1
|
Hernández-Martín M, Garcimartín A, Bocanegra A, Macho-González A, García-Fernández RA, de Pascual-Teresa S, Redondo-Castillejo R, Bastida S, Sánchez-Muniz FJ, Benedí J, López-Oliva ME. Silicon-Enriched Meat Ameliorates Diabetic Dyslipidemia by Improving Cholesterol, Bile Acid Metabolism and Ileal Barrier Integrity in Rats with Late-Stage Type 2 Diabetes. Int J Mol Sci 2024; 25:11405. [PMID: 39518958 PMCID: PMC11547133 DOI: 10.3390/ijms252111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Silicon as a functional ingredient of restructured meat (RM) shows antidiabetic and hypocholesterolemic effects in a type 2 diabetes mellitus (T2DM) rat model. The present paper investigated the mechanisms involved in this cholesterol-lowering effect by studying the impact of silicon-RM consumption on bile acid (BA) and cholesterol metabolism. In addition, the main effects of cecal BA and short-chain fatty acids derived from the microbiota on intestinal barrier integrity were also tested. Rats were fed an RM high-saturated-fat, high-cholesterol diet (HSFHCD) combined with a low dose of streptozotocin plus nicotinamide injection (LD group) and for an 8 wk. period. Silicon-RM was included in the HSFHCD as a functional food (LD-Si group). An early-stage T2DM group fed a high-saturated-fat diet (ED group) was used as a reference. Silicon decreased the BA pool with a higher hydrophilic BA profile and a lower ability to digest fat and decreased the damaging effects, increasing the occludin levels and the integrity of the intestinal barrier. The ileal BA uptake and hepatic BA synthesis through CYP7A1 were reduced by FXR/FGF15 signaling activation. The silicon up-regulated the hepatic and ileal FXR and LXRα/β, improving transintestinal cholesterol (TICE), biliary BA and cholesterol effluxes. The inclusion of silicon in meat products could be used as a new therapeutic nutritional tool in the treatment of diabetic dyslipidemia.
Collapse
Affiliation(s)
- Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
| | - Alba Garcimartín
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aránzazu Bocanegra
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Adrián Macho-González
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rosa A. García-Fernández
- Animal Medicine and Surgery Department, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain;
| | - Rocío Redondo-Castillejo
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Bastida
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco J. Sánchez-Muniz
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juana Benedí
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Mª Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
- AFUSAN Research Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain; (A.G.); (A.B.); (A.M.-G.); (R.R.-C.); (S.B.); (F.J.S.-M.); (J.B.)
| |
Collapse
|
2
|
Gou H, Zeng R, Lau HCH, Yu J. Gut microbial metabolites: Shaping future diagnosis and treatment against gastrointestinal cancer. Pharmacol Res 2024; 208:107373. [PMID: 39197712 DOI: 10.1016/j.phrs.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Gastrointestinal cancer is a worldwide health challenge due to its dramatically increasing prevalence and as a leading cause of cancer-related mortality. Increasing evidence has illustrated the vital role of gut microbes-derived metabolites in gastrointestinal cancer progression and treatment. Microbial metabolites are produced by the gut microbiota that utilizes both extrinsic dietary components and intrinsic host-generated compounds. Meanwhile, certain categories of metabolites such as short-chain fatty acids, bile acids, tryptophan, and indole derivatives, are linked to gastrointestinal malignancy. In this review, the major classes of microbial metabolites and their impacts on various gastrointestinal cancers including colorectal cancer, gastric cancer, and hepatocellular carcinoma, have been introduced. The application of microbial metabolites as predictive biomarkers for early diagnosis and prognosis of gastrointestinal cancer has also been explored. In addition, therapeutic potential of strategies that target microbial metabolites against gastrointestinal cancer is further evaluated.
Collapse
Affiliation(s)
- Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ruijie Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
3
|
Daniel SL, Ridlon JM. Clostridium scindens : an endocrine keystone species in the mammalian gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609444. [PMID: 39229245 PMCID: PMC11370556 DOI: 10.1101/2024.08.23.609444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Clostridium scindens is a keystone human gut microbial taxonomic group that, while low in abundance, has a disproportionate effect on bile acid and steroid metabolism in the mammalian gut. Numerous studies indicate that the two most studied strains of C. scindens (i.e., ATCC 35704 and VPI 12708) are important for a myriad of physiological processes in the host. We focus on both historical and current microbiological and molecular biology work on the Hylemon-Björkhem pathway and the steroid-17,20-desmolase pathway that were first discovered in C. scindens. Our most recent analysis now calls into question whether strains currently defined as C. scindens represent two separate taxonomic groups. Future directions include developing genetic tools to further explore the physiological role bile acid and steroid metabolism by strains of C. scindens , and the causal role of these pathways in host physiology and disease.
Collapse
|
4
|
Vico-Oton E, Volet C, Jacquemin N, Dong Y, Hapfelmeier S, Meibom KL, Bernier-Latmani R. Strain-dependent induction of primary bile acid 7-dehydroxylation by cholic acid. BMC Microbiol 2024; 24:286. [PMID: 39090543 PMCID: PMC11293179 DOI: 10.1186/s12866-024-03433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Bile acids (BAs) are steroid-derived molecules with important roles in digestion, the maintenance of host metabolism, and immunomodulation. Primary BAs are synthesized by the host, while secondary BAs are produced by the gut microbiome through transformation of the former. The regulation of microbial production of secondary BAs is not well understood, particularly the production of 7-dehydroxylated BAs, which are the most potent agonists for host BA receptors. The 7-dehydroxylation of cholic acid (CA) is well established and is linked to the expression of a bile acid-inducible (bai) operon responsible for this process. However, little to no 7-dehydroxylation has been reported for other host-derived BAs (e.g., chenodeoxycholic acid, CDCA or ursodeoxycholic acid, UDCA). RESULTS Here, we demonstrate that the 7-dehydroxylation of CDCA and UDCA by the human isolate Clostridium scindens is induced when CA is present, suggesting that CA-dependent transcriptional regulation is required for substantial 7-dehydroxylation of these primary BAs. This is supported by the finding that UDCA alone does not promote expression of bai genes. CDCA upregulates expression of the bai genes but the expression is greater when CA is present. In contrast, the murine isolate Extibacter muris exhibits a distinct response; CA did not induce significant 7-dehydroxylation of primary BAs, whereas BA 7-dehydroxylation was promoted upon addition of germ-free mouse cecal content in vitro. However, E. muris was found to 7-dehydroxylate in vivo. CONCLUSIONS The distinct expression responses amongst strains indicate that bai genes are regulated differently. CA promoted bai operon gene expression and the 7-dehydroxylating activity in C. scindens strains. Conversely, the in vitro activity of E. muris was promoted only after the addition of cecal content and the isolate did not alter bai gene expression in response to CA. The accessory gene baiJ was only upregulated in the C. scindens ATCC 35704 strain, implying mechanistic differences amongst isolates. Interestingly, the human-derived C. scindens strains were also capable of 7-dehydroxylating murine bile acids (muricholic acids) to a limited extent. This study shows novel 7-dehydroxylation activity in vitro resulting from the presence of CA and suggests distinct bai gene expression across bacterial species.
Collapse
Affiliation(s)
- Eduard Vico-Oton
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Colin Volet
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Jacquemin
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yuan Dong
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Karin Lederballe Meibom
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- EPFL ENAC IIE EML CH A1 375 (Bâtiment CH), Station 6, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
5
|
Lin YN, Hsu JR, Wang CL, Huang YC, Wang JY, Wu CY, Wu LL. Nuclear factor interleukin 3 and metabolic dysfunction-associated fatty liver disease development. Commun Biol 2024; 7:897. [PMID: 39048678 PMCID: PMC11269659 DOI: 10.1038/s42003-024-06565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
This study investigates sex-specific effects in a gain-of-function model to evaluate Nfil3 function in relation to high-fat diet (HFD)-induced metabolic dysfunction-associated steatotic liver disease (MASLD) and gut microbiota (GM)-induced alterations in the bile acid (BA) profile. MASLD is induced in both wild type and Nfil3-deficient (NKO) C57BL/6 J mice through an HFD. The hepatic immune response is evaluated using flow cytometry, revealing that NKO mice exhibit lower body weight, serum triglyceride (TG) levels, tissue injury, inflammation, and fat accumulation. The Nfil3 deletion reduces macrophage counts in fibrotic liver tissues, decreases proinflammatory gene and protein expression, and diminishes gut barrier function. Alpha and beta diversity analysis reveal increased GM alpha diversity across different sexes. The Nfil3 gene deletion modifies the BA profile, suggesting that negative feedback through the Nfil3-FXR-FGF15 axis facilitates BA recycling from the liver via enterohepatic circulation. Therefore, inhibiting Nfil3 in the liver offers a viable treatment approach for MASLD.
Collapse
Grants
- CI-110-22 Yen Tjing Ling Medical Foundation
- 11210 Ministry of Health and Welfare (Ministry of Health and Welfare, Taiwan)
- National Science and Technology Council (NSTC), Taiwan (nos. 108-2320-B-010-045-MY3, 110-2320-B-002-080-MY3, MOST 111-2314-B-A49-072, and NSTC 112-2314-B-A49-028-MY3 to L.L.W and NSTC 112-2740-B-A49-002, NSTC 112-2327-B-A49-005–, NSTC 112-2321-B-A49-005–, MOHW112-TDU-B-221-124007, and MOHW113-TDU-B-221-13400 to C.Y. Wu), Yen Tjing Ling Medical Foundation (nos.CI-110-22 and CI-111-24 to L.L.W), and the TYGH-NYCU Joint Research Program (no. PTH110001) and Ministry of Health and Welfare (No. 11210).
Collapse
Affiliation(s)
- Yung-Ni Lin
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Rou Hsu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Lin Wang
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chen Huang
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jzy-Yu Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Family Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chun-Ying Wu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Li-Ling Wu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
6
|
Yang X, Xu Y, Li J, Ran X, Gu Z, Song L, Zhang L, Wen L, Ji G, Wang R. Bile acid-gut microbiota imbalance in cholestasis and its long-term effect in mice. mSystems 2024; 9:e0012724. [PMID: 38934542 PMCID: PMC11265269 DOI: 10.1128/msystems.00127-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Cholestasis is a common morbid state that may occur in different phases; however, a comprehensive evaluation of the long-term effect post-recovery is still lacking. In the hepatic cholestasis mouse model, which was induced by a temporary complete blockage of the bile duct, the stasis of bile acids and liver damage typically recovered within a short period. However, we found that the temporary hepatic cholestasis had a long-term effect on gut microbiota dysbiosis, including overgrowth of small intestinal bacteria, decreased diversity of the gut microbiota, and an overall imbalance in its composition accompanied by an elevated inflammation level. Additionally, we observed an increase in Escherichia-Shigella (represented by ASV136078), rich in virulence factors, in both small and large intestines following cholestasis. To confirm the causal role of dysregulated gut microbiota in promoting hepatic inflammation and injury, we conducted gut microbiota transplantation into germ-free mice. We found that recipient mice transplanted with feces from cholestasis mice exhibited liver inflammation, damage, and accumulation of hepatic bile acids. In conclusion, our study demonstrates that cholestasis disrupts the overall load and structural composition of the gut microbiota in mice, and these adverse effects persist after recovery from cholestatic liver injury. This finding suggests the importance of monitoring the structural composition of the gut microbiota in patients with cholestasis and during their recovery. IMPORTANCE Our pre-clinical study using a mouse model of cholestasis underscores that cholestasis not only disrupts the equilibrium and structural configuration of the gut microbiota but also emphasizes the persistence of these adverse effects even after bile stasis restoration. This suggests the need of monitoring and initiating interventions for gut microbiota structural restoration in patients with cholestasis during and after recovery. We believe that our study contributes to novel and better understanding of the intricate interplay among bile acid homeostasis, gut microbiota, and cholestasis-associated complications. Our pre-clinical findings may provide implications for the clinical management of patients with cholestasis.
Collapse
Affiliation(s)
- Xin Yang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Yuesong Xu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Li
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ximing Ran
- Department of Biostatistics and Bioinformatics, Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Zhihao Gu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Linfeng Song
- General Medicine, Medical school, Kunming University of Science and Technology, Kunming, China
| | - Lei Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Sulaiman JE, Thompson J, Cheung PLK, Qian Y, Mill J, James I, Vivas EI, Simcox J, Venturelli O. Human gut microbiota interactions shape the long-term growth dynamics and evolutionary adaptations of Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603560. [PMID: 39071283 PMCID: PMC11275832 DOI: 10.1101/2024.07.15.603560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Clostridioides difficile can transiently or persistently colonize the human gut, posing a risk factor for infections. This colonization is influenced by complex molecular and ecological interactions with human gut microbiota. By investigating C. difficile dynamics in human gut communities over hundreds of generations, we show patterns of stable coexistence, instability, or competitive exclusion. Lowering carbohydrate concentration shifted a community containing C. difficile and the prevalent human gut symbiont Phocaeicola vulgatus from competitive exclusion to coexistence, facilitated by increased cross-feeding. In this environment, C. difficile adapted via single-point mutations in key metabolic genes, altering its metabolic niche from proline to glucose utilization. These metabolic changes substantially impacted inter-species interactions and reduced disease severity in the mammalian gut. In sum, human gut microbiota interactions are crucial in shaping the long-term growth dynamics and evolutionary adaptations of C. difficile, offering key insights for developing anti-C. difficile strategies.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaron Thompson
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Isabella James
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugenio I. Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ophelia Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Niu YR, Yu HN, Yan ZH, Yan XH. Multiomics Analysis Reveals Leucine Deprivation Promotes Bile Acid Synthesis by Upregulating Hepatic CYP7A1 and Intestinal Turicibacter sanguinis in Mice. J Nutr 2024; 154:1970-1984. [PMID: 38692354 DOI: 10.1016/j.tjnut.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Leucine, a branched-chain amino acid, participates in the regulation of lipid metabolism and the composition of the intestinal microbiota. However, the related mechanism remains unclear. OBJECTIVES Here, we aimed to reveal the potential mechanisms by which hepatic CYP7A1 (a rate-limiting enzyme for bile acid [BA] synthesis) and gut microbiota coregulate BA synthesis under leucine deprivation. METHODS To this end, 8-wk-old C57BL/6J mice were fed with either regular diets or leucine-free diets for 1 wk. Then, we investigated whether secondary BAs were synthesized by Turicibacter sanguinis in 7-wk-old C57BL/6J germ-free mice gavaged with T. sanguinis for 2 wk by determining BA concentrations in the plasma, liver, and cecum contents using liquid chromatography-tandem mass spectrometry. RESULTS The results showed that leucine deprivation resulted in a significant increase in total BA concentration in the plasma and an increase in the liver, but no difference in total BA was observed in the cecum contents before and after leucine deprivation. Furthermore, leucine deprivation significantly altered BA profiles such as taurocholic acid and ω-muricholic acid in the plasma, liver, and cecum contents. CYP7A1 expression was significantly upregulated in the liver under leucine deprivation. Leucine deprivation also regulated the composition of the gut microbiota; specifically, it significantly upregulated the relative abundance of T. sanguinis, thus enhancing the conversion of primary BAs into secondary BAs by intestinal T. sanguinis in mice. CONCLUSIONS Overall, leucine deprivation regulated BA profiles in enterohepatic circulation by upregulating hepatic CYP7A1 expression and increasing intestinal T. sanguinis abundance. Our findings reveal the contribution of gut microbiota to BA metabolism under dietary leucine deprivation.
Collapse
Affiliation(s)
- Yao-Rong Niu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| | - Hao-Nan Yu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| | - Zhen-Hong Yan
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| | - Xiang-Hua Yan
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Shishani R, Wang A, Lyo V, Nandakumar R, Cummings BP. Vertical Sleeve Gastrectomy Reduces Gut Luminal Deoxycholic Acid Concentrations in Mice. Obes Surg 2024; 34:2483-2491. [PMID: 38777944 PMCID: PMC11217124 DOI: 10.1007/s11695-024-07288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Bariatric surgery alters bile acid metabolism, which contributes to post-operative improvements in metabolic health. However, the mechanisms by which bariatric surgery alters bile acid metabolism are incompletely defined. In particular, the role of the gut microbiome in the effects of bariatric surgery on bile acid metabolism is incompletely understood. Therefore, we sought to define the changes in gut luminal bile acid composition after vertical sleeve gastrectomy (VSG). METHODS Bile acid profile was determined by UPLC-MS/MS in serum and gut luminal samples from VSG and sham-operated mice. Sham-operated mice were divided into two groups: one was fed ad libitum, while the other was food-restricted to match their body weight to the VSG-operated mice. RESULTS VSG decreased gut luminal secondary bile acids, which was driven by a decrease in gut luminal deoxycholic acid concentrations and abundance. However, gut luminal cholic acid (precursor for deoxycholic acid) concentration and abundance did not differ between groups. Therefore, the observed decrease in gut luminal deoxycholic acid abundance after VSG was not due to a reduction in substrate availability. CONCLUSION VSG decreased gut luminal deoxycholic acid abundance independently of body weight, which may be driven by a decrease in gut bacterial bile acid metabolism.
Collapse
Affiliation(s)
- Rahaf Shishani
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of CA - Davis, Davis, CA, 95616, USA
| | - Annie Wang
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA
| | - Victoria Lyo
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA
| | - Renu Nandakumar
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Bethany P Cummings
- Department of Surgery, Division of Foregut, Metabolic, and General Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California - Davis, Sacramento, CA, 95817, USA.
- Department of Molecular Biosciences, School of Veterinary Medicine, University of CA - Davis, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Wahlström A, Brumbaugh A, Sjöland W, Olsson L, Wu H, Henricsson M, Lundqvist A, Makki K, Hazen SL, Bergström G, Marschall HU, Fischbach MA, Bäckhed F. Production of deoxycholic acid by low-abundant microbial species is associated with impaired glucose metabolism. Nat Commun 2024; 15:4276. [PMID: 38769296 PMCID: PMC11106306 DOI: 10.1038/s41467-024-48543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Alterations in gut microbiota composition are suggested to contribute to cardiometabolic diseases, in part by producing bioactive molecules. Some of the metabolites are produced by very low abundant bacterial taxa, which largely have been neglected due to limits of detection. However, the concentration of microbially produced metabolites from these taxa can still reach high levels and have substantial impact on host physiology. To explore this concept, we focused on the generation of secondary bile acids by 7α-dehydroxylating bacteria and demonstrated that addition of a very low abundant bacteria to a community can change the metabolic output dramatically. We show that Clostridium scindens converts cholic acid into the secondary bile acid deoxycholic acid (DCA) very efficiently even though the abundance of C. scindens is low, but still detectable by digital droplet PCR. We also show that colonization of germ-free female mice with a community containing C. scindens induces DCA production and affects host metabolism. Finally, we show that DCA correlates with impaired glucose metabolism and a worsened lipid profile in individuals with type 2 diabetes, which implies that this metabolic pathway may contribute to the development of cardiometabolic disease.
Collapse
Affiliation(s)
- Annika Wahlström
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ariel Brumbaugh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Wilhelm Sjöland
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lisa Olsson
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hao Wu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan Microbiome Center, and Department of Bariatric and Metabolic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Marcus Henricsson
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annika Lundqvist
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kassem Makki
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Göran Bergström
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael A Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- ChEM-H Institute, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Ridlon JM, Gaskins HR. Another renaissance for bile acid gastrointestinal microbiology. Nat Rev Gastroenterol Hepatol 2024; 21:348-364. [PMID: 38383804 PMCID: PMC11558780 DOI: 10.1038/s41575-024-00896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The field of bile acid microbiology in the gastrointestinal tract is going through a current rebirth after a peak of activity in the late 1970s and early 1980s. This renewed activity is a result of many factors, including the discovery near the turn of the century that bile acids are potent signalling molecules and technological advances in next-generation sequencing, computation, culturomics, gnotobiology, and metabolomics. We describe the current state of the field with particular emphasis on questions that have remained unanswered for many decades in both bile acid synthesis by the host and metabolism by the gut microbiota. Current knowledge of established enzymatic pathways, including bile salt hydrolase, hydroxysteroid dehydrogenases involved in the oxidation and epimerization of bile acid hydroxy groups, the Hylemon-Bjӧrkhem pathway of bile acid C7-dehydroxylation, and the formation of secondary allo-bile acids, is described. We cover aspects of bile acid conjugation and esterification as well as evidence for bile acid C3-dehydroxylation and C12-dehydroxylation that are less well understood but potentially critical for our understanding of bile acid metabolism in the human gut. The physiological consequences of bile acid metabolism for human health, important caveats and cautionary notes on experimental design and interpretation of data reflecting bile acid metabolism are also explored.
Collapse
Affiliation(s)
- Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Advanced Study, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
12
|
Németh K, Sterczer Á, Kiss DS, Lányi RK, Hemző V, Vámos K, Bartha T, Buzás A, Lányi K. Determination of Bile Acids in Canine Biological Samples: Diagnostic Significance. Metabolites 2024; 14:178. [PMID: 38668306 PMCID: PMC11052161 DOI: 10.3390/metabo14040178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The comprehensive examination of bile acids is of paramount importance across various fields of health sciences, influencing physiology, microbiology, internal medicine, and pharmacology. While enzymatic reaction-based photometric methods remain fundamental for total BA measurements, there is a burgeoning demand for more sophisticated techniques such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) for comprehensive BA profiling. This evolution reflects a need for nuanced diagnostic assessments in clinical practice. In canines, a BA assessment involves considering factors, such as food composition, transit times, and breed-specific variations. Multiple matrices, including blood, feces, urine, liver tissue, and gallbladder bile, offer insights into BA profiles, yet interpretations remain complex, particularly in fecal analysis due to sampling challenges and breed-specific differences. Despite ongoing efforts, a consensus regarding optimal matrices and diagnostic thresholds remains elusive, highlighting the need for further research. Emphasizing the scarcity of systematic animal studies and underscoring the importance of ap-propriate sampling methodologies, our review advocates for targeted investigations into BA alterations in canine pathology, promising insights into pathomechanisms, early disease detection, and therapeutic avenues.
Collapse
Affiliation(s)
- Krisztián Németh
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Ágnes Sterczer
- Department of Internal Medicine, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary;
| | - Dávid Sándor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Réka Katalin Lányi
- Faculty of Pharmacy, University of Szeged, Zrínyi u. 9, H-6720 Szeged, Hungary;
| | - Vivien Hemző
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Kriszta Vámos
- Department of Internal Medicine, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary;
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Anna Buzás
- Institute of Food Chain Science, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (A.B.); (K.L.)
| | - Katalin Lányi
- Institute of Food Chain Science, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (A.B.); (K.L.)
| |
Collapse
|
13
|
Tong T, Guo J, Wu Y, Sharma D, Sangar M, Sangpreecha N, Song D, Unno T, Ham KS, Kang SG. Dietary supplementation of ark clams protects gut health and modifies gut microbiota in d-galactose-induced aging rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:675-685. [PMID: 37653259 DOI: 10.1002/jsfa.12958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Ark clams, a seafood abundant in various nutrients, are widely consumed worldwide. This study aimed to investigate the protective benefits of two common ark clams in Korea, Scapharca subcrenata (SS) and Tegillarca granosa (TG), on gut health in d-galactose (d-gal)-induced aging rats. RESULTS Thirty-two Wistar rats (11 weeks old) were randomly allocated into four groups: a CON group (normal diet + saline intraperitoneal (i.p.) injection), a CD group (normal diet + d-gal i.p. injection), an SS group (normal diet with 5% SS supplementation + d-gal i.p. injection), and a TG group (normal diet with 5% TG supplementation + d-gal i.p. injection). After 12 weeks of treatment, histopathological results showed that gut barrier damage was alleviated in rats of the SS and TG groups, as evidenced by increases in mucus layer thickness and goblet cell numbers. Meanwhile, the two groups supplemented with ark clams showed an evident reduction in oxidative stress biomarkers (malondialdehyde and protein carbonyl content levels in the colon) and an increase in the immune-related factor (immunoglobulin A level in the plasma) in rats. The 16S ribosomal RNA analysis revealed that SS and TG ark clams significantly increased the proliferations of Bacteroidetes at the phylum level and Parabacteroides at the genus level. Additionally, the levels of the three main short-chain fatty acids in the cecal contents were also significantly increased in the SS and TG groups. CONCLUSION Our results indicated a potent preventive effect of SS and TG ark clams on d-gal-induced gut injury, suggesting that ark clams may be a promising dietary component for intervening in aging. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Jingya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing, China
| | - Ying Wu
- Department of Food Engineering, Mokpo National University, Muangun, Republic of Korea
- College of Marxism, Shaanxi University of Technology, Shaanxi, China
| | - Divya Sharma
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, Republic of Korea
| | - Madhuri Sangar
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, Republic of Korea
| | - Neeracha Sangpreecha
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, Republic of Korea
| | - Doyoung Song
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, Republic of Korea
| | - Tatsuya Unno
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung-Sik Ham
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, Republic of Korea
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, Republic of Korea
| |
Collapse
|
14
|
Correa Lopes B, Chen CC, Sung CH, Ishii PE, Medina LFDC, Gaschen FP, Suchodolski JS, Pilla R. Correlation between Peptacetobacter hiranonis, the baiCD Gene, and Secondary Bile Acids in Dogs. Animals (Basel) 2024; 14:216. [PMID: 38254385 PMCID: PMC10812727 DOI: 10.3390/ani14020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Bile acid metabolism is a key pathway modulated by intestinal microbiota. Peptacetobacter (Clostridium) hiranonis has been described as the main species responsible for the conversion of primary into secondary fecal unconjugated bile acids (fUBA) in dogs. This multi-step biochemical pathway is encoded by the bile acid-inducible (bai) operon. We aimed to assess the correlation between P. hiranonis abundance, the abundance of one specific gene of the bai operon (baiCD), and secondary fUBA concentrations. In this retrospective study, 133 fecal samples were analyzed from 24 dogs. The abundances of P. hiranonis and baiCD were determined using qPCR. The concentration of fUBA was measured by gas chromatography-mass spectrometry. The baiCD abundance exhibited a strong positive correlation with secondary fUBA (ρ = 0.7377, 95% CI (0.6461, 0.8084), p < 0.0001). Similarly, there was a strong correlation between P. hiranonis and secondary fUBA (ρ = 0.6658, 95% CI (0.5555, 0.7532), p < 0.0001). Animals displaying conversion of fUBA and lacking P. hiranonis were not observed. These results suggest P. hiranonis is the main converter of primary to secondary bile acids in dogs.
Collapse
Affiliation(s)
- Bruna Correa Lopes
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77840, USA; (C.-C.C.); (C.-H.S.); (P.E.I.); (L.F.d.C.M.); (J.S.S.); (R.P.)
| | - Chih-Chun Chen
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77840, USA; (C.-C.C.); (C.-H.S.); (P.E.I.); (L.F.d.C.M.); (J.S.S.); (R.P.)
| | - Chi-Hsuan Sung
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77840, USA; (C.-C.C.); (C.-H.S.); (P.E.I.); (L.F.d.C.M.); (J.S.S.); (R.P.)
| | - Patricia Eri Ishii
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77840, USA; (C.-C.C.); (C.-H.S.); (P.E.I.); (L.F.d.C.M.); (J.S.S.); (R.P.)
| | - Luis Fernando da Costa Medina
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77840, USA; (C.-C.C.); (C.-H.S.); (P.E.I.); (L.F.d.C.M.); (J.S.S.); (R.P.)
| | - Frederic P. Gaschen
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77840, USA; (C.-C.C.); (C.-H.S.); (P.E.I.); (L.F.d.C.M.); (J.S.S.); (R.P.)
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77840, USA; (C.-C.C.); (C.-H.S.); (P.E.I.); (L.F.d.C.M.); (J.S.S.); (R.P.)
| |
Collapse
|
15
|
McMillan AS, Theriot CM. Bile acids impact the microbiota, host, and C. difficile dynamics providing insight into mechanisms of efficacy of FMTs and microbiota-focused therapeutics. Gut Microbes 2024; 16:2393766. [PMID: 39224076 PMCID: PMC11376424 DOI: 10.1080/19490976.2024.2393766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Clostridioides difficile is a major nosocomial pathogen, causing significant morbidity and mortality worldwide. Antibiotic usage, a major risk factor for Clostridioides difficile infection (CDI), disrupts the gut microbiota, allowing C. difficile to proliferate and cause infection, and can often lead to recurrent CDI (rCDI). Fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs) have emerged as effective treatments for rCDI and aim to restore colonization resistance provided by a healthy gut microbiota. However, much is still unknown about the mechanisms mediating their success. Bile acids, extensively modified by gut microbes, affect C. difficile's germination, growth, and toxin production while also shaping the gut microbiota and influencing host immune responses. Additionally, microbial interactions, such as nutrient competition and cross-feeding, contribute to colonization resistance against C. difficile and may contribute to the success of microbiota-focused therapeutics. Bile acids as well as other microbial mediated interactions could have implications for other diseases being treated with microbiota-focused therapeutics. This review focuses on the intricate interplay between bile acid modifications, microbial ecology, and host responses with a focus on C. difficile, hoping to shed light on how to move forward with the development of new microbiota mediated therapeutic strategies to combat rCDI and other intestinal diseases.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Genetics Program, Department of Biological Sciences, College of Science, North Carolina State University, Raleigh, NC, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
16
|
Meibom KL, Marion S, Volet C, Nass T, Vico-Oton E, Menin L, Bernier-Latmani R. BaiJ and BaiB are key enzymes in the chenodeoxycholic acid 7α-dehydroxylation pathway in the gut microbe Clostridium scindens ATCC 35704. Gut Microbes 2024; 16:2323233. [PMID: 38465624 PMCID: PMC10936602 DOI: 10.1080/19490976.2024.2323233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Bile acid transformation is a common gut microbiome activity that produces secondary bile acids, some of which are important for human health. One such process, 7α-dehydroxylation, converts the primary bile acids, cholic acid and chenodeoxycholic acid, to deoxycholic acid and lithocholic acid, respectively. This transformation requires a number of enzymes, generally encoded in a bile acid-inducible (bai) operon and consists of multiple steps. Some 7α-dehydroxylating bacteria also harbor additional genes that encode enzymes with potential roles in this pathway, but little is known about their functions. Here, we purified 11 enzymes originating either from the bai operon or encoded at other locations in the genome of Clostridium scindens strain ATCC 35704. Enzyme activity was probed in vitro under anoxic conditions to characterize the biochemical pathway of chenodeoxycholic acid 7α-dehydroxylation. We found that more than one combination of enzymes can support the process and that a set of five enzymes, including BaiJ that is encoded outside the bai operon, is sufficient to achieve the transformation. We found that BaiJ, an oxidoreductase, exhibits an activity that is not harbored by the homologous enzyme from another C. scindens strain. Furthermore, ligation of bile acids to coenzyme A (CoA) was shown to impact the product of the transformation. These results point to differences in the 7α-dehydroxylation pathway among microorganisms and the crucial role of CoA ligation in the process.
Collapse
Affiliation(s)
- Karin Lederballe Meibom
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Solenne Marion
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Colin Volet
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Théo Nass
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eduard Vico-Oton
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laure Menin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
17
|
Li A, Li F, Song W, Lei ZL, Zhou CY, Zhang X, Sun QY, Zhang Q, Zhang T. Maternal exposure to 4-vinylcyclohexene diepoxide during pregnancy leads to disorder of gut microbiota and bile acid metabolism in offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115811. [PMID: 38086265 DOI: 10.1016/j.ecoenv.2023.115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Our previous study reveals that maternal exposure to 4-vinylcyclohexene diepoxide (VCD) during pregnancy causes insufficient ovarian follicle reserve and decreased fertility in offspring. The present study aims to further explore the reasons for the significant decline of fecundity in mice caused by VCD, and to clarify the changes of gut microbiota and microbial metabolites in F1 mice. The ovarian metabolomics, gut microbiota and microbial metabolites were analyzed. The results of ovarian metabolomics analysis showed that maternal VCD exposure during pregnancy significantly reduced the concentration of carnitine in the ovaries of F1 mice, while supplementation with carnitine (isovalerylcarnitine and valerylcarnitine) significantly increased the number of ovulation. The results of 16 S rDNA-seq and microbial metabolites analysis showed that maternal VCD exposure during pregnancy caused disordered gut microbiota, increased abundance of Parabacteroides and Flexispira bacteria that are involved in secondary bile acid synthesis. The concentrations of NorDCA, LCA-3S, DCA and other secondary bile acids increased significantly. Our results indicate that maternal exposure to VCD during pregnancy leads to disorder in gut microbiota and bile acid metabolism in F1 mice, accompanying with decreased ovarian function, providing further evidence that maternal exposure to VCD during pregnancy has intergenerational deleterious effects on offspring.
Collapse
Affiliation(s)
- Ang Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China; Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Fei Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Wei Song
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zi-Li Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chang-Yin Zhou
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xue Zhang
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Qin Zhang
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
18
|
Song Y, Lau HCH, Zhang X, Yu J. Bile acids, gut microbiota, and therapeutic insights in hepatocellular carcinoma. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0394. [PMID: 38148326 PMCID: PMC10884537 DOI: 10.20892/j.issn.2095-3941.2023.0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent and aggressive liver malignancy. The interplay between bile acids (BAs) and the gut microbiota has emerged as a critical factor in HCC development and progression. Under normal conditions, BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs. The gut microbiota plays a critical role in BA metabolism, and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis. Of note, dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis, thereby leading to liver inflammation and fibrosis, and ultimately contributing to HCC development. Therefore, understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis. In this review, we comprehensively explore the roles and functions of BA metabolism, with a focus on the interactions between BAs and gut microorganisms in HCC. Additionally, therapeutic strategies targeting BA metabolism and the gut microbiota are discussed, including the use of BA agonists/antagonists, probiotic/prebiotic and dietary interventions, fecal microbiota transplantation, and engineered bacteria. In summary, understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy.
Collapse
Affiliation(s)
- Yang Song
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Harry CH Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Holcomb L, Holman JM, Hurd M, Lavoie B, Colucci L, Hunt B, Hunt T, Kinney M, Pathak J, Mawe GM, Moses PL, Perry E, Stratigakis A, Zhang T, Chen G, Ishaq SL, Li Y. Early life exposure to broccoli sprouts confers stronger protection against enterocolitis development in an immunological mouse model of inflammatory bowel disease. mSystems 2023; 8:e0068823. [PMID: 37942948 PMCID: PMC10734470 DOI: 10.1128/msystems.00688-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE To our knowledge, IL-10-KO mice have not previously been used to investigate the interactions of host, microbiota, and broccoli, broccoli sprouts, or broccoli bioactives in resolving symptoms of CD. We showed that a diet containing 10% raw broccoli sprouts increased the plasma concentration of the anti-inflammatory compound sulforaphane and protected mice to varying degrees against disease symptoms, including weight loss or stagnation, fecal blood, and diarrhea. Younger mice responded more strongly to the diet, further reducing symptoms, as well as increased gut bacterial richness, increased bacterial community similarity to each other, and more location-specific communities than older mice on the diet intervention. Crohn's disease disrupts the lives of patients and requires people to alter dietary and lifestyle habits to manage symptoms. The current medical treatment is expensive with significant side effects, and a dietary intervention represents an affordable, accessible, and simple strategy to reduce the burden of symptoms.
Collapse
Affiliation(s)
- Lola Holcomb
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Johanna M. Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Molly Hurd
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Brigitte Lavoie
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Louisa Colucci
- Department of Biology, Husson University, Bangor, Maine, USA
| | - Benjamin Hunt
- Department of Biology, University of Maine, Orono, Maine, USA
| | - Timothy Hunt
- Department of Biology, University of Maine, Orono, Maine, USA
| | - Marissa Kinney
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Jahnavi Pathak
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Gary M. Mawe
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Peter L. Moses
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Finch Therapeutics, Somerville, Massachusetts, USA
| | - Emma Perry
- Electron Microscopy Laboratory, University of Maine, Orono, Maine, USA
| | - Allesandra Stratigakis
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Grace Chen
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Suzanne L. Ishaq
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Yanyan Li
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
20
|
Deng C, Pan J, Zhu H, Chen ZY. Effect of Gut Microbiota on Blood Cholesterol: A Review on Mechanisms. Foods 2023; 12:4308. [PMID: 38231771 DOI: 10.3390/foods12234308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
The gut microbiota serves as a pivotal mediator between diet and human health. Emerging evidence has shown that the gut microbiota may play an important role in cholesterol metabolism. In this review, we delve into five possible mechanisms by which the gut microbiota may influence cholesterol metabolism: (1) the gut microbiota changes the ratio of free bile acids to conjugated bile acids, with the former being eliminated into feces and the latter being reabsorbed back into the liver; (2) the gut microbiota can ferment dietary fiber to produce short-chain fatty acids (SCFAs) which are absorbed and reach the liver where SCFAs inhibit cholesterol synthesis; (3) the gut microbiota can regulate the expression of some genes related to cholesterol metabolism through their metabolites; (4) the gut microbiota can convert cholesterol to coprostanol, with the latter having a very low absorption rate; and (5) the gut microbiota could reduce blood cholesterol by inhibiting the production of lipopolysaccharides (LPS), which increases cholesterol synthesis and raises blood cholesterol. In addition, this review will explore the natural constituents in foods with potential roles in cholesterol regulation, mainly through their interactions with the gut microbiota. These include polysaccharides, polyphenolic entities, polyunsaturated fatty acids, phytosterols, and dicaffeoylquinic acid. These findings will provide a scientific foundation for targeting hypercholesterolemia and cardiovascular diseases through the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Chuanling Deng
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Jingjin Pan
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Hanyue Zhu
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
21
|
Yang M, Su Y, Zheng H, Xu K, Yuan Q, Cai Y, Aihaiti Y, Xu P. Identification of the potential regulatory interactions in rheumatoid arthritis through a comprehensive analysis of lncRNA-related ceRNA networks. BMC Musculoskelet Disord 2023; 24:799. [PMID: 37814309 PMCID: PMC10561475 DOI: 10.1186/s12891-023-06936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE This study aimed at constructing a network of competing endogenous RNA (ceRNA) in the synovial tissues of rheumatoid arthritis (RA). It seeks to discern potential biomarkers and explore the long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) axes that are intricately linked to the pathophysiological mechanisms underpinning RA, and providing a scientific basis for the pathogenesis and treatment of RA. METHODS Microarray data pertaining to RA synovial tissue, GSE103578, GSE128813, and GSE83147, were acquired from the Gene Expression Omnibus (GEO) database ( http://www.ncbi.nlm.nih.gov/geo ). Conducted to discern both differentially expressed lncRNAs (DELncRNAs) and differentially expressed genes (DEGs). A ceRNA network was obtained through key lncRNAs, key miRNAs, and key genes. Further investigations involved co-expression analyses to uncover the lncRNA-miRNA-mRNA axes contributing to the pathogenesis of RA. To delineate the immune-relevant facets of this axis, we conducted an assessment of key genes, emphasizing those with the most substantial immunological correlations, employing the GeneCards database. Finally, gene set enrichment analysis (GSEA) was executed on the identified key lncRNAs to elucidate their functional implications in RA. RESULTS The 2 key lncRNAs, 7 key miRNAs and 6 key genes related to the pathogenesis of RA were obtained, as well as 2 key lncRNA-miRNA-mRNA axes (KRTAP5-AS1-hsa-miR-30b-5p-PNN, XIST-hsa-miR-511-3p/hsa-miR-1277-5p-F2RL1). GSEA of two key lncRNAs obtained biological processes and signaling pathways related to RA synovial lesions. CONCLUSION The findings of this investigation hold promise in furnishing a foundational framework and guiding future research endeavors aimed at comprehending the etiology and therapeutic interventions for RA.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yani Su
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Haishi Zheng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Qiling Yuan
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yongsong Cai
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
22
|
Zhang J, Lyu A, Wang C. The molecular insights of bile acid homeostasis in host diseases. Life Sci 2023; 330:121919. [PMID: 37422071 DOI: 10.1016/j.lfs.2023.121919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Bile acids (BAs) function as detergents promoting nutrient absorption and as hormones regulating nutrient metabolism. Most BAs are key regulatory factors of physiological activities, which are involved in the regulation of glucose, lipid, and drug metabolisms. Hepatic and intestinal diseases have close connections with the systemic cycling disorders of BAs. The abnormal in BA absorption came up with overmuch BAs could be involved in the pathophysiology of liver and bowel and metabolic disorders such as fatty liver diseases and inflammatory bowel diseases. The primary BAs (PBAs), which are synthesized in the liver, can be transformed into the secondary BAs (SBAs) by gut microbiota. The transformation processes are tightly associated with the gut microbiome and the host endogenous metabolism. The BA biosynthesis gene cluster bile-acid-inducible operon is essential for modulating BA pool, gut microbiome composition, and the onset of intestinal inflammation. This forms a bidirectional interaction between the host and its gut symbiotic ecosystem. The subtle changes in the composition and abundance of BAs perturb the host physiological and metabolic activity. Therefore, maintaining the homeostasis of BAs pool contributes to the balance of the body's physiological and metabolic system. Our review aims to dissect the molecular mechanisms underlying the BAs homeostasis, assess the key factors sustaining the homeostasis and the role of BA acting on host diseases. By linking the BAs metabolic disorders and their associated diseases, we illustrate the effects of BAs homeostasis on health and potential clinical interventions can be taken under the latest research findings.
Collapse
Affiliation(s)
- Jinfang Zhang
- HKBU lnstitute for Research and Continuing Education, Shenzhen, China; Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lyu
- HKBU lnstitute for Research and Continuing Education, Shenzhen, China; Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Chao Wang
- HKBU lnstitute for Research and Continuing Education, Shenzhen, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China; The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
23
|
Zhou Y, Bi Z, Hamilton MJ, Zhang L, Su R, Sadowsky MJ, Roy S, Khoruts A, Chen C. p-Cresol Sulfate Is a Sensitive Urinary Marker of Fecal Microbiota Transplantation and Antibiotics Treatments in Human Patients and Mouse Models. Int J Mol Sci 2023; 24:14621. [PMID: 37834066 PMCID: PMC10572327 DOI: 10.3390/ijms241914621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for recurrent Clostridioides difficile infection (rCDI) and also a potential therapy for other diseases associated with dysbiotic gut microbiota. Monitoring metabolic changes in biofluids and excreta is a noninvasive approach to identify the biomarkers of microbial recolonization and to understand the metabolic influences of FMT on the host. In this study, the pre-FMT and post FMT urine samples from 11 rCDI patients were compared through metabolomic analyses for FMT-induced metabolic changes. The results showed that p-cresol sulfate in urine, a microbial metabolite of tyrosine, was rapidly elevated by FMT and much more responsive than other microbial metabolites of aromatic amino acids (AAAs). Because patients were treated with vancomycin prior to FMT, the influence of vancomycin on the microbial metabolism of AAAs was examined in a mouse feeding trial, in which the decreases in p-cresol sulfate, phenylacetylglycine, and indoxyl sulfate in urine were accompanied with significant increases in their AAA precursors in feces. The inhibitory effects of antibiotics and the recovering effects of FMT on the microbial metabolism of AAAs were further validated in a mouse model of FMT. Overall, urinary p-cresol sulfate may function as a sensitive and convenient therapeutic indicator on the effectiveness of antibiotics and FMT for the desired manipulation of gut microbiota in human patients.
Collapse
Affiliation(s)
- Yuyin Zhou
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.Z.); (Z.B.); (R.S.)
| | - Zheting Bi
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.Z.); (Z.B.); (R.S.)
| | - Matthew J. Hamilton
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA; (M.J.H.); (M.J.S.)
| | - Li Zhang
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (L.Z.); (S.R.)
| | - Rui Su
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.Z.); (Z.B.); (R.S.)
| | - Michael J. Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA; (M.J.H.); (M.J.S.)
| | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (L.Z.); (S.R.)
| | - Alexander Khoruts
- Division of Gastroenterology, Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (Y.Z.); (Z.B.); (R.S.)
| |
Collapse
|
24
|
Kisthardt SC, Thanissery R, Pike CM, Foley MH, Theriot CM. The microbial-derived bile acid lithocholate and its epimers inhibit Clostridioides difficile growth and pathogenicity while sparing members of the gut microbiota. J Bacteriol 2023; 205:e0018023. [PMID: 37695856 PMCID: PMC10521352 DOI: 10.1128/jb.00180-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 09/13/2023] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming anaerobe that causes clinical diseases ranging from diarrhea and pseudomembranous colitis to toxic megacolon and death. C. difficile infection (CDI) is associated with antibiotic usage, which disrupts the indigenous gut microbiota and causes the loss of microbial-derived secondary bile acids that normally provide protection against C. difficile colonization. Previous work has shown that the secondary bile acid lithocholate (LCA) and its epimer isolithocholate (iLCA) have potent inhibitory activity against clinically relevant C. difficile strains. To further characterize the mechanisms by which LCA and its epimers iLCA and isoallolithocholate (iaLCA) inhibit C. difficile, we tested their minimum inhibitory concentration against C. difficile R20291 and a commensal gut microbiota panel. We also performed a series of experiments to determine the mechanism of action by which LCA and its epimers inhibit C. difficile through bacterial killing and effects on toxin expression and activity. Additionally, we tested the cytotoxicity of these bile acids through Caco-2 cell apoptosis and viability assays to gauge their effects on the host. Here, we show that the epimers iLCA and iaLCA strongly inhibit C. difficile growth in vitro while sparing most commensal Gram-negative gut microbes. We also show that iLCA and iaLCA have bactericidal activity against C. difficile, and these epimers cause significant bacterial membrane damage at subinhibitory concentrations. Finally, we observe that iLCA and iaLCA decrease the expression of the large cytotoxin tcdA, while LCA significantly reduces toxin activity. Although iLCA and iaLCA are both epimers of LCA, they have distinct mechanisms for inhibiting C. difficile. LCA epimers, iLCA and iaLCA, represent promising compounds that target C. difficile with minimal effects on members of the gut microbiota that are important for colonization resistance. IMPORTANCE In the search for a novel therapeutic that targets Clostridioides difficile, bile acids have become a viable solution. Epimers of bile acids are particularly attractive as they may provide protection against C. difficile while leaving the indigenous gut microbiota largely unaltered. This study shows that LCA epimers isolithocholate (iLCA) and LCA epimers isoallolithocholate (iaLCA) specifically are potent inhibitors of C. difficile, affecting key virulence factors including growth, toxin expression, and activity. As we move toward the use of bile acids as therapeutics, further work will be required to determine how best to deliver these bile acids to a target site within the host intestinal tract.
Collapse
Affiliation(s)
- Samantha C. Kisthardt
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Rajani Thanissery
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Colleen M. Pike
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew H. Foley
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Department of Food, Bioprocessing and Nutrition Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
25
|
Ye H, Borusak S, Eberl C, Krasenbrink J, Weiss AS, Chen SC, Hanson BT, Hausmann B, Herbold CW, Pristner M, Zwirzitz B, Warth B, Pjevac P, Schleheck D, Stecher B, Loy A. Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut. Nat Commun 2023; 14:5533. [PMID: 37723166 PMCID: PMC10507020 DOI: 10.1038/s41467-023-41008-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/21/2023] [Indexed: 09/20/2023] Open
Abstract
Taurine-respiring gut bacteria produce H2S with ambivalent impact on host health. We report the isolation and ecophysiological characterization of a taurine-respiring mouse gut bacterium. Taurinivorans muris strain LT0009 represents a new widespread species that differs from the human gut sulfidogen Bilophila wadsworthia in its sulfur metabolism pathways and host distribution. T. muris specializes in taurine respiration in vivo, seemingly unaffected by mouse diet and genotype, but is dependent on other bacteria for release of taurine from bile acids. Colonization of T. muris in gnotobiotic mice increased deconjugation of taurine-conjugated bile acids and transcriptional activity of a sulfur metabolism gene-encoding prophage in other commensals, and slightly decreased the abundance of Salmonella enterica, which showed reduced expression of galactonate catabolism genes. Re-analysis of metagenome data from a previous study further suggested that T. muris can contribute to protection against pathogens by the commensal mouse gut microbiota. Together, we show the realized physiological niche of a key murine gut sulfidogen and its interactions with selected gut microbiota members.
Collapse
Affiliation(s)
- Huimin Ye
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Sabrina Borusak
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Claudia Eberl
- Max-von-Pettenkofer Institute, Ludwig Maximilian University Munich, Munich, Germany
| | - Julia Krasenbrink
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Anna S Weiss
- Max-von-Pettenkofer Institute, Ludwig Maximilian University Munich, Munich, Germany
| | - Song-Can Chen
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Buck T Hanson
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Te Kura Pūtaiao Koiora, School of Biological Sciences, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, New Zealand
| | - Manuel Pristner
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
| | - Benjamin Zwirzitz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| | - Petra Pjevac
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - David Schleheck
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Bärbel Stecher
- Max-von-Pettenkofer Institute, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Ludwig Maximilian University Munich, Munich, Germany
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Zhou YF, Nie J, Shi C, Zheng WW, Ning K, Kang J, Sun JX, Cong X, Xie Q, Xiang H. Lysimachia christinae polysaccharide attenuates diet-induced hyperlipidemia via modulating gut microbes-mediated FXR-FGF15 signaling pathway. Int J Biol Macromol 2023; 248:125725. [PMID: 37419267 DOI: 10.1016/j.ijbiomac.2023.125725] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
Polysaccharides are one of the most abundant and active components of Lysimachia christinae (L. christinae), which is widely adopted for attenuating abnormal cholesterol metabolism; however, its mechanism of action remains unclear. Therefore, we fed a natural polysaccharide (NP) purified from L. christinae to high-fat diet mice. These mice showed an altered gut microbiota and bile acid pool, which was characterized by significantly increased Lactobacillus murinus and unconjugated bile acids in the ileum. Oral administration of the NP reduced cholesterol and triglyceride levels and enhanced bile acid synthesis via cholesterol 7α-hydroxylase. Additionally, the effects of NP are microbiota-dependent, which was reconfirmed by fecal microbiota transplantation (FMT). Altered gut microbiota reshaped bile acid metabolism by modulating bile salt hydrolase (BSH) activity. Therefore, bsh genes were genetically engineered into Brevibacillus choshinensis, which was gavaged into mice to verify BSH function in vivo. Finally, adeno-associated-virus-2-mediated overexpression or inhibition of fibroblast growth factor 15 (FGF15) was used to explore the farnesoid X receptor-fibroblast growth factor 15 pathway in hyperlipidemic mice. We identified that the NP relieves hyperlipidemia by altering the gut microbiota, which is accompanied by the active conversion of cholesterol to bile acids.
Collapse
Affiliation(s)
- Yong-Fei Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Chao Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Wei-Wei Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Ke Ning
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Jing Kang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Ji-Xiang Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China
| | - Xiaoqiang Cong
- The Cardiovascular Department, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, Jilin 134504, PR China.
| | - Qiuhong Xie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, Jilin 134504, PR China.
| | - Hongyu Xiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, PR China; Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, Jilin 134504, PR China.
| |
Collapse
|
27
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Asai T, Tsuji A, Matsuda S. Potential tactics with certain gut microbiota for the treatment of unresectable hepatocellular carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:556-568. [PMID: 37720344 PMCID: PMC10501893 DOI: 10.37349/etat.2023.00152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/24/2023] [Indexed: 09/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes an extremely malignant form of primary liver cancer. Intricate connections linking to the immune system might be associated with the pathogenesis of HCC. Meanwhile, immunotherapy with immune checkpoint inhibitors has been established to be a favorable therapeutic possibility for advanced HCC. Although curative opportunities for advanced HCC are restricted, the immune checkpoint immunotherapy has developed as the main choice for treating HCC. However, patients with metabolic-associated fatty liver disease (MAFLD)-linked HCC might be less likely to benefit from the immunotherapy alone. The limitation of the effect of the immunotherapy might be owing to the impaired T cell activation in MAFLD patients, which could be well explained by a dysfunctional gut-liver axis. Gut microbiota and their metabolites including several bile acids could contribute to modulating the responses of the immune checkpoint immunotherapy. Roles of gut microbiota in the development of cancers have expected great interest in the latest studies. Here, an interplay between the gut and liver has been presented, which might suggest to affect the efficacy of immune checkpoint immunotherapy against HCC.
Collapse
Affiliation(s)
- Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Tomoko Asai
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
28
|
Malhotra P, Palanisamy R, Caparros-Martin JA, Falasca M. Bile Acids and Microbiota Interplay in Pancreatic Cancer. Cancers (Basel) 2023; 15:3573. [PMID: 37509236 PMCID: PMC10377396 DOI: 10.3390/cancers15143573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Evidence suggests the involvement of the microbiota, including oral, intra-tumoral and gut, in pancreatic cancer progression and response to therapy. The gut microbiota modulates the bile acid pool and is associated with maintaining host physiology. Studies have shown that the bile acid/gut microbiota axis is dysregulated in pancreatic cancer. Bile acid receptor expression and bile acid levels are dysregulated in pancreatic cancer as well. Studies have also shown that bile acids can cause pancreatic cell injury and facilitate cancer cell proliferation. The microbiota and its metabolites, including bile acids, are also altered in other conditions considered risk factors for pancreatic cancer development and can alter responses to chemotherapeutic treatments, thus affecting patient outcomes. Altogether, these findings suggest that the gut microbial and/or bile acid profiles could also serve as biomarkers for pancreatic cancer detection. This review will discuss the current knowledge on the interaction between gut microbiota interaction and bile acid metabolism in pancreatic cancer.
Collapse
Affiliation(s)
- Pratibha Malhotra
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Ranjith Palanisamy
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | | | - Marco Falasca
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
29
|
Holcomb L, Holman JM, Hurd M, Lavoie B, Colucci L, Hunt B, Hunt T, Kinney M, Pathak J, Mawe GM, Moses PL, Perry E, Stratigakis A, Zhang T, Chen G, Ishaq SL, Li Y. Early life exposure to broccoli sprouts confers stronger protection against enterocolitis development in an immunological mouse model of inflammatory bowel disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525953. [PMID: 36747766 PMCID: PMC9900910 DOI: 10.1101/2023.01.27.525953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Crohn's Disease (CD) is a presentation of Inflammatory Bowel Disease (IBD) that manifests in childhood and adolescence, and involves chronic and severe enterocolitis, immune and gut microbiome dysregulation, and other complications. Diet and gut-microbiota-produced metabolites are sources of anti-inflammatories which could ameliorate symptoms. However, questions remain on how IBD influences biogeographic patterns of microbial location and function in the gut, how early life transitional gut communities are affected by IBD and diet interventions, and how disruption to biogeography alters disease mediation by diet components or microbial metabolites. Many studies on diet and IBD use a chemically induced ulcerative colitis model, despite the availability of an immune-modulated CD model. Interleukin-10-knockout (IL-10-KO) mice on a C57BL/6 background, beginning at age 4 or 7 weeks, were fed a control diet or one containing 10% (w/w) raw broccoli sprouts, which was high in the sprout-sourced anti-inflammatory sulforaphane. Diets began 7 days prior to, and for 2 weeks after inoculation with Helicobacter hepaticus, which triggers Crohn's-like symptoms in these immune-impaired mice. The broccoli sprout diet increased sulforaphane in plasma; decreased weight stagnation, fecal blood, and diarrhea associated; and increased microbiota richness in the gut, especially in younger mice. Sprout diets resulted in some anatomically specific bacteria in younger mice, and reduced the prevalence and abundance of pathobiont bacteria which trigger inflammation in the IL-10-KO mouse, for example; Escherichia coli and Helicobacter. Overall, the IL-10-KO mouse model is responsive to a raw broccoli sprout diet and represents an opportunity for more diet-host-microbiome research.
Collapse
Affiliation(s)
- Lola Holcomb
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA 04469
| | - Johanna M. Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469
| | - Molly Hurd
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA 05401
| | - Brigitte Lavoie
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA 05401
| | - Louisa Colucci
- Department of Biology, Husson University, Bangor, Maine, USA 04401
| | - Benjamin Hunt
- Department of Biology, University of Maine, Orono, Maine, USA 04469
| | - Timothy Hunt
- Department of Biology, University of Maine, Orono, Maine, USA 04469
| | - Marissa Kinney
- School of Food and Agriculture, University of Maine, Orono, Maine, USA 04469
| | - Jahnavi Pathak
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA 04469
| | - Gary M. Mawe
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA 05401
| | - Peter L. Moses
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA 05401
- Finch Therapeutics, Somerville, Massachusetts, USA 02143
| | - Emma Perry
- Electron Microscopy Laboratory, University of Maine, Orono, Maine, USA 04469
| | - Allesandra Stratigakis
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA 13790
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA 13790
| | - Grace Chen
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA 48109
| | - Suzanne L. Ishaq
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA 04469
| | - Yanyan Li
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA 04469
| |
Collapse
|
30
|
Wang M, Osborn LJ, Jain S, Meng X, Weakley A, Yan J, Massey WJ, Varadharajan V, Horak A, Banerjee R, Allende DS, Chan ER, Hajjar AM, Wang Z, Dimas A, Zhao A, Nagashima K, Cheng AG, Higginbottom S, Hazen SL, Brown JM, Fischbach MA. Strain dropouts reveal interactions that govern the metabolic output of the gut microbiome. Cell 2023; 186:2839-2852.e21. [PMID: 37352836 PMCID: PMC10299816 DOI: 10.1016/j.cell.2023.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/10/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
The gut microbiome is complex, raising questions about the role of individual strains in the community. Here, we address this question by constructing variants of a complex defined community in which we eliminate strains that occupy the bile acid 7α-dehydroxylation niche. Omitting Clostridium scindens (Cs) and Clostridium hylemonae (Ch) eliminates secondary bile acid production and reshapes the community in a highly specific manner: eight strains change in relative abundance by >100-fold. In single-strain dropout communities, Cs and Ch reach the same relative abundance and dehydroxylate bile acids to a similar extent. However, Clostridium sporogenes increases >1,000-fold in the ΔCs but not ΔCh dropout, reshaping the pool of microbiome-derived phenylalanine metabolites. Thus, strains that are functionally redundant within a niche can have widely varying impacts outside the niche, and a strain swap can ripple through the community in an unpredictable manner, resulting in a large impact on an unrelated community-level phenotype.
Collapse
Affiliation(s)
- Min Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Lucas J Osborn
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sunit Jain
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Xiandong Meng
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Allison Weakley
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Jia Yan
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony Horak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniela S Allende
- Department of Anatomical Pathology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adeline M Hajjar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alejandra Dimas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Aishan Zhao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Kazuki Nagashima
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Alice G Cheng
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael A Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
31
|
Kisthardt SC, Thanissery R, Pike CM, Foley MH, Theriot CM. The microbial derived bile acid lithocholate and its epimers inhibit Clostridioides difficile growth and pathogenicity while sparing members of the gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543867. [PMID: 37333390 PMCID: PMC10274734 DOI: 10.1101/2023.06.06.543867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
C. difficile infection (CDI) is associated with antibiotic usage, which disrupts the indigenous gut microbiota and causes the loss of microbial derived secondary bile acids that normally provide protection against C. difficile colonization. Previous work has shown that the secondary bile acid lithocholate (LCA) and its epimer isolithocholate (iLCA) have potent inhibitory activity against clinically relevant C. difficile strains. To further characterize the mechanisms by which LCA and its epimers iLCA and isoallolithocholate (iaLCA) inhibit C. difficile, we tested their minimum inhibitory concentration (MIC) against C. difficile R20291, and a commensal gut microbiota panel. We also performed a series of experiments to determine the mechanism of action by which LCA and its epimers inhibit C. difficile through bacterial killing and effects on toxin expression and activity. Here we show that epimers iLCA and iaLCA strongly inhibit C. difficile growth in vitro while sparing most commensal Gram-negative gut microbes. We also show that iLCA and iaLCA have bactericidal activity against C. difficile, and these epimers cause significant bacterial membrane damage at subinhibitory concentrations. Finally, we observe that iLCA and iaLCA decrease the expression of the large cytotoxin tcdA while LCA significantly reduces toxin activity. Although iLCA and iaLCA are both epimers of LCA, they have distinct mechanisms for inhibiting C. difficile . LCA epimers, iLCA and iaLCA, represent promising compounds that target C. difficile with minimal effects on members of the gut microbiota that are important for colonization resistance. Importance In the search for a novel therapeutic that targets C. difficile , bile acids have become a viable solution. Epimers of bile acids are particularly attractive as they may provide protection against C. difficile while leaving the indigenous gut microbiota largely unaltered. This study shows that iLCA and iaLCA specifically are potent inhibitors of C. difficile , affecting key virulence factors including growth, toxin expression and activity. As we move toward the use of bile acids as therapeutics, further work will be required to determine how best to deliver these bile acids to a target site within the host intestinal tract.
Collapse
Affiliation(s)
- Samantha C Kisthardt
- North Carolina State University, College of Veterinary Medicine, Department of Population Health and Pathobiology, Raleigh, NC
| | - Rajani Thanissery
- North Carolina State University, College of Veterinary Medicine, Department of Population Health and Pathobiology, Raleigh, NC
| | - Colleen M Pike
- North Carolina State University, College of Veterinary Medicine, Department of Population Health and Pathobiology, Raleigh, NC
| | - Matthew H Foley
- North Carolina State University, College of Veterinary Medicine, Department of Population Health and Pathobiology, Raleigh, NC
- Department of Food, Bioprocessing and Nutrition Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA
| | - Casey M Theriot
- North Carolina State University, College of Veterinary Medicine, Department of Population Health and Pathobiology, Raleigh, NC
| |
Collapse
|
32
|
Ojeda ML, Nogales F, Carrasco López JA, Gallego-López MDC, Carreras O, Alcudia A, Pajuelo E. Microbiota-Liver-Bile Salts Axis, a Novel Mechanism Involved in the Contrasting Effects of Sodium Selenite and Selenium-Nanoparticle Supplementation on Adipose Tissue Development in Adolescent Rats. Antioxidants (Basel) 2023; 12:antiox12051123. [PMID: 37237989 DOI: 10.3390/antiox12051123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Adolescence is a period during which body composition changes deeply. Selenium (Se) is an excellent antioxidant trace element related to cell growth and endocrine function. In adolescent rats, low Se supplementation affects adipocyte development differently depending on its form of administration (selenite or Se nanoparticles (SeNPs). Despite this effect being related to oxidative, insulin-signaling and autophagy processes, the whole mechanism is not elucidated. The microbiota-liver-bile salts secretion axis is related to lipid homeostasis and adipose tissue development. Therefore, the colonic microbiota and total bile salts homeostasis were explored in four experimental groups of male adolescent rats: control, low-sodium selenite supplementation, low SeNP supplementation and moderate SeNPs supplementation. SeNPs were obtained by reducing Se tetrachloride in the presence of ascorbic acid. Supplementation was received orally through water intake; low-Se rats received twice more Se than control animals and moderate-Se rats tenfold more. Supplementation with low doses of Se clearly affected anaerobic colonic microbiota profile and bile salts homeostasis. However, these effects were different depending on the Se administration form. Selenite supplementation primarily affected liver by decreasing farnesoid X receptor hepatic function, leading to the accumulation of hepatic bile salts together to increase in the ratio Firmicutes/Bacteroidetes and glucagon-like peptide-1 (GLP-1) secretion. In contrast, low SeNP levels mainly affected microbiota, moving them towards a more prominent Gram-negative profile in which the relative abundance of Akkermansia and Muribaculaceae was clearly enhanced and the Firmicutes/Bacteroidetes ratio decreased. This bacterial profile is directly related to lower adipose tissue mass. Moreover, low SeNP administration did not modify bile salts pool in serum circulation. In addition, specific gut microbiota was regulated upon administration of low levels of Se in the forms of selenite or SeNPs, which are properly discussed. On its side, moderate-SeNPs administration led to great dysbiosis and enhanced the abundance of pathogenic bacteria, being considered toxic. These results strongly correlate with the deep change in adipose mass previously found in these animals, indicating that the microbiota-liver-bile salts axis is also mechanistically involved in these changes.
Collapse
Affiliation(s)
- María Luisa Ojeda
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Fátima Nogales
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - José A Carrasco López
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | - Olimpia Carreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
33
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Corrêa RO, Castro PR, Fachi JL, Nirello VD, El-Sahhar S, Imada S, Pereira GV, Pral LP, Araújo NVP, Fernandes MF, Matheus VA, de Souza Felipe J, Dos Santos Pereira Gomes AB, de Oliveira S, de Rezende Rodovalho V, de Oliveira SRM, de Assis HC, Oliveira SC, Dos Santos Martins F, Martens E, Colonna M, Varga-Weisz P, Vinolo MAR. Inulin diet uncovers complex diet-microbiota-immune cell interactions remodeling the gut epithelium. MICROBIOME 2023; 11:90. [PMID: 37101209 PMCID: PMC10131329 DOI: 10.1186/s40168-023-01520-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/16/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND The continuous proliferation of intestinal stem cells followed by their tightly regulated differentiation to epithelial cells is essential for the maintenance of the gut epithelial barrier and its functions. How these processes are tuned by diet and gut microbiome is an important, but poorly understood question. Dietary soluble fibers, such as inulin, are known for their ability to impact the gut bacterial community and gut epithelium, and their consumption has been usually associated with health improvement in mice and humans. In this study, we tested the hypothesis that inulin consumption modifies the composition of colonic bacteria and this impacts intestinal stem cells functions, thus affecting the epithelial structure. METHODS Mice were fed with a diet containing 5% of the insoluble fiber cellulose or the same diet enriched with an additional 10% of inulin. Using a combination of histochemistry, host cell transcriptomics, 16S microbiome analysis, germ-free, gnotobiotic, and genetically modified mouse models, we analyzed the impact of inulin intake on the colonic epithelium, intestinal bacteria, and the local immune compartment. RESULTS We show that the consumption of inulin diet alters the colon epithelium by increasing the proliferation of intestinal stem cells, leading to deeper crypts and longer colons. This effect was dependent on the inulin-altered gut microbiota, as no modulations were observed in animals deprived of microbiota, nor in mice fed cellulose-enriched diets. We also describe the pivotal role of γδ T lymphocytes and IL-22 in this microenvironment, as the inulin diet failed to induce epithelium remodeling in mice lacking this T cell population or cytokine, highlighting their importance in the diet-microbiota-epithelium-immune system crosstalk. CONCLUSION This study indicates that the intake of inulin affects the activity of intestinal stem cells and drives a homeostatic remodeling of the colon epithelium, an effect that requires the gut microbiota, γδ T cells, and the presence of IL-22. Our study indicates complex cross kingdom and cross cell type interactions involved in the adaptation of the colon epithelium to the luminal environment in steady state. Video Abstract.
Collapse
Affiliation(s)
- Renan Oliveira Corrêa
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA.
| | - Pollyana Ribeiro Castro
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - José Luís Fachi
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Vinícius Dias Nirello
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Salma El-Sahhar
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Shinya Imada
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Gabriel Vasconcelos Pereira
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
- University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Laís Passariello Pral
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Nathália Vitoria Pereira Araújo
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Mariane Font Fernandes
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Valquíria Aparecida Matheus
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Jaqueline de Souza Felipe
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Arilson Bernardo Dos Santos Pereira Gomes
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Sarah de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Vinícius de Rezende Rodovalho
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Samantha Roberta Machado de Oliveira
- Laboratory of Biotherapeutics Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Helder Carvalho de Assis
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Sergio Costa Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Flaviano Dos Santos Martins
- Laboratory of Biotherapeutics Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Eric Martens
- University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Patrick Varga-Weisz
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- São Paulo Excellence Chair, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
- Experimental Medicine Research Cluster, Campinas, SP, 13083-862, Brazil.
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, 13083-864, Brazil.
| |
Collapse
|
35
|
Zhou C, Wang Y, Li C, Xie Z, Dai L. Amelioration of Colitis by a Gut Bacterial Consortium Producing Anti-Inflammatory Secondary Bile Acids. Microbiol Spectr 2023:e0333022. [PMID: 36943054 PMCID: PMC10101101 DOI: 10.1128/spectrum.03330-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The Integrative Human Microbiome Project and other cohort studies have indicated that inflammatory bowel disease is accompanied by dysbiosis of gut microbiota, decreased production of secondary bile acids, and increased levels of primary bile acids. Secondary bile acids, such as ursodeoxycholic acid (UDCA) and lithocholic acid (LCA), have been reported to be anti-inflammatory, yet it remains to be studied whether introducing selected bacteria strains to restore bile acid metabolism of the gut microbiome can alleviate intestinal inflammation. In this study, we screened human gut bacterial strains for bile acid metabolism and designed a consortium of three species, including Clostridium AP sp000509125, Bacteroides ovatus, and Eubacterium limosum, and named it BAC (bile acid consortium). We showed that the three-strain gut bacterial consortium BAC is capable of converting conjugated primary bile acids taurochenodeoxycholic acid and glycochenodeoxycholic acid to secondary bile acids UDCA and LCA in vitro. Oral gavage treatment with BAC in mice resulted in protective effects against dextran sulfate sodium (DSS)-induced colitis, including reduced weight loss and increased colon length. Furthermore, BAC treatment increased the fecal level of bile acids, including UDCA and LCA. BAC treatment enhanced intestinal barrier function, which may be attributed to the increased activation of the bile acid receptor TGR5 by secondary bile acids. Finally, we examined the remodeling of gut microbiota by BAC treatment. Taken together, the three-strain gut bacterial consortium BAC restored the dysregulated bile acid metabolism and alleviated DSS-induced colitis. Our study provides a proof-of-concept demonstration that a rationally designed bacterial consortium can reshape the metabolism of the gut microbiome to treat diseases. IMPORTANCE Secondary bile acids have been reported to be anti-inflammatory, yet it remains to be studied whether introducing selected bacteria strains to restore bile acid metabolism of the gut microbiome can alleviate intestinal inflammation. To address this gap, we designed a consortium of human gut bacterial strains based on their metabolic capacity to produce secondary bile acids UDCA and LCA, and we evaluated the efficacy of single bacterial strains and the bacterial consortium in treating the murine colitis model. We found that oral gavage of the bacterial consortium to mice restored secondary bile acid metabolism to increase levels of UDCA and LCA, which induced the activation of TGR5 to improve gut-barrier integrity and reduced the inflammation in murine colitis. Overall, our study demonstrates that rationally designed bacterial consortia can reshape the metabolism of the gut microbiome and provides novel insights into the application of live biotherapeutics for treating IBD.
Collapse
Affiliation(s)
- Chunhua Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Ying Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Cun Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
36
|
Lee S, Choi A, Park KH, Lee S, Yoon H, Kim P. Single-cell hemoprotein (heme-SCP) exerts the prebiotic potential to establish a healthy gut microbiota in small pet dogs. Food Sci Biotechnol 2023; 32:489-496. [PMID: 36911324 PMCID: PMC9992493 DOI: 10.1007/s10068-022-01195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
To investigate the effect of the single-cell hemoprotein (heme-SCP) source on animals, a dog-treat (100 g for each dog) harboring 0.2% heme-SCP was manufactured and fed to seven pet dogs (< 10 kg) in a randomized manner (irrespective of owner's feeding style, dogs' health conditions, and staple diets), and the feces before and after the dog-treat diet were analyzed to define the structure of the microbiota. The total bacterial species of the seven dogs showed no difference (564-584), although the bacterial compositions varied significantly. The Firmicutes phylum increased (54.7-73.7%), showing differential species composition before and after heme-SCP intake. Proteobacteria, Bacteroidetes, and Fusobacteria decreased (5.4-3.8%, 32.9-16.8%, and 6.3-3.6%, respectively), which agreed with the previous observation of deliberate feeding. Therefore, it is conceivable that heme-SCP as a prebiotic can shape the gut microbiota regardless of the administration method. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01195-9.
Collapse
Affiliation(s)
- Seungki Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi 14662 South Korea
| | - Ahyoung Choi
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi 14662 South Korea
| | | | - Seoyeon Lee
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499 South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499 South Korea
| | - Pil Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi 14662 South Korea.,HemoLab Ltd. Co., Bucheon, 14622 South Korea
| |
Collapse
|
37
|
McLeod A, Wolf P, Chapkin RS, Davidson LA, Ivanov I, Berbaum M, Williams LR, Gaskins HR, Ridlon J, Sanchez-Flack J, Blumstein L, Schiffer L, Hamm A, Cares K, Antonic M, Bernabe BP, Fitzgibbon M, Tussing-Humphreys L. Design of the Building Research in CRC prevention (BRIDGE-CRC) trial: a 6-month, parallel group Mediterranean diet and weight loss randomized controlled lifestyle intervention targeting the bile acid-gut microbiome axis to reduce colorectal cancer risk among African American/Black adults with obesity. Trials 2023; 24:113. [PMID: 36793105 PMCID: PMC9930092 DOI: 10.1186/s13063-023-07115-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Among all racial/ethnic groups, people who identify as African American/Blacks have the second highest colorectal cancer (CRC) incidence in the USA. This disparity may exist because African American/Blacks, compared to other racial/ethnic groups, have a higher prevalence of risk factors for CRC, including obesity, low fiber consumption, and higher intakes of fat and animal protein. One unexplored, underlying mechanism of this relationship is the bile acid-gut microbiome axis. High saturated fat, low fiber diets, and obesity lead to increases in tumor promoting secondary bile acids. Diets high in fiber, such as a Mediterranean diet, and intentional weight loss may reduce CRC risk by modulating the bile acid-gut microbiome axis. The purpose of this study is to test the impact of a Mediterranean diet alone, weight loss alone, or both, compared to typical diet controls on the bile acid-gut microbiome axis and CRC risk factors among African American/Blacks with obesity. Because weight loss or a Mediterranean diet alone can reduce CRC risk, we hypothesize that weight loss plus a Mediterranean diet will reduce CRC risk the most. METHODS This randomized controlled lifestyle intervention will randomize 192 African American/Blacks with obesity, aged 45-75 years to one of four arms: Mediterranean diet, weight loss, weight loss plus Mediterranean diet, or typical diet controls, for 6 months (48 per arm). Data will be collected at baseline, mid-study, and study end. Primary outcomes include total circulating and fecal bile acids, taurine-conjugated bile acids, and deoxycholic acid. Secondary outcomes include body weight, body composition, dietary change, physical activity, metabolic risk, circulating cytokines, gut microbial community structure and composition, fecal short-chain fatty acids, and expression levels of genes from exfoliated intestinal cells linked to carcinogenesis. DISCUSSION This study will be the first randomized controlled trial to examine the effects of a Mediterranean diet, weight loss, or both on bile acid metabolism, the gut microbiome, and intestinal epithelial genes associated with carcinogenesis. This approach to CRC risk reduction may be especially important among African American/Blacks given their higher risk factor profile and increased CRC incidence. TRIAL REGISTRATION ClinicalTrials.gov NCT04753359 . Registered on 15 February 2021.
Collapse
Affiliation(s)
- Andrew McLeod
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Patricia Wolf
- grid.169077.e0000 0004 1937 2197Department of Nutrition Science, Purdue University, West Lafayette, IN USA
| | - Robert S. Chapkin
- grid.264756.40000 0004 4687 2082Department of Nutrition, Program in Integrative Nutrition & Complex Diseases, and Center for Environmental Health Research, Texas A&M University, College Station, TX USA
| | - Laurie A. Davidson
- grid.264756.40000 0004 4687 2082Department of Nutrition, Program in Integrative Nutrition & Complex Diseases, and Center for Environmental Health Research, Texas A&M University, College Station, TX USA
| | - Ivan Ivanov
- grid.264756.40000 0004 4687 2082Department of Nutrition, Program in Integrative Nutrition & Complex Diseases, and Center for Environmental Health Research, Texas A&M University, College Station, TX USA ,grid.264756.40000 0004 4687 2082Department of Veterinary Physiology & Pharmacology, and Center for Environmental Health Research, Texas A&M University, College Station, TX USA
| | - Michael Berbaum
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Lauren R. Williams
- grid.185648.60000 0001 2175 0319Mile Square Health Center, University of Illinois Chicago, Chicago, IL USA
| | - H. Rex Gaskins
- grid.35403.310000 0004 1936 9991Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL USA
| | - Jason Ridlon
- grid.35403.310000 0004 1936 9991Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL USA
| | - Jen Sanchez-Flack
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA ,grid.185648.60000 0001 2175 0319Department of Pediatrics, University of Illinois Chicago, Chicago, IL USA ,grid.185648.60000 0001 2175 0319University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL USA
| | - Lara Blumstein
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Linda Schiffer
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Alyshia Hamm
- grid.185648.60000 0001 2175 0319Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL USA
| | - Kate Cares
- grid.185648.60000 0001 2175 0319Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL USA
| | - Mirjana Antonic
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Beatriz Penalver Bernabe
- grid.185648.60000 0001 2175 0319Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL USA
| | - Marian Fitzgibbon
- Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL, USA. .,Department of Pediatrics, University of Illinois Chicago, Chicago, IL, USA. .,University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA.
| | - Lisa Tussing-Humphreys
- Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL, USA. .,University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA. .,Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
38
|
Amin N, Schwarzkopf S, Tröscher-Mußotter J, Camarinha-Silva A, Dänicke S, Huber K, Frahm J, Seifert J. Host metabolome and faecal microbiome shows potential interactions impacted by age and weaning times in calves. Anim Microbiome 2023; 5:12. [PMID: 36788596 PMCID: PMC9926800 DOI: 10.1186/s42523-023-00233-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Calves undergo nutritional, metabolic, and behavioural changes from birth to the entire weaning period. An appropriate selection of weaning age is essential to reduce the negative effects caused by weaning-related dietary transitions. This study monitored the faecal microbiome and plasma metabolome of 59 female Holstein calves during different developmental stages and weaning times (early vs. late) and identified the potential associations of the measured parameters over an experimental period of 140 days. RESULTS A progressive development of the microbiome and metabolome was observed with significant differences according to the weaning groups (weaned at 7 or 17 weeks of age). Faecal samples of young calves were dominated by bifidobacterial and lactobacilli species, while their respective plasma samples showed high concentrations of amino acids (AAs) and biogenic amines (BAs). However, as the calves matured, the abundances of potential fiber-degrading bacteria and the plasma concentrations of sphingomyelins (SMs), few BAs and acylcarnitines (ACs) were increased. Early-weaning at 7 weeks significantly restructured the microbiome towards potential fiber-degrading bacteria and decreased plasma concentrations of most of the AAs and SMs, few BAs and ACs compared to the late-weaning event. Strong associations between faecal microbes, plasma metabolites and calf growth parameters were observed during days 42-98, where the abundances of Bacteroides, Parabacteroides, and Blautia were positively correlated with the plasma concentrations of AAs, BAs and SMs as well as the live weight gain or average daily gain in calves. CONCLUSION The present study reported that weaning at 17 weeks of age was beneficial due to higher growth rate of late-weaned calves during days 42-98 and a quick adaptability of microbiota to weaning-related dietary changes during day 112, suggesting an age-dependent maturation of the gastrointestinal tract. However, the respective plasma samples of late-weaned calves contained several metabolites with differential concentrations to the early-weaned group, suggesting a less abrupt but more-persistent effect of dietary changes on host metabolome compared to the microbiome.
Collapse
Affiliation(s)
- Nida Amin
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Sarah Schwarzkopf
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Johanna Tröscher-Mußotter
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Amélia Camarinha-Silva
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Sven Dänicke
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Korinna Huber
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Jana Frahm
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Jana Seifert
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany. .,Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593, Stuttgart, Germany.
| |
Collapse
|
39
|
Altered serum bile acid profile in fibromyalgia is associated with specific gut microbiome changes and symptom severity. Pain 2023; 164:e66-e76. [PMID: 35587528 DOI: 10.1097/j.pain.0000000000002694] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Alterations in the composition and function of the gut microbiome in women with fibromyalgia have recently been demonstrated, including changes in the relative abundance of certain bile acid-metabolizing bacteria. Bile acids can affect multiple physiological processes, including visceral pain, but have yet to be explored for association to the fibromyalgia gut microbiome. In this study, 16S rRNA sequencing and targeted metabolomic approaches were used to characterize the gut microbiome and circulating bile acids in a cohort of 42 women with fibromyalgia and 42 healthy controls. Alterations in the relative abundance of several bacterial species known to metabolize bile acids were observed in women with fibromyalgia, accompanied by significant alterations in the serum concentration of secondary bile acids, including a marked depletion of α-muricholic acid. Statistical learning algorithms could accurately detect individuals with fibromyalgia using the concentration of these serum bile acids. Serum α-muricholic acid was highly correlated with symptom severity, including pain intensity and fatigue. Taken together, these findings suggest serum bile acid alterations are implicated in nociplastic pain. The changes observed in the composition of the gut microbiota and the concentration of circulating secondary bile acids seem congruent with the phenotype of increased nociception and are quantitatively correlated with symptom severity. This is a first demonstration of circulating bile acid alteration in individuals with fibromyalgia, potentially secondary to upstream gut microbiome alterations. If corroborated in independent studies, these observations may allow for the development of molecular diagnostic aids for fibromyalgia as well as mechanistic insights into the syndrome.
Collapse
|
40
|
Wise JL, Cummings BP. The 7-α-dehydroxylation pathway: An integral component of gut bacterial bile acid metabolism and potential therapeutic target. Front Microbiol 2023; 13:1093420. [PMID: 36699589 PMCID: PMC9868651 DOI: 10.3389/fmicb.2022.1093420] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
The gut microbiome plays a significant role in maintaining host metabolic health through the production of metabolites. Comprising one of the most abundant and diverse forms of gut metabolites, bile acids play a key role in blood glucose regulation, insulin sensitivity, obesity, and energy expenditure. A central pathway in gut bacterial bile acid metabolism is the production of secondary bile acids via 7-ɑ-dehydroxylation. Despite the important role of 7-ɑ-dehydroxylation in gut bacterial bile acid metabolism and the pathophysiology of metabolic disease, the regulation of this pathway is not completely understood. This review aims to outline our current understanding of 7-ɑ-dehydroxylation and to identify key knowledge gaps that will be integral in further characterizing gut bacterial bile acid metabolism as a potential therapeutic target for treating metabolic dysregulation.
Collapse
Affiliation(s)
- Journey L. Wise
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Bethany P. Cummings
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
41
|
Dodd D, Cann I. Tutorial: Microbiome studies in drug metabolism. Clin Transl Sci 2022; 15:2812-2837. [PMID: 36099474 PMCID: PMC9747132 DOI: 10.1111/cts.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023] Open
Abstract
The human gastrointestinal tract is home to a dense population of microorganisms whose metabolism impacts human health and physiology. The gut microbiome encodes millions of genes, the products of which endow our bodies with unique biochemical activities. In the context of drug metabolism, microbial biochemistry in the gut influences humans in two major ways: (1) by producing small molecules that modulate expression and activity of human phase I and II pathways; and (2) by directly modifying drugs administered to humans to yield active, inactive, or toxic metabolites. Although the capacity of the microbiome to modulate drug metabolism has long been known, recent studies have explored these interactions on a much broader scale and have revealed an unprecedented scope of microbial drug metabolism. The implication of this work is that we might be able to predict the capacity of an individual's microbiome to metabolize drugs and use this information to avoid toxicity and inform proper dosing. Here, we provide a tutorial of how to study the microbiome in the context of drug metabolism, focusing on in vitro, rodent, and human studies. We then highlight some limitations and opportunities for the field.
Collapse
Affiliation(s)
- Dylan Dodd
- Department of PathologyStanford University School of MedicineStanfordCaliforniaUSA,Department of Microbiology and ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Isaac Cann
- Department of Animal ScienceUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme)University of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Division of Nutritional SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Center for East Asian & Pacific StudiesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
42
|
Huang JT, Mao YQ. The impact of the microbiome in cancer: Targeting metabolism of cancer cells and host. Front Oncol 2022; 12:1029033. [PMID: 36465375 PMCID: PMC9708872 DOI: 10.3389/fonc.2022.1029033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/27/2022] [Indexed: 08/10/2023] Open
Abstract
Abnormal metabolic alterations of cancer cells and the host play critical roles in the occurrence and development of tumors. Targeting cancer cells and host metabolism can provide novel diagnosis indicators and intervention targets for tumors. In recent years, it has been found that gut microbiota is involved in the metabolism of the host and cancer cells. Increasingly, gut microbiome and their metabolites have been demonstrated great influence on the tumor formation, prognosis and treatment. Specific gut microbial composition and metabolites are associated with the status of tumor in the host. Interventions on the gut microbiota can exert the protective effects on the tumor, through the manipulation of structure and its related metabolites. This may be the new approach to improve the efficacy of tumor prevention and treatment. Here, we discuss the effects and the underlying mechanisms of gut microbiota and microbial-derived metabolites in tumor progression and treatment.
Collapse
Affiliation(s)
- Jia-Ting Huang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Yu-Qin Mao
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Lei Y, Tang L, Chen Q, Wu L, He W, Tu D, Wang S, Chen Y, Liu S, Xie Z, Wei H, Yang S, Tang B. Disulfiram ameliorates nonalcoholic steatohepatitis by modulating the gut microbiota and bile acid metabolism. Nat Commun 2022; 13:6862. [PMID: 36369291 PMCID: PMC9651870 DOI: 10.1038/s41467-022-34671-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) has been linked with the gut-liver axis. Here, we investigate the potential for repurposing disulfiram (DSF), a drug commonly used to treat chronic alcoholism, for NASH. Using a mouse model, we show that DSF ameliorates NASH in a gut microbiota-dependent manner. DSF modulates the gut microbiota and directly inhibits the growth of Clostridium. Administration of Clostridium abolishes the ameliorating effects of DSF on NASH. Mechanistically, DSF reduces Clostridium-mediated 7α-dehydroxylation activity to suppress secondary bile acid biosynthesis, which in turn activates hepatic farnesoid X receptor signaling to ameliorate NASH. To assess the effect of DSF on human gut microbiota, we performed a self-controlled clinical trial (ChiCTR2100048035), including 23 healthy volunteers who received 250 mg-qd DSF for 7 days. The primary objective outcomes were to assess the effects of the intervention on the diversity, composition and functional profile of gut microbiota. The pilot study shows that DSF also reduces Clostridium-mediated 7α-dehydroxylation activity. All volunteers tolerated DSF well and there were no serious adverse events in the 7-day follow-up period. Transferring fecal microbiota obtained from DSF-treated humans into germ-free mice ameliorates NASH. Collectively, the observations of similar ameliorating effects of DSF on mice and humans suggest that DSF ameliorates NASH by modulating the gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Yuanyuan Lei
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Li Tang
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Qiao Chen
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Lingyi Wu
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Wei He
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Dianji Tu
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
- Laboratory Medicine Center, Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Yuyang Chen
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Shuang Liu
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Zhuo Xie
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Hong Wei
- Jinfeng Laboratory, 401329, Chongqing, China.
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, 400038, Chongqing, China.
| | - Shiming Yang
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, 400064, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Gastroenterology, 400037, Chongqing, China.
| | - Bo Tang
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China.
| |
Collapse
|
44
|
Gao F, Guan D, Wang G, Zhang L, He J, Lv W, Zhang X, Tao W, Dai Y, Xu S, Chen Y, Lu B. Effects of oral tauroursodeoxycholic acid and/or intestinal probiotics on serum biochemical indexes and bile composition in patients with cholecystolithiasis. Front Pharmacol 2022; 13:882764. [PMID: 36353477 PMCID: PMC9638003 DOI: 10.3389/fphar.2022.882764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background: In recent years, gallstones have become a major condition affecting people’s health. Cholecystectomy remains an effective treatment method, but it has large risk factors. It is well known that the hepatoenteric axis plays a key role in gallstone formation, and it is gradually becoming a research focus. Cholesterol homeostasis can be regulated by the liver and intestinal tract in our bodies, and intestinal flora can regulate the digestion and absorption of cholesterol. These two factors are closely related to the formation of gallstones. Aim: To investigate the effects of tauroursodeoxycholic acid (TUDCA) and/or intestinal probiotics on serum biochemical indexes and bile composition in patients with cholecystolithiasis. Methods: For this study, 96 patients with cholecystolithiasis were recruited at our hospital. The patients were randomly divided into four groups according to a random number table: group Ⅰ (TUDCA, 24 cases), group Ⅱ (intestinal probiotics, 24 cases), group Ⅲ (TUDCA and intestinal probiotics, 24 cases) and group Ⅳ (control group, 24 cases). All patients underwent laparoscopic gallbladder-preserving lithotomy or laparoscopic cholecystectomy. Bile samples were identified and extracted during the operation. Results: The results revealed that the levels of serum total bile acid (TBA), serum total cholesterol (TCHOL) and serum triglyceride in groups I, II and III before and after the intervention were statistically significant (p < 0.05). There were significant differences in serum low-density lipoprotein cholesterol (LDL-C) between groups I and II before and after the intervention (p < 0.05), but the serum LDL-C level in group Ⅲ before and after the intervention was similar (p > 0.05). Regarding bile, TBA levels demonstrated no significant difference between groups I and III (p > 0.05), and the differences between the other two groups were statistically significant (p < 0.05). No significant difference was identified in phospholipid and TCHOL levels between groups I and Ⅲ (p > 0.05), and the differences between the other two groups were statistically significant (p < 0.05). There were significant differences in the levels of free Ca2+, pH value and glycoprotein in bile among the four groups (p < 0.05). The levels of cholic acid, chenodeoxycholic acid and deoxycholic acid in bile were significantly different among the four groups (p < 0.05). The level of lithocholic acid (LCA) in groups Ⅱ and Ⅲ was similar, as was the level of LCA in groups I and ⅠV, but the difference in level between the other two groups was statistically significant (p < 0.05). Conclusion: The combination of TUDCA and intestinal probiotics did not enhance the effect of either treatment. The use of intestinal probiotics alone can maximise the reverse development of bile composition in patients with cholecystolithiasis compared with TUDCA alone and a combination of TUDCA and intestinal probiotics, thereby reducing gallstone formation.
Collapse
|
45
|
Wang H, Zhang H, Gao Z, Zhang Q, Gu C. The mechanism of berberine alleviating metabolic disorder based on gut microbiome. Front Cell Infect Microbiol 2022; 12:854885. [PMID: 36093200 PMCID: PMC9452888 DOI: 10.3389/fcimb.2022.854885] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
With socioeconomic advances and improved living standards, metabolic syndrome has increasingly come into the attention. In recent decades, a growing number of studies have shown that the gut microbiome and its metabolites are closely related to the occurrence and development of many metabolic diseases, and play an important role that cannot be ignored, for instance, obesity, type 2 diabetes (T2DM), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease and others. The correlation between gut microbiota and metabolic disorder has been widely recognized. Metabolic disorder could cause imbalance in gut microbiota, and disturbance of gut microbiota could aggravate metabolic disorder as well. Berberine (BBR), as a natural ingredient, plays an important role in the treatment of metabolic disorder. Studies have shown that BBR can alleviate the pathological conditions of metabolic disorders, and the mechanism is related to the regulation of gut microbiota: gut microbiota could regulate the absorption and utilization of berberine in the body; meanwhile, the structure and function of gut microbiota also changed after intervention by berberine. Therefore, we summarize relevant mechanism research, including the expressions of nitroreductases-producing bacteria to promote the absorption and utilization of berberine, strengthening intestinal barrier function, ameliorating inflammation regulating bile acid signal pathway and axis of bacteria-gut-brain. The aim of our study is to clarify the therapeutic characteristics of berberine further and provide the theoretical basis for the regulation of metabolic disorder from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezheng Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiqi Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengjuan Gu
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Chengjuan Gu,
| |
Collapse
|
46
|
Cui Y, Zhang L, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Roles of intestinal Parabacteroides in human health and diseases. FEMS Microbiol Lett 2022; 369:6659190. [PMID: 35945336 DOI: 10.1093/femsle/fnac072] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
The stability of gut microbiota is essential for the host health. Parabacteroides spp., core members of the human gut microbiota, have average abundance of 1.27% in the human of 12 populations. Parabacteroides has been recently reported to have a close relationship with host health (E.g., metabolic syndrome, inflammatory bowel disease and obesity). Parabacteroides have the physiological characteristics of carbohydrate metabolism and secreting SCFAs. However, antimicrobial resistance of Parabacteroides to antibiotic (such as clindamycin, moxifloxacin and cefoxitin) should not be ignored. In this review, we primarily focused on Parabacteroides distasoniss, Parabacteroides goldsteinii, Parabacteroides johnsonii and Parabacteroides merdae and discussed their relationships with host disease, diet and the prevention or induction of diseases. P. distasonis and P. goldsteinii may be viewed as the potential next generation probiotics (NGP) candidate due to their protective effects on inflammation and obesity in mice. We also discussed the potential therapeutic application of Parabacteroides spp. in maintaining host-intestine homeostasis.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Leshan Zhang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
47
|
Guo X, Okpara ES, Hu W, Yan C, Wang Y, Liang Q, Chiang JYL, Han S. Interactive Relationships between Intestinal Flora and Bile Acids. Int J Mol Sci 2022; 23:8343. [PMID: 35955473 PMCID: PMC9368770 DOI: 10.3390/ijms23158343] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
The digestive tract is replete with complex and diverse microbial communities that are important for the regulation of multiple pathophysiological processes in humans and animals, particularly those involved in the maintenance of intestinal homeostasis, immunity, inflammation, and tumorigenesis. The diversity of bile acids is a result of the joint efforts of host and intestinal microflora. There is a bidirectional relationship between the microbial community of the intestinal tract and bile acids in that, while the microbial flora tightly modulates the metabolism and synthesis of bile acids, the bile acid pool and composition affect the diversity and the homeostasis of the intestinal flora. Homeostatic imbalances of bile acid and intestinal flora systems may lead to the development of a variety of diseases, such as inflammatory bowel disease (IBD), colorectal cancer (CRC), hepatocellular carcinoma (HCC), type 2 diabetes (T2DM), and polycystic ovary syndrome (PCOS). The interactions between bile acids and intestinal flora may be (in)directly involved in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Edozie Samuel Okpara
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Yu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| |
Collapse
|
48
|
Functional and Metagenomic Evaluation of Ibezapolstat for Early Evaluation of Anti-Recurrence Effects in Clostridioides difficile Infection. Antimicrob Agents Chemother 2022; 66:e0224421. [PMID: 35862742 PMCID: PMC9380534 DOI: 10.1128/aac.02244-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reduction of Clostridioides difficile infection (CDI) recurrence is an essential endpoint for CDI-directed antibiotic development that is often not evaluated until Phase III trials. The purpose of this project was to use a functional and metagenomic approach to predict the potential anti-CDI recurrence effect of ibezapolstat, a DNA polymerase IIIC inhibitor, in clinical development for CDI. As part of the Phase I ibezapolstat clinical study, stool samples were collected from 22 healthy volunteers, who were given either ibezapolstat or vancomycin. Stool samples were evaluated for microbiome changes and bile acid concentrations. Ibezapolstat 450 mg and vancomycin, but not ibezapolstat 300 mg, showed statistically significant changes in alpha diversity over time compared to that of a placebo. Beta diversity changes confirmed that microbiota were significantly different between study groups. Vancomycin had a more wide-ranging effect on the microbiome, characterized by an increased proportion of Gammaproteobacteria. Ibezapolstat demonstrated an increased proportion of Actinobacteria, including the Bifidobacteriaceae family. Using a linear regression analysis, vancomycin was associated with significant increases in primary bile acids as well as primary:secondary bile acid ratios. An overabundance of Enterobacteriaceae was most highly correlated with primary bile acid concentrations (r = 0.63; P < 0.0001). Using Phase I healthy volunteer samples, beneficial changes suggestive of a lower risk of CDI recurrence were associated with ibezapolstat compared to vancomycin. This novel omics approach may allow for better and earlier prediction of anti-CDI recurrence effects for antibiotics in the clinical development pipeline.
Collapse
|
49
|
Maki JJ, Lippolis JD, Looft T. Proteomic response of Turicibacter bilis MMM721 to chicken bile and its bile acids. BMC Res Notes 2022; 15:236. [PMID: 35780123 PMCID: PMC9250206 DOI: 10.1186/s13104-022-06127-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Bile and its individual components, mainly bile acids, are important for digestion and drive bacterial community dynamics in the upper gastrointestinal tract of chickens. However, specific responses to bile acids have been characterized in only a few commensal bacteria, and it is unclear how other members of the microbiota respond to biliary stress. Here, we used label-free LC–MS/MS to assess the proteomic response of a common inhabitant of the chicken small intestine, Turicibacter bilis MMM721, to 24 h of growth in anaerobic growth media supplemented with 0.1% whole chicken bile, 0.1% taurochenodeoxycholic acid (TCDCA), or 0.1% taurocholic acid (TCA). Results Seventy, 46, and 10 differentially expressed proteins were identified in Turicibacter bilis MMM721 cultured with supplements of chicken bile, TCDCA, and TCA, respectively, when compared to unsupplemented controls. Many differentially expressed proteins were predicted to be involved in ribosomal processes, post-translational modifications and chaperones, and modifications to the cell surface. Ultimately, the T. bilis MMM721 response to whole bile and bile acids is complex and may relate to adaptations for small intestine colonization, with numerous proteins from a variety of functional categories being impacted. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06127-8.
Collapse
Affiliation(s)
- Joel J Maki
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, 50010, USA.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | - John D Lippolis
- Ruminant Diseases and Immunology Research UnitAgricultural Research ServiceDepartment of Agriculture, National Animal Disease Center, Ames, IA, 50010, USA
| | - Torey Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, 50010, USA.
| |
Collapse
|
50
|
Lavelle A, Nancey S, Reimund JM, Laharie D, Marteau P, Treton X, Allez M, Roblin X, Malamut G, Oeuvray C, Rolhion N, Dray X, Rainteau D, Lamaziere A, Gauliard E, Kirchgesner J, Beaugerie L, Seksik P, Peyrin-Biroulet L, Sokol H. Fecal microbiota and bile acids in IBD patients undergoing screening for colorectal cancer. Gut Microbes 2022; 14:2078620. [PMID: 35638103 PMCID: PMC9176255 DOI: 10.1080/19490976.2022.2078620] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Due to the potential role of the gut microbiota and bile acids in the pathogenesis of both inflammatory bowel disease (IBD) and sporadic colorectal cancer, we aimed to determine whether these factors were associated with colorectal cancer in IBD patients. 215 IBD patients and 51 non-IBD control subjects were enrolled from 10 French IBD centers between September 2011 and July 2018. Fecal samples were processed for bacterial 16S rRNA gene sequencing and bile acid profiling. Demographic, clinical, endoscopic, and histological outcomes were recorded. Characteristics of IBD patients included: median age: 41.6 (IQR 22); disease duration 13.2 (13.1); 47% female; 21.9% primary sclerosing cholangitis; 109 patients with Crohn's disease (CD); 106 patients with ulcerative colitis (UC). The prevalence of cancer was 2.8% (6/215: 1 CD; 5 UC), high-grade dysplasia 3.7% (8/215) and low-grade dysplasia 7.9% (17/215). Lachnospira was decreased in IBD patients with cancer, while Agathobacter was decreased and Escherichia-Shigella increased in UC patients with any neoplasia. Bile acids were not associated with cancer or neoplasia. Unsupervised clustering identified three gut microbiota clusters in IBD patients associated with bile acid composition and clinical features, including a higher risk of neoplasia in UC in two clusters when compared to the third (relative risk (RR) 4.07 (95% CI 1.6-10.3, P < .01) and 3.56 (95% CI 1.4-9.2, P < .01)). In this multicentre observational study, a limited number of taxa were associated with neoplasia and exploratory microbiota clusters co-associated with clinical features, including neoplasia risk in UC. Given the very small number of cancers, the robustness of these findings will require assessment and validation in future studies.
Collapse
Affiliation(s)
- Aonghus Lavelle
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Stéphane Nancey
- Gastroenterology Department University Claude Bernard Lyon 1Hospices Civils de Lyon, CHU Lyon-Sud, Lyon, France
| | - Jean-Marie Reimund
- Hôpital de Hautpierre, CHU de Strasbourg, Service d’Hépato-gastroentérologie et Assistance Nutritive, Strasbourg, France
| | - David Laharie
- CHU de Bordeaux, Hôpital Haut-Lévêque, Service d’Hépato-gastroentérologie et oncologie digestive – Université de Bordeaux, Bordeaux, France
| | - Philippe Marteau
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Tenon Hospital, Paris, France
| | - Xavier Treton
- Gastroentérologie, MICI et Assistance Nutritive, DMU DIGEST, hôpital Beaujon, 100 bd du général Leclerc, Clichy, France
| | - Matthieu Allez
- Department of Hepato-Gastroenterology, Hôpital Saint-Louis, Paris, France
| | - Xavier Roblin
- Gastroenterology Department, CHU de Saint-Étienne - Hôpital Bellevue, St Etienne, France
| | - Georgia Malamut
- Gastroenterology Department, Hôpital Européen Georges-Pompidou, Paris, France
| | - Cyriane Oeuvray
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Nathalie Rolhion
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Xavier Dray
- Sorbonne University, Endoscopy Unit, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Dominique Rainteau
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Antonin Lamaziere
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Emilie Gauliard
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Julien Kirchgesner
- Paris Centre for Microbiome Medicine FHU, Paris, France,Department of Gastroenterology, Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Laurent Beaugerie
- Paris Centre for Microbiome Medicine FHU, Paris, France,Department of Gastroenterology, Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Philippe Seksik
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, Nancy, France,Inserm NGERE, Université de Lorraine, Vandœuvre-Lès-Nancy, France,FHU Cure, Nancy, France
| | - Harry Sokol
- Gastroenterology Department, Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France,Paris Centre for Microbiome Medicine FHU, Paris, France,INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France,CONTACT Harry Sokol Gastroenterology Department, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571Paris CEDEX 12, France
| |
Collapse
|