1
|
Günther C, Winner B, Neurath MF, Stappenbeck TS. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut 2022; 71:1892-1908. [PMID: 35636923 PMCID: PMC9380493 DOI: 10.1136/gutjnl-2021-326560] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
We are entering an era of medicine where increasingly sophisticated data will be obtained from patients to determine proper diagnosis, predict outcomes and direct therapies. We predict that the most valuable data will be produced by systems that are highly dynamic in both time and space. Three-dimensional (3D) organoids are poised to be such a highly valuable system for a variety of gastrointestinal (GI) diseases. In the lab, organoids have emerged as powerful systems to model molecular and cellular processes orchestrating natural and pathophysiological human tissue formation in remarkable detail. Preclinical studies have impressively demonstrated that these organs-in-a-dish can be used to model immunological, neoplastic, metabolic or infectious GI disorders by taking advantage of patient-derived material. Technological breakthroughs now allow to study cellular communication and molecular mechanisms of interorgan cross-talk in health and disease including communication along for example, the gut-brain axis or gut-liver axis. Despite considerable success in culturing classical 3D organoids from various parts of the GI tract, some challenges remain to develop these systems to best help patients. Novel platforms such as organ-on-a-chip, engineered biomimetic systems including engineered organoids, micromanufacturing, bioprinting and enhanced rigour and reproducibility will open improved avenues for tissue engineering, as well as regenerative and personalised medicine. This review will highlight some of the established methods and also some exciting novel perspectives on organoids in the fields of gastroenterology. At present, this field is poised to move forward and impact many currently intractable GI diseases in the form of novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Stem Cell Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Durel JF, Nerurkar NL. Mechanobiology of vertebrate gut morphogenesis. Curr Opin Genet Dev 2020; 63:45-52. [PMID: 32413823 DOI: 10.1016/j.gde.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 01/15/2023]
Abstract
Approximately a century after D'Arcy Thompson's On Growth and Form, there continues to be widespread interest in the biophysical and mathematical basis of morphogenesis. Particularly over the past 20 years, this interest has led to great advances in our understanding of a broad range of processes in embryonic development through a quantitative, mechanically driven framework. Nowhere in vertebrate development is this more apparent than the development of endodermally derived organs. Here, we discuss recent advances in the study of gut development that have emerged primarily from mechanobiology-motivated approaches that span from gut tube morphogenesis and later organogenesis of the respiratory and gastrointestinal systems.
Collapse
Affiliation(s)
- John F Durel
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, United States.
| |
Collapse
|
3
|
DeLaForest A, Quryshi AF, Frolkis TS, Franklin OD, Battle MA. GATA4 Is Required for Budding Morphogenesis of Posterior Foregut Endoderm in a Model of Human Stomach Development. Front Med (Lausanne) 2020; 7:44. [PMID: 32140468 PMCID: PMC7042400 DOI: 10.3389/fmed.2020.00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/29/2020] [Indexed: 01/16/2023] Open
Abstract
Three-dimensional gastrointestinal organoid culture systems provide innovative and tractable models to investigate fundamental developmental biology questions using human cells. The goal of this study was to explore the role of the zinc-finger containing transcription factor GATA4 in gastric development using an organoid-based model of human stomach development. Given GATA4′s vital role in the developing mouse gastrointestinal tract, we hypothesized that GATA4 plays an essential role in human stomach development. We generated a human induced pluripotent stem cell (hiPSC) line stably expressing an shRNA targeted against GATA4 (G4KD-hiPSCs) and used an established protocol for the directed differentiation of hiPSCs into stomach organoids. This in vitro model system, informed by studies in multiple non-human model systems, recapitulates the fundamental processes of stomach development, including foregut endoderm patterning, specification, and subsequent tissue morphogenesis and growth, to produce three-dimensional fundic or antral organoids containing functional gastric epithelial cell types. We confirmed that GATA4 depletion did not disrupt hiPSC differentiation to definitive endoderm (DE). However, when G4KD-hiPSC-derived DE cells were directed to differentiate toward budding SOX2+, HNF1B+ posterior foregut spheroids, we observed a striking decrease in the emergence of cell aggregates, with little to no spheroid formation and budding by GATA4-depleted hiPSCs. In contrast, control hiPSC-derived DE cells, expressing GATA4, formed aggregates and budded into spheroids as expected. These data support an essential role for GATA4 during the earliest stages of human stomach development.
Collapse
Affiliation(s)
- Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Afiya F Quryshi
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Talia S Frolkis
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Olivia D Franklin
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Abstract
The adult gastrointestinal tract (GI) is a series of connected organs (esophagus, stomach, small intestine, colon) that develop via progressive regional specification of a continuous tubular embryonic organ anlage. This chapter focuses on organogenesis of the small intestine. The intestine arises by folding of a flat sheet of endodermal cells into a tube of highly proliferative pseudostratified cells. Dramatic elongation of this tube is driven by rapid epithelial proliferation. Then, epithelial-mesenchymal crosstalk and physical forces drive a stepwise cascade that results in convolution of the tubular surface into finger-like projections called villi. Concomitant with villus formation, a sharp epithelial transcriptional boundary is defined between stomach and intestine. Finally, flask-like depressions called crypts are established to house the intestinal stem cells needed throughout life for epithelial renewal. New insights into these events are being provided by in vitro organoid systems, which hold promise for future regenerative engineering of the small intestine.
Collapse
Affiliation(s)
- Sha Wang
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States
| | - Katherine D Walton
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States.
| | - Deborah L Gumucio
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Banerjee KK, Saxena M, Kumar N, Chen L, Cavazza A, Toke NH, O'Neill NK, Madha S, Jadhav U, Verzi MP, Shivdasani RA. Enhancer, transcriptional, and cell fate plasticity precedes intestinal determination during endoderm development. Genes Dev 2018; 32:1430-1442. [PMID: 30366903 PMCID: PMC6217732 DOI: 10.1101/gad.318832.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023]
Abstract
After acquiring competence for selected cell fates, embryonic primordia may remain plastic for variable periods before tissue identity is irrevocably determined. Banerjee et al. show that the midgut endoderm is primed for heterologous cell fates and that transcription factors act on a background of shifting chromatin access to determine intestinal at the expense of foregut identity. After acquiring competence for selected cell fates, embryonic primordia may remain plastic for variable periods before tissue identity is irrevocably determined (commitment). We investigated the chromatin basis for these developmental milestones in mouse endoderm, a tissue with recognizable rostro–caudal patterning and transcription factor (TF)-dependent interim plasticity. Foregut-specific enhancers are as accessible and active in early midgut as in foregut endoderm, and intestinal enhancers and identity are established only after ectopic cis-regulatory elements are decommissioned. Depletion of the intestinal TF CDX2 before this cis element transition stabilizes foregut enhancers, reinforces ectopic transcriptional programs, and hence imposes foregut identities on the midgut. Later in development, as the window of chromatin plasticity elapses, CDX2 depletion weakens intestinal, without strengthening foregut, enhancers. Thus, midgut endoderm is primed for heterologous cell fates, and TFs act on a background of shifting chromatin access to determine intestinal at the expense of foregut identity. Similar principles likely govern other fate commitments.
Collapse
Affiliation(s)
- Kushal K Banerjee
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Madhurima Saxena
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Namit Kumar
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Lei Chen
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Alessia Cavazza
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Natalie H Toke
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Nicholas K O'Neill
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Shariq Madha
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Unmesh Jadhav
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA.,Cancer Institute of New Jersey, Piscataway, New Jersey 08854, USA.,Human Genetics Institute of New Jersey, Piscataway, New Jersey 08854, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Walton KD, Mishkind D, Riddle MR, Tabin CJ, Gumucio DL. Blueprint for an intestinal villus: Species-specific assembly required. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e317. [PMID: 29513926 PMCID: PMC6002883 DOI: 10.1002/wdev.317] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 12/14/2022]
Abstract
Efficient absorption of nutrients by the intestine is essential for life. In mammals and birds, convolution of the intestinal surface into finger-like projections called villi is an important adaptation that ensures the massive surface area for nutrient contact that is required to meet metabolic demands. Each villus projection serves as a functional absorptive unit: it is covered by a simple columnar epithelium that is derived from endoderm and contains a mesodermally derived core with supporting vasculature, lacteals, enteric nerves, smooth muscle, fibroblasts, myofibroblasts, and immune cells. In cross section, the consistency of structure in the billions of individual villi of the adult intestine is strikingly beautiful. Villi are generated in fetal life, and work over several decades has revealed that villus morphogenesis requires substantial "crosstalk" between the endodermal and mesodermal tissue components, with soluble signals, cell-cell contacts, and mechanical forces providing specific dialects for sequential conversations that orchestrate villus assembly. A key part of this process is the formation of subepithelial mesenchymal cell clusters that act as signaling hubs, directing overlying epithelial cells to cease proliferation, thereby driving villus emergence and simultaneously determining the location of future stem cell compartments. Interestingly, distinct species-specific differences govern how and when tissue-shaping signals and forces generate mesenchymal clusters and control villus emergence. As the details of villus development become increasingly clear, the emerging picture highlights a sophisticated local self-assembled cascade that underlies the reproducible elaboration of a regularly patterned field of absorptive villus units. This article is categorized under: Vertebrate Organogenesis > From a Tubular Primordium: Non-Branched Comparative Development and Evolution > Organ System Comparisons Between Species Early Embryonic Development > Development to the Basic Body Plan.
Collapse
Affiliation(s)
- Katherine D Walton
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Darcy Mishkind
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Misty R Riddle
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
7
|
Múnera JO, Sundaram N, Rankin SA, Hill D, Watson C, Mahe M, Vallance JE, Shroyer NF, Sinagoga KL, Zarzoso-Lacoste A, Hudson JR, Howell JC, Chatuvedi P, Spence JR, Shannon JM, Zorn AM, Helmrath MA, Wells JM. Differentiation of Human Pluripotent Stem Cells into Colonic Organoids via Transient Activation of BMP Signaling. Cell Stem Cell 2017; 21:51-64.e6. [PMID: 28648364 PMCID: PMC5531599 DOI: 10.1016/j.stem.2017.05.020] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
Abstract
Gastric and small intestinal organoids differentiated from human pluripotent stem cells (hPSCs) have revolutionized the study of gastrointestinal development and disease. Distal gut tissues such as cecum and colon, however, have proved considerably more challenging to derive in vitro. Here we report the differentiation of human colonic organoids (HCOs) from hPSCs. We found that BMP signaling is required to establish a posterior SATB2+ domain in developing and postnatal intestinal epithelium. Brief activation of BMP signaling is sufficient to activate a posterior HOX code and direct hPSC-derived gut tube cultures into HCOs. In vitro, HCOs express colonic markers and contained colon-specific cell populations. Following transplantation into mice, HCOs undergo morphogenesis and maturation to form tissue that exhibits molecular, cellular, and morphologic properties of human colon. Together these data show BMP-dependent patterning of human hindgut into HCOs, which will be valuable for studying diseases including colitis and colon cancer.
Collapse
Affiliation(s)
- Jorge O Múnera
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Scott A Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - David Hill
- University of Michigan, Ann Arbor, MI 48109, USA
| | - Carey Watson
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Maxime Mahe
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jefferson E Vallance
- Division of Gastroenterology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Noah F Shroyer
- Division of Gastroenterology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Katie L Sinagoga
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Adrian Zarzoso-Lacoste
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jonathan R Hudson
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jonathan C Howell
- Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Praneet Chatuvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|
8
|
McCracken KW, Wells JM. Mechanisms of embryonic stomach development. Semin Cell Dev Biol 2017; 66:36-42. [PMID: 28238948 DOI: 10.1016/j.semcdb.2017.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/20/2017] [Indexed: 12/18/2022]
Abstract
The stomach is a digestive organ that has important roles in human physiology and pathophysiology. The developmental origin of the stomach is the embryonic foregut, which also gives rise a number of other structures. There are several signaling pathways and transcription factors that are known to regulate stomach development at different stages, including foregut patterning, stomach specification, and gastric regionalization. These developmental events have important implications in later homeostasis and disease in the adult stomach. Here we will review the literature that has shaped our current understanding of the molecular mechanisms that coordinate gastric organogenesis. Further we will discuss how developmental paradigms have guided recent efforts to differentiate stomach tissue from pluripotent stem cells.
Collapse
Affiliation(s)
- Kyle W McCracken
- Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - James M Wells
- Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Division of Endocrinology Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
9
|
Nakamura T, Watanabe M. Intestinal stem cell transplantation. J Gastroenterol 2017; 52:151-157. [PMID: 27888356 DOI: 10.1007/s00535-016-1288-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 02/04/2023]
Abstract
Organoid technologies to expand intestinal epithelial cells are gaining increasing attention as a useful tool to investigate many aspects of intestinal epithelial biology and pathology. One important application of organoid systems would be to use intestinal epithelial cells expanded in culture for following transplantation experiments. In this article, we present a brief overview of the studies that have succeeded in generating new epithelial tissues in the surface of native intestines in mice by organoid transplantation. We also discuss possible applications of this experimental approach in basic research on the intestinal epithelium as well as in regenerative medicine for various types of intestinal diseases in humans.
Collapse
Affiliation(s)
- Tetsuya Nakamura
- Department of Advanced Therapeutics for GI Diseases, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan.
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| |
Collapse
|
10
|
Tsai YH, Nattiv R, Dedhia PH, Nagy MS, Chin AM, Thomson M, Klein OD, Spence JR. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development 2016; 144:1045-1055. [PMID: 27927684 PMCID: PMC5358103 DOI: 10.1242/dev.138453] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022]
Abstract
The intestine plays a central role in digestion, nutrient absorption and metabolism, with individual regions of the intestine having distinct functional roles. Many examples of region-specific gene expression in the adult intestine are known, but how intestinal regional identity is established during development is a largely unresolved issue. Here, we have identified several genes that are expressed in a region-specific manner in the developing human intestine. Using human embryonic stem cell-derived intestinal organoids, we demonstrate that the duration of exposure to active FGF and WNT signaling controls regional identity. Short-term exposure to FGF4 and CHIR99021 (a GSK3β inhibitor that stabilizes β-catenin) resulted in organoids with gene expression patterns similar to developing human duodenum, whereas longer exposure resulted in organoids similar to ileum. When region-specific organoids were transplanted into immunocompromised mice, duodenum-like organoids and ileum-like organoids retained their regional identity, demonstrating that regional identity of organoids is stable after initial patterning occurs. This work provides insights into the mechanisms that control regional specification of the developing human intestine and provides new tools for basic and translational research. Summary: Human embryonic stem cell-derived intestinal organoids can be patterned into duodenum-like or ileum-like tissue, recapitulating in vivo human development.
Collapse
Affiliation(s)
- Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Roy Nattiv
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA.,Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Priya H Dedhia
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Melinda S Nagy
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alana M Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew Thomson
- Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA .,Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA .,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Abstract
The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
12
|
Mesenchymal-epithelial interactions during digestive tract development and epithelial stem cell regeneration. Cell Mol Life Sci 2015; 72:3883-96. [PMID: 26126787 DOI: 10.1007/s00018-015-1975-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 12/16/2022]
Abstract
The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior-posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal-epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal-epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal-epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration.
Collapse
|
13
|
Pertuy F, Aguilar A, Strassel C, Eckly A, Freund JN, Duluc I, Gachet C, Lanza F, Léon C. Broader expression of the mouse platelet factor 4-cre transgene beyond the megakaryocyte lineage. J Thromb Haemost 2015; 13:115-25. [PMID: 25393502 DOI: 10.1111/jth.12784] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 11/01/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Transgenic mice expressing cre recombinase under the control of the platelet factor 4 (Pf4) promoter, in the context of a 100-kb bacterial artificial chromosome, have become a valuable tool with which to study genetic modifications in the platelet lineage. However, the specificity of cre expression has recently been questioned, and the time of its onset during megakaryopoiesis remains unknown. OBJECTIVES/METHODS To characterize the expression of this transgene, we used double-fluorescent cre reporter mice. RESULTS In the bone marrow, Pf4-cre-mediated recombination had occurred in all CD42-positive megakaryocytes as early as stage I of maturation, and in rare CD42-negative cells. In circulating blood, all platelets had recombined, along with only a minor fraction of CD45-positive cells. However, we found that all tissues contained recombined cells of monocyte/macrophage origin. When recombined, these cells might potentially modify the function of the tissues under particular conditions, especially inflammatory conditions, which further increase recombination in immune cells. Unexpectedly, a subset of epithelial cells from the distal colon showed signs of recombination resulting from endogenous Pf4-cre expression. This is probably the basis of the unexplained colon tumors developed by Apc(flox/flox) ;Pf4-cre mice, generated in a separate study on the role of Apc in platelet formation. CONCLUSION Altogether, our results indicate early recombination with full penetrance in megakaryopoiesis, and confirm the value of Pf4-cre mice for the genetic engineering of megakaryocytes and platelets. However, care must be taken when investigating the role of platelets in processes outside hemostasis, especially when immune cells might be involved.
Collapse
Affiliation(s)
- F Pertuy
- INSERM, UMR_S949, Strasbourg, France; Etablissement Français du Sang-Alsace, Strasbourg, France; Faculté de Médecine, Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Middendorp S, Schneeberger K, Wiegerinck CL, Mokry M, Akkerman RDL, van Wijngaarden S, Clevers H, Nieuwenhuis EES. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 2014; 32:1083-91. [PMID: 24496776 DOI: 10.1002/stem.1655] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/21/2013] [Accepted: 12/28/2013] [Indexed: 12/22/2022]
Abstract
Differentiation and specialization of epithelial cells in the small intestine are regulated in two ways. First, there is differentiation along the crypt-villus axis of the intestinal stem cells into absorptive enterocytes, Paneth, goblet, tuft, enteroendocrine, or M cells, which is mainly regulated by WNT. Second, there is specialization along the cephalocaudal axis with different absorptive and digestive functions in duodenum, jejunum, and ileum that is controlled by several transcription factors such as GATA4. However, so far it is unknown whether location-specific functional properties are intrinsically programmed within stem cells or if continuous signaling from mesenchymal cells is necessary to maintain the location-specific identity of the small intestine. Using the pure epithelial organoid technique, we show that region-specific gene expression profiles are conserved throughout long-term cultures of both mouse and human intestinal stem cells and correlated with differential Gata4 expression. Furthermore, the human organoid culture system demonstrates that Gata4-regulated gene expression is only allowed in absence of WNT signaling. These data show that location-specific function is intrinsically programmed in the adult stem cells of the small intestine and that their differentiation fate is independent of location-specific extracellular signals. In light of the potential future clinical application of small intestine-derived organoids, our data imply that it is important to generate GATA4-positive and GATA4-negative cultures to regenerate all essential functions of the small intestine.
Collapse
Affiliation(s)
- Sabine Middendorp
- Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Li Y, Pan J, Wei C, Chen J, Liu Y, Liu J, Zhang X, Evans SM, Cui Y, Cui S. LIM homeodomain transcription factor Isl1 directs normal pyloric development by targeting Gata3. BMC Biol 2014; 12:25. [PMID: 24674670 PMCID: PMC4021819 DOI: 10.1186/1741-7007-12-25] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/13/2014] [Indexed: 01/11/2023] Open
Abstract
Background Abnormalities in pyloric development or in contractile function of the pylorus cause reflux of duodenal contents into the stomach and increase the risk of gastric metaplasia and cancer. Abnormalities of the pyloric region are also linked to congenital defects such as the relatively common neonatal hypertrophic pyloric stenosis, and primary duodenogastric reflux. Therefore, understanding pyloric development is of great clinical relevance. Here, we investigated the role of the LIM homeodomain transcription factor Isl1 in pyloric development. Results Examination of Isl1 expression in developing mouse stomach by immunohistochemistry, whole mount in situ hybridization and real-time quantitative PCR demonstrated that Isl1 is highly expressed in developing mouse stomach, principally in the smooth muscle layer of the pylorus. Isl1 expression was also examined by immunofluorescence in human hypertrophic pyloric stenosis where the majority of smooth muscle cells were found to express Isl1. Isl1 function in embryonic stomach development was investigated utilizing a tamoxifen-inducible Isl1 knockout mouse model. Isl1 deficiency led to nearly complete absence of the pyloric outer longitudinal muscle layer at embryonic day 18.5, which is consistent with Gata3 null mouse phenotype. Chromatin immunoprecipitation, luciferase assays, and electrophoretic mobility shift assays revealed that Isl1 ensures normal pyloric development by directly targeting Gata3. Conclusions This study demonstrates that the Isl1-Gata3 transcription regulatory axis is essential for normal pyloric development. These findings are highly clinically relevant and may help to better understand pathways leading to pyloric disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China.
| | | |
Collapse
|
16
|
Chen F, Shyu AB, Shneider BL. Hu antigen R and tristetraprolin: counter-regulators of rat apical sodium-dependent bile acid transporter by way of effects on messenger RNA stability. Hepatology 2011; 54:1371-8. [PMID: 21688286 PMCID: PMC3205920 DOI: 10.1002/hep.24496] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/06/2011] [Indexed: 01/08/2023]
Abstract
UNLABELLED The apical sodium-dependent bile acid transporter (ASBT, SLC10A2) mediates intestinal, renal, and cholangiocyte bile acid reclamation. Transcriptional regulation of ASBT is well described, whereas information on posttranscriptional regulation is limited. Prior studies suggested that ontogeny of ASBT is controlled in part by changes in messenger RNA (mRNA) stability. We studied the role that Hu antigen R (HuR) and tristetraprolin (TTP) play in regulating the expression of mRNA that contains the 3' untranslated region (UTR) of rat ASBT. The 3'UTR was incorporated into an SV-40 driven luciferase reporter (rASBT3-luciferase) for rapid screening of regulatory effects. Silencing HuR reduced luciferase reporter activity, whereas silencing TTP enhanced luciferase activity. Conversely, overexpression of HuR enhanced rASBT3-luciferase reporter activity. The same 3'UTR fragments of rat ASBT were incorporated into a beta-globin coding mRNA construct for analysis of mRNA stability (rASBT3-βglobin). mRNA half-life was progressively shortened by the incorporation of increasing sized fragments of the 3'UTR. Silencing HuR shortened the half-life of rASBT3-βglobin containing 0.3 kb of the rat ASBT 3'UTR. Gel shift assays revealed binding of HuR and TTP to rat ASBT 3'UTR. Endogenously expressed human ASBT mRNA half-lives and steady-state protein levels in Caco-2 cells were repressed when HuR was silenced but was enhanced when TTP was silenced. Developmental changes in HuR and TTP protein abundance correlated with previously characterized ontogenic changes in rat ileal and renal ASBT expression. CONCLUSION These studies not only show that ASBT expression is controlled at the level of mRNA stability by way of its 3'UTR, but also identify HuR and TTP as two key transacting factors that are involved in exerting counterregulatory effects on ASBT mRNA stability.
Collapse
Affiliation(s)
- Frank Chen
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224
| | - Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, TX, 77030
| | - Benjamin L. Shneider
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224
| |
Collapse
|
17
|
Blimp1 regulates the transition of neonatal to adult intestinal epithelium. Nat Commun 2011; 2:452. [PMID: 21878906 PMCID: PMC3167062 DOI: 10.1038/ncomms1463] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/28/2011] [Indexed: 02/08/2023] Open
Abstract
In many mammalian species, the intestinal epithelium undergoes major changes that allow a dietary transition from mother's milk to the adult diet at the end of the suckling period. These complex developmental changes are the result of a genetic programme intrinsic to the gut tube, but its regulators have not been identified. Here we show that transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp1) is highly expressed in the developing and postnatal intestinal epithelium until the suckling to weaning transition. Intestine-specific deletion of Blimp1 results in growth retardation and excessive neonatal mortality. Mutant mice lack all of the typical epithelial features of the suckling period and are born with features of an adult-like intestine. We conclude that the suckling to weaning transition is regulated by a single transcriptional repressor that delays epithelial maturation.
Collapse
|
18
|
MILLS JASONC, SHIVDASANI RAMESHA. Gastric epithelial stem cells. Gastroenterology 2011; 140:412-24. [PMID: 21144849 PMCID: PMC3708552 DOI: 10.1053/j.gastro.2010.12.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/03/2010] [Accepted: 12/03/2010] [Indexed: 12/11/2022]
Abstract
Advances in our understanding of stem cells in the gastrointestinal tract include the identification of molecular markers of stem and early progenitor cells in the small intestine. Although gastric epithelial stem cells have been localized, little is known about their molecular biology. Recent reports describe the use of inducible Cre recombinase activity to indelibly label candidate stem cells and their progeny in the distal stomach, (ie, the antrum and pylorus). No such lineage labeling of epithelial stem cells has been reported in the gastric body (corpus). Among stem cells in the alimentary canal, those of the adult corpus are unique in that they lie close to the lumen and increase proliferation following loss of a single mature progeny lineage, the acid-secreting parietal cell. They are also unique in that they neither depend on Wnt signaling nor express the surface marker Lgr5. Because pathogenesis of gastric adenocarcinoma has been associated with abnormal patterns of gastric differentiation and with chronic tissue injury, there has been much research on the response of stomach epithelial stem cells to inflammation. Chronic inflammation, as induced by infection with Helicobacter pylori, affects differentiation and promotes metaplasias. Several studies have identified cellular and molecular mechanisms in spasmolytic polypeptide-expressing (pseudopyloric) metaplasia. Researchers have also begun to identify signaling pathways and events that take place during embryonic development that eventually establish the adult stem cells to maintain the specific features and functions of the stomach mucosa. We review the cytologic, molecular, functional, and developmental properties of gastric epithelial stem cells.
Collapse
Affiliation(s)
- JASON C. MILLS
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - RAMESH A. SHIVDASANI
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Spence JR, Lauf R, Shroyer NF. Vertebrate intestinal endoderm development. Dev Dyn 2011; 240:501-20. [PMID: 21246663 DOI: 10.1002/dvdy.22540] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2010] [Indexed: 12/12/2022] Open
Abstract
The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence, as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes.
Collapse
|
20
|
Grainger S, Savory JGA, Lohnes D. Cdx2 regulates patterning of the intestinal epithelium. Dev Biol 2010; 339:155-65. [PMID: 20043902 DOI: 10.1016/j.ydbio.2009.12.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 12/25/2022]
Abstract
Cdx1, Cdx2 and Cdx4 encode homeodomain transcription factors that are involved in vertebral anterior-posterior (AP) patterning. Cdx1 and Cdx2 are also expressed in the intestinal epithelium during development, suggesting a role in this tissue. Intestinal defects have not been reported in Cdx1 null mutants, while Cdx2 null mutants die at embryonic day 3.5 (E3.5), thus precluding assessment of the null phenotype at later stages. To circumvent this latter shortcoming, we have used a conditional Cre-lox strategy to inactivate Cdx2 in the intestinal epithelium. Using this approach, we found that ablation of Cdx2 at E13.5 led to a transformation of the small intestine to a pyloric stomach-like identity, although the molecular nature of the underlying mesenchyme remained unchanged. Further analysis of Cdx1-Cdx2 double mutants suggests that Cdx1 does not play a critical role in the development of the small intestine, at least after E13.5.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
21
|
The role of the basement membrane as a modulator of intestinal epithelial-mesenchymal interactions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:175-206. [PMID: 21075345 DOI: 10.1016/b978-0-12-381280-3.00008-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal development is a process of continuous dynamic bidirectional crosstalk between epithelial and underlying mesenchymal cells. This crosstalk is mediated by well-dissected signaling pathways. Another crucial actor in the epithelio-mesenchymal interactions is the stromal microenvironment, which is composed of extracellular matrix molecules. Among them, the basement membrane (BM) molecules are secreted by the epithelium and mesenchyme in a complementary manner. These molecules signal back to the cells via the integrins or other specific receptors. In this review, we mainly focus on the BM molecules, particularly laminins. The major BM molecules are organized in a complex molecular network, which is highly variable among organs. Cell culture, coculture, and grafting models have been of great interest in understanding the importance of these molecules. Mouse gene ablation of laminin chains are interesting models, which often lead to embryonic death and are frequently accompanied by compensatory processes. Overall, the BM molecules have a crucial role in the careful maintenance of intestinal homeostasis.
Collapse
|
22
|
Self M, Geng X, Oliver G. Six2 activity is required for the formation of the mammalian pyloric sphincter. Dev Biol 2009; 334:409-17. [PMID: 19660448 PMCID: PMC2792912 DOI: 10.1016/j.ydbio.2009.07.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/10/2009] [Accepted: 07/29/2009] [Indexed: 11/30/2022]
Abstract
The functional activity of Six2, a member of the so/Six family of homeodomain-containing transcription factors, is required during mammalian kidney organogenesis. We have now determined that Six2 activity is also necessary for the formation of the pyloric sphincter, the functional gate at the stomach-duodenum junction that inhibits duodenogastric reflux. Our data reveal that several genes known to be important for pyloric sphincter formation in the chick (e.g., Bmp4, Bmpr1b, Nkx2.5, Sox9, and Gremlin) also appear to be required for the formation of this structure in mammals. Thus, we propose that Six2 activity regulates this gene network during the genesis of the pyloric sphincter in the mouse.
Collapse
Affiliation(s)
- Michelle Self
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Xin Geng
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Guillermo Oliver
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
23
|
Simon-Assmann P, Bolcato-Bellemin AL, Klein A, Kedinger M. Tissue recombinants to study extracellular matrix targeting to basement membranes. Methods Mol Biol 2009; 522:309-318. [PMID: 19247609 DOI: 10.1007/978-1-59745-413-1_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Several techniques have been used to study the expression of basement membranes molecules but none of them allow distinguishing the cellular origin of the deposition of a single molecule at the subepithelial basement membrane. For this purpose, we designed an experimental model using recombinants between chick and mouse embryonic intestines. Following constructions of interspecies endodermal/mesenchymal associations in culture, developmental growth was achieved by in vivo transplantation in the chick embryo. Immunocytochemistry, using species-specific antibodies recognizing either chick or mouse basement membrane molecules, was then performed on cryosections made through the developed hybrid intestines.The use of this experimental design permits determination of the precise expression/secretion in the intestinal basement membrane region of the individual constituents: interestingly some of them are strictly of epithelial or of mesenchymal origin, while others are of dual origin. Furthermore, we could show that each of these molecules is expressed in a peculiar development-dependent pattern. Such interspecies as well as heterotopic recombinants (from different levels of the gastrointestinal tract) can also be used successfully to approach the regulation of the expression of functional markers, i.e., digestive enzymes.
Collapse
Affiliation(s)
- Patricia Simon-Assmann
- Inserm U682, Development and Physiopathology of the Intestine and Pancreas, 67200, Strasbourg, France.
| | | | | | | |
Collapse
|
24
|
van den Brink GR. Hedgehog signaling in development and homeostasis of the gastrointestinal tract. Physiol Rev 2007; 87:1343-75. [PMID: 17928586 DOI: 10.1152/physrev.00054.2006] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Hedgehog family of secreted morphogenetic proteins acts through a complex evolutionary conserved signaling pathway to regulate patterning events during development and in the adult organism. In this review I discuss the role of Hedgehog signaling in the development, postnatal maintenance, and carcinogenesis of the gastrointestinal tract. Three mammalian hedgehog genes, sonic hedgehog (Shh), indian hedgehog (Ihh), and desert hedgehog (Dhh) have been identified. Shh and Ihh are important endodermal signals in the endodermal-mesodermal cross-talk that patterns the developing gut tube along different axes. Mutations in Shh, Ihh, and downstream signaling molecules lead to a variety of gross malformations of the murine gastrointestinal tract including esophageal atresia, tracheoesophageal fistula, annular pancreas, midgut malrotation, and duodenal and anal atresia. These congenital malformations are also found in varying constellations in humans, suggesting a possible role for defective Hedgehog signaling in these patients. In the adult, Hedgehog signaling regulates homeostasis in several endoderm-derived epithelia, for example, the stomach, intestine, and pancreas. Finally, growth of carcinomas of the proximal gastrointestinal tract such as esophageal, gastric, biliary duct, and pancreatic cancers may depend on Hedgehog signaling offering a potential avenue for novel therapy for these aggressive cancers.
Collapse
Affiliation(s)
- Gijs R van den Brink
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Li X, Madison BB, Zacharias W, Kolterud A, States D, Gumucio DL. Deconvoluting the intestine: molecular evidence for a major role of the mesenchyme in the modulation of signaling cross talk. Physiol Genomics 2007; 29:290-301. [PMID: 17299133 DOI: 10.1152/physiolgenomics.00269.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Reciprocal cross talk between the endodermally derived epithelium and the underlying mesenchyme is required for regional patterning and proper differentiation of the developing mammalian intestine. Though both epithelium and mesenchyme participate in patterning, the mesenchyme is thought to play a prominent role in the determination of the epithelial phenotype during development and in adult life. However, the molecular basis for this instructional dominance is unclear. In fact, surprisingly little is known about the cellular origins of many of the critical signaling molecules and the gene transcriptional events that they impact. Here, we profile genes that are expressed in the separate mesenchymal and epithelial compartments of the perinatal mouse intestine. The data indicate that the vast majority of soluble inhibitors and modulators of signaling pathways such as Hedgehog, Bmp, Wnt, Fgf, and Igf are expressed predominantly or exclusively by the mesenchyme, accounting for its ability to dominate instructional cross talk. We also catalog the most highly enriched transcription factors in both compartments. The results bolster previous evidence suggesting a major role for Hnf4gamma and Hnf4alpha in the regulation of epithelial genes. Finally, we find that while epithelially enriched genes tend to be highly tissue restricted in their expression, mesenchymally enriched genes tend to be broadly expressed in multiple tissues. Thus, the unique tissue-specific signature that characterizes the intestinal epithelium is instructed and supported by a mesenchyme that itself expresses genes that are largely nontissue specific.
Collapse
Affiliation(s)
- Xing Li
- Bioinformatics Program, Departments of Cell and Developmental Biology and Human Genetics, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | | | |
Collapse
|
26
|
Stegmann A, Hansen M, Wang Y, Larsen JB, Lund LR, Ritié L, Nicholson JK, Quistorff B, Simon-Assmann P, Troelsen JT, Olsen J. Metabolome, transcriptome, and bioinformatic cis-element analyses point to HNF-4 as a central regulator of gene expression during enterocyte differentiation. Physiol Genomics 2006; 27:141-55. [PMID: 16868071 DOI: 10.1152/physiolgenomics.00314.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
DNA-binding transcription factors bind to promoters that carry their binding sites. Transcription factors therefore function as nodes in gene regulatory networks. In the present work we used a bioinformatic approach to search for transcription factors that might function as nodes in gene regulatory networks during the differentiation of the small intestinal epithelial cell. In addition we have searched for connections between transcription factors and the villus metabolome. Transcriptome data were generated from mouse small intestinal villus, crypt, and fetal intestinal epithelial cells. Metabolome data were generated from crypt and villus cells. Our results show that genes that are upregulated during fetal to adult and crypt to villus differentiation have an overrepresentation of potential hepatocyte nuclear factor (HNF)-4 binding sites in their promoters. Moreover, metabolome analyses by magic angle spinning (1)H nuclear magnetic resonance spectroscopy showed that the villus epithelial cells contain higher concentrations of lipid carbon chains than the crypt cells. These findings suggest a model where the HNF-4 transcription factor influences the villus metabolome by regulating genes that are involved in lipid metabolism. Our approach also identifies transcription factors of importance for crypt functions such as DNA replication (E2F) and stem cell maintenance (c-Myc).
Collapse
Affiliation(s)
- Anders Stegmann
- Department of Medical Biochemistry and Genetics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim BM, Buchner G, Miletich I, Sharpe PT, Shivdasani RA. The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling. Dev Cell 2005; 8:611-22. [PMID: 15809042 DOI: 10.1016/j.devcel.2005.01.015] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 01/10/2005] [Accepted: 01/18/2005] [Indexed: 12/11/2022]
Abstract
Inductive interactions between gut endoderm and the underlying mesenchyme pattern the developing digestive tract into regions with specific morphology and functions. The molecular mechanisms behind these interactions are largely unknown. Expression of the conserved homeobox gene Barx1 is restricted to the stomach mesenchyme during gut organogenesis. Using recombinant tissue cultures, we show that Barx1 loss in the mesenchyme prevents stomach epithelial differentiation of overlying endoderm and induces intestine-specific genes instead. Additionally, Barx1 null mouse embryos show visceral homeosis, with intestinal gene expression within a highly disorganized gastric epithelium. Barx1 directs mesenchymal cell expression of two secreted Wnt antagonists, sFRP1 and sFRP2, and these factors are sufficient replacements for Barx1 function. Canonical Wnt signaling is prominent in the prospective gastric endoderm prior to epithelial differentiation, and its inhibition by Barx1-dependent signaling permits development of stomach-specific epithelium. These results define a transcriptional and signaling pathway of inductive cell interactions in vertebrate organogenesis.
Collapse
Affiliation(s)
- Byeong-Moo Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
28
|
Wallace KN, Akhter S, Smith EM, Lorent K, Pack M. Intestinal growth and differentiation in zebrafish. Mech Dev 2005; 122:157-73. [PMID: 15652704 DOI: 10.1016/j.mod.2004.10.009] [Citation(s) in RCA: 373] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/13/2004] [Accepted: 10/15/2004] [Indexed: 02/08/2023]
Abstract
Intestinal development in amniotes is driven by interactions between progenitor cells derived from the three primary germ layers. Genetic analyses and gene targeting experiments in zebrafish offer a novel approach to dissect such interactions at a molecular level. Here we show that intestinal anatomy and architecture in zebrafish closely resembles the anatomy and architecture of the mammalian small intestine. The zebrafish intestine is regionalized and the various segments can be identified by epithelial markers whose expression is already segregated at the onset of intestinal differentiation. Differentiation of cells derived from the three primary germ layers begins more or less contemporaneously, and is preceded by a stage in which there is rapid cell proliferation and maturation of epithelial cell polarization. Analysis of zebrafish mutants with altered epithelial survival reveals that seemingly related single gene defects have different effects on epithelial differentiation and smooth muscle and enteric nervous system development.
Collapse
Affiliation(s)
- Kenneth N Wallace
- Department of Medicine, University of Pennsylvania School of Medicine, Rm 1212, BRB 2/3, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
29
|
Abud HE, Watson N, Heath JK. Growth of intestinal epithelium in organ culture is dependent on EGF signalling. Exp Cell Res 2005; 303:252-62. [PMID: 15652340 DOI: 10.1016/j.yexcr.2004.10.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 08/13/2004] [Indexed: 01/31/2023]
Abstract
Differentiation of endoderm into intestinal epithelium is initiated at E13.5 of mouse development when there are significant changes in morphology resulting in the conversion of undifferentiated stratified epithelium into a mature epithelial monolayer. Here we demonstrate that monolayer formation is associated with the selective apoptosis of superficial cells lining the lumen while cell proliferation is progressively restricted to cells adjacent to the basement membrane. We describe an innovative embryonic gut culture system that maintains the three-dimensional architecture of gut and in which these processes are recapitulated in vitro. Explants taken from specific regions of the gut and placed into organ culture develop and express molecular markers (Cdx1, Cdx2 and A33 antigen) in the same spatial and temporal pattern observed in vivo indicating that regional specification is maintained. Inhibition of the epidermal growth factor receptor (EGFR) tyrosine kinase using the specific inhibitor AG1478 significantly reduced the proliferation and survival of cells within the epithelial cell layer of cultured gut explants. This demonstrates an essential role for the EGF signalling pathway during the early stages of intestinal development.
Collapse
Affiliation(s)
- Helen E Abud
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, PO Box 2008, Parkville, Victoria 3050, Australia.
| | | | | |
Collapse
|
30
|
Mutoh H, Sakurai S, Satoh K, Osawa H, Tomiyama T, Kita H, Yoshida T, Tamada K, Yamamoto H, Isoda N, Ido K, Sugano K. Pericryptal fibroblast sheath in intestinal metaplasia and gastric carcinoma. Gut 2005; 54:33-9. [PMID: 15591501 PMCID: PMC1774373 DOI: 10.1136/gut.2004.042770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 05/27/2004] [Accepted: 06/03/2004] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS In the progression of chronic gastritis, gastric mucosal cells deviate from the normal pathway of gastric differentiation to an intestinal phenotype which is closely related to gastric carcinoma. However, to date, it has not been elucidated whether the intestinal metaplasia is merely a change in the epithelium or whether the underlying mesenchyme also changes from gastric type to intestinal type. We have investigated the relationship between intestinal metaplasia and the pericryptal fibroblast sheath (PCFS) in the mesenchyme. In addition, we also examined PCFS in gastric carcinoma. METHODS We determined the existence of PCFS in the intestinal metaplastic mucosa and carcinoma of both human and Cdx2 transgenic mouse stomach. PCFS was determined using the antibody against alpha-smooth muscle actin and electron microscopic observations. RESULTS PCFS formed an almost complete layer around the small and large intestinal crypts while it did not exist around the normal gastric glands in both mice and humans. PCFS was seen around the glands of intestinal metaplastic mucosa in both Cdx2 transgenic mouse and human stomachs. However, PCFS was virtually absent in the intestinal-type gastric adenocarcinoma area. CONCLUSION We successfully demonstrated that the epithelium as well as the mesenchyme changed from the gastric type to the intestinal type in intestinal metaplasia and that PCFS disappeared in intestinal-type gastric carcinoma.
Collapse
Affiliation(s)
- H Mutoh
- Department of Gastroenterology, Jichi Medical School, Yakushiji 3311-1, Minamikawachimachi, Kawachigun, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chan KK, Chen YS, Yau TO, Fu M, Lui VCH, Tam PKH, Sham MH. Hoxb3 vagal neural crest-specific enhancer element for controlling enteric nervous system development. Dev Dyn 2005; 233:473-83. [PMID: 15768390 DOI: 10.1002/dvdy.20347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The neural and glial cells of the intrinsic ganglia of the enteric nervous system (ENS) are derived from the hindbrain neural crest at the vagal level. The Hoxb3 gene is expressed in the vagal neural crest and in the enteric ganglia of the developing gut during embryogenesis. We have identified a cis-acting enhancer element b3IIIa in the Hoxb3 gene locus. In this study, by transgenic mice analysis, we examined the tissue specificity of the b3IIIa enhancer element using the lacZ reporter gene, with emphasis on the vagal neural crest cells and their derivatives in the developing gut. We found that the b3IIIa-lacZ transgene marks only the vagal region and not the trunk or sacral region. Using cellular markers, we showed that the b3IIIa-lacZ transgene was expressed in a subset of enteric neuroblasts during early development of the gut, and the expression was maintained in differentiated neurons of the myenteric plexus at later stages. The specificity of the b3IIIa enhancer in directing gene expression in the developing ENS was further supported by genetic analysis using the Dom mutant, a spontaneous mouse model of Hirschsprung's disease characterized by the absence of enteric ganglia in the distal gut. The colonization of lacZ-expressing cells in the large intestine was incomplete in all the Dom/b3IIIa-lacZ hybrid mutants we examined. To our knowledge, this is the only vagal neural crest-specific genetic regulatory element identified to date. This element could be used for a variety of genetic manipulations and in establishing transgenic mouse models for studying the development of the ENS.
Collapse
Affiliation(s)
- Kwok Keung Chan
- Department of Biochemistry, The University of Hong Kong, Faculty of Medicine Building, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Merediz EFC, Dyer J, Salmon KSH, Shirazi-Beechey SP. Molecular characterisation of fructose transport in equine small intestine. Equine Vet J 2004; 36:532-8. [PMID: 15460079 DOI: 10.2746/0425164044877378] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY Fructose can be a suitable carbohydrate supplement for horses before and/or during endurance exercise. In comparison to glucose, the ingestion of fructose results in a lower insulin peak and less marked fluctuations in blood glucose during exercise, potentially avoiding hypoglycaemia-induced exhaustion. OBJECTIVES To assess the capacity of the equine small intestine to absorb fructose and to determine the mechanism, molecular structure and properties of equine intestinal fructose transport. METHODS Using PCR-based strategies, RNA isolated from equine small intestine and primers designed to homologous regions of the fructose transporter, GLUT5, cDNA of other species, we cloned and sequenced equine GLUT5 (eGLUT5). Northern and western blot analyses, in conjunction with immunohistochemistry, utilising eGLUT5 cDNA and antibodies, assessed expression of eGLUT5 along the longitudinal and radial axes of the small intestine. Functional properties of fructose transport in intestinal brush-border membrane vesicles were measured using the rapid-filtration technique. RESULTS eGLUT5 is expressed in the villus enterocytes with highest levels in duodenum>jejunum and lowest in the ileum. Kinetic studies indicate eGLUT5 is a low affinity, high capacity transporter. CONCLUSIONS Equine small intestine has the capacity to absorb fructose. POTENTIAL RELEVANCE The molecular probes produced in these studies can be used as diagnostic aids to determine equine intestinal monosaccharide malabsorption.
Collapse
Affiliation(s)
- E Fernandez-Castaño Merediz
- Epithelial Function and Development Group, Department of Veterinary Preclinical Sciences, The University of Liverpool, Liverpool L69 7ZJ, UK
| | | | | | | |
Collapse
|
33
|
Kumar M, Jordan N, Melton D, Grapin-Botton A. Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev Biol 2003; 259:109-22. [PMID: 12812792 DOI: 10.1016/s0012-1606(03)00183-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During embryonic development, organs arise along the gut tube as a series of buds in a stereotyped anterior-posterior (A-P) pattern. Using chick-quail chimeras and in vitro tissue recombination, we studied the interactions governing the induction and maintenance of endodermal organ identify focusing on the pancreas. Though several permissive signals in pancreatic development have been previously identified, here we provide evidence that lateral plate mesoderm sends instructive signals to the endoderm, signals that induce expression of the pancreatic genes Pdx1, p48, Nkx6.1, glucagon, and insulin. Moreover, this instructive signal directs cells to form ectopic insulin-positive islet-like clusters in endoderm that would otherwise form more rostral organs. Once generated, endocrine cells no longer require interaction with mesoderm, but nonendocrine cells continue to require permissive signals from the mesoderm. Stimulation of activin, BMP, or retinoic acid signaling is sufficient to induce Pdx1 expression in endoderm anterior to the pancreas. Lateral plate mesoderm appears to pattern the endoderm in a posterior-dominant fashion as first noted in the patterning of the neural tube at the same embryonic stage. These findings argue for a central role of the mesoderm in coordinating the A-P pattern of all three primary germ layers.
Collapse
Affiliation(s)
- Maya Kumar
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
34
|
Ratineau C, Duluc I, Pourreyron C, Kedinger M, Freund JN, Roche C. Endoderm- and mesenchyme-dependent commitment of the differentiated epithelial cell types in the developing intestine of rat. Differentiation 2003; 71:163-9. [PMID: 12641570 DOI: 10.1046/j.1432-0436.2003.t01-1-710203.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During organogenesis, the intestinal tract progressively acquires a functional regionalization along the antero-posterior axis. Positional information needed for enterocytes has been studied, but the mechanisms that control Paneth and endocrine cell differentiation are poorly understood. We have used a model of endoderm/mesenchyme cross-associations to evaluate the respective roles of endoderm and mesenchyme in the cytodifferentiation of these epithelial cells. Heterotopic cross-associations comprising endoderm and mesenchyme from the presumptive proximal jejunum and colon were developed as xenografts in nude mice. Our results show that endoderm from the presumptive proximal jejunum when associated with colonic mesenchyme generate small intestinal enterocytes. Interestingly, no lysozyme-producing cells were generated. On the other hand, associations comprising colon endoderm and jejunal mesenchyme showed heterodifferentiation with typical small intestinal morphology with sucrase-isomaltase expression and Paneth cell differentiation. Heterotopic associations developed enteroendocrine cell patterns according to the normal fate of the endodermal moiety. As enteroendocrine cell commitment seems to occur before the other intestinal cell types, we cannot exclude a role of instructive signals from the mesenchyme on endocrine cell differentiation earlier in the development. These results identified a complex pattern of cell commitment, dependent of the differentiation type of the epithelial cell, on the regional origin of the endoderm and the associated mesenchyme.
Collapse
Affiliation(s)
- Christelle Ratineau
- INSERM unit 45, Faculté Laennec, 7 rue Guillaume Paradin, 69372 Lyon cedex 8, France
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Pancreatic islet cell transplantation as a treatment for diabetes has hitherto been confined to small patient cohorts with limited success. This article summarizes the results of islet cell transplantation before and after the advent of the new 'Edmonton protocol' of immunosuppression and management of the donor pancreas. Adopting this regimen has achieved unprecedented success and renewed interest in this potential cure for diabetes. Central to recent improvements in the technique has been the transplantation of an adequate islet mass. Improved methods to procure, isolate, and purify islets for clinical use are now being adopted as a new 'gold standard'. The use of new immunosuppressive drugs has further improved clinical results. Corticosteroid sparing-based regimens, and agents such as humanized monoclonal antibodies, are likely to form the mainstay of immunosuppressive protocols with the aim of achieving donor-specific tolerance. Alternative sources of islet cells are also required to expand the technique in an era of reduced numbers of donor pancreata. Manipulation of stem cells and xenotransplantation may yet yield sufficient islets to overcome the problem of donor shortage. Islet cell transplantation now forms the basis of a prospective multicenter trial under the aegis of the Immune Tolerance Network. The results of this are awaited, but it appears that islet cell transplantation may yet emerge as an effective treatment option for some members of the diabetic population.
Collapse
Affiliation(s)
- Daniel M Ridgway
- Division of Transplantation Surgery, Department of Surgery, University Hospitals of Leicester, Leicester, UK.
| | | | | | | |
Collapse
|
36
|
Fritsch C, Swietlicki EA, Lefebvre O, Kedinger M, Iordanov H, Levin MS, Rubin DC. Epimorphin expression in intestinal myofibroblasts induces epithelial morphogenesis. J Clin Invest 2002. [DOI: 10.1172/jci0213588] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Fritsch C, Swietlicki EA, Lefebvre O, Kedinger M, Iordanov H, Levin MS, Rubin DC. Epimorphin expression in intestinal myofibroblasts induces epithelial morphogenesis. J Clin Invest 2002; 110:1629-41. [PMID: 12464668 PMCID: PMC151625 DOI: 10.1172/jci13588] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2001] [Accepted: 10/22/2002] [Indexed: 12/30/2022] Open
Abstract
The formation of the crypt-villus axis during gut ontogeny requires continued reciprocal interactions between the endoderm and mesenchyme. Epimorphin/syntaxin 2 (epimorphin) is a mesenchymal protein expressed in the fetal gastrointestinal tract during villus morphogenesis. To elucidate its role in gut ontogeny, the epimorphin cDNA was transfected, in sense and antisense orientations, into a rat intestinal myofibroblast cell line, MIC 216. To determine the effects of epimorphin on the epithelium, myofibroblasts were cocultured with the Caco2 cell line. Caco2 cells spread in a simple monolayer over antisense-transfected cells lacking epimorphin. In contrast, sense-transfected myofibroblasts induced Caco2 cells to form compact, round clusters with small lumens. These morphologic differences were preserved in Transwell cocultures in which cell-cell contact was prevented, suggesting that epimorphin's effects were mediated by secreted factor(s). To determine the effects of epimorphin on crypt-villus axis formation in an in vivo model, rat gut endoderm was combined with epimorphin-transfected myofibroblasts and implanted into the chick intracoelomic cavity. The grafts in which epimorphin was overexpressed revealed multiple well-formed villi with crypt-like units, whereas those in which epimorphin expression was inhibited developed into round cystic structures without crypts or villi. Of several potential secreted morphogens, only the expression of bone morphogenetic protein 4 (Bmp4) was increased in the epimorphin-transfected cells. Incubation with noggin partially blocked the transfected myofibroblasts' effects on Caco2 colony morphology. These results indicate that mesenchymal epimorphin has profound effects on crypt-villus morphogenesis, mediated in part by secreted factor(s) including the Bmp's.
Collapse
Affiliation(s)
- Christine Fritsch
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Epithelial cells lining the digestive tract represent a highly organized system built up by multipotent stem cells. A process of asymmetric mitosis produces a population of proliferative cells that are rapidly renewed and migrate along the crypt-villus axis, differentiating into functional mature cells before dying and exfoliating into the intestinal lumen. Isolated crypts or epithelial cells retaining high viability can be prepared within a few h after tissue sampling. After cells are cultured in serum-free media, short-term studies (16-48 h) can be conducted for endocrinology, energy metabolism, or programmed cell death. However, long-term primary culture of intestinal cells (up to 10 d) is still difficult despite progress in isolation methodologies and manipulation of the cell microenvironment. The main problem in developing primary culture is the lack of structural markers specific to the stem cell compartment. The design of a microscopic multidimensional analytic system to record the expression profiles of biomarkers all along the living intestinal crypt should improve basic knowledge of the survival and growth of adult crypt stem cells, and the selection of totipotent embryonic stem cells capable of differentiating into intestinal tissues should facilitate studies of the genomic basis of endodermal tissue differentiation.
Collapse
Affiliation(s)
- Bertrand Kaeffer
- Unité Fonctions Digestives et Nutrition Humaine, CRNH de Nantes InRA BP71627, Nantes, France.
| |
Collapse
|
39
|
Abstract
Classical descriptions of gut development specify subdivision into foregut, midgut, and hindgut together with their derivatives. This is based on the anatomical localisation of the anterior and posterior intestinal portals separating the roof of the yolk sac from the foregut and hindgut diverticulae. When considering the molecular basis of intestinal differentiation, it is necessary to think in terms of the genes involved, and in this respect those containing the homeobox motif are important players in specifying the fate of both the endodermal and mesodermal components of the gut. In this review, evidence is considered for their role, with particular regard to the acquisition of positional information.
Collapse
Affiliation(s)
- F Beck
- Biochemistry Department, University of Leicester, UK.
| |
Collapse
|
40
|
Abstract
Epithelial cells lining the digestive tract represent a highly organized system built up by multipotent stem cells. A process of asymmetric mitosis produces a population of proliferative cells that are rapidly renewed and migrate along the crypt-villus axis, differentiating into functional mature cells before dying and exfoliating into the intestinal lumen. Isolated crypts or epithelial cells retaining high viability can be prepared within a few h after tissue sampling. After cells are cultured in serum-free media, short-term studies (16-48 h) can be conducted for endocrinology, energy metabolism, or programmed cell death. However, long-term primary culture of intestinal cells (up to 10 d) is still difficult despite progress in isolation methodologies and manipulation of the cell microenvironment. The main problem in developing primary culture is the lack of structural markers specific to the stem cell compartment. The design of a microscopic multidimensional analytic system to record the expression profiles of biomarkers all along the living intestinal crypt should improve basic knowledge of the survival and growth of adult crypt stem cells, and the selection of totipotent embryonic stem cells capable of differentiating into intestinal tissues should facilitate studies of the genomic basis of endodermal tissue differentiation.
Collapse
Affiliation(s)
- Bertrand Kaeffer
- Unité Fonctions Digestives et Nutrition Humaine, CRNH de Nantes InRA BP71627, Nantes, France.
| |
Collapse
|
41
|
Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 2002; 22:1172-83. [PMID: 11809808 PMCID: PMC134648 DOI: 10.1128/mcb.22.4.1172-1183.2002] [Citation(s) in RCA: 1369] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Axin2/Conductin/Axil and its ortholog Axin are negative regulators of the Wnt signaling pathway, which promote the phosphorylation and degradation of beta-catenin. While Axin is expressed ubiquitously, Axin2 mRNA was seen in a restricted pattern during mouse embryogenesis and organogenesis. Because many sites of Axin2 expression overlapped with those of several Wnt genes, we tested whether Axin2 was induced by Wnt signaling. Endogenous Axin2 mRNA and protein expression could be rapidly induced by activation of the Wnt pathway, and Axin2 reporter constructs, containing a 5.6-kb DNA fragment including the promoter and first intron, were also induced. This genomic region contains eight Tcf/LEF consensus binding sites, five of which are located within longer, highly conserved noncoding sequences. The mutation or deletion of these Tcf/LEF sites greatly diminished induction by beta-catenin, and mutation of the Tcf/LEF site T2 abolished protein binding in an electrophoretic mobility shift assay. These results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors. The 5.6-kb genomic sequence was sufficient to direct the tissue-specific expression of d2EGFP in transgenic embryos, consistent with a role for the Tcf/LEF sites and surrounding conserved sequences in the in vivo expression pattern of Axin2. Our results suggest that Axin2 participates in a negative feedback loop, which could serve to limit the duration or intensity of a Wnt-initiated signal.
Collapse
Affiliation(s)
- Eek-hoon Jho
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
42
|
Parmacek MS. Transcriptional programs regulating vascular smooth muscle cell development and differentiation. Curr Top Dev Biol 2001; 51:69-89. [PMID: 11236716 DOI: 10.1016/s0070-2153(01)51002-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- M S Parmacek
- Department of Medicine, University of Pennsylvania, 9123 Founders Pavilion, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
43
|
|
44
|
Abstract
BACKGROUND & AIMS The intestine-specific transcription factors Cdx1 and Cdx2 are candidate genes for directing intestinal development, differentiation, and maintenance of the intestinal phenotype. This study focused on the complex patterns of expression of Cdx1 and Cdx2 during mouse gastrointestinal development. METHODS Embryonic and postnatal mouse tissues were analyzed by immunohistochemistry to determine protein expression of Cdx1 and Cdx2 in the developing intestinal tract. RESULTS Cdx2 protein expression was observed at 9. 5 postcoitum (pc), whereas weak expression of Cdx1 protein was first seen at 12.5 pc in the distal developing intestine (hindgut). Expression of Cdx1 increased from 13.5 to 14.5 pc during the endoderm/epithelial transition with predominately distal expression. In contrast to Cdx1, there was intense expression of Cdx2 in all but the distal portions of the developing intestine. Cdx2 expression remained low in the distal colon throughout postnatal development. A gradient of expression formed in the crypt-villus axis, with Cdx1 primarily in the crypt and Cdx2 primarily in the villus. CONCLUSIONS Direct comparison of the patterns of Cdx1 and Cdx2 protein expression during development as performed in this study provides new insights into their potential functional roles. The relative expression of Cdx1 to Cdx2 protein may be important in the anterior to posterior patterning of the intestinal epithelium and in defining patterns of proliferation and differentiation along the crypt-villus axis.
Collapse
Affiliation(s)
- D G Silberg
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
Considerable progress has been made over the last decade in the understanding of mechanisms responsible for the ontogenetic changes of mammalian intestine. This review presents the current knowledge about the development of intestinal transport function in the context of intestinal mucosa ontogeny. The review predominantly focuses on signals that trigger and/or modulate the developmental changes of intestinal transport. After an overview of the proliferation and differentiation of intestinal mucosa, data about the bidirectional traffic (absorption and secretion) across the developing intestinal epithelium are presented. The largest part of the review is devoted to the description of developmental patterns concerning the absorption of nutrients, ions, water, vitamins, trace elements, and milk-borne biologically active substances. Furthermore, the review examines the development of intestinal secretion that has a variety of functions including maintenance of the fluidity of the intestinal content, lubrication of mucosal surface, and mucosal protection. The age-dependent shifts of absorption and secretion are the subject of integrated regulatory mechanisms, and hence, the input of hormonal, nervous, immune, and dietary signals is reviewed. Finally, the utilization of energy for transport processes in the developing intestine is highlighted, and the interactions between various sources of energy are discussed. The review ends with suggestions concerning possible directions of future research.
Collapse
Affiliation(s)
- J Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
46
|
Karlsson L, Lindahl P, Heath JK, Betsholtz C. Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development 2000; 127:3457-66. [PMID: 10903171 DOI: 10.1242/dev.127.16.3457] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of the gastrointestinal (GI) tract depends on reciprocal epithelial-mesenchymal cell signaling. Here, we demonstrate a role for platelet-derived growth factor-A (PDGF-A) and its receptor, PDGFR-(alpha), in this process. Mice lacking PDGF-A or PDGFR-(alpha) were found to develop an abnormal GI mucosal lining, including fewer and misshapen villi and loss of pericryptal mesenchyme. Onset of villus morphogenesis correlated with the formation of clusters of PDGFR-(alpha) positive cells, ‘villus clusters’, which remained located at the tip of the mesenchymal core of the growing villus. Lack of PDGF-A or PDGFR-(alpha) resulted in progressive depletion of PDGFR-(alpha) positive mesenchymal cells, the formation of fewer villus clusters, and premature expression of smooth muscle actin (SMA) in the villus mesenchyme. We found that the villus clusters were postmitotic, expressed BMP-2 and BMP-4, and that their formation correlated with downregulated DNA synthesis in adjacent intestinal epithelium. We propose a model in which villus morphogenesis is initiated as a result of aggregation of PDGFR-(α) positive cells into cell clusters that subsequently function as mesenchymal centers of signaling to the epithelium. The role of PDGF-A seems to be to secure renewal of PDGFR-(alpha) positive cells when they are consumed in the initial rounds of cluster formation.
Collapse
Affiliation(s)
- L Karlsson
- Department of Medical Biochemistry, Göteborg University, Medicinaregatan 9A, Box 440, SE 405 30 Göteborg, Sweden. Linda.
| | | | | | | |
Collapse
|
47
|
Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 2000; 127:2763-72. [PMID: 10821773 DOI: 10.1242/dev.127.12.2763] [Citation(s) in RCA: 548] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gastrointestinal tract develops from the embryonic gut, which is composed of an endodermally derived epithelium surrounded by cells of mesodermal origin. Cell signaling between these two tissue layers appears to play a critical role in coordinating patterning and organogenesis of the gut and its derivatives. We have assessed the function of Sonic hedgehog and Indian hedgehog genes, which encode members of the Hedgehog family of cell signals. Both are expressed in gut endoderm, whereas target genes are expressed in discrete layers in the mesenchyme. It was unclear whether functional redundancy between the two genes would preclude a genetic analysis of the roles of Hedgehog signaling in the mouse gut. We show here that the mouse gut has both common and separate requirements for Sonic hedgehog and Indian hedgehog. Both Sonic hedgehog and Indian hedgehog mutant mice show reduced smooth muscle, gut malrotation and annular pancreas. Sonic hedgehog mutants display intestinal transformation of the stomach, duodenal stenosis (obstruction), abnormal innervation of the gut and imperforate anus. Indian hedgehog mutants show reduced epithelial stem cell proliferation and differentiation, together with features typical of Hirschsprung's disease (aganglionic colon). These results show that Hedgehog signals are essential for organogenesis of the mammalian gastrointestinal tract and suggest that mutations in members of this signaling pathway may be involved in human gastrointestinal malformations.
Collapse
Affiliation(s)
- M Ramalho-Santos
- Department of Molecular and Cellular Biology, and Howard Hughes Medical Institute, Harvard University, Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
48
|
Abstract
The gut of vertebrates exhibits a common anteroposterior regional differentiation. The role of homeobox genes in establishing this pattern is inferred by their sites of expression. It is suggested that the primary source of positional information is in the endoderm, which subsequently establishes a 'dialogue' with the surrounding visceral layer of the lateral plate mesoderm. This results in the anatomical and physiological specialization of the adult gut.
Collapse
Affiliation(s)
- F Beck
- Department of Biochemistry, University of Leicester, United Kingdom.
| | | | | |
Collapse
|
49
|
Olsen J, Lefebvre O, Fritsch C, Troelsen JT, Orian-Rousseau V, Kedinger M, Simon-Assmann P. Involvement of activator protein 1 complexes in the epithelium-specific activation of the laminin gamma2-chain gene promoter by hepatocyte growth factor (scatter factor). Biochem J 2000; 347:407-17. [PMID: 10749670 PMCID: PMC1220973 DOI: 10.1042/0264-6021:3470407] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Laminin-5 is a trimer of laminin alpha3, beta3 and gamma2 chains that is found in the intestinal basement membrane. Deposition of the laminin gamma2 chain at the basement membrane is of great interest because it undergoes a developmental shift in its cellular expression. Here we study the regulatory elements that control basal and cytokine-activated transcriptional expression of the LAMC2 gene, which encodes the laminin gamma2 chain. By using transient transfection experiments we demonstrated the presence of constitutive and cytokine-responsive cis-elements. Comparison of the transcriptional activity of the LAMC2 promoter in the epithelial HT29mtx cells with that in small-intestinal fibroblastic cells (C20 cells) led us to conclude that two regions with constitutive epithelium-specific activity are present between positions -1.2 and -0.12 kb. This was further validated by transfections of primary foetal intestinal endoderm and mesenchyme. A 2.5 kb portion of the LAMC2 5' flanking region was equally responsive to PMA and hepatocyte growth factor (HGF), whereas it was less responsive to transforming growth factor beta1. A minimal promoter limited to the initial 120 bp upstream of the transcriptional start site maintained inducibility by PMA and HGF. This short promoter fragment contains two activator protein 1 (AP-1) elements and the 5'-most of these is a composite AP-1/Sp1 element. The 5'AP-1 element is crucial to the HGF-mediated activity of the promoter; analysis of interacting nuclear proteins demonstrated that AP-1 proteins containing JunD mediate the response to HGF.
Collapse
Affiliation(s)
- J Olsen
- INSERM U.381, 3 avenue Molière, 67200 Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
50
|
Traber PG. Transcriptional regulation in intestinal development. Implications for colorectal cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 470:1-14. [PMID: 10709669 DOI: 10.1007/978-1-4615-4149-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Deciphering the complex mechanisms of intestinal epithelial development will require multiple cell and molecular approaches in both in vitro and whole animal systems. Additionally, the use of model organisms such as D. melanogaster, C. elegans, and zebrafish will help describe paradigms that may be investigated in mammals as well as serve as test systems for findings from mammals. This manuscript reviewed only one approach to understanding intestinal development. However, the Cdx story and the information to be mined from an understanding of SI gene transcription is not at an end. As the other pieces of the transcriptional puzzle of the SI gene are assembled there will be new information to generate hypotheses on the relationship of transcriptional mechanisms to cancer pathogenesis.
Collapse
Affiliation(s)
- P G Traber
- Department of Medicine, University of Pennsylvania, Philadelphia 19104-4283, USA
| |
Collapse
|