysosomes. In a separate set of experiments, we found that class I mutant rhodopsin, which causes NKAα downregulation, also causes shortening and loss of rod outer segments (OSs); the symptoms frequently observed in the early stages of human RP. Likewise, pharmacological inhibition of NKAα led to shortening and loss of rod OSs. These combined studies suggest that mislocalized rhodopsin leads to photoreceptor dysfunction through disruption of the PM protein homeostasis and compromised NKAα function. This study unveiled a novel role of lysosome-mediated degradation in causing inherited disorders manifested by mislocalization of ciliary receptors.SIGNIFICANCE STATEMENT Retinal ciliopathy is the most common form of inherited blinding disorder frequently manifesting rhodopsin mislocalization. Our understanding of the relationships between rhodopsin mislocalization and photoreceptor dysfunction/degeneration has been far from complete. This study uncovers a hitherto uncharacterized consequence of rhodopsin mislocalization: the activation of the lysosomal pathway, which negatively regulates the amount of the sodium-potassium ATPase (NKAα) on the inner segment plasma membrane. On the plasma membrane, mislocalized rhodopsin extracts NKAα and sends it to lysosomes where they are co-degraded. Compromised NKAα function leads to shortening and loss of the photoreceptor outer segments as observed for various inherited blinding disorders. In summary, this study revealed a novel pathogenic mechanism applicable to various forms of blinding disorders caused by rhodopsin mislocalization.
Collapse
Affiliation(s)
- Philip Ropelewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - Yoshikazu Imanishi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| |
Collapse
|
46
|
Schlegel J, Hoffmann J, Röll D, Müller B, Günther S, Zhang W, Janise A, Vössing C, Fühler B, Neidhardt J, Khanna H, Lorenz B, Stieger K. Toward genome editing in X-linked RP-development of a mouse model with specific treatment relevant features. Transl Res 2019; 203:57-72. [PMID: 30213530 PMCID: PMC6294733 DOI: 10.1016/j.trsl.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 01/06/2023]
Abstract
Genome editing represents a powerful tool to treat inherited disorders. Highly specific endonucleases induce a DNA double strand break near the mutant site, which is subsequently repaired by cellular DNA repair mechanisms that involve the presence of a wild type template DNA. In vivo applications of this strategy are still rare, in part due to the absence of appropriate animal models carrying human disease mutations and knowledge of the efficient targeting of endonucleases. Here we report the generation and characterization of a new mouse model for X-linked retinitis pigmentosa (XLRP) carrying a point mutation in the mutational hotspot exon ORF15 of the RPGR gene as well as a recognition site for the homing endonuclease I-SceI. Presence of the genomic modifications was verified at the RNA and protein levels. The mutant protein was observed at low levels. Optical coherence tomography studies revealed a slowly progressive retinal degeneration with photoreceptor loss starting at 9 months of age, paralleling the onset of functional deficits as seen in the electroretinogram. Early changes to the outer retinal bands can be used as biomarker during treatment applications. We further show for the first time efficient targeting using the I-SceI enzyme at the genomic locus in a proof of concept in photoreceptors following adeno-associated virus mediated gene transfer in vivo. Taken together, our studies not only provide a human-XLRP disease model but also act as a platform to design genome editing technology for retinal degenerative diseases using the currently available endonucleases.
Collapse
Affiliation(s)
- J Schlegel
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - J Hoffmann
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - D Röll
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - B Müller
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - S Günther
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - W Zhang
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - A Janise
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - C Vössing
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - B Fühler
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - J Neidhardt
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, University Oldenburg, Oldenburg, Germany
| | - H Khanna
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - B Lorenz
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - K Stieger
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
47
|
Review of Ocular Manifestations of Joubert Syndrome. Genes (Basel) 2018; 9:genes9120605. [PMID: 30518138 PMCID: PMC6315342 DOI: 10.3390/genes9120605] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/13/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Joubert syndrome is a group of rare disorders that stem from defects in a sensory organelle, the primary cilia. Affected patients often present with disorders involving multiple organ systems, including the brain, eyes, and kidneys. Common symptoms include breathing abnormalities, mental developmental delays, loss of voluntary muscle coordination, and abnormal eye movements, with a diagnostic “molar tooth” sign observed by magnetic resonance imaging (MRI) of the midbrain. We reviewed the ocular phenotypes that can be found in patients with Joubert syndrome. Ocular motor apraxia is the most frequent (80% of patients), followed by strabismus (74%) and nystagmus (72%). A minority of patients also present with ptosis (43%), chorioretinal coloboma (30%), and optic nerve atrophy (22%). Although mutations in 34 genes have been found to be associated with Joubert syndrome, retinal degeneration has been reported in only 38% of patients. Mutations in AHI1 and CEP290, genes critical to primary cilia function, have been linked to retinal degeneration. In conclusion, Joubert syndrome is a rare pleiotropic group of disorders with variable ocular presentations.
Collapse
|
48
|
Rao KN, Zhang W, Li L, Anand M, Khanna H. Prenylated retinal ciliopathy protein RPGR interacts with PDE6δ and regulates ciliary localization of Joubert syndrome-associated protein INPP5E. Hum Mol Genet 2018; 25:4533-4545. [PMID: 28172980 DOI: 10.1093/hmg/ddw281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/24/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022] Open
Abstract
Ciliary trafficking defects underlie the pathogenesis of severe human ciliopathies, including Joubert Syndrome (JBTS), Bardet-Biedl Syndrome, and some forms of retinitis pigmentosa (RP). Mutations in the ciliary protein RPGR (retinitis pigmentosa GTPase regulator) are common causes of RP-associated photoreceptor degeneration worldwide. While previous work has suggested that the localization of RPGR to cilia is critical to its functions, the mechanism by which RPGR and its associated cargo are trafficked to the cilia is unclear. Using proteomic and biochemical approaches, we show that RPGR interacts with two JBTS-associated ciliary proteins: PDE6δ (delta subunit of phosphodiesterase; a prenyl-binding protein) and INPP5E (inositol polyphosphate-5-phosphatase 5E). We find that PDE6δ binds selectively to the C-terminus of RPGR and that this interaction is critical for RPGR’s localization to cilia. Furthermore, we show that INPP5E associates with the N-terminus of RPGR and trafficking of INPP5E to cilia is dependent upon the ciliary localization of RPGR. These results implicate prenylation of RPGR as a critical modification for its localization to cilia and, in turn suggest that trafficking of INPP5E to cilia depends upon the interaction of RPGR with PDE6δ. Finally, our results implicate INPP5E, a novel RPGR-interacting protein, in the pathogenesis of RPGR-associated ciliopathies.
Collapse
Affiliation(s)
- Kollu N Rao
- Department of Ophthalmology, Horae Gene Therapy Center, UMASS Medical School, Worcester, MA, USA
| | - Wei Zhang
- Department of Ophthalmology, Horae Gene Therapy Center, UMASS Medical School, Worcester, MA, USA
| | - Linjing Li
- Department of Ophthalmology, Horae Gene Therapy Center, UMASS Medical School, Worcester, MA, USA
| | - Manisha Anand
- Department of Ophthalmology, Horae Gene Therapy Center, UMASS Medical School, Worcester, MA, USA
| | - Hemant Khanna
- Department of Ophthalmology, Horae Gene Therapy Center, UMASS Medical School, Worcester, MA, USA
| |
Collapse
|
49
|
Retinal pigment epithelium changes in Kartagener syndrome. Am J Ophthalmol Case Rep 2018; 10:119-121. [PMID: 29511746 PMCID: PMC5834646 DOI: 10.1016/j.ajoc.2018.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/29/2022] Open
Abstract
Purpose We present the first case in the literature of a patient with Kartagener syndrome and ocular findings of nonexudative age-related macular degeneration. Observations A 55-year-old woman with Kartagener syndrome and chronic angle closure glaucoma presented for evaluation of the retina. Optos ultra-widefield imaging of the fundus showed glaucomatous cupping, drusen, and retinal pigment epithelium changes within the macular region. Humphrey visual field testing confirmed glaucomatous changes. Drusenoid pigment epithelial detachments were observed bilaterally with optical coherence tomography. Conclusions and importance We hypothesize that in addition to the lungs, spermatozoa and the Fallopian tubes, the retinal pigment epithelium may also be affected by ciliary dysfunction in individuals with Kartagener syndrome. Given recent advances in our knowledge of retinal ciliopathies, further studies are needed to understand how ciliary dysfunction affects the retina in Kartagener syndrome.
Collapse
|
50
|
Biswas P, Duncan JL, Ali M, Matsui H, Naeem MA, Raghavendra PB, Frazer KA, Arts HH, Riazuddin S, Akram J, Hejtmancik JF, Riazuddin SA, Ayyagari R. A mutation in IFT43 causes non-syndromic recessive retinal degeneration. Hum Mol Genet 2017; 26:4741-4751. [PMID: 28973684 PMCID: PMC6075558 DOI: 10.1093/hmg/ddx356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 01/12/2023] Open
Abstract
The aim of this work is to identify the molecular cause of autosomal recessive early onset retinal degeneration in a consanguineous pedigree. Seventeen members of a four-generation Pakistani family were recruited and underwent a detailed ophthalmic examination. Exomes of four affected and two unaffected individuals were sequenced. Variants were filtered using exomeSuite to identify rare potentially pathogenic variants in genes expressed in the retina and/or brain and consistent with the pattern of inheritance. Effect of the variant observed in the gene Intraflagellar Transport Protein 43 (IFT43) was studied by heterologous expression in mIMCD3 and MDCK cells. Expression and sub-cellular localization of IFT43 in the retina and transiently transfected cells was examined by RT-PCR, western blot analysis, and immunohistochemistry. Affected members were diagnosed with early onset non-syndromic progressive retinal degeneration and the presence of bone spicules distributed throughout the retina at younger ages while the older affected members showed severe central choroidal atrophy. Whole-exome sequencing analysis identified a novel homozygous c.100 G > A change in IFT43 segregating with retinal degeneration and not present in ethnicity-matched controls. Immunostaining showed IFT43 localized in the photoreceptors, and to the tip of the cilia in transfected mIMCD3 and MDCK cells. The cilia in mIMCD3 and MDCK cells expressing mutant IFT43 were found to be significantly shorter (P < 0.001) than cells expressing wild-type IFT43. Our studies identified a novel homozygous mutation in the ciliary protein IFT43 as the underlying cause of recessive inherited retinal degeneration. This is the first report demonstrating the involvement of IFT43 in retinal degeneration.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India
| | - Jacque L Duncan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Muhammad Ali
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Pongali B Raghavendra
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India
- School of Regenerative Medicine, Manipal University, Bangalore, India
| | - Kelly A Frazer
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, Division of Genome Information Sciences, Rady Children‘s Hospital, San Diego, CA, USA
| | - Heleen H Arts
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Allama Iqbal Medical College, University of Health Sciences Lahore, Pakistan
- National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences Lahore, Pakistan
- National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda, MD, USA
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|