1
|
Song Y, Jian S, Teng J, Zheng P, Zhang Z. Structural basis of human VANGL-PRICKLE interaction. Nat Commun 2025; 16:132. [PMID: 39753555 PMCID: PMC11698917 DOI: 10.1038/s41467-024-55396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/15/2024] [Indexed: 01/06/2025] Open
Abstract
Planar cell polarity (PCP) is an evolutionarily conserved process for development and morphogenesis in metazoans. The well-organized polarity pattern in cells is established by the asymmetric distribution of two core protein complexes on opposite sides of the cell membrane. The Van Gogh-like (VANGL)-PRICKLE (PK) pair is one of these two key regulators; however, their structural information and detailed functions have been unclear. Here, we present five cryo-electron microscopy structures of human VANGL1, VANGL2, and their complexes with PK1 at resolutions of 2.2-3.0 Å. Through biochemical and cell imaging experiments, we decipher the molecular details of the VANGL-PK interaction. Furthermore, we reveal that PK1 can target VANGL-containing intracellular vesicles to the peripheral cell membrane. These findings provide a solid foundation to understand the explicit interaction between VANGL and PK while opening new avenues for subsequent studies of the PCP pathway.
Collapse
Affiliation(s)
- Yanyi Song
- State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shuyi Jian
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Junlin Teng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Pengli Zheng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Zhang F, Li S, Wu H, Chen S. Cryo-EM structure and oligomerization of the human planar cell polarity core protein Vangl1. Nat Commun 2025; 16:135. [PMID: 39753546 PMCID: PMC11698883 DOI: 10.1038/s41467-024-55397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
Vangl is a planar cell polarity (PCP) core protein essential for aligned cell orientation along the epithelial plane perpendicular to the apical-basal direction, which is important for tissue morphogenesis, development and collective cell behavior. Mutations in Vangl are associated with developmental defects, including neural tube defects (NTDs), according to human cohort studies of sporadic and familial cases. The complex mechanisms underlying Vangl-mediated PCP signaling or Vangl-associated human congenital diseases have been hampered by the lack of molecular characterizations of Vangl. Here, we show biochemical and structural evidence that human Vangl1 oligomerizes as dimers of trimers, and that the dimerization of trimers promotes binding to the PCP effector Prickle1 (Pk1) in vitro. Mapping of human disease-associated point mutations suggests potential pathological mechanisms and paves the way for future studies on the importance of lipid binding, central vestibule and oligomerization of Vangl, thereby providing insights into the molecular mechanisms of the PCP signaling pathway.
Collapse
Affiliation(s)
- Fan Zhang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaobai Li
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Shanshuang Chen
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
3
|
Gardano L, Ferreira J, Le Roy C, Ledoux D, Varin-Blank N. The survival grip-how cell adhesion promotes tumor maintenance within the microenvironment. FEBS Lett 2024. [PMID: 39704141 DOI: 10.1002/1873-3468.15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Cell adhesion is warranted by proteins that are crucial for the maintenance of tissue integrity and homeostasis. Most of these proteins behave as receptors to link adhesion to the control of cell survival and their expression or regulation are often altered in cancers. B-cell malignancies do not evade this principle as they are sustained in relapsed niches by interacting with the microenvironment that includes cells and their secreted factors. Focusing on chronic lymphocytic leukemia and mantle cell lymphoma, this Review delves with the molecules involved in the dialog between the adhesion platforms and signaling pathways known to regulate both cell adhesion and survival. Current therapeutic strategies disrupt adhesive structures and compromise the microenvironment support to tumor cells, rendering them sensitive to immune recognition. The development of organ-on-chip and 3D culture systems, such as spheroids, have revealed the importance of mechanical cues in regulating signaling pathways to organize cell adhesion and survival. All these elements contribute to the elaboration of the crosstalk of lymphoma cells with the microenvironment and the education processes that allow the establishment of the supportive niche.
Collapse
Affiliation(s)
- Laura Gardano
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Jordan Ferreira
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Christine Le Roy
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Dominique Ledoux
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Nadine Varin-Blank
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
4
|
Rehmani T, Dias AP, Applin BD, Salih M, Tuana BS. SLMAP3 is essential for neurulation through mechanisms involving cytoskeletal elements, ABP, and PCP. Life Sci Alliance 2024; 7:e202302545. [PMID: 39366759 PMCID: PMC11452652 DOI: 10.26508/lsa.202302545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
SLMAP3 is a tail-anchored membrane protein that targets subcellular organelles and is believed to regulate Hippo signaling. The global loss of SLMAP3 causes late embryonic lethality in mice, with some embryos exhibiting neural tube defects such as craniorachischisis. We show here that SLMAP3 -/- embryos display reduced length and increased width of neural plates, signifying arrested convergent extension. The expression of planar cell polarity (PCP) components Dvl2/3 and the activity of the downstream targets ROCK2, cofilin, and JNK1/2 were dysregulated in SLMAP3 -/- E12.5 brains. Furthermore, the cytoskeletal proteins (γ-tubulin, actin, and nestin) and apical components (PKCζ and ZO-1) were mislocalized in neural tubes of SLMAP3 -/- embryos, with a subsequent decrease in colocalization of PCP proteins (Fzd6 and pDvl2). However, no changes in PCP or cytoskeleton proteins were found in cultured neuroepithelial cells depleted of SLMAP3, suggesting an essential requirement for SLMAP3 for these processes in vivo for neurulation. The loss of SLMAP3 had no impact on Hippo signaling in SLMAP3 -/- embryos, brains, and neural tubes. Proteomic analysis revealed SLMAP3 in an interactome with cytoskeletal components, including nestin, tropomyosin 4, intermediate filaments, plectin, the PCP protein SCRIB, and STRIPAK members in embryonic brains. These results reveal a crucial role of SLMAP3 in neural tube development by regulating the cytoskeleton organization and PCP pathway.
Collapse
Affiliation(s)
- Taha Rehmani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ana Paula Dias
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
5
|
Housset M, Filion D, Cortes N, Vali H, Mandato CA, Casanova C, Cayouette M. Identification of a non-canonical planar cell polarity pathway triggered by light in the developing mouse retina. Dev Cell 2024:S1534-5807(24)00631-2. [PMID: 39561777 DOI: 10.1016/j.devcel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/03/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
The coordinated spatial arrangement of organelles within a tissue plane, known as planar cell polarity (PCP), is critical for organ development and function. Gradients of morphogens and their receptors typically set-up PCP, but whether non-molecular cues, akin to phototropism in plants, also play a part remains unknown. Here, we report that basal bodies of newborn photoreceptor cells in the mouse retina are positioned centrally on the apical surface but then move laterally during the first postnatal week, generating cell-intrinsic asymmetry in the retinal plane. After 1 week, when the eyes open, basal bodies of cone cilia, but not rods, become coordinated across the plane to face the center of the retina. We further show that light is essential for cone PCP, triggering a cascade in which cone transducin interacts with the G-protein-signaling modulator protein 2 (GPSM2) to establish PCP. This work identifies a non-canonical PCP pathway initiated by light.
Collapse
Affiliation(s)
- Michael Housset
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.
| | - Dominic Filion
- Microscopy Core Facility, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Nelson Cortes
- School of Optometry, Université de Montréal, CP 6128 succursale centre-ville, Montreal, QC H3C 3J7, Canada
| | - Hojatollah Vali
- Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0C7, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Christian Casanova
- School of Optometry, Université de Montréal, CP 6128 succursale centre-ville, Montreal, QC H3C 3J7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
6
|
Novotna S, Maia LA, Radaszkiewicz KA, Roudnicky P, Harnos J. Linking planar polarity signalling to actomyosin contractility during vertebrate neurulation. Open Biol 2024; 14:240251. [PMID: 39561813 PMCID: PMC11576107 DOI: 10.1098/rsob.240251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 11/21/2024] Open
Abstract
Actomyosin contractility represents an ancient feature of eukaryotic cells participating in many developmental and homeostasis events, including tissue morphogenesis, muscle contraction and cell migration, with dysregulation implicated in various pathological conditions, such as cancer. At the molecular level, actomyosin comprises actin bundles and myosin motor proteins that are sensitive to posttranslational modifications like phosphorylation. While the molecular components of actomyosin are well understood, the coordination of contractility by extracellular and intracellular signals, particularly from cellular signalling pathways, remains incompletely elucidated. This study focuses on WNT/planar cell polarity (PCP) signalling, previously associated with actomyosin contractility during vertebrate neurulation. Our investigation reveals that the main cytoplasmic PCP proteins, Prickle and Dishevelled, interact with key actomyosin components such as myosin light chain 9 (MLC9), leading to its phosphorylation and localized activation. Using proteomics and microscopy approaches, we demonstrate that both PCP proteins actively control actomyosin contractility through Rap1 small GTPases in relevant in vitro and in vivo models. These findings unveil a novel mechanism of how PCP signalling regulates actomyosin contractility through MLC9 and Rap1 that is relevant to vertebrate neurulation.
Collapse
Affiliation(s)
- Sarka Novotna
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czechia
| | - Lorena Agostini Maia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czechia
| | | | - Pavel Roudnicky
- CEITEC-Central European Institute of Technology, Masaryk University, Brno62500, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno62500, Czechia
| | - Jakub Harnos
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czechia
| |
Collapse
|
7
|
Kravec M, Šedo O, Nedvědová J, Micka M, Šulcová M, Zezula N, Gömöryová K, Potěšil D, Sri Ganji R, Bologna S, Červenka I, Zdráhal Z, Harnoš J, Tripsianes K, Janke C, Bařinka C, Bryja V. Carboxy-terminal polyglutamylation regulates signaling and phase separation of the Dishevelled protein. EMBO J 2024; 43:5635-5666. [PMID: 39349846 PMCID: PMC11574253 DOI: 10.1038/s44318-024-00254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024] Open
Abstract
Polyglutamylation is a reversible posttranslational modification that is catalyzed by enzymes of the tubulin tyrosine ligase-like (TTLL) family. Here, we found that TTLL11 generates a previously unknown type of polyglutamylation that is initiated by the addition of a glutamate residue to the free C-terminal carboxyl group of a substrate protein. TTLL11 efficiently polyglutamylates the Wnt signaling protein Dishevelled 3 (DVL3), thereby changing the interactome of DVL3. Polyglutamylation increases the capacity of DVL3 to get phosphorylated, to undergo phase separation, and to act in the noncanonical Wnt pathway. Both carboxy-terminal polyglutamylation and the resulting reduction in phase separation capacity of DVL3 can be reverted by the deglutamylating enzyme CCP6, demonstrating a causal relationship between TTLL11-mediated polyglutamylation and phase separation. Thus, C-terminal polyglutamylation represents a new type of posttranslational modification, broadening the range of proteins that can be modified by polyglutamylation and providing the first evidence that polyglutamylation can modulate protein phase separation.
Collapse
Affiliation(s)
- Marek Kravec
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondrej Šedo
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Jana Nedvědová
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslav Micka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Marie Šulcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nikodém Zezula
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristína Gömöryová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Potěšil
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Ranjani Sri Ganji
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Sara Bologna
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Igor Červenka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Jakub Harnoš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
8
|
Fan X, Ong LJY, Sun AR, Prasadam I. From polarity to pathology: Decoding the role of cell orientation in osteoarthritis. J Orthop Translat 2024; 49:62-73. [PMID: 39430130 PMCID: PMC11488446 DOI: 10.1016/j.jot.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
Cell polarity refers to the orientation of tissue and organelles within a cell and the direction of its function. It is one of the most critical characteristics of metazoans. The development, growth, and functional tissue distribution are closely related to holistic tissue or organ homeostasis. However, the connection between cell polarity and osteoarthritis (OA) is less well-known. In OA, multiple chondrocyte clusters and tissue disorganisation can be observed in the degraded cartilage tissue. The excessive upregulation of the planar cell polarity (PCP) signalling pathway leads to the loss of cell polarity and organisation in OA progression and aetiology. Recent research has become increasingly aware of the importance of cell polarity and its correlation with OA. Several cell polarity-related treatments have shed light on OA. A thorough understanding of cell polarity and OA would provide more insights for future investigations to treat this worldwide disease. The translational potential of this article Understanding cell polarity, associated signalling pathways, organelle changes, and cell movement in the development of OA could lead to advances in precision medicine and enhanced treatment strategies for OA patients.
Collapse
Affiliation(s)
- Xiwei Fan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Louis Jun Ye Ong
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Antonia RuJia Sun
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Indira Prasadam
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
9
|
Zhao Z, Asai R, Mikawa T. Differential Sensitivity of Midline Patterning to Mitosis during and after Primitive Streak Extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620280. [PMID: 39484456 PMCID: PMC11527125 DOI: 10.1101/2024.10.25.620280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Midline establishment is a fundamental process during early embryogenesis for Bilaterians . Midline patterning in nonamniotes can occur without mitosis, through Planar Cell Polarity (PCP) signaling. By contrast, amniotes utilize both cell proliferation and PCP signaling for patterning early midline landmark, the primitive streak (PS). This study examined their roles for midline patterning at post PS-extension. Results In contrast to PS extension stages, embryos under mitotic arrest during the post PS-extension preserved notochord (NC) extension and Hensen's node (HN)/PS regression judged by both morphology and marker genes, although they became shorter, and laterality was lost. Remarkably, no or background level of expression was detected for the majority of PCP core components in the NC-HN-PS area at post PS-extension stages, except for robustly detected prickle-1 . Morpholino knockdown of Prickle-1 showed little influence on midline patterning, except for suppressed embryonic growth. Lastly, associated with mitotic arrest-induced size reduction, midline tissue cells displayed hypertrophy. Conclusion Thus, the study has identified at least two distinct mitosis sensitivity phases during early midline pattering: One is PS extension that requires both mitosis and PCP, and the other is mitotic arrest-resistant midline patterning with little influence by PCP at post PS-extension stages.
Collapse
|
10
|
Singh D, Ramaswamy S, Jolly MK, Rizvi MS. Emergence of planar cell polarity from the interplay of local interactions and global gradients. eLife 2024; 13:e84053. [PMID: 39450855 PMCID: PMC11602187 DOI: 10.7554/elife.84053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Planar cell polarity (PCP) - tissue-scale alignment of the direction of asymmetric localization of proteins at the cell-cell interface - is essential for embryonic development and physiological functions. Abnormalities in PCP can result in developmental imperfections, including neural tube closure defects and misaligned hair follicles. Decoding the mechanisms responsible for PCP establishment and maintenance remains a fundamental open question. While the roles of various molecules - broadly classified into 'global' and 'local' modules - have been well-studied, their necessity and sufficiency in explaining PCP and connecting their perturbations to experimentally observed patterns have not been examined. Here, we develop a minimal model that captures the proposed features of PCP establishment - a global tissue-level gradient and local asymmetric distribution of protein complexes. The proposed model suggests that while polarity can emerge without a gradient, the gradient not only acts as a global cue but also increases the robustness of PCP against stochastic perturbations. We also recapitulated and quantified the experimentally observed features of swirling patterns and domineering non-autonomy, using only three free model parameters - rate of protein binding to membrane, the concentration of PCP proteins, and the gradient steepness. We explain how self-stabilizing asymmetric protein localizations in the presence of tissue-level gradient can lead to robust PCP patterns and reveal minimal design principles for a polarized system.
Collapse
Affiliation(s)
- Divyoj Singh
- Department of Bioengineering, Indian Institute of ScienceBangaloreIndia
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of ScienceBengaloreIndia
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of ScienceBangaloreIndia
| | - Mohd Suhail Rizvi
- Department of Biomedical Engineering, Indian Institute of TechnologyHyderabadIndia
| |
Collapse
|
11
|
Dias AP, Rehmani T, Applin BD, Salih M, Tuana B. SLMAP3 is crucial for organogenesis through mechanisms involving primary cilia formation. Open Biol 2024; 14:rsob240206. [PMID: 39417621 PMCID: PMC11484480 DOI: 10.1098/rsob.240206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
SLMAP3 is a constituent of the centrosome and is known to assemble with the striatin-interacting phosphatase and kinase (STRIPAK) complex, where it has been reported to repress Hippo signalling. The global knockout of SLMAP3 in mice results in embryonic/perinatal lethality and stunted growth without changes in the phosphorylation status of YAP. Diverse phenotypes present in the SLMAP3-/- embryos include reduced body axis, small and abnormal organs resembling defects in planar cell polarity (PCP) signalling, while also displaying the notable polycystic kidneys, a known manifestation of ciliopathies. Analysis of cell polarity in primary mouse embryonic fibroblasts (MEFs) including cell migration, orientation and mitotic spindle angle did not reveal any changes due to SLMAP3 loss in these cells, although the expression of DVL3 was significantly reduced. Furthermore, MEFs lacking FGFR1OP2 or STRN3, two other STRIPAK members, did not reveal any significant changes in any of these parameters either. Significant changes in the number of ciliated cells and primary cilium length in SLMAP3 and FGFR1OP2 deficient MEFs were evident, while a reduced primary cilium length was notable in chondrocytes of SLMAP3 deficient embryos. Our findings suggest that SLMAP3 is essential for mouse embryogenesis through novel mechanisms involving the primary cilium/PCP and protein stability independent of Hippo signalling.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| |
Collapse
|
12
|
Kalyanakrishnan K, Beaudin A, Jetté A, Ghezelbash S, Hotea DI, Chen J, Lefrançois P, Laurin M. ARHGEF3 Regulates Hair Follicle Morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612256. [PMID: 39314354 PMCID: PMC11419159 DOI: 10.1101/2024.09.13.612256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
During embryogenesis, cells arrange into precise patterns that enable tissues and organs to develop specialized functions. Despite its critical importance, the molecular choreography behind these collective cellular behaviors remains elusive, posing a major challenge in developmental biology and limiting advances in regenerative medicine. By using the mouse hair follicle as a mini-organ system to study the formation of bud-like structures during embryonic development, our work uncovers a crucial role for the Rho GTPase regulator ARHGEF3 in hair follicle morphogenesis. We demonstrate that Arhgef3 expression is upregulated at the onset of hair follicle placode formation. In Arhgef3 knockout animals, we observed defects in placode compaction, leading to impaired hair follicle downgrowth. Through cell culture models, we show that ARHGEF3 promotes F-actin accumulation at the cell cortex and P-cadherin enrichment at cell-cell junctions. Collectively, our study identifies ARHGEF3 as a new regulator of cell shape rearrangements during hair placode morphogenesis, warranting further exploration of its role in other epithelial appendages that arise from similar developmental processes.
Collapse
Affiliation(s)
- Krithika Kalyanakrishnan
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Amy Beaudin
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Alexandra Jetté
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Sarah Ghezelbash
- Cancer Axis, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Québec, Canada
| | - Diana Ioana Hotea
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801
| | - Philippe Lefrançois
- Cancer Axis, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Québec, Canada
- Division of Dermatology, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Mélanie Laurin
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| |
Collapse
|
13
|
Xie N, Landin Malt A, Adylkhan A, Rodeman N, Moraes Borges R, Hwang D, Liu A, Smith C, Hogan A, Lu X. Wnt7b acts in concert with Wnt5a to regulate tissue elongation and planar cell polarity via noncanonical Wnt signaling. Proc Natl Acad Sci U S A 2024; 121:e2405217121. [PMID: 39172791 PMCID: PMC11363310 DOI: 10.1073/pnas.2405217121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Intercellular signaling mediated by evolutionarily conserved planar cell polarity (PCP) proteins aligns cell polarity along the tissue plane and drives polarized cell behaviors during tissue morphogenesis. Accumulating evidence indicates that the vertebrate PCP pathway is regulated by noncanonical, β-catenin-independent Wnt signaling; however, the signaling components and mechanisms are incompletely understood. In the mouse hearing organ, both PCP and noncanonical Wnt (ncWnt) signaling are required in the developing auditory sensory epithelium to control cochlear duct elongation and planar polarity of resident sensory hair cells (HCs), including the shape and orientation of the stereociliary hair bundle essential for sound detection. We have recently discovered a Wnt/G-protein/PI3K pathway that coordinates HC planar polarity and intercellular PCP signaling. Here, we identify Wnt7b as a ncWnt ligand acting in concert with Wnt5a to promote tissue elongation in diverse developmental processes. In the cochlea, Wnt5a and Wnt7b are redundantly required for cochlear duct coiling and elongation, HC planar polarity, and asymmetric localization of core PCP proteins Fzd6 and Dvl2. Mechanistically, Wnt5a/Wnt7b-mediated ncWnt signaling promotes membrane recruitment of Daple, a nonreceptor guanine nucleotide exchange factor for Gαi, and activates PI3K/AKT and ERK signaling, which promote asymmetric Fzd6 localization. Thus, ncWnt and PCP signaling pathways have distinct mutant phenotypes and signaling components, suggesting that they act as separate, parallel pathways with nonoverlapping functions in cochlear morphogenesis. NcWnt signaling drives tissue elongation and reinforces intercellular PCP signaling by regulating the trafficking of PCP-specific Frizzled receptors.
Collapse
Affiliation(s)
- Nicholas Xie
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Andre Landin Malt
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Aray Adylkhan
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Natalie Rodeman
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Ricardo Moraes Borges
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Diane Hwang
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Alice Liu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Connor Smith
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Arielle Hogan
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| |
Collapse
|
14
|
Paramore SV, Goodwin K, Fowler EW, Devenport D, Nelson CM. Mesenchymal Vangl1 and Vangl2 facilitate airway elongation and widening independently of the planar cell polarity complex. Development 2024; 151:dev202692. [PMID: 39225402 PMCID: PMC11385325 DOI: 10.1242/dev.202692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Adult mammalian lungs exhibit a fractal pattern, as each successive generation of airways is a fraction of the size of the parental branch. Achieving this structure likely requires precise control of airway length and diameter, as the embryonic airways initially lack the fractal scaling observed in the adult. In monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we characterized the roles of PCP complex components in airway initiation, elongation and widening during branching morphogenesis of the lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP complex function in the lung epithelium. Instead, we found a previously unreported Celsr1-independent role for the PCP complex components Vangl1 and Vangl2 in the pulmonary mesenchyme, where they are required for branch initiation, elongation and widening. Our data thus reveal an explicit function for Vangl1 and Vangl2 that is independent of the core PCP complex, suggesting a functional diversification of PCP complex components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways in the mature lung.
Collapse
Affiliation(s)
- Sarah V. Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Eric W. Fowler
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
15
|
Ray T, Shi D, Harris TJC. Confinement promotes nematic alignment of spindle-shaped cells during Drosophila embryogenesis. Development 2024; 151:dev202577. [PMID: 38864272 PMCID: PMC11234378 DOI: 10.1242/dev.202577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Tissue morphogenesis is often controlled by actomyosin networks pulling on adherens junctions (AJs), but junctional myosin levels vary. At an extreme, the Drosophila embryo amnioserosa forms a horseshoe-shaped strip of aligned, spindle-shaped cells lacking junctional myosin. What are the bases of amnioserosal cell interactions and alignment? Compared with surrounding tissue, we find that amnioserosal AJ continuity has lesser dependence on α-catenin, the mediator of AJ-actomyosin association, and greater dependence on Bazooka/Par-3, a junction-associated scaffold protein. Microtubule bundles also run along amnioserosal AJs and support their long-range curvilinearity. Amnioserosal confinement is apparent from partial overlap of its spindle-shaped cells, its outward bulging from surrounding tissue and from compressive stress detected within the amnioserosa. Genetic manipulations that alter amnioserosal confinement by surrounding tissue also result in amnioserosal cells losing alignment and gaining topological defects characteristic of nematically ordered systems. With Bazooka depletion, confinement by surrounding tissue appears to be relatively normal and amnioserosal cells align despite their AJ fragmentation. Overall, the fully elongated amnioserosa appears to form through tissue-autonomous generation of spindle-shaped cells that nematically align in response to confinement by surrounding tissue.
Collapse
Affiliation(s)
- Tirthankar Ray
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Damo Shi
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Tony J. C. Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
16
|
Dessaux C, Ganier L, Guiraud L, Borg JP. Recent insights into the therapeutic strategies targeting the pseudokinase PTK7 in cancer. Oncogene 2024; 43:1973-1984. [PMID: 38773263 PMCID: PMC11196218 DOI: 10.1038/s41388-024-03060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
The generation of drugs counteracting deregulated protein kinases has been a major focus in cancer therapy development. Breakthroughs in this effort have produced many therapeutic agents to the benefit of patients, mostly through the development of chemical or antibody-based drugs targeting active kinases. These strategies are challenged when considering catalytically inactive protein kinases (or pseudokinases), which represent 10% of the human kinome with many of relevance in cancer. Among the so-called pseudotyrosine kinases, the PTK7 receptor tyrosine kinase (RTK) stands as a bona fide target overexpressed in several solid tumors and hematological malignancies and linked to metastasis, poor prognosis, and resistance to treatment. Despite the lack of catalytic activity, PTK7 has signaling capacities through heterodimerization with active RTKs and offers pharmacological targeting opportunities through its inactive kinase domain. Moreover, PTK7-targeting strategies based on antibody-drug conjugates, aptamers, and CAR-T cell-based therapies have demonstrated encouraging results in preclinical and clinical settings. We review the most recent data assigning to PTK7 a prominent role in cancer progression as well as current preclinical and clinical targeting strategies against RTK family pseudokinases including PTK7.
Collapse
Affiliation(s)
- Charlotte Dessaux
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Laetitia Ganier
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
- adMare BioInnovations, Vancouver, BC, Canada
| | - Louis Guiraud
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
17
|
Paramore SV, Trenado-Yuste C, Sharan R, Nelson CM, Devenport D. Vangl-dependent mesenchymal thinning shapes the distal lung during murine sacculation. Dev Cell 2024; 59:1302-1316.e5. [PMID: 38569553 PMCID: PMC11111357 DOI: 10.1016/j.devcel.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/18/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The planar cell polarity (PCP) complex is speculated to function in murine lung development, where branching morphogenesis generates an epithelial tree whose distal tips expand dramatically during sacculation. Here, we show that PCP is dispensable in the airway epithelium for sacculation. Rather, we find a Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme: loss of Vangl1/2 inhibits mesenchymal thinning and expansion of the saccular epithelium. Further, loss of mesenchymal Wnt5a mimics sacculation defects observed in Vangl2-mutant lungs, implicating mesenchymal Wnt5a/Vangl signaling as a key regulator of late lung morphogenesis. A computational model predicts that sacculation requires a fluid mesenchymal compartment. Lineage-tracing and cell-shape analyses are consistent with the mesenchyme acting as a fluid tissue, suggesting that loss of Vangl1/2 impacts the ability of mesenchymal cells to exchange neighbors. Our data thus identify an explicit function for Vangl and the pulmonary mesenchyme in actively shaping the saccular epithelium.
Collapse
Affiliation(s)
- Sarah V Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Carolina Trenado-Yuste
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rishabh Sharan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
18
|
Tamilselvan E, Sotomayor M. CELSR1, a core planar cell polarity protein, features a weakly adhesive and flexible cadherin ectodomain. Structure 2024; 32:476-491.e5. [PMID: 38307021 DOI: 10.1016/j.str.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/30/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Planar cell polarity (PCP), essential to multicellular developmental processes, arises when cells polarize and align across tissues. Central to PCP is CELSR1, an atypical cadherin featuring a long ectodomain with nine extracellular cadherin (EC) repeats, a membrane adjacent domain (MAD10), and several characteristic adhesion GPCR domains. Cell-based aggregation assays have demonstrated CELSR1's homophilic adhesive nature, but mechanistic details are missing. Here, we investigate the possible adhesive properties and structures of CELSR1 EC repeats. Our bead aggregation assays do not support strong adhesion by EC repeats alone. Consistently, EC1-4 only dimerizes at high concentration in solution. Crystal structures of human CELSR1 EC1-4 and EC4-7 reveal typical folds and a non-canonical linker between EC5 and EC6. Simulations and experiments using EC4-7 indicate flexibility at EC5-6, and solution experiments show EC7-MAD10-mediated dimerization. Our results suggest weak homophilic adhesion by CELSR1 cadherin repeats and provide mechanistic insights into the structural determinants of CELSR1 function.
Collapse
Affiliation(s)
- Elakkiya Tamilselvan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
McMillen P, Levin M. Collective intelligence: A unifying concept for integrating biology across scales and substrates. Commun Biol 2024; 7:378. [PMID: 38548821 PMCID: PMC10978875 DOI: 10.1038/s42003-024-06037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
A defining feature of biology is the use of a multiscale architecture, ranging from molecular networks to cells, tissues, organs, whole bodies, and swarms. Crucially however, biology is not only nested structurally, but also functionally: each level is able to solve problems in distinct problem spaces, such as physiological, morphological, and behavioral state space. Percolating adaptive functionality from one level of competent subunits to a higher functional level of organization requires collective dynamics: multiple components must work together to achieve specific outcomes. Here we overview a number of biological examples at different scales which highlight the ability of cellular material to make decisions that implement cooperation toward specific homeodynamic endpoints, and implement collective intelligence by solving problems at the cell, tissue, and whole-organism levels. We explore the hypothesis that collective intelligence is not only the province of groups of animals, and that an important symmetry exists between the behavioral science of swarms and the competencies of cells and other biological systems at different scales. We then briefly outline the implications of this approach, and the possible impact of tools from the field of diverse intelligence for regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Patrick McMillen
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Faley SL, Boghdeh NA, Schaffer DK, Spivey EC, Alem F, Narayanan A, Wikswo JP, Brown JA. Gravity-perfused airway-on-a-chip optimized for quantitative BSL-3 studies of SARS-CoV-2 infection: barrier permeability, cytokine production, immunohistochemistry, and viral load assays. LAB ON A CHIP 2024; 24:1794-1807. [PMID: 38362777 PMCID: PMC10929697 DOI: 10.1039/d3lc00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
Human microphysiological systems, such as organs on chips, are an emerging technology for modeling human physiology in a preclinical setting to understand the mechanism of action of drugs, to evaluate the efficacy of treatment options for human disease and impairment, and to assess drug toxicity. By using human cells co-cultured in three-dimensional constructs, organ chips can provide greater fidelity to the human cellular condition than their two-dimensional predecessors. However, with the rise of SARS-CoV-2 and the global COVID-19 pandemic, it became clear that many microphysiological systems were not compatible with or optimized for studies of infectious disease and operation in a Biosafety Level 3 (BSL-3) environment. Given that one of the early sites of SARS-CoV-2 infection is the airway, we created a human airway organ chip that could operate in a BSL-3 space with high throughput and minimal manipulation, while retaining the necessary physical and physiological components to recapitulate tissue response to infectious agents and the immune response to infection.
Collapse
Affiliation(s)
- Shannon L Faley
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Niloufar A Boghdeh
- Biomedical Research Laboratory, Institute of Biohealth Innovation, George Mason University, Manassas, VA 20110, USA
| | - David K Schaffer
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
| | - Eric C Spivey
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Farhang Alem
- Biomedical Research Laboratory, Institute of Biohealth Innovation, George Mason University, Manassas, VA 20110, USA
| | - Aarthi Narayanan
- Biomedical Research Laboratory, Institute of Biohealth Innovation, George Mason University, Manassas, VA 20110, USA
- College of Science, Department of Biology, George Mason University, Fairfax, VA 22030, USA
| | - John P Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacquelyn A Brown
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
21
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
22
|
Baral B, Kandpal M, Ray A, Jana A, Yadav DS, Sachin K, Mishra A, Baig MS, Jha HC. Helicobacter pylori and Epstein-Barr virus infection in cell polarity alterations. Folia Microbiol (Praha) 2024; 69:41-57. [PMID: 37672163 DOI: 10.1007/s12223-023-01091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
The asymmetrical distribution of the cellular organelles inside the cell is maintained by a group of cell polarity proteins. The maintenance of polarity is one of the vital host defense mechanisms against pathogens, and the loss of it contributes to infection facilitation and cancer progression. Studies have suggested that infection of viruses and bacteria alters cell polarity. Helicobacter pylori and Epstein-Barr virus are group I carcinogens involved in the progression of multiple clinical conditions besides gastric cancer (GC) and Burkitt's lymphoma, respectively. Moreover, the coinfection of both these pathogens contributes to a highly aggressive form of GC. H. pylori and EBV target the host cell polarity complexes for their pathogenesis. H. pylori-associated proteins like CagA, VacA OipA, and urease were shown to imbalance the cellular homeostasis by altering the cell polarity. Similarly, EBV-associated genes LMP1, LMP2A, LMP2B, EBNA3C, and EBNA1 also contribute to altered cell asymmetry. This review summarized all the possible mechanisms involved in cell polarity deformation in H. pylori and EBV-infected epithelial cells. We have also discussed deregulated molecular pathways like NF-κB, TGF-β/SMAD, and β-catenin in H. pylori, EBV, and their coinfection that further modulate PAR, SCRIB, or CRB polarity complexes in epithelial cells.
Collapse
Affiliation(s)
- Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Anushka Ray
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Ankit Jana
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Dhirendra Singh Yadav
- Central Forensic Science Laboratory, Pune, DFSS, Ministry of Home Affairs, Govt. of India, Talegaon MIDC Phase-1, Near JCB Factory, Pune, Maharashtra, 410506, India
| | - Kumar Sachin
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant, Dehradun, Uttarakhand, 248 016, India
| | - Amit Mishra
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65 Nagaur Road, Karwar, Jodhpur District, Rajasthan, 342037, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
23
|
Piscitello-Gómez R, Gruber FS, Krishna A, Duclut C, Modes CD, Popović M, Jülicher F, Dye NA, Eaton S. Core PCP mutations affect short-time mechanical properties but not tissue morphogenesis in the Drosophila pupal wing. eLife 2023; 12:e85581. [PMID: 38117039 PMCID: PMC10843330 DOI: 10.7554/elife.85581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/18/2023] [Indexed: 12/21/2023] Open
Abstract
How morphogenetic movements are robustly coordinated in space and time is a fundamental open question in biology. We study this question using the wing of Drosophila melanogaster, an epithelial tissue that undergoes large-scale tissue flows during pupal stages. Previously, we showed that pupal wing morphogenesis involves both cellular behaviors that allow relaxation of mechanical tissue stress, as well as cellular behaviors that appear to be actively patterned (Etournay et al., 2015). Here, we show that these active cellular behaviors are not guided by the core planar cell polarity (PCP) pathway, a conserved signaling system that guides tissue development in many other contexts. We find no significant phenotype on the cellular dynamics underlying pupal morphogenesis in mutants of core PCP. Furthermore, using laser ablation experiments, coupled with a rheological model to describe the dynamics of the response to laser ablation, we conclude that while core PCP mutations affect the fast timescale response to laser ablation they do not significantly affect overall tissue mechanics. In conclusion, our work shows that cellular dynamics and tissue shape changes during Drosophila pupal wing morphogenesis do not require core PCP as an orientational guiding cue.
Collapse
Affiliation(s)
- Romina Piscitello-Gómez
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- DFG Excellence Cluster Physics of Life, Technische Universität DresdenDresdenGermany
| | - Franz S Gruber
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- National Phenotypic Screening Centre, University of DundeeDundeeUnited Kingdom
| | - Abhijeet Krishna
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- DFG Excellence Cluster Physics of Life, Technische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Charlie Duclut
- Laboratoire Physico-Chimie Curie, CNRS UMR 168, Institut Curie, Université PSL, Sorbonne UniversitéParisFrance
- Max Planck Institute for Physics of Complex SystemsDresdenGermany
- Université Paris Cité, Laboratoire Matière et Systèmes ComplexesParisFrance
| | - Carl D Modes
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- DFG Excellence Cluster Physics of Life, Technische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Marko Popović
- DFG Excellence Cluster Physics of Life, Technische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Max Planck Institute for Physics of Complex SystemsDresdenGermany
| | - Frank Jülicher
- DFG Excellence Cluster Physics of Life, Technische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Max Planck Institute for Physics of Complex SystemsDresdenGermany
| | - Natalie A Dye
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- DFG Excellence Cluster Physics of Life, Technische Universität DresdenDresdenGermany
- Mildred Scheel Nachwuchszentrum P2, Medical Faculty, Technische Universität DresdenDresdenGermany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- DFG Excellence Cluster Physics of Life, Technische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Biotechnologisches Zentrum, Technische Universität DresdenDresdenGermany
| |
Collapse
|
24
|
Teo S, Bossio A, Stamatakou E, Pascual-Vargas P, Jones ME, Schuhmacher LN, Salinas PC. S-acylation of the Wnt receptor Frizzled-5 by zDHHC5 controls its cellular localization and synaptogenic activity in the rodent hippocampus. Dev Cell 2023; 58:2063-2079.e9. [PMID: 37557176 DOI: 10.1016/j.devcel.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/05/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
Proper localization of receptors for synaptic organizing factors is crucial for synapse formation. Wnt proteins promote synapse assembly through Frizzled (Fz) receptors. In hippocampal neurons, the surface and synaptic localization of Fz5 is regulated by neuronal activity, but the mechanisms involved remain poorly understood. Here, we report that all Fz receptors can be post-translationally modified by S-acylation and that Fz5 is S-acylated on three C-terminal cysteines by zDHHC5. S-acylation is essential for Fz5 localization to the cell surface, axons, and presynaptic sites. Notably, S-acylation-deficient Fz5 is internalized faster, affecting its association with signalosome components at the cell surface. S-acylation-deficient Fz5 also fails to activate canonical and divergent canonical Wnt pathways. Fz5 S-acylation levels are regulated by the pattern of neuronal activity. In vivo studies demonstrate that S-acylation-deficient Fz5 expression fails to induce presynaptic assembly. Our studies show that S-acylation of Frizzled receptors is a mechanism controlling their localization and function.
Collapse
Affiliation(s)
- Samuel Teo
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Alessandro Bossio
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Eleanna Stamatakou
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Patricia Pascual-Vargas
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Megan E Jones
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Laura-Nadine Schuhmacher
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK.
| |
Collapse
|
25
|
Vuong LT, Mlodzik M. The complex relationship of Wnt-signaling pathways and cilia. Curr Top Dev Biol 2023; 155:95-125. [PMID: 38043953 PMCID: PMC11287783 DOI: 10.1016/bs.ctdb.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Wnt family proteins are secreted glycolipoproteins that signal through multitude of signal transduction pathways. The Wnt-pathways are conserved and critical in all metazoans. They are essential for embryonic development, organogenesis and homeostasis, and associated with many diseases when defective or deregulated. Wnt signaling pathways comprise the canonical Wnt pathway, best known for its stabilization of β-catenin and associated nuclear β-catenin activity in gene regulation, and several non-canonical signaling branches. Wnt-Planar Cell Polarity (PCP) signaling has received the most attention among the non-canonical Wnt pathways. The relationship of cilia to Wnt-signaling is complex. While it was suggested that canonical Wnt signaling requires cilia this notion was always challenged by results suggesting the opposite. Recent developments provide insight and clarification to the relationship of Wnt signaling pathways and cilia. First, it has been now demonstrated that while ciliary proteins, in particular the IFT-A complex, are required for canonical Wnt/β-catenin signaling, the cilium as a structure is not. In contrast, recent work has defined a diverged canonical signaling branch (not affecting β-catenin) to be required for ciliary biogenesis and cilia function. Furthermore, the non-canonical Wnt-PCP pathway does not affect cilia biogenesis per se, but it regulates the position of cilia within cells in many cell types, possibly in all cells where it is active, with cilia being placed near the side of the cell that has the Frizzled-Dishevelled complex. This Wnt/PCP feature is conserved with both centrioles and basal bodies/cilia being positioned accordingly, and it is also used to align mitotic spindles within the Wnt-PCP polarization axis. It also coordinates the alignment of cilia in multiciliated cells. This article addresses these new insights and different links and relationships between cilia and Wnt signaling.
Collapse
Affiliation(s)
- Linh T Vuong
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marek Mlodzik
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
26
|
Díaz-Coránguez M, González-González L, Wang A, Liu X, Antonetti DA. Disheveled-1 Interacts with Claudin-5 and Contributes to Norrin-Induced Endothelial Barrier Restoration. Cells 2023; 12:2402. [PMID: 37830616 PMCID: PMC10571979 DOI: 10.3390/cells12192402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
Previous studies have revealed that norrin can reverse vascular endothelial-growth-factor (VEGF)-induced permeability in a β-catenin-dependent pathway. Here, we have explored the contribution of disheveled-1 (DVL1) in norrin-induced blood-retinal barrier (BRB) restoration. We provide evidence that in addition to canonical signaling, DVL1 promotes tight junction (TJ) stabilization through a novel, non-canonical signaling pathway involving direct claudin-5 (CLDN5) binding. Immunofluorescence staining of rat retinal cross-sections showed enriched expression of DVL1 and 3 at endothelial capillaries and co-localization with CLDN5 and ZO-1 at the TJ complex in primary bovine retinal endothelial cells (BRECs). Barrier properties of BRECs were determined via measurements of trans-endothelial electrical resistance (TEER) or permeability to 70 kDa RITC-dextran. These studies demonstrated that norrin restoration of barrier properties after VEGF treatment required DVL1 as an siRNA knockdown of Dvl1 but not Dvl2 or Dvl3, reduced basal barrier properties and ablated norrin-induced barrier restoration. However, loss of Dvl1 did not decrease β-catenin signaling activity as measured by Axin2 mRNA expression, suggesting the contribution of a non-canonical pathway. DVL and TJ protein interactions were analyzed via co-immunoprecipitation of endogenous protein in BRECs, which demonstrated that DVL1 interacts with both CLDN5 and ZO-1, while DVL3 interacts only with ZO-1. These interactions were most abundant after inducing BRB restoration by treating BRECs with VEGF and norrin. DVL has previously been shown to form intramolecular bindings between the C-terminal PDZ-binding motif (PDZ-BM) with an internal PDZ domain. Co-transfection of HEK293 cells with DVL1 and CLDN5 or relevant mutants revealed that DVL1 interacts with CLDN5 through the DVL PDZ domain binding, CLDN5 PDZ-BM, in competition with DVL1 PDZ-BM, since DVL/CLDN5 interaction increases with deletion of the DVL1 PDZ-BM and decreases by co-expressing the C-terminal fragment of DVL1 containing the PDZ-BM or through deletion of CLDN5 PDZ-BM. In BREC cells, transfection of the C-terminal fragment of DVL1 downregulates the expression of CLDN5 but does not affect the expression of other proteins of the TJs, including ZO-1, occludin, CLDN1 or VE-cadherin. Blocking DVL1/CLDN5 interaction increased basal permeability and prevented norrin induction of barrier properties after VEGF. Combined with previous data, these results demonstrate that norrin signals through both a canonical β-catenin pathway and a non-canonical signaling pathway by which DVL1 directly binds to CLDN5 to promote barrier properties.
Collapse
Affiliation(s)
- Mónica Díaz-Coránguez
- Department of Pharmacobiology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Laura González-González
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (L.G.-G.); (A.W.); (X.L.)
| | - Amy Wang
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (L.G.-G.); (A.W.); (X.L.)
| | - Xuwen Liu
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (L.G.-G.); (A.W.); (X.L.)
| | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (L.G.-G.); (A.W.); (X.L.)
| |
Collapse
|
27
|
Kuebler CA, Paré AC. Striped Expression of Leucine-Rich Repeat Proteins Coordinates Cell Intercalation and Compartment Boundary Formation in the Early Drosophila Embryo. Symmetry (Basel) 2023; 15:1490. [PMID: 38650964 PMCID: PMC11034934 DOI: 10.3390/sym15081490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Planar polarity is a commonly observed phenomenon in which proteins display a consistent asymmetry in their subcellular localization or activity across the plane of a tissue. During animal development, planar polarity is a fundamental mechanism for coordinating the behaviors of groups of cells to achieve anisotropic tissue remodeling, growth, and organization. Therefore, a primary focus of developmental biology research has been to understand the molecular mechanisms underlying planar polarity in a variety of systems to identify conserved principles of tissue organization. In the early Drosophila embryo, the germband neuroectoderm epithelium rapidly doubles in length along the anterior-posterior axis through a process known as convergent extension (CE); it also becomes subdivided into tandem tissue compartments through the formation of compartment boundaries (CBs). Both processes are dependent on the planar polarity of proteins involved in cellular tension and adhesion. The enrichment of actomyosin-based tension and adherens junction-based adhesion at specific cell-cell contacts is required for coordinated cell intercalation, which drives CE, and the creation of highly stable cell-cell contacts at CBs. Recent studies have revealed a system for rapid cellular polarization triggered by the expression of leucine-rich-repeat (LRR) cell-surface proteins in striped patterns. In particular, the non-uniform expression of Toll-2, Toll-6, Toll-8, and Tartan generates local cellular asymmetries that allow cells to distinguish between cell-cell contacts oriented parallel or perpendicular to the anterior-posterior axis. In this review, we discuss (1) the biomechanical underpinnings of CE and CB formation, (2) how the initial symmetry-breaking events of anterior-posterior patterning culminate in planar polarity, and (3) recent advances in understanding the molecular mechanisms downstream of LRR receptors that lead to planar polarized tension and junctional adhesion.
Collapse
Affiliation(s)
- Chloe A. Kuebler
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Adam C. Paré
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
28
|
Dreyer CA, VanderVorst K, Natwick D, Bell G, Sood P, Hernandez M, Angelastro JM, Collins SR, Carraway KL. A complex of Wnt/planar cell polarity signaling components Vangl1 and Fzd7 drives glioblastoma multiforme malignant properties. Cancer Lett 2023; 567:216280. [PMID: 37336284 PMCID: PMC10582999 DOI: 10.1016/j.canlet.2023.216280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Targeting common oncogenic drivers of glioblastoma multiforme (GBM) in patients has remained largely ineffective, raising the possibility that alternative pathways may contribute to tumor aggressiveness. Here we demonstrate that Vangl1 and Fzd7, components of the non-canonical Wnt planar cell polarity (Wnt/PCP) signaling pathway, promote GBM malignancy by driving cellular proliferation, migration, and invasiveness, and engage Rho GTPases to promote cytoskeletal rearrangements and actin dynamics in migrating GBM cells. Mechanistically, we uncover the existence of a novel Vangl1/Fzd7 complex at the leading edge of migrating GBM cells and propose that this complex is critical for the recruitment of downstream effectors to promote tumor progression. Moreover, we observe that depletion of FZD7 results in a striking suppression of tumor growth and latency and extends overall survival in an intracranial mouse xenograft model. Our observations support a novel mechanism by which Wnt/PCP components Vangl1 and Fzd7 form a complex at the leading edge of migratory GBM cells to engage downstream effectors that promote actin cytoskeletal rearrangements dynamics. Our findings suggest that interference with Wnt/PCP pathway function may offer a novel therapeutic strategy for patients diagnosed with GBM.
Collapse
Affiliation(s)
- Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Dean Natwick
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - George Bell
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Prachi Sood
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Hernandez
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - James M Angelastro
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
29
|
Paramore SV, Goodwin K, Devenport D, Nelson CM. Mesenchymal Vangl facilitates airway elongation and widening independently of the planar cell polarity complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547543. [PMID: 37461477 PMCID: PMC10349956 DOI: 10.1101/2023.07.03.547543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A hallmark of mammalian lungs is the fractal nature of the bronchial tree. In the adult, each successive generation of airways is a fraction of the size of the parental branch. This fractal structure is physiologically beneficial, as it minimizes the energy needed for breathing. Achieving this pattern likely requires precise control of airway length and diameter, as the branches of the embryonic airways initially lack the fractal scaling observed in those of the adult lung. In epithelial monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we comprehensively characterized the roles of PCP-complex components in airway initiation, elongation, and widening during branching morphogenesis of the murine lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP-component expression in the developing airway epithelium. Instead, we found a novel, Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme. Specifically, mesenchymal loss of Vangl1/2 leads to defects in branch initiation, elongation, and widening. At the cellular level, we observe changes in the shape of smooth muscle cells that indicate a potential defect in collective mesenchymal rearrangements, which we hypothesize are necessary for lung morphogenesis. Our data thus reveal an explicit function for Vangl that is independent of the core PCP complex, suggesting a functional diversification of PCP components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways of the mature lung.
Collapse
Affiliation(s)
| | | | | | - Celeste M Nelson
- Department of Molecular Biology
- Department of Chemical & Biological Engineering
| |
Collapse
|
30
|
Humphries AC, Molina-Pelayo C, Sil P, Hazelett CC, Devenport D, Mlodzik M. A Van Gogh/Vangl tyrosine phosphorylation switch regulates its interaction with core Planar Cell Polarity factors Prickle and Dishevelled. PLoS Genet 2023; 19:e1010849. [PMID: 37463168 PMCID: PMC10381084 DOI: 10.1371/journal.pgen.1010849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 07/28/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Epithelial tissues can be polarized along two axes: in addition to apical-basal polarity they are often also polarized within the plane of the epithelium, known as planar cell polarity (PCP). PCP depends upon the conserved Wnt/Frizzled (Fz) signaling factors, including Fz itself and Van Gogh (Vang/Vangl in mammals). Here, taking advantage of the complementary features of Drosophila wing and mouse skin PCP establishment, we dissect how Vang/Vangl phosphorylation on a specific conserved tyrosine residue affects its interaction with two cytoplasmic core PCP factors, Dishevelled (Dsh/Dvl1-3 in mammals) and Prickle (Pk/Pk1-3). We demonstrate that Pk and Dsh/Dvl bind to Vang/Vangl in an overlapping region centered around this tyrosine. Strikingly, Vang/Vangl phosphorylation promotes its binding to Prickle, a key effector of the Vang/Vangl complex, and inhibits its interaction with Dishevelled. Thus phosphorylation of this tyrosine appears to promote the formation of the mature Vang/Vangl-Pk complex during PCP establishment and conversely it inhibits the Vang interaction with the antagonistic effector Dishevelled. Intriguingly, the phosphorylation state of this tyrosine might thus serve as a switch between transient interactions with Dishevelled and stable formation of Vang-Pk complexes during PCP establishment.
Collapse
Affiliation(s)
- Ashley C. Humphries
- Dept. of Cell, Developmental, & Regenerative Biology,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Claudia Molina-Pelayo
- Dept. of Cell, Developmental, & Regenerative Biology,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Parijat Sil
- Dept. of Molecular Biology Princeton University, Princeton, New Jersey, United States of America
| | - C. Clayton Hazelett
- Dept. of Molecular Biology Princeton University, Princeton, New Jersey, United States of America
| | - Danelle Devenport
- Dept. of Molecular Biology Princeton University, Princeton, New Jersey, United States of America
| | - Marek Mlodzik
- Dept. of Cell, Developmental, & Regenerative Biology,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
31
|
Manfreda L, Rampazzo E, Persano L. Wnt Signaling in Brain Tumors: A Challenging Therapeutic Target. BIOLOGY 2023; 12:biology12050729. [PMID: 37237541 DOI: 10.3390/biology12050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development. Moreover, we recapitulate the most relevant mechanisms through which aberrant Wnt pathway activation may impact on brain tumorigenesis and brain tumor aggressiveness, with a particular focus on the mutual interdependency existing between Wnt signaling components and the brain tumor microenvironment. Finally, the latest anti-cancer therapeutic approaches employing the specific targeting of Wnt signaling are extensively reviewed and discussed. In conclusion, here we provide evidence that Wnt signaling, due to its pleiotropic involvement in several brain tumor features, may represent a relevant target in this context, although additional efforts will be needed to: (i) demonstrate the real clinical impact of Wnt inhibition in these tumors; (ii) overcome some still unsolved concerns about the potential systemic effects of such approaches; (iii) achieve efficient brain penetration.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Elena Rampazzo
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| |
Collapse
|
32
|
VanderVorst K, Dreyer CA, Hatakeyama J, Bell GRR, Learn JA, Berg AL, Hernandez M, Lee H, Collins SR, Carraway KL. Vangl-dependent Wnt/planar cell polarity signaling mediates collective breast carcinoma motility and distant metastasis. Breast Cancer Res 2023; 25:52. [PMID: 37147680 PMCID: PMC10163820 DOI: 10.1186/s13058-023-01651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/23/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND In light of the growing appreciation for the role of collective cell motility in metastasis, a deeper understanding of the underlying signaling pathways will be critical to translating these observations to the treatment of advanced cancers. Here, we examine the contribution of Wnt/planar cell polarity (Wnt/PCP), one of the non-canonical Wnt signaling pathways and defined by the involvement of the tetraspanin-like proteins Vangl1 and Vangl2, to breast tumor cell motility, collective cell invasiveness and mammary tumor metastasis. METHODS Vangl1 and Vangl2 knockdown and overexpression and Wnt5a stimulation were employed to manipulate Wnt/PCP signaling in a battery of breast cancer cell lines representing all breast cancer subtypes, and in tumor organoids from MMTV-PyMT mice. Cell migration was assessed by scratch and organoid invasion assays, Vangl protein subcellular localization was assessed by confocal fluorescence microscopy, and RhoA activation was assessed in real time by fluorescence imaging with an advanced FRET biosensor. The impact of Wnt/PCP suppression on mammary tumor growth and metastasis was assessed by determining the effect of conditional Vangl2 knockout on the MMTV-NDL mouse mammary tumor model. RESULTS We observed that Vangl2 knockdown suppresses the motility of all breast cancer cell lines examined, and overexpression drives the invasiveness of collectively migrating MMTV-PyMT organoids. Vangl2-dependent RhoA activity is localized in real time to a subpopulation of motile leader cells displaying a hyper-protrusive leading edge, Vangl protein is localized to leader cell protrusions within leader cells, and actin cytoskeletal regulator RhoA is preferentially activated in the leader cells of a migrating collective. Mammary gland-specific knockout of Vangl2 results in a striking decrease in lung metastases in MMTV-NDL mice, but does not impact primary tumor growth characteristics. CONCLUSIONS We conclude that Vangl-dependent Wnt/PCP signaling promotes breast cancer collective cell migration independent of breast tumor subtype and facilitates distant metastasis in a genetically engineered mouse model of breast cancer. Our observations are consistent with a model whereby Vangl proteins localized at the leading edge of leader cells in a migrating collective act through RhoA to mediate the cytoskeletal rearrangements required for pro-migratory protrusion formation.
Collapse
Affiliation(s)
- Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jason Hatakeyama
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - George R R Bell
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Julie A Learn
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Anastasia L Berg
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Hernandez
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Hyun Lee
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
33
|
Bu T, Li X, Wang L, Wu X, Gao S, Yun D, Li L, Sun F, Cheng CY. Regulation of sertoli cell function by planar cell polarity (PCP) protein Fjx1. Mol Cell Endocrinol 2023; 571:111936. [PMID: 37119967 DOI: 10.1016/j.mce.2023.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Four-jointed box kinase 1 (Fjx1) is a planar cell protein (PCP) and a member of the Fat (FAT atypical cadherin 1)/Dchs (Dachsous cadherin-related protein)/Fjx1 PCP complex. Fjx1 is also a non-receptor Ser/Thr protein kinase capable of phosphorylating Fat1 at is extracellular cadherin domains when it is transport across the Golgi system. As such, Fjx1 is a Golgi-based regulator of Fat1 function by determining its extracellular deposition. Herein, Fjx1 was found to localize across the Sertoli cell cytoplasm, partially co-localized with the microtubules (MTs) across the seminiferous epithelium. It was most notable at the apical ES (ectoplasmic specialization) and basal ES, displaying distinctive stage-specific expression. The apical ES and basal ES are the corresponding testis-specific cell adhesion ultrastructures at the Sertoli-elongated spermatid and Sertoli cell-cell interface, respectively, consistent with the role of Fjx1 as a Golgi-associated Ser/Thr kinase that modulates the Fat (and/or Dchs) integral membrane proteins. Its knockdown (KD) by RNAi using specific Fjx1 siRNA duplexes versus non-targeting negative control siRNA duplexes was found to perturb the Sertoli cell tight junction function, as well as perturbing the function and organization of MT and actin. While Fjx1 KD did not affect the steady-state levels of almost two dozens of BTB-associated Sertoli cell proteins, including structural and regulatory proteins, its KD was found to down-regulate Fat1 (but not Fat2, 3, and 4) and to up-regulate Dchs1 (but not Dchs2) expression. Based on results of biochemical analysis, Fjx1 KD was found to be capable of abolishing phosphorylation of its putative substrate Fat1 at its Ser/Thr sites, but not at its Tyr site, illustrating an intimate functional relationship of Fjx1 and Fat1 in Sertoli cells.
Collapse
Affiliation(s)
- Tiao Bu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China.
| | - C Yan Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
34
|
Xu Y, Cheng Y, Chen AT, Bao Z. A compound PCP scheme underlies sequential rosettes-based cell intercalation. Development 2023; 150:dev201493. [PMID: 36975724 PMCID: PMC10263146 DOI: 10.1242/dev.201493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
The formation of sequential rosettes is a type of collective cell behavior recently discovered in the Caenorhabditis elegans embryo that mediates directional cell migration through sequential formation and resolution of multicellular rosettes involving the migrating cell and its neighboring cells along the way. Here, we show that a planar cell polarity (PCP)-based polarity scheme regulates sequential rosettes, which is distinct from the known mode of PCP regulation in multicellular rosettes during the process of convergent extension. Specifically, non-muscle myosin (NMY) localization and edge contraction are perpendicular to that of Van Gogh as opposed to colocalizing with Van Gogh. Further analyses suggest a two-component polarity scheme: one being the canonical PCP pathway with MIG-1/Frizzled and VANG-1/Van Gogh localized to the vertical edges, the other being MIG-1/Frizzled and NMY-2 localized to the midline/contracting edges. The NMY-2 localization and contraction of the midline edges also required LAT-1/Latrophilin, an adhesion G protein-coupled receptor that has not been shown to regulate multicellular rosettes. Our results establish a distinct mode of PCP-mediated cell intercalation and shed light on the versatile nature of the PCP pathway.
Collapse
Affiliation(s)
- Yichi Xu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Yunsheng Cheng
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Allison T. Chen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
35
|
Wang Z, Marchetti MC, Brauns F. Patterning of morphogenetic anisotropy fields. Proc Natl Acad Sci U S A 2023; 120:e2220167120. [PMID: 36947516 PMCID: PMC10068776 DOI: 10.1073/pnas.2220167120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/15/2023] [Indexed: 03/23/2023] Open
Abstract
Orientational order, encoded in anisotropic fields, plays an important role during the development of an organism. A striking example of this is the freshwater polyp Hydra, where topological defects in the muscle fiber orientation have been shown to localize to key features of the body plan. This body plan is organized by morphogen concentration gradients, raising the question how muscle fiber orientation, morphogen gradients and body shape interact. Here, we introduce a minimal model that couples nematic orientational order to the gradient of a morphogen field. We show that on a planar surface, alignment to a radial concentration gradient can induce unbinding of topological defects, as observed during budding and tentacle formation in Hydra, and stabilize aster/vortex-like defects, as observed at a Hydra's mouth. On curved surfaces mimicking the morphologies of Hydra in various stages of development-from spheroid to adult-our model reproduces the experimentally observed reorganization of orientational order. Our results suggest how gradient alignment and curvature effects may work together to control orientational order during development and lay the foundations for future modeling efforts that will include the tissue mechanics that drive shape deformations.
Collapse
Affiliation(s)
- Zihang Wang
- Department of Physics, University of California, Santa Barbara, CA93106
| | | | - Fridtjof Brauns
- Department of Physics, University of California, Santa Barbara, CA93106
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA93106
| |
Collapse
|
36
|
Functional interaction between Vangl2 and N-cadherin regulates planar cell polarization of the developing neural tube and cochlear sensory epithelium. Sci Rep 2023; 13:3905. [PMID: 36890135 PMCID: PMC9995352 DOI: 10.1038/s41598-023-30213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Although the core constituents of the Wnt/planar cell polarity (PCP) signaling have been extensively studied, their downstream molecules and protein-protein interactions have not yet been fully elucidated. Here, we show genetic and molecular evidence that the PCP factor, Vangl2, functionally interacts with the cell-cell adhesion molecule, N-cadherin (also known as Cdh2), for typical PCP-dependent neural development. Vangl2 and N-cadherin physically interact in the neural plates undergoing convergent extension. Unlike monogenic heterozygotes, digenic heterozygous mice with Vangl2 and Cdh2 mutants exhibited defects in neural tube closure and cochlear hair cell orientation. Despite this genetic interaction, neuroepithelial cells derived from the digenic heterozygotes did not show additive changes from the monogenic heterozygotes of Vangl2 in the RhoA-ROCK-Mypt1 and c-Jun N-terminal kinase (JNK)-Jun pathways of Wnt/PCP signaling. Thus, cooperation between Vangl2 and N-cadherin is at least partly via direct molecular interaction; it is essential for the planar polarized development of neural tissues but not significantly associated with RhoA or JNK pathways.
Collapse
|
37
|
Zhu Y, Li X. Advances of Wnt Signalling Pathway in Colorectal Cancer. Cells 2023; 12:cells12030447. [PMID: 36766788 PMCID: PMC9913588 DOI: 10.3390/cells12030447] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common cancers worldwide, with a high mortality rate despite the decreasing incidence and new diagnostic and therapeutic strategies. CRC arises from both epidemiologic and molecular backgrounds. In addition to hereditary factor and genetic mutations, the strongly varying incidence of CRC is closely linked to chronic inflammatory disorders of the intestine and terrible dietary habits. The Wnt signalling pathway is a complex regulatory network that is implicated in many CRC physiological processes, including cancer occurrence, development, prognosis, invasion, and metastasis. It is currently believed to include classical Wnt/β-catenin, Wnt/PCP, and Wnt/Ca2+. In this review, we summarise the recent mechanisms and potential regulators of the three branches of the Wnt signalling pathway in CRC.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Marine College, Shandong University, Weihai 264200, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
- Shandong Kelun Pharmaceutical Co., Ltd., Binzhou 256600, China
- Correspondence: ; Tel.: +86-0531-8838-2612
| |
Collapse
|
38
|
Basta LP, Sil P, Jones RA, Little KA, Hayward-Lara G, Devenport D. Celsr1 and Celsr2 exhibit distinct adhesive interactions and contributions to planar cell polarity. Front Cell Dev Biol 2023; 10:1064907. [PMID: 36712970 PMCID: PMC9878842 DOI: 10.3389/fcell.2022.1064907] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 01/15/2023] Open
Abstract
Cadherin EGF LAG seven-pass G-type receptor (Celsr) proteins 1-3 comprise a subgroup of adhesion GPCRs whose functions range from planar cell polarity (PCP) signaling to axon pathfinding and ciliogenesis. Like its Drosophila ortholog, Flamingo, mammalian Celsr1 is a core component of the PCP pathway, which, among other roles, is responsible for the coordinated alignment of hair follicles across the skin surface. Although the role of Celsr1 in epidermal planar polarity is well established, the contribution of the other major epidermally expressed Celsr protein, Celsr2, has not been investigated. Here, using two new CRISPR/Cas9-targeted Celsr1 and Celsr2 knockout mouse lines, we define the relative contributions of Celsr1 and Celsr2 to PCP establishment in the skin. We find that Celsr1 is the major Celsr family member involved in epidermal PCP. Removal of Celsr1 function alone abolishes PCP protein asymmetry and hair follicle polarization, whereas epidermal PCP is unaffected by loss of Celsr2. Further, elimination of both Celsr proteins only minimally enhances the Celsr1 -/- phenotype. Using FRAP and junctional enrichment assays to measure differences in Celsr1 and Celsr2 adhesive interactions, we find that compared to Celsr1, which stably enriches at junctional interfaces, Celsr2 is much less efficiently recruited to and immobilized at junctions. As the two proteins seem equivalent in their ability to interact with core PCP proteins Vangl2 and Fz6, we suggest that perhaps differences in homophilic adhesion contribute to the differential involvement of Celsr1 and Celsr2 in epidermal PCP.
Collapse
Affiliation(s)
- Lena P. Basta
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Rebecca A. Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Katherine A. Little
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Gabriela Hayward-Lara
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States,Current Affiliation. University of Pennsylvania, Philadelphia, PA, United States
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States,*Correspondence: Danelle Devenport,
| |
Collapse
|
39
|
Christodoulou N, Skourides PA. Somitic mesoderm morphogenesis is necessary for neural tube closure during Xenopus development. Front Cell Dev Biol 2023; 10:1091629. [PMID: 36699010 PMCID: PMC9868421 DOI: 10.3389/fcell.2022.1091629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
Neural tube closure is a fundamental process during vertebrate embryogenesis, which leads to the formation of the central nervous system. Defective neural tube closure leads to neural tube defects which are some of the most common human birth defects. While the intrinsic morphogenetic events shaping the neuroepithelium have been studied extensively, how tissues mechanically coupled with the neural plate influence neural tube closure remains poorly understood. Here, using Xenopus laevis embryos, live imaging in combination with loss of function experiments and morphometric analysis of fixed samples we explore the reciprocal mechanical communication between the neural plate and the somitic mesoderm and its impact on tissue morphogenesis. We show that although somitic mesoderm convergent extension occurs independently from neural plate morphogenesis neural tube closure depends on somitic mesoderm morphogenesis. Specifically, impaired somitic mesoderm remodelling results in defective apical constriction within the neuroepithelium and failure of neural tube closure. Last, our data reveal that mild abnormalities in somitic mesoderm and neural plate morphogenesis have a synergistic effect during neurulation, leading to severe neural tube closure defects. Overall, our data reveal that defective morphogenesis of tissues mechanically coupled with the neural plate can not only drastically exacerbate mild neural tube defects that may arise from abnormalities within the neural tissue but can also elicit neural tube defects even when the neural plate is itself free of inherent defects.
Collapse
|
40
|
Craig SEL, Michalski MN, Williams BO. Got WNTS? Insight into bone health from a WNT perspective. Curr Top Dev Biol 2023; 153:327-346. [PMID: 36967199 DOI: 10.1016/bs.ctdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
WNT signaling, essential for many aspects of development, is among the most commonly altered pathways associated with human disease. While initially studied in cancer, dysregulation of WNT signaling has been determined to be essential for skeletal development and the maintenance of bone health throughout life. In this review, we discuss the role of Wnt signaling in bone development and disease with a particular focus on two areas. First, we discuss the roles of WNT signaling pathways in skeletal development, with an emphasis on congenital and idiopathic skeletal syndromes and diseases that are associated with genetic variations in WNT signaling components. Next, we cover a topic that has long been an interest of our laboratory, how high and low levels of WNT signaling affects the establishment and maintenance of healthy bone mass. We conclude with a discussion of the status of WNT-based therapeutics in the treatment of skeletal disease.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Megan N Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
41
|
Brunet T, Booth DS. Cell polarity in the protist-to-animal transition. Curr Top Dev Biol 2023; 154:1-36. [PMID: 37100515 DOI: 10.1016/bs.ctdb.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
A signature feature of the animal kingdom is the presence of epithelia: sheets of polarized cells that both insulate the organism from its environment and mediate interactions with it. Epithelial cells display a marked apico-basal polarity, which is highly conserved across the animal kingdom, both in terms of morphology and of molecular regulators. How did this architecture first evolve? Although the last eukaryotic common ancestor almost certainly possessed a simple form of apico-basal polarity (marked by the presence of one or several flagella at a single cellular pole), comparative genomics and evolutionary cell biology reveal that the polarity regulators of animal epithelial cells have a surprisingly complex and stepwise evolutionary history. Here, we retrace their evolutionary assembly. We suggest that the "polarity network" that polarized animal epithelial cells evolved by integration of initially independent cellular modules that evolved at distinct steps of our evolutionary ancestry. The first module dates back to the last common ancestor of animals and amoebozoans and involved Par1, extracellular matrix proteins, and the integrin-mediated adhesion complex. Other regulators, such as Cdc42, Dlg, Par6 and cadherins evolved in ancient unicellular opisthokonts, and might have first been involved in F-actin remodeling and filopodial dynamics. Finally, the bulk of "polarity proteins" as well as specialized adhesion complexes evolved in the metazoan stem-line, in concert with the newly evolved intercellular junctional belts. Thus, the polarized architecture of epithelia can be understood as a palimpsest of components of distinct histories and ancestral functions, which have become tightly integrated in animal tissues.
Collapse
|
42
|
Minegishi K, Sai X, Hamada H. Role of Wnt signaling and planar cell polarity in left-right asymmetry. Curr Top Dev Biol 2023; 153:181-193. [PMID: 36967194 DOI: 10.1016/bs.ctdb.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Wnt signaling plays essential roles in multiple steps of left-right (L-R) determination in development. First, canonical Wnt signaling is required to form the node, where L-R symmetry breaking takes place. Secondly, planar cell polarity (PCP) driven by non-canonical Wnt signaling polarizes node cells along the anterio-posterior (A-P) axis and provides the tilt of rotating cilia at the node, which generate the leftward fluid flow. Thus, reciprocal expression of Wnt5a/5b and their inhibitors Sfrp1, 2, 5 generates a gradient of Wnt5 activity along the embryo's anterior-posterior (A-P) axis. This polarizes cells at the node, by placing PCP core proteins on the anterior or posterior side of each node cell. Polarized PCP proteins subsequently induce asymmetric organization of microtubules along the A-P axis, which is thought to push the centrally localized basal body toward the posterior side of a node cell. Motile cilia that extend from the posteriorly-shifted basal body is tilted toward the posterior side of the embryo. Thirdly, canonical-Wnt signaling regulates the level and expansion of Nodal activity and establishes L-R asymmetric Nodal activity at the node, the first molecular asymmetry in the mouse embryo. Overall, both canonical and non-canonical Wnt signalings are essential for L-R symmetry breaking.
Collapse
Affiliation(s)
| | - Xiaorei Sai
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Hamada
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
43
|
Gittin DI, Petersen CP. A Wnt11 and Dishevelled signaling pathway acts prior to injury to control wound polarization for the onset of planarian regeneration. Curr Biol 2022; 32:5262-5273.e2. [PMID: 36495871 PMCID: PMC9901562 DOI: 10.1016/j.cub.2022.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 12/13/2022]
Abstract
Regeneration is initiated by wounding, but it is unclear how injury-induced signals precisely convey the identity of the tissues requiring replacement. In the planarian Schmidtea mediterranea, the first event in head regeneration is the asymmetric activation of the Wnt inhibitor notum in longitudinal body-wall muscle cells, preferentially at anterior-facing versus posterior-facing wound sites. However, the mechanism driving this early symmetry-breaking event is unknown. We identify a noncanonical Wnt11 and Dishevelled pathway regulating notum polarization, which opposes injury-induced notum-activating Wnt/β-catenin signals and regulates muscle orientation. Using expression analysis and experiments to define a critical time of action, we demonstrate that Wnt11 and Dishevelled signals act prior to injury and in a growth-dependent manner to orient the polarization of notum induced by wounding. In turn, injury-induced notum dictates polarization used in the next round of regeneration. These results identify a self-reinforcing feedback system driving the polarization of blastema outgrowth and indicate that regeneration uses pre-existing tissue information to determine the outcome of wound-induced signals.
Collapse
Affiliation(s)
- David I Gittin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
44
|
Analysis of Copy Number Variation in the Whole Genome of Normal-Haired and Long-Haired Tianzhu White Yaks. Genes (Basel) 2022; 13:genes13122405. [PMID: 36553672 PMCID: PMC9777850 DOI: 10.3390/genes13122405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Long-haired individuals in the Tianzhu white yak population are a unique genetic resource, and have important landscape value. Copy number variation (CNV) is an important source of phenotypic variation in mammals. In this study, we used resequencing technology to detect the whole genome of 10 long-haired Tianzhu white yaks (LTWY) and 10 normal-haired Tianzhu white yaks (NTWY), and analyzed the differences of CNV in the genome of LTWYs and NTWYs. A total of 110268 CNVs were identified, 2006 CNVRs were defined, and the distribution map of these CNVRs on chromosomes was constructed. The comparison of LTWYs and NTWYs identified 80 differential CNVR-harbored genes, which were enriched in lipid metabolism, cell migration and other functions. Notably, some differential genes were identified as associated with hair growth and hair-follicle development (e.g., ASTN2, ATM, COL22A1, GK5, SLIT3, PM20D1, and SGCZ). In general, we present the first genome-wide analysis of CNV in LTWYs and NTWYs. Our results can provide new insights into the phenotypic variation of different hair lengths in Tianzhu white yaks.
Collapse
|
45
|
Shi DL. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell Mol Life Sci 2022; 79:586. [PMID: 36369349 DOI: 10.1007/s00018-022-04620-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Institute of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China. .,Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France.
| |
Collapse
|
46
|
Paramore SV, Goodwin K, Nelson CM. How to build an epithelial tree. Phys Biol 2022; 19. [DOI: 10.1088/1478-3975/ac9e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Abstract
Nature has evolved a variety of mechanisms to build epithelial trees of diverse architectures within different organs and across species. Epithelial trees are elaborated through branch initiation and extension, and their morphogenesis ends with branch termination. Each of these steps of the branching process can be driven by the actions of epithelial cells themselves (epithelial-intrinsic mechanisms) or by the cells of their surrounding tissues (epithelial-extrinsic mechanisms). Here, we describe examples of how these mechanisms drive each stage of branching morphogenesis, drawing primarily from studies of the lung, kidney, salivary gland, mammary gland, and pancreas, all of which contain epithelial trees that form through collective cell behaviors. Much of our understanding of epithelial branching comes from experiments using mice, but we also include examples here from avian and reptilian models. Throughout, we highlight how distinct mechanisms are employed in different organs and species to build epithelial trees. We also highlight how similar morphogenetic motifs are used to carry out conserved developmental programs or repurposed to support novel ones. Understanding the unique strategies used by nature to build branched epithelia from across the tree of life can help to inspire creative solutions to problems in tissue engineering and regenerative medicine.
Collapse
|
47
|
Ayukawa T, Akiyama M, Hozumi Y, Ishimoto K, Sasaki J, Senoo H, Sasaki T, Yamazaki M. Tissue flow regulates planar cell polarity independently of the Frizzled core pathway. Cell Rep 2022; 40:111388. [PMID: 36130497 DOI: 10.1016/j.celrep.2022.111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022] Open
Abstract
Planar cell polarity (PCP) regulates the orientation of external structures. A core group of proteins that includes Frizzled forms the heart of the PCP regulatory system. Other PCP mechanisms that are independent of the core group likely exist, but their underlying mechanisms are elusive. Here, we show that tissue flow is a mechanism governing core group-independent PCP on the Drosophila notum. Loss of core group function only slightly affects bristle orientation in the adult central notum. This near-normal PCP results from tissue flow-mediated rescue of random bristle orientation during the pupal stage. Manipulation studies suggest that tissue flow can orient bristles in the opposite direction to the flow. This process is independent of the core group and implies that the apical extracellular matrix functions like a "comb" to align bristles. Our results reveal the significance of cooperation between tissue dynamics and extracellular substances in PCP establishment.
Collapse
Affiliation(s)
- Tomonori Ayukawa
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Masakazu Akiyama
- Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Tokyo 164-8525, Japan; Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Yasukazu Hozumi
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Kenta Ishimoto
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Junko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Haruki Senoo
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masakazu Yamazaki
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan; Japan Science and Technology Agency, PRESTO, Saitama 332-0012, Japan.
| |
Collapse
|
48
|
Tang Y, Chen Y, Liu R, Li W, Hua B, Bao Y. Wnt Signaling Pathways: A Role in Pain Processing. Neuromolecular Med 2022; 24:233-249. [PMID: 35067780 PMCID: PMC9402773 DOI: 10.1007/s12017-021-08700-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/30/2021] [Indexed: 10/25/2022]
Abstract
The wingless-related integration site (Wnt) signaling pathway plays an essential role in embryonic development and nervous system regulation. It is critically involved in multiple types of neuropathic pain (NP), such as HIV-related NP, cancer pain, diabetic neuralgia, multiple sclerosis-related NP, endometriosis pain, and other painful diseases. Wnt signaling is also implicated in the pain induced by sciatic nerve compression injury and selective spinal nerve ligation. Thus, the Wnt signaling pathway may be a potential therapeutic target for NP.
Collapse
Affiliation(s)
- Yiting Tang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing North Third Ring Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Yupeng Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing North Third Ring Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | - Weidong Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China.
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
49
|
Raeisi M, Saberivand M, Velaei K, Aghaei N, Rahimi-Farsi N, Kharrati-Shishavan H, Hassanzadeh D, Mehdizadeh A. Porcn as a novel therapeutic target in cancer therapy: A review. Cell Biol Int 2022; 46:1979-1991. [PMID: 35971741 DOI: 10.1002/cbin.11882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/06/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
Wingless-related integration site (Wnt) signaling is one of the main oncogenic pathways in different malignancies. Therefore, targeting this pathway has been considered an exciting strategy in cancer treatment. Porcn is among the central enzymes in this pathway that has recently been considered for cancer-targeted therapy. As a membrane-bound O-acyltransferase, Porcn plays a critical role in wnt ligand palmitoylation and its subsequent secretion. In addition to Porcn's role in stem cell signaling and differentiation, recent findings have shown its role in developing and progressing colorectal, pancreatic, liver, head, and neck cancers. Developed small molecule inhibitors have also opened a promising window toward cancer treatment strategies. In this review, the structure and biological role of Porcn in different cancer-related signaling pathways and inhibitors used for inhibiting this enzyme are discussed.
Collapse
Affiliation(s)
- Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saberivand
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Aghaei
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Imam Sajjad Hospital, Tabriz, Iran
| | | | | | - Davoud Hassanzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Molina-Pelayo C, Olguin P, Mlodzik M, Glavic A. The conserved Pelado/ZSWIM8 protein regulates actin dynamics by promoting linear actin filament polymerization. Life Sci Alliance 2022; 5:e202201484. [PMID: 35940847 PMCID: PMC9375228 DOI: 10.26508/lsa.202201484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Actin filament polymerization can be branched or linear, which depends on the associated regulatory proteins. Competition for actin monomers occurs between proteins that induce branched or linear actin polymerization. Cell specialization requires the regulation of actin filaments to allow the formation of cell type-specific structures, like cuticular hairs in <i>Drosophila</i>, formed by linear actin filaments. Here, we report the functional analysis of CG34401/<i>pelado</i>, a gene encoding a SWIM domain-containing protein, conserved throughout the animal kingdom, called ZSWIM8 in mammals. Mutant <i>pelado</i> epithelial cells display actin hair elongation defects. This phenotype is reversed by increasing actin monomer levels or by either pushing linear actin polymerization or reducing branched actin polymerization. Similarly, in hemocytes, Pelado is essential to induce filopodia, a linear actin-based structure. We further show that this function of Pelado/ZSWIM8 is conserved in human cells, where Pelado inhibits branched actin polymerization in a cell migration context. In summary, our data indicate that the function of Pelado/ZSWIM8 in regulating actin cytoskeletal dynamics is conserved, favoring linear actin polymerization at the expense of branched filaments.
Collapse
Affiliation(s)
- Claudia Molina-Pelayo
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Patricio Olguin
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Neurociencia, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alvaro Glavic
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|