1
|
Muthumalage T, Noel A, Thanavala Y, Alcheva A, Rahman I. Challenges in current inhalable tobacco toxicity assessment models: A narrative review. Tob Induc Dis 2024; 22:TID-22-102. [PMID: 38860150 PMCID: PMC11163881 DOI: 10.18332/tid/188197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 06/12/2024] Open
Abstract
Emerging tobacco products such as electronic nicotine delivery systems (ENDS) and heated tobacco products (HTPs) have a dynamic landscape and are becoming widely popular as they claim to offer a low-risk alternative to conventional smoking. Most pre-clinical laboratories currently exploit in vitro, ex vivo, and in vivo experimental models to assess toxicological outcomes as well as to develop risk-estimation models. While most laboratories have produced a wide range of cell culture and mouse model data utilizing current smoke/aerosol generators and standardized puffing profiles, much variation still exists between research studies, hindering the generation of usable data appropriate for the standardization of these tobacco products. In this review, we discuss current state-of-the-art in vitro and in vivo models and their challenges, as well as insights into risk estimation of novel products and recommendations for toxicological parameters for reporting, allowing comparability of the research studies between laboratories, resulting in usable data for regulation of these products before approval by regulatory authorities.
Collapse
Affiliation(s)
| | - Alexandra Noel
- School of Veterinary Medicine Louisiana State University, Baton Rouge, United States
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, United States
| | - Aleksandra Alcheva
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
2
|
Tsolakos N, Haswell LE, Miazzi F, Bishop E, Antoranz A, Pliaka V, Minia A, Alexopoulos LG, Gaca M, Breheny D. Comparative toxicological assessment of cigarettes and new category products via an in vitro multiplex proteomics platform. Toxicol Rep 2024; 12:492-501. [PMID: 38774478 PMCID: PMC11106783 DOI: 10.1016/j.toxrep.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2024] [Accepted: 04/19/2024] [Indexed: 05/24/2024] Open
Abstract
Cigarette smoking is a risk factor for several diseases such as cancer, cardiovascular disease (CVD), and chronic obstructive pulmonary diseases (COPD), however, the underlying mechanisms are not fully understood. Alternative nicotine products with reduced risk potential (RRPs) including tobacco heating products (THPs), and e-cigarettes have recently emerged as viable alternatives to cigarettes that may contribute to the overall strategy of tobacco harm reduction due to the significantly lower levels of toxicants in these products' emissions as compared to cigarette smoke. Assessing the effects of RRPs on biological responses is important to demonstrate the potential value of RRPs towards tobacco harm reduction. Here, we evaluated the inflammatory and signaling responses of human lung epithelial cells to aqueous aerosol extracts (AqE) generated from the 1R6F reference cigarette, the glo™ THP, and the Vype ePen 3.0 e-cigarette using multiplex analysis of 37 inflammatory and phosphoprotein markers. Cellular exposure to the different RRPs and 1R6F AqEs resulted in distinct response profiles with 1R6F being the most biologically active followed by glo™ and ePen 3.0. 1R6F activated stress-related and pro-survival markers c-JUN, CREB1, p38 MAPK and MEK1 and led to the release of IL-1α. glo™ activated MEK1 and decreased IL-1β levels, whilst ePen 3.0 affected IL-1β levels but had no effect on the signaling activity compared to untreated cells. Our results demonstrated the reduced biological effect of RRPs and suggest that targeted analysis of inflammatory and cell signaling mediators is a valuable tool for the routine assessment of RRPs.
Collapse
Affiliation(s)
| | - Linsey E. Haswell
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - Fabio Miazzi
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - Emma Bishop
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | | | - Vaia Pliaka
- Protavio Ltd, Agia Paraskevi, Attiki 15341, Greece
| | | | - Leonidas G. Alexopoulos
- Protavio Ltd, Agia Paraskevi, Attiki 15341, Greece
- Biomedical Systems Laboratory, School of Mechanical Engineering, National Technical University of Athens, Zografou 15373, Greece
| | - Marianna Gaca
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - Damien Breheny
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| |
Collapse
|
3
|
Sarles SE, Hensel EC, Nuss C, Terry J, Robinson R. Characterization of mass distribution in a biomimetic aerosol exposure system. Inhal Toxicol 2024; 36:240-249. [PMID: 38669189 DOI: 10.1080/08958378.2024.2341995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE Lack of biomimicry in geometry and flow conditions of emissions systems for analytical testing and biological exposure has led to fundamental limitations, including a poor understanding of dose delivered to specific airway locations. This work characterizes mass distribution of a JUUL® brand e-cigarette in a Biomimetic Aerosol Exposure System (BAES). MATERIALS AND METHODS A combination of mass balance, direct measurements, and inferences based on direct measurements were used to characterize regional and local dose as a function of system flow path configuration and emissions topography profile. RESULTS Doses produced by the emissions topography profile with only puffing were significantly different from profiles with clean air inhalation following puffs. Mass characterization results support that dose can be manipulated using flow path geometry. Local and regional deposition was mapped throughout the system. DISCUSSION AND CONCLUSIONS We estimate the fraction of yield to the mouth deposited at several locations throughout the system for a variety of puffing and respiration topographies and show that emissions topography profile and system flow path geometry affect dose. This work provides proof-of-concept for assessing mass distribution as a function of aerosol generator (e-cigarette product), user airway geometry, and inhalation and puffing topography.
Collapse
Affiliation(s)
- S Emma Sarles
- Biomedical and Chemical Engineering PhD Program, Rochester Institute of Technology, Rochester, NY, USA
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Edward C Hensel
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Caleb Nuss
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Janessa Terry
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Risa Robinson
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
4
|
Yayan J, Franke KJ, Biancosino C, Rasche K. Comparative systematic review on the safety of e-cigarettes and conventional cigarettes. Food Chem Toxicol 2024; 185:114507. [PMID: 38331086 DOI: 10.1016/j.fct.2024.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND This systematic review evaluated the health risks of electronic cigarettes (e-cigarettes) compared to traditional cigarettes. It examines various studies and research on the subject to provide a comprehensive analysis of potential health risks associated with both smoking methods. METHODS The systematic review, incorporating searches in PubMed, Scopus, Web of Science, and the Cochrane Library up to July 2023, examines the results obtained in relevant studies, and provides a critical discussion of the results. RESULTS E-cigarettes exhibit reduced exposure to harmful toxins compared to traditional cigarettes. CONCLUSION However, concerns persist regarding respiratory irritation and potential health risks, especially among youth, emphasizing the need for comprehensive, long-term research and protective legislation.
Collapse
Affiliation(s)
- Josef Yayan
- Witten/Herdecke University, Witten, Department of Internal Medicine, Division of Pulmonary, Allergy and Sleep Medicine, HELIOS Clinic Wuppertal, Germany.
| | - Karl-Josef Franke
- Department of Internal Medicine, Pulmonary Division, Internal Intensive Care Medicine, Infectiology, and Sleep Medicine, Märkische Clinics Health Holding Ltd, Clinic Lüdenscheid, Lüdenscheid, Witten/Herdecke University, Germany
| | - Christian Biancosino
- Witten/Herdecke University, Witten, Department of Thoracic Surgery, HELIOS Clinic Wuppertal, Germany
| | - Kurt Rasche
- Witten/Herdecke University, Witten, Department of Internal Medicine, Division of Pulmonary, Allergy and Sleep Medicine, HELIOS Clinic Wuppertal, Germany
| |
Collapse
|
5
|
Mercier C, Pourchez J, Leclerc L, Forest V. In vitro toxicological evaluation of aerosols generated by a 4th generation vaping device using nicotine salts in an air-liquid interface system. Respir Res 2024; 25:75. [PMID: 38317149 PMCID: PMC10845662 DOI: 10.1186/s12931-024-02697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Electronic cigarettes (EC) have gained popularity, especially among young people, with the introduction of fourth-generation devices based on e-liquids containing nicotine salts that promise a smoother vaping experience than freebase nicotine. However, the toxicological effects of nicotine salts are still largely unknown, and the chemical diversity of e-liquids limits the comparison between different studies to determine the contribution of each compound to the cytotoxicity of EC aerosols. Therefore, the aim of this study was to evaluate the toxicological profile of controlled composition e-liquid aerosols to accurately determine the effects of each ingredient based on exposure at the air-liquid interface. METHODS Human lung epithelial cells (A549) were exposed to undiluted aerosols of controlled composition e-liquids containing various ratios of propylene glycol (PG)/vegetable glycerin (VG) solvents, freebase nicotine, organic acids, nicotine salts, and flavoured commercial e-liquids. Exposure of 20 puffs was performed at the air-liquid interface following a standard vaping regimen. Toxicological outcomes, including cytotoxicity, inflammation, and oxidative stress, were assessed 24 h after exposure. RESULTS PG/VG aerosols elicited a strong cytotoxic response characterised by a 50% decrease in cell viability and a 200% increase in lactate dehydrogenase (LDH) production, but had no effects on inflammation and oxidative stress. These effects occurred only at a ratio of 70/30 PG/VG, suggesting that PG is the major contributor to aerosol cytotoxicity. Both freebase nicotine and organic acids had no greater effect on cell viability and LDH release than at a 70/30 PG/VG ratio, but significantly increased inflammation and oxidative stress. Interestingly, the protonated form of nicotine in salt showed a stronger proinflammatory effect than the freebase nicotine form, while benzoic acid-based nicotine salts also induced significant oxidative stress. Flavoured commercial e-liquids was found to be cytotoxic at a threshold dose of ≈ 330 µg/cm². CONCLUSION Our results showed that aerosols of e-liquids consisting only of PG/VG solvents can cause severe cytotoxicity depending on the concentration of PG, while nicotine salts elicit a stronger pro-inflammatory response than freebase nicotine. Overall, aerosols from fourth-generation devices can cause different toxicological effects, the nature of which depends on the chemical composition of the e-liquid.
Collapse
Affiliation(s)
- Clément Mercier
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, 42023, France.
| | - Jérémie Pourchez
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, 42023, France
| | - Lara Leclerc
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, 42023, France
| | - Valérie Forest
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, 42023, France
| |
Collapse
|
6
|
Keyser BM, Leverette R, Wertman J, Shutsky T, McRae R, Szeliga K, Makena P, Jordan K. Evaluation of Cytotoxicity and Oxidative Stress of Whole Aerosol from Vuse Alto ENDS Products. TOXICS 2024; 12:129. [PMID: 38393224 PMCID: PMC10892160 DOI: 10.3390/toxics12020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Assessment of in vitro cytotoxicity is an important component of tobacco product toxicological evaluations. However, current methods of regulatory testing involve exposing monolayer cell cultures to various preparations of aerosols from cigarettes or other emerging products such as electronic nicotine delivery systems (ENDS), which are not representative of human exposure. In the present study, a whole aerosol (WA) system was used to expose lung epithelial cultures (2D and 3D) to determine the potential of six Vuse Alto ENDS products that varied in nicotine content (1.8%, 2.4%, and 5%) and flavors (Golden Tobacco, Rich Tobacco, Menthol, and Mixed Berry), along with a marketed ENDS and a marked cigarette comparator to induce cytotoxicity and oxidative stress. The WA from the Vuse Alto ENDS products was not cytotoxic in the NRU and MTT assays, nor did it activate the Nrf2 reporter gene, a marker of oxidative stress. In summary, Vuse Alto ENDS products did not induce cytotoxic or oxidative stress responses in the in vitro models. The WA exposures used in the 3D in vitro models described herein may be better suited than 2D models for the determination of cytotoxicity and other in vitro functional endpoints and represent alternative models for regulatory evaluation of tobacco products.
Collapse
Affiliation(s)
- Brian M. Keyser
- RAI Services Company, Winston-Salem, NC 27106, USA; (R.L.); (J.W.); (K.S.); (P.M.); (K.J.)
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Manna VJ, Dwyer S, Pizutelli V, Caradonna SJ. Utilizing primary human airway mucociliary tissue cultures to model ramifications of chronic E-cigarette usage. Toxicol In Vitro 2024; 94:105725. [PMID: 37884163 DOI: 10.1016/j.tiv.2023.105725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/27/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Electronic cigarettes are battery powered devices that use a vape-liquid to produce a vapor that is inhaled. A consequence of the rise in e-cigarette usage was the 2019 emergence of a vaping-induced respiratory disease denoted as 'e-cigarette or vaping use-associated lung injury' (EVALI). One of the suspected causes of EVALI is Vitamin E Acetate (VEA), which was found to be a diluent in certain illicit vape-pens, whereas nicotine is commonly diluted in equal parts propylene glycol and vegetable glycerin (PG:VG). The prevalent use of e-cigarettes and the emergence of a novel illness has made understanding how e-cigarette vapors affect our respiratory tissues a public health concern. We have designed and produced a simple device that can operate e-cigarettes and deliver the vapor to a chamber containing a standard cell culture multi-well plate. Here we utilize our device to model the response of human airway mucociliary tissue after chronic exposure to vapors produced from either PG:VG or VEA. We note several differences between how PG:VG and VEA vapors interact with and alter airway tissue cultures and suggest potential mechanisms for how VEA-vapors can exacerbate EVALI symptoms. Our device combined with primary human airway tissue cultures make an economical and compact model system that allows for animal-free investigations into the acute and chronic consequences of e-cigarette vapors on primary respiratory cells.
Collapse
Affiliation(s)
- Vincent J Manna
- Department of Molecular Biology, Graduate School of Biomedical Sciences and School of Osteopathic Medicine, Rowan University, Stratford, NJ, United States.
| | - Shannon Dwyer
- Department of Molecular Biology, Graduate School of Biomedical Sciences and School of Osteopathic Medicine, Rowan University, Stratford, NJ, United States
| | - Vanessa Pizutelli
- Department of Molecular Biology, Graduate School of Biomedical Sciences and School of Osteopathic Medicine, Rowan University, Stratford, NJ, United States
| | - Salvatore J Caradonna
- Department of Molecular Biology, Graduate School of Biomedical Sciences and School of Osteopathic Medicine, Rowan University, Stratford, NJ, United States
| |
Collapse
|
8
|
Qi H, Chang X, Wang K, Xu Q, Liu M, Han B. Comparative analyses of transcriptome sequencing and carcinogenic exposure toxicity of nicotine and 6-methyl nicotine in human bronchial epithelial cells. Toxicol In Vitro 2023; 93:105661. [PMID: 37586650 DOI: 10.1016/j.tiv.2023.105661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Electronic cigarettes have become a purported safer alternative to the conventional cigarettes in recent years. Nicotine is the main component of electronic cigarettes, and other nicotinic compounds are synthesized as alternatives to nicotine. However, scientific data on the potential health effects of electronic cigarettes are scarce. Herein, we evaluated the cytotoxicity of nicotine and its analog 6-methyl nicotine (6-MN) on human bronchial epithelial cells (BEAS-2B cells) in vitro. Furthermore, we performed transcriptome sequencing to systematically assess the effects of nicotine and 6-MN on BEAS-2B cells. The cytotoxicity assay revealed that BEAS-2B cells were more sensitive to 6-MN than to nicotine. Transcriptome sequencing revealed 1208 differentially expressed cancer-related proteins (CRP) in the 6-MN groups relative to that with CRP in the control group. In addition, 6-MN had a greater negative effect on the CRP expression than nicotine. Bioinformatic analysis revealed that the differentially expressed genes and proteins in the 6-MN group were significantly enriched in the cancer-related pathways, unlike those in the nicotine group. Further validations of some lung cancer-related proteins, such as NF-κB p65, EGFR, and MET, were conducted by immunoblotting and real-time PCR, which revealed that 6-MN may have a greater negative effect on tumor development and metastasis than nicotine. Taken together, our findings suggest that new electronic cigarettes with 6-MN might offer some advantages over conventional electronic cigarettes containing nicotine.
Collapse
Affiliation(s)
| | - Xia Chang
- Guangdong Pharmaceutical University, China
| | - Ke Wang
- Guangdong Pharmaceutical University, China
| | - Qiaoxin Xu
- Guangdong Pharmaceutical University, China
| | - Meisen Liu
- Shenzhen Zinwi Bio-Tech Co., LTD., China.
| | - Bin Han
- Guangdong Pharmaceutical University, China.
| |
Collapse
|
9
|
Foster JA. Consideration of vaping products as an alternative to adult smoking: a narrative review. Subst Abuse Treat Prev Policy 2023; 18:67. [PMID: 37974269 PMCID: PMC10655401 DOI: 10.1186/s13011-023-00571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
Tobacco harm reduction is a public health approach to reduce the impact of cigarette smoking on individuals. Non-combustible alternatives to cigarettes, such as electronic cigarettes (e-cigarettes), deliver nicotine to the user in the absence of combustion. The absence of combustion in e-cigarettes reduces the level of harmful or potentially harmful chemicals in the aerosol generated. This narrative review examines the published literature that studied the chemistry of e-cigarette aerosols, the related toxicology in cell culture and animal models, as well as clinical studies that investigated short- and long-term changes in biomarkers of smoke exposure after switching to e-cigarettes. In the context of the literature reviewed, the evidence supports the harm reduction potential for adult smokers who switch to e-cigarettes.
Collapse
Affiliation(s)
- Jane A Foster
- Department of Psychiatry & Behavioural Neurosciences, St. Joseph's Healthcare, 50 Charlton Ave. E., Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
10
|
Emma R, Fuochi V, Distefano A, Partsinevelos K, Rust S, Zadjali F, Al Tobi M, Zadjali R, Alharthi Z, Pulvirenti R, Furneri PM, Polosa R, Sun A, Caruso M, Li Volti G. Cytotoxicity, mutagenicity and genotoxicity of electronic cigarettes emission aerosols compared to cigarette smoke: the REPLICA project. Sci Rep 2023; 13:17859. [PMID: 37903810 PMCID: PMC10616076 DOI: 10.1038/s41598-023-44626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023] Open
Abstract
Concerns have recently increased that the integrity of some scientific research is questionable due to the inability to reproduce the claimed results of some experiments and thereby confirm that the original researcher's conclusions were justified. This phenomenon has been described as 'reproducibility crisis' and affects various fields from medicine to basic applied sciences. In this context, the REPLICA project aims to replicate previously conducted in vitro studies on the toxicity of cigarette smoke and e-cigarette aerosol, sometimes adding experiments or conditions where necessary, in order to verify the robustness and replicability of the data. In this work the REPLICA Team replicated biological and toxicological assessment published by Rudd and colleagues in 2020. As in the original paper, we performed Neutral Red Uptake (NRU) assay for the evaluation of cytotoxicity, Ames test for the evaluation of mutagenesis and In Vitro Micronuclei (IVMN) assay for the evaluation of genotoxicity on cells treated with cigarette smoke or e-cigarette aerosol. The results showed high cytotoxicity, mutagenicity and genotoxicity induced by cigarette smoke, but slight or no cytotoxic, mutagenic and genotoxic effects induced by the e-cigarette aerosol. Although the two studies presented some methodological differences, the findings supported those previously presented by Rudd and colleagues.
Collapse
Affiliation(s)
- Rosalia Emma
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
| | - Virginia Fuochi
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
| | - Konstantinos Partsinevelos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
| | - Sonja Rust
- ECLAT Srl, Spin Off of the University of Catania, Via. S Sofia 89, 95123, Catania, Italy
| | - Fahad Zadjali
- Department of Clinical Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, P.C 123, P.O. Box 35, Khodh, Oman
| | - Mohammed Al Tobi
- Department of Clinical Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, P.C 123, P.O. Box 35, Khodh, Oman
| | - Razan Zadjali
- Department of Clinical Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, P.C 123, P.O. Box 35, Khodh, Oman
| | - Zaina Alharthi
- Department of Clinical Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, P.C 123, P.O. Box 35, Khodh, Oman
| | - Roberta Pulvirenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
| | - Pio Maria Furneri
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
| | - Riccardo Polosa
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
- ECLAT Srl, Spin Off of the University of Catania, Via. S Sofia 89, 95123, Catania, Italy
| | - Ang Sun
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, USA
| | - Massimo Caruso
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy.
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy.
| | - Giovanni Li Volti
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
| |
Collapse
|
11
|
Caruso M, Distefano A, Emma R, Zuccarello P, Copat C, Ferrante M, Carota G, Pulvirenti R, Polosa R, Missale GA, Rust S, Raciti G, Li Volti G. In vitro cytoxicity profile of e-cigarette liquid samples on primary human bronchial epithelial cells. Drug Test Anal 2023; 15:1145-1155. [PMID: 35434934 DOI: 10.1002/dta.3275] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/08/2022]
Abstract
Cigarette smoke is associated to severe chronic diseases. The most harmful components of cigarette smoke derive from the combustion process, which are significantly reduced in the electronic cigarette aerosol, thus providing a valid option in harm reduction strategies. To develop safer products, it is therefore necessary to screen electronic cigarette liquids (e-liquids) to meet high safety standards defined by government regulations. The aim of the present study was to evaluate the presence of metal- and plastic-derived contaminants in four different commercial e-liquids with high concentration of nicotine and their cytotoxic effect in normal human bronchial epithelial cells by a number of in vitro assays, in comparison with the 1R6F reference cigarette, using an air-liquid interface (ALI) exposure system. Moreover, we evaluated the effect of aerosol exposure on oxidative stress by measuring the production of reactive oxygen species and mitochondrial potential. Our results showed no contaminants in all e-liquids and a significantly reduced cytotoxic effect of e-liquid aerosol compared to cigarette smoke as well as a maintained mitochondria integrity. Moreover, no production of reactive oxygen species was detected with e-cigarette aerosol. In conclusion, these results support the reduced toxicity potential of e-cigs compared to tobacco cigarettes in an in vitro model resembling real life smoke exposure.
Collapse
Affiliation(s)
- Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction, University of Catania, Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalia Emma
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pietro Zuccarello
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania, Italy
| | - Chiara Copat
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania, Italy
| | - Margherita Ferrante
- Center of Excellence for the Acceleration of Harm Reduction, University of Catania, Catania, Italy
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania, Italy
| | - Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Roberta Pulvirenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Riccardo Polosa
- Center of Excellence for the Acceleration of Harm Reduction, University of Catania, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- ECLAT Srl, University of Catania, Catania, Italy
| | | | - Sonja Rust
- ECLAT Srl, University of Catania, Catania, Italy
| | - Giuseppina Raciti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Zhao M, Han Y, Yang Q, Yue Q, Zhang S, Zhao C, Sun X, Xu J, Jiang X, Li K, Li B, Zhao L, Su L. Evaluation of the Effects of e-Cigarette Aerosol Extracts and Tobacco Cigarette Smoke Extracts on RAW264.7 Cells. ACS OMEGA 2023; 8:29336-29345. [PMID: 37599962 PMCID: PMC10433514 DOI: 10.1021/acsomega.3c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
With the advancement of society, electronic cigarettes (e-cigarettes) have gained popularity among a growing number of individuals. While numerous toxicological studies have suggested that e-cigarettes are a safer alternative to traditional cigarettes, there is also a body of literature presenting contrasting findings. This in vitro study aimed to compare the effects of e-cigarettes and tobacco cigarettes (t-cigarettes) on RAW264.7 cells by using four e-cigarette aerosol extracts (ECA) and cigarette smoking extracts (CS) containing different nicotine concentrations. The results revealed that low concentration of nicotine in CS as well as in ECA with grape, watermelon, and cola flavors could promote cell viability. Conversely, high nicotine concentration in CS and ECA with four flavors decreased cell viability. Furthermore, our study demonstrated that CS significantly reduced the phagocytic capability of RAW264.7 cells and increased the levels of inflammatory cytokines (IL-6, TNF-α, and IL-1β) and reactive oxygen species (ROS) compared to ECA. Overall, our findings indicate all four e-cigarettes induced less cytotoxicity to RAW264.7 cells and might be safer than t-cigarettes.
Collapse
Affiliation(s)
- Minghan Zhao
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Yuting Han
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Qi Yang
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Qiulin Yue
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
- Shengshengxiangrong
(Shandong) Biotechnology Co., Ltd., Jinan 250000, P. R. China
| | - Song Zhang
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Chen Zhao
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Xin Sun
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Jing Xu
- Shenzhen
RELX Tech. Co., Ltd., Shenzhen 518000, P. R. China
| | - Xingtao Jiang
- Shenzhen
RELX Tech. Co., Ltd., Shenzhen 518000, P. R. China
| | - Kunlun Li
- Shandong
Zhuoran Biotechnology Co., Ltd., Jinan 250000, P. R. China
| | - Baojun Li
- Shandong
Zhuoran Biotechnology Co., Ltd., Jinan 250000, P. R. China
| | - Lin Zhao
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
- Shandong
Chenzhang Biotechnology Co., Ltd., Jinan 250353, P. R. China
| | - Le Su
- State
Key Laboratory of Biobased Material and Green Papermaking, School
of Bioengineering, Qilu University of Technology,
Shandong Academy of Sciences, Jinan 250353, P. R. China
- Shengshengxiangrong
(Shandong) Biotechnology Co., Ltd., Jinan 250000, P. R. China
| |
Collapse
|
13
|
Heparan Sulfate and Enoxaparin Interact at the Interface of the Spike Protein of HCoV-229E but Not with HCoV-OC43. Viruses 2023; 15:v15030663. [PMID: 36992372 PMCID: PMC10056857 DOI: 10.3390/v15030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/20/2022] [Accepted: 01/05/2023] [Indexed: 03/05/2023] Open
Abstract
It is known that the spike protein of human coronaviruses can bind to a secondary receptor, or coreceptor, to facilitate the virus entry. While HCoV-229E uses human aminopeptidase N (hAPN) as a receptor, HCoV-OC43 binds to 9-O-acetyl-sialic acid (9-O-Ac-Sia), which is linked in a terminal way to the oligosaccharides that decorate glycoproteins and gangliosides on the surface of the host cell. Thus, evaluating the possible inhibitory activity of heparan sulfate, a linear polysaccharide found in animal tissues, and enoxaparin sodium on these viral strains can be considered attractive. Therefore, our study also aims to evaluate these molecules’ antiviral activity as possible adsorption inhibitors against non-SARS-CoV. Once the molecules’ activity was verified in in vitro experiments, the binding was studied by molecular docking and molecular dynamic simulations confirming the interactions at the interface of the spike proteins.
Collapse
|
14
|
Martinez JD, Easwaran M, Ramirez D, Erickson-DiRenzo E. Effects of Electronic (E)-cigarette Vapor and Cigarette Smoke in Cultured Vocal Fold Fibroblasts. Laryngoscope 2023; 133:139-146. [PMID: 35213064 DOI: 10.1002/lary.30073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The public use of electronic-cigarettes (e-cigs) is rapidly growing. When heated, e-cigs produce a vapor that is inhaled. The vocal folds are among the first tissues exposed to this insult. However, the impact of e-cigs on vocal fold health is almost entirely unknown. Our objective was to evaluate the effects of e-cig vapor on cultured human vocal fold fibroblasts (hVFFs), the primary cell type of the lamina propria. We compared the cellular effects of e-cig vapor without and with nicotine and conventional cigarette smoke. STUDY DESIGN In vitro. METHODS E-cig vapor extract (EVE) and cigarette smoke extract (CSE) were created by bubbling vapor and smoke, respectively, into the cell culture medium. hVFFs were exposed to EVE without or with nicotine or CSE for 24 hours. Untreated cells were used as a control group. Cells were harvested, and cytotoxicity, extracellular matrix and inflammatory gene expression, and DNA damage were assessed. RESULTS Undiluted EVE without and with nicotine reduced the viability of hVFFs to a cytotoxic level. CSE reduced hVFFs viability to a greater extent than EVE and induced DNA damage as measured by DNA double-strand breaks. No changes in gene expression were observed following EVE or CSE exposure. CONCLUSION EVE induces cytotoxicity in hVFFs. However, cellular responses were greater following exposure to CSE, suggesting cigarette smoke may induce more harm, at least in the short term. Findings from this investigation improve our understanding of responses of hVFFs to e-cigs and form the basis for an in vitro methodology to study the vocal fold responses to these products. LEVEL OF EVIDENCE NA Laryngoscope, 133:139-146, 2023.
Collapse
Affiliation(s)
- Joshua D Martinez
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Meena Easwaran
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Daniel Ramirez
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Elizabeth Erickson-DiRenzo
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| |
Collapse
|
15
|
Debbaneh P, Dhir S, Anderson M, Rivero A. Electronic Cigarettes: A Narrative Review and Cohort Study of Electronic Cigarette Users in the Otolaryngology Clinic. Perm J 2022; 26:85-93. [PMID: 36184759 PMCID: PMC9761286 DOI: 10.7812/tpp/22.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Electronic nicotine delivery systems (ENDSs) are growing in popularity, particularly in young adults. While in vitro and murine models have demonstrated potentially harmful health effects of ENDSs, long-term health effects and clinical outcomes are generally unknown. Use as a smoking cessation aid is propagated by studies of potential harm reduction compared to conventional cigarette smoking. We present a review of the current controversies of ENDS use and present a novel cohort of patients visiting the otolaryngology clinic with known ENDS use to understand their clinical and demographic characteristics and the prevalence of otolaryngologic inflammatory diagnoses. Eighty-eight patients had 105 diagnoses. Forty-three (48.9%) ENDS users had at least 1 inflammatory diagnosis. ENDS use was more common in White, male patients between the ages of 18 and 35 years. The most common inflammatory diagnoses were chronic otitis media (17.4%) and allergic rhinitis (13.0%). While the rate of inflammatory disease was significantly higher in male than in female patients (60.7% vs 28.1% p = 0.003), no significant association was seen between inflammatory disease and age, race/ethnicity, or length of ENDS use. The identification and description of patients with ENDS use will help clinicians' better risk-stratify otolaryngologic diagnoses associated with this novel health behavior. Additionally, further clinical research is necessary to elucidate long-term health outcomes of ENDS use.
Collapse
Affiliation(s)
- Peter Debbaneh
- 1Department of Otolaryngology—Head and Neck Surgery, Kaiser Permanente Oakland Medical Center, Oakland, CA, USA,Peter Debbaneh, MD
| | - Sanidhya Dhir
- 2Chicago Medical School–Rosalind Franklin University, North Chicago, IL, USA
| | | | - Alexander Rivero
- 1Department of Otolaryngology—Head and Neck Surgery, Kaiser Permanente Oakland Medical Center, Oakland, CA, USA
| |
Collapse
|
16
|
Wang W, Zeng R, Liu M, Chen M, Wei S, Li B, Yu S. Exosome proteomics study of the effects of traditional cigarettes and electronic cigarettes on human bronchial epithelial cells. Toxicol In Vitro 2022; 86:105516. [DOI: 10.1016/j.tiv.2022.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/25/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
|
17
|
Pinto MI, Thissen J, Hermes N, Cunningham A, Digard H, Murphy J. Chemical characterisation of the vapour emitted by an e-cigarette using a ceramic wick-based technology. Sci Rep 2022; 12:16497. [PMID: 36192548 PMCID: PMC9529894 DOI: 10.1038/s41598-022-19761-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Fourth-generation 'pod' e-cigarette devices have been driven by technological advances in electronic atomization of the e-liquid. Use of microporous ceramic as a wicking material improves heating efficiency, but how it affects the chemical emissions of these devices is unclear. We assessed the emissions of a pod e-cigarette with innovative ceramic wick-based technology and two flavoured e-liquids containing nicotine lactate and nicotine benzoate (57 and 18 mg mL-1 nicotine, respectively). Among the studied harmful and potentially harmful constituents (HPHCs) listed by the US FDA and/or WHO TobReg, only 5 (acetone, acetaldehyde, formaldehyde, naphthalene and nornicotine) were quantified at levels of 0.14 to 100 ng puff-1. In the combustible cigarette (Kentucky reference 1R6F), levels were from 0.131 to 168 µg puff-1. Nicotine levels ranged 0.10-0.32 mg puff-1 across the 3 study products. From the 19 proposed HPHCs specifically of concern in e-cigarettes, only 3 (glycerol, isoamyl acetate and propylene glycol) were quantified. The low/undetectable levels of HPHCs reflect not only the optimal operating conditions of the e-cigarette, including an efficient supply of e-liquid by the ceramic wick without overheating, but also the potential of the e-cigarettes to be used as an alternative to combustible cigarettes.
Collapse
Affiliation(s)
- M Isabel Pinto
- B.A.T (Investments) Limited, R&D, Regents Park Rd, Southampton, SO15 8TL, UK.
| | - J Thissen
- B.A.T (Investments) Limited, R&D, Regents Park Rd, Southampton, SO15 8TL, UK
| | - N Hermes
- B.A.T (Investments) Limited, R&D, Regents Park Rd, Southampton, SO15 8TL, UK
| | - A Cunningham
- B.A.T (Investments) Limited, R&D, Regents Park Rd, Southampton, SO15 8TL, UK
| | - H Digard
- B.A.T (Investments) Limited, R&D, Regents Park Rd, Southampton, SO15 8TL, UK
| | - J Murphy
- Reynolds American, Inc., 401 N Main St, Winston-Salem, NC, 27101, USA
| |
Collapse
|
18
|
Effah F, Taiwo B, Baines D, Bailey A, Marczylo T. Pulmonary effects of e-liquid flavors: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:343-371. [PMID: 36154615 PMCID: PMC9590402 DOI: 10.1080/10937404.2022.2124563] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Electronic cigarettes (ECs) are purported to be tobacco harm-reduction products whose degree of harm has been highly debated. EC use is considered less hazardous than smoking but is not expected to be harmless. Following the banning of e-liquid flavors in countries such as the US, Finland, Ukraine, and Hungary, there are growing concerns regarding the safety profile of e-liquid flavors used in ECs. While these are employed extensively in the food industry and are generally regarded as safe (GRAS) when ingested, GRAS status after inhalation is unclear. The aim of this review was to assess evidence from 38 reports on the adverse effects of flavored e-liquids on the respiratory system in both in vitro and in vivo studies published between 2006 and 2021. Data collected demonstrated greater detrimental effects in vitro with cinnamon (9 articles), strawberry (5 articles), and menthol (10 articles), flavors than other flavors. The most reported effects among these investigations were perturbations of pro-inflammatory biomarkers and enhanced cytotoxicity. There is sufficient evidence to support the toxicological impacts of diacetyl- and cinnamaldehyde-containing e-liquids following human inhalation; however, safety profiles on other flavors are elusive. The latter may result from inconsistencies between experimental approaches and uncertainties due to the contributions from other e-liquid constituents. Further, the relevance of the concentration ranges to human exposure levels is uncertain. Evidence indicates that an adequately controlled and consistent, systematic toxicological investigation of a broad spectrum of e-liquid flavors may be required at biologically relevant concentrations to better inform public health authorities on the risk assessment following exposure to EC flavor ingredients.
Collapse
Affiliation(s)
- Felix Effah
- Pharmacology Section, St George’s University of London, London, UK
- Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Didcot, UK
| | - Benjamin Taiwo
- Physiology Section, St George’s University of London, London, UK
| | - Deborah Baines
- Infection and Immunity Institute, St George’s University of London, London, UK
| | - Alexis Bailey
- Pharmacology Section, St George’s University of London, London, UK
| | - Tim Marczylo
- Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Didcot, UK
| |
Collapse
|
19
|
Edmiston JS, Rostami AA, Liang Q, Miller S, Sarkar MA. Computational modeling method to estimate secondhand exposure potential from exhalations during e-vapor product use under various real-world scenarios. Intern Emerg Med 2022; 17:2005-2016. [PMID: 36050572 PMCID: PMC9522680 DOI: 10.1007/s11739-022-03061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/20/2022] [Indexed: 11/05/2022]
Abstract
Potential secondhand exposure of exhaled constituents from e-vapor product (EVP) use is a public health concern. We present a computational modeling method to predict air levels of exhaled constituents from EVP use. We measured select constituent levels in exhaled breath from adult e-vapor product users, then used a validated computational model to predict constituent levels under three scenarios (car, office, and restaurant) to estimate likely secondhand exposure to non-users. The model was based on physical/thermodynamic interactions between air, vapor, and particulate phase of the aerosol. Input variables included space setting, ventilation rate, total aerosol amount exhaled, and aerosol composition. Exhaled breath samples were analyzed after the use of four different e-liquids in a cartridge-based EVP. Nicotine, propylene glycol, glycerin, menthol, formaldehyde, acetaldehyde, and acrolein levels were measured and reported based on a linear mixed model for analysis of covariance. The ranges of nicotine, propylene glycol, glycerin, and formaldehyde in exhaled breath were 89.44-195.70 µg, 1199.7-3354.5 µg, 5366.8-6484.7 µg, and 0.25-0.34 µg, respectively. Acetaldehyde and acrolein were below detectable limits; thus, no estimated exposure to non-EVP users is reported. The model predicted that nicotine and formaldehyde exposure to non-users was substantially lower during EVPs use compared to cigarettes. The model also predicted that exposure to propylene glycol, glycerin, nicotine and formaldehyde among non-users was below permissible exposure limits.
Collapse
Affiliation(s)
- Jeffery S Edmiston
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - Ali A Rostami
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - Qiwei Liang
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - Sandra Miller
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - Mohamadi A Sarkar
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA.
| |
Collapse
|
20
|
Cytotoxic and Inflammatory Effects of Electronic and Traditional Cigarettes on Oral Gingival Cells Using a Novel Automated Smoking Instrument: An In Vitro Study. TOXICS 2022; 10:toxics10040179. [PMID: 35448440 PMCID: PMC9032316 DOI: 10.3390/toxics10040179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Information about the potential oral health effects of vaping from electronic cigarettes (e-cigs) is still sparse and inconsistent. The purpose of this study was to compare the safety and cytotoxicity of e-cig liquid aerosols versus traditional cigarette (t-cig) smoke on human epithelial oral cells. T-cig smoke and e-cig aerosols were generated by a newly developed automated smoking instrument in order to simulate realistic user puffing behaviors. Air−liquid interface transwell cell cultures were exposed to standardized puff topography (puff duration: 2 s, puff volume: 35 mL, puff frequency: 1 puff every 60 s) of reference t-cigs or commercially available e-cigs at different air dilutions. Cell viability, morphology, and death rate were evaluated with MTT and TUNEL assays. The inflammatory cytokine gene expression of inflammatory genes was assessed by quantitative RT-PCR. E-cigs and t-cigs indicated similar adverse effects by enhancing cytotoxicity and cell death in a dose-dependent manner. E-cig aerosol and t-cig smoke treatment expressed upregulation of inflammatory cytokines up to 3.0-fold (p < 0.05). These results indicate that e-cig smoking may contribute to oral tissue−cell damage and tissue inflammation. Our approach allows the production of e-cig aerosol and t-cig smoke in order to identify harmful effects in oral tissues in vitro.
Collapse
|
21
|
Forest V, Mercier C, Pourchez J. Considerations on dosimetry for in vitro assessment of e-cigarette toxicity. Respir Res 2022; 23:358. [PMID: 36528600 PMCID: PMC9758947 DOI: 10.1186/s12931-022-02286-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Electronic cigarettes (or e-cigarettes) can be used as smoking cessation aid. Some studies tend to show that they are less hazardous than tobacco cigarettes, even if it does not mean they are completely safe. The huge variation in study designs assessing in vitro toxicity of e-cigarettes aerosol makes it difficult to make comparisons and draw robust and irrefutable conclusions. In this paper, we review this heterogeneity (in terms of e-cigarette products, biological models, and exposure conditions) with a special focus on the wide disparity in the doses used as well as in the way they are expressed. Finally, we discuss the major issue of dosimetry and show how dosimetry tools enable to align data between different exposure systems or data from different laboratories and therefore allow comparisons to help further exploring the risk potential of e-cigarettes.
Collapse
Affiliation(s)
- Valérie Forest
- grid.7429.80000000121866389Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, 42023 Saint-Etienne Cedex 2, France
| | - Clément Mercier
- grid.7429.80000000121866389Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, 42023 Saint-Etienne Cedex 2, France
| | - Jérémie Pourchez
- grid.7429.80000000121866389Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, 42023 Saint-Etienne Cedex 2, France
| |
Collapse
|
22
|
Caruso M, Emma R, Distefano A, Rust S, Poulas K, Zadjali F, Giordano A, Volarevic V, Mesiakaris K, Al Tobi M, Boffo S, Arsenijevic A, Zuccarello P, Giallongo C, Ferrante M, Polosa R, Li Volti G. Electronic nicotine delivery systems exhibit reduced bronchial epithelial cells toxicity compared to cigarette: the Replica Project. Sci Rep 2021; 11:24182. [PMID: 34921164 PMCID: PMC8683499 DOI: 10.1038/s41598-021-03310-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
Electronic nicotine delivery systems (ENDS) may reduce health risks associated with chronic exposure to smoke and their potential benefits have been the matter of intense scientific debate. We aimed to replicate three published studies on cytotoxic and inflammatory effects of cigarette smoke and ENDS aerosol in an independent multi-center ring study. We aimed to establish the reliability of results and the robustness of conclusions by replicating the authors' experimental protocols and further validating them with different techniques. Human bronchial epithelial cells (NCI-H292) were exposed to cigarette whole smoke and vapor phase and to aerosol from ENDS. We also assessed the inflammatory cytokines interleukin-6 and interleukin-8 and the remodeling mediator matrix metalloproteinase-1. We replicated cell viability results and confirmed that almost 80% of cytotoxic effects are due to volatile compounds in the vapor phase of smoke. Our findings substantiated the reduced cytotoxic effects of ENDS aerosol. However, our data on inflammatory and remodeling activity triggered by smoke differed significantly from those in the original reports. Taken together, independent data from multiple laboratories clearly demonstrated the reduced toxicity of ENDS products compared to cigarettes.
Collapse
Affiliation(s)
- Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
| | - Rosalia Emma
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
| | - Sonja Rust
- ECLAT Srl, spin-off of the University of Catania, Via S. Sofia 89, 95123, Catania, Italy
| | - Konstantinos Poulas
- Institute for Research and Innovation, IRIS, Patras Science Park, Patras, Greece
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Fahad Zadjali
- College of Medicine and Health Sciences, Department of Clinical Biochemistry, Sultan Qaboos University, P.C 123, P.O. Box 35, Khodh, Oman
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, Philadelphia, USA
| | - Vladislav Volarevic
- Center for Molecular Medicine and Stem Cell Research, Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia
| | - Konstantinos Mesiakaris
- Institute for Research and Innovation, IRIS, Patras Science Park, Patras, Greece
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Mohammed Al Tobi
- College of Medicine and Health Sciences, Department of Clinical Biochemistry, Sultan Qaboos University, P.C 123, P.O. Box 35, Khodh, Oman
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, Philadelphia, USA
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia
| | - Pietro Zuccarello
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via S. Sofia, 87, 95123, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via S. Sofia, 87, 95123, Catania, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via S. Sofia, 87, 95123, Catania, Italy
| | - Riccardo Polosa
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
- ECLAT Srl, spin-off of the University of Catania, Via S. Sofia 89, 95123, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy.
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy.
| |
Collapse
|
23
|
Le HHT, Liu CW, Denaro P, Jousma J, Shao NY, Rahman I, Lee WH. Genome-wide differential expression profiling of lncRNAs and mRNAs in human induced pluripotent stem cell-derived endothelial cells exposed to e-cigarette extract. Stem Cell Res Ther 2021; 12:593. [PMID: 34863290 PMCID: PMC8643021 DOI: 10.1186/s13287-021-02654-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/31/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Electronic-cigarette (e-cig) usage, particularly in the youth population, is a growing concern. It is known that e-cig causes endothelial dysfunction, which is a risk factor for the development of cardiovascular diseases; however, the mechanisms involved remain unclear. We hypothesized that long noncoding RNAs (lncRNAs) may play a role in e-cig-induced endothelial dysfunction. METHODS Here, we identified lncRNAs that are dysregulated in human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) following 24 h of e-cig aerosol extract treatment via microarray analysis. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analyses of the dysregulated mRNAs following e-cig exposure and constructed co-expression networks of the top 5 upregulated lncRNAs and the top 5 downregulated lncRNAs and the mRNAs that are correlated with them. Furthermore, the functional effects of knocking down lncRNA lung cancer-associated transcript 1 (LUCAT1) on EC phenotypes were determined as it was one of the significantly upregulated lncRNAs following e-cig exposure based on our profiling. RESULTS 183 lncRNAs and 132 mRNAs were found to be upregulated, whereas 297 lncRNAs and 413 mRNAs were found to be downregulated after e-cig exposure. We also observed that e-cig caused dysregulation of endothelial metabolism resulting in increased FAO activity, higher mitochondrial membrane potential, and decreased glucose uptake and glycolysis. These results suggest that e-cig alters EC metabolism by increasing FAO to compensate for energy deficiency in ECs. Finally, the knockdown of LUCAT1 prevented e-cig-induced EC dysfunction by maintaining vascular barrier, reducing reactive oxygen species level, and increasing migration capacity. CONCLUSION This study identifies an expression profile of differentially expressed lncRNAs and several potential regulators and pathways in ECs exposed to e-cig, which provide insights into the regulation of lncRNAs and mRNAs and the role of lncRNA and mRNA networks in ECs associated e-cig exposure.
Collapse
Affiliation(s)
- Hoai Huong Thi Le
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA
| | - Chen-Wei Liu
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA
| | - Philip Denaro
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA
| | - Jordan Jousma
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Ning-Yi Shao
- Health Sciences, University of Macau, Macau, China
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA.
| |
Collapse
|
24
|
Caruso M, Emma R, Rust S, Distefano A, Carota G, Pulvirenti R, Polosa R, Li Volti G. Screening of different cytotoxicity methods for the assessment of ENDS toxicity relative to tobacco cigarettes. Regul Toxicol Pharmacol 2021; 125:105018. [PMID: 34314750 DOI: 10.1016/j.yrtph.2021.105018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/07/2023]
Abstract
Electronic Nicotine Delivery Systems (ENDS), i.e., electronic-cigarettes (e-cigs) and Tobacco Heating Products (THPs), are rapidly growing in popularity. Nonetheless, comprehensive quality and safety requirements for regulatory purposes are still under development. Cytotoxicity studies are important initial steps in appraising the potential ENDS toxicity. The aim of the present study was to screen different in vitro cytotoxicity methods for the assessment of ENDS toxicity. We evaluated NRU, MTT, Annexin V apoptosis (AN-V), High-Content Screening (HCS) assays and Real-Time Cell Analysis (RTCA), to compare two e-cigs and two THPs with the 1R6F reference tobacco cigarette. Human adenocarcinoma lung epithelial cells (H292) were exposed to tobacco smoke and ENDS vapor at air-liquid interface. All tests showed reduced cell viability following 1R6F smoke exposure and slight or no reduction with ENDS at 24 h. AN-V and RTCA exhibited a further significant reduction in cell viability following 1R6F exposure. AN-V allowed to discriminate viable cells from those in early/late apoptosis. RTCA and HCS being time-resolved analyses elucidate the kinetic dependency parameter for toxicity of smoke/vapor chemicals on cell viability. In conclusion, NRU assay may be considered a suitable test, especially when combined with a time-resolved analysis, for assessing the kinetic of cytotoxicity induced by these products.
Collapse
Affiliation(s)
- Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy; Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy.
| | - Rosalia Emma
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy; Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy.
| | - Sonja Rust
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy.
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy.
| | - Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy.
| | - Roberta Pulvirenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy.
| | - Riccardo Polosa
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy; Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy.
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123, Catania, Italy; Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, 95123, Catania, Italy.
| |
Collapse
|
25
|
Fabrication and Properties of Electrospun and Electrosprayed Polyethylene Glycol/Polylactic Acid (PEG/PLA) Films. COATINGS 2021. [DOI: 10.3390/coatings11070790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polylactic acid (PLA) film is an alternative filter material for heat-not-burn (HNB) tobacco, but its controllability in cooling performance is limited. In this work, polyethylene glycol (PEG) was introduced to form a polyethylene glycol/polylactic acid (PEG/PLA) film by electrospinning or electrospraying techniques to enhance the cooling performance, due to its lower glass transition and melting temperatures. The PEG/PLA films with typical electrospun or electrosprayed morphologies were successfully fabricated. One typical endothermic peak at approximately 65 °C was clearly observed for the melting PEG phase in the heating process, and the re-crystallization temperature represented by an exothermic peak was effectively lowered to 90–110 °C during the cooling process, indicating that the cooling performance is greatly enhanced by the introduction of the PEG phase. Additionally, the wetting properties and adsorption properties were also intensively studied by characterizing the contact angles, and the as-prepared PEG/PLA films all showed good affinity to water, 1,2-propandiol and triglyceride. Furthermore, the PEG/PLA film with a PLA content of 35 wt.% revealed the largest elasticity modulus of 378.3 ± 68.5 MPa and tensile strength of 10.5 ± 1.1 MPa. The results achieved in this study can guide the development of other filter materials for HNB tobacco application.
Collapse
|
26
|
McEwan M, Gale N, Ebajemito JK, Camacho OM, Hardie G, Proctor CJ, Murphy J. A randomized controlled study in healthy participants to explore the exposure continuum when smokers switch to a tobacco heating product or an E-cigarette relative to cessation. Toxicol Rep 2021; 8:994-1001. [PMID: 34026564 PMCID: PMC8131274 DOI: 10.1016/j.toxrep.2021.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022] Open
Abstract
Background Cigarette smoking is associated with a number of diseases, such as cancer and cardiovascular diseases. Recently, there has been an increase in the use of electronic cigarettes (ECs) and tobacco-heating products (THPs) as an alternative to cigarettes, which may reduce the health burden associated with smoking. However, an exposure continuum when smokers switch to ECs or THPs compared to complete smoking cessation is not well established. Methods 148 healthy smokers were randomized to either continue smoking cigarettes, switch to using the glo THP or a prototype EC, or completely quit any nicotine or tobacco product use for 5 days, after a 2-day baseline period. During this study breath and 24-h urine samples were collected for Biomarker of Exposure (BoE) analysis. Results After a 5-day switching period BoE levels showed a substantial significant decrease in levels from baseline in the groups using the glo THP, the prototype EC, and having quit all nicotine and tobacco use. On an exposure continuum, smokers who completely quit nicotine had the lowest levels of assessed BoEs, followed by those who switched to the EC and then those who switched to glo THP use. Participants who continued to smoke had the highest levels of BoEs. Conclusions THP or EC use over a 5-day period resulted in significant reductions in exposure to smoke toxicants, in some cases to levels similar to those for nicotine cessation. These results show that on an exposure continuum, nicotine cessation gives the greatest reduction in exposure to tobacco smoke toxicants, closely followed by the EC and the glo THP. These significant reductions in exposure to toxicants suggest that the glo THP and EC have the potential to be Reduced Risk Products. Study Registration ISRCTN80651909.
Collapse
Affiliation(s)
- Michael McEwan
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | - Nathan Gale
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | - James K Ebajemito
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | - Oscar M Camacho
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | - George Hardie
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | | | - James Murphy
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| |
Collapse
|
27
|
East N, Bishop E, Breheny D, Gaca M, Thorne D. A screening approach for the evaluation of tobacco-free 'modern oral' nicotine products using Real Time Cell Analysis. Toxicol Rep 2021; 8:481-488. [PMID: 33718000 PMCID: PMC7933807 DOI: 10.1016/j.toxrep.2021.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/28/2021] [Accepted: 02/21/2021] [Indexed: 12/23/2022] Open
Abstract
In many regulated industries there is an increasing pressure to provide timely and robust risk assessment data to support product launches. Real-time cell analysis (RTCA) is a tool that allows for the fast and relatively labour-free cytotoxic assessment of test compounds, compared to traditional methods. Here, we propose an application for the RTCA platform to provide a screening approach, to evaluate the cytotoxic potential of tobacco-free nicotine pouches, also termed modern oral product (MOP), to determine the contribution of differing nicotine strengths (4-11 mg) and a range of available flavour types from multiple markets, on overall product toxicity. Aqueous extracts were prepared for all products using 1 pouch in 20 mL cell culture media and applied to the cell system for 24 h. Test extract nicotine concentrations reflected the increases in product nicotine strength; however, these changes were not present in the same magnitude in the cytotoxicity data obtained from both primary human gingival fibroblasts (HGF) and an NCI-H292 human bronchial epithelial continuous cell line. Furthermore, across the range of flavours and product nicotine strengths tested, H292 cells whilst not the target organ for oral product use, accurately predicted the results seen in HGFs and could be considered a useful surrogate for fast screening studies. H292 cells are more easily cultured and for longer periods, offering a more compatible test system. In conclusion, the data demonstrate the utility of the RTCA platform for the quick assessment of a large range of product variants. Furthermore, for a cytotoxicity measure with this test product, the simple H292 cell line can predict outcomes in the more complex HGF and provide useful pre-clinical cytotoxicity screening data to inform the risk assessment of MOPs and the relative contribution of flavourings, nicotine and other components.
Collapse
Key Words
- AqE, Aqueous extract
- CRP, 1.1 CORESTA Reference Product 1.1
- Cytotoxicity
- H292, Human bronchial epithelial cells
- HGF, Human gingival fibroblasts
- In vitro
- LDH, Lactate dehydrogenase assay
- MOP, Modern oral product
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NRU, Neutral red uptake assay
- Nicotine
- RTCA
- RTCA, Real Time Cell Analysis
- Risk assessment
- Tobacco-free modern oral tobacco
- Tobacco-free nicotine pouches
Collapse
Affiliation(s)
- N. East
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - E. Bishop
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - D. Breheny
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - M. Gaca
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - D. Thorne
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
28
|
Casula L, Sinico C, Valenti D, Pini E, Pireddu R, Schlich M, Lai F, Maria Fadda A. Delivery of beclomethasone dipropionate nanosuspensions with an electronic cigarette. Int J Pharm 2021; 596:120293. [PMID: 33497704 DOI: 10.1016/j.ijpharm.2021.120293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 01/14/2023]
Abstract
The aim of this work was to ascertain the ability of electronic nicotine delivery systems (ENDS) to deliver drug nanocrystals through the produced aerosol. A nanocrystal nanosuspension of beclomethasone dipropionate, a synthetic chlorinated corticosteroid diester commonly used by inhalation in the treatment of asthma and chronic obstructive pulmonary disease, was prepared with a wet media milling technique using Poloxamer 188 as stabilizer. The obtained nanosuspension was thoroughly characterized by different techniques: transmission electron microscopy, photon correlation spectroscopy, X-ray powder diffractometry and Fourier transform infrared spectroscopy. The nanosuspension was then loaded in the cartomizer of the electronic cigarette and the produced aerosol was collected and analysed, confirming the presence of drug nanocrystals. The results of this study suggested the possible alternative use of ENDS as medical device for the delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Luca Casula
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| | - Chiara Sinico
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| | - Donatella Valenti
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| | - Elena Pini
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, Milano 20133, Italy
| | - Rosa Pireddu
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| | - Michele Schlich
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy; Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Francesco Lai
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy.
| | - Anna Maria Fadda
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, CNBS, Università degli Studi di Cagliari, Cagliari 09124, Italy
| |
Collapse
|
29
|
Chavez J, Smit T, Olofsson H, Mayorga NA, Garey L, Zvolensky MJ. Substance Use among Exclusive Electronic Cigarette Users and Dual Combustible Cigarette Users: Extending Work to Adult Users. Subst Use Misuse 2021; 56:888-896. [PMID: 33726615 PMCID: PMC10032028 DOI: 10.1080/10826084.2021.1899234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Electronic cigarettes (e-cigarettes) have become increasingly popular in recent years. Existing evidence indicates e-cigarettes used in isolation are less harmful than combustible cigarettes, yet emerging work has demonstrated that adults use e-cigarettes largely in combination with combustible cigarettes (i.e. dual use). Despite this data, little is understood about how exclusive and dual e-cigarette users may differ across behavioral outcomes, such as substance use dependence and behaviors among adults. OBJECTIVES Thus, the current project examined differences in e-cigarette dependence, problematic alcohol use, cannabis use, and nonmedical prescription opioid use (e.g. methadone and oxycodone) across both exclusive and dual e-cigarette adult users. RESULTS Participants included 531 (53.6% female; Mage = 35.29 years, SD = 10.44) adults with past-month e-cigarette use. Dual users reported greater e-cigarette dependence, alcohol use, current cannabis use, and endorsement of nonprescription opioid use. Conclusions/Importance: Importantly, this work suggests that adults who use both combustible and e-cigarettes may constitute a group more vulnerable to experiencing problematic substance use and more severe e-cigarette dependence than exclusive e-cigarette users.
Collapse
Affiliation(s)
- JeanFelix Chavez
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Tanya Smit
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Hannah Olofsson
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Nubia A. Mayorga
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Lorra Garey
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Michael J. Zvolensky
- Department of Psychology, University of Houston, Houston, Texas, USA
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- HEALTH Institute, University of Houston, Houston, Texas, USA
| |
Collapse
|
30
|
Spahn JE, Stavchansky SA, Cui Z. Critical research gaps in electronic cigarette devices and nicotine aerosols. Int J Pharm 2020; 593:120144. [PMID: 33285247 DOI: 10.1016/j.ijpharm.2020.120144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/26/2022]
Abstract
Electronic cigarettes (e-cigs) are devices that aerosolize nicotine-containing liquids for delivery as an inhaled vapor. E-cigs are currently marketed as smoking cessation devices, though the emergence and rapid adoption of these devices in recent years has sparked a great deal of concern over their safety. Given the plethora of devices and nicotine solutions available on the market and the lack of regulation and quality control, it is imperative that these devices and nicotine formulations are studied to assess critical operating parameters, the pharmacokinetic profiles of the inhaled nicotine, and the toxicity profiles of the e-cig aerosols. This review aims to deliver an overview of current research regarding electronic cigarette devices, nicotine-containing liquid formulations, pharmacokinetics of nicotine, and toxicology studies in order to highlight areas lacking in research or requiring greater standardization and regulation.
Collapse
Affiliation(s)
- Jamie E Spahn
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA.
| | - Salomon A Stavchansky
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA.
| |
Collapse
|
31
|
Noël A, Hossain E, Perveen Z, Zaman H, Penn AL. Sub-ohm vaping increases the levels of carbonyls, is cytotoxic, and alters gene expression in human bronchial epithelial cells exposed at the air-liquid interface. Respir Res 2020. [PMID: 33213456 DOI: 10.1186/s12931‐020‐01571‐1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Exposure to electronic-cigarette (e-cig) aerosols induces potentially fatal e-cig or vaping-associated lung injury (EVALI). The cellular and molecular mechanisms underlying these effects, however, are unknown. We used an air-liquid interface (ALI) in vitro model to determine the influence of two design characteristics of third-generation tank-style e-cig devices-resistance and voltage-on (1) e-cig aerosol composition and (2) cellular toxicity. METHODS Human bronchial epithelial cells (H292) were exposed to either butter-flavored or cinnamon-flavored e-cig aerosols at the ALI in a Vitrocell exposure system connected to a third-generation e-cig device. Exposures were conducted following a standard vaping topography profile for 2 h per day, for 1 or 3 consecutive days. 24 h after ALI exposures cellular and molecular outcomes were assessed. RESULTS We found that butter-flavored e-cig aerosol produced under 'sub-ohm' conditions (< 0.5 Ω) contains high levels of carbonyls (7-15 μg/puff), including formaldehyde, acetaldehyde and acrolein. E-cig aerosol produced under regular vaping conditions (resistance > 1 Ω and voltage > 4.5 V), contains lower carbonyl levels (< 2 μg/puff). We also found that the levels of carbonyls produced in the cinnamon-flavored e-cig aerosols were much lower than that of the butter-flavored aerosols. H292 cells exposed to butter-flavored or cinnamon-flavored e-cig aerosol at the ALI under 'sub-ohm' conditions for 1 or 3 days displayed significant cytotoxicity, decreased tight junction integrity, increased reactive oxygen species production, and dysregulated gene expression related to biotransformation, inflammation and oxidative stress (OS). Additionally, the cinnamon-flavored e-cig aerosol induced pro-oxidant effects as evidenced by increases in 8-hydroxy-2-deoxyguanosine protein levels. Moreover, we confirmed the involvement of OS as a toxicity process for cinnamon-flavored e-cig aerosol by pre-treating the cells with N-acetyl cysteine (NAC), an antioxidant that prevented the cells from the OS-mediated damage induced by the e-cig aerosol. CONCLUSION The production of high levels of carbonyls may be flavor specific. Overall, inhaling e-cig aerosols produced under 'sub-ohm' conditions is detrimental to lung epithelial cells, potentially via mechanisms associated with OS. This information could help policymakers take the necessary steps to prevent the manufacturing of sub-ohm atomizers for e-cig devices.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| | - Ekhtear Hossain
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Hasan Zaman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| |
Collapse
|
32
|
Noël A, Hossain E, Perveen Z, Zaman H, Penn AL. Sub-ohm vaping increases the levels of carbonyls, is cytotoxic, and alters gene expression in human bronchial epithelial cells exposed at the air-liquid interface. Respir Res 2020; 21:305. [PMID: 33213456 PMCID: PMC7678293 DOI: 10.1186/s12931-020-01571-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Exposure to electronic-cigarette (e-cig) aerosols induces potentially fatal e-cig or vaping-associated lung injury (EVALI). The cellular and molecular mechanisms underlying these effects, however, are unknown. We used an air–liquid interface (ALI) in vitro model to determine the influence of two design characteristics of third-generation tank-style e-cig devices—resistance and voltage—on (1) e-cig aerosol composition and (2) cellular toxicity. Methods Human bronchial epithelial cells (H292) were exposed to either butter-flavored or cinnamon-flavored e-cig aerosols at the ALI in a Vitrocell exposure system connected to a third-generation e-cig device. Exposures were conducted following a standard vaping topography profile for 2 h per day, for 1 or 3 consecutive days. 24 h after ALI exposures cellular and molecular outcomes were assessed. Results We found that butter-flavored e-cig aerosol produced under ‘sub-ohm’ conditions (< 0.5 Ω) contains high levels of carbonyls (7–15 μg/puff), including formaldehyde, acetaldehyde and acrolein. E-cig aerosol produced under regular vaping conditions (resistance > 1 Ω and voltage > 4.5 V), contains lower carbonyl levels (< 2 μg/puff). We also found that the levels of carbonyls produced in the cinnamon-flavored e-cig aerosols were much lower than that of the butter-flavored aerosols. H292 cells exposed to butter-flavored or cinnamon-flavored e-cig aerosol at the ALI under ‘sub-ohm’ conditions for 1 or 3 days displayed significant cytotoxicity, decreased tight junction integrity, increased reactive oxygen species production, and dysregulated gene expression related to biotransformation, inflammation and oxidative stress (OS). Additionally, the cinnamon-flavored e-cig aerosol induced pro-oxidant effects as evidenced by increases in 8-hydroxy-2-deoxyguanosine protein levels. Moreover, we confirmed the involvement of OS as a toxicity process for cinnamon-flavored e-cig aerosol by pre-treating the cells with N-acetyl cysteine (NAC), an antioxidant that prevented the cells from the OS-mediated damage induced by the e-cig aerosol. Conclusion The production of high levels of carbonyls may be flavor specific. Overall, inhaling e-cig aerosols produced under ‘sub-ohm’ conditions is detrimental to lung epithelial cells, potentially via mechanisms associated with OS. This information could help policymakers take the necessary steps to prevent the manufacturing of sub-ohm atomizers for e-cig devices.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| | - Ekhtear Hossain
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Hasan Zaman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| |
Collapse
|
33
|
Nair V, Tran M, Behar RZ, Zhai S, Cui X, Phandthong R, Wang Y, Pan S, Luo W, Pankow JF, Volz DC, Talbot P. Menthol in electronic cigarettes: A contributor to respiratory disease? Toxicol Appl Pharmacol 2020; 407:115238. [PMID: 32950532 PMCID: PMC8167901 DOI: 10.1016/j.taap.2020.115238] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/15/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022]
Abstract
Menthol is widely used in tobacco products. This study compared the effects of menthol on human bronchial epithelium using submerged cultures, a VITROCELL® cloud chamber that provides air liquid interface (ALI) exposure without solvents or heating, and a Cultex ALI system that delivers aerosol equivalent to that inhaled during vaping. In submerged culture, menthol significantly increased calcium influx and mitochondrial reactive oxygen species (ROS) via the TRPM8 receptor, responses that were inhibited by a TRPM8 antagonist. VITROCELL® cloud chamber exposure of BEAS-2B monolayers increased mitochondrial protein oxidation, expression of the antioxidant enzyme SOD2, activation of NF-κB, and secretion of inflammatory cytokines (IL-6 and IL-8). Proteomics data collected following ALI exposure of 3D EpiAirway tissue in the Cultex showed upregulation of NRF-2-mediated oxidative stress, oxidative phosphorylation, and IL-8 signaling. Across the three platforms, menthol adversely effected human bronchial epithelium in a manner that could lead to respiratory disease.
Collapse
Affiliation(s)
- Vijayalekshmi Nair
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Malcolm Tran
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Rachel Z Behar
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Song Zhai
- Department of Statistics, University of California, Riverside, CA 92521, USA
| | - Xinping Cui
- Department of Statistics, University of California, Riverside, CA 92521, USA
| | - Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Yuhuan Wang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Songqin Pan
- Proteomics Facility IIGB, University of California, Riverside, CA 92521, USA
| | - Wentai Luo
- Department of Civil and Environmental Engineering, Portland State University, Portland, OR, USA
| | - James F Pankow
- Department of Civil and Environmental Engineering, Portland State University, Portland, OR, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Prue Talbot
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
34
|
Szukalska M, Szyfter K, Florek E, Rodrigo JP, Rinaldo A, Mäkitie AA, Strojan P, Takes RP, Suárez C, Saba NF, Braakhuis BJ, Ferlito A. Electronic Cigarettes and Head and Neck Cancer Risk-Current State of Art. Cancers (Basel) 2020; 12:E3274. [PMID: 33167393 PMCID: PMC7694366 DOI: 10.3390/cancers12113274] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 01/11/2023] Open
Abstract
E-cigarettes have become increasingly popular in the last decade and are considered less harmful than traditional tobacco products due to the lower content of toxic and carcinogenic compounds. However, this is still a controversial issue. This paper contains a review of previous reports on the composition of e-cigarettes and their impact on the pathogenesis and risk of head and neck cancer (HNC). The objective of the review was to compare the molecular and health effects of e-cigarette use in relation to the effects of traditional cigarette smoking in the upper respiratory tract, and to assess the safety and effect of e-cigarettes on HNC risk. A review for English language articles published until 31 August 2020 was made, using a PubMed (including MEDLINE), CINAHL Plus, Embase, Cochrane Library and Web of Science data. The authors reviewed articles on both toxic and carcinogenic compounds contained in e-cigarettes and their molecular and health effects on the upper respiratory tract in comparison to tobacco cigarettes. The risk of developing head and neck squamous cell carcinoma (HNSCC) remains lower in users of e-cigarettes compared with tobacco smokers. However, more long-term studies are needed to better address the safety of e-cigarettes.
Collapse
Affiliation(s)
- Marta Szukalska
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Krzysztof Szyfter
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Juan P. Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias-University of Oviedo, 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, CIBERONC, 33011 Oviedo, Spain;
| | | | - Antti A. Mäkitie
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland;
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska Hospital, 141 86 Stockholm, Sweden
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology, 1000 Ljubljana, Slovenia;
| | - Robert P. Takes
- Department of Otolaryngology-Head and Neck Surgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Carlos Suárez
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, CIBERONC, 33011 Oviedo, Spain;
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA;
| | | | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35100 Padua, Italy;
| |
Collapse
|
35
|
Ureña JF, Ebersol LA, Silakov A, Elias RJ, Lambert JD. Impact of Atomizer Age and Flavor on In Vitro Toxicity of Aerosols from a Third-Generation Electronic Cigarette against Human Oral Cells. Chem Res Toxicol 2020; 33:2527-2537. [PMID: 32909746 DOI: 10.1021/acs.chemrestox.0c00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electronic cigarettes (ECs) are categorized into generations which differ in terms of design, aerosol production, and customizability. Current and former smokers prefer third-generation devices that satisfy tobacco cravings more effectively than older generations. Recent studies indicate that EC aerosols from first- and second-generation devices contain reactive carbonyls and free radicals and can cause in vitro cytotoxicity. Third-generation ECs have not been adequately studied. Further, previous studies have focused on cells from the respiratory tract, whereas those of the oral cavity, which is exposed to high levels of EC aerosols, have been understudied. We quantified the production of reactive carbonyls and free radicals by a third-generation EC and investigated the induction of cytotoxicity and oxidative stress in normal and cancerous human oral cell lines using a panel of eight commercial EC liquids. We found that EC aerosols produced using a new atomizer contained formaldehyde, acetaldehyde, and acrolein, but did not contain detectable levels of free radicals. We found that EC aerosols generated from only one of the eight liquids tested using a new atomizer induced cytotoxicity against two human oral cells in vitro. Treatment of oral cells with the cytotoxic EC aerosol caused a concomitant increase in intracellular oxidative stress. As atomizer age increased with repeated use of the same atomizer, carbonyl production, radical emissions, and cytotoxicity increased. Overall, our results suggest that third-generation ECs may cause adverse effects in the oral cavity and normal EC use, which involves repeated use of the same atomizer to generate aerosol, may enhance the potential toxic effects of third-generation ECs.
Collapse
Affiliation(s)
- José F Ureña
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lauren A Ebersol
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ryan J Elias
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joshua D Lambert
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
36
|
Pinkston R, Zaman H, Hossain E, Penn AL, Noël A. Cell-specific toxicity of short-term JUUL aerosol exposure to human bronchial epithelial cells and murine macrophages exposed at the air-liquid interface. Respir Res 2020; 21:269. [PMID: 33069224 PMCID: PMC7568376 DOI: 10.1186/s12931-020-01539-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023] Open
Abstract
Backgroud JUUL, an electronic nicotine delivery system (ENDS), which first appeared on the US market in 2015, controled more than 75% of the US ENDS sales in 2018. JUUL-type devices are currently the most commonly used form of ENDS among youth in the US. In contrast to free-base nicotine contained in cigarettes and other ENDS, JUUL contains high levels of nicotine salt (35 or 59 mg/mL), whose cellular and molecular effects on lung cells are largely unknown. In the present study, we evaluated the in vitro toxicity of JUUL crème brûlée-flavored aerosols on 2 types of human bronchial epithelial cell lines (BEAS-2B, H292) and a murine macrophage cell line (RAW 264.7). Methods Human lung epithelial cells and murine macrophages were exposed to JUUL crème brûlée-flavored aerosols at the air–liquid interface (ALI) for 1-h followed by a 24-h recovery period. Membrane integrity, cytotoxicity, extracellular release of nitrogen species and reactive oxygen species, cellular morphology and gene expression were assessed. Results Crème brûlée-flavored aerosol contained elevated concentrations of benzoic acid (86.9 μg/puff), a well-established respiratory irritant. In BEAS-2B cells, crème brûlée-flavored aerosol decreased cell viability (≥ 50%) and increased nitric oxide (NO) production (≥ 30%), as well as iNOS gene expression. Crème brûlée-flavored aerosol did not affect the viability of either H292 cells or RAW macrophages, but increased the production of reactive oxygen species (ROS) by ≥ 20% in both cell types. While crème brûlée-flavored aerosol did not alter NO levels in H292 cells, RAW macrophages exposed to crème brûlée-flavored aerosol displayed decreased NO (≥ 50%) and down-regulation of the iNOS gene, possibly due to increased ROS. Additionally, crème brûlée-flavored aerosol dysregulated the expression of several genes related to biotransformation, inflammation and airway remodeling, including CYP1A1, IL-6, and MMP12 in all 3 cell lines. Conclusion Our results indicate that crème brûlée-flavored aerosol causes cell-specific toxicity to lung cells. This study contributes to providing scientific evidence towards regulation of nicotine salt-based products.
Collapse
Affiliation(s)
- Rakeysha Pinkston
- Department of Environmental Toxicology, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Hasan Zaman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Ekhtear Hossain
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
37
|
The flavoring and not the nicotine content is a decisive factor for the effects of refill liquids of electronic cigarette on the redox status of endothelial cells. Toxicol Rep 2020; 7:1095-1102. [PMID: 32953462 PMCID: PMC7484539 DOI: 10.1016/j.toxrep.2020.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 11/21/2022] Open
Abstract
The pattern of the effect on Ea.hy926 redox status differs among flavored e-liquids. Tobacco flavored e-liquids increase ROS generation with concomitant increase in TBARS. Vanilla flavored e-liquids profile depends on the nicotine content. Apple/mint flavored e-liquids activate the cellular antioxidant defense. Flavorings and not the nicotine content play a key role in free radical generation.
Electronic cigarettes are constantly gaining ground as they are considered less harmful than conventional cigarettes, and there is also the perception that they may serve as a potential smoking cessation tool. Although the acute effects of electronic cigarette use have been extensively studied, the long-term potential adverse effects on human health remain largely unknown. It has been well-established that oxidative stress is involved in the development of various pathological conditions. So far, most studies on e-cigarettes concern the effects on the respiratory system while fewer have focused on the vascular system. In the present study, we attempted to reveal the effects of electronic cigarette refill liquids on the redox state of human endothelial cells (EA.hy926 cell line). For this purpose, the cytotoxic effect of three e-liquids with different flavors (tobacco, vanilla, apple/mint) and nicotine concentrations (0, 6, 12, 18 mg/ml) were initially examined for their impact on cell viability of EA.hy926 cells. Then, five redox biomarkers [reduced form of glutathione (GSH), reactive oxygen species (ROS), total antioxidant capacity (TAC), thiobarbituric acid reactive substances (TBARS) and protein carbonyls (CARBS)] were measured. The results showed a disturbance in the redox balance in favor of free radicals in tobacco flavored e-liquids while vanilla flavored e-liquids exhibited a more complex profile depending on the nicotine content. The most interesting finding of the present study concerns the apple/mint flavored e-liquids that seemed to activate the cellular antioxidant defense and, thus, to protect the cells from the adverse effects of free radicals. Conclusively, it appears that the flavorings and not the nicotine content play a key role in the oxidative stress-induced toxicity of the e-liquids.
Collapse
Key Words
- 8-OH-dG, 8-hydroxy-deoxyguanosine
- CARBS, protein carbonyls
- CO, carbon monoxide
- DCF-DA, 2′,7′-dichlorodihydrofluorescein diacetate
- DMEM, Dulbecco’s modified Eagle’s medium
- DNPH, 2,4-dinitrophenylhydrazine
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- DPPHH, 2,2-diphenyl-1-picrylhydrazine
- E-cigarettes
- E-liquids
- ENDS, electronic nicotine delivery systems
- EPR, electronic paramagnetic resonance
- Endothelial cells
- FSC, forward light scattering
- GSH
- GSH, reduced form of glutathione
- HCL, hydrochloric acid
- HCN, hydrogen cyanide
- MDA, malondialdehyde
- Oxidative stress
- PBS, phosphate buffered saline
- PG, propylene glycol
- ROS
- ROS, reactive oxygen species
- SSC, side light scattering
- TAC, total antioxidant capacity
- TBA, thiobarbituric acid
- TBARS, thiobarbituric acid reactive substances
- TCA, trichloroacetic acid
- Tris-HCl, trishydroxymethylaminomethane hydrochloride
- VG, vegetable glycerin
Collapse
|
38
|
Breheny D, Thorne D, Baxter A, Bozhilova S, Jaunky T, Santopietro S, Taylor M, Terry A, Gaça M. The in vitro assessment of a novel vaping technology. Toxicol Rep 2020; 7:1145-1156. [PMID: 32983902 PMCID: PMC7494588 DOI: 10.1016/j.toxrep.2020.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022] Open
Abstract
We have developed a novel vaping product (NVP) IS1.0(TT), which utilises a stainless-steel mesh to transfer and vaporise the e-liquid, mitigating some of the potential sources of toxicants that can be generated using the more traditional 'wick and coil' approach. The emissions from IS1.0(TT) have previously been found to have lower levels of toxicants overall when directly compared with a commercial wick and coil e-cig. This current study assessed the toxicological responses to aerosols from this NVP. Responses induced by IS1.0(TT)were compared to those from a 3R4F reference cigarette, using in vitro test methods which included regulatory genetic toxicological assays as well as some more contemporary screening approaches. The experimental conditions were designed to facilitate the testing of aerosol from this vaping product at doses that in most cases greatly exceeded those of the 3R4F comparator showed little to no toxicological responses and demonstrated significantly reduced effects in these in vitro assays when compared to 3R4F. Furthermore, the extreme doses tested in the present study indicate that the toxicant profile of this NVP translates to lower biological activity in vitro, and suggests that the absolute risk hazard level associated with electronic cigarettes can be reduced through continuous improvement as the technology evolves.
Collapse
Key Words
- ACM, aerosol collected mass
- ALI, air-liquid interface
- ANOVA, analysis of variance
- ARE, antioxidant response element
- Aerosol
- AqE, aerosol aqueous extract
- AqE, aqueous aerosol extracts
- CRM81, CORESTA recommended method number 81
- Cigarette
- DCF, 2′,7′ dichlorodihydrofluorescein
- DMSO, dimethyl sulfoxide
- DSB, double-strand break
- Electronic cigarette
- FDA, US Food and Drug Administration
- GEF, global evaluation factor
- GSH, glutathione (reduced form)
- HCI, Health Canada Intense
- HUVEC, human umbilical vein endothelial cell
- ISO, International Organisation for Standardisation
- IVMn, in vitro micronucleus
- In vitro
- MF, mutant frequency
- MLA, mouse lymphoma assay
- NASEM, US National Academy of Sciences, Engineering and Medicine
- NHBE, normal human bronchial epithelial
- NRU, neutral red uptake
- NVP, new vapour product
- RWD, relative wound density
- S9, post-mitochondrial supernatant
- TPA, 12-O-tetradecanoylphorbol-13-acetate
- TPM, total particulate matter
- TobReg, WHO Study Group on Tobacco Product Regulation
- WA, whole aerosol
Collapse
|
39
|
Escobar YNH, Nipp G, Cui T, Petters SS, Surratt JD, Jaspers I. In Vitro Toxicity and Chemical Characterization of Aerosol Derived from Electronic Cigarette Humectants Using a Newly Developed Exposure System. Chem Res Toxicol 2020; 33:1677-1688. [PMID: 32223225 PMCID: PMC11391858 DOI: 10.1021/acs.chemrestox.9b00490] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the United States, the recent surge of electronic cigarette (e-cig) use has raised questions concerning the safety of these devices. This study seeks to assess the pro-inflammatory and cellular stress effects of the vaped humectants propylene glycol (PG) and glycerol (GLY) on airway epithelial cells (16HBE cells and differentiated human bronchial epithelial cells) with a newly developed aerosol exposure system. This system allows for chemical characterization of e-cig generated aerosol particles as well as in vitro exposures of 16HBE cells at an air-liquid interface to vaped PG and GLY aerosol. Our data demonstrate that the process of vaping results in the formation of PG- and GLY-derived oligomers in the aerosol particles. Our in vitro data demonstrate an increase in pro-inflammatory cytokines IL-6 and IL-8 levels in response to vaped PG and GLY exposures. Vaped GLY also causes an increase in cellular stress signals HMOX1, NQO1, and carbonylated proteins when the e-cig device is operated at high wattages. Additionally, we find that the exposure of vaped PG causes elevated IL-6 expression, while the exposure of vaped GLY increases HMOX1 expression in human bronchial epithelial cells when the device is operated at high wattages. These findings suggest that vaporizing PG and GLY results in the formation of novel compounds and the exposure of vaped PG and GLY are detrimental to airway cells. Since PG and/or GLY is universally contained in all e-cig liquids, we conclude that these components alone can cause harm to the airway epithelium.
Collapse
Affiliation(s)
| | - Grace Nipp
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, North Carolina 27599, United States
| | - Tianqu Cui
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, North Carolina 27599, United States
| | - Sarah S Petters
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, North Carolina 27599, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, North Carolina 27599, United States
| | | |
Collapse
|
40
|
Nicol J, Fraser R, Walker L, Liu C, Murphy J, Proctor CJ. Comprehensive Chemical Characterization of the Aerosol Emissions of a Vaping Product Based on a New Technology. Chem Res Toxicol 2020; 33:789-799. [PMID: 32122129 PMCID: PMC7308067 DOI: 10.1021/acs.chemrestox.9b00442] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Around 10 million people in the United
States and 3 million people
in the United Kingdom are estimated to use vaping category products.
There are some estimates that there will be 75–80 million vapers
worldwide by 2020. Most of these products are based on coil-and-wick
technology. Because the heating and aerosol formation are separate
processes, the system can lead to dry-wicking and elevated emission
of carbonyls if designed and/or manufactured poorly. Low-nicotine
and low-power coil-and-wick devices have also been linked to increased
exposure to formaldehyde due to compensatory behavior by users. We
characterized the emissions of a vaping product which uses a fabric-free
stainless-steel mesh distiller plate technology that heats and aerosolizes
the e-liquid in a single process. The plate has a microporous structure
for capillary-induced liquid transformation (wicking) and aerosolization
that is optimized to avoid fluid starvation and overheating and improved
control. Compared with emissions previously reported for a coil-and-wick
nicotine vaping product (e-cigarette), most classes of harmful and
potentially harmful constituents (HPHCs) from this vaping product
were below the level of detection or quantification. For those that
were quantifiable, this vaping product generally had lower levels
of emissions than the e-cigarette, including carbonyls. Formaldehyde
and methyl glyoxal levels did not differ significantly between vaping
products. In this system, the single mode of liquid transfer and vapor
formation permits high aerosol mass delivery but further reduces emissions
of HPHCs that may be present in conventional e-cigarette aerosol,
by lessening the risk of thermal breakdown of the aerosol-generating
solvent mixture.
Collapse
Affiliation(s)
- James Nicol
- JTN Consulting Limited, 272 Bath Street, Glasgow, Scotland G2 4JR
| | - Rory Fraser
- British American Tobacco R&D Centre, Reagents Park Road, Southampton SO15 8TL, United Kingdom
| | - Liam Walker
- British American Tobacco R&D Centre, Reagents Park Road, Southampton SO15 8TL, United Kingdom
| | - Chuan Liu
- British American Tobacco R&D Centre, Reagents Park Road, Southampton SO15 8TL, United Kingdom
| | - James Murphy
- British American Tobacco R&D Centre, Reagents Park Road, Southampton SO15 8TL, United Kingdom
| | | |
Collapse
|
41
|
Camacho OM, Hedge A, Lowe F, Newland N, Gale N, McEwan M, Proctor C. Statistical analysis plan for "A randomised, controlled study to evaluate the effects of switching from cigarette smoking to using a tobacco heating product on health effect indicators in healthy subjects". Contemp Clin Trials Commun 2020; 17:100535. [PMID: 32072070 PMCID: PMC7013164 DOI: 10.1016/j.conctc.2020.100535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Tobacco harm reduction strategies aim to substitute smoking with potentially reduced risk products (PRRPs) such as e-cigarettes and tobacco-heating products (THPs). The health benefits of switching from smoking to PRRPs is unknown. A randomised controlled trial is being conducted to increase understanding of the health effects of switching from smoking to a THP in a 12-month long ambulatory study (ISRCTN81075760). Here we describe the study endpoints and the statistical analysis plan. Endpoints are divided into biomarkers of exposure (BoE) to tobacco smoke constituents and health effect indicators related to risk of lung cancer, cardiovascular and obstructive lung disease. These have been selected on the basis of extensive literature evidence. Three primary endpoints, augmentation index (risk factor for cardiovascular disease), total NNAL (linked to lung cancer) and 8-Epi-PGF2α type III (indicator of oxidative stress linked to various diseases), and multiple secondary endpoints will be analysed at 90, 180, and 360 days. Changes from baseline will be compared between study arms by specific contrasts in mixed models. Study wise multiple comparisons adjustments will be performed to account for multiplicity of timepoints and comparisons within timepoints. Generalisability of outcomes will be tested by a sensitivity analysis adjusting for age and gender. Importantly, an ancillary analysis will be performed to assess product compliance during the study based on plasma levels of CEVal, a surrogate marker for acrylonitrile exposure. The rationale underlying the selection of BoEs and health effect indicators, coupled with the statistical analysis plan will be central to understanding the potential health effects of replacing smoking with THP use for one year.
Collapse
Affiliation(s)
- Oscar M. Camacho
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Andrew Hedge
- Covance Clinical Research Unit Ltd, Springfield House, Hyde Street, Leeds, Yorkshire, LS2 9LH, UK
| | - Frazer Lowe
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Nik Newland
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Nathan Gale
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Mike McEwan
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Christopher Proctor
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
42
|
Merecz-Sadowska A, Sitarek P, Zielinska-Blizniewska H, Malinowska K, Zajdel K, Zakonnik L, Zajdel R. A Summary of In Vitro and In Vivo Studies Evaluating the Impact of E-Cigarette Exposure on Living Organisms and the Environment. Int J Mol Sci 2020; 21:ijms21020652. [PMID: 31963832 PMCID: PMC7013895 DOI: 10.3390/ijms21020652] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Worldwide use of electronic cigarettes has been rapidly expanding over recent years, but the long-term effect of e-cigarette vapor exposure on human health and environment is not well established; however, its mechanism of action entails the production of reactive oxygen species and trace metals, and the exacerbation of inflammation, which are associated with potential cytotoxicity and genotoxicity. The present study examines the effects of selected liquid chemicals used in e-cigarettes, such as propylene glycol/vegetable glycerin, nicotine and flavorings, on living organisms; the data collected indicates that exposure to e-cigarette liquid has potentially detrimental effects on cells in vitro, and on animals and humans in vivo. While e-liquid exposure can adversely influence the physiology of living organisms, vaping is recommended as an alternative for tobacco smoking. The study also compares the impact of e-cigarette liquid exposure and traditional cigarette smoke on organisms and the environmental impact. The environmental influence of e-cigarette use is closely connected with the emission of airborne particulate matter, suggesting the possibility of passive smoking. The obtained data provides an insight into the impact of nicotine delivery systems on living organisms and the environment.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
- Correspondence: ; Tel.: +48-663-626-667
| | - Przemyslaw Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | | | - Katarzyna Malinowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Lukasz Zakonnik
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
| | - Radoslaw Zajdel
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
| |
Collapse
|
43
|
Marescotti D, Mathis C, Belcastro V, Leroy P, Acali S, Martin F, Dulize R, Bornand D, Peric D, Guedj E, Ortega Torres L, Biasioli M, Fuhrimann M, Fernandes E, Frauendorfer F, Gonzalez Suarez I, Sciuscio D, Ivanov NV, Peitsch MC, Hoeng J. Systems toxicology assessment of a representative e-liquid formulation using human primary bronchial epithelial cells. Toxicol Rep 2019; 7:67-80. [PMID: 31886136 PMCID: PMC6921209 DOI: 10.1016/j.toxrep.2019.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/18/2019] [Accepted: 11/24/2019] [Indexed: 12/20/2022] Open
Abstract
The development of reduced-risk products aims to provide alternatives to cigarettes that present less risk of harm for adult smokers. Responsible use of flavoring substances in these products may fulfill an important role in product acceptance. While most flavoring substances used in such products are also used by the food industry and are considered safe when ingested, their impact when inhaled may require further assessment. To aid in such an assessment, a three-step approach combining real-time cellular analysis, phenotypic high-content screening assays, and gene expression analysis was developed and tested in normal human bronchial epithelial cells with 28 flavoring substances commonly used in e-liquid formulations, dissolved individually or as a mixture in a base solution composed of propylene glycol, vegetable glycerin, and 0.6% nicotine. By employing this approach, we identified individual flavoring substances that potentially contribute greatly to the overall mixture effect (citronellol and alpha-pinene). By assessing modified mixtures, we showed that, although cytotoxic effects were found when assessed individually, alpha-pinene did not contribute to the overall mixture cytotoxicity. Most of the cytotoxic effect appeared to be attributable to citronellol, with the remaining substances contributing due to synergistic effects. We developed and used different scoring methods (Tox-Score, Phenotypic Score, and Biological Impact Factor/Network Perturbation Amplitude), ultimately enabling a ranking based on cytotoxicity, phenotypic outcome, and molecular network perturbations. This case study highlights the benefits of testing both individual flavoring substances and mixtures for e-liquid flavor assessment and emphasized the importance of data sharing for the benefit of consumer safety.
Collapse
Affiliation(s)
- Diego Marescotti
- Corresponding author at: PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Sale of electronic cigarette (e-cigarette) products has exponentially increased in the past decade, which raise concerns about its safety. This updated review provides the available toxicology profile of e-cigarettes, summarizing evidence from in vitro and in vivo studies. Data regarding which components in e-liquids exhibit potential toxicities are inconsistent. Some studies have reported that nicotine plays a significant role in inducing adverse outcomes and that solvents alone do not induce any adverse effects. However, other studies have suggested that nicotine is not associated with any adverse outcomes, whereas solvents and flavorings are the key components to elicit considerable deleterious effects on cells or animals. In addition, most of the studies that have compared the toxicity of e-cigarettes with tobacco cigarettes have suggested that e-cigarettes are less toxic than tobacco cigarettes. Nevertheless, scientific evidence regarding the toxicity profile of e-cigarette is insufficient owing to the lack of a standardized research approach. In the future, scientific toxicology data derived from standardized testing protocols including nicotine, ingredients analysis, the various e-cigarette devices made from different materials are urgently needed for thorough toxicology assessment. This review aims to update the toxicity profiles, identify knowledge gaps, and outline future directions for e-cigarettes research, which would greatly benefit public health professionals.
Collapse
Affiliation(s)
- Guanghe Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Wenjing Liu
- Science and Technology Museum of Inner Mongolia , Hohhot, Inner Mongolia , China
| | - Weimin Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University , Shanghai , China
| |
Collapse
|
45
|
Ito S, Taylor M, Mori S, Thorne D, Nishino T, Breheny D, Gaça M, Yoshino K, Proctor C. An inter-laboratory in vitro assessment of cigarettes and next generation nicotine delivery products. Toxicol Lett 2019; 315:14-22. [PMID: 31400404 DOI: 10.1016/j.toxlet.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
In vitro testing can facilitate the rapid assessment of next generation nicotine delivery products (NGPs) with comparisons to combustible tobacco products. In vitro assays for cytotoxicity and oxidative stress were employed at BAT (UK) and JT (Japan) to test total particulate matter (TPM) of a scientific reference cigarette and aerosol collected mass (ACM) of a commercially available E-cigarette and two tobacco heating products (THP). 3R4F TPMs were generated using the Health Canada intense (HCI) regimen, a modified regime (mHCI) for the THP ACMs and the CORESTA recommended method no. 81 for the E-cigarette ACM. Human lung cells were exposed to the test product TPM/ACMs at concentrations between 0-200 μg/ml followed by the employment of commercially available assays for endpoint analysis that included reactive oxygen species (ROS) generation, the glutathione ratio (GSH:GSSG), activation of the antioxidant response elements (ARE) and cellular viability. TPM/ACM nicotine concentrations were quantified using a UPLC-PDA technique. At both laboratories the 3R4F TPM induced significant and dose-dependent responses in all in vitro assays, whereas no significant responses could be measured for the NGP ACMs. In conclusion, both laboratories obtained comparable results across all endpoints therefore demonstrating the utility of the in vitro techniques combined with standardised test products to support the assessment of NGPs.
Collapse
Affiliation(s)
| | - Mark Taylor
- British American Tobacco, R&D, Southampton, UK.
| | - Sakura Mori
- Japan Tobacco Inc., R&D Group, Yokohama, Japan
| | | | | | | | | | - Kei Yoshino
- Japan Tobacco Inc., R&D Group, Yokohama, Japan
| | | |
Collapse
|
46
|
Polosa R, O'Leary R, Tashkin D, Emma R, Caruso M. The effect of e-cigarette aerosol emissions on respiratory health: a narrative review. Expert Rev Respir Med 2019; 13:899-915. [PMID: 31375047 DOI: 10.1080/17476348.2019.1649146] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Due to the uptake in the use of e-cigarettes (ECs), evidence on their health effects is needed to inform health care and policy. Some regulators and health professionals have raised concerns that the respirable aerosols generated by ECs contain several constituents of potential toxicological and biological relevance to respiratory health. Areas covered: We critically assess published research on the respiratory system investigating the effects of ECs in preclinical models, clinical studies of people who switched to ECs from tobacco cigarettes, and population surveys. We assess the studies for the quality of their methodology and accuracy of their interpretation. To adequately assess the impact of EC use on human health, addressing common mistakes and developing robust and realistic methodological recommendations is an urgent priority. The findings of this review indicate that ECs under normal conditions of use demonstrate far fewer respiratory risks than combustible tobacco cigarettes. EC users and smokers considering ECs have the right to be informed about the relative risks of EC use, and to be made aware that findings of studies published by the media are not always reliable. Expert opinion: Growing evidence supports the relative safety of EC emission aerosols for the respiratory tract compared to tobacco smoke.
Collapse
Affiliation(s)
- Riccardo Polosa
- Centro per la Prevenzione e Cura del Tabagismo (CPCT), Azienda Ospedaliero-Universitaria "Policlinico-V. Emanuele", Università of Catania , Catania , Italy.,Center of Excellence for the acceleration of HArm Reduction (CoEHAR), University of Catania , Catania , Italy
| | - Renée O'Leary
- Canadian Institute for Substance Use Research , Victoria , Canada
| | - Donald Tashkin
- David Geffen School of Medicine at the University of California, Los Angeles (UCLA) , Los Angeles , CA , USA
| | - Rosalia Emma
- Dipartimento di Medicina Clinica e Sperimentale (MEDCLIN), University of Catania , Catania , Italy.,Dipartimento di Scienze biomediche e biotecnologiche (BIOMETEC), University of Catania , Catania , Italy
| | - Massimo Caruso
- Dipartimento di Medicina Clinica e Sperimentale (MEDCLIN), University of Catania , Catania , Italy.,Dipartimento di Scienze biomediche e biotecnologiche (BIOMETEC), University of Catania , Catania , Italy
| |
Collapse
|
47
|
Czekala L, Simms L, Stevenson M, Tschierske N, Maione AG, Walele T. Toxicological comparison of cigarette smoke and e-cigarette aerosol using a 3D in vitro human respiratory model. Regul Toxicol Pharmacol 2019; 103:314-324. [DOI: 10.1016/j.yrtph.2019.01.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
48
|
Jaccard G, Djoko DT, Korneliou A, Stabbert R, Belushkin M, Esposito M. Mainstream smoke constituents and in vitro toxicity comparative analysis of 3R4F and 1R6F reference cigarettes. Toxicol Rep 2019; 6:222-231. [PMID: 30886823 PMCID: PMC6402302 DOI: 10.1016/j.toxrep.2019.02.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 11/26/2022] Open
Abstract
A new Kentucky reference cigarette, 1R6F, has been manufactured to replace the depleting 3R4F reference cigarette. The 3R4F Kentucky reference cigarettes have been widely used as monitor or comparator cigarettes for mainstream smoke analysis and in vitro and in vivo toxicological data of cigarettes and novel tobacco products. Both reference cigarettes were analyzed in the same laboratory during the same period of time with the goal of performing a comparison of 3R4F and 1R6F. On the basis of the results obtained from aerosol chemistry and in vitro assays, we consider that the 1R6F reference cigarette is a suitable replacement for the 3R4F reference cigarette as a comparator/monitor cigarette. Its specific use as a comparator for novel tobacco products was checked on the basis of a comparative test with the Tobacco Heating System 2.2 as an example.
Collapse
Affiliation(s)
- Guy Jaccard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 3, CH-2000, Neuchâtel, Switzerland
| | | | | | | | | | | |
Collapse
|
49
|
Hayes AW, Li R, Hoeng J, Iskandar A, Peistch MC, Dourson ML. New approaches to risk assessment of chemical mixtures. TOXICOLOGY RESEARCH AND APPLICATION 2019. [DOI: 10.1177/2397847318820768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Roman Li
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland
- Philip Morris International (PMI) Research & Development, Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International (PMI) Research & Development, Neuchâtel, Switzerland
| | - Anita Iskandar
- Philip Morris International (PMI) Research & Development, Neuchâtel, Switzerland
| | - Manuel C Peistch
- Philip Morris International (PMI) Research & Development, Neuchâtel, Switzerland
| | - Michael L Dourson
- Toxicology Excellence for Risk Assessment (TERA), Cincinnati, OH, USA
| |
Collapse
|
50
|
|