1
|
Erland LA. Views and perspectives on the indoleamines serotonin and melatonin in plants: past, present and future. PLANT SIGNALING & BEHAVIOR 2024; 19:2366545. [PMID: 38899558 PMCID: PMC11195476 DOI: 10.1080/15592324.2024.2366545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
In the decades since their discovery in plants in the mid-to-late 1900s, melatonin (N-acetyl-5-methoxytryptamine) and serotonin (5-methoxytryptamine) have been established as their own class of phytohormone and have become popular targets for examination and study as stress ameliorating compounds. The indoleamines play roles across the plant life cycle from reproduction to morphogenesis and plant environmental perception. There is growing interest in harnessing the power of these plant neurotransmitters in applied and agricultural settings, particularly as we face increasingly volatile climates for food production; however, there is still a lot to learn about the mechanisms of indoleamine action in plants. A recent explosion of interest in these compounds has led to exponential growth in the field of melatonin research in particular. This concept paper aims to summarize the current status of indoleamine research and highlight some emerging trends.
Collapse
|
2
|
Dehghanian Z, Ahmadabadi M, Asgari Lajayer B, Bagheri N, Chamani M, Gougerdchi V, Hamedpour-Darabi M, Shu W, Price GW, Dell B. Role of Neurotransmitters (Biomediators) in Plant Responses to Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3134. [PMID: 39599343 PMCID: PMC11597453 DOI: 10.3390/plants13223134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024]
Abstract
Plants possess a complex signaling system that enables them to sense and adapt to various environmental stressors, including abiotic factors like extreme temperatures, drought, salinity, and toxic heavy metals. While the roles of hormones and signaling molecules in plant stress responses are well established, the involvement of neurotransmitters-traditionally linked to animal nervous systems-in plant stress physiology is a relatively underexplored area. Recent findings indicate that neurotransmitters such as gamma-aminobutyric acid, glutamate, serotonin, and dopamine play crucial roles in several physiological processes within plants. They regulate ion channels, adjust stomatal movements, modulate the production of reactive oxygen species, and influence gene expression. Evidence suggests that these neurotransmitters enhance antioxidant defense mechanisms and regulate stress-responsive pathways vital for plant stress tolerance. Additionally, under stressful conditions, neurotransmitters have been shown to impact plant growth, development, and reproductive activities. This review aims to illuminate the emerging understanding of neurotransmitters as key biomediators in plant responses to abiotic stress.
Collapse
Affiliation(s)
- Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | | | - Nazila Bagheri
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | - Masoud Chamani
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Vahideh Gougerdchi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | - Mohsen Hamedpour-Darabi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz 71946-84471, Iran
| | - Weixi Shu
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - G. W. Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Bernard Dell
- Centre for Crop and Food Innovation, Murdoch University, Murdoch 6150, Australia
| |
Collapse
|
3
|
Gavyar PHH, Amiri H, Arnao MB, Bahramikia S. Exogenous application of serotonin, with the modulation of redox homeostasis and photosynthetic characteristics, enhances the drought resistance of the saffron plant. Sci Rep 2024; 14:23148. [PMID: 39367084 PMCID: PMC11452628 DOI: 10.1038/s41598-024-73885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Water stress is one of the most significant abiotic stresses that disrupts the osmotic balance of plants and consequently reduces their growth and performance. In recent years, it has been found that serotonin, as a signaling and regulatory molecule, can play important roles in the growth and development of plants and enhance their tolerance to abiotic stresses. Saffron is a plant known for its medicinal and culinary properties. Its distinct flavor, aroma, and vibrant color make it a sought-after ingredient in various cuisines and traditional medicines. The aim of this study is to investigate the possible effect of serotonin growth regulator on some morphophysiological and biochemical characteristics of saffron plant under water stress conditions. Water stress was applied using polyethylene glycol 6000 at a level of 30%, w/v. Serotonin was also applied exogenously at a concentration of 100 µM in both foliar and root applications. The experimental findings demonstrated that water stress had a detrimental impact on various growth and photosynthetic parameters including FW, DW, SH, RWC, photosynthetic pigments content, Pn, Fv/Fm, C and Ci. Under these conditions, H2O2 content and ion leakage increased. The increase in the content of proline and sugars also confirmed that the saffron plant was placed in unfavorable growth conditions. Serotonin application in both foliar and root applications and especially root treatment under stressful conditions improved plant growth by activating enzymatic and non-enzymatic antioxidant systems. Overall, the exogenous application of serotonin increased the resistance of saffron plants to water stress.
Collapse
Affiliation(s)
| | - Hamzeh Amiri
- Department of Biology, Factually of Basic Science, Lorestan University, Khorramabad, Iran.
| | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Seifollah Bahramikia
- Department of Biology, Factually of Basic Science, Lorestan University, Khorramabad, Iran
| |
Collapse
|
4
|
Huang S, Jin S. Melatonin Interaction with Other Phytohormones in the Regulation of Abiotic Stresses in Horticultural Plants. Antioxidants (Basel) 2024; 13:663. [PMID: 38929102 PMCID: PMC11201163 DOI: 10.3390/antiox13060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Horticultural crops play a vital role in global food production, nutrition, and the economy. Horticultural crops are highly vulnerable to abiotic stresses. These abiotic stresses hinder plant growth and development by affecting seed germination, impairing photosynthetic activity, and damaging root development, thus leading to a decrease in fruit yield, quality, and productivity. Scientists have conducted extensive research to investigate the mechanisms of resilience and the ability to cope with environmental stresses. In contrast, the use of phytohormones to alleviate the detrimental impacts of abiotic stresses on horticulture plants has been generally recognized as an effective method. Among phytohormones, melatonin (MT) is a novel plant hormone that regulates various plants' physiological functions such as seedling development, root system architecture, photosynthetic efficiency, balanced redox homeostasis, secondary metabolites production, accumulation of mineral nutrient uptake, and activated antioxidant defense system. Importantly, MT application significantly restricted heavy metals (HMs) uptake and increased mineral nutrient accumulation by modifying the root architecture system. In addition, MT is a naturally occurring, multifunctional, nontoxic biomolecule having antioxidant properties. Furthermore, this review described the hormonal interaction between MT and other signaling molecules in order to enhance abiotic stress tolerance in horticulture crops. This review focuses on current research advancements and prospective approaches for enhancing crop tolerance to abiotic stress.
Collapse
Affiliation(s)
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China;
| |
Collapse
|
5
|
Vongnhay V, Shukla MR, Ayyanath MM, Sriskantharajah K, Saxena PK. Enhanced In Vitro Plant Morphogenesis of Tobacco: Unveiling Indoleamine-Modulated Adaptogenic Properties of Tulsi ( Ocimum sanctum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1370. [PMID: 38794439 PMCID: PMC11125241 DOI: 10.3390/plants13101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
The medicinal plant tulsi (Ocimum sanctum L.) is acknowledged for its invigorating and healing properties that enhance resilience to stress in various human and animal models by modulating antioxidant compounds. While extensive research has documented these effects in humans, the adaptogenic potential of tulsi in stressful in vitro plant systems has not been explored. This study aimed to elucidate the adaptogenic properties of tulsi leaf extract on the in vitro regeneration of tobacco leaf explants through an investigation of the indoleamines at different developmental stages. Shoot regeneration from leaf explants on the medium supplemented with tulsi extract (20%) was compared to the control, and the differences in indoleamine compounds were analyzed using ultra-performance liquid chromatography. Treatment of the explants with the extract resulted in an almost two-fold increase in the number of regenerants after four weeks of culture, and 9% of the regenerants resembled somatic embryo-like structures. The occurrence of browning in the extract-treated explants stopped on day 10, shoots began to develop, and a significant concentration of tryptamine and N-acetyl-serotonin accumulated. A comparative analysis of indoleamine compounds in intact and cut tobacco leaves also revealed the pivotal role of melatonin and 2-hydroxymelatonin functioning as antioxidants during stress adaptation. This study demonstrates that tulsi is a potent adaptogen that is capable of modulating plant morphogenesis in vitro, paving the way for further investigations into the role of adaptogens in plant stress biology.
Collapse
Affiliation(s)
| | | | | | | | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (M.R.S.); (M.-M.A.); (K.S.)
| |
Collapse
|
6
|
Movassaghi CS, Andrews AM. Call me serotonin. Nat Chem 2024; 16:670. [PMID: 38580723 DOI: 10.1038/s41557-024-01488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Affiliation(s)
- Cameron S Movassaghi
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anne Milasincic Andrews
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Duan M, Li X, Wu X, Long S, Huang H, Li Y, Liu QH, Zhu G, Feng B, Qin S, Li C, Yang H, Qin J, Chen Z, Wang Z. Dictyophora indusiata and Bacillus aryabhattai improve sugarcane yield by endogenously associating with the root and regulating flavonoid metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1326917. [PMID: 38516657 PMCID: PMC10955060 DOI: 10.3389/fpls.2024.1326917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Introduction Endophytes play a significant role in regulating plant root development and facilitating nutrient solubilization and transportation. This association could improve plant growth. The present study has uncovered a distinct phenotype, which we refer to as "white root", arising from the intricate interactions between endophytic fungi and bacteria with the roots in a sugarcane and bamboo fungus (Dictyophora indusiata) intercropping system. Methods We investigated the mechanisms underlying the formation of this "white root" phenotype and its impact on sugarcane yield and metabolism by metabarcoding and metabolome analysis. Results and Discussion Initial analysis revealed that intercropping with D. indusiata increased sugarcane yield by enhancing the number of viable tillers compared with bagasse and no input control. Metabarcoding based on second-generation and third-generation sequencing indicated that D. indusiate and Bacillus aryabhattai dominates the fungal and bacterial composition in the "white root" phenotype of sugarcane root. The coexistence of D. indusiata and B. aryabhattai as endophytes induced plant growth-promoting metabolites in the sugarcane root system, such as lysoPC 18:1 and dihydrobenzofuran, probably contributing to increased sugarcane yield. Furthermore, the association also enhanced the metabolism of compounds, such as naringenin-7-O-glucoside (Prunin), naringenin-7-O-neohesperidoside (Naringin)*, hesperetin-7-O-neohesperidoside (Neohesperidin), epicatechin, and aromadendrin (Dihydrokaempferol), involved in flavonoid metabolism during the formation of the endophytic phenotype in the sugarcane root system. These observations suggest that the "white root" phenotype promotes sugarcane growth by activating flavonoid metabolism. This study reports an interesting phenomenon where D. indusiata, coordinate with the specific bacteria invade, forms a "white root" phenotype with sugarcane root. The study also provides new insights into using D. indusiata as a soil inoculant for promoting sugarcane growth and proposes a new approach for improve sugarcane cultivation.
Collapse
Affiliation(s)
- Mingzheng Duan
- Guangxi Academy of Agricultural Sciences, Nanning, China
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Xiang Li
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiaojian Wu
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shengfeng Long
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hairong Huang
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yijie Li
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Qi-Huai Liu
- Laibin Academy of Agricultural Sciences, Laibin, China
| | - Guanghu Zhu
- Laibin Academy of Agricultural Sciences, Laibin, China
| | - Bin Feng
- Laibin Academy of Agricultural Sciences, Laibin, China
| | - Sunqian Qin
- Laibin Academy of Agricultural Sciences, Laibin, China
| | - Changning Li
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hai Yang
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jie Qin
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhendong Chen
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zeping Wang
- Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
8
|
He M, Geng G, Mei S, Wang G, Yu L, Xu Y, Wang Y. Melatonin modulates the tolerance of plants to water stress: morphological response of the molecular mechanism. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23199. [PMID: 38354692 DOI: 10.1071/fp23199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Water stress (drought and waterlogging) leads to an imbalance in plant water distribution, disrupts cell homeostasis, and severely inhibits plant growth. Melatonin is a growth hormone that plants synthesise and has been shown to resist adversity in many plants. This review discusses the biosynthesis and metabolism of melatonin, as well as the changes in plant morphology and physiological mechanisms caused by the molecular defence process. Melatonin induces the expression of related genes in the process of plant photosynthesis under stress and protects the structural integrity of chloroplasts. Exogenous melatonin can maintain the dynamic balance of root ion exchange under waterlogging stress. Melatonin can repair mitochondria and alleviate damage caused by reactive oxygen species and reactive nitrogen species; and has a wide range of uses in the regulation of stress-specific genes and the activation of antioxidant enzyme genes. Melatonin improves the stability of membrane lipids in plant cells and maintains osmotic balance by regulating water channels. There is crosstalk between melatonin and other hormones, which jointly improve the ability of the root system to absorb water and breathe and promote plant growth. Briefly, as a multifunctional molecule, melatonin improves the tolerance of plants under water stress and promotes plant growth and development.
Collapse
Affiliation(s)
- Minmin He
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Gui Geng
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Shuyang Mei
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Gang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Lihua Yu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Yao Xu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Yuguang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
9
|
Cheng HY, Wang W, Wang W, Yang MY, Zhou YY. Interkingdom Hormonal Regulations between Plants and Animals Provide New Insight into Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4-26. [PMID: 38156955 DOI: 10.1021/acs.jafc.3c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Food safety has become an attractive topic among consumers. Raw material production for food is also a focus of social attention. As hormones are widely used in agriculture and human disease control, consumers' concerns about the safety of hormone agents have never disappeared. The present review focuses on the interkingdom regulations of exogenous animal hormones in plants and phytohormones in animals, including physiology and stress resistance. We summarize these interactions to give the public, researchers, and policymakers some guidance and suggestions. Accumulated evidence demonstrates comprehensive hormonal regulation across plants and animals. Animal hormones, interacting with phytohormones, help regulate plant development and enhance environmental resistance. Correspondingly, phytohormones may also cause damage to the reproductive and urinary systems of animals. Notably, the disease-resistant role of phytohormones is revealed against neurodegenerative diseases, cardiovascular disease, cancer, and diabetes. These resistances derive from the control for abnormal cell cycle, energy balance, and activity of enzymes. Further exploration of these cross-kingdom mechanisms would surely be of greater benefit to human health and agriculture development.
Collapse
Affiliation(s)
- Hang-Yuan Cheng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Human Development Family Studies, Iowa State University, 2330 Palmer Building, Ames, Iowa 50010, United States
| | - Wei Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mu-Yu Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Yu-Yi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
10
|
Ansaf H, Yobi A, Angelovici R. A High-Throughput Absolute Quantification of Protein-Bound Tryptophan from Model and Crop Seeds. Curr Protoc 2023; 3:e862. [PMID: 37540782 DOI: 10.1002/cpz1.862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
This protocol describes a high-throughput absolute quantification protocol for the aromatic essential amino acid, tryptophan (Trp). This procedure consists of a milligram-scale alkaline hydrolysis followed by an absolute quantification step using a multiple reaction monitoring tandem mass spectrometric (LC-MS/MS) detection method. The approach facilitates the analysis of a few hundred samples per week by using a 96-well plate extraction setup. Importantly, the method uses only ∼4 mg of tissue per sample and uses the common alkaline hydrolysis protocol, followed by water extraction that includes L-Trp-d5 as an internal standard to enable the quantification of the absolute level of the bound Trp with high precision, accuracy, and reproducibility. The protocol described herein has been optimized for seed samples for Arabidopsis thaliana, Glycine max, and Zea mays but could be applied to other plant tissues. © 2023 Wiley Periodicals LLC. Basic Protocol: Analysis of protein-bound tryptophan from seeds.
Collapse
Affiliation(s)
- Huda Ansaf
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Abou Yobi
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Ruthie Angelovici
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
11
|
Mishra V, Sarkar AK. Serotonin: A frontline player in plant growth and stress responses. PHYSIOLOGIA PLANTARUM 2023; 175:e13968. [PMID: 37402164 DOI: 10.1111/ppl.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
Serotonin is a well-studied pineal hormone that functions as a neurotransmitter in mammals and is found in varying amounts in diverse plant species. By modulating gene and phytohormonal crosstalk, serotonin has a significant role in plant growth and stress response, including root, shoot, flowering, morphogenesis, and adaptability responses to numerous environmental signals. Despite its prevalence and importance in plant growth and development, its molecular action, regulation and signalling processes remain unknown. Here, we highlight the current knowledge of the role of serotonin-mediated regulation of plant growth and stress response. We focus on serotonin and its regulatory connections with phytohormonal crosstalk and address their possible functions in coordinating diverse phytohormonal responses during distinct developmental phases, correlating with melatonin. Additionally, we have also discussed the possible role of microRNAs (miRNAs) in the regulation of serotonin biosynthesis. In summary, serotonin may act as a node molecule to coordinate the balance between plant growth and stress response, which may shed light on finding its key regulatory pathways for uncovering its mysterious molecular network.
Collapse
Affiliation(s)
- Vishnu Mishra
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ananda K Sarkar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
12
|
Shin JW. Neuroprotective effects of melatonin in neurodegenerative and autoimmune central nervous system diseases. ENCEPHALITIS 2023; 3:44-53. [PMID: 37469673 PMCID: PMC10295826 DOI: 10.47936/encephalitis.2022.00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 07/21/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) in the anterior hypothalamus is the major circadian pacemaker in humans. Melatonin is a key hormone secreted by the pineal gland in response to darkness. Light-induced stimuli are transmitted along the retinohypothalamic tract to the SCN. Activation of the SCN inhibits the production of melatonin by the pineal gland through a complex neural pathway passing through the superior cervical ganglion. Accordingly, when light is unavailable, the pineal gland secretes melatonin. The circadian rhythm modulates sleep-wake cycles as well as many physiological functions of the endocrine system, including core body temperature, pulse rate, oxygen consumption, hormone levels, metabolism, and gastrointestinal function. In neurodegenerative disorders, the sleep-wake cycle is disrupted and circadian regulation is altered, which accelerates disease progression, further disrupting circadian regulation and setting up a vicious cycle. Melatonin plays a critical role in the regulation of circadian rhythms and is a multifunctional pleiotropic agent with broad neuroprotective effects in neurodegenerative disorders, viral or autoimmune diseases, and cancer. In this review, I discuss the neuroprotective functions of melatonin in circadian regulation and its roles in promoting anti-inflammatory activity, enhancing immune system functions, and preventing alterations in glucose metabolism and mitochondrial dysfunction in neurodegenerative disorders and autoimmune central nervous system diseases.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of Neurology, Bundang CHA Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
13
|
Lei Y, He H, Raza A, Liu Z, Xiaoyu D, Guijuan W, Yan L, Yong C, Xiling Z. Exogenous melatonin confers cold tolerance in rapeseed ( Brassica napus L.) seedlings by improving antioxidants and genes expression. PLANT SIGNALING & BEHAVIOR 2022; 17:2129289. [PMID: 36205498 PMCID: PMC9553147 DOI: 10.1080/15592324.2022.2129289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/12/2023]
Abstract
Rapeseed (Brassica napus L.) is an important oilseed crop globally. However, its growth and production are significantly influenced by cold stress. To reveal the protective role of exogenous melatonin (MEL) in cold tolerance, rapeseed seedlings were pretreated with different concentrations of MEL before cold stress. The results indicated that the survival rate was increased significantly by the MEL pretreatment under cold stress. Seedlings pretreated with 0.01 g L-1 MEL were all survived and were used to analyze the physiological characteristics and the expression level of various genes related to cold tolerance. Under cold stress, exogenous MEL significantly increased the contents of proline, soluble sugar, and soluble protein; while the malondialdehyde content was decreased by exogenous MEL under cold stress. On the other hand, the activities of antioxidant defense enzymes such as catalase, peroxidase, and superoxide dismutase were also significantly enhanced. The results also showed that MEL treatment significantly upregulated the expression of Cu-SOD, COR6.6 (cold-regulated), COR15, and CBFs (C-repeat binding factor) genes under cold stress. It was suggested exogenous MEL improved the content of osmotic regulatory substances to maintain the balance of cellular osmotic potential under cold stress and improved the scavenging capacity of reactive oxygen species by strengthening the activity of antioxidant enzymes and the cold-related genes expression.
Collapse
Affiliation(s)
- Yan Lei
- Key Laboratory Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, Wuhan, China
| | - Huang He
- Key Laboratory Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, Wuhan, China
| | - Ali Raza
- Key Laboratory Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, Wuhan, China
| | - Zeng Liu
- Key Laboratory Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, Wuhan, China
| | - Ding Xiaoyu
- Key Laboratory Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, Wuhan, China
| | - Wang Guijuan
- Seed Administration Bureau of Hubei Province, Wuhan, China
| | - Lv Yan
- Key Laboratory Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, Wuhan, China
| | - Cheng Yong
- Key Laboratory Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, Wuhan, China
| | - Zou Xiling
- Key Laboratory Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, Wuhan, China
| |
Collapse
|
14
|
Pesti-Asbóth G, Molnár-Bíróné P, Forgács I, Remenyik J, Dobránszki J. Ultrasonication affects the melatonin and auxin levels and the antioxidant system in potato in vitro. FRONTIERS IN PLANT SCIENCE 2022; 13:979141. [PMID: 36247572 PMCID: PMC9558230 DOI: 10.3389/fpls.2022.979141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Melatonin is an ancient hormone whose physiological effects have been extensively studied in animals and human. We now know that it also plays a prominent role in the growth and development of plants. In our present experiment, the relationship between endogenous melatonin and the antioxidant system was investigated in potato plant grown in vitro. Changes in redox homeostasis under ultrasound stress were examined. The concentration of small molecule antioxidants and enzymes of the three-level antioxidant pathway was measured. ELISA method was used to determine the melatonin levels in plant tissues at each growth stage (0 h, 24 h, 48 h, 1 week, and 4 weeks after subculturing the explants) both in control and ultrasound-treated plants. Ultrasound stress activated the three-level defense system and decreased the endogenous melatonin levels. Melatonin was able to provide protection against membrane damage caused by drastic ultrasound treatment. Melatonin at the heart of the redox network is a key component regulating various biochemical, cellular, and physiological responses. It has a dual role, as it is able to act both as a growth regulator and an antioxidant. A close relationship was evidenced between the plant hormone indole-3-acetic acid and melatonin and ascorbic acid.
Collapse
Affiliation(s)
- Georgina Pesti-Asbóth
- Institute of Food Technology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Piroska Molnár-Bíróné
- Institute of Food Technology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Ildikó Forgács
- Institute of Food Technology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
15
|
Commisso M, Negri S, Gecchele E, Fazion E, Pontoriero C, Avesani L, Guzzo F. Indolamine accumulation and TDC/ T5H expression profiles reveal the complex and dynamic regulation of serotonin biosynthesis in tomato ( Solanum lycopersicum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:975434. [PMID: 36035661 PMCID: PMC9405198 DOI: 10.3389/fpls.2022.975434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Tryptamine and serotonin are indolamines that fulfill diverse biological functions in all kingdoms of life. Plants convert l-tryptophan into tryptamine and then serotonin via consecutive decarboxylation and hydroxylation reactions catalyzed by the enzymes tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H). Tryptamine and serotonin accumulate to high levels in the edible fruits and seeds of many plant species, but their biological roles in reproductive organs remain unclear and the metabolic pathways have not been characterized in detail. We identified three TDC genes and a single T5H gene in tomato (Solanum lycopersicum L.) by homology-based screening and confirmed their activity by heterologous expression in Nicotiana benthamiana. The co-analysis of targeted metabolomics and gene expression data revealed complex spatiotemporal gene expression and metabolite accumulation patterns that suggest the involvement of the serotonin pathway in multiple biological processes. Our data support a model in which SlTDC1 allows tryptamine to accumulate in fruits, SlTDC2 causes serotonin to accumulate in aerial vegetative organs, and SlTDC3 works with SlT5H to convert tryptamine into serotonin in the roots and fruits.
Collapse
|
16
|
Zhang G, Yan Y, Zeng X, Wang Y, Zhang Y. Quantitative Proteomics Analysis Reveals Proteins Associated with High Melatonin Content in Barley Seeds under NaCl-Induced Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8492-8510. [PMID: 35759742 DOI: 10.1021/acs.jafc.2c00466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil salinization limits hull-less barley cultivation in the Qinghai-Tibet Plateau of China. However, some wild hull-less barley seeds accumulate high melatonin (MEL) during germination with improved salt tolerance; but the mechanism of melatonin-mediated salt tolerance in hull-less barley is not well understood at the protein level. This study investigated proteome changes resulting in high melatonin content in germinating hull-less barley seeds under high saline conditions. The proteome profiles of seed treatment with 240 mM-NaCl (N), water (H), and control (C) taken 7 days after germination were compared using the TMT-based quantitative proteomics. Our results indicate that salt stress-induced global changes in the proteomes of germinating hull-less barley seeds, altering the expression and abundance of proteins related to cell cycle and control, carbohydrate and energy metabolism, and amino acid transport and metabolism including proteins related to melatonin production. Furthermore, proteins associated with cellular redox homeostasis, osmotic stress response, and secondary metabolites derived primarily from amino acid metabolism, purine degradation, and shikimate pathways increased significantly in abundance and may contribute to the high melatonin content in seeds under salt stress. Consequently, triggering the robust response to oxidative stress occasioned by the NaCl-induced salt stress, improved seed germination and strong adaptation to salt stress.
Collapse
Affiliation(s)
- Guoqiang Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yingying Yan
- Institute of Agricultural Products Processing & Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Xingquan Zeng
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yulin Wang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yuhong Zhang
- Institute of Agricultural Products Processing & Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| |
Collapse
|
17
|
Erland LAE, Dumigan CR, Forsyth JA, Frolova L, Yasunaga AB, Pun W, Li ITS, Deyholos MK, Murch SJ. Mammalian Melatonin Agonist Pharmaceuticals Stimulate Rhomboid Proteins in Plants. Biomolecules 2022; 12:biom12070882. [PMID: 35883439 PMCID: PMC9313243 DOI: 10.3390/biom12070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Melatonin is a human neurotransmitter and plant signalling metabolite that perceives and directs plant metabolism. The mechanisms of melatonin action in plants remain undefined. We hypothesized that roots have a melatonin-specific receptor and/or transporter that can respond to melatonin-mediating pharmaceuticals. To test this hypothesis Arabidopsis seedlings were grown with melatonin pharmaceutical receptor agonists: ramelteon and tasimelteon, and/or antagonists: luzindole and 4-P-PDOT. Ramelteon was found both to mimic and competitively inhibit melatonin metabolism in plants. Due to the higher selectivity of ramelteon for the MT1 receptor type in humans, a sequence homology search for MT1 in Arabidopsis identified the rhomboid-like protein 7 (RBL7). In physiological studies, Arabidopsis rbl7 mutants were less responsive to ramelteon and melatonin. Quantum dot visualizations of the effects of ramelteon on melatonin binding to root cell membranes revealed a potential mechanism. We propose that RBL7 is a melatonin-interacting protein that directs root architecture and growth in a mechanism that is responsive to environmental factors.
Collapse
Affiliation(s)
- Lauren A. E. Erland
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (L.A.E.E.); (J.A.F.); (L.F.); (A.B.Y.); (W.P.); (I.T.S.L.)
- Department of Agriculture, University of the Fraser Valley, Chilliwack, BC V6T 1Z4, Canada
| | - Christopher R. Dumigan
- Department of Biology, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (C.R.D.); (M.K.D.)
| | - Jillian A. Forsyth
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (L.A.E.E.); (J.A.F.); (L.F.); (A.B.Y.); (W.P.); (I.T.S.L.)
| | - Liubov Frolova
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (L.A.E.E.); (J.A.F.); (L.F.); (A.B.Y.); (W.P.); (I.T.S.L.)
| | - Adam B. Yasunaga
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (L.A.E.E.); (J.A.F.); (L.F.); (A.B.Y.); (W.P.); (I.T.S.L.)
| | - Winnie Pun
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (L.A.E.E.); (J.A.F.); (L.F.); (A.B.Y.); (W.P.); (I.T.S.L.)
| | - Isaac T. S. Li
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (L.A.E.E.); (J.A.F.); (L.F.); (A.B.Y.); (W.P.); (I.T.S.L.)
| | - Michael K. Deyholos
- Department of Biology, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (C.R.D.); (M.K.D.)
| | - Susan J. Murch
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (L.A.E.E.); (J.A.F.); (L.F.); (A.B.Y.); (W.P.); (I.T.S.L.)
- Correspondence:
| |
Collapse
|
18
|
Bano AS, Khattak AM, Basit A, Alam M, Shah ST, Ahmad N, Gilani SAQ, Ullah I, Anwar S, Mohamed HI. Callus Induction, Proliferation, Enhanced Secondary Metabolites Production and Antioxidants Activity of Salvia moorcroftiana L. as Influenced by Combinations of Auxin, Cytokinin and Melatonin. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2022; 65. [DOI: 10.1590/1678-4324-2022210200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
19
|
Yin Y, Xu J, He X, Yang Z, Fang W, Tao J. Role of exogenous melatonin involved in phenolic acid metabolism of germinated hulless barley under NaCl stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:14-22. [PMID: 34844114 DOI: 10.1016/j.plaphy.2021.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effects of exogenous MT on phenolic acids biosynthesis and the response to NaCl stress in germinating barley were investigated to explicate the role and molecular mechanism of MT in the regulation of phenolic acids and biomass under salt stress. Results showed that exogenous MT increased the gene expression and activities of phenylalanine ammonia lyase and cinnamate 4-hydroxylase involved in phenols biosynthesis. As a result, phenolic acids contents significantly increased, and ferulic acid, p-coumaric acid and p-hydroxybenzoic acid were mostly induced by exogenous MT treatment. Meanwhile, exogenous MT application reduced the damage of NaCl stress, including promotion sprout growth, biomass and Ca2+ influs, malonaldehyde and H2O2 content reduction, increases of peroxidase, superoxide dismutase and catalase activities in barley seedlings. These results indicated that exogenous MT was essential for inducing phenolic acids accumulation and alleviated the inhibition of NaCl stress on barley seedlings.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Jinpeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China.
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
20
|
Bhowal B, Bhattacharjee A, Goswami K, Sanan-Mishra N, Singla-Pareek SL, Kaur C, Sopory S. Serotonin and Melatonin Biosynthesis in Plants: Genome-Wide Identification of the Genes and Their Expression Reveal a Conserved Role in Stress and Development. Int J Mol Sci 2021; 22:ijms222011034. [PMID: 34681693 PMCID: PMC8538589 DOI: 10.3390/ijms222011034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023] Open
Abstract
Serotonin (Ser) and melatonin (Mel) serve as master regulators of plant growth and development by influencing diverse cellular processes. The enzymes namely, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) catalyse the formation of Ser from tryptophan. Subsequently, serotonin N-acetyl transferase (SNAT) and acetyl-serotonin methyltransferase (ASMT) form Mel from Ser. Plant genomes harbour multiple genes for each of these four enzymes, all of which have not been identified. Therefore, to delineate information regarding these four gene families, we carried out a genome-wide analysis of the genes involved in Ser and Mel biosynthesis in Arabidopsis, tomato, rice and sorghum. Phylogenetic analysis unravelled distinct evolutionary relationships among these genes from different plants. Interestingly, no gene family except ASMTs showed monocot- or dicot-specific clustering of respective proteins. Further, we observed tissue-specific, developmental and stress/hormone-mediated variations in the expression of the four gene families. The light/dark cycle also affected their expression in agreement with our quantitative reverse transcriptase-PCR (qRT-PCR) analysis. Importantly, we found that miRNAs (miR6249a and miR-1846e) regulated the expression of Ser and Mel biosynthesis under light and stress by influencing the expression of OsTDC5 and OsASMT18, respectively. Thus, this study may provide opportunities for functional characterization of suitable target genes of the Ser and Mel pathway to decipher their exact roles in plant physiology.
Collapse
Affiliation(s)
- Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Annapurna Bhattacharjee
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi 110016, India
| | - Kavita Goswami
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Neeti Sanan-Mishra
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Sneh L. Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Charanpreet Kaur
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
- Correspondence: (C.K.); (S.S.)
| | - Sudhir Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
- Correspondence: (C.K.); (S.S.)
| |
Collapse
|
21
|
Yu R, Zuo T, Diao P, Fu J, Fan Y, Wang Y, Zhao Q, Ma X, Lu W, Li A, Wang R, Yan F, Pu L, Niu Y, Wuriyanghan H. Melatonin Enhances Seed Germination and Seedling Growth of Medicago sativa Under Salinity via a Putative Melatonin Receptor MsPMTR1. FRONTIERS IN PLANT SCIENCE 2021; 12:702875. [PMID: 34490006 PMCID: PMC8418131 DOI: 10.3389/fpls.2021.702875] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/21/2021] [Indexed: 05/26/2023]
Abstract
Alfalfa (Medicago sativa L.) is an important forage crop, and salt stress is a major limiting factor in its yield. Melatonin (MT) is a multi-regulatory molecule in plants. We showed that basal MT content was positively correlated with the salt tolerance degree of different alfalfa varieties. MT and its precursor 5-HT fully recovered seed germination while partially ameliorated seedling growth of salt-stressed alfalfa. The 5-HT showed some divergent effects from MT with regards to growth amelioration under salinity. Salt stress caused stunted plant growth in soil culture, while MT ameliorated it by elevating plant height, fresh weight, branching number, and chlorophyll content. Silencing of a putative MT receptor, MsPMTR1, which was shown to be membrane-localized, abolished the ameliorative effects of MT on salt-stressed alfalfa seedling growth, while overexpression of MsPMTR1 improved plant growth under salt stress. The RNA sequencing analysis showed that nine pathway genes were specifically induced by MT treatment compared with salt stress. These MT-responsive differentially expressed genes include basal metabolic pathway genes, such as "ribosome, elongation factor," "sugar and lipid metabolism," and "photosynthesis" and stress-related genes encoding "membrane integrity" related proteins, heat shock protein, peroxidase/oxidoreductase, and protease. Several abiotic stress response-related genes, such as DRE, ARF, HD-ZF, MYB, and REM were repressed by NaCl treatment while induced by MT treatment. In summary, we demonstrated the importance of MsPMTR1 in MT-mediated salt tolerance in alfalfa, and we also analyzed the regulatory mechanism of MT during alfalfa seed germination under salt stress.
Collapse
Affiliation(s)
- Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Tiantian Zuo
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Pengfei Diao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jiabin Fu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanyan Fan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Department of Medicine, Ordos Institute of Technology, Ordos, China
| | - Yue Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Qiqi Zhao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xuesong Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wenting Lu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Aoga Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ru Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fang Yan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
22
|
Yang L, You J, Li J, Wang Y, Chan Z. Melatonin promotes Arabidopsis primary root growth in an IAA-dependent manner. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5599-5611. [PMID: 34009365 DOI: 10.1093/jxb/erab196] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 05/06/2023]
Abstract
Melatonin has been characterized as a growth regulator in plants. Melatonin shares tryptophan as the precursor with the auxin indole-3-acetic acid (IAA), but the interplay between melatonin and IAA remains controversial. In this study, we aimed to dissect the relationship between melatonin and IAA in regulating Arabidopsis primary root growth. We observed that melatonin concentrations ranging from 10-9 to 10-6 M functioned as IAA mimics to promote primary root growth in Arabidopsis wild type, as well as in pin-formed (pin) single and double mutants. Transcriptome analysis showed that changes in gene expression after melatonin and IAA treatment were moderately correlated. Most of the IAA-regulated genes were co-regulated by melatonin, indicating that melatonin and IAA regulated a similar subset of genes. Melatonin partially rescued primary root growth defects in pin single and double mutant plants. However, melatonin treatment had little effect on primary root growth in the presence of high concentrations of auxin biosynthesis inhibitors, or polar transport inhibitor, and could not rescue the root length defect of the IAA biosynthesis quintuple mutant yucQ. Therefore, we propose that melatonin promotes primary root growth in an IAA-dependent manner.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, The Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430071, China
| | - Jinzhu Li
- College of Life Sciences, Northwest A& F University, Yangling Shaanxi, 712100, China
| | - Yanping Wang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
23
|
Negri S, Commisso M, Avesani L, Guzzo F. The case of tryptamine and serotonin in plants: a mysterious precursor for an illustrious metabolite. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5336-5355. [PMID: 34009335 DOI: 10.1093/jxb/erab220] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Indolamines are tryptophan-derived specialized metabolites belonging to the huge and ubiquitous indole alkaloids group. Serotonin and melatonin are the best-characterized members of this family, given their many hormonal and physiological roles in animals. Following their discovery in plants, the study of plant indolamines has flourished and their involvement in important processes, including stress responses, growth and development, and reproduction, has been proposed, leading to their classification as a new category of phytohormones. However, the complex indolamine puzzle is far from resolved, particularly the biological roles of tryptamine, the early serotonin precursor representing the central hub of many downstream indole alkaloids. Tryptophan decarboxylase, which catalyzes the synthesis of tryptamine, strictly regulates the flux of carbon and nitrogen from the tryptophan pool into the indolamine pathway. Furthermore, tryptamine accumulates to high levels in the reproductive organs of many plant species and therefore cannot be classed as a mere intermediate but rather as an end product with potentially important functions in fruits and seeds. This review summarizes current knowledge on the role of tryptamine and its close relative serotonin, emphasizing the need for a clear understanding of the functions of, and mutual relations between, these indolamines and their biosynthesis pathways in plants.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy
| |
Collapse
|
24
|
Altaf MA, Shahid R, Ren MX, Mora-Poblete F, Arnao MB, Naz S, Anwar M, Altaf MM, Shahid S, Shakoor A, Sohail H, Ahmar S, Kamran M, Chen JT. Phytomelatonin: An overview of the importance and mediating functions of melatonin against environmental stresses. PHYSIOLOGIA PLANTARUM 2021; 172:820-846. [PMID: 33159319 DOI: 10.1111/ppl.13262] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 05/06/2023]
Abstract
Recently, melatonin has gained significant importance in plant research. The presence of melatonin in the plant kingdom has been known since 1995. It is a molecule that is conserved in a wide array of evolutionary distant organisms. Its functions and characteristics have been found to be similar in both plants and animals. The review focuses on the role of melatonin pertaining to physiological functions in higher plants. Melatonin regulates physiological functions regarding auxin activity, root, shoot, and explant growth, activates germination of seeds, promotes rhizogenesis (growth of adventitious and lateral roots), and holds up impelled leaf senescence. Melatonin is a natural bio-stimulant that creates resistance in field crops against various abiotic stress, including heat, chemical pollutants, cold, drought, salinity, and harmful ultra-violet radiation. The full potential of melatonin in regulating physiological functions in higher plants still needs to be explored by further research.
Collapse
Affiliation(s)
| | - Rabia Shahid
- School of Economics, Hainan University, Haikou, China
| | - Ming-Xun Ren
- Center for Terrestrial Biodiversity of the South China Sea, College of Ecology and Environment, Hainan University, Haikou, China
| | | | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - Safina Naz
- Department of Horticulture, Faculty of Agricultural Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Anwar
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | | | - Sidra Shahid
- Institute for Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Lleida, Spain
| | - Hamza Sohail
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Sunny Ahmar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Kamran
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| |
Collapse
|
25
|
Pardo-Hernández M, López-Delacalle M, Martí-Guillen JM, Martínez-Lorente SE, Rivero RM. ROS and NO Phytomelatonin-Induced Signaling Mechanisms under Metal Toxicity in Plants: A Review. Antioxidants (Basel) 2021; 10. [PMID: 34068211 DOI: 10.20944/preprints202104.0637.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/20/2023] Open
Abstract
Metal toxicity in soils, along with water runoff, are increasing environmental problems that affect agriculture directly and, in turn, human health. In light of finding a suitable and urgent solution, research on plant treatments with specific compounds that can help mitigate these effects has increased, and thus the exogenous application of melatonin (MET) and its role in alleviating the negative effects of metal toxicity in plants, have become more important in the last few years. MET is an important plant-related response molecule involved in growth, development, and reproduction, and in the induction of different stress-related key factors in plants. It has been shown that MET plays a protective role against the toxic effects induced by different metals (Pb, Cd, Cu, Zn, B, Al, V, Ni, La, As, and Cr) by regulating both the enzymatic and non-enzymatic antioxidant plant defense systems. In addition, MET interacts with many other signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO) and participates in a wide variety of physiological reactions. Furthermore, MET treatment enhances osmoregulation and photosynthetic efficiency, and increases the concentration of other important antioxidants such as phenolic compounds, flavonoids, polyamines (PAs), and carotenoid compounds. Some recent studies have shown that MET appeared to be involved in the regulation of metal transport in plants, and lastly, various studies have confirmed that MET significantly upregulated stress tolerance-related genes. Despite all the knowledge acquired over the years, there is still more to know about how MET is involved in the metal toxicity tolerance of plants.
Collapse
Affiliation(s)
- Miriam Pardo-Hernández
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - María López-Delacalle
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - José Manuel Martí-Guillen
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - Sara E Martínez-Lorente
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - Rosa M Rivero
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
26
|
Pardo-Hernández M, López-Delacalle M, Martí-Guillen JM, Martínez-Lorente SE, Rivero RM. ROS and NO Phytomelatonin-Induced Signaling Mechanisms under Metal Toxicity in Plants: A Review. Antioxidants (Basel) 2021; 10:antiox10050775. [PMID: 34068211 PMCID: PMC8153167 DOI: 10.3390/antiox10050775] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Metal toxicity in soils, along with water runoff, are increasing environmental problems that affect agriculture directly and, in turn, human health. In light of finding a suitable and urgent solution, research on plant treatments with specific compounds that can help mitigate these effects has increased, and thus the exogenous application of melatonin (MET) and its role in alleviating the negative effects of metal toxicity in plants, have become more important in the last few years. MET is an important plant-related response molecule involved in growth, development, and reproduction, and in the induction of different stress-related key factors in plants. It has been shown that MET plays a protective role against the toxic effects induced by different metals (Pb, Cd, Cu, Zn, B, Al, V, Ni, La, As, and Cr) by regulating both the enzymatic and non-enzymatic antioxidant plant defense systems. In addition, MET interacts with many other signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO) and participates in a wide variety of physiological reactions. Furthermore, MET treatment enhances osmoregulation and photosynthetic efficiency, and increases the concentration of other important antioxidants such as phenolic compounds, flavonoids, polyamines (PAs), and carotenoid compounds. Some recent studies have shown that MET appeared to be involved in the regulation of metal transport in plants, and lastly, various studies have confirmed that MET significantly upregulated stress tolerance-related genes. Despite all the knowledge acquired over the years, there is still more to know about how MET is involved in the metal toxicity tolerance of plants.
Collapse
|
27
|
Production system influences tomato phenolics and indoleamines in a cultivar-specific manner. Food Res Int 2021; 140:110016. [PMID: 33648247 DOI: 10.1016/j.foodres.2020.110016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
Tomato (Solanum lycopersicum) fruit is a rich source of health-promoting compounds, and epidemiological studies show that tomato consumption may reduce the risk of chronic diseases. This study compared the effect of genotype, production system, and their interaction on eight tomato varieties grown in the open-field (OF) or net-house (NH), a structure completely covered with a 50-mesh screen to reduce pest and wind damage, in South Texas. The NH structure reduced solar radiation up to ~30% and decreased wind speed by 6.44 km/h compared with conditions measured in the OF. We simultaneously analyzed 16 phenolics and indoleamines using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight high-resolution mass spectrometry (UHPLC/ESI-HR-QTOFMS). The chemometric analysis showed a distinct difference between NH- and OF-grown tomatoes irrespective of the variety. The melatonin and serotonin contents showed a cultivar-specific effect of the production system. Likewise, the effect of cultivation systems on levels of phenolic acids and flavonoids varied based on tomato cultivar. Among the studied phenolic acids, significantly enhanced levels of sinapic acid were observed in OF-grown tomatoes. Similarly, we detected a considerable genotypic effect on gallic acid, p-coumaric acid, ferulic acid, sinapic acid, and naringin. The interaction of cultivar and production system substantially affected gallic acid, protocatechuic acid, sinapic acid, and apigenin. However, further studies need to be performed to explore the environment-specific effects on the total composition. In summary, our results indicate that the production system plays an important role in tomato composition beyond the natural genetic variation among cultivars.
Collapse
|
28
|
Distribution, Ecology, Chemistry and Toxicology of Plant Stinging Hairs. Toxins (Basel) 2021; 13:toxins13020141. [PMID: 33668609 PMCID: PMC7918447 DOI: 10.3390/toxins13020141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/17/2022] Open
Abstract
Plant stinging hairs have fascinated humans for time immemorial. True stinging hairs are highly specialized plant structures that are able to inject a physiologically active liquid into the skin and can be differentiated from irritant hairs (causing mechanical damage only). Stinging hairs can be classified into two basic types: Urtica-type stinging hairs with the classical "hypodermic syringe" mechanism expelling only liquid, and Tragia-type stinging hairs expelling a liquid together with a sharp crystal. In total, there are some 650 plant species with stinging hairs across five remotely related plant families (i.e., belonging to different plant orders). The family Urticaceae (order Rosales) includes a total of ca. 150 stinging representatives, amongst them the well-known stinging nettles (genus Urtica). There are also some 200 stinging species in Loasaceae (order Cornales), ca. 250 stinging species in Euphorbiaceae (order Malphigiales), a handful of species in Namaceae (order Boraginales), and one in Caricaceae (order Brassicales). Stinging hairs are commonly found on most aerial parts of the plants, especially the stem and leaves, but sometimes also on flowers and fruits. The ecological role of stinging hairs in plants seems to be essentially defense against mammalian herbivores, while they appear to be essentially inefficient against invertebrate pests. Stinging plants are therefore frequent pasture weeds across different taxa and geographical zones. Stinging hairs are usually combined with additional chemical and/or mechanical defenses in plants and are not a standalone mechanism. The physiological effects of stinging hairs on humans vary widely between stinging plants and range from a slight itch, skin rash (urticaria), and oedema to sharp pain and even serious neurological disorders such as neuropathy. Numerous studies have attempted to elucidate the chemical basis of the physiological effects. Since the middle of the 20th century, neurotransmitters (acetylcholine, histamine, serotonin) have been repeatedly detected in stinging hairs of Urticaceae, but recent analyses of Loasaceae stinging hair fluids revealed high variability in their composition and content of neurotransmitters. These substances can explain some of the physiological effects of stinging hairs, but fail to completely explain neuropathic effects, pointing to some yet unidentified neurotoxin. Inorganic ions (e.g., potassium) are detected in stinging hairs and could have synergistic effects. Very recently, ultrastable miniproteins dubbed "gympietides" have been reported from two species of Dendrocnide, arguably the most violently stinging plant. Gympietides are shown to be highly neurotoxic, providing a convincing explanation for Dendrocnide toxicity. For the roughly 648 remaining stinging plant species, similarly convincing data on toxicity are still lacking.
Collapse
|
29
|
Physiological and Molecular Responses to Acid Rain Stress in Plants and the Impact of Melatonin, Glutathione and Silicon in the Amendment of Plant Acid Rain Stress. Molecules 2021; 26:molecules26040862. [PMID: 33562098 PMCID: PMC7915782 DOI: 10.3390/molecules26040862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Air pollution has been a long-term problem, especially in urban areas, that eventually accelerates the formation of acid rain (AR), but recently it has emerged as a serious environmental issue worldwide owing to industrial and economic growth, and it is also considered a major abiotic stress to agriculture. Evidence showed that AR exerts harmful effects in plants, especially on growth, photosynthetic activities, antioxidant activities and molecular changes. Effectiveness of several bio-regulators has been tested so far to arbitrate various physiological, biochemical and molecular processes in plants under different diverse sorts of environmental stresses. In the current review, we showed that silicon (tetravalent metalloid and semi-conductor), glutathione (free thiol tripeptide) and melatonin (an indoleamine low molecular weight molecule) act as influential growth regulators, bio-stimulators and antioxidants, which improve plant growth potential, photosynthesis spontaneity, redox-balance and the antioxidant defense system through quenching of reactive oxygen species (ROS) directly and/or indirectly under AR stress conditions. However, earlier research findings, together with current progresses, would facilitate the future research advancements as well as the adoption of new approaches in attenuating the consequence of AR stress on crops, and might have prospective repercussions in escalating crop farming where AR is a restraining factor.
Collapse
|
30
|
Murch SJ, Erland LAE. A Systematic Review of Melatonin in Plants: An Example of Evolution of Literature. FRONTIERS IN PLANT SCIENCE 2021; 12:683047. [PMID: 34249052 PMCID: PMC8270005 DOI: 10.3389/fpls.2021.683047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 05/06/2023]
Abstract
Melatonin (N-acetyl-5-methoxy-tryptamine) is a mammalian neurohormone, antioxidant and signaling molecule that was first discovered in plants in 1995. The first studies investigated plant melatonin from a human perspective quantifying melatonin in foods and medicinal plants and questioning whether its presence could explain the activity of some plants as medicines. Starting with these first handful of studies in the late 1990s, plant melatonin research has blossomed into a vibrant and active area of investigation and melatonin has been found to play critical roles in mediating plant responses and development at every stage of the plant life cycle from pollen and embryo development through seed germination, vegetative growth and stress response. Here we have utilized a systematic approach in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocols to reduce bias in our assessment of the literature and provide an overview of the current state of melatonin research in plants, covering 1995-2021. This review provides an overview of the biosynthesis and metabolism of melatonin as well as identifying key themes including: abiotic stress responses, root development, light responses, interkingdom communication, phytohormone and plant signaling. Additionally, potential biases in the literature are investigated and a birefringence in the literature between researchers from plant and medical based which has helped to shape the current state of melatonin research. Several exciting new opportunities for future areas of melatonin research are also identified including investigation of non-crop and non-medicinal species as well as characterization of melatonin signaling networks in plants.
Collapse
|
31
|
Sun C, Liu L, Wang L, Li B, Jin C, Lin X. Melatonin: A master regulator of plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:126-145. [PMID: 32678945 DOI: 10.1111/jipb.12993] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/16/2020] [Indexed: 05/18/2023]
Abstract
Melatonin is a pleiotropic molecule with multiple functions in plants. Since the discovery of melatonin in plants, numerous studies have provided insight into the biosynthesis, catabolism, and physiological and biochemical functions of this important molecule. Here, we describe the biosynthesis of melatonin from tryptophan, as well as its various degradation pathways in plants. The identification of a putative melatonin receptor in plants has led to the hypothesis that melatonin is a hormone involved in regulating plant growth, aerial organ development, root morphology, and the floral transition. The universal antioxidant activity of melatonin and its role in preserving chlorophyll might explain its anti-senescence capacity in aging leaves. An impressive amount of research has focused on the role of melatonin in modulating postharvest fruit ripening by regulating the expression of ethylene-related genes. Recent evidence also indicated that melatonin functions in the plant's response to biotic stress, cooperating with other phytohormones and well-known molecules such as reactive oxygen species and nitric oxide. Finally, great progress has been made towards understanding how melatonin alleviates the effects of various abiotic stresses, including salt, drought, extreme temperature, and heavy metal stress. Given its diverse roles, we propose that melatonin is a master regulator in plants.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Luxuan Wang
- Department of Agriculture and Environment, McGill University, Montreal, Quebec, H9X 3V9, Canada
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
32
|
ROS and NO Regulation by Melatonin Under Abiotic Stress in Plants. Antioxidants (Basel) 2020; 9:antiox9111078. [PMID: 33153156 PMCID: PMC7693017 DOI: 10.3390/antiox9111078] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/02/2023] Open
Abstract
Abiotic stress in plants is an increasingly common problem in agriculture, and thus, studies on plant treatments with specific compounds that may help to mitigate these effects have increased in recent years. Melatonin (MET) application and its role in mitigating the negative effects of abiotic stress in plants have become important in the last few years. MET, a derivative of tryptophan, is an important plant-related response molecule involved in the growth, development, and reproduction of plants, and the induction of different stress factors. In addition, MET plays a protective role against different abiotic stresses such as salinity, high/low temperature, high light, waterlogging, nutrient deficiency and stress combination by regulating both the enzymatic and non-enzymatic antioxidant defense systems. Moreover, MET interacts with many signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO), and participates in a wide variety of physiological reactions. It is well known that NO produces S-nitrosylation and NO2-Tyr of important antioxidant-related proteins, with this being an important mechanism for maintaining the antioxidant capacity of the AsA/GSH cycle under nitro-oxidative conditions, as extensively reviewed here under different abiotic stress conditions. Lastly, in this review, we show the coordinated actions between NO and MET as a long-range signaling molecule, regulating many responses in plants, including plant growth and abiotic stress tolerance. Despite all the knowledge acquired over the years, there is still more to know about how MET and NO act on the tolerance of plants to abiotic stresses.
Collapse
|
33
|
Exogenous supplementation of melatonin alters representative organic acids and enzymes of respiratory cycle as well as sugar metabolism during arsenic stress in two contrasting indica rice cultivars. J Biotechnol 2020; 324:220-232. [PMID: 33068698 DOI: 10.1016/j.jbiotec.2020.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022]
Abstract
The objective of the present investigation was to understand the impact of exogenously applied melatonin on mitochondrial respiration and sugar metabolism in two contrasting rice cultivars, viz., Khitish (arsenic-susceptible) and Muktashri (arsenic-tolerant) under arsenic-stress. Melatonin effectively restored the level of organic acids like pyruvic acid, malic acid and more particularly citric acid by 33 % in Khitish which were lowered during arsenic-stress, whereas their levels were further elevated in Muktashri to provide energy for defence against arsenic-induced injury. Arsenic-exposure led to a significant inhibition in enzyme activities as well as corresponding transcript level of key respiratory enzymes, viz., pyruvate dehydrogenase, citrate synthase, isocitrate dehydrogenase, succinate dehydrogenase and malate dehydrogenase, intriguingly more prominently in case of Khitish. Conversely, melatonin supplementation, irrespective of cultivars, considerably improved the activity of the above enzymes and corresponding gene expressions during stress, indicating acceleration in the rate of Krebs cycle. Melatonin supplementation also stimulated the accumulation of total soluble sugars by 62 % and 25 %, reducing sugars by 50 % and 44 % and non-reducing sugars by 75 % and 14 % in Khitish and Muktashri respectively, concomitant with higher activities of acid invertase, sucrose synthase and sucrose phosphate synthase enzymes, along with the expression of corresponding genes. Enhanced starch accumulation via regulation of alpha amylase and starch phosphorylase activities and gene expression, by melatonin also contributed towards better stress tolerance. Overall, this work illustrated the efficacy of melatonin in the regulation of representative organic acids and enzymes of respiratory cycle along with starch and sugar metabolism in rice cultivars under arsenic toxicity.
Collapse
|
34
|
Al-Huqail AA, Khan MN, Ali HM, Siddiqui MH, Al-Huqail AA, AlZuaibr FM, Al-Muwayhi MA, Marraiki N, Al-Humaid LA. Exogenous melatonin mitigates boron toxicity in wheat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110822. [PMID: 32534334 DOI: 10.1016/j.ecoenv.2020.110822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/05/2020] [Accepted: 05/27/2020] [Indexed: 05/03/2023]
Abstract
Boron (B) toxicity is an important abiotic constraint that limits crop productivity mainly in arid and semi-arid areas of the world. High levels of B in soil disturbs several physiological and biochemical processes in plant. The aim of this study was to investigate the function of melatonin (Mel) in the regulation of carbohydrate and proline (Pro) metabolism, photosynthesis process and antioxidant system of wheat seedlings under B toxicity conditions. High levels of B inhibited net photosynthetic rate (PN), stomatal conductance (gs), content of chlorophyll (Chl) a, b, δ-aminolevulinic acid (δ-ALA), nitrogen (N) and phosphorus (P), and increased accumulation of B, Chl degradation and activity of chlorophyllase (Chlase; a Chl degrading enzyme), and downregulated the activity of enzymes (δ-ALAD; δ-aminolevulinic acid dehydratase) involved in the biosynthesis of photosynthesis pigments, photosynthesis (carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase) and carbohydrate metabolism (cell wall invertase, CWI) in wheat seedlings. Also, high levels of B caused oxidative damage by increasing the content of malondialdehyde, superoxide anion and H2O2, and activity of glycolate oxidase (an H2O2-producing enzyme) in leaves of seedlings. However, foliar application of Mel significantly improved photosynthetic pigments concentration by increasing δ-ALA, δ-ALAD and decreasing Chl degradation and Chlase activity and led to an increase of plant growth attributes under both B toxicity and non-toxicity conditions. Under normal and B toxicity conditions, exogenous Mel also improved content of N, P, total soluble carbohydrates (TSCs) and Pro, and upregulated activity of CWI and Δ1-pyrroline-5-carboxylate synthetase. Mel significantly suppressed the adverse effects of excess B by alleviating cellular oxidative damage through enhanced reactive oxygen species scavenging by superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and lipoxygenase, and content of total phenolic compounds (TPC), ascorbate and reduced glutathione. These results postulate that Mel induced plant defense mechanisms by enhancing Pro, TSCs, TPC, nutrients (N and P) uptake and enzymatic and non-enzymatic antioxidants.
Collapse
Affiliation(s)
- Asma A Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - M Nasir Khan
- Department of Biology, Faculty of Science, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Hayssam M Ali
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Arwa A Al-Huqail
- Department of Biology, Princess Nourah Bint Abdulrahman University, 13324-8824, Riyadh, Saudi Arabia
| | - Fahad M AlZuaibr
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mohammed A Al-Muwayhi
- Department of Physics and Chemistry, Faculty of Science, Shaqra Univeristy, Shaqra, 11961, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - L A Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| |
Collapse
|
35
|
Sun Q, Liu L, Zhang L, Lv H, He Q, Guo L, Zhang X, He H, Ren S, Zhang N, Zhao B, Guo YD. Melatonin promotes carotenoid biosynthesis in an ethylene-dependent manner in tomato fruits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110580. [PMID: 32771141 DOI: 10.1016/j.plantsci.2020.110580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 05/27/2023]
Abstract
In tomato, red color is a key commercial trait and arises from the accumulation of carotenoids. Previous studies have revealed that melatonin promotes lycopene accumulation and ethylene production. However, it is unclear if melatonin similarly increases other carotenoids, and whether any increase of carotenoids in tomato fruit is directly related to ethylene production. In this study, changes in carotenoid profiles during fruit ripening were investigated in control (CK) and in fruits treated with melatonin (M50). The α, β-carotene, and lycopene levels were significantly increased in M50, and there was increased carotenoid biosynthetic gene expression. We also observed up-regulated transcript levels of SlRIN, SlCNR, and SlNOR in M50 compared to CK. To better understand the regulation of carotenoid biosynthesis by melatonin and its potential response to endogenous ethylene, we tested an ethylene-insensitive mutant, Never ripe (Nr). Melatonin-treated Nr failed to accumulate more carotenoids compared to CK, although there was significantly changed ethylene production. Additionally, there was no general upregulation of expression of ripening-related genes in this mutant under melatonin treatment. These results suggest melatonin function might require ethylene to promote carotenoid synthesis in tomato.
Collapse
Affiliation(s)
- Qianqian Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China
| | - Lun Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hongmei Lv
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qing He
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Luqin Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xichun Zhang
- College of Plant Science & Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Hongju He
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, Petersburg, VA, USA
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
36
|
The Morphoregulatory Role of Thidiazuron: Metabolomics-Guided Hypothesis Generation for Mechanisms of Activity. Biomolecules 2020; 10:biom10091253. [PMID: 32872300 PMCID: PMC7564436 DOI: 10.3390/biom10091253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 11/20/2022] Open
Abstract
Thidiazuron (TDZ) is a diphenylurea synthetic herbicide and plant growth regulator used to defoliate cotton crops and to induce regeneration of recalcitrant species in plant tissue culture. In vitro cultures of African violet thin petiole sections are an ideal model system for studies of TDZ-induced morphogenesis. TDZ induces de novo shoot organogenesis at low concentrations and somatic embryogenesis at higher concentrations of exposure. We used an untargeted metabolomics approach to identify metabolites in control and TDZ-treated tissues. Statistical analysis including metabolite clustering, pattern and pathway tools, logical algorithms, synthetic biotransformations and hormonomics identified TDZ-induced changes in metabolism. A total of 18,602 putative metabolites with extracted masses and predicted formulae were identified with 1412 features that were found only in TDZ-treated tissues and 312 that increased in response to TDZ. The monomer of TDZ was not detected intact in the tissues but putative oligomers were found in the database and we hypothesize that these may form by a Diels–Alder reaction. Accumulation oligomers in the tissue may act as a reservoir, slowly releasing the active TDZ monomer over time. Cleavage of the amide bridge released TDZ-metabolites into the tissues including organic nitrogen and sulfur containing compounds. Metabolomics data analysis generated six novel hypotheses that can be summarized as an overall increase in uptake of sugars from the culture media, increase in primary metabolism, redirection of terpene metabolism and mediation of stress metabolism via indoleamine and phenylpropanoid metabolism. Further research into the specific mechanisms hypothesized is likely to unravel the mode of action of TDZ and to provide new insights into the control of plant morphogenesis.
Collapse
|
37
|
Akula R, Mukherjee S. New insights on neurotransmitters signaling mechanisms in plants. PLANT SIGNALING & BEHAVIOR 2020; 15:1737450. [PMID: 32375557 PMCID: PMC8570756 DOI: 10.1080/15592324.2020.1737450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 05/31/2023]
Abstract
Neurotransmitters (NTs) such as acetylcholine, biogenic amines (dopamine, noradrenaline, adrenaline, histamine), indoleamines [(melatonin (MEL) & serotonin (SER)] have been found not only in mammalians, but also in diverse living organisms-microorganisms to plants. These NTs have emerged as potential signaling molecules in the last decade of investigations in various plant systems. NTs have been found to play important roles in plant life including-organogenesis, flowering, ion permeability, photosynthesis, circadian rhythm, reproduction, fruit ripening, photomorphogenesis, adaptation to environmental changes. This review will provide an overview of recent advancements on the physiological and molecular mechanism of NTs in plants. Moreover, molecular crosstalk of SER and MEL with various biomolecules is also discussed. The study of these NTs may serve as new understanding of the mechanisms of signal transmission and cell sensing in plants subjected to various environmental stimulus.
Collapse
Affiliation(s)
- Ramakrishna Akula
- Bayer Crop Science division, Vegetable R & D Department, Chikkaballapur, India
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, Kalyani, India
| |
Collapse
|
38
|
Erland LAE, Turi CE, Saxena PK, Murch SJ. Metabolomics and hormonomics to crack the code of filbert growth. Metabolomics 2020; 16:62. [PMID: 32335734 DOI: 10.1007/s11306-020-01684-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Plants respond to changes in their environments through hormonal activation of a physiological cascade that redirects metabolic resources and growth. In filberts (Corylus sp.), chelated iron promotes the growth of new shoots but the mechanism(s) are not understood. OBJECTIVES To use untargeted metabolomics and hormonomics approaches to generate novel hypotheses for the morphoregulatory role of ferric ethylenediamine-N,N'-di-(ortho-hydroxyphenyl) acetic acid (Fe-EDDHA) in filbert shoot organogenesis in vitro. METHODS Data were generated using previously optimized standardized untargeted metabolomics protocols with time of flight mass spectrometry. Multivariate statistical tools (principal component and partial least squares discriminant analysis) did not detect significant differences. Discovery tools Significance Analysis of Microarrays (SAM), multiple linear regression analysis, Bayesian analysis, logical algorithms, machine learning, synthetic biotransformations, targeted hormonomics, and online resources including MetaboAnalyst were used. RESULTS Starch/sucrose metabolism and shikimate pathway metabolites were increased. Dose dependent decreases were found in polyphenol metabolism, specifically ellagic acid and its methylated derivative 3,4,3'-tri-O-methylellagic acid. Hormonomics analysis revealed significant differences in phytohormones and their conjugates. FeEDDHA treatment reduced indole-3-acetic acid, abscisic acid, salicylic acid, jasmonic acid conjugates (JA-Trp, JA-Ile, OH-JA) and dihydrozeatinglucoside in regenerating explants. Serotonin (5HT) was decreased in FeEDDHA-treated regenerating tissues while the related metabolite melatonin was increased. Eight phenolic conjugates of 5HT and eight catabolites were affected by FeEDDHA indicating that metabolism to sequester, deactivate and metabolize 5HT was induced by Fe(III). Tryptophan was metabolized through kynurenine but not anthranilate. CONCLUSION Seven novel hypotheses were generated to guide future studies to understand the regulatory control(s) of shoot organogenesis.
Collapse
Affiliation(s)
- Lauren A E Erland
- Department of Chemistry, University of British Columbia, Room 350 Fipke Centre, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Christina E Turi
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Praveen K Saxena
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Susan J Murch
- Department of Chemistry, University of British Columbia, Room 350 Fipke Centre, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
39
|
Towards a Sustainable Agriculture: Strategies Involving Phytoprotectants against Salt Stress. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Salinity is one of the main constraints for agriculture productivity worldwide. This important abiotic stress has worsened in the last 20 years due to the increase in water demands in arid and semi-arid areas. In this context, increasing tolerance of crop plants to salt stress is needed to guarantee future food supply to a growing population. This review compiles knowledge on the use of phytoprotectants of microbial origin (arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria), osmoprotectants, melatonin, phytohormones and antioxidant metabolism-related compounds as alleviators of salt stress in numerous plant species. Phytoprotectants are discussed in detail, including their nature, applicability, and role in the plant in terms of physiological and phenotype effects. As a result, increased crop yield and crop quality can be achieved, which in turn positively impact food security. Herein, efforts from academic and industrial sectors should focus on defining the treatment conditions and plant-phytoprotectant associations providing higher benefits.
Collapse
|
40
|
Liu Z, Marella CBN, Hartmann A, Hajirezaei MR, von Wirén N. An Age-Dependent Sequence of Physiological Processes Defines Developmental Root Senescence. PLANT PHYSIOLOGY 2019; 181:993-1007. [PMID: 31515448 PMCID: PMC6836830 DOI: 10.1104/pp.19.00809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/02/2019] [Indexed: 05/22/2023]
Abstract
Aging-related processes in plant tissues are associated with changes in developmental and physiological processes relevant for stress tolerance and plant performance. While senescence-regulated processes have been extensively characterized in leaves, they remain poorly described in roots. Here, we investigated the physiological processes and molecular determinants underlying the senescence of seminal roots in hydroponically grown barley (Hordeum vulgare). Transcriptome profiling in apical and basal root tissues revealed that several NAC-, WRKY-, and APETALA2 (AP2)-type transcription factors were upregulated just before the arrest of root elongation, when root cortical cell lysis and nitrate uptake, as well as cytokinin concentrations ceased. At this time point, root abscisic acid levels peaked, suggesting that abscisic acid is involved in root aging-related processes characterized by expression changes of genes involved in oxidative stress responses. This temporal sequence of aging-related processes in roots is highly reminiscent of typical organ senescence, with the exception of evidence for the retranslocation of nutrients from roots. Supported by the identification of senescence-related transcription factors, some of which are not expressed in leaves, our study indicates that roots undergo an intrinsic genetically determined senescence program, predominantly influenced by plant age.
Collapse
Affiliation(s)
- Zhaojun Liu
- Molecular Plant Nutrition, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Chakravarthy B N Marella
- Molecular Plant Nutrition, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Anja Hartmann
- Molecular Plant Nutrition, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Mohammad R Hajirezaei
- Molecular Plant Nutrition, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany vonwiren@ipk-gatersleben
| |
Collapse
|
41
|
Erland LAE, Saxena P. Auxin driven indoleamine biosynthesis and the role of tryptophan as an inductive signal in Hypericum perforatum (L.). PLoS One 2019; 14:e0223878. [PMID: 31622392 PMCID: PMC6797091 DOI: 10.1371/journal.pone.0223878] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/01/2019] [Indexed: 11/19/2022] Open
Abstract
In the 60 years since Skoog and Miller first reported the chemical redirection of plant growth the underlying biochemical mechanisms are still poorly understood, with one challenge being the capacity for applied growth regulators to act indirectly or be metabolized to active phytohormones. We hypothesized that tryptophan is metabolized to auxin, melatonin or serotonin inducing organogenesis in St. John's wort (Hypericum perforatum L.). Root explants from two germplasm lines of St. John's wort with altered melatonin metabolism and wildtype were incubated with auxin or tryptophan for 24, 48 or 72 h to induce regeneration. In wildtype, tryptophan had little effect on the indoleamine pathway, and was found to promote primary growth, suggesting excess tryptophan moved quickly through various secondary metabolite pathways and protein synthesis. In lines 4 and 112 tryptophan was associated with modified morphogenesis, indoleamine and auxin levels. Incubation with tryptophan increased shoot organogenesis while incubation with auxin led to root regeneration. The established paradigm of thought views tryptophan primarily as a precursor for auxin and indoleamines, among other metabolites, and mediation of auxin action by the indoleamines as a one-way interaction. We propose that these processes run in both directions with auxin modifying indoleamine biosynthesis and the melatonin:serotonin balance contributing to its effects on plant morphogenesis, and that tryptophan also functions as an inductive signal to mediate diverse phytochemical and morphogenetic pathways.
Collapse
Affiliation(s)
- Lauren A. E. Erland
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, Ontario, Canada
| | - Praveen Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Melatonin as a Chemical Substance or as Phytomelatonin Rich-Extracts for Use as Plant Protector and/or Biostimulant in Accordance with EC Legislation. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9100570] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous molecule present in animals and plants, and also in bacteria and fungi. In plants, it has an important regulatory and protective role in the face of different stress situations in which it can be involved, mainly due to its immobility. Both in the presence of biotic and abiotic stressors, melatonin exerts protective action in which, through significant changes in gene expression, it activates a stress tolerance response. Its anti-stress role, along with other outstanding functions, suggests its possible use in active agricultural management. This review establishes considerations that are necessary for its possible authorization. The particular characteristics of this substance and its categorization as plant biostimulant are discussed, and also the different legal aspects within the framework of the European Community. The advantages and disadvantages are also described of two of its possible applications, as a plant protector or biostimulant, in accordance with legal provisions.
Collapse
|
43
|
Salehi B, Sharopov F, Fokou PVT, Kobylinska A, Jonge LD, Tadio K, Sharifi-Rad J, Posmyk MM, Martorell M, Martins N, Iriti M. Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells 2019; 8:cells8070681. [PMID: 31284489 PMCID: PMC6678868 DOI: 10.3390/cells8070681] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a widespread molecule among living organisms involved in multiple biological, hormonal, and physiological processes at cellular, tissue, and organic levels. It is well-known for its ability to cross the blood–brain barrier, and renowned antioxidant effects, acting as a free radical scavenger, up-regulating antioxidant enzymes, reducing mitochondrial electron leakage, and interfering with proinflammatory signaling pathways. Detected in various medicinal and food plants, its concentration is widely variable. Plant generative organs (e.g., flowers, fruits), and especially seeds, have been proposed as having the highest melatonin concentrations, markedly higher than those found in vertebrate tissues. In addition, seeds are also rich in other substances (lipids, sugars, and proteins), constituting the energetic reserve for a potentially growing seedling and beneficial for the human diet. Thus, given that dietary melatonin is absorbed in the gastrointestinal tract and transported into the bloodstream, the ingestion of medicinal and plant foods by mammals as a source of melatonin may be conceived as a key step in serum melatonin modulation and, consequently, health promotion.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, 73400 Dushanbe, Tajikistan
| | | | - Agnieszka Kobylinska
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Lilian de Jonge
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Kathryn Tadio
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Malgorzata M Posmyk
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
| | - Natália Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy.
| |
Collapse
|
44
|
Analysis of the ASMT Gene Family in Pepper ( Capsicum annuum L.): Identification, Phylogeny, and Expression Profiles. Int J Genomics 2019; 2019:7241096. [PMID: 31065551 PMCID: PMC6466892 DOI: 10.1155/2019/7241096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022] Open
Abstract
Acetylserotonin methyltransferase (ASMT) in plant species, one of the most important enzymes in melatonin biosynthesis, plays a rate-limiting role in the melatonin production. In this study, based on the whole genome sequence, we performed a systematic analysis for the ASMT gene family in pepper (Capsicum annuum L.) and analyzed their expression profiles during growth and development, as well as abiotic stresses. The results showed that at least 16 CaASMT genes were identified in the pepper genome. Phylogenetic analyses of all the CaASMTs were divided into three groups (group I, group II, and group III) with a high bootstrap value. Through the online MEME tool, six distinct motifs (motif 1 to motif 6) were identified. Chromosome location found that most CaASMT genes were mapped in the distal ends of the pepper chromosomes. In addition, RNA-seq analysis revealed that, during the vegetative and reproductive development, the difference in abundance and distinct expression patterns of these CaASMT genes suggests different functions. The qRT-PCR analysis showed that high abundance of CaASMT03, CaASMT04, and CaASMT06 occurred in mature green fruit and mature red fruit. Finally, using RNA-seq and qRT-PCR technology, we also found that several CaASMT genes were induced under abiotic stress conditions. The results will not only contribute to elucidate the evolutionary relationship of ASMT genes but also ascertain the biological function in pepper plant response to abiotic stresses.
Collapse
|
45
|
Zhang H, Wang L, Shi K, Shan D, Zhu Y, Wang C, Bai Y, Yan T, Zheng X, Kong J. Apple tree flowering is mediated by low level of melatonin under the regulation of seasonal light signal. J Pineal Res 2019; 66:e12551. [PMID: 30597595 DOI: 10.1111/jpi.12551] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 12/14/2022]
Abstract
Melatonin regulates the seasonal reproduction in photoperiodic sensitive animals. Its function in plants reproduction has not been extensively studied. In the current study, the effects of melatonin on the apple tree flowering have been systematically investigated. For consecutive 2-year monitoring, it was found that the flowering was always associated with the drop of melatonin level in apple tree. Melatonin application before flowering postponed apple tree flowering with a dose-dependent manner. The increased melatonin levels at a suitable range also resulted in more flowering. The data indicated that similar to the animals, the melatonin also serves as the signal of the environmental light to regulate the plant reproduction. It was mainly the blue and far-red light to regulate the gene expression of melatonin synthetic enzymes and melatonin production in plants. The seasonal alterations of the blue and far-red lights coordinated well with the changes of the melatonin levels and led to decreased melatonin level before flowering. The mechanism studies showed that melatonin per se inhibits all the four flowering pathways in apple. The results not only provide the basic knowledge for melatonin research, but also uncover melatonin as a chemical message of light signal to mediate plant reproduction. This information can be potentially used to control flowering period and prolong the harvest time, helpfully to open a new avenue for increasing crop yield by melatonin application.
Collapse
Affiliation(s)
- Haixia Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing, China
| | - Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yunpeng Zhu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Chanyu Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yixue Bai
- College of Horticulture, China Agricultural University, Beijing, China
| | - Tianci Yan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D. Melatonin Mediates Enhancement of Stress Tolerance in Plants. Int J Mol Sci 2019; 20:E1040. [PMID: 30818835 PMCID: PMC6429401 DOI: 10.3390/ijms20051040] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a multifunctional signaling molecule, ubiquitously distributed in different parts of plants and responsible for stimulating several physiological responses to adverse environmental conditions. In the current review, we showed that the biosynthesis of melatonin occurred in plants by themselves, and accumulation of melatonin fluctuated sharply by modulating its biosynthesis and metabolic pathways under stress conditions. Melatonin, with its precursors and derivatives, acted as a powerful growth regulator, bio-stimulator, and antioxidant, which delayed leaf senescence, lessened photosynthesis inhibition, and improved redox homeostasis and the antioxidant system through a direct scavenging of reactive oxygen species (ROS) and reactive nitrogen species (RNS) under abiotic and biotic stress conditions. In addition, exogenous melatonin boosted the growth, photosynthetic, and antioxidant activities in plants, confirming their tolerances against drought, unfavorable temperatures, salinity, heavy metals, acid rain, and pathogens. However, future research, together with recent advancements, would support emerging new approaches to adopt strategies in overcoming the effect of hazardous environments on crops and may have potential implications in expanding crop cultivation against harsh conditions. Thus, farming communities and consumers will benefit from elucidating food safety concerns.
Collapse
Affiliation(s)
- Biswojit Debnath
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
- Department of Horticulture, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Waqar Islam
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Min Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Yueting Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Xiaocao Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Sangeeta Mitra
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Mubasher Hussain
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Shuang Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
47
|
Siddiqui MH, Alamri S, Al-Khaishany MY, Khan MN, Al-Amri A, Ali HM, Alaraidh IA, Alsahli AA. Exogenous Melatonin Counteracts NaCl-Induced Damage by Regulating the Antioxidant System, Proline and Carbohydrates Metabolism in Tomato Seedlings. Int J Mol Sci 2019; 20:E353. [PMID: 30654468 PMCID: PMC6358940 DOI: 10.3390/ijms20020353] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
Melatonin, a natural agent, has multiple functions in animals as well as in plants. However, its possible roles in plants under abiotic stress are not clear. Nowadays, soil salinity is a major threat to global agriculture because a high soil salt content causes multiple stresses (hyperosmotic, ionic, and oxidative). Therefore, the aim of the present study was to explore: (1) the involvement of melatonin in biosynthesis of photosynthetic pigments and in regulation of photosynthetic enzymes, such as carbonic anhydrase (CA) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco); (2) the role of melatonin in osmoregulation by proline and carbohydrate metabolism; and (3) the function of melatonin in the antioxidant defense system under salinity. Outcomes of the study reveal that under non-saline conditions, application of melatonin (20 and 50 µM) improved plant growth, viz. shoot length, root length, shoot fresh weight (FW), root FW, shoot dry weight (DW), root DW and leaf area and physio-biochemical parameters [chlorophyll (Chl) a and b, proline (Pro) and total soluble carbohydrates (TSC) content, and increased the activity of CA and Rubisco]. However, tomato seedlings treated with NaCl exhibited enhanced Chl degradation, electrolyte leakage (EL), malondialdehyde (MDA) and reactive oxygen species (ROS; superoxide and hydrogen peroxide). ROS were detected in leaf and root. Interestingly, application of melatonin improved plant growth and reduced EL, MDA and ROS levels through upregulation of photosynthesis enzymes (CA, Rubisco), antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase and ascorbate reductase) and levels of non-enzymatic antioxidants [ascorbate (ASC) and reduced glutathione (GSH)], as well as by affecting the ASC-GSH cycle. Additionally, exogenous melatonin also improved osmoregulation by increasing the content of TSC, Pro and Δ¹-pyrroline-5-carboxylate synthetase activity. These results suggest that melatonin has beneficial effects on tomato seedlings growth under both stress and non-stress conditions. Melatonin's role in tolerance to salt stress may be associated with the regulation of enzymes involved in photosynthesis, the antioxidant system, metabolism of proline and carbohydrate, and the ASC-GSH cycle. Also, melatonin could be responsible for maintaining the high ratios of GSH/GSSG and ASC/DHA.
Collapse
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Mutahhar Y Al-Khaishany
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - M Nasir Khan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Abdullah Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Ibrahim A Alaraidh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Abdulaziz A Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| |
Collapse
|
48
|
Erland LAE, Yasunaga A, Li ITS, Murch SJ, Saxena PK. Direct visualization of location and uptake of applied melatonin and serotonin in living tissues and their redistribution in plants in response to thermal stress. J Pineal Res 2019; 66:e12527. [PMID: 30267543 DOI: 10.1111/jpi.12527] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/10/2018] [Accepted: 09/21/2018] [Indexed: 12/29/2022]
Abstract
Melatonin and serotonin are important phytochemicals enabling plants to redirect growth in response to environmental stresses. Despite much research on their biosynthetic routes, localization of their biosynthetic enzymes and recent identification of a phytomelatonin receptor, localization of the molecules themselves has to date not been possible. Elucidation of their locations in living tissues can provide an effective tool to facilitate indolamine research across systems including both plants and animals. In this study, we employed a novel technique, quantum dot nanoparticles, to directly visualize melatonin and serotonin in axenic roots. Melatonin was absorbed through epidermal cells, travelled laterally, and accumulated in endodermal and rapidly dividing pericycle cells. Serotonin was absorbed by cells proximal to the crown with rapid polar movement toward the root tip. Thermal stress disrupted localization and dispersed melatonin and serotonin across cells. These data demonstrate the natural movement of melatonin and serotonin in roots directing cell growth and suggest that plants have a mechanism to disperse the indolamines throughout tissues as antioxidants in response to environmental stresses.
Collapse
Affiliation(s)
| | - Adam Yasunaga
- University of British Columbia, Chemistry, Kelowna, British Columbia, Canada
| | - Isaac T S Li
- University of British Columbia, Chemistry, Kelowna, British Columbia, Canada
| | - Susan J Murch
- University of British Columbia, Chemistry, Kelowna, British Columbia, Canada
| | - Praveen K Saxena
- Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
49
|
Xiong F, Zhuo F, Reiter RJ, Wang L, Wei Z, Deng K, Song Y, Qanmber G, Feng L, Yang Z, Li F, Ren M. Hypocotyl Elongation Inhibition of Melatonin Is Involved in Repressing Brassinosteroid Biosynthesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1082. [PMID: 31616446 PMCID: PMC6775476 DOI: 10.3389/fpls.2019.01082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/08/2019] [Indexed: 05/03/2023]
Abstract
Melatonin functions as a plant hormone/regulator in the regulation of growth and development. However, the underlying mechanisms are still unclear. In this study, we found that a high dose of melatonin inhibited hypocotyl elongation in a dose-dependent manner in Arabidopsis. An expression profile analysis showed that hypocotyl growth inhibition by melatonin was involved in reprograming the expression of cell elongation genes and brassinosteroid (BRs) biosynthetic genes. Furthermore, similar to BR biosynthetic inhibitor brassinazole (BRZ), a high concentration of melatonin upregulated BR-biosynthetic genes and downregulated BR-induced genes involved in cell elongation, while melatonin was inefficient in brassinazole-resistant mutants like the bzr1-1D and bes1-D in hypocotyl inhibition. The comparative expression profile analysis showed an opposite expression mode in the co-regulated genes between melatonin and BZR1 or melatonin and brassinolide (BL). Additionally, exogenous BL rescued the repressive phenotype of BR biosynthesis-deficient mutant like det2-1 even in the presence of high-dose melatonin, but not BR receptor mutant bri1-5 or signal transduction mutant bin2-1. A biochemical analysis further confirmed that melatonin reduced endogenous BR levels in a dose-dependent manner in Arabidopsis. Taken together, these results indicate that melatonin inhibits BR biosynthesis but does not block BR signaling in the inhibition of hypocotyl elongation and extends insights on the role of melatonin in cross-talking with plant hormone signaling.
Collapse
Affiliation(s)
- Fangjie Xiong
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Fengping Zhuo
- School of Life Sciences, Chongqing University, Chongqing, China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
| | - Lingling Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhenzhen Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kexuan Deng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yun Song
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Fuguang Li, ; Maozhi Ren,
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
- *Correspondence: Fuguang Li, ; Maozhi Ren,
| |
Collapse
|
50
|
Determination of serotonin in nuts and nut containing products by liquid chromatography tandem mass spectrometry. Food Chem 2019; 272:347-353. [DOI: 10.1016/j.foodchem.2018.08.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 01/22/2023]
|