1
|
Nieves-Rosado HM, Banerjee H, Gocher-Demske A, Manandhar P, Mehta I, Ezenwa O, Xie B, Murter B, Das J, Vignali DAA, Delgoffe GM, Kane LP. Tim-3 Is Required for Regulatory T Cell-Mediated Promotion of T Cell Exhaustion and Viral Persistence during Chronic Lymphocytic Choriomeningitis Virus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1488-1498. [PMID: 39345172 DOI: 10.4049/jimmunol.2400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
Expression of T cell Ig and mucin domain-containing protein 3 (Tim-3) is upregulated on regulatory T cells (Tregs) during chronic viral infections. In several murine and human chronic infections, the expression of Tim-3 is associated with poor control of viral burden and impaired antiviral immune responses. However, the role of Tim-3+ Tregs during persistent viral infections has not been fully defined. We employed an inducible Treg-specific Tim-3 loss-of-function (Tim-3 Treg knockout) murine model to dissect the role of Tim-3 on Tregs during chronic lymphocytic choriomeningitis virus infection. Tim-3 Treg knockout mice exhibited a decrease in morbidity, a more potent virus-specific T cell response, and a significant decrease in viral burden. These mice also had a reduction in the frequency of PD-1+Tim-3+ and PD-1+Tox+ gp33-specific exhausted CD8+ T cells. Our findings demonstrate that modulation of a single surface protein on Tregs can lead to a reduction in viral burden, limit T cell exhaustion, and enhance gp33-specific T cell response. These studies may help to identify Tim-3-directed therapies for the management of persistent infections and cancer.
Collapse
Affiliation(s)
- Hector M Nieves-Rosado
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Hridesh Banerjee
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | | | - Priyanka Manandhar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Isha Mehta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Ogechukwu Ezenwa
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Bingxian Xie
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Ben Murter
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA
| | | | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
2
|
Kazane KR, Labarta-Bajo L, Zangwill DR, Liimatta K, Vargas F, Weldon KC, Dorrestein PC, Zúñiga EI. Metabolomic Profiling Reveals Potential of Fatty Acids as Regulators of Stem-like Exhausted CD8 T Cells During Chronic Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617124. [PMID: 39416134 PMCID: PMC11483027 DOI: 10.1101/2024.10.07.617124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Chronic infections drive a CD8 T cell program termed T cell exhaustion, characterized by reduced effector functions. While cell-intrinsic mechanisms underlying CD8 T cell exhaustion have been extensively studied, the impact of the metabolic environment in which exhausted CD8 T cells (Tex) operate remains less clear. Using untargeted metabolomics and the murine lymphocytic choriomeningitis virus infection model we investigated systemic metabolite changes early and late following acute versus chronic viral infections. We identified distinct short-term and persistent metabolite shifts, with the most significant differences occurring transiently during the acute phase of the sustained infection. This included nutrient changes that were independent of viral loads and partially associated with CD8 T cell-induced anorexia and lipolysis. One remarkable observation was the elevation of medium- and long-chain fatty acid (FA) and acylcarnitines during the early phase after chronic infection. During this time, virus-specific CD8 T cells from chronically infected mice exhibited increased lipid accumulation and uptake compared to their counterparts from acute infection, particularly stem-like Tex (Tex STEM ), a subset that generates effector-like Tex INT which directly limit viral replication. Notably, only Tex STEM increased oxidative metabolism and ATP production upon FA exposure. Consistently, short-term reintroduction of FA during late chronic infection exclusively improved Tex STEM mitochondrial fitness, percentages and numbers. This treatment, however, also reduced Tex INT , resulting in compromised viral control. Our study offers a valuable resource for investigating the role of specific metabolites in regulating immune responses during acute and chronic viral infections and highlights the potential of long-chain FA to influence Tex STEM and viral control during a protracted infection. Significance This study examines systemic metabolite changes during acute and chronic viral infections. Notably, we identified an early, transient nutrient shift in chronic infection, marked by an increase in medium- and long-chain fatty acid related species. Concomitantly, a virus-specific stem-like T cell population, essential for maintaining other T cells, displayed high lipid avidity and was capable of metabolizing exogenous fatty acids. Administering fatty acids late in chronic infection, when endogenous lipid levels had normalized, expanded this stem-like T cell population and enhanced their mitochondrial fitness. These findings highlight the potential role of fatty acids in regulating stem-like T cells in chronic settings and offer a valuable resource for studying other metabolic signatures in both acute and persistent infections.
Collapse
|
3
|
Valbon SF, Lebel ME, Feldman HA, Condotta SA, Dong M, Giordano D, Waggoner SN, Melichar HJ, Richer MJ. Type I interferon induced during chronic viral infection favors B-cell development in the thymus. Immunol Cell Biol 2024; 102:801-816. [PMID: 39009814 PMCID: PMC11444890 DOI: 10.1111/imcb.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Chronic viral infections cause thymic involution yet the potential for broader, longer-term impact on thymic composition remains unexplored. Here we show that chronic, but not acute, lymphocytic choriomeningitis virus infection promotes a unique population of immature B cells in the thymus. We show that chronic viral infection promotes signals within the thymus, including the expression of B-cell activating factor (BAFF), that favor the maturation of this population as these cells acquire expression of CD19 and immunoglobulin M. Mechanistically, type I interferon (IFN-I), predominantly IFNβ, signals to thymic hematopoietic cells, strongly delaying T-cell development at the earliest precursor stage. Furthermore, IFN-I signaling to the nonhematopoietic compartment provides a second signal essential to favor B-cell differentiation and maturation within the thymus. Importantly, chronic infection yields changes in the B-cell population for at least 50 days following infection, long after thymic atrophy has subsided. Thus, the inflammatory milieu induced by chronic viral infection has a profound, and long-lasting, effect on thymic composition leading to the generation of a novel population of thymic B cells.
Collapse
Affiliation(s)
- Stefanie F Valbon
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Department of Microbiology, Immunology and Infectious Disease, University of Montreal, Montreal, QC, Canada
| | - Marie-Eve Lebel
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - H Alex Feldman
- Center for Autoimmune Genomics & Etiology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephanie A Condotta
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Cooperative Center for Excellence in Hematology, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mengqi Dong
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Daniela Giordano
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics & Etiology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Heather J Melichar
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Martin J Richer
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Cooperative Center for Excellence in Hematology, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Humblin E, Korpas I, Prokhnevska N, Vaidya A, Lu J, van der Heide V, Filipescu D, Bobrowski T, Marks A, Park MD, Bernstein E, Brown BD, Lujambio A, Dominguez-Sola D, Rosenberg BR, Kamphorst AO. ICOS limits memory-like properties and function of exhausted PD-1 + CD8 T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.611518. [PMID: 39345453 PMCID: PMC11429760 DOI: 10.1101/2024.09.16.611518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
During persistent antigen stimulation, PD-1 + CD8 T cells are maintained by progenitor exhausted PD-1 + TCF-1 + CD8 T cells (Tpex). Tpex respond to PD-1 blockade, and regulation of Tpex differentiation into more functional Tex is of major interest for cancer immunotherapies. Tpex express high levels of Inducible Costimulator (ICOS), but the role of ICOS for PD-1 + CD8 T cell responses has not been addressed. In chronic infection, ICOS-deficiency increased both number and quality of virus-specific CD8 T cells, with accumulation of effector-like Tex due to enhanced survival. Mechanistically, loss of ICOS signaling potentiated FoxO1 activity and memory-like features of Tpex. In mice with established chronic infection, ICOS-Ligand blockade resulted in expansion of effector-like Tex and reduction in viral load. In a mouse model of hepatocellular carcinoma, ICOS inhibition improved cytokine production by tumor-specific PD-1 + CD8 T cells and delayed tumor growth. Overall, we show that ICOS limits CD8 T cell responses during chronic antigen exposure.
Collapse
|
5
|
Van Der Byl W, Nüssing S, Peters TJ, Ahn A, Li H, Ledergor G, David E, Koh AS, Wagle MV, Deguit CDT, de Menezes MN, Travers A, Sampurno S, Ramsbottom KM, Li R, Kallies A, Beavis PA, Jungmann R, Bastings MMC, Belz GT, Goel S, Trapani JA, Crabtree GR, Chang HY, Amit I, Goodnow CC, Luciani F, Parish IA. The CD8 + T cell tolerance checkpoint triggers a distinct differentiation state defined by protein translation defects. Immunity 2024; 57:1324-1344.e8. [PMID: 38776918 DOI: 10.1016/j.immuni.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Peripheral CD8+ T cell tolerance is a checkpoint in both autoimmune disease and anti-cancer immunity. Despite its importance, the relationship between tolerance-induced states and other CD8+ T cell differentiation states remains unclear. Using flow cytometric phenotyping, single-cell RNA sequencing (scRNA-seq), and chromatin accessibility profiling, we demonstrated that in vivo peripheral tolerance to a self-antigen triggered a fundamentally distinct differentiation state separate from exhaustion, memory, and functional effector cells but analogous to cells defectively primed against tumors. Tolerant cells diverged early and progressively from effector cells, adopting a transcriptionally and epigenetically distinct state within 60 h of antigen encounter. Breaching tolerance required the synergistic actions of strong T cell receptor (TCR) signaling and inflammation, which cooperatively induced gene modules that enhanced protein translation. Weak TCR signaling during bystander infection failed to breach tolerance due to the uncoupling of effector gene expression from protein translation. Thus, tolerance engages a distinct differentiation trajectory enforced by protein translation defects.
Collapse
Affiliation(s)
- Willem Van Der Byl
- The Kirby Institute for Infection and Immunity, UNSW, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, Australia
| | - Simone Nüssing
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Timothy J Peters
- Garvan Institute of Medical Research, Sydney, NSW, Australia; University of New South Wales Sydney, Sydney, NSW, Australia
| | - Antonio Ahn
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Hanjie Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Ledergor
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Andrew S Koh
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Mayura V Wagle
- Garvan Institute of Medical Research, Sydney, NSW, Australia; John Curtin School of Medical Research, ANU, Canberra, ACT, Australia
| | | | - Maria N de Menezes
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Avraham Travers
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Shienny Sampurno
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kelly M Ramsbottom
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maartje M C Bastings
- Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Interfaculty Bioengineering Institute, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gabrielle T Belz
- The Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Shom Goel
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Gerald R Crabtree
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA; Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Chris C Goodnow
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Fabio Luciani
- The Kirby Institute for Infection and Immunity, UNSW, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, Australia.
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; John Curtin School of Medical Research, ANU, Canberra, ACT, Australia.
| |
Collapse
|
6
|
Hale BD, Severin Y, Graebnitz F, Stark D, Guignard D, Mena J, Festl Y, Lee S, Hanimann J, Zangger NS, Meier M, Goslings D, Lamprecht O, Frey BM, Oxenius A, Snijder B. Cellular architecture shapes the naïve T cell response. Science 2024; 384:eadh8697. [PMID: 38843327 DOI: 10.1126/science.adh8967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
After antigen stimulation, naïve T cells display reproducible population-level responses, which arise from individual T cells pursuing specific differentiation trajectories. However, cell-intrinsic predeterminants controlling these single-cell decisions remain enigmatic. We found that the subcellular architectures of naïve CD8 T cells, defined by the presence (TØ) or absence (TO) of nuclear envelope invaginations, changed with maturation, activation, and differentiation. Upon T cell receptor (TCR) stimulation, naïve TØ cells displayed increased expression of the early-response gene Nr4a1, dependent upon heightened calcium entry. Subsequently, in vitro differentiation revealed that TØ cells generated effector-like cells more so compared with TO cells, which proliferated less and preferentially adopted a memory-precursor phenotype. These data suggest that cellular architecture may be a predeterminant of naïve CD8 T cell fate.
Collapse
MESH Headings
- Animals
- Mice
- Calcium/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/ultrastructure
- Cell Differentiation
- Immunologic Memory
- Lymphocyte Activation
- Mice, Inbred C57BL
- Nuclear Envelope/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Microscopy, Fluorescence
- Fluorescent Antibody Technique
- Humans
Collapse
Affiliation(s)
- Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Fabienne Graebnitz
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Dominique Stark
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel Guignard
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Sohyon Lee
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jacob Hanimann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Nathan S Zangger
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Michelle Meier
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - David Goslings
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Olga Lamprecht
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Beat M Frey
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zürich, Switzerland
| |
Collapse
|
7
|
Bloomfield CL, Gong J, Droho S, Makinde HM, Gurra MG, Stumpf CH, Kharel A, Gadhvi G, Winter DR, Cui W, Cuda CM, Lavine JA. Retinal microglia express more MHC class I and promote greater T-cell-driven inflammation than brain microglia. Front Immunol 2024; 15:1399989. [PMID: 38799448 PMCID: PMC11116593 DOI: 10.3389/fimmu.2024.1399989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Macrophage function is determined by microenvironment and origin. Brain and retinal microglia are both derived from yolk sac progenitors, yet their microenvironments differ. Utilizing single-cell RNA sequencing (scRNA-seq) data from mice, we tested the hypothesis that retinal and brain microglia exhibit distinct transcriptional profiles due to their unique microenvironments. Methods Eyes and brains from 2-4 month wildtype mice were combined (20 eyes; 3 brains) to yield one biologically diverse sample per organ. Each tissue was digested into single cell suspensions, enriched for immune cells, and sorted for scRNA-seq. Analysis was performed in Seurat v3 including clustering, integration, and differential expression. Multi-parameter flow cytometry was used for validation of scRNA-seq results. Lymphocytic choriomeningitis virus (LCMV) Clone 13, which produces a systemic, chronic, and neurotropic infection, was used to validate scRNA-seq and flow cytometry results in vivo. Results Cluster analysis of integrated gene expression data from eye and brain identified 6 Tmem119 + P2ry12 + microglial clusters. Differential expression analysis revealed that eye microglia were enriched for more pro-inflammatory processes including antigen processing via MHC class I (14.0-fold, H2-D1 and H2-K1) and positive regulation of T-cell immunity (8.4-fold) compared to brain microglia. Multi-parameter flow cytometry confirmed that retinal microglia expressed 3.2-fold greater H2-Db and 263.3-fold more H2-Kb than brain microglia. On Day 13 and 29 after LCMV infection, CD8+ T-cell density was greater in the retina than the brain. Discussion Our data demonstrate that the microenvironment of retina and brain differs, resulting in microglia-specific gene expression changes. Specifically, retinal microglia express greater MHC class I by scRNA-seq and multi-parameter flow cytometry, resulting in a possibly enhanced capability to stimulate CD8+ T-cell inflammation during LCMV infection. These results may explain tissue-specific differences between retina and brain during systemic viral infections and CD8+ T-cell driven autoimmune disease.
Collapse
Affiliation(s)
- Christina L. Bloomfield
- Department of Medicine, University of Illinois College of Medicine, Rockford, IL, United States
| | - Joyce Gong
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hadijat M. Makinde
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Miranda G. Gurra
- Division of Biostatistics, Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Cecilia H. Stumpf
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Arjun Kharel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gaurav Gadhvi
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Deborah R. Winter
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Carla M. Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeremy A. Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Mariniello A, Nasti TH, Chang DY, Hashimoto M, Malik S, McManus DT, Lee J, McGuire DJ, Cardenas MA, Umana P, Nicolini V, Antia R, Saha A, Buchwald Z, Kissick H, Ghorani E, Novello S, Sangiolo D, Scagliotti GV, Ramalingam SS, Ahmed R. Platinum-Based Chemotherapy Attenuates the Effector Response of CD8 T Cells to Concomitant PD-1 Blockade. Clin Cancer Res 2024; 30:1833-1845. [PMID: 37992307 PMCID: PMC11061601 DOI: 10.1158/1078-0432.ccr-23-1316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE Combination of chemotherapy with programmed cell death 1 (PD-1) blockade is a front-line treatment for lung cancer. However, it remains unknown whether and how chemotherapy affects the response of exhausted CD8 T cells to PD-1 blockade. EXPERIMENTAL DESIGN We used the well-established mouse model of T-cell exhaustion with chronic lymphocytic choriomeningitis virus (LCMV) infection to assess the effect of chemotherapy (cisplatin+pemetrexed) on T-cell response to PD-1 blockade, in the absence of the impact of chemotherapy on antigen release and presentation observed in tumor models. RESULTS When concomitantly administered with PD-1 blockade, chemotherapy affected the differentiation path of LCMV-specific CD8 T cells from stem-like to transitory effector cells, thereby reducing their expansion and production of IFNγ. After combination treatment, these restrained effector responses resulted in impaired viral control, compared with PD-1 blockade alone. The sequential combination strategy, where PD-1 blockade followed chemotherapy, proved to be superior to the concomitant combination, preserving the proliferative response of exhausted CD8 T cells to PD-1 blockade. Our findings suggest that the stem-like CD8 T cells themselves are relatively unaffected by chemotherapy partly because they are quiescent and maintained by slow self-renewal at the steady state. However, upon the proliferative burst mediated by PD-1 blockade, the accelerated differentiation and self-renewal of stem-like cells may be curbed by concomitant chemotherapy, ultimately resulting in impaired overall CD8 T-cell effector functions. CONCLUSIONS In a translational context, we provide a proof-of-concept to consider optimizing the timing of chemo-immunotherapy strategies for improved CD8 T-cell functions. See related commentary by Vignali and Luke, p. 1705.
Collapse
Affiliation(s)
- Annapaola Mariniello
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Department of Oncology, University of Torino, Turin, Italy
- Winship Cancer Institute, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Tahseen H. Nasti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| | - Daniel Y. Chang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| | - Masao Hashimoto
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| | - Sakshi Malik
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| | - Daniel T. McManus
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| | - Judong Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| | - Donald J. McGuire
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| | - Maria A. Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia
| | - Pablo Umana
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Valeria Nicolini
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia
| | - Ananya Saha
- Department of Biology, Emory University, Atlanta, Georgia
| | - Zachary Buchwald
- Winship Cancer Institute, Winship Cancer Institute of Emory University, Atlanta, Georgia
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Hayden Kissick
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Winship Cancer Institute of Emory University, Atlanta, Georgia
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia
| | - Ehsan Ghorani
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Cancer Immunology and Immunotherapy Unit, Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| | - Silvia Novello
- Department of Oncology, University of Torino, Turin, Italy
| | - Dario Sangiolo
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Suresh S. Ramalingam
- Winship Cancer Institute, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Winship Cancer Institute of Emory University, Atlanta, Georgia
| |
Collapse
|
9
|
Khan AM, Steffensen MA, Paskeviciute E, Abduljabar AB, Sørensen TL, Vorum H, Nissen MH, Honoré B. Neuroretinal degeneration in a mouse model of systemic chronic immune activation observed by proteomics. Front Immunol 2024; 15:1374617. [PMID: 38665911 PMCID: PMC11043527 DOI: 10.3389/fimmu.2024.1374617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Blindness or vision loss due to neuroretinal and photoreceptor degeneration affects millions of individuals worldwide. In numerous neurodegenerative diseases, including age-related macular degeneration, dysregulated immune response-mediated retinal degeneration has been found to play a critical role in the disease pathogenesis. To better understand the pathogenic mechanisms underlying the retinal degeneration, we used a mouse model of systemic immune activation where we infected mice with lymphocytic choriomeningitis virus (LCMV) clone 13. Here, we evaluated the effects of LCMV infection and present a comprehensive discovery-based proteomic investigation using tandem mass tag (TMT) labeling and high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in protein regulation in the posterior part of the eye, neuroretina, and RPE/choroid were compared to those in the spleen as a secondary lymphoid organ and to the kidney as a non-lymphoid but encapsulated organ at 1, 8, and 28 weeks of infection. Using bioinformatic tools, we found several proteins responsible for maintaining normal tissue homeostasis to be differentially regulated in the neuroretina and the RPE/choroid during the degenerative process. Additionally, in the organs we observed, several important protein pathways contributing to cellular homeostasis and tissue development were perturbed and associated with LCMV-mediated inflammation, promoting disease progression. Our findings suggest that the response to a systemic chronic infection differs between the neuroretina and the RPE/choroid, and the processes induced by chronic systemic infection in the RPE/choroid are not unlike those induced in non-immune-privileged organs such as the kidney and spleen. Overall, our data provide detailed insight into several molecular mechanisms of neuroretinal degeneration and highlight various novel protein pathways that further suggest that the posterior part of the eye is not an isolated immunological entity despite the existence of neuroretinal immune privilege.
Collapse
Affiliation(s)
| | | | - Egle Paskeviciute
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Torben Lykke Sørensen
- Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Mogens Holst Nissen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
10
|
Greene TT, Jo Y, Macal M, Fang Z, Khatri FS, Codrington AL, Kazane KR, Chiale C, Akbulut E, Swaminathan S, Fujita Y, Fitzgerald-Bocarsly P, Cordes T, Metallo C, Scott DA, Zuniga EI. Metabolic Deficiencies Underlie Plasmacytoid Dendritic Cell Exhaustion After Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582551. [PMID: 38464328 PMCID: PMC10925345 DOI: 10.1101/2024.02.28.582551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Type I Interferons (IFN-I) are central to host protection against viral infections 1 . While any cell can produce IFN-I, Plasmacytoid Dendritic Cells (pDCs) make greater quantities and more varieties of these cytokines than any other cell type 2 . However, following an initial burst of IFN- I, pDCs lose their exceptional IFN-I production capacity and become "exhausted", a phenotype that associates with enhanced susceptibility to secondary infections 3-5 . Despite this apparent cost for the host, pDC exhaustion is conserved across multiple species and viral infections, but the underlying mechanisms and the potential evolutionary advantages are not well understood. Here we characterize pDC exhaustion and demonstrate that it is associated with a reduced capacity of pDCs to engage both oxidative and glycolytic metabolism. Mechanistically, we identify lactate dehydrogenase B (LDHB) as a novel positive regulator of pDC IFN-I production in mice and humans, show that LDHB deficiency is associated with suppressed IFN-I production, pDC metabolic capacity, and viral control following a viral infection, and demonstrate that preservation of LDHB expression is sufficient to partially restore exhausted pDC function in vitro and in vivo . Furthermore, restoring LDHB in vivo in exhausted pDCs increased IFNAR dependent infection- associated pathology. Therefore, our work identifies a novel and conserved mechanism for balancing immunity and pathology during viral infections, while also providing insight into the highly preserved but previously unexplained phenomenon of pDC exhaustion.
Collapse
|
11
|
Orozco RC, Marquardt K, Pratumchai I, Shaikh AF, Mowen K, Domissy A, Teijaro JR, Sherman LA. Autoimmunity-associated allele of tyrosine phosphatase gene PTPN22 enhances anti-viral immunity. PLoS Pathog 2024; 20:e1012095. [PMID: 38512979 PMCID: PMC10987006 DOI: 10.1371/journal.ppat.1012095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/02/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
The 1858C>T allele of the tyrosine phosphatase PTPN22 is present in 5-10% of the North American population and is strongly associated with numerous autoimmune diseases. Although research has been done to define how this allele potentiates autoimmunity, the influence PTPN22 and its pro-autoimmune allele has in anti-viral immunity remains poorly defined. Here, we use single cell RNA-sequencing and functional studies to interrogate the impact of this pro-autoimmune allele on anti-viral immunity during Lymphocytic Choriomeningitis Virus clone 13 (LCMV-cl13) infection. Mice homozygous for this allele (PEP-619WW) clear the LCMV-cl13 virus whereas wildtype (PEP-WT) mice cannot. This is associated with enhanced anti-viral CD4 T cell responses and a more immunostimulatory CD8α- cDC phenotype. Adoptive transfer studies demonstrated that PEP-619WW enhanced anti-viral CD4 T cell function through virus-specific CD4 T cell intrinsic and extrinsic mechanisms. Taken together, our data show that the pro-autoimmune allele of Ptpn22 drives a beneficial anti-viral immune response thereby preventing what is normally a chronic virus infection.
Collapse
Affiliation(s)
- Robin C. Orozco
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kristi Marquardt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Isaraphorn Pratumchai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Anam Fatima Shaikh
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kerri Mowen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Alain Domissy
- Genomics Core, Scripps Research, La Jolla, California, United States of America
| | - John R. Teijaro
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Linda A. Sherman
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| |
Collapse
|
12
|
Maymí VI, Zhu H, Jager M, Johnson S, Getchell R, Casey JW, Grenier JK, Wherry EJ, Smith NL, Grimson A, Rudd BD. Neonatal CD8+ T Cells Resist Exhaustion during Chronic Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:834-843. [PMID: 38231127 PMCID: PMC11298781 DOI: 10.4049/jimmunol.2300396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
Chronic viral infections, such as HIV and hepatitis C virus, represent a major public health problem. Although it is well understood that neonates and adults respond differently to chronic viral infections, the underlying mechanisms remain unknown. In this study, we transferred neonatal and adult CD8+ T cells into a mouse model of chronic infection (lymphocytic choriomeningitis virus clone 13) and dissected out the key cell-intrinsic differences that alter their ability to protect the host. Interestingly, we found that neonatal CD8+ T cells preferentially became effector cells early in chronic infection compared with adult CD8+ T cells and expressed higher levels of genes associated with cell migration and effector cell differentiation. During the chronic phase of infection, the neonatal cells retained more immune functionality and expressed lower levels of surface markers and genes related to exhaustion. Because the neonatal cells protect from viral replication early in chronic infection, the altered differentiation trajectories of neonatal and adult CD8+ T cells is functionally significant. Together, our work demonstrates how cell-intrinsic differences between neonatal and adult CD8+ T cells influence key cell fate decisions during chronic infection.
Collapse
Affiliation(s)
- Viviana I. Maymí
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Hongya Zhu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mason Jager
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shawn Johnson
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Rodman Getchell
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - James W. Casey
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jennifer K. Grenier
- Transcriptional Regulation and Expression Facility, Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - E. John Wherry
- Institute for Immunology and Immune Health, and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Norah L. Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Spiteri AG, Suprunenko T, Cutts E, Suen A, Ashhurst TM, Viengkhou B, King NJC, Hofer MJ. CD8 + T Cells Mediate Lethal Lung Pathology in the Absence of PD-L1 and Type I Interferon Signalling following LCMV Infection. Viruses 2024; 16:390. [PMID: 38543756 PMCID: PMC10975266 DOI: 10.3390/v16030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 05/23/2024] Open
Abstract
CD8+ T cells are critical to the adaptive immune response against viral pathogens. However, overwhelming antigen exposure can result in their exhaustion, characterised by reduced effector function, failure to clear virus, and the upregulation of inhibitory receptors, including programmed cell death 1 (PD-1). However, exhausted T cell responses can be "re-invigorated" by inhibiting PD-1 or the primary ligand of PD-1: PD-L1. Further, the absence of the type I interferon receptor IFNAR1 also results in T cell exhaustion and virus persistence in lymphocytic choriomeningitis virus Armstrong (LCMV-Arm)-infected mice. In this study, utilizing single- and double-knockout mice, we aimed to determine whether ablation of PD-1 could restore T cell functionality in the absence of IFNAR1 signalling in LCMV-Arm-infected mice. Surprisingly, this did not re-invigorate the T cell response and instead, it converted chronic LCMV-Arm infection into a lethal disease characterized by severe lung inflammation with an infiltration of neutrophils and T cells. Depletion of CD8+ T cells, but not neutrophils, rescued mice from lethal disease, demonstrating that IFNAR1 is required to prevent T cell exhaustion and virus persistence in LCMV-Arm infection, and in the absence of IFNAR1, PD-L1 is required for survival. This reveals an important interplay between IFNAR1 and PD-L1 with implications for therapeutics targeting these pathways.
Collapse
Affiliation(s)
- Alanna G. Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Tamara Suprunenko
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Erin Cutts
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Andrew Suen
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Thomas M. Ashhurst
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW 2050, Australia
| | - Barney Viengkhou
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Nicholas J. C. King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW 2050, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2050, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Markus J. Hofer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2050, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
14
|
Song M, Liu X, Shen W, Wang Z, Wu J, Jiang J, Liu Y, Xu T, Bian T, Zhang M, Sun W, Huang M, Ji N. IFN-γ decreases PD-1 in T lymphocytes from convalescent COVID-19 patients via the AKT/GSK3β signaling pathway. Sci Rep 2024; 14:5038. [PMID: 38424104 PMCID: PMC10904811 DOI: 10.1038/s41598-024-55191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Post-COVID-19 syndrome may be associated with the abnormal immune status. Compared with the unexposed age-matched elder group, PD-1 in the CD8+ T cells from recovered COVID-19 patients was significantly lower. IFN-γ in the plasma of COVID-19 convalescent patients was increased, which inhibited PD-1 expression in CD8+ T cells from COVID-19 convalescent patients. scRNA-seq bioinformatics analysis revealed that AKT/GSK3β may regulate the INF-γ/PD-1 axis in CD8+ T cells from COVID-19 convalescent patients. In parallel, an IFN-γ neutralizing antibody reduced AKT and increased GSK3β in PBMCs. An AKT agonist (SC79) significantly decreased p-GSK3β. Moreover, AKT decreased PD-1 on CD8+ T cells, and GSK3β increased PD-1 on CD8+ T cells according to flow cytometry analysis. Collectively, we demonstrated that recovered COVID-19 patients may develop long COVID. Increased IFN-γ in the plasma of recovered Wuhan COVID-19 patients contributed to PD-1 downregulation on CD8+ T cells by regulating the AKT/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Meijuan Song
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Xiangqun Liu
- Department of Respiratory and Critical Care Medicine, The Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Weiyu Shen
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Yanan Liu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Tao Bian
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Xishan People's Hospital of Wuxi City, Wuxi, China.
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China.
| |
Collapse
|
15
|
Sun W, Hughes EP, Kim H, Perovanovic J, Charley KR, Perkins B, Du J, Ibarra A, Syage AR, Hale JS, Williams MA, Tantin D. OCA-B/Pou2af1 is sufficient to promote CD4 + T cell memory and prospectively identifies memory precursors. Proc Natl Acad Sci U S A 2024; 121:e2309153121. [PMID: 38386711 PMCID: PMC10907311 DOI: 10.1073/pnas.2309153121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
The molecular mechanisms leading to the establishment of immunological memory are inadequately understood, limiting the development of effective vaccines and durable antitumor immune therapies. Here, we show that ectopic OCA-B expression is sufficient to improve antiviral memory recall responses, while having minimal effects on primary effector responses. At peak viral response, short-lived effector T cell populations are expanded but show increased Gadd45b and Socs2 expression, while memory precursor effector cells show increased expression of Bcl2, Il7r, and Tcf7 on a per-cell basis. Using an OCA-B mCherry reporter mouse line, we observe high OCA-B expression in CD4+ central memory T cells. We show that early in viral infection, endogenously elevated OCA-B expression prospectively identifies memory precursor cells with increased survival capability and memory recall potential. Cumulatively, the results demonstrate that OCA-B is both necessary and sufficient to promote CD4 T cell memory in vivo and can be used to prospectively identify memory precursor cells.
Collapse
Affiliation(s)
- Wenxiang Sun
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Erik P. Hughes
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Heejoo Kim
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Jelena Perovanovic
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Krystal R. Charley
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Bryant Perkins
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Junhong Du
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Andrea Ibarra
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Amber R. Syage
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT84112
| | - J. Scott Hale
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Matthew A. Williams
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT84112
| |
Collapse
|
16
|
Charley KR, Ramstead AG, Matous JG, Kumaki Y, Sircy LM, Hale JS, Williams MA. Effector-Phase IL-2 Signals Drive Th1 Effector and Memory Responses Dependently and Independently of TCF-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:586-595. [PMID: 38149929 PMCID: PMC10872735 DOI: 10.4049/jimmunol.2300570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Following viral infection, CD4+ T cell differentiation is tightly regulated by cytokines and TCR signals. Although most activated CD4+ T cells express IL-2Rα after lymphocytic choriomeningtis virus infection, by day 3 postinfection, only half of activated T cells maintain expression. IL-2Rα at this time point distinguishes precursors for terminally differentiated Th1 cells (IL-2Rαhi) from precursors for Tfh cells and memory T cells (IL-2Rαlo) and is linked to strong TCR signals. In this study, we test whether TCR-dependent IL-2 links the TCR to CD4+ T cell differentiation. We employ a mixture of anti-IL-2 Abs to neutralize IL-2 throughout the primary CD4+ T cell response to lymphocytic choriomeningitis virus infection in mice or only after the establishment of lineage-committed effector cells (day 3 postinfection). We report that IL-2 signals drive the formation of Th1 precursor cells in the early stages of the immune response and sustain Th1 responses during its later stages (after day 3). Effector-stage IL-2 also shapes the composition and function of resulting CD4+ memory T cells. Although IL-2 has been shown previously to drive Th1 differentiation by reducing the activity of the transcriptional repressor TCF-1, we found that sustained IL-2 signals were still required to drive optimal Th1 differentiation even in the absence of TCF-1. Therefore, we concluded that IL-2 plays a central role throughout the effector phase in regulating the balance between Th1 and Tfh effector and memory cells via mechanisms that are both dependent and independent of its role in modulating TCF-1 activity.
Collapse
Affiliation(s)
- Krystal R. Charley
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| | - Andrew G. Ramstead
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| | - Joseph G. Matous
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| | - Yohichi Kumaki
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| | - Linda M. Sircy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - J. Scott Hale
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Matthew A. Williams
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| |
Collapse
|
17
|
McManus DT, Valanparambil RM, Medina CB, Hu Y, Scharer CD, Sobierajska E, Chang DY, Wieland A, Lee J, Nasti TH, Hashimoto M, Ross JL, Prokhnevska N, Cardenas MA, Gill AL, Clark EC, Abadie K, Kueh HY, Kaye J, Au-Yeung BB, Kissick HT, Ahmed R. Early generation of a precursor CD8 T cell that can adapt to acute or chronic viral infection. RESEARCH SQUARE 2024:rs.3.rs-3922168. [PMID: 38410458 PMCID: PMC10896375 DOI: 10.21203/rs.3.rs-3922168/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Virus specific PD-1+ TCF-1+ TOX+ stem-like CD8+ T cells are essential for maintaining T cell responses during chronic infection and are also critical for PD-1 directed immunotherapy. In this study we have used the mouse model of chronic LCMV infection to examine when these virus specific stem-like CD8+ T cells are generated during the course of chronic infection and what is the role of antigen in maintaining the stem-like program. We found that these stem-like CD8+ T cells are generated early (day 5) during chronic infection and that antigen is essential for maintaining their stem-like program. This early generation of stem-like CD8+ T cells suggested that the fate commitment to this cell population was agnostic to the eventual outcome of infection and the immune system prepares a priori for a potential chronic infection. Indeed, we found that an identical virus specific stem-cell like CD8+ T cell population was also generated during acute LCMV infection but these cells were lost once the virus was cleared. To determine the fate of these early PD-1+TCF-1+TOX+ stem-like CD8+ T cells that are generated during both acute and chronic LCMV infection we set up two reciprocal adoptive transfer experiments. In the first experiment we transferred day 5 stem-like CD8+ T cells from chronically infected into acutely infected mice and examined their differentiation after viral clearance. We found that these early stem-like CD8+ T cells downregulated canonical markers of the chronic stem-like CD8+ T cells and expressed markers (CD127 and CD62L) associated with central memory CD8+ T cells. In the second experiment, we transferred day 5 stem-like cells from acutely infected mice into chronically infected mice and found that these CD8+ T cells could function like resource cells after transfer into a chronic environment by generating effector CD8+ T cells in both lymphoid and non-lymphoid tissues while also maintaining the number of stem-like CD8+ T cells. These findings provide insight into the generation and maintenance of virus specific stem-like CD8+ T cells that play a critical role in chronic viral infection. In particular, our study highlights the early generation of stem-like CD8+ T cells and their ability to adapt to either an acute or chronic infection. These findings are of broad significance since these novel stem-like CD8+ T cells play an important role in not only viral infections but also in cancer and autoimmunity.
Collapse
Affiliation(s)
- Daniel T. McManus
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- These authors contributed equally
| | - Rajesh M. Valanparambil
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- These authors contributed equally
| | - Christopher B. Medina
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yinghong Hu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ewelina Sobierajska
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel Y. Chang
- Department of Pathology, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, OH
| | - Judong Lee
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tahseen H. Nasti
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Masao Hashimoto
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - James L. Ross
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nataliya Prokhnevska
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria A. Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda L. Gill
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Elisa C. Clark
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Kathleen Abadie
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jonathan Kaye
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Byron B. Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA
| | - Haydn T. Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
18
|
Eggert J, Zinzow-Kramer WM, Hu Y, Kolawole EM, Tsai YL, Weiss A, Evavold BD, Salaita K, Scharer CD, Au-Yeung BB. Cbl-b mitigates the responsiveness of naive CD8 + T cells that experience extensive tonic T cell receptor signaling. Sci Signal 2024; 17:eadh0439. [PMID: 38319998 PMCID: PMC10897907 DOI: 10.1126/scisignal.adh0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Naive T cells experience tonic T cell receptor (TCR) signaling in response to self-antigens presented by major histocompatibility complex (MHC) in secondary lymphoid organs. We investigated how relatively weak or strong tonic TCR signals influence naive CD8+ T cell responses to stimulation with foreign antigens. The heterogeneous expression of Nur77-GFP, a transgenic reporter of tonic TCR signaling, in naive CD8+ T cells suggests variable intensities or durations of tonic TCR signaling. Although the expression of genes associated with acutely stimulated T cells was increased in Nur77-GFPHI cells, these cells were hyporesponsive to agonist TCR stimulation compared with Nur77-GFPLO cells. This hyporesponsiveness manifested as diminished activation marker expression and decreased secretion of IFN-γ and IL-2. The protein abundance of the ubiquitin ligase Cbl-b, a negative regulator of TCR signaling, was greater in Nur77-GFPHI cells than in Nur77-GFPLO cells, and Cbl-b deficiency partially restored the responsiveness of Nur77-GFPHI cells. Our data suggest that the cumulative effects of previously experienced tonic TCR signaling recalibrate naive CD8+ T cell responsiveness. These changes include gene expression changes and negative regulation partially dependent on Cbl-b. This cell-intrinsic negative feedback loop may enable the immune system to restrain naive CD8+ T cells with higher self-reactivity.
Collapse
Affiliation(s)
- Joel Eggert
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University; Atlanta, 30322, USA
| | - Wendy M. Zinzow-Kramer
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University; Atlanta, 30322, USA
| | - Yuesong Hu
- Department of Chemistry, Emory University; Atlanta, 30322, USA
| | - Elizabeth M. Kolawole
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, 84112, USA
| | - Yuan-Li Tsai
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Departments of Medicine and of Microbiology and Immunology, University of California, San Francisco; San Francisco, 94143, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Departments of Medicine and of Microbiology and Immunology, University of California, San Francisco; San Francisco, 94143, USA
| | - Brian D. Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, 84112, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University; Atlanta, 30322, USA
| | | | - Byron B. Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University; Atlanta, 30322, USA
| |
Collapse
|
19
|
Manandhar P, Szymczak-Workman AL, Kane LP. Tim-3 Is Not Required for Establishment of CD8+ T Cell Memory to Lymphocytic Choriomeningitis Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:466-474. [PMID: 38108417 PMCID: PMC10906969 DOI: 10.4049/jimmunol.2300401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Tim-3 is a transmembrane protein that is best known for being highly expressed on terminally exhausted CD8+ T cells associated with chronic infection and tumors, although its expression is not limited to those settings. Tim-3 is also expressed by CD8+ T cells during acute infection and by multiple other immune cell types, including CD4+ Th1 and regulatory T cells, dendritic cells, and mast cells. In this study, we investigated the role of Tim-3 signaling on CD8+ T cell memory using a Tim-3 conditional knockout mouse model and mice lacking the signaling portion of the Tim-3 cytoplasmic domain. Together, our results indicate that Tim-3 has at most a modest effect on the formation and function of CD8+ memory T cells.
Collapse
Affiliation(s)
- Priyanka Manandhar
- Dept. of Immunology, University of Pittsburgh, Pittsburgh, PA 15213
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Lawrence P. Kane
- Dept. of Immunology, University of Pittsburgh, Pittsburgh, PA 15213
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
20
|
Jamaleddine H, Rogers D, Perreault G, Postat J, Patel D, Mandl JN, Khadra A. Chronic infection control relies on T cells with lower foreign antigen binding strength generated by N-nucleotide diversity. PLoS Biol 2024; 22:e3002465. [PMID: 38300945 PMCID: PMC10833529 DOI: 10.1371/journal.pbio.3002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024] Open
Abstract
The breadth of pathogens to which T cells can respond is determined by the T cell receptors (TCRs) present in an individual's repertoire. Although more than 90% of the sequence diversity among TCRs is generated by terminal deoxynucleotidyl transferase (TdT)-mediated N-nucleotide addition during V(D)J recombination, the benefit of TdT-altered TCRs remains unclear. Here, we computationally and experimentally investigated whether TCRs with higher N-nucleotide diversity via TdT make distinct contributions to acute or chronic pathogen control specifically through the inclusion of TCRs with lower antigen binding strengths (i.e., lower reactivity to peptide-major histocompatibility complex (pMHC)). When T cells with high pMHC reactivity have a greater propensity to become functionally exhausted than those of low pMHC reactivity, our computational model predicts a shift toward T cells with low pMHC reactivity over time during chronic, but not acute, infections. This TCR-affinity shift is critical, as the elimination of T cells with lower pMHC reactivity in silico substantially increased the time to clear a chronic infection, while acute infection control remained largely unchanged. Corroborating an affinity-centric benefit for TCR diversification via TdT, we found evidence that TdT-deficient TCR repertoires possess fewer T cells with weaker pMHC binding strengths in vivo and showed that TdT-deficient mice infected with a chronic, but not an acute, viral pathogen led to protracted viral clearance. In contrast, in the case of a chronic fungal pathogen where T cells fail to clear the infection, both our computational model and experimental data showed that TdT-diversified TCR repertoires conferred no additional protection to the hosts. Taken together, our in silico and in vivo data suggest that TdT-mediated TCR diversity is of particular benefit for the eventual resolution of prolonged pathogen replication through the inclusion of TCRs with lower foreign antigen binding strengths.
Collapse
Affiliation(s)
| | - Dakota Rogers
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Geneviève Perreault
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Jérémy Postat
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Dhanesh Patel
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Judith N. Mandl
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
van der Heide V, Davenport B, Cubitt B, Roudko V, Choo D, Humblin E, Jhun K, Angeliadis K, Dawson T, Furtado G, Kamphorst A, Ahmed R, de la Torre JC, Homann D. Functional impairment of "helpless" CD8 + memory T cells is transient and driven by prolonged but finite cognate antigen presentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576725. [PMID: 38328184 PMCID: PMC10849538 DOI: 10.1101/2024.01.22.576725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Generation of functional CD8 + T cell memory typically requires engagement of CD4 + T cells. However, in certain scenarios, such as acutely-resolving viral infections, effector (T E ) and subsequent memory (T M ) CD8 + T cell formation appear impervious to a lack of CD4 + T cell help during priming. Nonetheless, such "helpless" CD8 + T M respond poorly to pathogen rechallenge. At present, the origin and long-term evolution of helpless CD8 + T cell memory remain incompletely understood. Here, we demonstrate that helpless CD8 + T E differentiation is largely normal but a multiplicity of helpless CD8 T M defects, consistent with impaired memory maturation, emerge as a consequence of prolonged yet finite exposure to cognate antigen. Importantly, these defects resolve over time leading to full restoration of CD8 + T M potential and recall capacity. Our findings provide a unified explanation for helpless CD8 + T cell memory and emphasize an unexpected CD8 + T M plasticity with implications for vaccination strategies and beyond.
Collapse
|
22
|
Middelburg J, Sluijter M, Schaap G, Göynük B, Lloyd K, Ovcinnikovs V, Zom GG, Marijnissen RJ, Groeneveldt C, Griffioen L, Sandker GGW, Heskamp S, van der Burg SH, Arakelian T, Ossendorp F, Arens R, Schuurman J, Kemper K, van Hall T. T-cell stimulating vaccines empower CD3 bispecific antibody therapy in solid tumors. Nat Commun 2024; 15:48. [PMID: 38167722 PMCID: PMC10761684 DOI: 10.1038/s41467-023-44308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
CD3 bispecific antibody (CD3 bsAb) therapy is clinically approved for refractory hematological malignancies, but responses in solid tumors have been limited so far. One of the main hurdles in solid tumors is the lack of sufficient T-cell infiltrate. Here, we show that pre-treatment vaccination, even when composed of tumor-unrelated antigens, induces CXCR3-mediated T-cell influx in immunologically 'cold' tumor models in male mice. In the absence of CD3 bsAb, the infiltrate is confined to the tumor invasive margin, whereas subsequent CD3 bsAb administration induces infiltration of activated effector CD8 T cells into the tumor cell nests. This combination therapy installs a broadly inflamed Th1-type tumor microenvironment, resulting in effective tumor eradication. Multiple vaccination formulations, including synthetic long peptides and viruses, empower CD3 bsAb therapy. Our results imply that eliciting tumor infiltration with vaccine-induced tumor-(un)related T cells can greatly improve the efficacy of CD3 bsAbs in solid tumors.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Gaby Schaap
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Büşra Göynük
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | - Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Lisa Griffioen
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerwin G W Sandker
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Tsolere Arakelian
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
23
|
Neyens D, Hirsch T, Abdel Aziz Issa Abdel Hadi A, Dauguet N, Vanhaver C, Bayard A, Wildmann C, Luyckx M, Squifflet JL, D’Hondt Q, Duhamel C, Huaux A, Montiel V, Dechamps M, van der Bruggen P. HELIOS-expressing human CD8 T cells exhibit limited effector functions. Front Immunol 2023; 14:1308539. [PMID: 38187391 PMCID: PMC10770868 DOI: 10.3389/fimmu.2023.1308539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/15/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The transcription factor HELIOS is primarily known for its expression in CD4 regulatory T cells, both in humans and mice. In mice, HELIOS is found in exhausted CD8 T cells. However, information on human HELIOS+ CD8 T cells is limited and conflicting. Methods In this study, we characterized by flow cytometry and transcriptomic analyses human HELIOS+ CD8 T cells. Results These T cells primarily consist of memory cells and constitute approximately 21% of blood CD8 T cells. In comparison with memory HELIOS- T-BEThigh CD8 T cells that displayed robust effector functions, the memory HELIOS+ T-BEThigh CD8 T cells produce lower amounts of IFN-γ and TNF-α and have a lower cytotoxic potential. We wondered if these cells participate in the immune response against viral antigens, but did not find HELIOS+ cells among CD8 T cells recognizing CMV peptides presented by HLA-A2 and HLA-B7. However, we found HELIOS+ CD8 T cells that recognize a CMV peptide presented by MHC class Ib molecule HLA-E. Additionally, a portion of HELIOS+ CD8 T cells is characterized by the expression of CD161, often used as a surface marker for identifying TC17 cells. These CD8 T cells express TH17/TC17-related genes encoding RORgt, RORa, PLZF, and CCL20. Discussion Our findings emphasize that HELIOS is expressed across various CD8 T cell populations, highlighting its significance beyond its role as a transcription factor for Treg or exhausted murine CD8 T cells. The significance of the connection between HELIOS and HLA-E restriction is yet to be understood.
Collapse
Affiliation(s)
- Damien Neyens
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Thibault Hirsch
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Nicolas Dauguet
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Alexandre Bayard
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Claude Wildmann
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Mathieu Luyckx
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Département de gynécologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Luc Squifflet
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Département de gynécologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Quentin D’Hondt
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Céline Duhamel
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Antoine Huaux
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Virginie Montiel
- Unité de soins intensifs, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Mélanie Dechamps
- Unité de soins intensifs, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre van der Bruggen
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
24
|
Casella V, Domenjo-Vila E, Esteve-Codina A, Pedragosa M, Cebollada Rica P, Vidal E, de la Rubia I, López-Rodríguez C, Bocharov G, Argilaguet J, Meyerhans A. Differential kinetics of splenic CD169+ macrophage death is one underlying cause of virus infection fate regulation. Cell Death Dis 2023; 14:838. [PMID: 38110339 PMCID: PMC10728219 DOI: 10.1038/s41419-023-06374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Acute infection and chronic infection are the two most common fates of pathogenic virus infections. While several factors that contribute to these fates are described, the critical control points and the mechanisms that underlie infection fate regulation are incompletely understood. Using the acute and chronic lymphocytic choriomeningitis virus (LCMV) infection model of mice, we find that the early dynamic pattern of the IFN-I response is a differentiating trait between both infection fates. Acute-infected mice generate a 2-wave IFN-I response while chronic-infected mice generate only a 1-wave response. The underlying cause is a temporal difference in CD8 T cell-mediated killing of splenic marginal zone CD169+ macrophages. It occurs later in acute infection and thus enables CD169+ marginal zone macrophages to produce the 2nd IFN-I wave. This is required for subsequent immune events including induction of inflammatory macrophages, generation of effector CD8+ T cells and virus clearance. Importantly, these benefits come at a cost for the host in the form of spleen fibrosis. Due to an earlier marginal zone destruction, these ordered immune events are deregulated in chronic infection. Our findings demonstrate the critical importance of kinetically well-coordinated sequential immune events for acute infection control and highlights that it may come at a cost for the host organism.
Collapse
Affiliation(s)
- Valentina Casella
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Eva Domenjo-Vila
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Mireia Pedragosa
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Paula Cebollada Rica
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Enric Vidal
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Ivan de la Rubia
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- EMBL Australia Partner Laboratory Network at the Australian National University, Acton, Canberra, ACT, 2601, Australia
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
- Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Jordi Argilaguet
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003, Barcelona, Spain.
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain.
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
25
|
Löw K, Möller R, Stegmann C, Becker M, Rehburg L, Obernolte H, Schaudien D, Oestereich L, Braun A, Kunz S, Gerold G. Luminescent reporter cells enable the identification of broad-spectrum antivirals against emerging viruses. J Med Virol 2023; 95:e29211. [PMID: 37975336 DOI: 10.1002/jmv.29211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 11/19/2023]
Abstract
The emerging viruses SARS-CoV-2 and arenaviruses cause severe respiratory and hemorrhagic diseases, respectively. The production of infectious particles of both viruses and virus spread in tissues requires cleavage of surface glycoproteins (GPs) by host proprotein convertases (PCs). SARS-CoV-2 and arenaviruses rely on GP cleavage by PCs furin and subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P), respectively. We report improved luciferase-based reporter cell lines, named luminescent inducible proprotein convertase reporter cells that we employ to monitor PC activity in its authentic subcellular compartment. Using these sensor lines we screened a small compound library in high-throughput manner. We identified 23 FDA-approved small molecules, among them monensin which displayed broad activity against furin and SKI-1/S1P. Monensin inhibited arenaviruses and SARS-CoV-2 in a dose-dependent manner. We observed a strong reduction in infectious particle release upon monensin treatment with little effect on released genome copies. This was reflected by inhibition of SARS-CoV-2 spike processing suggesting the release of immature particles. In a proof of concept experiment using human precision cut lung slices, monensin potently inhibited SARS-CoV-2 infection, evidenced by reduced infectious particle release. We propose that our PC sensor pipeline is a suitable tool to identify broad-spectrum antivirals with therapeutic potential to combat current and future emerging viruses.
Collapse
Affiliation(s)
- Karin Löw
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Rebecca Möller
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Cora Stegmann
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Miriam Becker
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Laura Rehburg
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, (CIMD), Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) Research Network, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, (CIMD), Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) Research Network, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Lisa Oestereich
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infectious Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, (CIMD), Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) Research Network, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Stefan Kunz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Clinical Microbiology, Umeå University, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Sweden
| |
Collapse
|
26
|
Shahbaz S, Bozorgmehr N, Lu J, Osman M, Sligl W, Tyrrell DL, Elahi S. Analysis of SARS-CoV-2 isolates, namely the Wuhan strain, Delta variant, and Omicron variant, identifies differential immune profiles. Microbiol Spectr 2023; 11:e0125623. [PMID: 37676005 PMCID: PMC10581158 DOI: 10.1128/spectrum.01256-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
There is an urgent need to better understand the impact of different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on immune response and disease dynamics to facilitate better intervention strategies. Here, we show that SARS-CoV-2 variants differentially affect host immune responses. The magnitude and quantity of cytokines and chemokines were comparable in those infected with the Wuhan strain and the Delta variant. However, individuals infected with the Omicron variant had significantly lower levels of these mediators. We also found an elevation of plasma galectins (Gal-3, Gal-8, and Gal-9) in infected individuals, in particular, in those with the original strain. Soluble galectins exert a proinflammatory role in COVID-19 pathogenesis. This was illustrated by their correlation with the plasma levels of sCD14, sCD163, enhanced TNF-α/IL-6 secretion, and increased SARS-CoV-2 infectivity in vitro. Moreover, we observed enhanced CD4+ and CD8+ T cell activation in Wuhan strain-infected individuals. Surprisingly, there was a more pronounced T cell activation in those infected with the Omicron in comparison to the Delta variant. In line with T cell activation status, we observed a more pronounced expansion of T cells expressing different co-inhibitory receptors in patients infected with the Wuhan strain, followed by the Omicron and Delta variants. Individuals infected with the Wuhan strain or the Omicron variant had a similar pattern of plasma soluble immune checkpoints. Our results imply that a milder innate immune response might be beneficial and protective in those infected with the Omicron variant. Our results provide a novel insight into the differential impact of SARS-CoV-2 variants on host immunity. IMPORTANCE There is a need to better understand how different SARS-CoV-2 variants influence the immune system and disease dynamics to facilitate the development of better vaccines and therapies. We compared immune responses in 140 SARS-CoV-2-infected individuals with the Wuhan strain, the Delta variant, or the Omicron variant. All these patients were admitted to the intensive care unit and were SARS-CoV-2 vaccination naïve. We found that SARS-CoV-2 variants differentially affect the host immune response. This was done by measuring soluble biomarkers in their plasma and examining different immune cells. Overall, we found that the magnitude of cytokine storm in individuals infected with the Wuhan strain or the Delta variant was greater than in those infected with the Omicron variant. In light of enhanced cytokine release syndrome in individuals infected with the Wuhan strain or the Delta variant, we believe that a milder innate immune response might be beneficial and protective in those infected with the Omicron variant.
Collapse
Affiliation(s)
- Shima Shahbaz
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Najmeh Bozorgmehr
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Lu
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed Osman
- Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, Alberta, Canada
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - D. Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children Health Research Institute (WCHRI), University of Alberta, Edmonton, Alberta, Canada
- Glycomics Institute of Alberta, University of Alberta, Edmonton, Alberta, Canada
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Paskeviciute E, Chen M, Xu H, Honoré B, Vorum H, Sørensen TL, Christensen JP, Thomsen AR, Nissen MH, Steffensen MA. Systemic virus infection results in CD8 T cell recruitment to the retina in the absence of local virus infection. Front Immunol 2023; 14:1221511. [PMID: 37662932 PMCID: PMC10471971 DOI: 10.3389/fimmu.2023.1221511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
During recent years, evidence has emerged that immune privileged sites such as the CNS and the retina may be more integrated in the systemic response to infection than was previously believed. In line with this, it was recently shown that a systemic acute virus infection leads to infiltration of CD8 T cells in the brains of immunocompetent mice. In this study, we extend these findings to the neurological tissue of the eye, namely the retina. We show that an acute systemic virus infection in mice leads to a transient CD8 T cell infiltration in the retina that is not directed by virus infection inside the retina. CD8 T cells were found throughout the retinal tissue, and had a high expression of CXCR6 and CXCR3, as also reported for tissue residing CD8 T cells in the lung and liver. We also show that the pigment epithelium lining the retina expresses CXCL16 (the ligand for CXCR6) similar to epithelial cells of the lung. Thus, our results suggest that the retina undergoes immune surveillance during a systemic infection, and that this surveillance appears to be directed by mechanisms similar to those described for non-privileged tissues.
Collapse
Affiliation(s)
- Egle Paskeviciute
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University of Belfast, Belfast, Ireland
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University of Belfast, Belfast, Ireland
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Henrik Vorum
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Torben Lykke Sørensen
- Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mogens Holst Nissen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
28
|
Stachura P, Liu W, Xu HC, Wlodarczyk A, Stencel O, Pandey P, Vogt M, Bhatia S, Picard D, Remke M, Lang KS, Häussinger D, Homey B, Lang PA, Borkhardt A, Pandyra AA. Unleashing T cell anti-tumor immunity: new potential for 5-Nonloxytryptamine as an agent mediating MHC-I upregulation in tumors. Mol Cancer 2023; 22:136. [PMID: 37582744 PMCID: PMC10426104 DOI: 10.1186/s12943-023-01833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND New therapies are urgently needed in melanoma, particularly in late-stage patients not responsive to immunotherapies and kinase inhibitors. To uncover novel potentiators of T cell anti-tumor immunity, we carried out an ex vivo pharmacological screen and identified 5-Nonyloxytryptamine (5-NL), a serotonin agonist, as increasing the ability of T cells to target tumor cells. METHODS The pharmacological screen utilized lymphocytic choriomeningitis virus (LCMV)-primed splenic T cells and melanoma B16.F10 cells expressing the LCMV gp33 CTL epitope. In vivo tumor growth in C57BL/6 J and NSG mice, in vivo antibody depletion, flow cytometry, immunoblot, CRISPR/Cas9 knockout, histological and RNA-Seq analyses were used to decipher 5-NL's immunomodulatory effects in vitro and in vivo. RESULTS 5-NL delayed tumor growth in vivo and the phenotype was dependent on the hosts' immune system, specifically CD8+ T cells. 5-NL's pro-immune effects were not directly consequential to T cells. Rather, 5-NL upregulated antigen presenting machinery in melanoma and other tumor cells in vitro and in vivo without increasing PD-L1 expression. Mechanistic studies indicated that 5-NL's induced MHC-I expression was inhibited by pharmacologically preventing cAMP Response Element-Binding Protein (CREB) phosphorylation. Importantly, 5-NL combined with anti-PD1 therapy showed significant improvement when compared to single anti-PD-1 treatment. CONCLUSIONS This study demonstrates novel therapeutic opportunities for augmenting immune responses in poorly immunogenic tumors.
Collapse
Affiliation(s)
- Paweł Stachura
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Wei Liu
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Agnès Wlodarczyk
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Olivia Stencel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Piyush Pandey
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Melina Vogt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Partner Site Essen/Düsseldorf, German Consortium for Translational Cancer Research (DKTK), Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich-Heine University, Moorenstrasse 5, Düsseldorf, 40225, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Partner Site Essen/Düsseldorf, German Consortium for Translational Cancer Research (DKTK), Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich-Heine University, Moorenstrasse 5, Düsseldorf, 40225, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf, 40225, Germany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf, 40225, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
29
|
Humblin E, Korpas I, Lu J, Filipescu D, van der Heide V, Goldstein S, Vaidya A, Soares-Schanoski A, Casati B, Selvan ME, Gümüş ZH, Wieland A, Corrado M, Cohen-Gould L, Bernstein E, Homann D, Chipuk J, Kamphorst AO. Sustained CD28 costimulation is required for self-renewal and differentiation of TCF-1 + PD-1 + CD8 T cells. Sci Immunol 2023; 8:eadg0878. [PMID: 37624910 PMCID: PMC10805182 DOI: 10.1126/sciimmunol.adg0878] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
During persistent antigen stimulation, such as in chronic infections and cancer, CD8 T cells differentiate into a hypofunctional programmed death protein 1-positive (PD-1+) exhausted state. Exhausted CD8 T cell responses are maintained by precursors (Tpex) that express the transcription factor T cell factor 1 (TCF-1) and high levels of the costimulatory molecule CD28. Here, we demonstrate that sustained CD28 costimulation is required for maintenance of antiviral T cells during chronic infection. Low-level CD28 engagement preserved mitochondrial fitness and self-renewal of Tpex, whereas stronger CD28 signaling enhanced glycolysis and promoted Tpex differentiation into TCF-1neg exhausted CD8 T cells (Tex). Furthermore, enhanced differentiation by CD28 engagement did not reduce the Tpex pool. Together, these findings demonstrate that continuous CD28 engagement is needed to sustain PD-1+ CD8 T cells and suggest that increasing CD28 signaling promotes Tpex differentiation into more functional effector-like Tex, possibly without compromising long-term responses.
Collapse
Affiliation(s)
- Etienne Humblin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | - Isabel Korpas
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | - Jiahua Lu
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | - Dan Filipescu
- Department of Oncological Sciences, ISMMS; New York, NY 10029, USA
| | - Verena van der Heide
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | - Simon Goldstein
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | - Abishek Vaidya
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | - Alessandra Soares-Schanoski
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | - Beatrice Casati
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | | | - Zeynep H. Gümüş
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
- Department of Genetics and Genomics, ISMMS; New York, NY 10029, USA
| | - Andreas Wieland
- Department of Otolaryngology-Head and Neck Surgery and Pelotonia Institute for Immuno-Oncology, OSUCCC – James, The Ohio State University, Columbus, OH 43210, USA
| | - Mauro Corrado
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); Center for Molecular Medicine (CMMC) and Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Leona Cohen-Gould
- Department of Biochemistry, Weill Cornell Medical College; New York, NY 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, ISMMS; New York, NY 10029, USA
- Tisch Cancer Institute, ISMMS; New York, NY 10029, USA
| | - Dirk Homann
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
- Diabetes Obesity Metabolism Institute, ISMMS; New York, NY 10029, USA
| | - Jerry Chipuk
- Department of Oncological Sciences, ISMMS; New York, NY 10029, USA
- Tisch Cancer Institute, ISMMS; New York, NY 10029, USA
| | - Alice O. Kamphorst
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
- Department of Oncological Sciences, ISMMS; New York, NY 10029, USA
- Tisch Cancer Institute, ISMMS; New York, NY 10029, USA
| |
Collapse
|
30
|
Gräbnitz F, Stark D, Shlesinger D, Petkidis A, Borsa M, Yermanos A, Carr A, Barandun N, Wehling A, Balaz M, Schroeder T, Oxenius A. Asymmetric cell division safeguards memory CD8 T cell development. Cell Rep 2023; 42:112468. [PMID: 37178119 DOI: 10.1016/j.celrep.2023.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The strength of T cell receptor (TCR) stimulation and asymmetric distribution of fate determinants are both implied to affect T cell differentiation. Here, we uncover asymmetric cell division (ACD) as a safeguard mechanism for memory CD8 T cell generation specifically upon strong TCR stimulation. Using live imaging approaches, we find that strong TCR stimulation induces elevated ACD rates, and subsequent single-cell-derived colonies comprise both effector and memory precursor cells. The abundance of memory precursor cells emerging from a single activated T cell positively correlates with first mitosis ACD. Accordingly, preventing ACD by inhibition of protein kinase Cζ (PKCζ) during the first mitosis upon strong TCR stimulation markedly curtails the formation of memory precursor cells. Conversely, no effect of ACD on fate commitment is observed upon weak TCR stimulation. Our data provide relevant mechanistic insights into the role of ACD for CD8 T cell fate regulation upon different activation conditions.
Collapse
Affiliation(s)
- Fabienne Gräbnitz
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Dominique Stark
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Anthony Petkidis
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mariana Borsa
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Alexander Yermanos
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andreas Carr
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Niculò Barandun
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Arne Wehling
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Miroslav Balaz
- Department of Metabolic Disease Research, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| |
Collapse
|
31
|
Getzler AJ, Frederick MA, Milner JJ, Venables T, Diao H, Toma C, Nagaraja SD, Albao DS, Bélanger S, Tsuda SM, Kim J, Crotty S, Goldrath AW, Pipkin ME. Mll1 pioneers histone H3K4me3 deposition and promotes formation of CD8 + T stem cell memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524461. [PMID: 37090503 PMCID: PMC10120707 DOI: 10.1101/2023.01.18.524461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
CD8 + T cells with stem cell-like properties (T SCM ) sustain adaptive immunity to intracellular pathogens and tumors. However, the developmental origins and chromatin regulatory factors (CRFs) that establish their differentiation are unclear. Using an RNA interference screen of all CRFs we discovered the histone methylase Mll1 was required during T cell receptor (TCR) stimulation for development of a T SCM precursor state and mature memory (T MEM ) cells, but not short-lived or transitory effector cell-like states, in response to viral infections and tumors. Mll1 was essential for widespread de novo deposition of histone H3 lysine 4 trimethylation (H3K4me3) upon TCR stimulation, which accounted for 70% of all activation-induced sites in mature T MEM cells. Mll1 promoted both H3K4me3 deposition and reduced TCR-induced Pol II pausing at genes whose single-cell transcriptional dynamics explained trajectories into nascent T SCM precursor states during viral infection. Our results suggest Mll1-dependent control of Pol II elongation and H3K4me3 establishes and maintains differentiation of CD8 + T SCM cell states.
Collapse
|
32
|
Pyrimidine de novo synthesis inhibition selectively blocks effector but not memory T cell development. Nat Immunol 2023; 24:501-515. [PMID: 36797499 DOI: 10.1038/s41590-023-01436-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/13/2023] [Indexed: 02/18/2023]
Abstract
Blocking pyrimidine de novo synthesis by inhibiting dihydroorotate dehydrogenase is used to treat autoimmunity and prevent expansion of rapidly dividing cell populations including activated T cells. Here we show memory T cell precursors are resistant to pyrimidine starvation. Although the treatment effectively blocked effector T cells, the number, function and transcriptional profile of memory T cells and their precursors were unaffected. This effect occurred in a narrow time window in the early T cell expansion phase when developing effector, but not memory precursor, T cells are vulnerable to pyrimidine starvation. This vulnerability stems from a higher proliferative rate of early effector T cells as well as lower pyrimidine synthesis capacity when compared with memory precursors. This differential sensitivity is a drug-targetable checkpoint that efficiently diminishes effector T cells without affecting the memory compartment. This cell fate checkpoint might therefore lead to new methods to safely manipulate effector T cell responses.
Collapse
|
33
|
Marx AF, Kallert SM, Brunner TM, Villegas JA, Geier F, Fixemer J, Abreu-Mota T, Reuther P, Bonilla WV, Fadejeva J, Kreutzfeldt M, Wagner I, Aparicio-Domingo P, Scarpellino L, Charmoy M, Utzschneider DT, Hagedorn C, Lu M, Cornille K, Stauffer K, Kreppel F, Merkler D, Zehn D, Held W, Luther SA, Löhning M, Pinschewer DD. The alarmin interleukin-33 promotes the expansion and preserves the stemness of Tcf-1 + CD8 + T cells in chronic viral infection. Immunity 2023; 56:813-828.e10. [PMID: 36809763 DOI: 10.1016/j.immuni.2023.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/22/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023]
Abstract
T cell factor 1 (Tcf-1) expressing CD8+ T cells exhibit stem-like self-renewing capacity, rendering them key for immune defense against chronic viral infection and cancer. Yet, the signals that promote the formation and maintenance of these stem-like CD8+ T cells (CD8+SL) remain poorly defined. Studying CD8+ T cell differentiation in mice with chronic viral infection, we identified the alarmin interleukin-33 (IL-33) as pivotal for the expansion and stem-like functioning of CD8+SL as well as for virus control. IL-33 receptor (ST2)-deficient CD8+ T cells exhibited biased end differentiation and premature loss of Tcf-1. ST2-deficient CD8+SL responses were restored by blockade of type I interferon signaling, suggesting that IL-33 balances IFN-I effects to control CD8+SL formation in chronic infection. IL-33 signals broadly augmented chromatin accessibility in CD8+SL and determined these cells' re-expansion potential. Our study identifies the IL-33-ST2 axis as an important CD8+SL-promoting pathway in the context of chronic viral infection.
Collapse
Affiliation(s)
- Anna-Friederike Marx
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland.
| | - Sandra M Kallert
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Tobias M Brunner
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - José A Villegas
- Department of Immunobiology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Florian Geier
- Department of Biomedicine, Bioinformatics Core Facility, University Hospital Basel, 4031 Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jonas Fixemer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Tiago Abreu-Mota
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Peter Reuther
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Weldy V Bonilla
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Jelizaveta Fadejeva
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology University of Geneva, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology University of Geneva, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | | | - Leo Scarpellino
- Department of Immunobiology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Mélanie Charmoy
- Department of Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Claudia Hagedorn
- Witten/Herdecke University (UW/H), Faculty of Health/School of Medicine, Stockumer Str. 10, 58453 Witten, Germany
| | - Min Lu
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Karen Cornille
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Karsten Stauffer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Florian Kreppel
- Witten/Herdecke University (UW/H), Faculty of Health/School of Medicine, Stockumer Str. 10, 58453 Witten, Germany
| | - Doron Merkler
- Department of Pathology and Immunology University of Geneva, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Werner Held
- Department of Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Sanjiv A Luther
- Department of Immunobiology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany.
| | - Daniel D Pinschewer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland.
| |
Collapse
|
34
|
Hsiung S, Egawa T. Population dynamics and gene regulation of T cells in response to chronic antigen stimulation. Int Immunol 2023; 35:67-77. [PMID: 36334059 DOI: 10.1093/intimm/dxac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022] Open
Abstract
T cells are activated by antigen and co-stimulatory receptor signaling and undergo robust proliferation and differentiation into effector cells with protective function. Such quantitatively and qualitatively amplified T cell responses are effective in controlling acute infection and are followed by contraction of the effector population and the formation of resting memory T cells for enhanced protection against previously experienced antigens. However, in the face of persistent antigen during chronic viral infection, in autoimmunity, or in the tumor microenvironment, T cells exhibit distinct responses relative to those in acute insult in several aspects, including reduced clonal expansion and impaired effector function associated with inhibitory receptor expression, a state known as exhaustion. Nevertheless, their responses to chronic infection and tumors are sustained through the establishment of hierarchical heterogeneity, which preserves the duration of the response by generating newly differentiated effector cells. In this review, we highlight recent findings on distinct dynamics of T cell responses under "exhausting" conditions and the roles of the transcription factors that support attenuated yet long-lasting T cell responses as well as the establishment of dysfunctional states.
Collapse
Affiliation(s)
- Sunnie Hsiung
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| |
Collapse
|
35
|
Hou Y, Zak J, Shi Y, Pratumchai I, Dinner B, Wang W, Qin K, Weber E, Teijaro JR, Wu P. Transient EZH2 suppression by Tazemetostat during in vitro expansion maintains T cell stemness and improves adoptive T cell therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527459. [PMID: 36798389 PMCID: PMC9934551 DOI: 10.1101/2023.02.07.527459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The histone methyltransferase enhancer of zeste homolog 2 (EZH2)-mediated epigenetic regulation of T cell differentiation in acute infection has been extensively investigated. However, the role of EZH2 in T cell exhaustion remains under-explored. Here, using in vitro exhaustion models, we demonstrated that transient inhibition of EZH2 in T cells before the phenotypic onset of exhaustion with a clinically approved inhibitor, Tazemetastat, delayed their dysfunctional progression and maintained T cell stemness and polyfunctionality while having no negative impact on cell proliferation. Tazemetestat induced T cell epigenetic reprogramming and increased the expression of the self-renewing T cell transcription factor TCF1 by reducing its promoter H3K27 methylation preferentially in rapidly dividing T cells. In a murine melanoma model, T cells pre-treated with tazemetastat exhibited a superior response to anti-PD-1 blockade therapy after adoptive transfer. Collectively, these data unveil the potential of transient epigenetic reprogramming as a potential intervention to be combined with checkpoint blockade for immune therapy.
Collapse
|
36
|
Ando S, Perkins CM, Sajiki Y, Chastain C, Valanparambil RM, Wieland A, Hudson WH, Hashimoto M, Ramalingam SS, Freeman GJ, Ahmed R, Araki K. mTOR regulates T cell exhaustion and PD-1-targeted immunotherapy response during chronic viral infection. J Clin Invest 2023; 133:e160025. [PMID: 36378537 PMCID: PMC9843061 DOI: 10.1172/jci160025] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
T cell exhaustion is a state of T cell dysfunction associated with expression of programmed death 1 (PD-1). Exhausted CD8+ T cells are maintained by self-renewing stem-like T cells that provide differentiated TIM3+ cells, a part of which possesses effector-like properties. PD-1-targeted therapies enhance T cell response by promoting differentiation of stem-like T cells toward TIM3+ cells, but the role of mTOR during T cell exhaustion remains elusive. Here, we showed that mTOR inhibition has distinct outcomes during the beginning of and after the establishment of chronic viral infection. Blocking mTOR during the T cell expansion phase enhanced the T cell response by causing accumulation of stem-like T cells, leading to improved efficacy of PD-1 immunotherapy; whereas, after exhaustion progressed, mTOR inhibition caused immunosuppression, characterized by decreased TIM3+ cells and increased viral load with minimal changes in stem-like T cells. Mechanistically, a cell-intrinsic mTOR signal was vital for differentiation of stem-like T cells into the TIM3+ state in the early and late phases of chronic infection as well as during PD-1 immunotherapy. Thus, PD-1 blockade worked after cessation of mTOR inhibition, but simultaneous treatment failed to induce functional TIM3+ cells, reducing efficacy of PD-1 immunotherapy. Our data demonstrate that mTOR regulates T cell exhaustion and have important implications for combination cancer therapies with PD-1 blockade.
Collapse
Affiliation(s)
- Satomi Ando
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Charles M. Perkins
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yamato Sajiki
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Chase Chastain
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Andreas Wieland
- Emory Vaccine Center
- Depatment of Microbiology and Immunology, and
| | | | - Masao Hashimoto
- Emory Vaccine Center
- Depatment of Microbiology and Immunology, and
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Rafi Ahmed
- Emory Vaccine Center
- Depatment of Microbiology and Immunology, and
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Koichi Araki
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
37
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|
38
|
Kim MJ, Kim K, Park HJ, Kim GR, Hong KH, Oh JH, Son J, Park DJ, Kim D, Choi JM, Lee I, Ha SJ. Deletion of PD-1 destabilizes the lineage identity and metabolic fitness of tumor-infiltrating regulatory T cells. Nat Immunol 2023; 24:148-161. [PMID: 36577929 DOI: 10.1038/s41590-022-01373-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/27/2022] [Indexed: 12/29/2022]
Abstract
Regulatory T (Treg) cells have an immunosuppressive function and highly express the immune checkpoint receptor PD-1 in the tumor microenvironment; however, the function of PD-1 in tumor-infiltrating (TI) Treg cells remains controversial. Here, we showed that conditional deletion of PD-1 in Treg cells delayed tumor progression. In Pdcd1fl/flFoxp3eGFP-Cre-ERT2(+/-) mice, in which both PD-1-expressing and PD-1-deficient Treg cells coexisted in the same tissue environment, conditional deletion of PD-1 in Treg cells resulted in impairment of the proliferative and suppressive capacity of TI Treg cells. PD-1 antibody therapy reduced the TI Treg cell numbers, but did not directly restore the cytokine production of TI CD8+ T cells in TC-1 lung cancer. Single-cell analysis indicated that PD-1 signaling promoted lipid metabolism, proliferation and suppressive pathways in TI Treg cells. These results suggest that PD-1 ablation or inhibition can enhance antitumor immunity by weakening Treg cell lineage stability and metabolic fitness in the tumor microenvironment.
Collapse
Affiliation(s)
- Myeong Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea
| | - Kyungsoo Kim
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyo Jin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Kyeong Hee Hong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea
| | - Ji Hoon Oh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea
| | - Jimin Son
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea
| | - Dong Jin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea
| | - Dahae Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea.,Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Insuk Lee
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea. .,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea. .,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Benitez Fuentes JD, Mohamed Mohamed K, de Luna Aguilar A, Jiménez García C, Guevara-Hoyer K, Fernandez-Arquero M, Rodríguez de la Peña MA, Garciía Bravo L, Jiménez Ortega AF, Flores Navarro P, Bartolome Arcilla J, Alonso Arenilla B, Baos Muñoz E, Delgado-Iribarren García-Campero A, Montealegre Sanz M, Sanchez-Ramon S, Perez Segura P. Evidence of exhausted lymphocytes after the third anti-SARS-CoV-2 vaccine dose in cancer patients. Front Oncol 2022; 12:975980. [PMID: 36605446 PMCID: PMC9808030 DOI: 10.3389/fonc.2022.975980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Evidence is scant regarding the long-term humoral and cellular responses Q7 triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines in cancer patients after repeated booster doses. The possibility of T-cell exhaustion following these booster doses in this population has not yet been fully studied and remains uncertain. Methods In this single-center prospective observational study, we explored the specific humoral and cellular response to S1 antigen in 36 patients with solid malignancies at baseline, and after the second and third doses of the mRNA-1273 vaccine. Results A dual behavior was observed: 24 (66.7%) patients showed partial specific IFN-γ response after the second dose that was further enhanced after the third dose; and 11 (30.5%) already showed an optimal response after the second dose and experienced a marked fall-off of specific IFN-γ production after the third (4 patients negativization), which might suggest T cell exhaustion due to repetitive priming to the same antigen. One (2.8%) patient had persistently negative responses after all three doses. Seroconversion occurred in all patients after the second dose. We then studied circulating exhausted CD8+ T-cells in 4 patients from each of the two response patterns, those with increase and those with decrease in cellular response after the third booster. The patients with decreased cellular response after the booster had a higher expression of PD1+CD8+ and CD57+PD1+CD8+ exhausted T cells compared with those with an increased cellular response both in vivo and in vitro. The proportion of PD1+CD8+ and CD57+PD1+CD8+ exhausted T cells inversely correlated with IFN-γ production. Discussion Our preliminary data show that the two-dose SARS-CoV-2 vaccine regimen was beneficial in all cancer patients of our study. An additional booster seems to be beneficial in suboptimal vaccine seroconverters, in contrast to maximal responders that might develop exhaustion. Our data should be interpreted with caution given the small sample size and highlight the urgent need to validate our results in other independent and larger cohorts. Altogether, our data support the relevance of immunological functional studies to personalize preventive and treatment decisions in cancer patients.
Collapse
Affiliation(s)
- Javier David Benitez Fuentes
- Department of Medical Oncology, Hospital Clinico San Carlos, IdISSC, Calle Profesor Martín Lagos, Madrid, Spain,*Correspondence: Javier David Benitez Fuentes,
| | - Kauzar Mohamed Mohamed
- Department of Immunology, IML and IdISSC, Hospital Cliínico San Carlos, Calle Profesor Martín Lagos, Madrid, Spain
| | - Alicia de Luna Aguilar
- Department of Medical Oncology, Hospital Clinico San Carlos, IdISSC, Calle Profesor Martín Lagos, Madrid, Spain
| | - Carlos Jiménez García
- Department of Immunology, IML and IdISSC, Hospital Cliínico San Carlos, Calle Profesor Martín Lagos, Madrid, Spain
| | - Kissy Guevara-Hoyer
- Department of Immunology, IML and IdISSC, Hospital Cliínico San Carlos, Calle Profesor Martín Lagos, Madrid, Spain,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Miguel Fernandez-Arquero
- Department of Immunology, IML and IdISSC, Hospital Cliínico San Carlos, Calle Profesor Martín Lagos, Madrid, Spain,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | | | - Laura Garciía Bravo
- Department of Immunology, IML and IdISSC, Hospital Cliínico San Carlos, Calle Profesor Martín Lagos, Madrid, Spain
| | | | - Paloma Flores Navarro
- Department of Medical Oncology, Hospital Clinico San Carlos, IdISSC, Calle Profesor Martín Lagos, Madrid, Spain
| | - Jorge Bartolome Arcilla
- Department of Medical Oncology, Hospital Clinico San Carlos, IdISSC, Calle Profesor Martín Lagos, Madrid, Spain
| | - Bárbara Alonso Arenilla
- Department of Immunology, IML and IdISSC, Hospital Cliínico San Carlos, Calle Profesor Martín Lagos, Madrid, Spain
| | - Elvira Baos Muñoz
- Department of Microbiology, IML and IdISSC, Hospital Cliínico San Carlos, Calle Profesor Martín Lagos, Madrid, Spain
| | | | - María Montealegre Sanz
- Department of Medical Oncology, Hospital Clinico San Carlos, IdISSC, Calle Profesor Martín Lagos, Madrid, Spain
| | - Silvia Sanchez-Ramon
- Department of Immunology, IML and IdISSC, Hospital Cliínico San Carlos, Calle Profesor Martín Lagos, Madrid, Spain,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Pedro Perez Segura
- Department of Medical Oncology, Hospital Clinico San Carlos, IdISSC, Calle Profesor Martín Lagos, Madrid, Spain
| |
Collapse
|
40
|
Beura LK, Scott MC, Pierson MJ, Joag V, Wijeyesinghe S, Semler MR, Quarnstrom CF, Busman-Sahay K, Estes JD, Hamilton SE, Vezys V, O'Connor DH, Masopust D. Novel Lymphocytic Choriomeningitis Virus Strain Sustains Abundant Exhausted Progenitor CD8 T Cells without Systemic Viremia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1691-1702. [PMID: 36122933 PMCID: PMC9588727 DOI: 10.4049/jimmunol.2200320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/21/2022] [Indexed: 01/04/2023]
Abstract
Lymphocytic choriomeningitis virus (LCMV) is the prototypic arenavirus and a natural mouse pathogen. LCMV-Armstrong, an acutely resolved strain, and LCMV-clone 13, a mutant that establishes chronic infection, have provided contrasting infection models that continue to inform the fundamental biology of T cell differentiation, regulation of exhaustion, and response to checkpoint blockade. In this study, we report the isolation and characterization of LCMV-Minnesota (LCMV-MN), which was naturally transmitted to laboratory mice upon cohousing with pet shop mice and shares 80-95% amino acid homology with previously characterized LCMV strains. Infection of laboratory mice with purified LCMV-MN resulted in viral persistence that was intermediate between LCMV-Armstrong and -clone 13, with widely disseminated viral replication and viremia that was controlled within 15-30 d, unless CD4 T cells were depleted prior to infection. LCMV-MN-responding CD8+ T cells biased differentiation toward the recently described programmed death-1 (PD-1)+CXCR5+Tim-3lo stemlike CD8+ T cell population (also referred to as progenitor exhausted T cells) that effectuates responses to PD-1 blockade checkpoint inhibition, a therapy that rejuvenates responses against chronic infections and cancer. This subset resembled previously characterized PD-1+TCF1+ stemlike CD8+ T cells by transcriptional, phenotypic, and functional assays, yet was atypically abundant. LCMV-MN may provide a tool to better understand the breadth of immune responses in different settings of chronic Ag stimulation as well as the ontogeny of progenitor exhausted T cells and the regulation of responsiveness to PD-1 blockade.
Collapse
Affiliation(s)
- Lalit K Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI;
| | - Milcah C Scott
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Mark J Pierson
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Vineet Joag
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Sathi Wijeyesinghe
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Matthew R Semler
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI; and
| | - Clare F Quarnstrom
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR
| | - Sara E Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Vaiva Vezys
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI; and
| | - David Masopust
- Center for Immunology, University of Minnesota, Minneapolis, MN;
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
41
|
Nath PR, Pal-Nath D, Kaur S, Gangaplara A, Meyer TJ, Cam MC, Roberts DD. Loss of CD47 alters CD8+ T cell activation in vitro and immunodynamics in mice. Oncoimmunology 2022; 11:2111909. [PMID: 36105746 PMCID: PMC9467551 DOI: 10.1080/2162402x.2022.2111909] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
CD47 has established roles in the immune system for regulating macrophage phagocytosis and lymphocyte activation, with growing evidence of its cell-intrinsic regulatory roles in natural killer and CD8+ T cells. CD47 limits antigen-dependent cytotoxic activities of human and murine CD8+ T cells, but its role in T cell activation kinetics remains unclear. Using in vitro and in vivo models, we show here that CD47 differentially regulates CD8+ T cell responses to short- versus long-term activation. Although CD47 was not required for T cell development in mice and early activation in vitro, short-term stimuli elevated pathogen-reactive gene expression and enhanced proliferation and the effector phenotypes of Cd47-deficient relative to Cd47-sufficient CD8+ T cells. In contrast, persistent TCR stimulation limited the effector phenotypes of Cd47 -/- CD8+ T cells and enhanced their apoptosis signature. CD8+ T cell expansion and activation in vivo induced by acute lymphocytic choriomeningitis virus (LCMV) infection did not differ in the absence of CD47. However, the frequency and effector phenotypes of Cd47-/- CD8+ T cells were constrained in chronic LCMV-infected as well as in mice bearing B16 melanoma tumors. Therefore, CD47 regulates CD8+ T cell activation, proliferation, and fitness in a context-dependent manner.
Collapse
Affiliation(s)
- Pulak R. Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical and Translational Immunology Unit, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arunkumar Gangaplara
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, Bethesda, MD, USA
| | - Margaret C Cam
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, Bethesda, MD, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Ando S, Araki K. CD8 T cell heterogeneity during T cell exhaustion and PD-1-targeted immunotherapy. Int Immunol 2022; 34:571-577. [PMID: 35901837 PMCID: PMC9533227 DOI: 10.1093/intimm/dxac038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022] Open
Abstract
Persistent antigenic stimulation results in loss of effector function or physical deletion of antigen-specific CD8 T cells. This T cell state is called T cell exhaustion and occurs during chronic infection and cancer. Antigen-specific CD8 T cells during T cell exhaustion express the inhibitory receptor PD-1, the expression of which plays a major role in T cell dysfunction. PD-1 blockade re-invigorates CD8 T cell immunity and has been proven effective against many different types of human cancer. To further improve the efficacy of PD-1-targeted immunotherapy in cancer patients, a better understanding of T cell exhaustion is required. Recent studies have revealed that antigen-specific CD8 T cells during T cell exhaustion are heterogeneous and have also uncovered the detailed mechanisms for PD-1-targeted immunotherapy. Here, we review the CD8 T cell subsets that arise during T cell exhaustion, the lineage relationship among these individual subsets and the role of each subset in PD-1 blockade. Also, we discuss potential strategies to enhance the efficacy of PD-1-targeted immunotherapy.
Collapse
Affiliation(s)
- Satomi Ando
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, 45229 OH, USA
| | - Koichi Araki
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, 45229 OH, USA
| |
Collapse
|
43
|
Andreatta M, Tjitropranoto A, Sherman Z, Kelly MC, Ciucci T, Carmona SJ. A CD4 + T cell reference map delineates subtype-specific adaptation during acute and chronic viral infections. eLife 2022; 11:e76339. [PMID: 35829695 PMCID: PMC9323004 DOI: 10.7554/elife.76339] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
CD4+ T cells are critical orchestrators of immune responses against a large variety of pathogens, including viruses. While multiple CD4+ T cell subtypes and their key transcriptional regulators have been identified, there is a lack of consistent definition for CD4+ T cell transcriptional states. In addition, the progressive changes affecting CD4+ T cell subtypes during and after immune responses remain poorly defined. Using single-cell transcriptomics, we characterized the diversity of CD4+ T cells responding to self-resolving and chronic viral infections in mice. We built a comprehensive map of virus-specific CD4+ T cells and their evolution over time, and identified six major cell states consistently observed in acute and chronic infections. During the course of acute infections, T cell composition progressively changed from effector to memory states, with subtype-specific gene modules and kinetics. Conversely, in persistent infections T cells acquired distinct, chronicity-associated programs. By single-cell T cell receptor (TCR) analysis, we characterized the clonal structure of virus-specific CD4+ T cells across individuals. Virus-specific CD4+ T cell responses were essentially private across individuals and most T cells differentiated into both Tfh and Th1 subtypes irrespective of their TCR. Finally, we showed that our CD4+ T cell map can be used as a reference to accurately interpret cell states in external single-cell datasets across tissues and disease models. Overall, this study describes a previously unappreciated level of adaptation of the transcriptional states of CD4+ T cells responding to viruses and provides a new computational resource for CD4+ T cell analysis.
Collapse
Affiliation(s)
- Massimo Andreatta
- Department of Oncology, UNIL CHUV and Ludwig Institute for Cancer Research Lausanne, University of LausanneLausanneSwitzerland
- Agora Cancer Research CenterLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Ariel Tjitropranoto
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of RochesterRochesterUnited States
| | - Zachary Sherman
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of RochesterRochesterUnited States
| | - Michael C Kelly
- Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research IncFrederickUnited States
| | - Thomas Ciucci
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of RochesterRochesterUnited States
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Santiago J Carmona
- Department of Oncology, UNIL CHUV and Ludwig Institute for Cancer Research Lausanne, University of LausanneLausanneSwitzerland
- Agora Cancer Research CenterLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| |
Collapse
|
44
|
Zhu L, Zhou X, Gu M, Kim J, Li Y, Ko CJ, Xie X, Gao T, Cheng X, Sun SC. Dapl1 controls NFATc2 activation to regulate CD8 + T cell exhaustion and responses in chronic infection and cancer. Nat Cell Biol 2022; 24:1165-1176. [PMID: 35773432 DOI: 10.1038/s41556-022-00942-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
CD8+ T cells are central mediators of immune responses against infections and cancer. Here we identified Dapl1 as a crucial regulator of CD8+ T cell responses to cancer and infections. Dapl1 deficiency promotes the expansion of tumour-infiltrating effector memory-like CD8+ T cells and prevents their functional exhaustion, coupled with increased antitumour immunity and improved efficacy of adoptive T cell therapy. Dapl1 controls activation of NFATc2, a transcription factor required for the effector function of CD8+ T cells. Although NFATc2 mediates induction of the immune checkpoint receptor Tim3, competent NFATc2 activation prevents functional exhaustion of CD8+ T cells. Interestingly, exhausted CD8+ T cells display attenuated NFATc2 activation due to Tim3-mediated feedback inhibition; Dapl1 deletion rescues NFATc2 activation and thereby prevents dysfunction of exhausted CD8+ T cells in chronic infection and cancer. These findings establish Dapl1 as a crucial regulator of CD8+ T cell immunity and a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Flagship Labs 91, Inc., Cambridge, MA, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiseong Kim
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Bristol Myers Squibb, Seattle, WA, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,AbbVie, South San Francisco, CA, USA
| | - Tianxiao Gao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Memorial Hermann-Texas Medical Center, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
45
|
Serrán MG, Vernengo FF, Almada L, Beccaria CG, Gazzoni Y, Canete PF, Roco JA, Boari JT, Ramello MC, Wehrens E, Cai Y, Zuniga EI, Montes CL, Cockburn IA, Rodriguez EVA, Vinuesa CG, Gruppi A. Extrafollicular Plasmablasts Present in the Acute Phase of Infections Express High Levels of PD-L1 and Are Able to Limit T Cell Response. Front Immunol 2022; 13:828734. [PMID: 35651611 PMCID: PMC9149371 DOI: 10.3389/fimmu.2022.828734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
During infections with protozoan parasites or some viruses, T cell immunosuppression is generated simultaneously with a high B cell activation. It has been described that, as well as producing antibodies, plasmablasts, the differentiation product of activated B cells, can condition the development of protective immunity in infections. Here, we show that, in T. cruzi infection, all the plasmablasts detected during the acute phase of the infection had higher surface expression of PD-L1 than other mononuclear cells. PD-L1hi plasmablasts were induced in vivo in a BCR-specific manner and required help from Bcl-6+CD4+T cells. PD-L1hi expression was not a characteristic of all antibody-secreting cells since plasma cells found during the chronic phase of infection expressed PD-L1 but at lower levels. PD-L1hi plasmablasts were also present in mice infected with Plasmodium or with lymphocytic choriomeningitis virus, but not in mice with autoimmune disorders or immunized with T cell-dependent antigens. In vitro experiments showed that PD-L1hi plasmablasts suppressed the T cell response, partially via PD-L1. Thus, this study reveals that extrafollicular PD-L1hi plasmablasts, whose peaks of response precede the peak of germinal center response, may have a modulatory function in infections, thus influencing T cell response.
Collapse
Affiliation(s)
- Melisa Gorosito Serrán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Almada
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cristian G Beccaria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yamila Gazzoni
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo F Canete
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jonathan A Roco
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jimena Tosello Boari
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Cecilia Ramello
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ellen Wehrens
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Yeping Cai
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Elina I Zuniga
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Eva V Acosta Rodriguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,China-Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
46
|
A Virus Is a Community: Diversity within Negative-Sense RNA Virus Populations. Microbiol Mol Biol Rev 2022; 86:e0008621. [PMID: 35658541 DOI: 10.1128/mmbr.00086-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Negative-sense RNA virus populations are composed of diverse viral components that interact to form a community and shape the outcome of virus infections. At the genomic level, RNA virus populations consist not only of a homogeneous population of standard viral genomes but also of an extremely large number of genome variants, termed viral quasispecies, and nonstandard viral genomes, which include copy-back viral genomes, deletion viral genomes, mini viral RNAs, and hypermutated RNAs. At the particle level, RNA virus populations are composed of pleomorphic particles, particles missing or having additional genomes, and single particles or particle aggregates. As we continue discovering more about the components of negative-sense RNA virus populations and their crucial functions during virus infection, it will become more important to study RNA virus populations as a whole rather than their individual parts. In this review, we will discuss what is known about the components of negative-sense RNA virus communities, speculate how the components of the virus community interact, and summarize what vaccines and antiviral therapies are being currently developed to target or harness these components.
Collapse
|
47
|
Guan X, Polesso F, Wang C, Sehrawat A, Hawkins RM, Murray SE, Thomas GV, Caruso B, Thompson RF, Wood MA, Hipfinger C, Hammond SA, Graff JN, Xia Z, Moran AE. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 2022; 606:791-796. [PMID: 35322234 PMCID: PMC10294141 DOI: 10.1038/s41586-022-04522-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
Immune checkpoint blockade has revolutionized the field of oncology, inducing durable anti-tumour immunity in solid tumours. In patients with advanced prostate cancer, immunotherapy treatments have largely failed1-5. Androgen deprivation therapy is classically administered in these patients to inhibit tumour cell growth, and we postulated that this therapy also affects tumour-associated T cells. Here we demonstrate that androgen receptor (AR) blockade sensitizes tumour-bearing hosts to effective checkpoint blockade by directly enhancing CD8 T cell function. Inhibition of AR activity in CD8 T cells prevented T cell exhaustion and improved responsiveness to PD-1 targeted therapy via increased IFNγ expression. AR bound directly to Ifng and eviction of AR with a small molecule significantly increased cytokine production in CD8 T cells. Together, our findings establish that T cell intrinsic AR activity represses IFNγ expression and represents a novel mechanism of immunotherapy resistance.
Collapse
Affiliation(s)
- Xiangnan Guan
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
- Genentech, Inc., South San Francisco, CA, USA
| | - Fanny Polesso
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Chaojie Wang
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Archana Sehrawat
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Reed M Hawkins
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Susan E Murray
- Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
- Department of Biology, University of Portland, Portland, OR, USA
| | - George V Thomas
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Breanna Caruso
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Reid F Thompson
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Mary A Wood
- VA Portland Health Care System, Portland, OR, USA
| | - Christina Hipfinger
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Scott A Hammond
- Clinical IO Discovery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Julie N Graff
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Zheng Xia
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Amy E Moran
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
48
|
Nozaki K, Maltez VI, Rayamajhi M, Tubbs AL, Mitchell JE, Lacey CA, Harvest CK, Li L, Nash WT, Larson HN, McGlaughon BD, Moorman NJ, Brown MG, Whitmire JK, Miao EA. Caspase-7 activates ASM to repair gasdermin and perforin pores. Nature 2022; 606:960-967. [PMID: 35705808 PMCID: PMC9247046 DOI: 10.1038/s41586-022-04825-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 04/29/2022] [Indexed: 12/15/2022]
Abstract
Among the caspases that cause regulated cell death, a unique function for caspase-7 has remained elusive. Caspase-3 performs apoptosis, whereas caspase-7 is typically considered an inefficient back-up. Caspase-1 activates gasdermin D pores to lyse the cell; however, caspase-1 also activates caspase-7 for unknown reasons1. Caspases can also trigger cell-type-specific death responses; for example, caspase-1 causes the extrusion of intestinal epithelial cell (IECs) in response to infection with Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium)2,3. Here we show in both organoids and mice that caspase-7-deficient IECs do not complete extrusion. Mechanistically, caspase-7 counteracts gasdermin D pores and preserves cell integrity by cleaving and activating acid sphingomyelinase (ASM), which thereby generates copious amounts of ceramide to enable enhanced membrane repair. This provides time to complete the process of IEC extrusion. In parallel, we also show that caspase-7 and ASM cleavage are required to clear Chromobacterium violaceum and Listeria monocytogenes after perforin-pore-mediated attack by natural killer cells or cytotoxic T lymphocytes, which normally causes apoptosis in infected hepatocytes. Therefore, caspase-7 is not a conventional executioner but instead is a death facilitator that delays pore-driven lysis so that more-specialized processes, such as extrusion or apoptosis, can be completed before cell death. Cells must put their affairs in order before they die.
Collapse
Affiliation(s)
- Kengo Nozaki
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Vivien I Maltez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Manira Rayamajhi
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alan L Tubbs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph E Mitchell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carolyn A Lacey
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Carissa K Harvest
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lupeng Li
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William T Nash
- Department of Medicine, Division of Nephrology and the Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Heather N Larson
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Benjamin D McGlaughon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael G Brown
- Department of Medicine, Division of Nephrology and the Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Jason K Whitmire
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
49
|
van der Heide V, Jangra S, Cohen P, Rathnasinghe R, Aslam S, Aydillo T, Geanon D, Handler D, Kelley G, Lee B, Rahman A, Dawson T, Qi J, D'Souza D, Kim-Schulze S, Panzer JK, Caicedo A, Kusmartseva I, Posgai AL, Atkinson MA, Albrecht RA, García-Sastre A, Rosenberg BR, Schotsaert M, Homann D. Limited extent and consequences of pancreatic SARS-CoV-2 infection. Cell Rep 2022; 38:110508. [PMID: 35247306 PMCID: PMC8858708 DOI: 10.1016/j.celrep.2022.110508] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/17/2021] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Concerns that infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), may cause new-onset diabetes persist in an evolving research landscape, and precise risk assessment is hampered by, at times, conflicting evidence. Here, leveraging comprehensive single-cell analyses of in vitro SARS-CoV-2-infected human pancreatic islets, we demonstrate that productive infection is strictly dependent on the SARS-CoV-2 entry receptor ACE2 and targets practically all pancreatic cell types. Importantly, the infection remains highly circumscribed and largely non-cytopathic and, despite a high viral burden in infected subsets, promotes only modest cellular perturbations and inflammatory responses. Similar experimental outcomes are also observed after islet infection with endemic coronaviruses. Thus, the limits of pancreatic SARS-CoV-2 infection, even under in vitro conditions of enhanced virus exposure, challenge the proposition that in vivo targeting of β cells by SARS-CoV-2 precipitates new-onset diabetes. Whether restricted pancreatic damage and immunological alterations accrued by COVID-19 increase cumulative diabetes risk, however, remains to be evaluated.
Collapse
Affiliation(s)
- Verena van der Heide
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Phillip Cohen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Geanon
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana Handler
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Geoffrey Kelley
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jingjing Qi
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia K Panzer
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, USA; Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Dirk Homann
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Diabetes Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
50
|
Abstract
Lymphocytic choriomeningitis virus (LCMV) is the prototypic arenavirus and has been utilized for decades as a model to understand the host immune response against viral infection. LCMV infection can lead to fatal meningitis in immunocompromised people and can lead to congenital birth defects and spontaneous abortion if acquired during pregnancy. Using a genetic screen, we uncover host factors involved in LCMV entry that were previously unknown and are candidate therapeutic targets to combat LCMV infection. This study expands our understanding of the entry pathway of LCMV, revealing that its glycoprotein switches from utilizing the known receptor α-DG and heparan sulfate at the plasma membrane to binding the lysosomal mucin CD164 at pH levels found in endolysosomal compartments, facilitating membrane fusion. Lymphocytic choriomeningitis virus (LCMV) is a rodent-borne zoonotic arenavirus that causes congenital abnormalities and can be fatal for transplant recipients. Using a genome-wide loss-of-function screen, we identify host factors required for LCMV entry into cells. We identify the lysosomal mucin CD164, glycosylation factors, the heparan sulfate biosynthesis machinery, and the known receptor alpha-dystroglycan (α-DG). Biochemical analysis revealed that the LCMV glycoprotein binds CD164 at acidic pH and requires a sialylated glycan at residue N104. We demonstrate that LCMV entry proceeds by the virus switching binding from heparan sulfate or α-DG at the plasma membrane to CD164 prior to membrane fusion, thus identifying additional potential targets for therapeutic intervention.
Collapse
|