1
|
Guo Y, Yuan Y, Wang R, Bai J, Jia Y, Qiu X, Niu H, Li L, Luo Y, Zhao B, Zhang Z. Monocrotaline-mediated autophagy via inhibiting PI3K/AKT/mTOR pathway induces apoptosis in rat hepatocytes. Front Pharmacol 2024; 15:1499116. [PMID: 39494350 PMCID: PMC11527718 DOI: 10.3389/fphar.2024.1499116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Monocrotaline (MCT), a major pyrrolizidine alkaloid, is well-known for its high liver toxicity. Dysregulation of autophagy induced apoptosis can lead to various liver diseases, including those induced by chemical compounds. Therefore, we aim to explore whether autophagy might serve as a potential strategy for addressing liver apoptosis caused by MCT. In primary rat hepatocytes (PRHs), MCT significantly increased the number of autophagosomes and the expression levels of LC3II, Becline-1, and Atg5, while it decreased the expression of p62 in a concentration-dependent manner at doses of 100, 200, 300, and 400 μM. Western blot assays revealed MCT inhibited the phosphorylation levels of the PI3K/AKT/mTOR pathway. To elucidate the role of autophagy in mediating MCT-induced apoptosis, we further pretreated PRHs with the autophagy agonist Rapamycin and the inhibitors Bafilomycin A1 and Chloroquine, respectively, and assessed the apoptosis of PRHs induced by MCT. The results displayed that Rapamycin increased the apoptosis rate and the expression of cleaved caspase-3, whereas Bafilomycin A1 and Chloroquine reduced the apoptosis and the expression of cleaved caspase-3 in PRHs. This study confirms that autophagy enhances PRHs apoptosis induced by MCT. In summary, this study demonstrates that MCT-induced autophagy via inhibition of the PI3K/AKT/mTOR pathway can lead to apoptosis in PRHs.
Collapse
Affiliation(s)
- Yazhou Guo
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational and Technical College, Yangling, Shaanxi, China
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Yang Yuan
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Ruibo Wang
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Jun Bai
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Yanqing Jia
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Xinxin Qiu
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Huafeng Niu
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Long Li
- The Youth Innovation Team of Shaanxi Universities, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Yan Luo
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shaanxi Province, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhencang Zhang
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Végh R, Csóka M, Sörös C, Sipos L. Underexplored food safety hazards of beekeeping products: Key knowledge gaps and suggestions for future research. Compr Rev Food Sci Food Saf 2024; 23:e13404. [PMID: 39136999 DOI: 10.1111/1541-4337.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 08/15/2024]
Abstract
These days, a growing consumer demand and scientific interest can be observed for nutraceuticals of natural origin, including apiculture products. Due to the growing emphasis on environmental protection, extensive research has been conducted on the pesticide and heavy metal contamination of bee products; however, less attention is devoted on other food safety aspects. In our review, scientific information on the less-researched food safety hazards of honey, bee bread, royal jelly, propolis, and beeswax are summarized. Bee products originating from certain plants may inherently contain phytotoxins, like pyrrolizidine alkaloids, tropane alkaloids, matrine alkaloids, grayanotoxins, gelsemium alkaloids, or tutin. Several case studies evidence that bee products can induce allergic responses to sensitive individuals, varying from mild to severe symptoms, including the potentially lethal anaphylaxis. Exposure to high temperature or long storage may lead to the formation of the potentially toxic 5-hydroxymethylfurfural. Persistent organic pollutants, radionuclides, and microplastics can potentially be transferred to bee products from contaminated environmental sources. And lastly, inappropriate beekeeping practices can lead to the contamination of beekeeping products with harmful microorganisms and mycotoxins. Our review demonstrates the necessity of applying good beekeeping practices in order to protect honeybees and consumers of their products. An important aim of our work is to identify key knowledge gaps regarding the food safety of apiculture products.
Collapse
Affiliation(s)
- Rita Végh
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Mariann Csóka
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Csilla Sörös
- Department of Food Chemistry and Analysis Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - László Sipos
- Department of Postharvest, Institute of Food Science and Technology, Commercial and Sensory Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
- Institute of Economics, Centre of Economic and Regional Studies, Hungarian Research Network (HUN-REN), Budapest, Hungary
| |
Collapse
|
3
|
Dubreil E, Darney K, Delignette-Muller ML, Barranger A, Huet S, Hogeveen K, Léger T, Fessard V, Hégarat LL. Modeling HepaRG metabolome responses to pyrrolizidine alkaloid exposure for insight into points of departure and modes of action. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134721. [PMID: 38843629 DOI: 10.1016/j.jhazmat.2024.134721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
The new challenges in toxicology demand novel and innovative in vitro approaches for deriving points of departure (PODs) and determining the mode of action (MOA) of chemicals. Therefore, the aim of this original study was to couple in vitro studies with untargeted metabolomics to model the concentration-response of extra- and intracellular metabolome data on human HepaRG cells treated for 48 h with three pyrrolizidine alkaloids (PAs): heliotrine, retrorsine and lasiocarpine. Modeling revealed that the three PAs induced various monotonic and, importantly, biphasic curves of metabolite content. Based on unannotated metabolites, the endometabolome was more sensitive than the exometabolome in terms of metabolomic effects, and benchmark concentrations (BMCs) confirmed that lasiocarpine was the most hepatotoxic PA. Regarding its MOA, impairment of lipid metabolism was highlighted at a very low BMC (first quartile, 0.003 µM). Moreover, results confirmed that lasiocarpine targets bile acids, as well as amino acid and steroid metabolisms. Analysis of the endometabolome, based on coupling concentration-response and PODs, gave encouraging results for ranking toxins according to their hepatotoxic effects. Therefore, this novel approach is a promising tool for next-generation risk assessment, readily applicable to a broad range of compounds and toxic endpoints.
Collapse
Affiliation(s)
- Estelle Dubreil
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France.
| | - Keyvin Darney
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department, 14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Marie-Laure Delignette-Muller
- University of Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne, France
| | - Audrey Barranger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Kevin Hogeveen
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Thibaut Léger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Ludovic Le Hégarat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| |
Collapse
|
4
|
Chen Y, Li L, Xu J, Liu Y, Xie Y, Xiong A, Wang Z, Yang L. Mass spectrometric analysis strategies for pyrrolizidine alkaloids. Food Chem 2024; 445:138748. [PMID: 38422865 DOI: 10.1016/j.foodchem.2024.138748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
Pyrrolizidine alkaloids (PAs) in food and natural preparations have received widespread attention due to their hepatotoxicity, genotoxicity, and embryotoxicity. Mass spectrometry (MS), as a high resolution, high sensitive, and high throughput detection tool, has been the most commonly used technique for the determination of PAs. The continuous advancement of new technologies, methods, and strategies in the field of MS has contributed to the improvement of the analytical efficiency and methodological enhancement of PAs. This paper provides an overview of the structure, toxicity properties and commonly employed analytical methods, focusing on the concepts, advances, and novel techniques and applications of MS-based methods for the analysis of PAs. Additionally, the remaining challenges, future perspectives, and trends for PA detection are discussed. This review provides a reference for toxicological studies of PAs, content monitoring, and the establishment of quality control and safety standards for herbal and food products.
Collapse
Affiliation(s)
- Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jie Xu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yamin Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqiao Xie
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Aizhen Xiong
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Klein LM, Lamp J, Schopf C, Gabler AM, Kaltner F, Guldimann C, Rychlik M, Schwake-Anduschus C, Knappstein K, Gottschalk C. Pyrrolizidine alkaloids and tropane alkaloids in milk samples from individual dairy farms of the German federal states of Bavaria and Schleswig-Holstein. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:629-647. [PMID: 38592240 DOI: 10.1080/19440049.2024.2336054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024]
Abstract
1,2-Dehydro-pyrrolizidine alkaloids (PA), their corresponding N-oxides (PANO) and tropane alkaloids (TA), are toxic plant metabolites. If plant material, containing these toxins, is present in the feed of dairy cows these toxins can be transferred into milk. Here, milk was sampled directly from dairy farms in the German federal states of Bavaria and Schleswig-Holstein in 2020-2022 in order to investigate a possible contamination of milk at the production stage. In total, 228 milk samples were analysed for 54 PA/PANO and two TA by a sensitive LC-ESI-MS/MS method. In addition, a subset of milk samples (n = 85) was independently analysed for TA by a cooperating laboratory for verification. PA/PANO were found in 26 samples (11%) with a low median sum content of the contaminated samples of 0.024 µg/L. The highest level of contamination was 5.6 µg/L. Senecionine-, lycopsamine- and heliotrine-type PA/PANO were detected. In four samples (1.8%), atropine was determined up to 0.066 µg/L. The toxin levels in the milk samples hardly contributed to the total daily exposure. These data are first-time results on contamination rates and levels occurring in milk from individual dairy farms, based on a large sample number.
Collapse
Affiliation(s)
- Lisa Monika Klein
- Chair of Food Safety and Analytics, Faculty of Veterinary Medicine, LMU in Munich, Munich, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Julika Lamp
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Christina Schopf
- Chair of Food Safety and Analytics, Faculty of Veterinary Medicine, LMU in Munich, Munich, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Angelika Miriam Gabler
- Chair of Food Safety and Analytics, Faculty of Veterinary Medicine, LMU in Munich, Munich, Germany
| | - Florian Kaltner
- Chair of Food Safety and Analytics, Faculty of Veterinary Medicine, LMU in Munich, Munich, Germany
| | - Claudia Guldimann
- Chair of Food Safety and Analytics, Faculty of Veterinary Medicine, LMU in Munich, Munich, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Christine Schwake-Anduschus
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Detmold, Germany
| | - Karin Knappstein
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Christoph Gottschalk
- Chair of Food Safety and Analytics, Faculty of Veterinary Medicine, LMU in Munich, Munich, Germany
| |
Collapse
|
6
|
Lehmann A, Geburek I, Hessel-Pras S, Enge AM, Mielke H, Müller-Graf C, Kloft C, Hethey C. PBTK model-based analysis of CYP3A4 induction and the toxicokinetics of the pyrrolizidine alkaloid retrorsine in man. Arch Toxicol 2024; 98:1757-1769. [PMID: 38528153 DOI: 10.1007/s00204-024-03698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Cytochrome P450 (CYP)3A4 induction by drugs and pesticides plays a critical role in the enhancement of pyrrolizidine alkaloid (PA) toxicity as it leads to increased formation of hepatotoxic dehydro-PA metabolites. Addressing the need for a quantitative analysis of this interaction, we developed a physiologically-based toxicokinetic (PBTK) model. Specifically, the model describes the impact of the well-characterized CYP3A4 inducer rifampicin on the kinetics of retrorsine, which is a prototypic PA and contaminant in herbal teas. Based on consumption data, the kinetics after daily intake of retrorsine were simulated with concomitant rifampicin treatment. Strongest impact on retrorsine kinetics (plasma AUC24 and C max reduced to 67% and 74% compared to the rifampicin-free reference) was predicted directly after withdrawal of rifampicin. At this time point, the competitive inhibitory effect of rifampicin stopped, while CYP3A4 induction was still near its maximum. Due to the impacted metabolism kinetics, the cumulative formation of intestinal retrorsine CYP3A4 metabolites increased to 254% (from 10 to 25 nmol), while the cumulative formation of hepatic CYP3A4 metabolites was not affected (57 nmol). Return to baseline PA toxicokinetics was predicted 14 days after stop of a 14-day rifampicin treatment. In conclusion, the PBTK model showed to be a promising tool to assess the dynamic interplay of enzyme induction and toxification pathways.
Collapse
Affiliation(s)
- Anja Lehmann
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Ina Geburek
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Anne-Margarethe Enge
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Hans Mielke
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Christine Müller-Graf
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Christoph Hethey
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
7
|
Schrenk D, Allemang A, Fahrer J, Harms H, Li X, Lin G, Mahony C, Mulder P, Peijnenburg A, Pfuhler S, Punt A, Sievers H, Troutman J, Widjaja F. Toxins in Botanical Drugs and Plant-derived Food and Feed - from Science to Regulation: A Workshop Review. PLANTA MEDICA 2024; 90:219-242. [PMID: 38198805 DOI: 10.1055/a-2218-5667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In September 2022, the 3rd International Workshop on pyrrolizidine alkaloids (PAs) and related phytotoxins was held on-line, entitled 'Toxins in botanical drugs and plant-derived food and feed - from science to regulation'. The workshop focused on new findings about the occurrence, exposure, toxicity, and risk assessment of PAs. In addition, new scientific results related to the risk assessment of alkenylbenzenes, a distinct class of herbal constituents, were presented. The presence of PAs and alkenylbenzenes in plant-derived food, feed, and herbal medicines has raised health concerns with respect to their acute and chronic toxicity but mainly related to the genotoxic and carcinogenic properties of several congeners. The compounds are natural constituents of a variety of plant families and species widely used in medicinal, food, and feed products. Their individual occurrence, levels, and toxic properties, together with the broad range of congeners present in nature, represent a striking challenge to modern toxicology. This review tries to provide an overview of the current knowledge on these compounds and indicates needs and perspectives for future research.
Collapse
Affiliation(s)
- Dieter Schrenk
- Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Ashley Allemang
- Central Product Safety, The Procter & Gamble Company, Mason, USA
| | - Jörg Fahrer
- Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Henrik Harms
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, USA
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Catherine Mahony
- Central Product Safety, Procter & Gamble Technical Centre, Reading, United Kingdom
| | - Patrick Mulder
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Stefan Pfuhler
- Central Product Safety, The Procter & Gamble Company, Mason, USA
| | - Ans Punt
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | | | - John Troutman
- Central Product Safety, The Procter & Gamble Company, Mason, USA
| | - Frances Widjaja
- Division of Toxicology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
8
|
Lu YS, Qiu J, Mu XY, Qian YZ, Chen L. Levels, Toxic Effects, and Risk Assessment of Pyrrolizidine Alkaloids in Foods: A Review. Foods 2024; 13:536. [PMID: 38397512 PMCID: PMC10888194 DOI: 10.3390/foods13040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are naturally occurring secondary metabolites of plants. To date, more than 660 types of PAs have been identified from an estimated 6000 plants, and approximately 120 of these PAs are hepatotoxic. As a result of PAs being found in spices, herbal teas, honey, and milk, PAs are considered contaminants in foods, posing a potential risk to human health. Here, we summarize the chemical structure, toxic effects, levels, and regulation of PAs in different countries to provide a better understanding of their toxicity and risk assessment. With recent research on the risk assessment of PAs, this review also discusses the challenges facing this field, aiming to provide a scientific basis for PA toxicity research and safety assessment.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Xi-Yan Mu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Lu Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| |
Collapse
|
9
|
Tábuas B, Cruz Barros S, Diogo C, Cavaleiro C, Sanches Silva A. Pyrrolizidine Alkaloids in Foods, Herbal Drugs, and Food Supplements: Chemistry, Metabolism, Toxicological Significance, Analytical Methods, Occurrence, and Challenges for Future. Toxins (Basel) 2024; 16:79. [PMID: 38393157 PMCID: PMC10892171 DOI: 10.3390/toxins16020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Consumers are increasingly seeking natural alternatives to chemical compounds, including the use of dried aromatic plants as seasonings instead of salt. However, the presence of pyrrolizidine alkaloids (PAs) in food supplements and dried plants has become a concern because of their link to liver diseases and their classification as carcinogenic by the International Agency for Research on Cancer (IARC). Despite European Union (EU) Regulation (EU) 2023/915, non-compliance issues persist, as indicated by alerts on the Rapid Alert System for Food and Feed (RASFF) portal. Analyzing PAs poses a challenge because of their diverse chemical structures and low concentrations in these products, necessitating highly sensitive analytical methods. Despite these challenges, ongoing advancements in analytical techniques coupled with effective sampling and extraction strategies offer the potential to enhance safety measures. These developments aim to minimize consumer exposure to PAs and safeguard their health while addressing the growing demand for natural alternatives in the marketplace.
Collapse
Affiliation(s)
- Bruna Tábuas
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
| | - Sílvia Cruz Barros
- National Institute for Agricultural and Veterinary Research (INIAV), I.P, 4485-655 Vila do Conde, Portugal
| | - Catarina Diogo
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
| | - Carlos Cavaleiro
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Ana Sanches Silva
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal (C.C.)
- Center for Study in Animal Science (CECA), Institute of Sciences, Technologies and Agro-Environment of the University of Porto (ICETA), University of Porto, 4501-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
10
|
Letsyo E, Madilo FK, Effah-Manu L. Pyrrolizidine alkaloid contamination of food in Africa: A review of current trends and implications. Heliyon 2024; 10:e24055. [PMID: 38230234 PMCID: PMC10789634 DOI: 10.1016/j.heliyon.2024.e24055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) contamination of foodstuffs has become a topical issue in recent years on account of its potential hepatotoxicity to consumers. This review therefore highlights human exposure to PAs across Africa, focusing on their occurrence, current trends of food contamination, and their associated health implications. A comprehensive search of peer-scientific literature and relevant databases, PubMed, Google Scholar, Science Direct, Web of Science and Scopus, was conducted from 2001 to 2023 focusing mainly on foodstuffs, including grains, herbs, teas, honey, and livestock products. The findings revealed that PA contamination is a prevalent issue in several African countries, with the primary sources of contamination attributed to the consumption of honey and the use of PA plants as herbs in food preparations. Additionally, poor farming practices have been found to influence the presence and levels of PAs in foodstuffs. To mitigate PA contamination in food and safeguarding public health across the continent, several strategies are proposed, including the implementation of stringent regulatory and quality control measures, adoption of Good Agricultural Practices, and public awareness campaigns to educate producers, consumers and beekeepers about the risks associated with PA-contaminated food products.
Collapse
Affiliation(s)
- Emmanuel Letsyo
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| | - Felix Kwashie Madilo
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| | - Liticia Effah-Manu
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| |
Collapse
|
11
|
Rollo E, Catellani D, Dall'Asta C, Suman M. QuEChERS method combined to liquid chromatography high-resolution mass spectrometry for the accurate and sensitive simultaneous determination of pyrrolizidine and tropane alkaloids in cereals and spices. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4969. [PMID: 37604670 DOI: 10.1002/jms.4969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/23/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023]
Abstract
Within the last decades, in the EU, there has been an increasing interest in toxic plant alkaloids as food contaminants, especially after the continuous and growing consumption of plant-based foods compared with food of animal origin. In this regard, the once neglected presence of these tropane alkaloids (TAs) and pyrrolizidine alkaloids (PAs) has recently been reconsidered by the European Food Safety Authority, highlighting the lack of data and the need to develop risk assessment strategies. For this reason, the emphasis has been placed on detecting their occurrence in food through the development of accurate and sensitive analytical methods to achieve the determination of these compounds. The present study aims to elaborate and validate an analytical method based on QuEChERS sample preparation approach, exploiting the UHPLC coupled to the HRMS to simultaneously identify and quantify 21 PAs and two TAs in cereals and spices. For TAs, the obtained limit of detection (LOD) is 0.1 μg·kg-1 and the limit of quantification (LOQ) is 0.4 μg·kg-1 , while for PAs, the LODs values ranging between 0.2 to 0.3 μg·kg-1 and the LOQ, between 0.4 and 0.8 μg·kg-1 , ensuring compliance with the recently established European Regulations. Several commercial samples were analysed to further verify the applicability of this comprehensive analytical approach.
Collapse
Affiliation(s)
- Eleonora Rollo
- Analytical Food Science, Barilla G. e R. Fratelli S.p.A., Parma, Italy
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Dante Catellani
- Analytical Food Science, Barilla G. e R. Fratelli S.p.A., Parma, Italy
| | | | - Michele Suman
- Analytical Food Science, Barilla G. e R. Fratelli S.p.A., Parma, Italy
- Department for Sustainable Food Process, Catholic University Sacred Heart, Piacenza, Italy
| |
Collapse
|
12
|
Akuamoa F, Mulder PPJ, Bovee TFH, Rietjens IMCM, Hoogenboom RLAP. Occurrence and associated health risks of pyrrolizidine alkaloids in supplements marketed in Ghana for improved sexual performance. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:301-309. [PMID: 37448098 DOI: 10.1080/19393210.2023.2227961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are noted for their hepatotoxic, genotoxic, and carcinogenic effects in animals and humans following metabolic activation in the liver. In this study, herbal supplements sold in Ghana for sexual improvement were analysed for the presence of 64 PAs using LC-MS/MS analysis. Up to 17 different PAs were identified in 19 out of the 37 samples analysed. The sum of PAs in samples ranged from 5 to 3204 μg kg-1. Since the PA content in the herbal medicinal preparations was generally lower than in honey samples, their presence was mainly attributed to cross-contamination. The observed levels would result in estimated daily intakes from 0.01 to 12 μg per day or 0.0002 to 0.2 μg kg-1 bw day-1 for a person weighing 70 kg. The margins of exposure ranged from 1200 to 1,400,000 with eight samples showing values below 10,000, thus indicating a health concern.
Collapse
Affiliation(s)
- Felicia Akuamoa
- Wageningen Food Safety Research, Wageningen, The Netherlands
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
- Applied Radiation Biology Centre, Ghana Atomic Energy Commission, Accra, Ghana
| | | | - Toine F H Bovee
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | | |
Collapse
|
13
|
Peloso M, Minkoumba Sonfack G, Paduano S, De Martino M, De Santis B, Caprai E. Pyrrolizidine Alkaloids in Food on the Italian Market. Molecules 2023; 28:5346. [PMID: 37513219 PMCID: PMC10385305 DOI: 10.3390/molecules28145346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Pyrrolizidine alkaloids (PAs) are secondary metabolites produced by over 6000 plant species worldwide. PAs enter the food chain through accidental co-harvesting of PA-containing weeds and through soil transfer from the living plant to surrounding acceptor plants. In animal studies, 1,2-unsaturated PAs have proven to be genotoxic carcinogens. According to the scientific opinion expressed by the 2017 EFSA, the foods with the highest levels of PA contamination were honey, tea, herbal infusions, and food supplements. Following the EFSA's recommendations, data on the presence of PAs in relevant food were monitored and collected. On 1 July 2022, the Commission Regulation (EU) 2020/2040 came into force, repealed by Commission Regulation (EU) 2023/915, setting maximum levels for the sum of pyrrolizidine alkaloids in certain food. A total of 602 food samples were collected from the Italian market between 2019 and 2022 and were classified as honey, pollen, dried tea, dried herbal infusions, dried herbs, and fresh borage leaves. The food samples were analyzed for their PA content via an in-house LC-MS/MS method that can detect PAs according to Regulation 2023/915. Overall, 42% of the analyzed samples were PA-contaminated, 14% exceeded the EU limits, and the items most frequently contaminated included dried herbs and tea. In conclusion, the number of food items containing considerable amounts of PAs may cause concern because they may contribute to human exposure, especially considering vulnerable populations-most importantly, children and pregnant women.
Collapse
Affiliation(s)
- Mariantonietta Peloso
- National Reference Laboratory for Plant Toxins in Food, Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Fiorini 5, 40127 Bologna, Italy
| | - Gaetan Minkoumba Sonfack
- National Reference Laboratory for Plant Toxins in Food, Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Fiorini 5, 40127 Bologna, Italy
| | - Sandra Paduano
- Ministry of Health, General Directorate for Hygiene and Food Safety and Nutrition, Via G. Ribotta, 5, 00144 Rome, Italy
| | - Michele De Martino
- Ministry of Health, General Directorate for Hygiene and Food Safety and Nutrition, Via G. Ribotta, 5, 00144 Rome, Italy
| | - Barbara De Santis
- National Reference Laboratory for Plant Toxins in Food, Food Chemical Department, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Elisabetta Caprai
- National Reference Laboratory for Plant Toxins in Food, Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Fiorini 5, 40127 Bologna, Italy
| |
Collapse
|
14
|
Sousa AC, Ribeiro C, Gonçalves VMF, Pádua I, Leal S. Chromatographic Methods for Detection and Quantification of Pyrrolizidine Alkaloids in Flora, Herbal Medicines, and Food: An Overview. Crit Rev Anal Chem 2023:1-25. [PMID: 37300809 DOI: 10.1080/10408347.2023.2218476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are natural toxins produced by some plants that gained special interest due to their potential hazardous effects in humans and animals. These substances have been found in wild flora, herbal medicines and food products raising health concerns. Recently, maximum concentration levels of PAs were established for some food products; however, maximum daily intake frequently surpasses the upper limit set by the competent authorities posing a health risk. Given the scarcity or absence of occurrence data on PAs in many products, there is an urgent need to measure their levels and establish safety intake levels. Analytical methods have been reported to detect and quantify PAs in different matrices. The commonly used chromatographic methodologies provides accurate and reliable results. Analytical methods include diverse steps as extraction and sample preparation procedures that are critical for sensitivity and selectivity of the analytical method. Great efforts have been directed toward optimization of extraction procedures, clean up and chromatographic conditions to improve recovery, reduce matrix effects, and achieve low limits of detection and quantification. Therefore, this paper aims to give a general overview about the occurrence of PAs in flora, herbal medicines, and foodstuff; and discuss the different chromatographic methodologies used for PAs analysis, namely extraction and sample preparation procedures and chromatographic conditions.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Cláudia Ribeiro
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Virgínia M F Gonçalves
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Inês Pádua
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- Epidemiology Unit - Institute of Public Health of University of Porto (ISPUP), Porto, Portugal
| | - Sandra Leal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- CINTESIS-RISE, MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Lehmann A, Geburek I, These A, Hessel-Pras S, Hengstler JG, Albrecht W, Mielke H, Müller-Graf C, Yang X, Kloft C, Hethey C. PBTK modeling of the pyrrolizidine alkaloid retrorsine to predict liver toxicity in mouse and rat. Arch Toxicol 2023; 97:1319-1333. [PMID: 36906727 PMCID: PMC10110657 DOI: 10.1007/s00204-023-03453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/02/2023] [Indexed: 03/13/2023]
Abstract
Retrorsine is a hepatotoxic pyrrolizidine alkaloid (PA) found in herbal supplements and medicines, food and livestock feed. Dose-response studies enabling the derivation of a point of departure including a benchmark dose for risk assessment of retrorsine in humans and animals are not available. Addressing this need, a physiologically based toxicokinetic (PBTK) model of retrorsine was developed for mouse and rat. Comprehensive characterization of retrorsine toxicokinetics revealed: both the fraction absorbed from the intestine (78%) and the fraction unbound in plasma (60%) are high, hepatic membrane permeation is dominated by active uptake and not by passive diffusion, liver metabolic clearance is 4-fold higher in rat compared to mouse and renal excretion contributes to 20% of the total clearance. The PBTK model was calibrated with kinetic data from available mouse and rat studies using maximum likelihood estimation. PBTK model evaluation showed convincing goodness-of-fit for hepatic retrorsine and retrorsine-derived DNA adducts. Furthermore, the developed model allowed to translate in vitro liver toxicity data of retrorsine to in vivo dose-response data. Resulting benchmark dose confidence intervals (mg/kg bodyweight) are 24.1-88.5 in mice and 79.9-104 in rats for acute liver toxicity after oral retrorsine intake. As the PBTK model was built to enable extrapolation to different species and other PA congeners, this integrative framework constitutes a flexible tool to address gaps in the risk assessment of PA.
Collapse
Affiliation(s)
- Anja Lehmann
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Ina Geburek
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Anja These
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany
| | - Hans Mielke
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Christine Müller-Graf
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Xiaojing Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Christoph Hethey
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
16
|
Gong B, Zhang S, Wang X, Ran G, Zhang X, Xi J, Gao Z, Lei Y, Pan J, Liu Y, Luan Y, Zhang X, Peng Y, Li W, Zheng J. Inflammation Intensifies Monocrotaline-Induced Liver Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3433-3443. [PMID: 36753335 DOI: 10.1021/acs.jafc.2c07939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are the most common toxins of plant origin, and it is evident that PAs pollute soil, water, nearby plants, and derived foods. Cases of human poisoning due to ingestion of PA-contaminated foods have been reported in several countries. Monocrotaline (MCT) is a pyrrolizidine alkaloid from the plants of Crotalaria genus that causes hepatic and cardiopulmonary toxicities, and the exhibition of the toxicities requires the metabolic activation by CYP3A4 to form electrophilic dehydro-monocrotaline (DHM). The present study demonstrated that myeloperoxidase (MPO) also participated in the bioactivation of MCT. N-Chloromonocrotaline was detected in both HClO/MCT incubations and MPO/H2O2/MgCl2/MCT incubations. DHM-derived N-acetylcysteine (NAC) conjugates were detected in the above incubations fortified with NAC. Lipopolysaccharide-induced inflammation in mice resulted in an elevated level of hepatic MPO activity, increased metabolic activation of MCT, and intensified elevation of serum ALT and AST activity induced by MCT. MPO inhibitor 4-aminobenzoic acid hydrazide was found to reverse these alterations. Mpo-KO mice were resistant to the observed potentiating effect of inflammation on MCT-induced liver injury. In conclusion, inflammation intensified MCT-induced liver injury. MPO participated in the observed potentiating effect of inflammation on the hepatotoxicity induced by MCT.
Collapse
Affiliation(s)
- Bowen Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Shiyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, P. R. China
| | - Xin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Guangyun Ran
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Xiaohong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai JiaoTong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Zhenna Gao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai JiaoTong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Yuyang Lei
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai JiaoTong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Jie Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai JiaoTong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai JiaoTong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| |
Collapse
|
17
|
Pyrzanowska J. The toxic contaminants of Aspalathus linearis plant material as well as herb-drug interactions may constitute the health risk factors in daily rooibos tea consumers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:129-142. [PMID: 34823434 DOI: 10.1080/09603123.2021.2009780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Rooibos tea is brewed using Aspalathus linearis plant material sensitive to environmental contamination. This review covers the safety data from preclinical experiments as well as human studies and delivers a report on its hepatic activity. In vitro tea investigation reveals antioxidative and anti-mutagenic features and ability to modulate microsomal enzymes. In rodent research, it exerts protective or neutral impact on liver functions and morphology, yet several human case reports suggest possible acute hepatic damage. Summarizing rooibos consumption seems to be safe in terms of hepatotoxicity; however, there may be designated a group of consumers with higher risk of liver irritation. The contamination of plant material may contribute to herb-induced liver injury. Due to the impact on CYPs, there is a possible risk of herb-drug interactions affecting bioavailability of some co-administered medicines. Caution should be exercised in patients receiving the treatment with allopathic medicines to avoid untoward alteration of drug plasma concentration.
Collapse
Affiliation(s)
- Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| |
Collapse
|
18
|
Al-Subaie SF, Alowaifeer AM, Mohamed ME. Pyrrolizidine Alkaloid Extraction and Analysis: Recent Updates. Foods 2022; 11:foods11233873. [PMID: 36496681 PMCID: PMC9740414 DOI: 10.3390/foods11233873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrrolizidine alkaloids are natural secondary metabolites that are mainly produced in plants, bacteria, and fungi as a part of an organism's defense machinery. These compounds constitute the largest class of alkaloids and are produced in nearly 3% of flowering plants, most of which belong to the Asteraceae and Boraginaceae families. Chemically, pyrrolizidine alkaloids are esters of the amino alcohol necine (which consists of two fused five-membered rings including a nitrogen atom) and one or more units of necic acids. Pyrrolizidine alkaloids are toxic to humans and mammals; thus, the ability to detect these alkaloids in food and nutrients is a matter of food security. The latest advances in the extraction and analysis of this class of alkaloids are summarized in this review, with special emphasis on chromatographic-based analysis and determinations in food.
Collapse
Affiliation(s)
- Sarah F. Al-Subaie
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Reference Laboratory for Food Chemistry, Saudi Food and Drug Authority (SFDA), Riyadh 11561, Saudi Arabia
| | - Abdullah M. Alowaifeer
- Reference Laboratory for Food Chemistry, Saudi Food and Drug Authority (SFDA), Riyadh 11561, Saudi Arabia
| | - Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: ; Tel.: +966-542990226
| |
Collapse
|
19
|
Acito M, Russo C, Fatigoni C, Mercanti F, Moretti M, Villarini M. Cytotoxicity and Genotoxicity of Senecio vulgaris L. Extracts: An In Vitro Assessment in HepG2 Liver Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14824. [PMID: 36429544 PMCID: PMC9690910 DOI: 10.3390/ijerph192214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Senecio vulgaris L. is a herbaceous species found worldwide. The demonstrated occurrence of pyrrolizidine alkaloids in this species and its ability to invade a great variety of habitats result in a serious risk of contamination of plant material batches addressed to the herbal teas market; this presents a potential health risk for consumers. In light of the above, this work aimed to assess the cytotoxic and genotoxic activity of S. vulgaris extracts in HepG2 cells. Dried plants were ground and extracted using two different methods, namely an organic solvent-based procedure (using methanol and chloroform), and an environmentally friendly extraction procedure (i.e., aqueous extraction), which mimicked the domestic preparation of herbal teas (5, 15, and 30 min of infusion). Extracts were then tested in HepG2 cells for their cytotoxic and genotoxic potentialities. Results were almost superimposable in both extracts, showing a slight loss in cell viability at the highest concentration tested, and a marked dose-dependent genotoxicity exerted by non-cytotoxic concentrations. It was found that the genotoxic effect is even more pronounced in aqueous extracts, which induced primary DNA damage after five minutes of infusion even at the lowest concentration tested. Given the broad intake of herbal infusions worldwide, this experimental approach might be proposed as a screening tool in the analysis of plant material lots addressed to the herbal infusion market.
Collapse
Affiliation(s)
- Mattia Acito
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Carla Russo
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Federica Mercanti
- Sana Pianta Soc. Agricola S.a.s., Strada Tiberina Nord 228, 06134 Perugia, Italy
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
- Inter-University Centre for the Environment (CIPLA-Centro Interuniversitario per l’Ambiente), University of Perugia, Piazza Università 1, 06123 Perugia, Italy
| | - Milena Villarini
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| |
Collapse
|
20
|
Chizzola R, Eller A. Seasonal Variability in Pyrrolizidine Alkaloids in Jacobaea alpina from the Trentino-Alto Adige Region (Northern Italy). Chem Biodivers 2022; 19:e202200603. [PMID: 36202629 DOI: 10.1002/cbdv.202200603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022]
Abstract
In recent years, increased attention has been given to plants containing toxic pyrrolizidine alkaloids (PAs). Jacobaea alpina (syn. Senecio cordatus) is a tall forb growing on mountain pastures and meadows containing such alkaloids and therefore, the plant is considered as a noxious weed in these environments. The repartition of toxic macrocyclic PAs in the plant and their evolution during the vegetation period has been studied in two populations. Eight PAs were found where senciphylline and senecionine accounted in most samples for more than 85 % of total alkaloids. Leaves in April and stems in May started with high PA concentrations (19-22 mg/g dry matter), then alkaloid levels declined. This decrease was more rapid in stems than in leaves. Depending on the population, fully developed inflorescences in June and July PA contents were higher or lower than in the respective leaves. Later, also in the inflorescences PA concentration decreased. Combined with growth data total alkaloid content in the whole plant as mg/plant was highest in midsummer and declined afterwards. Finally, new emerging leaves in September had high PA levels, which declined markedly towards the end of the season in November. In sum, over a large period PA concentration appeared to be high enough to present a health risk for grazing animals.
Collapse
Affiliation(s)
- Remigius Chizzola
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Andy Eller
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
21
|
Han H, Jiang C, Wang C, Lu Y, Wang Z, Chai Y, Zhang X, Liu X, Lu C, Chen H. Dissipation pattern and conversion of pyrrolizidine alkaloids (PAs) and pyrrolizidine alkaloid N-oxides (PANOs) during tea manufacturing and brewing. Food Chem 2022; 390:133183. [PMID: 35597088 DOI: 10.1016/j.foodchem.2022.133183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 01/23/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and pyrrolizidine alkaloid N-oxides (PANOs) are toxic secondary metabolites in plants, and one kind of main exogenous pollutants of tea. Herein, the dissipation pattern and conversion behavior of PAs/PANOs were investigated during tea manufacturing and brewing using ultra high-performance liquid chromatography tandem mass spectrometry. Compared with PAs (processing factor (PF) = 0.73-1.15), PANOs had higher degradation rates (PF = 0.21-0.56) during tea manufacturing, and drying played the most important role in PANOs degradation. Moreover, PANOs were firstly discovered to be converted to corresponding PAs especially in the time-consuming (spreading of green tea manufacturing and withering of black tea manufacturing) and high-temperature tea processing (drying). Moreover, higher transfer rates of PANOs (≥75.84%) than that of PAs (≤56.53%) were observed during tea brewing. Due to higher toxicity of PAs than PANOs, these results are conducive to risk assessment and pollution control of PAs/PANOs in tea.
Collapse
Affiliation(s)
- Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Yuting Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Agriculture and Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Xin Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
22
|
Risk Assessment of (Herbal) Teas Containing Pyrrolizidine Alkaloids (PAs) Based on Margin of Exposure Approach and Relative Potency (REP) Factors. Foods 2022; 11:foods11192946. [PMID: 36230022 PMCID: PMC9564199 DOI: 10.3390/foods11192946] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) present distinct toxicity potencies depending on their metabolites and in vivo toxicokinetics. To represent the potency differences of various PAs, the interim relative potency (REP) factors have been derived. However, little is known about the risk assessment for (herbal) teas when taking REP factors into account. In this study, a set of 68 individual 1,2-unsaturated PA in 21 types of (herbal) teas was analyzed using LC-MS/MS. The REP factors for these PAs were applied on the PA levels. The margin of exposure (MOE) approach was employed to assess the risks of the exposure to PAs due to consumption of (herbal) teas. The results show that the total PA levels ranged from 13.4 to 286,682.2 μg/kg d.m., which were decreased by REP correction in most of the teas. The MOE values for tephroseris, borage and lemon balm (melissa) tea based on REP-corrected PA levels were below 10,000, assuming daily consumption of one cup of tea during a lifetime, indicating that consuming these teas may raise a concern. Our study also indicates a priority for risk management for tephroseris tea, as having nephrosis tea for more than 11.2 weeks during a 75-year lifetime would result in an MOE of 10,000.
Collapse
|
23
|
Combined Hepatotoxicity and Toxicity Mechanism of Intermedine and Lycopsamine. Toxins (Basel) 2022; 14:toxins14090633. [PMID: 36136571 PMCID: PMC9501075 DOI: 10.3390/toxins14090633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are common constituents of plants and have serious hepatotoxicity. Intermedine (Im) and lycopsamine (La) are two monoesters of PAs that frequently coexist in the PA-containing plants (e.g., comfrey and tea). The present study aimed to explore the combined hepatotoxicity and toxicity mechanism of the Im and La mixture. In vitro, the combined cytotoxicity of the Im and La mixture on human hepatocytes (HepD) was examined by CCK-8, colony formation, wound healing, and Annexin V/PI staining assays. The combination of Im and La inhibited the ability of HepD cells to proliferate, colonize, and migrate and induced hepatocytes apoptosis in a dose-dependent manner. In addition to significantly causing a burst of intracellular reactive oxygen species (ROS), mitochondrial apoptosis, and endoplasmic reticulum (ER) stress, the Im and La mixture can also cause an increase in intracellular Ca2+, triggering the PERK/eIF2α/ATF4/CHOP apoptosis pathway. This study provided the first direct evidence that the combined PAs induced hepatotoxicity through ER-mediated apoptosis. These results supplemented the basic toxicity data for the combined PAs and provided a new perspective for the risk assessment of combined PA toxicity.
Collapse
|
24
|
Casado N, Fernández-Pintor B, Morante-Zarcero S, Sierra I. Quick and Green Microextraction of Pyrrolizidine Alkaloids from Infusions of Mallow, Calendula, and Hibiscus Flowers Using Ultrahigh-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7826-7841. [PMID: 35714998 PMCID: PMC9930110 DOI: 10.1021/acs.jafc.2c02186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A sustainable microextraction of pyrrolizidine alkaloids (PAs) from edible flower infusions using the innovative μSPEed technique is proposed. Different sorbents and extraction conditions were tested, achieving the highest extraction efficiency with an octadecylsilane sorbent (4 mg). The extraction procedure just took 1 min per sample, and only 300 μL of methanol and 300 μL of the sample were used per extraction. Ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry was used for analysis. The method was properly validated, providing suitable linearity, selectivity, sensitivity (quantification limits 0.3-1 μg/L), overall recoveries (79-97%), and precision (≤17% relative standard deviation). Its application to the analysis of different infusions of mallow, calendula, and hibiscus flowers revealed similar total PA values (23-41 μg/L) and contamination profile among the mallow and hibiscus samples, with predominance of senecionine-type and heliotrine-type PAs, respectively. Conversely, calendula samples showed more variations (23-113 μg/L), highlighting the occurrence of intermedine N-oxide and europine N-oxide on them.
Collapse
|
25
|
Klevenhusen F, These A, Taenzer J, Weiß K, Pieper R. Effects of ensiling conditions on pyrrolizidine alkaloid degradation in silages mixed with two different Senecio spp. Arch Anim Nutr 2022; 76:93-111. [PMID: 35766237 DOI: 10.1080/1745039x.2022.2084321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pyrrolizidine alkaloid (PA) producing plants like Senecio jacobaea or Senecio vernalis are undesirable in fields for forage production, since PA are toxic to animals and humans. Previous studies have shown that ensiling can decrease the PA content in forages; however, no direct comparison of diverse PA from different Senecio spp. under various ensiling conditions has been made. Therefore, it was hypothesised that individual PA might react differently to ensiling, and silage inoculation with Lactobacillus will affect PA degradation because of a quick drop in pH, contrastingly to poor silage qualities resulting from contamination with soil. Laboratory scale grass silages were prepared in a multifactorial design with two levels of dry matter contents, four ensiling treatments and two storage durations (10 and 90 d). For each combination, four replicates were prepared individually. Ensiling treatments were (1) 10 ml water per kg fresh matter as control (CON), (2) 10 ml heterofermentative Lactobacillus buchneri strain LN4637 at 3 · 105 cfu/kg fresh matter plus 25 g molasses/kg fresh matter (LBHE), (3) 10 ml homofermentative lactobacilli at 3 · 105 cfu/kg fresh matter plus 25 g molasses/kg fresh matter (LBHO) and (4) 10 g soil/kg fresh matter (SOIL). Treatments affected formation of fermentation acids. Acetic acid was highest with treatment LBHE, and butyric acid was highest with treatment SOIL. All ensiling treatments effectively reduced total PA content by degrading the PA N-oxide (PANO) fraction. In parallel, though, the fraction of the tertiary base forms increased by around one-tenth of the original PANO content. Contents of jaconine and senkirkine were higher after ensiling than before, with regards to the sum of PA and PANO for jaconine, indicating higher stability or new formation through degradation of other PA. Overall, ensiling offers opportunities to decrease the PA-PANO content in feed and therefore lowers the risk of intoxication by Senecio in livestock.
Collapse
Affiliation(s)
- Fenja Klevenhusen
- Department Safety in the Food Chain, The German Federal Institute for Risk Assessment, Berlin, Germany
| | - Anja These
- Department Safety in the Food Chain, The German Federal Institute for Risk Assessment, Berlin, Germany
| | - Julian Taenzer
- Department Safety in the Food Chain, The German Federal Institute for Risk Assessment, Berlin, Germany
| | - Kirsten Weiß
- of Agricultural and Horticultural Science, Humboldt-Universität zu BerlinAlbrecht Daniel Thaer-Institute, Berlin, Germany
| | - Robert Pieper
- Department Safety in the Food Chain, The German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
26
|
Simultaneous Determination of Pyrrolizidine and Tropane Alkaloids in Honey by Liquid Chromatography-mass Spectrometry. J Vet Res 2022; 66:235-243. [PMID: 35892104 PMCID: PMC9281522 DOI: 10.2478/jvetres-2022-0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction Pyrrolizidine alkaloids (PAs) and tropane alkaloids (TAs) are natural contaminants of honey and respectively hepatoxic and neurotoxic compounds. Because honey is a popular constituent of the human diet, it is relevant to warrant the safety of the product. For that reason, a method for simultaneous determination of PAs and TAs in honey based on liquid chromatography- mass spectrometry was developed. Material and Methods The analytical protocol used sulphuric acid extraction and solid-phase extraction purification. The developed procedure was subjected to validation in terms of linearity, selectivity, repeatability, reproducibility, limits of quantification and determination, matrix effect and uncertainty. A total of 29 honey samples were analysed for the determination of PAs and TAs. Results All the evaluated validation parameters fulfilled the requirements of European Commission Decision 2002/657/EC. At least one of the monitored alkaloids was determined in 52% of the samples. Among the most abundant alkaloids were echimidine, intermedine and lycopsamine. The total PA concentrations ranged from 2.2 to 147.0 μg kg-1. Contrastingly, none of the monitored TAs was detected in the analysed samples. An assessment of the dietary exposure to PAs from the consumption of the contaminated honeys showed that three of them would pose a risk to consumers, especially if they were children. Conclusion A sensitive method suitable for simultaneous determination of PAs and TAs in honey was developed and validated. The analysis of 29 honey samples for PAs and TAs revealed that honey destined for retail could pose a risk to consumers.
Collapse
|
27
|
Kaltner F. Fate of Food-Relevant Toxic Plant Alkaloids during Food Processing or Storing and Analytical Strategies to Unveil Potential Transformation Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5975-5981. [PMID: 35544324 DOI: 10.1021/acs.jafc.2c01489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Toxic plant alkaloids (TPAs) may contaminate food and pose a threat to consumer health; as a consequence, they are undesired in foodstuff or food commodities. Similar to other ingredients, TPA may be affected by storing or processing of food, often associated with decreased levels of the parent alkaloids. Up to now, little is known about potential transformation products or if they still may exhibit toxic potential to consumers. This perspective briefly summarizes the current knowledge regarding the behavior of opium, pyrrolizidine, and tropane alkaloids toward processing or storing and highlights analytical strategies to identify and elucidate potential transformation products.
Collapse
Affiliation(s)
- Florian Kaltner
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
28
|
Bioassay-directed analysis-based identification of relevant pyrrolizidine alkaloids. Arch Toxicol 2022; 96:2299-2317. [PMID: 35610518 PMCID: PMC9217854 DOI: 10.1007/s00204-022-03308-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are produced by various plant species and have been detected as contaminants in food and feed. Monitoring programmes should include PAs that are present in relevant matrices and that exhibit a high toxic potential. The aim of the present study was to use a bioassay-directed analysis approach to identify relevant PAs not yet included in monitoring programmes. To that end, extracts of Heliotropium europaeum and H. popovii were prepared and analysed with LC–MS/MS for the presence of 35 PAs included in monitoring programmes, as well as for genotoxic activity in the HepaRG/γH2AX assay. Europine, heliotrine and lasiocarpine were found to be the most abundant PAs. The extracts showed a higher γH2AX activity than related artificial mixtures of quantified known PAs, which might point to the presence of unknown toxic PAs. The H. europaeum extract was fractionated and γH2AX activities of individual fractions were determined. Fractions were further analysed applying LC–Orbitrap-MS analysis and Compound Discoverer software, identifying various candidate PAs responsible for the non-explained genotoxic activity. Altogether, the results obtained show that bioassay-directed analysis allows identification of candidate PAs that can be included in monitoring programmes.
Collapse
|
29
|
Application of the QuEChERS Strategy as a Useful Sample Preparation Tool for the Multiresidue Determination of Pyrrolizidine Alkaloids in Food and Feed Samples: A Critical Overview. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094325] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The identification of concerning high levels of pyrrolizidine alkaloids (PAs) in a wide variety of food products has raised the occurrence of these natural toxins as one of the main current issues of the food safety field. Consequently, a regulation with maximum concentration levels of these alkaloids has recently been published to monitor their occurrence in several foodstuffs. According to legislation, the analytical methodologies developed for their determination must include multiresidue extractions with high selectivity and sensitivity, as a set of 21 + 14 PAs should be simultaneously monitored. However, the multiresidue extraction of these alkaloids is a difficult task due to the high complexity of food and feed samples. Accordingly, although solid-phase extraction is still the technique most widely used for sample preparation, the QuEChERS method can be a suitable alternative for the simultaneous determination of multiple analytes, providing green extraction and clean-up of samples in a quick and cost-effective way. Hence, this review proposes an overview about the QuEChERS concept and its evolution through different modifications that have broadened its applicability over time, focusing mainly on its application regarding the determination of PAs in food and feed, including the revision of published works within the last 11 years.
Collapse
|
30
|
Enge AM, Sprenger H, Braeuning A, Hessel-Pras S. Identification of microRNAs Implicated in Modulating Senecionine-Induced Liver Toxicity in HepaRG Cells. Foods 2022; 11:foods11040532. [PMID: 35206009 PMCID: PMC8871147 DOI: 10.3390/foods11040532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
1,2-unsaturated Pyrrolizidine Alkaloids (PAs) are secondary plant metabolites that occur as food contaminants. Upon consumption, they can cause severe liver damage. PAs have been shown to induce apoptosis, to have cytotoxic and genotoxic effects, and to impair bile acid homeostasis in the human hepatoma cell line HepaRG. The major mode of action of PAs is DNA- and protein-adduct formation. Beyond that, nuclear receptor activation has only been observed for one receptor and two PAs, yielding the possibility that other cellular mediators are involved in PA-mediated toxicity. Here, the mode of action of Senecionine (Sc), a prominent and ubiquitous representative of hepatotoxic PAs, was investigated by analyzing 7 hepatic microRNAs (miRNAs) in HepaRG cells. Ultimately, 11 target genes that were predicted with Ingenuity Pathway Analysis software (IPA) were found to be significantly downregulated, while their assigned miRNAs showed significant upregulation of gene expression. According to IPA, these targets are positively correlated with apoptosis and cellular death and are involved in diseases such as hepatocellular carcinoma. Subsequent antagomiR-inhibition analysis revealed a significant correlation between PA-induced miRNA-4434 induction and P21-Activated Kinase-1 (PAK1) downregulation. PAK1 downregulation is usually associated with cell cycle arrest, suggesting a new function of Sc-mediated toxicity in human liver cells.
Collapse
|
31
|
Han H, Jiang C, Wang C, Wang Z, Chai Y, Zhang X, Liu X, Lu C, Chen H. Development, optimization, validation and application of ultra high performance liquid chromatography tandem mass spectrometry for the analysis of pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides in teas and weeds. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Schrenk D, Fahrer J, Allemang A, Fu P, Lin G, Mahony C, Mulder PPJ, Peijnenburg A, Pfuhler S, Rietjens IMCM, Sachse B, Steinhoff B, These A, Troutman J, Wiesner J. Novel Insights into Pyrrolizidine Alkaloid Toxicity and Implications for Risk Assessment: Occurrence, Genotoxicity, Toxicokinetics, Risk Assessment-A Workshop Report. PLANTA MEDICA 2022; 88:98-117. [PMID: 34715696 DOI: 10.1055/a-1646-3618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper reports on the major contributions and results of the 2nd International Workshop of Pyrrolizidine Alkaloids held in September 2020 in Kaiserslautern, Germany. Pyrrolizidine alkaloids are among the most relevant plant toxins contaminating food, feed, and medicinal products of plant origin. Hundreds of PA congeners with widespread occurrence are known, and thousands of plants are assumed to contain PAs. Due to certain PAs' pronounced liver toxicity and carcinogenicity, their occurrence in food, feed, and phytomedicines has raised serious human health concerns. This is particularly true for herbal teas, certain food supplements, honey, and certain phytomedicinal drugs. Due to the limited availability of animal data, broader use of in vitro data appears warranted to improve the risk assessment of a large number of relevant, 1,2-unsaturated PAs. This is true, for example, for the derivation of both toxicokinetic and toxicodynamic data. These efforts aim to understand better the modes of action, uptake, metabolism, elimination, toxicity, and genotoxicity of PAs to enable a detailed dose-response analysis and ultimately quantify differing toxic potencies between relevant PAs. Accordingly, risk-limiting measures comprising production, marketing, and regulation of food, feed, and medicinal products are discussed.
Collapse
Affiliation(s)
- Dieter Schrenk
- Food Chemistry and Toxicology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jörg Fahrer
- Food Chemistry and Toxicology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Peter Fu
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Catherine Mahony
- Procter & Gamble, Technical Centres Limited, Weybridge, Surrey, United Kingdom
| | - Patrick P J Mulder
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | | | | | - Benjamin Sachse
- German Federal Institute of Risk Assessment (BfR), Berlin, Germany
| | | | - Anja These
- German Federal Institute of Risk Assessment (BfR), Berlin, Germany
| | | | | |
Collapse
|
33
|
|
34
|
Salting-out Assisted Liquid-Liquid Extraction for the rapid and simple simultaneous analysis of pyrrolizidine alkaloids and related N-oxides in honey and pollen. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Martinello M, Manzinello C, Gallina A, Mutinelli F. In‐house validation and application of UHPLC‐MS/MS method for the quantification of pyrrolizidine and tropane alkaloids in commercial honey bee‐collected pollen, teas and herbal infusions purchased on Italian market in 2019‐2020 referring to recent European Union regulations. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Marianna Martinello
- Istituto Zooprofilattico Sperimentale delle Venezie NRL for honey bee health Viale dell’Università 10 35020 Legnaro PD Italy
| | - Chiara Manzinello
- Istituto Zooprofilattico Sperimentale delle Venezie NRL for honey bee health Viale dell’Università 10 35020 Legnaro PD Italy
| | - Albino Gallina
- Istituto Zooprofilattico Sperimentale delle Venezie NRL for honey bee health Viale dell’Università 10 35020 Legnaro PD Italy
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie NRL for honey bee health Viale dell’Università 10 35020 Legnaro PD Italy
| |
Collapse
|
36
|
Miralles P, Yusà V, León N, Coscollà C. A green analytical method for the simultaneous determination of 30 tropane and pyrrolizidine alkaloids and their N-oxides in teas and herbs for infusions by LC-Q-Orbitrap HRMS. J Chromatogr A 2022; 1666:462835. [DOI: 10.1016/j.chroma.2022.462835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
|
37
|
Wang H, Xu X, Wang X, Guo W, Jia W, Zhang F. An analytical strategy for discovering structural analogues of alkaloids in plant food using characteristic structural fragments extraction by high resolution orbitrap mass spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Kamiya Y, Miura T, Kato A, Murayama N, Shimizu M, Yamazaki H. Plasma concentration profiles for hepatotoxic pyrrolizidine alkaloid senkirkine in humans extrapolated from rat data sets using a simplified physiologically based pharmacokinetic model. Drug Metab Lett 2021; 15:64-69. [PMID: 34931973 DOI: 10.2174/1872312801666211220110055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
AIM The main aim of the current study was to obtain forward dosimetry assessments of pyrrolizidine alkaloid senkirkine plasma and liver concentrations by setting up a human physiologically based pharmacokinetic (PBPK) model based on the limited information available. BACKGROUND The risks associated with plant-derived pyrrolizidine alkaloids as natural toxins have been assessed. OBJECTIVE The pyrrolizidine alkaloid senkirkine was investigated because it was analyzed in a European transcriptomics study of natural hepatotoxins and in a study of the alkaloidal constituents of traditional Japanese food plants Petasites japonicus. The in silico human plasma and liver concentrations of senkirkine were modeled using doses reported for acute-term toxicity in humans. METHODS Using a simplified PBPK model established using rat pharmacokinetic data, forward dosimetry was conducted. Since in vitro rat and human intrinsic hepatic clearances were similar; an allometric scaling approach was applied to rat parameters to create a human PBPK model. RESULTS After oral administration of 1.0 mg/kg in rats in vivo, water-soluble senkirkine was absorbed and cleared from plasma to two orders of magnitude below the maximum concentration in 8 h. Human in silico senkirkine plasma concentration curves were generated after virtual daily oral administrations of 3.0 mg/kg senkirkine (the dose involved in an acute fatal hepatotoxicity case). A high concentration of senkirkine in the culture medium caused in vitro hepatotoxicity as evidenced by lactate dehydrogenase leakage from human hepatocyte-like HepaRG cells. CONCLUSION Higher virtual concentrations of senkirkine in human liver and plasma than those in rat plasma were estimated using the current rat and human PBPK models. Current simulations suggest that if P. japonicus (a water-soluble pyrrolizidine alkaloid-producing plant) is ingested daily as food, hepatotoxic senkirkine could be continuously present in human plasma and liver.
Collapse
Affiliation(s)
- Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Airi Kato
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
39
|
Letsyo E. High-performance counter-current chromatography purification and off-line mass spectrometry monitoring and identification of pyrrolizidine alkaloid markers of tropical Ghanaian honey. J Sep Sci 2021; 45:960-967. [PMID: 34863040 DOI: 10.1002/jssc.202100718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/09/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
Abstract
The nutritional and medicinal properties of honey have been well-documented. However, honey has occasionally been contaminated with hepatotoxic pyrrolizidine alkaloids as a result of bees foraging on the flowers of pyrrolizidine alkaloid plants. This study establishes a simple and rapid method to determine the marker pyrrolizidine alkaloids in honey using high-performance counter-current chromatography and an off-line electrospray ionization-tandem mass spectrometry, in order to identify the botanical sources responsible for the contamination. The honey sample was initially liquid-liquid extracted (sulfuric acid/hexane, 2:3, v/v) to enrich the pyrrolizidine alkaloids and subsequently purified by a semi-preparative high-performance counter-current chromatography using a solvent system, hexane/butanol/1% aqueous ammonia, 1:1:2, v/v, based on partition coefficient measurements of the target alkaloids. The recovered fractions were profiled by injecting them sequentially into an off-line electrospray ionization-tandem mass spectrometry device to monitor the preparative molecular weight based on elution and extrusion modes. The monitored lycopsamine-type pyrrolizidine alkaloids and their N-oxides (m/z 300, 316; lycopsamine, intermedine, rinderine, and echinatine) were used as the phytochemical markers to identify plants like Chromolaena odorata, Ageratum spp., or Heliotropium spp. to be responsible for the pyrrolizidine alkaloid contamination. Identification of these pyrrolizidine alkaloid plants could guide beekeepers in locating their beehives in order to minimize their potential liver damaging effects.
Collapse
Affiliation(s)
- Emmanuel Letsyo
- Department of Food Science and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana.,Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, Braunschweig, 38106, Germany
| |
Collapse
|
40
|
Enge AM, Kaltner F, Gottschalk C, Kin A, Kirstgen M, Geyer J, These A, Hammer H, Pötz O, Braeuning A, Hessel-Pras S. Organic Cation Transporter I and Na + /taurocholate Co-Transporting Polypeptide are Involved in Retrorsine- and Senecionine-Induced Hepatotoxicity in HepaRG cells. Mol Nutr Food Res 2021; 66:e2100800. [PMID: 34826203 DOI: 10.1002/mnfr.202100800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/03/2021] [Indexed: 01/05/2023]
Abstract
SCOPE 1,2-unsaturated pyrrolizidine alkaloids (PAs) are secondary plant metabolites that are found in many plant species throughout the world. They are of concern for risk assessment as consumption of contaminated foodstuff can cause severe liver damage. Of late, transporter-mediated uptake and transport has advanced as a vital determinant of PA toxicity. In this study, the authors investigate a transporter-mediated uptake of PAs and its implications in PA toxicity. METHODS AND RESULTS We show that transporter expression levels are significantly affected by treatment with the PAs senecionine (Sc) and retrorsine (Re) in the human hepatoma cell line HepaRG. Furthermore, the specific contribution to PA uptake of the two transporters Na+ /taurocholate co-transporting polypeptide (SLC10A1) and organic cation transporter I (SLC22A1), both belonging to the heterogeneous solute carrier super family, is investigated by means of a siRNA-mediated knockdown approach. Knockdown of both uptake transporters result in reduced uptake of Re and Sc in a time-dependent manner and attenuated PA-mediated cytotoxic effects in HepaRG cells. CONCLUSION Our results confirm previous findings of active transport mechanisms of PAs into hepatocytes and highlight the importance of toxicokinetic studies for the risk assessment of PAs.
Collapse
Affiliation(s)
- Anne-Margarethe Enge
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Florian Kaltner
- Chair of Food Safety and Analytics, Ludwig Maximilian University of Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany.,Institute of Food Chemistry and Food Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 17-19, 35392, Giessen, Germany
| | - Christoph Gottschalk
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.,Chair of Food Safety and Analytics, Ludwig Maximilian University of Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Angelina Kin
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Michael Kirstgen
- Biomedical Research Center Seltersberg (BFS), Faculty of Veterinary Medicine, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Joachim Geyer
- Biomedical Research Center Seltersberg (BFS), Faculty of Veterinary Medicine, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Anja These
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Helen Hammer
- Signatope GmbH, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Oliver Pötz
- Signatope GmbH, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
41
|
Pyrrolizidine alkaloids of European Senecio/Jacobaea species in forage and their carry-over to milk: A review. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. Int J Mol Sci 2021; 22:ijms221910419. [PMID: 34638760 PMCID: PMC8508847 DOI: 10.3390/ijms221910419] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Saturated and unsaturated pyrrolizidine alkaloids (PAs) are present in more than 6000 plant species growing in countries all over the world. They have a typical heterocyclic structure in common, but differ in their potential toxicity, depending on the presence or absence of a double bond between C1 and C2. Fortunately, most plants contain saturated PAs without this double bond and are therefore not toxic for consumption by humans or animals. In a minority of plants, however, PAs with this double bond between C1 and C2 exhibit strong hepatotoxic, genotoxic, cytotoxic, neurotoxic, and tumorigenic potentials. If consumed in error and in large emouns, plants with 1,2-unsaturated PAs induce metabolic breaking-off of the double bonds of the unsaturated PAs, generating PA radicals that may trigger severe liver injury through a process involving microsomal P450 (CYP), with preference of its isoforms CYP 2A6, CYP 3A4, and CYP 3A5. This toxifying CYP-dependent conversion occurs primarily in the endoplasmic reticulum of the hepatocytes equivalent to the microsomal fraction. Toxified PAs injure the protein membranes of hepatocytes, and after passing their plasma membranes, more so the liver sinusoidal endothelial cells (LSECs), leading to life-threatening hepatic sinusoidal obstruction syndrome (HSOS). This injury is easily diagnosed by blood pyrrolizidine protein adducts, which are perfect diagnostic biomarkers, supporting causality evaluation using the updated RUCAM (Roussel Uclaf Causality Assessment Method). HSOS is clinically characterized by weight gain due to fluid accumulation (ascites, pleural effusion, and edema), and may lead to acute liver failure, liver transplantation, or death. In conclusion, plant-derived PAs with a double bond between C1 and C2 are potentially hepatotoxic after metabolic removal of the double bond, and may cause PA-HSOS with a potential lethal outcome, even if PA consumption is stopped.
Collapse
|
43
|
Schramm S, Rozhon W, Adedeji-Badmus AN, Liang Y, Nayem S, Winkelmann T, Poppenberger B. The Orphan Crop Crassocephalum crepidioides Accumulates the Pyrrolizidine Alkaloid Jacobine in Response to Nitrogen Starvation. FRONTIERS IN PLANT SCIENCE 2021; 12:702985. [PMID: 34394157 PMCID: PMC8355542 DOI: 10.3389/fpls.2021.702985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Crassocephalum crepidioides is an African orphan crop that is used as a leafy vegetable and medicinal plant. Although it is of high regional importance in Sub-Saharan Africa, the plant is still mainly collected from the wild and therefore efforts are made to promote its domestication. However, in addition to beneficial properties, there was first evidence that C. crepidioides can accumulate the highly toxic pyrrolizidine alkaloid (PA) jacobine and here it was investigated, how jacobine production is controlled. Using ecotypes from Africa and Asia that were characterized in terms of their PA profiles, it is shown that the tetraploid C. crepidioides forms jacobine, an ability that its diploid close relative Crassocephalum rubens appears to lack. Evidence is provided that nitrogen (N) deficiency strongly increases jacobine in the leaves of C. crepidioides, that this capacity depends more strongly on the shoot than the root system, and that homospermidine synthase (HSS) activity is not rate-limiting for this reaction. A characterization of HSS gene representation and transcription showed that C. crepidioides and C. rubens possess two functional versions, one of which is conserved, that the HSS transcript is mainly present in roots and that its abundance is not controlled by N deficiency. In summary, this work improves our understanding of how environmental cues impact PA biosynthesis in plants and provides a basis for the development of PA-free C. crepidioides cultivars, which will aid its domestication and safe use.
Collapse
Affiliation(s)
- Sebastian Schramm
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Adebimpe N. Adedeji-Badmus
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Yuanyuan Liang
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Shahran Nayem
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Traud Winkelmann
- Woody Plant and Propagation Physiology Section, Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
44
|
Chmit MS, Müller J, Wiedow D, Horn G, Beuerle T. Biodegradation and utilization of crop residues contaminated with poisonous pyrrolizidine alkaloids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112629. [PMID: 33901824 DOI: 10.1016/j.jenvman.2021.112629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Disposal of noxious plant residues is a challenge for farmers and land management dealing with contaminated biomasses. Recent studies confirm the potential threat of transferring toxic plant constituents like pyrrolizidine alkaloids (PAs) from plant residues to non-toxic succeeding agricultural crops via the soil. We studied the degree of biochemical degradation of PAs in the two most important processes, composting and biomethanization. We used lab composting and biogas batches to investigate the potential of PA-degradation of two common PA-containing plants, Lappula squarrosa and Senecio jacobaea. The experiments demonstrated a virtually complete loss of PAs in three months during the composting process and a rapid decomposition of PAs from 3112.6 μg/kg to less than 21.5 μg/kg in L. squarrosa and from 6350.2 μg/kg to less than 539.6 μg/kg in S. jacobaea during biomethanization. The information obtained is a first guide on how to re-utilize PA-contaminated plant matter in a circular bioeconomy.
Collapse
Affiliation(s)
- Mohammad Said Chmit
- Technical University of Braunschweig, Institute of Pharmaceutical Biology, Mendelssohnstr. 1, 38106, Braunschweig, Germany
| | - Jürgen Müller
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Denny Wiedow
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Gert Horn
- Exsemine GmbH, Am Wehr 4, 06198, Salzatal, Germany
| | - Till Beuerle
- Technical University of Braunschweig, Institute of Pharmaceutical Biology, Mendelssohnstr. 1, 38106, Braunschweig, Germany.
| |
Collapse
|
45
|
Reinhard H, Zoller O. Pyrrolizidine alkaloids in tea, herbal tea and iced tea beverages- survey and transfer rates. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1914-1933. [PMID: 34237234 DOI: 10.1080/19440049.2021.1941302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The transfer rate of 37 pyrrolizidine alkaloids (PA) found in ten naturally contaminated teas and herbal teas to their brews was studied in detail. Mixed herbal, peppermint, red bush, senna, black tea and green tea infusions were prepared according to the ISO guide and vendor's instructions, respectively, and parameters like herb-to-water ratio, steeping time and multiple extractions studied. In general, a transfer rate of 38-100% (median 95%) for brews following vendor's instructions was determined. The total concentration range of PA in these ten samples was 154-2412 ng/g (median 422 ng/g) in the herb and for single analytes 0.1-170 ng/g. Seven of the 37 PA occurred unexpectedly; these were tentatively identified and quantified by liquid chromatography-high resolution mass spectrometry (LC-HR-MS), since their contributions to total PA-content matter. Additionally, 46 iced tea beverages were analysed for their PA-load, determined to be in the range 0-631 ng/L (median 40 ng/L). The applied solid-phase extraction (SPE) clean-up turned out to be capable of separating PA in the free base pyrrolizidine alkaloids (PAFB) and their N-oxides (PANO) in a two-step elution, which was a valuable tool to support identification of unexpected PA. Further, atropine was found in 50% of the ten tea herb samples (range: 1-4 ng/g) and in 13% of the iced tea beverage samples (range: 2-65 ng/L).
Collapse
Affiliation(s)
- Hans Reinhard
- Risk Assessment Division, Swiss Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland
| | - Otmar Zoller
- Risk Assessment Division, Swiss Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland
| |
Collapse
|
46
|
Rivera-Pérez A, Romero-González R, Garrido Frenich A. Determination and Occurrence of Alkenylbenzenes, Pyrrolizidine and Tropane Alkaloids in Spices, Herbs, Teas, and Other Plant-derived Food Products Using Chromatographic Methods: Review from 2010–2020. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Araceli Rivera-Pérez
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (Ceia3), University of Almeria, Almeria, Spain
| | - Roberto Romero-González
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (Ceia3), University of Almeria, Almeria, Spain
| | - Antonia Garrido Frenich
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (Ceia3), University of Almeria, Almeria, Spain
| |
Collapse
|
47
|
Lin F, Ma Y, Pan A, Ye Y, Liu J. Quantification of Usaramine and Its N-oxide Metabolite in Rat Plasma Using Liquid Chromatography-Tandem Mass Spectrometry. J Anal Toxicol 2021; 46:512-518. [PMID: 34086913 PMCID: PMC9122504 DOI: 10.1093/jat/bkab060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
A sensitive, fast and robust liquid chromatography--tandem mass spectrometry (LC–MS-MS) method was developed and validated for the determination of usaramine (URM) and usaramine N-oxide (UNO) in rat plasma. The separation was conducted on an ACQUITY UPLC BEH C18 Column (50 × 2.1 mm, 1.7 μm) and gradient eluted with mobile phase A (0.1% formic acid with 5 mM ammonium acetate in water) and B (0.1% formic acid in acetonitrile/methanol, 9/1, v/v). The method was linear over the range of 1–2,000 ng/mL for both analytes. The validated method was applied to investigate the pharmacokinetic behaviors and sex differences of URM and its N-oxide metabolite in rats. After intravenous administration of URM at 1 mg/kg, the AUC0-t values for URM and UNO were 363 ± 65 and 172 ± 32 ng/mL*h in male rats, while 744 ± 122 and 30.7 ± 7.4 ng/mL*h in females, respectively. The clearance of URM was significantly higher in male rats than in females (2.77 ± 0.50 vs 1.35 ± 0.19 L/h/kg, P < 0.05). After oral administration of URM at 10 mg/kg, the AUC0-t values of URM and UNO were 1,960 ± 208 and 1,637 ± 246 ng/mL*h in male rats, while 6,073 ± 488 and 300 ± 62 ng/mL*h in females, respectively. The oral bioavailability of URM in female rats (81.7%) was much higher than in males (54.0%). In conclusion, sex-based differences were observed in the pharmacokinetics, N-oxide metabolism and oral bioavailability of URM.
Collapse
Affiliation(s)
- Feifei Lin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China.,Chinese Academy of Sciences, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yan Ma
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 536 Changle Road, Shanghai 200126, China
| | - Anni Pan
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yang Ye
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China.,Chinese Academy of Sciences, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jia Liu
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
48
|
The Food Contaminants Pyrrolizidine Alkaloids Disturb Bile Acid Homeostasis Structure-Dependently in the Human Hepatoma Cell Line HepaRG. Foods 2021; 10:foods10051114. [PMID: 34069968 PMCID: PMC8157858 DOI: 10.3390/foods10051114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are a group of secondary plant metabolites being contained in various plant species. The consumption of contaminated food can lead to acute intoxications in humans and exert severe hepatotoxicity. The development of jaundice and elevated bile acid concentrations in blood have been reported in acute human PA intoxication, indicating a connection between PA exposure and the induction of cholestasis. Additionally, it is considered that differences in toxicity of individual PAs is based on their individual chemical structures. Therefore, we aimed to elucidate the structure-dependent disturbance of bile acid homeostasis by PAs in the human hepatoma cell line HepaRG. A set of 14 different PAs, including representatives of all major structural characteristics, namely, the four different necine bases retronecine, heliotridine, otonecine and platynecine and different grades of esterification, was analyzed in regard to the expression of genes involved in bile acid synthesis, metabolism and transport. Additionally, intra- and extracellular bile acid levels were analyzed after PA treatment. In summary, our data show significant structure-dependent effects of PAs on bile acid homeostasis. Especially PAs of diester type caused the strongest dysregulation of expression of genes associated with cholestasis and led to a strong decrease of intra- and extracellular bile acid concentrations.
Collapse
|
49
|
Active Transport of Hepatotoxic Pyrrolizidine Alkaloids in HepaRG Cells. Int J Mol Sci 2021; 22:ijms22083821. [PMID: 33917053 PMCID: PMC8067754 DOI: 10.3390/ijms22083821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022] Open
Abstract
1,2-unsaturated pyrrolizidine alkaloids (PAs) are secondary plant metabolites occurring as food contaminants that can cause severe liver damage upon metabolic activation in hepatocytes. However, it is yet unknown how these contaminants enter the cells. The role of hepatic transporters is only at the beginning of being recognized as a key determinant of PA toxicity. Therefore, this study concentrated on assessing the general mode of action of PA transport in the human hepatoma cell line HepaRG using seven structurally different PAs. Furthermore, several hepatic uptake and efflux transporters were targeted with pharmacological inhibitors to identify their role in the uptake of the PAs retrorsine and senecionine and in the disposition of their N-oxides (PANO). For this purpose, PA and PANO content was measured in the supernatant using LC-MS/MS. Also, PA-mediated cytotoxicity was analyzed after transport inhibition. It was found that PAs are taken up into HepaRG cells in a predominantly active and structure-dependent manner. This pattern correlates with other experimental endpoints such as cytotoxicity. Pharmacological inhibition of the influx transporters Na+/taurocholate co-transporting polypeptide (SLC10A1) and organic cation transporter 1 (SLC22A1) led to a reduced uptake of retrorsine and senecionine into HepaRG cells, emphasizing the relevance of these transporters for PA toxicokinetics.
Collapse
|
50
|
Current Knowledge and Perspectives of Pyrrolizidine Alkaloids in Pharmacological Applications: A Mini-Review. Molecules 2021; 26:molecules26071970. [PMID: 33807368 PMCID: PMC8037423 DOI: 10.3390/molecules26071970] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are a widespread group of secondary metabolites in plants. PAs are notorious for their acute hepatotoxicity, genotoxicity and neurological damage to humans and animals. In recent decades, the application of PAs for beneficial biological activities to cure disease has drawn greater attention. Here, we review the current knowledge regarding the pharmacological properties of PAs and discuss PAs as promising prototypes for the development of new drugs.
Collapse
|