1
|
Jian Y, Wang F, Zhao M, Han X, Wang X. Efficacy and safety of thalidomide for recurrent aphthous stomatitis: a systematic review and meta-analysis of randomized controlled trials. BMC Oral Health 2024; 24:1149. [PMID: 39342210 PMCID: PMC11438041 DOI: 10.1186/s12903-024-04923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Recurrent aphthous stomatitis (RAS) is considered as the most common oral mucosal lesion affecting up to 25% of people worldwide. Thalidomide has been reported for the treatment of RAS, but the evidence has not been systematically evaluated. We first systematically reviewed the efficacy and safety of thalidomide for the treatment of RAS. METHODS We searched The Cochrane Library, PubMed, Scopus, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), Chinese BioMedical Literature Database (CBM), Wanfang Data, and VIP information from inception to December 2023. Randomized controlled trials (RCTs) comparing thalidomide with control for RAS were included in the analysis. The primary outcome were complete response and overall response, and the secondary outcome were recurrence interval (RI), ulcer number and size, healing time, visual analogue scale (VAS), immunological data, and adverse events. Meta-analysis was conducted using the Review Manager 5.4 software. RESULTS Twenty-one trials involving 1668 patients were included in this review. The results of our meta-analysis showed that thalidomide significantly improved the complete response rate and overall response rate, prolonged the recurrence interval, accelerated the healing process, reduced the number and size of ulcers, and lowered TNF-α levels in the treatment of RAS. However, thalidomide significantly increases adverse events. RESULTS Thalidomide has a significant benefit in the treatment of RAS. However, considering the potential side effects of thalidomide, it may be an optimal treatment option for major RAS patients or cases that do not respond to topical agents. TRIAL REGISTRATION PROSPERO registration number: CRD42024495038.
Collapse
Affiliation(s)
- Yang Jian
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Tianhui Road No 270, Chengdu, Sichuan province, China
| | - Fuqin Wang
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Tianhui Road No 270, Chengdu, Sichuan province, China
| | - Minru Zhao
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Tianhui Road No 270, Chengdu, Sichuan province, China
| | - Xianru Han
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Tianhui Road No 270, Chengdu, Sichuan province, China
| | - Xiaoyu Wang
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Tianhui Road No 270, Chengdu, Sichuan province, China.
| |
Collapse
|
2
|
Colley A, Brauns T, Sluder AE, Poznansky MC, Gemechu Y. Immunomodulatory drugs: a promising clinical ally for cancer immunotherapy. Trends Mol Med 2024; 30:765-780. [PMID: 38821771 DOI: 10.1016/j.molmed.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 06/02/2024]
Abstract
While immunomodulatory imide drugs (IMiDs) have been authorised for treatment of haematological cancers for over two decades, the appreciation of their ability to stimulate antitumour T cell and natural killer (NK) cell responses is relatively recent. Clinical trial data increasingly show that targeted immunotherapies, such as antibodies, T cells, and vaccines, improve outcomes when delivered in combination with the IMiD derivatives lenalidomide or pomalidomide. Here, we review these clinical data to highlight the relevance of IMiDs in combinatorial immunotherapy for both haematological and solid tumours. Further research into the molecular mechanisms of IMiDs and an increased understanding of their immunomodulatory effects may refine the specific applications of IMiDs and improve the design of future clinical trials, moving IMiDs to the forefront of combinatorial cancer immunotherapy.
Collapse
Affiliation(s)
- Abigail Colley
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Oncology, University of Cambridge, Cambridge, UK
| | - Timothy Brauns
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ann E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yohannes Gemechu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Cardinale A, de Iure A, Picconi B. Neuroinflammation and Dyskinesia: A Possible Causative Relationship? Brain Sci 2024; 14:514. [PMID: 38790492 PMCID: PMC11118841 DOI: 10.3390/brainsci14050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Levodopa (L-DOPA) treatment represents the gold standard therapy for Parkinson's disease (PD) patients. L-DOPA therapy shows many side effects, among them, L-DOPA-induced dyskinesias (LIDs) remain the most problematic. Several are the mechanisms underlying these processes: abnormal corticostriatal neurotransmission, pre- and post-synaptic neuronal events, changes in gene expression, and altered plasticity. In recent years, researchers have also suggested non-neuronal mechanisms as a possible cause for LIDs. We reviewed recent clinical and pre-clinical studies on neuroinflammation contribution to LIDs. Microglia and astrocytes seem to play a strategic role in LIDs phenomenon. In particular, their inflammatory response affects neuron-glia communication, synaptic activity and neuroplasticity, contributing to LIDs development. Finally, we describe possible new therapeutic interventions for dyskinesia prevention targeting glia cells.
Collapse
Affiliation(s)
- Antonella Cardinale
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Antonio de Iure
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| |
Collapse
|
4
|
Ito T. Protein degraders - from thalidomide to new PROTACs. J Biochem 2024; 175:507-519. [PMID: 38140952 DOI: 10.1093/jb/mvad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Recently, the development of protein degraders (protein-degrading compounds) has prominently progressed. There are two remarkable classes of protein degraders: proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs). Almost 70 years have passed since thalidomide was initially developed as a sedative-hypnotic drug, which is currently recognized as one of the most well-known MGDs. During the last two decades, a myriad of PROTACs and MGDs have been developed, and the molecular mechanism of action (MOA) of thalidomide was basically elucidated, including identifying its molecular target cereblon (CRBN). CRBN forms a Cullin Ring Ligase 4 with Cul4 and DDB1, whose substrate specificity is controlled by its binding ligands. Thalidomide, lenalidomide and pomalidomide, three CRBN-binding MGDs, were clinically approved to treat several intractable diseases (including multiple myeloma). Several other MGDs and CRBN-based PROTACs (ARV-110 and AVR-471) are undergoing clinical trials. In addition, several new related technologies regarding PROTACs and MGDs have also been developed, and achievements of protein degraders impact not only therapeutic fields but also basic biological science. In this article, I introduce the history of protein degraders, from the development of thalidomide to the latest PROTACs and related technologies.
Collapse
Affiliation(s)
- Takumi Ito
- Institute of Medical Science, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
5
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
6
|
Wei W, Deng Y, Wang Y, Yao H, Du G, Tang G. Dynamic salivary cytokine profile of recurrent aphthous stomatitis patients in thalidomide maintenance treatment. Clin Oral Investig 2024; 28:140. [PMID: 38334890 DOI: 10.1007/s00784-024-05531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE To dynamically compare the longitudinal (time axis) and transverse (between groups) differences of the salivary cytokines during thalidomide maintenance treatment of recurrent aphthous stomatitis. METHODS A randomized, controlled, clinical trial was performed. After the initial prednisone treatment, thalidomide (50 mg/d vs. 25 mg/d) was used as a maintenance drug for 4 or 8 weeks. The salivary IL-4, 5, 6, 10, TNF-α, and IFN-γ were dynamically detected with a cytometric bead array. RESULTS Overall, the level of six elevated salivary cytokines after prednisone treatment was significantly downregulated, remained low during thalidomide maintenance, and rebounded at recurrence. The effect of 50 mg/d thalidomide on the salivary cytokines was not superior to 25 mg/d medication. The relapse-free period following drug withdrawal was the longest in the subgroup using 25 mg/d thalidomide for 8 weeks. The order of magnitude of IL-6 was the most obvious, and at week 8, only the level of IL-6 in the group (25 mg/d thalidomide for 8 weeks) continued to decline compared with the other groups. CONCLUSION Thalidomide maintenance treatment can effectively sustain low levels of salivary IL-4, 5, 6, 10, TNF-α, and IFN-γ of recurrent aphthous stomatitis patients. IL-6 displayed a good correlation with the disease and is expected to become an index for diagnosis and follow-up. CLINICAL RELEVANCE Low-dose long-term thalidomide maintenance treatment was supported for recurrent aphthous stomatitis. TRIAL REGISTRATION Trial registration number of ChiCTR-IPR-16009759 at http://www.chictr.org/index.aspx .
Collapse
Affiliation(s)
- Wei Wei
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, 200092, China
| | - Yiwen Deng
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yufeng Wang
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Hui Yao
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Guanhuan Du
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Guoyao Tang
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
7
|
Pluma-Pluma A, García G, Murbartián J. Chronic restraint stress and social transfer of stress produce tactile allodynia mediated by the HMGB1/TNFα/TNFR1 pathway in female and male rats. Physiol Behav 2024; 274:114418. [PMID: 38042454 DOI: 10.1016/j.physbeh.2023.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Previous studies have shown the relevance of high mobility group box 1 protein (HMGB1) and tumor necrosis factor α (TNFα) in nerve or tissue injury-induced nociception. However, the role of these proteins in chronic stress and social transfer of stress (STS)-induced dysfunctional pain is not entirely known. The aim of this study was to determine the participation of the spinal HMGB1-TNFα signaling pathway and TNFα receptor 1 (TNFR1) in rats subjected to chronic restraint stress (CRS) and STS. Non-stressed female and male rats in contact with CRS rats increased sniffing behavior of the anogenital area, behavior related to STS. Rats subjected to CRS and STS reduced 50 % withdrawal threshold and reached the value of tactile allodynia after 21 days of stress. Rats return to the basal withdrawal threshold after 30 days without stress and return to allodynia values in only 5 days of stress sessions (priming). Female and male rats subjected to 28 days of CRS or STS were intrathecal injected with glycyrrhizin (inhibitor of HMGB1), thalidomide (inhibitor of the TNFα synthesis), and R7050 (TNFR1 antagonist), in all the cases, an antiallodynic effect was observed. Rats under CRS or STS enhanced HMGB1 and TNFR1 protein expression in DRG and dorsal spinal cord. Data suggest that the spinal HMGB1/TNFα/TNFR1 signaling pathway plays a relevant role in the maintenance of CRS and STS-induced nociceptive hypersensitivity in rats. These proteins could be helpful in developing pain treatments for fibromyalgia in humans.
Collapse
Affiliation(s)
- Alejandro Pluma-Pluma
- Departamento de Farmacobiología, Cinvestav, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330, South Campus, Mexico City, Mexico
| | - Guadalupe García
- Departamento de Farmacobiología, Cinvestav, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330, South Campus, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330, South Campus, Mexico City, Mexico.
| |
Collapse
|
8
|
Plantone D, Pardini M, Righi D, Manco C, Colombo BM, De Stefano N. The Role of TNF-α in Alzheimer's Disease: A Narrative Review. Cells 2023; 13:54. [PMID: 38201258 PMCID: PMC10778385 DOI: 10.3390/cells13010054] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
This review analyzes the role of TNF-α and its increase in biological fluids in mild cognitive impairment, and Alzheimer's disease (AD). The potential inhibition of TNF-α with pharmacological strategies paves the way for preventing AD and improving cognitive function in people at risk for dementia. We conducted a narrative review to characterize the evidence in relation to the involvement of TNF-α in AD and its possible therapeutic inhibition. Several studies report that patients with RA and systemic inflammatory diseases treated with TNF-α blocking agents reduce the probability of emerging dementia compared with the general population. Animal model studies also showed interesting results and are discussed. An increasing amount of basic scientific data and clinical studies underscore the importance of inflammatory processes and subsequent glial activation in the pathogenesis of AD. TNF-α targeted therapy is a biologically plausible approach for cognition preservation and further trials are necessary to investigate the potential benefits of therapy in populations at risk of developing AD.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, L.go P. Daneo 3, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Barbara Maria Colombo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| |
Collapse
|
9
|
Majeed J, Sabbagh MN, Kang MH, Lawrence JJ, Pruitt K, Bacus S, Reyna E, Brown M, Decourt B. Cancer drugs with high repositioning potential for Alzheimer's disease. Expert Opin Emerg Drugs 2023; 28:311-332. [PMID: 38100555 PMCID: PMC10877737 DOI: 10.1080/14728214.2023.2296079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Despite the recent full FDA approval of lecanemab, there is currently no disease modifying therapy (DMT) that can efficiently slow down the progression of Alzheimer's disease (AD) in the general population. This statement emphasizes the need to identify novel DMTs in the shortest time possible to prevent a global epidemic of AD cases as the world population experiences an increase in lifespan. AREAS COVERED Here, we review several classes of anti-cancer drugs that have been or are being investigated in Phase II/III clinical trials for AD, including immunomodulatory drugs, RXR agonists, sex hormone therapies, tyrosine kinase inhibitors, and monoclonal antibodies. EXPERT OPINION Given the overall course of brain pathologies during the progression of AD, we express a great enthusiasm for the repositioning of anti-cancer drugs as possible AD DMTs. We anticipate an increasing number of combinatorial therapy strategies to tackle AD symptoms and their underlying pathologies. However, we strongly encourage improvements in clinical trial study designs to better assess target engagement and possible efficacy over sufficient periods of drug exposure.
Collapse
Affiliation(s)
- Jad Majeed
- University of Arizona Honors College, Tucson, Arizona, USA
| | - Marwan N. Sabbagh
- Alzheimer’s and Memory Disorders Division, Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Min H. Kang
- Department of Pediatrics, Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kevin Pruitt
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Ellie Reyna
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Maddy Brown
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
- Roseman University of Health Sciences, Las Vegas, Nevada, USA
| |
Collapse
|
10
|
Grim A, Veiga KR, Saad N. Deficiency of Adenosine Deaminase 2: Clinical Manifestations, Diagnosis, and Treatment. Rheum Dis Clin North Am 2023; 49:773-787. [PMID: 37821195 DOI: 10.1016/j.rdc.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Deficiency of adenosine deaminase 2 (DADA2) is a monogenic vasculitis syndrome caused by biallelic mutations in the adenosine deaminase 2 gene. The diagnosis of DADA2 is confirmed by decreased enzymatic activity of ADA2 and genetic testing. Symptoms range from cutaneous vasculitis and polyarteritis nodosa-like lesions to stroke. The vasculopathy of DADA2 can affect many organ systems, including the gastrointestinal and renal systems. Hematologic manifestations occur early with hypogammaglobulinemia, lymphopenia, pure red cell aplasia, or pancytopenia. Treatment can be challenging. Tumor necrosis factor inhibitors are helpful to control inflammatory symptoms. Hematopoietic stem cell transplant may be needed to treat refractory cytopenias, vasculopathy, or immunodeficiency.
Collapse
Affiliation(s)
- Andrew Grim
- Division of Pediatric Rheumatology, Department of Pediatrics, Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Keila R Veiga
- Division of Pediatric Rheumatology, Department of Pediatrics, New York Medical College/Maria Fareri Children's Hospital, 100 Woods Road, Valhalla, NY 10595, USA
| | - Nadine Saad
- Division of Pediatric Rheumatology, Department of Pediatrics, Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Donarska B, Sławińska-Brych A, Mizerska-Kowalska M, Zdzisińska B, Płaziński W, Łączkowski KZ. Thalidomide derivatives as nanomolar human neutrophil elastase inhibitors: Rational design, synthesis, antiproliferative activity and mechanism of action. Bioorg Chem 2023; 138:106608. [PMID: 37207596 DOI: 10.1016/j.bioorg.2023.106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Here, we rationally designed a human neutrophil elastase (HNE) inhibitors 4a-4f derived from thalidomide. The HNE inhibition assay showed that synthesized compounds 4a, 4b, 4e and 4f demonstrated strong HNE inhibiton properties with IC50 values of 21.78-42.30 nM. Compounds 4a, 4c, 4d and 4f showed a competitive mode of action. The most potent compound 4f shows almost the same HNE inhibition as sivelestat. The molecular docking analysis revealed that the strongest interactions occur between the azetidine-2,4-dione group and the following three aminoacids: Ser195, Arg217 and His57. A high correlation between the binding energies and the experimentally determined IC50 values was also demonstrated. The study of antiproliferative activity against human T47D (breast carcinoma), RPMI 8226 (multiple myeloma), and A549 (non-small-cell lung carcinoma) revealed that designed compounds were more active compared to thalidomide, pomalidomide and lenalidomide used as the standard drugs. Additionally, the most active compound 4f derived from lenalidomide induces cell cycle arrest at the G2/M phase and apoptosis in T47D cells.
Collapse
Affiliation(s)
- Beata Donarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland.
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland
| | - Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Cracow, Poland; Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Krzysztof Z Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
12
|
Pugnetti L, Curci D, Bidoli C, Gerdol M, Celsi F, Renzo S, Paci M, Lega S, Nonnis M, Maestro A, Brumatti LV, Lionetti P, Pallavicini A, Licastro D, Edomi P, Decorti G, Stocco G, Lucafò M, Bramuzzo M. Gene expression profiling in white blood cells reveals new insights into the molecular mechanisms of thalidomide in children with inflammatory bowel disease. Biomed Pharmacother 2023; 164:114927. [PMID: 37257228 DOI: 10.1016/j.biopha.2023.114927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Thalidomide has emerged as an effective immunomodulator in the treatment of pediatric patients with inflammatory bowel disease (IBD) refractory to standard therapies. Cereblon (CRBN), a component of E3 protein ligase complex that mediates ubiquitination and proteasomal degradation of target proteins, has been identified as the primary target of thalidomide. CRBN plays a crucial role in thalidomide teratogenicity, however it is unclear whether it is also involved in the therapeutic effects in IBD patients. This study aimed at identifying the molecular mechanisms underpinning thalidomide action in pediatric IBD. In this study, ten IBD pediatric patients responsive to thalidomide were prospectively enrolled. RNA-sequencing (RNA-seq) analysis and functional enrichment analysis were carried out on peripheral blood mononuclear cells (PBMC) obtained before and after twelve weeks of treatment with thalidomide. RNA-seq analysis revealed 378 differentially expressed genes before and after treatment with thalidomide. The most deregulated pathways were cytosolic calcium ion concentration, cAMP-mediated signaling, eicosanoid signaling and inhibition of matrix metalloproteinases. Neuronal signaling mechanisms such as CREB signaling in neurons and axonal guidance signaling also emerged. Connectivity Map analysis revealed that thalidomide gene expression changes were similar to those exposed to MLN4924, an inhibitor of NEDD8 activating enzyme, suggesting that thalidomide exerts its immunomodulatory effects by acting on the ubiquitin-proteasome pathway. In vitro experiments on cell lines confirmed the effect of thalidomide on candidate altered pathways observed in patients. These results represent a unique resource for enhanced understanding of thalidomide mechanism in pediatric patients with IBD, providing novel potential targets associated with drug response.
Collapse
Affiliation(s)
- Letizia Pugnetti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Debora Curci
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Carlotta Bidoli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Sara Renzo
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCSS, 50139 Florence, Italy
| | - Monica Paci
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCSS, 50139 Florence, Italy
| | - Sara Lega
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Martina Nonnis
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Alessandra Maestro
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Liza Vecchi Brumatti
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Paolo Lionetti
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCSS, 50139 Florence, Italy; Department NEUROFARBA, University of Florence, 50139 Florence, Italy
| | | | | | - Paolo Edomi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy; Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Gabriele Stocco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy; Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| |
Collapse
|
13
|
Dong RJ, Li J, Zhang Y, Li JS, Yang LH, Kuang YQ, Wang RR, Li YY. Thalidomide promotes NLRP3/caspase-1-mediated pyroptosis of macrophages in Talaromyces marneffei infection. Microb Pathog 2023:106168. [PMID: 37224982 DOI: 10.1016/j.micpath.2023.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Macrophage-derived inflammatory cytokines are critical for host defense against Talaromyces marneffei (T. marneffei) infection among HIV/AIDS patients, and excessive inflammatory cytokines are associated with poor outcomes of AIDS-associated talaromycosis. However, the underlying mechanisms of macrophage-caused pyroptosis and cytokine storm are poorly understood. Here, in the T. marneffei-infected mice and macrophages, we show that T. marneffei induced pyroptosis in macrophages through the NLRP3/caspase-1 pathway. The immunomodulatory drug thalidomide could promote the pyroptosis of macrophages infected T. marneffei. In T. marneffei-infected mice, the splenic macrophages underwent increasing pyroptosis as talaromycosis deteriorated. Thalidomide ameliorated inflammation of mice, while amphotericin B (AmB) in combination with thalidomide did not improve overall survival compared with AmB alone. Taken together, our findings suggest that thalidomide promotes NLRP3/caspase-1-mediated pyroptosis of macrophages in T. marneffei infection.
Collapse
Affiliation(s)
- Rong-Jing Dong
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
| | - Jun Li
- College of Pharmaceutical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Yi Zhang
- College of Pharmaceutical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Jia-Sheng Li
- College of Pharmaceutical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Lu-Hui Yang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yi-Qun Kuang
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming650032, China.
| | - Rui-Rui Wang
- College of Pharmaceutical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China.
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
14
|
Kopp KO, Greer ME, Glotfelty EJ, Hsueh SC, Tweedie D, Kim DS, Reale M, Vargesson N, Greig NH. A New Generation of IMiDs as Treatments for Neuroinflammatory and Neurodegenerative Disorders. Biomolecules 2023; 13:biom13050747. [PMID: 37238617 DOI: 10.3390/biom13050747] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The immunomodulatory imide drug (IMiD) class, which includes the founding drug member thalidomide and later generation drugs, lenalidomide and pomalidomide, has dramatically improved the clinical treatment of specific cancers, such as multiple myeloma, and it combines potent anticancer and anti-inflammatory actions. These actions, in large part, are mediated by IMiD binding to the human protein cereblon that forms a critical component of the E3 ubiquitin ligase complex. This complex ubiquitinates and thereby regulates the levels of multiple endogenous proteins. However, IMiD-cereblon binding modifies cereblon's normal targeted protein degradation towards a new set of neosubstrates that underlies the favorable pharmacological action of classical IMiDs, but also their adverse actions-in particular, their teratogenicity. The ability of classical IMiDs to reduce the synthesis of key proinflammatory cytokines, especially TNF-α levels, makes them potentially valuable to reposition as drugs to mitigate inflammatory-associated conditions and, particularly, neurological disorders driven by an excessive neuroinflammatory element, as occurs in traumatic brain injury, Alzheimer's and Parkinson's diseases, and ischemic stroke. The teratogenic and anticancer actions of classical IMiDs are substantial liabilities for effective drugs in these disorders and can theoretically be dialed out of the drug class. We review a select series of novel IMiDs designed to avoid binding with human cereblon and/or evade degradation of downstream neosubstrates considered to underpin the adverse actions of thalidomide-like drugs. These novel non-classical IMiDs hold potential as new medications for erythema nodosum leprosum (ENL), a painful inflammatory skin condition associated with Hansen's disease for which thalidomide remains widely used, and, in particular, as a new treatment strategy for neurodegenerative disorders in which neuroinflammation is a key component.
Collapse
Affiliation(s)
- Katherine O Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
| | - Margaret E Greer
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
- Faculty of Medicine, Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Shih-Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
| | - Dong Seok Kim
- Aevisbio Inc., Gaithersburg, MD 20878, USA
- Aevis Bio Inc., Daejeon 34141, Republic of Korea
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, G. d'Annunzio University of Chieti and Pescara, 66100 Chieti, Italy
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
| |
Collapse
|
15
|
Cumbres-Vargas IM, Zamudio SR, Pichardo-Macías LA, Ramírez-San Juan E. Thalidomide Attenuates Epileptogenesis and Seizures by Decreasing Brain Inflammation in Lithium Pilocarpine Rat Model. Int J Mol Sci 2023; 24:ijms24076488. [PMID: 37047461 PMCID: PMC10094940 DOI: 10.3390/ijms24076488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Thalidomide (TAL) has shown potential therapeutic effects in neurological diseases like epilepsy. Both clinical and preclinical studies show that TAL may act as an antiepileptic drug and as a possible treatment against disease development. However, the evidence for these effects is limited. Therefore, the antiepileptogenic and anti-inflammatory effects of TAL were evaluated herein. Sprague Dawley male rats were randomly allocated to one of five groups (n = 18 per group): control (C); status epilepticus (SE); SE-TAL (25 mg/kg); SE-TAL (50 mg/kg); and SE-topiramate (TOP; 60mg/kg). The lithium-pilocarpine model was used, and one day after SE induction the rats received pharmacological treatment for one week. The brain was obtained, and the hippocampus was micro-dissected 8, 18, and 28 days after SE. TNF-α, IL-6, and IL-1β concentrations were quantified. TOP and TAL (50 mg/kg) increased the latency to the first of many spontaneous recurrent seizures (SRS) and decreased SRS frequency, as well as decreasing TNF-α and IL-1β concentrations in the hippocampus. In conclusion, the results showed that both TAL (50 mg/kg) and TOP have anti-ictogenic and antiepileptogenic effects, possibly by decreasing neuroinflammation.
Collapse
Affiliation(s)
- Irán M Cumbres-Vargas
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Sergio R Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Luz A Pichardo-Macías
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Eduardo Ramírez-San Juan
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| |
Collapse
|
16
|
Lecca D, Hsueh SC, Luo W, Tweedie D, Kim DS, Baig AM, Vargesson N, Kim YK, Hwang I, Kim S, Hoffer BJ, Chiang YH, Greig NH. Novel, thalidomide-like, non-cereblon binding drug tetrafluorobornylphthalimide mitigates inflammation and brain injury. J Biomed Sci 2023; 30:16. [PMID: 36872339 PMCID: PMC9987061 DOI: 10.1186/s12929-023-00907-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Quelling microglial-induced excessive neuroinflammation is a potential treatment strategy across neurological disorders, including traumatic brain injury (TBI), and can be achieved by thalidomide-like drugs albeit this approved drug class is compromised by potential teratogenicity. Tetrafluorobornylphthalimide (TFBP) and tetrafluoronorbornylphthalimide (TFNBP) were generated to retain the core phthalimide structure of thalidomide immunomodulatory imide drug (IMiD) class. However, the classical glutarimide ring was replaced by a bridged ring structure. TFBP/TFNBP were hence designed to retain beneficial anti-inflammatory properties of IMiDs but, importantly, hinder cereblon binding that underlies the adverse action of thalidomide-like drugs. METHODS TFBP/TFNBP were synthesized and evaluated for cereblon binding and anti-inflammatory actions in human and rodent cell cultures. Teratogenic potential was assessed in chicken embryos, and in vivo anti-inflammatory actions in rodents challenged with either lipopolysaccharide (LPS) or controlled cortical impact (CCI) moderate traumatic brain injury (TBI). Molecular modeling was performed to provide insight into drug/cereblon binding interactions. RESULTS TFBP/TFNBP reduced markers of inflammation in mouse macrophage-like RAW264.7 cell cultures and in rodents challenged with LPS, lowering proinflammatory cytokines. Binding studies demonstrated minimal interaction with cereblon, with no resulting degradation of teratogenicity-associated transcription factor SALL4 or of teratogenicity in chicken embryo assays. To evaluate the biological relevance of its anti-inflammatory actions, two doses of TFBP were administered to mice at 1 and 24 h post-injury following CCI TBI. Compared to vehicle treatment, TFBP reduced TBI lesion size together with TBI-induction of an activated microglial phenotype, as evaluated by immunohistochemistry 2-weeks post-injury. Behavioral evaluations at 1- and 2-weeks post-injury demonstrated TFBP provided more rapid recovery of TBI-induced motor coordination and balance impairments, versus vehicle treated mice. CONCLUSION TFBP and TFNBP represent a new class of thalidomide-like IMiDs that lower proinflammatory cytokine generation but lack binding to cereblon, the main teratogenicity-associated mechanism. This aspect makes TFBP and TFNBP potentially safer than classic IMiDs for clinical use. TFBP provides a strategy to mitigate excessive neuroinflammation associated with moderate severity TBI to, thereby, improve behavioral outcome measures and warrants further investigation in neurological disorders involving a neuroinflammatory component.
Collapse
Affiliation(s)
- Daniela Lecca
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program National Institute On Aging, NIH, Baltimore, MD, 21224, USA
| | - Shih-Chang Hsueh
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program National Institute On Aging, NIH, Baltimore, MD, 21224, USA
| | - Weiming Luo
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program National Institute On Aging, NIH, Baltimore, MD, 21224, USA
| | - David Tweedie
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program National Institute On Aging, NIH, Baltimore, MD, 21224, USA
| | - Dong Seok Kim
- Aevisbio Inc., Gaithersburg, MD, 20878, USA
- Aevis Bio Inc., Daejeon, 34141, Republic of Korea
| | - Abdul Mannan Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, 74800, Pakistan
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Yu Kyung Kim
- Aevis Bio Inc., Daejeon, 34141, Republic of Korea
| | - Inho Hwang
- Aevis Bio Inc., Daejeon, 34141, Republic of Korea
| | - Sun Kim
- Aevis Bio Inc., Daejeon, 34141, Republic of Korea
| | - Barry J Hoffer
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Yung-Hsiao Chiang
- Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan.
- Department of Neurosurgery, Taipei Medical University Hospital, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| | - Nigel H Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program National Institute On Aging, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
17
|
Sangepu VR, Sharma D, Venkateshwarlu R, Bhoomireddy RD, Jain KK, Kapavarapu R, Dandela R, Pal M. In silico studies, sonochemical synthesis and biological evaluation of 4-substituted pyrimido[1,2-b]indazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Tawfik NM, Teiama MS, Iskandar SS, Osman A, Hammad SF. A Novel Nanoemulsion Formula for an Improved Delivery of a Thalidomide Analogue to Triple-Negative Breast Cancer; Synthesis, Formulation, Characterization and Molecular Studies. Int J Nanomedicine 2023; 18:1219-1243. [PMID: 36937550 PMCID: PMC10016366 DOI: 10.2147/ijn.s385166] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/20/2022] [Indexed: 03/13/2023] Open
Abstract
Background Thalidomide (THD) and its analogues were recently reported as a promising treatment for different types of solid tumors due to their antiangiogenic effect. Methods In this work, we synthesized a novel THD analogue (TA), and its chemistry was confirmed with different techniques such as IR, mass spectroscopy, elemental analysis as well as 1H and 13C NMR. To increase solubility and anticancer efficacy, a new oil in water (O/W) nanoemulsion (NE) was used in the formulation of the analogue. The novel formula's surface charge, size, stability, FTIR, FE-TEM, in vitro drug release and physical characteristics were investigated. Furthermore, molecular docking studies were conducted to predict the possible binding modes and molecular interactions behind the inhibitory activities of the THD and TA. Results TA showed a significant cytotoxic activity with IC50 ranging from 0.326 to 43.26 µmol/mL when evaluated against cancerous cells such as MCF-7, HepG2, Caco-2, LNCaP and RKO cell lines. The loaded analogue showed more potential cytotoxicity against MDA-MB-231 and MCF-7-ADR cell lines with IC50 values of 0.0293 and 0.0208 nmol/mL, respectively. Moreover, flow cytometry of cell cycle analysis and apoptosis were performed showing a suppression in the expression levels of TGF-β, MCL-1, VEGF, TNF-α, STAT3 and IL-6 in the MDA-MB-231 cell line. Conclusion The novel NE formula dramatically reduced the anticancer dosage of TA from micromolar efficiency to nanomolar efficiency. This indicates that the synthesized analogue exhibited high potency in the NE formulation and proved its efficacy against triple-negative breast cancer cell line.
Collapse
Affiliation(s)
- Noran M Tawfik
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohammed S Teiama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Sameh Samir Iskandar
- Fellow and Head of Surgical Oncology Department, Ismailia Teaching Oncology Hospital (GOTHI), Ismailia, Egypt
| | - Ahmed Osman
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sherif F Hammad
- PharmD Programs, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
19
|
Mayr L, Steinmaurer T, Weseslindtner L, Madlener S, Strassl R, Gojo J, Azizi AA, Slavc I, Peyrl A. Viral infections in pediatric brain tumor patients treated with targeted therapies. Pediatr Blood Cancer 2023; 70:e30065. [PMID: 36308741 DOI: 10.1002/pbc.30065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Brain tumors are the most common solid malignancies and the leading cause of cancer-related mortality in children. While numerous studies report on viral infections in children with hematologic malignancies and solid organ transplantation, epidemiologic data on the incidence and outcome of viral infections in pediatric patients with brain tumors treated with targeted therapies are still lacking. OBJECTIVES/STUDY DESIGN We retrospectively reviewed all children with brain tumors receiving targeted therapies in a primary or recurrent setting at the Medical University of Vienna from 2006 to 2021. Demographic variables, quantitative and qualitative parameters of possible infections, and treatment outcomes were recorded. RESULTS In our cohort (n = 117), 36% of the patients developed at least one PCR-proven viral infection. Respiratory and gastrointestinal tract infections were most common, with 31% and 25%, respectively. Central nervous system (CNS) infections occurred in approximately 10%, with an almost equal distribution of varicella-zoster virus, John Cunningham virus (JCV), and enterovirus. Two patients tested PCR-positive for SARS-CoV-2 infection, with one virus-related death caused by a SARS-CoV-2-related acute respiratory distress syndrome. Patients receiving bevacizumab or mTOR inhibitors seem to have a greater susceptibility to viral infections. CONCLUSION Pediatric patients with brain tumors receiving targeted therapies have a higher risk of viral infections when compared to children receiving conventional chemotherapy or the general population, and life-threatening infections can occur. Fast detection and upfront treatment are paramount to prevent life-threatening infections in immunocompromised children suffering from brain tumors receiving targeted therapies.
Collapse
Affiliation(s)
- Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Tobias Steinmaurer
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Robert Strassl
- Department of Virology, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Lecca D, Jung YJ, Scerba MT, Hwang I, Kim YK, Kim S, Modrow S, Tweedie D, Hsueh S, Liu D, Luo W, Glotfelty E, Li Y, Wang J, Luo Y, Hoffer BJ, Kim DS, McDevitt RA, Greig NH. Role of chronic neuroinflammation in neuroplasticity and cognitive function: A hypothesis. Alzheimers Dement 2022; 18:2327-2340. [PMID: 35234334 PMCID: PMC9437140 DOI: 10.1002/alz.12610] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Evaluating the efficacy of 3,6'-dithioPomalidomide in 5xFAD Alzheimer's disease (AD) mice to test the hypothesis that neuroinflammation is directly involved in the development of synaptic/neuronal loss and cognitive decline. BACKGROUND Amyloid-β (Aβ) or tau-focused clinical trials have proved unsuccessful in mitigating AD-associated cognitive impairment. Identification of new drug targets is needed. Neuroinflammation is a therapeutic target in neurodegenerative disorders, and TNF-α a pivotal neuroinflammatory driver. NEW HYPOTHESIS AD-associated chronic neuroinflammation directly drives progressive synaptic/neuronal loss and cognitive decline. Pharmacologically mitigating microglial/astrocyte activation without altering Aβ generation will define the role of neuroinflammation in AD progression. MAJOR CHALLENGES Difficulty of TNF-α-lowering compounds reaching brain, and identification of a therapeutic-time window to preserve the beneficial role of neuroinflammatory processes. LINKAGE TO OTHER MAJOR THEORIES Microglia/astroglia are heavily implicated in maintenance of synaptic plasticity/function in healthy brain and are disrupted by Aβ. Mitigation of chronic gliosis can restore synaptic homeostasis/cognitive function.
Collapse
Affiliation(s)
- Daniela Lecca
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| | - Yoo Jin Jung
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA,Stanford Neurosciences Interdepartmental ProgramStanford University School of MedicineStanfordCaliforniaUSA
| | - Michael T. Scerba
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| | | | | | - Sun Kim
- Aevis Bio, Inc.DaejeonRepublic of Korea
| | - Sydney Modrow
- Comparative Medicine SectionNational Institute on AgingBaltimoreMarylandUSA
| | - David Tweedie
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| | - Shih‐Chang Hsueh
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| | - Dong Liu
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| | - Weiming Luo
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| | - Elliot Glotfelty
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA,Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Yazhou Li
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| | - Jia‐Yi Wang
- Graduate Institute of Medical SciencesTaipei Medical UniversityTaipeiTaiwan,Department of NeurosurgeryTaipei Medical University HospitalTaipei Medical UniversityTaipeiTaiwan,Neuroscience Research CenterTaipei Medical UniversityTaipeiTaiwan
| | - Yu Luo
- Department of Molecular Genetics and BiochemistryCollege of MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Barry J. Hoffer
- Department of Neurological SurgeryCase Western Reserve University HospitalClevelandOhioUSA
| | - Dong Seok Kim
- Aevis Bio, Inc.DaejeonRepublic of Korea,AevisBio, Inc.GaithersburgMarylandUSA
| | - Ross A. McDevitt
- Comparative Medicine SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Nigel H. Greig
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| |
Collapse
|
21
|
Andrews PL, Williams RS, Sanger GJ. Anti-emetic effects of thalidomide: Evidence, mechanism of action, and future directions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100138. [PMID: 36568268 PMCID: PMC9780081 DOI: 10.1016/j.crphar.2022.100138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The rationale for using thalidomide (THD) as a treatment for nausea and vomiting during pregnancy in the late 1950s appears to have been based on its sedative or hypnotic properties. In contrast to contemporaneous studies on the anti-emetic activity of phenothiazines, we were unable to identify publications reporting preclinical or clinical evaluation of THD as an anti-emetic. Our survey of the literature revealed a clinical study in 1965 showing THD reduced vomiting in cancer chemotherapy which was substantiated by similar studies from 2000, particularly showing efficacy in the delayed phase of chemotherapy-induced nausea and vomiting. To identify the mechanism(s) potentially involved in thalidomide's anti-emetic activity we reviewed its pharmacology in the light of nausea and vomiting mechanisms and their pharmacology with a particular emphasis on chemotherapy and pregnancy. The process identified the following potential mechanisms: reduced secretion of Growth Differentiation Factor 15, suppression of inflammation/prostaglandin production, downregulation of cytotoxic drug induced upregulation of iNOS, and modulation of BK (KCa1.1) channels and GABAA/glutamate transmission at critical points in the emetic pathways (nucleus tractus solitarius, area postrema). We propose ways to investigate these hypothesized mechanisms and discuss the associated challenges (e.g., objective quantification of nausea) in addition to some of the more general aspects of developing novel drugs to treat nausea and vomiting.
Collapse
Affiliation(s)
- Paul L.R. Andrews
- Division of Biomedical Sciences, St George's University of London, London, United Kingdom
| | - Robin S.B. Williams
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Gareth J. Sanger
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
22
|
Sangepu VR, Sharma D, Venkateshwarlu R, Bhoomireddy RD, Jain KK, Dandela R, Pal M. Ultrasound Assisted α‐Arylation of Ketones: A Rapid Access to Isoquinolinone Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202202710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Venkateswara Rao Sangepu
- Process Research and Development Dr. Reddy's Laboratories Limited CTO-Unit 5 Peddadevulapally Nalgonda 508207 India
- Department of Chemistry College of Engineering Jawaharlal Nehru Technological University Hyderabad Hyderabad, 500 085 Telangana India
| | - Deepika Sharma
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology, Indianoil Odisha Campus, Samantpuri Bhubaneswar 751013 India
| | - Rapolu Venkateshwarlu
- Process Research and Development Dr. Reddy's Laboratories Limited IDA Bollaram Hyderabad Telangana 502325 India
| | - Rama Devi Bhoomireddy
- Department of Chemistry College of Engineering Jawaharlal Nehru Technological University Hyderabad Hyderabad, 500 085 Telangana India
| | - Kirti Kumar Jain
- Process Research and Development Dr. Reddy's Laboratories Limited IDA Bollaram Hyderabad Telangana 502325 India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology, Indianoil Odisha Campus, Samantpuri Bhubaneswar 751013 India
| | - Manojit Pal
- Dr. Reddy's Institute of Life Sciences University of Hyderabad Campus Hyderabad 500046 India
| |
Collapse
|
23
|
Hsueh SC, Scerba MT, Tweedie D, Lecca D, Kim DS, Baig AM, Kim YK, Hwang I, Kim S, Selman WR, Hoffer BJ, Greig NH. Activity of a Novel Anti-Inflammatory Agent F-3,6'-dithiopomalidomide as a Treatment for Traumatic Brain Injury. Biomedicines 2022; 10:2449. [PMID: 36289711 PMCID: PMC9598880 DOI: 10.3390/biomedicines10102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for several neurodegenerative disorders, including Parkinson's disease (PD) and Alzheimer's disease (AD). Neuroinflammation is a cause of later secondary cell death following TBI, has the potential to aggravate the initial impact, and provides a therapeutic target, albeit that has failed to translate into clinical trial success. Thalidomide-like compounds have neuroinflammation reduction properties across cellular and animal models of TBI and neurodegenerative disorders. They lower the generation of proinflammatory cytokines, particularly TNF-α which is pivotal in microglial cell activation. Unfortunately, thalidomide-like drugs possess adverse effects in humans before achieving anti-inflammatory drug levels. We developed F-3,6'-dithiopomalidomide (F-3,6'-DP) as a novel thalidomide-like compound to ameliorate inflammation. F-3,6'-DP binds to cereblon but does not efficiently trigger the degradation of the transcription factors (SALL4, Ikaros, and Aiolos) associated with the teratogenic and anti-proliferative responses of thalidomide-like drugs. We utilized a phenotypic drug discovery approach that employed cellular and animal models in the selection and development of F-3,6'-DP. F-3,6'-DP significantly mitigated LPS-induced inflammatory markers in RAW 264.7 cells, and lowered proinflammatory cytokine/chemokine levels in the plasma and brain of rats challenged with systemic LPS. We subsequently examined immunohistochemical, biochemical, and behavioral measures following controlled cortical impact (CCI) in mice, a model of moderate TBI known to induce inflammation. F-3,6'-DP decreased CCI-induced neuroinflammation, neuronal loss, and behavioral deficits when administered after TBI. F-3,6'-DP represents a novel class of thalidomide-like drugs that do not lower classical cereblon-associated transcription factors but retain anti-inflammatory actions and possess efficacy in the treatment of TBI and potentially longer-term neurodegenerative disorders.
Collapse
Affiliation(s)
- Shih Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Michael T. Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Daniela Lecca
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD 20878, USA
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Abdul Mannan Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | | | | | - Sun Kim
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Warren R. Selman
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Barry J. Hoffer
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
24
|
Santana AC, Andraus W, Silva FMO, Sala ACG, Schust AS, Neri LHM, Feliciano R, Pepineli R, Dellê H, Ruiz LM, de Oliveira-Braga KA, Nepomuceno NA, Pêgo-Fernandes PM, Dos Santos MJ, de Moraes EL, Brasil S, Figueiredo EG. Thalidomide modulates renal inflammation induced by brain death experimental model. Transpl Immunol 2022; 75:101710. [PMID: 36096418 DOI: 10.1016/j.trim.2022.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Brain death (BD) is characterized by a complex inflammatory response, resulting in dysfunction of potentially transplantable organs. This process is modulated by cytokines, which amplify graft immunogenicity. We have investigated the inflammatory response in an animal model of BD and analyzed the effects of thalidomide, a drug with powerful immunomodulatory properties. METHODS BD was induced in male Lewis rats. We studied three groups: Control (sham-operated rats) (n = 6), BD (rats subjected to brain death) (n = 6) and BD + Thalid (BD rats treated with one dose of thalidomide (200 mg/Kg), administered by gavage) (n = 6). Six hours after BD, serum levels of urea and creatinine, as well as systemic and renal tissue protein levels of TNF-α and IL-6, were analyzed. We also determined the mRNA expression of ET-1, and macrophage infiltration by immunohistochemistry. RESULTS BD induced a striking inflammatory status, demonstrated by a significant increase of plasma cytokines: TNF-α (2.8 ± 4.3 pg/mL [BD] vs. 9.4 ± 2.8 pg/mL [Control]), and IL-6 (6219.5 ± 1380.6 pg/mL [BD] vs. 1854.7 ± 822.6 pg/mL [Control]), and in the renal tissue: TNF-α (2.5 ± 0.3 relative expression [BD] vs. 1.0 ± 0.4 relative expression [Control]; p < 0.05), and IL-6 (4.0 ± 0.4 relative expression [BD] vs. 1.0 ± 0.3 relative expression [Control]; p < 0.05). Moreover, BD increased macrophages infiltration (2.47 ± 0.07 cells/field [BD] vs. 1.20 ± 0.05 cells/field [Control]; p < 0.05), and ET-1 gene expression (2.5 ± 0.3 relative expression [BD] vs. 1.0 ± 0.2 relative expression [Control]; p < 0.05). In addition, we have observed deterioration in renal function, characterized by an increase of urea (194.7 ± 25.0 mg/dL [BD] vs. 108.0 ± 14.2 mg/dL [Control]; p < 0.05) and creatinine (1.4 ± 0.04 mg/dL [BD] vs. 1.0 ± 0.07 mg/dL [Control]; p < 0.05) levels. Thalidomide administration significantly reduced plasma cytokines: TNF-α (5.1 ± 1.4 pg/mL [BD + Thalid] vs. BD; p < 0.05), and IL-6 (1056.5 ± 488.3 pg/mL [BD + Thalid] vs. BD; p < 0.05), as well as in the renal tissue: TNF-α (1.5 ± 0.2 relative expression [BD + Thalid] vs. BD; p < 0.05), and IL-6 (2.1 ± 0.3 relative expression [BD + Thalid] vs. BD; p < 0.05). Thalidomide treatment also induced a significant decrease in the expression of ET-1 (1.4 ± 0.3 relative expression [BD + Thalid] vs. BD; p < 0.05), and macrophages infiltration (1.17 ± 0.06 cells/field [BD + Thalid] vs. BD; p < 0.05). Also thalidomide prevented kidney function failure by reduced urea (148.3 ± 4.4 mg/dL [BD + Thalid] vs. BD; p < 0.05), and creatinine (1.1 ± 0.14 mg/dL [BD + Thalid] vs. BD; p < 0.05). CONCLUSIONS The immunomodulatory properties of thalidomide were effective in decreasing systemic and local immunologic response, leading to diminished renal damage, as reflected in the decrease of urea and creatinine levels. These results suggest that use of thalidomide may represent a potential strategy for treating in BD kidney organ donors.
Collapse
Affiliation(s)
- Alexandre Chagas Santana
- Neurological Surgery Department, University of São Paulo, School of Medicine, São Paulo, Brazil; Organ Procurement Organization, Hospital das Clínicas, University of São Paulo, School of Medicine, São Paulo, Brazil.
| | - Wellington Andraus
- Gastroenterology Department, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | | | | | | | - Regiane Feliciano
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Rafael Pepineli
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Humberto Dellê
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Liliane Moreira Ruiz
- Cardiopneumology Department, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | | | | | | | - Edvaldo Leal de Moraes
- Organ Procurement Organization, Hospital das Clínicas, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Sergio Brasil
- Neurological Surgery Department, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
25
|
Wang R, Zhang X, Wang S. Differential genotypes of TNF-α and IL-10 for immunological diagnosis in discoid lupus erythematosus and oral lichen planus: A narrative review. Front Immunol 2022; 13:967281. [PMID: 35990645 PMCID: PMC9389012 DOI: 10.3389/fimmu.2022.967281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 01/24/2023] Open
Abstract
Discoid lupus erythematosus and oral lichen planus are chronic systemic immune system-mediated diseases with unclear etiology and pathogenesis. The oral mucosa is the common primary site of pathogenesis in both, whereby innate and adaptive immunity and inflammation play crucial roles. The clinical manifestations of discoid lupus erythematosus on the oral mucosa are very similar to those of oral lichen planus; therefore, its oral lesion is classified under oral lichenoid lesions. In practice, the differential diagnosis of discoid lupus erythematosus and oral lichen planus has always relied on the clinical manifestations, with histopathological examination as an auxiliary diagnostic tool. However, the close resemblance of the clinical manifestations and histopathology proves challenging for accurate differential diagnosis and further treatment. In most cases, dentists and pathologists fail to distinguish between the conditions during the early stages of the lesions. It should be noted that both are considered to be precancerous conditions, highlighting the significance of early diagnosis and treatment. In the context of unknown etiology and pathogenesis, we suggest a serological and genetic diagnostic method based on TNF-α and IL-10. These are the two most common cytokines produced by the innate and adaptive immune systems and they play a fundamental role in maintaining immune homeostasis and modulating inflammation. The prominent variability in their expression levels and gene polymorphism typing in different lesions compensates for the low specificity of current conventional diagnostic protocols. This new diagnostic scheme, starting from the immunity and inflammation of the oral mucosa, enables simultaneous comparison of discoid lupus erythematosus and oral lichen planus. With relevant supportive evidence, this information can enhance physicians’ understanding of the two diseases, contribute to precision medicine, and aid in prevention of precancerous conditions.
Collapse
Affiliation(s)
- Ruochong Wang
- Emergency Department, State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuefeng Zhang
- Emergency Department, State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Siyu Wang
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Siyu Wang,
| |
Collapse
|
26
|
Cristina Cardia M, Francesca Palmas M, Casula L, Pisanu A, Marceddu S, Valenti D, Sinico C, Pini E, Scerba MT, Tweedie D, Greig NH, Rosa Carta A, Lai F. Nanocrystals as an effective strategy to improve Pomalidomide bioavailability in rodent. Int J Pharm 2022; 625:122079. [PMID: 35932932 DOI: 10.1016/j.ijpharm.2022.122079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Pomalidomide (POM) is an FDA-approved immunomodulatory imide drug (IMiDs) an it is effectively used in the treatment of multiple myeloma. IMiDs are analogs of the drug thalidomide and they have been repurposed for the treatment of several diseases such as psoriatic arthritis and Kaposi Sarcoma. In recent years, IMiDs have been also evaluated as a new treatment for neurological disorders with an inflammatory and neuroinflammatory component. POM draws particular interest for its potent anti-TNF-α activity at significantly lower concentrations than the parent compound thalidomide. However, POM's low water solubility underpins its low gastrointestinal permeability resulting in irregular and poor absorption. The purpose of this work was to prepare a POM nanocrystal-based formulation that could efficiently improve POM's plasma and brain concentration after intraperitoneal injection. POM nanocrystals prepared as a nanosuspension by the media milling method showed a mean diameter of 219 nm and a polydispersity index of 0.21. POM's nanocrystal solubility value (22.97 µg/mL) in phosphate buffer was about 1.58 folds higher than the POM raw powder. Finally, in vivo studies conducted in adult Male Sprague-Dawley rats indicated that POM nanocrystal ensured higher and longer-lasting drug levels in plasma and brain when compared with POM coarse suspension.
Collapse
Affiliation(s)
- Maria Cristina Cardia
- Department of Life and Environmental Sciences, Unit of Drug Sciences, University of Cagliari, Cagliari, Italy
| | | | - Luca Casula
- Department of Life and Environmental Sciences, Unit of Drug Sciences, University of Cagliari, Cagliari, Italy
| | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, Cagliari, Italy
| | - Salvatore Marceddu
- Institute of Sciences of Food Production (ISPA-CNR), Baldinca (Sassari), Italy
| | - Donatella Valenti
- Department of Life and Environmental Sciences, Unit of Drug Sciences, University of Cagliari, Cagliari, Italy
| | - Chiara Sinico
- Department of Life and Environmental Sciences, Unit of Drug Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Pini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Italy
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Anna Rosa Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Francesco Lai
- Department of Life and Environmental Sciences, Unit of Drug Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
27
|
Wang D, Hu X, Yin X, Cui C, Yang X, Li Y, Ding G, Wu Q. Effectiveness of thalidomide for ankylosing spondylitis: a meta-analysis of randomized controlled trials in China. Clin Rheumatol 2022; 41:2929-2938. [PMID: 35635651 DOI: 10.1007/s10067-022-06220-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
Several studies have demonstrated the benefits of thalidomide as a treatment for patients with ankylosing spondylitis (AS); however, published literature reported controversial results. We conducted a meta-analysis to systematically evaluate the efficacy of thalidomide in AS patients. PubMed, Embase, Cochrane Library, Web of Science, Wanfang Data, and China National Knowledge Infrastructure (CNKI) were searched for relevant studies. The Q test and I2 statistic were used to examine between-study heterogeneity. Fixed- or random-effects models were selected based on study heterogeneity. The risk difference (RD), absolute risk reduction (ARR), and weighted mean difference (WMD) with 95% confidence intervals (CI) were pooled for dichotomous or continuous data, as appropriate. Sensitivity analyses, funnel plots, and the Begg's tests were also performed. Overall, 19 trials with 1471 patients were included. The effectiveness of thalidomide alone and combined with other drugs was significantly higher than the control group, and the pooled RDs were 0.15 (95% CI: 0.10-0.20, I2 = 0%) and 0.20 (95% CI: 0.14-0.25, I2 = 13.4%), respectively. Thalidomide treatment yielded significant improvements in secondary outcomes for patients with AS. The adverse reaction rate for thalidomide alone was low than that for the control group (ARR = 0.08, 95% CI: 0.01-0.15, I2 = 0.0%), while there was no significant difference in the safety between the group in which thalidomide was combined with other drugs and the control (ARR = 0.03, 95% CI: - 0.04-0.10, I2 = 41.1%). The findings suggest that thalidomide improves the effectiveness of AS treatment, which should be considered by physicians. However, owing to the inclusion of several low-quality and Chinese studies, additional rigorous randomized controlled trials (RCTs) are needed in the future to confirm the results of this meta‑analysis.
Collapse
Affiliation(s)
- Dongsen Wang
- Clinical Medical College of Jining Medical University, Jining, 272067, Shandong Province, China.,Department of Emergency, Jining No. 1 People's Hospital, No. 6 Jian kang Road, Jining, 272011, Shandong Province, China
| | - Xuemei Hu
- Clinical Medical College of Jining Medical University, Jining, 272067, Shandong Province, China.,Department of Emergency, Jining No. 1 People's Hospital, No. 6 Jian kang Road, Jining, 272011, Shandong Province, China
| | - Xuan Yin
- Department of Rheumatology and Immunology, Jining No. 1 People's Hospital, Jining, 272011, Shandong Province, China
| | - Chunying Cui
- Department of Emergency, Jining No. 1 People's Hospital, No. 6 Jian kang Road, Jining, 272011, Shandong Province, China
| | - Xue Yang
- Department of Emergency, Jining No. 1 People's Hospital, No. 6 Jian kang Road, Jining, 272011, Shandong Province, China
| | - Yuqing Li
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, Shandong Province, China
| | - Guoyong Ding
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619 Changcheng Road, Taian, 271016, Shandong Province, China.
| | - Qingjian Wu
- Department of Emergency, Jining No. 1 People's Hospital, No. 6 Jian kang Road, Jining, 272011, Shandong Province, China.
| |
Collapse
|
28
|
Padhi D, Govindaraju T. Mechanistic Insights for Drug Repurposing and the Design of Hybrid Drugs for Alzheimer's Disease. J Med Chem 2022; 65:7088-7105. [PMID: 35559617 DOI: 10.1021/acs.jmedchem.2c00335] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The heterogeneity and complex nature of Alzheimer's disease (AD) is attributed to several genetic risk factors and molecular culprits. The slow pace and increasing failure rate of conventional drug discovery has led to the exploration of complementary strategies based on repurposing approved drugs to treat AD. Drug repurposing (DR) is a cost-effective, low-risk, and efficient approach for identifying novel therapeutic candidates for AD treatment. Similarly, hybrid drug design through the integration of distinct pharmacophores from known or failed drugs and natural products is an interesting strategy to target the multifactorial nature of AD. In this Perspective, we discuss the potential of DR and highlight promising drug candidates that can be advanced for clinical trials, backed by a detailed discussion on their plausible mechanisms of action. Our article fosters research on the hidden potential of DR and hybrid drug design with the goal of unravelling new drugs and targets to tackle AD.
Collapse
Affiliation(s)
- Dikshaa Padhi
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
29
|
Cai C, Lu J, Lai L, Song D, Shen J, Tong J, Zheng Q, Wu K, Qian J, Ran Z. Drug therapy and monitoring for inflammatory bowel disease: a multinational questionnaire investigation in Asia. Intest Res 2022; 20:213-223. [PMID: 35508955 PMCID: PMC9081996 DOI: 10.5217/ir.2021.00031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background/Aims The incidence and prevalence of inflammatory bowel disease (IBD) is rising in Asia recently. The study aimed to obtain a comprehensive understanding of the current status of drug therapy and monitoring for IBD in Asia. Methods A questionnaire investigation on drug therapy and monitoring for IBD was conducted right before the 6th Annual Meeting of Asian Organization for Crohn’s & Colitis. Questionnaires were provided to Asian physicians to fill out via emails between March and May 2018. Results In total, responses of 166 physicians from 129 medical centers were included for analysis. Among the surveyed regions, the most average number of IBD specialist gastroenterologists and nurses was 4.8 per center in Taiwan and 2.5 per center in Mainland China, respectively. 5-Aminosalicylic acid/sulfasalazine (99.4%) was the most preferred first-line choice for mild-moderate ulcerative colitis (UC), meanwhile corticosteroid (83.7%) was widely applied for severe UC. The first-line medication for Crohn’s disease (CD) markedly varied as corticosteroid (68.1%) was the most favored in Mainland China, Japan, and South Korea, followed by infliximab (52.4%) and azathioprine (47.0%). Step-up strategy was preferred in mild-moderate UC (96.4%), while 51.8% of the physicians selected top-down treatment for CD. Only 25.9% and 17.5% of the physicians could test blood concentration of infliximab and antibody to infliximab in their hospitals, respectively. Conclusions The current status of drug therapy and monitoring for IBD in Asia possesses commonalities as well as differences. Asian recommendations, IBD specialist teams and practice of therapeutic drug monitoring are required to improve IBD management in Asia.
Collapse
|
30
|
Tsai YR, Kim DS, Hsueh SC, Chen KY, Wu JCC, Wang JY, Tsou YS, Hwang I, Kim Y, Gil D, Jo EJ, Han BS, Tweedie D, Lecca D, Scerba MT, Selman WR, Hoffer BJ, Greig NH, Chiang YH. 3,6'- and 1,6'-Dithiopomalidomide Mitigate Ischemic Stroke in Rats and Blunt Inflammation. Pharmaceutics 2022; 14:950. [PMID: 35631536 PMCID: PMC9146426 DOI: 10.3390/pharmaceutics14050950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 01/20/2023] Open
Abstract
(1) Background: An important concomitant of stroke is neuroinflammation. Pomalidomide, a clinically available immunomodulatory imide drug (IMiD) used in cancer therapy, lowers TNF-α generation and thus has potent anti-inflammatory actions. Well-tolerated analogs may provide a stroke treatment and allow evaluation of the role of neuroinflammation in the ischemic brain. (2) Methods: Two novel pomalidomide derivatives, 3,6'-dithiopomalidomide (3,6'-DP) and 1,6'-dithiopomalidomide (1,6'-DP), were evaluated alongside pomalidomide in a rat middle cerebral artery occlusion (MCAo) stroke model, and their anti-inflammatory actions were characterized. (3) Results: Post-MCAo administration of all drugs lowered pro-inflammatory TNF-α and IL1-β levels, and reduced stroke-induced postural asymmetry and infarct size. Whereas 3,6'- and 1,6'-DP, like pomalidomide, potently bound to cereblon in cellular studies, 3,6'-DP did not lower Ikaros, Aiolos or SALL4 levels-critical intermediates mediating the anticancer/teratogenic actions of pomalidomide and IMiDs. 3,6'-DP and 1,6'-DP lacked activity in mammalian chromosome aberration, AMES and hERG channel assays -critical FDA regulatory tests. Finally, 3,6'- and 1,6'-DP mitigated inflammation across rat primary dopaminergic neuron and microglia mixed cultures challenged with α-synuclein and mouse LPS-challenged RAW 264.7 cells. (4) Conclusion: Neuroinflammation mediated via TNF-α plays a key role in stroke outcome, and 3,6'-DP and 1,6'-DP may prove valuable as stroke therapies and thus warrant further preclinical development.
Collapse
Affiliation(s)
- Yan-Rou Tsai
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan; (Y.-R.T.); (K.-Y.C.); (J.C.-C.W.); (J.-Y.W.)
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
| | - Dong Seok Kim
- Aevisbio Inc., Gaithersburg, MD 20878, USA;
- Aevis Bio Inc., Daejeon 34141, Korea; (I.H.); (Y.K.); (D.G.); (E.J.J.)
| | - Shih-Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA; (S.-C.H.); (D.T.); (D.L.); (M.T.S.)
| | - Kai-Yun Chen
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan; (Y.-R.T.); (K.-Y.C.); (J.C.-C.W.); (J.-Y.W.)
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - John Chung-Che Wu
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan; (Y.-R.T.); (K.-Y.C.); (J.C.-C.W.); (J.-Y.W.)
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jia-Yi Wang
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan; (Y.-R.T.); (K.-Y.C.); (J.C.-C.W.); (J.-Y.W.)
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
| | - Yi-Syue Tsou
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
| | - Inho Hwang
- Aevis Bio Inc., Daejeon 34141, Korea; (I.H.); (Y.K.); (D.G.); (E.J.J.)
| | - Yukyung Kim
- Aevis Bio Inc., Daejeon 34141, Korea; (I.H.); (Y.K.); (D.G.); (E.J.J.)
| | - Dayeon Gil
- Aevis Bio Inc., Daejeon 34141, Korea; (I.H.); (Y.K.); (D.G.); (E.J.J.)
| | - Eui Jung Jo
- Aevis Bio Inc., Daejeon 34141, Korea; (I.H.); (Y.K.); (D.G.); (E.J.J.)
| | - Baek-Soo Han
- Research Center for Biodefence, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea;
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA; (S.-C.H.); (D.T.); (D.L.); (M.T.S.)
| | - Daniela Lecca
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA; (S.-C.H.); (D.T.); (D.L.); (M.T.S.)
| | - Michael T. Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA; (S.-C.H.); (D.T.); (D.L.); (M.T.S.)
| | - Warren R. Selman
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH 44106, USA; (W.R.S.); (B.J.H.)
- University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Barry J. Hoffer
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH 44106, USA; (W.R.S.); (B.J.H.)
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA; (S.-C.H.); (D.T.); (D.L.); (M.T.S.)
| | - Yung-Hsiao Chiang
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan; (Y.-R.T.); (K.-Y.C.); (J.C.-C.W.); (J.-Y.W.)
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
31
|
Anti-rheumatic drug-induced hepatitis B virus reactivation and preventive strategies for hepatocellular carcinoma. Pharmacol Res 2022; 178:106181. [PMID: 35301112 DOI: 10.1016/j.phrs.2022.106181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022]
Abstract
To date, an estimated 3 million people worldwide have been infected with chronic hepatitis B virus (HBV). Although anti-HBV therapies have improved the long-term survival profile of chronic carriers, viral reactivation still poses a significant challenge for preventing HBV-related hepatitis, hepatocellular carcinoma (HCC), and death. Immuno-modulating drugs, which are widely applied in managing rheumatic conditions, are commonly associated with HBV reactivation (HBVr) as a result of drug-induced immune suppression. However, there are few reports on the risk of HBVr and the medication management plan for HBV carriers, especially rheumatic patients. In this review, we summarize immuno-modulating drug-induced HBVr during rheumatoid therapy and its preventive strategies for HBVr-induced liver diseases, especially cirrhosis and HCC. These findings will assist with developing treatments for rheumatic patients, and prevent HBV-related cirrhosis and HCC.
Collapse
|
32
|
Lucas R, Hadizamani Y, Enkhbaatar P, Csanyi G, Caldwell RW, Hundsberger H, Sridhar S, Lever AA, Hudel M, Ash D, Ushio-Fukai M, Fukai T, Chakraborty T, Verin A, Eaton DC, Romero M, Hamacher J. Dichotomous Role of Tumor Necrosis Factor in Pulmonary Barrier Function and Alveolar Fluid Clearance. Front Physiol 2022; 12:793251. [PMID: 35264975 PMCID: PMC8899333 DOI: 10.3389/fphys.2021.793251] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023] Open
Abstract
Alveolar-capillary leak is a hallmark of the acute respiratory distress syndrome (ARDS), a potentially lethal complication of severe sepsis, trauma and pneumonia, including COVID-19. Apart from barrier dysfunction, ARDS is characterized by hyper-inflammation and impaired alveolar fluid clearance (AFC), which foster the development of pulmonary permeability edema and hamper gas exchange. Tumor Necrosis Factor (TNF) is an evolutionarily conserved pleiotropic cytokine, involved in host immune defense against pathogens and cancer. TNF exists in both membrane-bound and soluble form and its mainly -but not exclusively- pro-inflammatory and cytolytic actions are mediated by partially overlapping TNFR1 and TNFR2 binding sites situated at the interface between neighboring subunits in the homo-trimer. Whereas TNFR1 signaling can mediate hyper-inflammation and impaired barrier function and AFC in the lungs, ligand stimulation of TNFR2 can protect from ventilation-induced lung injury. Spatially distinct from the TNFR binding sites, TNF harbors within its structure a lectin-like domain that rather protects lung function in ARDS. The lectin-like domain of TNF -mimicked by the 17 residue TIP peptide- represents a physiological mediator of alveolar-capillary barrier protection. and increases AFC in both hydrostatic and permeability pulmonary edema animal models. The TIP peptide directly activates the epithelial sodium channel (ENaC) -a key mediator of fluid and blood pressure control- upon binding to its α subunit, which is also a part of the non-selective cation channel (NSC). Activity of the lectin-like domain of TNF is preserved in complexes between TNF and its soluble TNFRs and can be physiologically relevant in pneumonia. Antibody- and soluble TNFR-based therapeutic strategies show considerable success in diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel disease, but their chronic use can increase susceptibility to infection. Since the lectin-like domain of TNF does not interfere with TNF's anti-bacterial actions, while exerting protective actions in the alveolar-capillary compartments, it is currently evaluated in clinical trials in ARDS and COVID-19. A more comprehensive knowledge of the precise role of the TNFR binding sites versus the lectin-like domain of TNF in lung injury, tissue hypoxia, repair and remodeling may foster the development of novel therapeutics for ARDS.
Collapse
Affiliation(s)
- Rudolf Lucas
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Rudolf Lucas,
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Robert W. Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Harald Hundsberger
- Department of Medical Biotechnology, University of Applied Sciences, Krems, Austria,Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Supriya Sridhar
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Alice Ann Lever
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Dipankar Ash
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tohru Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Maritza Romero
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland,Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, University Medical Centre of the Saarland, Saarland University, Homburg, Germany,Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, Homburg, Germany,Jürg Hamacher,
| |
Collapse
|
33
|
Prasada Rao DE, David Raju M, Ravi Kumar Reddy N, Rajendiran C, Sai Praneeth M, Tej MB, Basaveswara Rao MV, Kapavarapu R, Pal M. A Sonochemical Access to 5-Aryl Substituted Pyrazolo[1,5-a]Pyrimidines as Potential Inhibitors of TNF-α. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2028869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Daliparthi Eswara Prasada Rao
- R&D Centre, Suven Pharmaceuticals Ltd, Hyderabad, Telangana, India
- Department of Chemistry, Krishna University, Machilipatnam, Andhra Pradesh, India
| | - Medepalli David Raju
- Department of Chemistry, P.B. Siddhartha College of Arts and Sciences, Vijayawada, Andhra Pradesh, India
| | | | | | | | - Mandava Bhuvan Tej
- Faculty of Pharmacy, Sri Ramachandra Medical College and Research Institute, Chennai, Tamilnadu, India
| | | | - Ravikumar Kapavarapu
- Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
| | - Manojit Pal
- Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
| |
Collapse
|
34
|
Tamargo J, Caballero R, Delpón E. Cancer Chemotherapy-Induced Sinus Bradycardia: A Narrative Review of a Forgotten Adverse Effect of Cardiotoxicity. Drug Saf 2022; 45:101-126. [PMID: 35025085 DOI: 10.1007/s40264-021-01132-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Cardiotoxicity is a common adverse effect of anticancer drugs (ACDs), including the so-called targeted drugs, and increases morbidity and mortality in patients with cancer. Attention has focused mainly on ACD-induced heart failure, myocardial ischemia, hypertension, thromboembolism, QT prolongation, and tachyarrhythmias. Yet, although an increasing number of ACDs can produce sinus bradycardia (SB), this proarrhythmic effect remains an underappreciated complication, probably because of its low incidence and severity since most patients are asymptomatic. However, SB merits our interest because its incidence increases with the aging of the population and cancer is an age-related disease and because SB represents a risk factor for QT prolongation. Indeed, several ACDs that produce SB also prolong the QT interval. We reviewed published reports on ACD-induced SB from January 1971 to November 2020 using the PubMed and EMBASE databases. Published reports from clinical trials, case reports, and recent reviews were considered. This review describes the associations between ACDs and SB, their clinical relevance, risk factors, and possible mechanisms of onset and treatment.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain.
| | - Ricardo Caballero
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain
| |
Collapse
|
35
|
Shivaleela B, Srushti SC, Shreedevi SJ, Babu RL. Thalidomide-based inhibitor for TNF-α: designing and Insilico evaluation. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-021-00393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Inflammatory diseases are the vast array of disorders caused by inflammation. During most inflammatory events, many cytokines expressions were modulated, and one such cytokine is tumor necrosis factor-alpha (TNF-α). TNF-α is mainly secreted by monocytes and macrophages. Notably, it has been proposed as a therapeutic target for several diseases. The anti-TNF biology approach is mainly based on monoclonal antibodies. The fusion protein and biosimilars are prevalent in treating inflammation for decades. Only a few small molecule inhibitors are available to inhibit the expression of TNF-α, and one such promising drug was thalidomide. Therefore, the study was carried out to design thalidomide-based small molecule inhibitors for TNF-α. The main objective of our study is to design thalidomide analogs to inhibit TNF-α using the insilico approach.
Results
Several thalidomide analogs were designed using chemsketch. After filtration of compounds through ‘Lipinski rule of 5’ by Molinspiration tool, as a result, five compounds were selected. All these compounds were subjected to molecular docking, and the study showed that all five compounds had good binding energy. However, based on ADMET predictions, two compounds (S3 and S5) were eliminated.
Conclusions
Our preliminary results suggest that S1, S2, S4 compounds showed potential ligand binding capacity with TNF-α and, interestingly, with limited or no toxicity. Our preliminary investigation and obtained results have fashioned more interest for further in vitro studies.
Collapse
|
36
|
Palmas MF, Ena A, Burgaletto C, Casu MA, Cantarella G, Carboni E, Etzi M, De Simone A, Fusco G, Cardia MC, Lai F, Picci L, Tweedie D, Scerba MT, Coroneo V, Bernardini R, Greig NH, Pisanu A, Carta AR. Repurposing Pomalidomide as a Neuroprotective Drug: Efficacy in an Alpha-Synuclein-Based Model of Parkinson's Disease. Neurotherapeutics 2022; 19:305-324. [PMID: 35072912 PMCID: PMC9130415 DOI: 10.1007/s13311-022-01182-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
Marketed drugs for Parkinson's disease (PD) treat disease motor symptoms but are ineffective in stopping or slowing disease progression. In the quest of novel pharmacological approaches that may target disease progression, drug-repurposing provides a strategy to accelerate the preclinical and clinical testing of drugs already approved for other medical indications. Here, we targeted the inflammatory component of PD pathology, by testing for the first time the disease-modifying properties of the immunomodulatory imide drug (IMiD) pomalidomide in a translational rat model of PD neuropathology based on the intranigral bilateral infusion of toxic preformed oligomers of human α-synuclein (H-αSynOs). The neuroprotective effect of pomalidomide (20 mg/kg; i.p. three times/week 48 h apart) was tested in the first stage of disease progression by means of a chronic two-month administration, starting 1 month after H-αSynOs infusion, when an already ongoing neuroinflammation is observed. The intracerebral infusion of H-αSynOs induced an impairment in motor and coordination performance that was fully rescued by pomalidomide, as assessed via a battery of motor tests three months after infusion. Moreover, H-αSynOs-infused rats displayed a 40-45% cell loss within the bilateral substantia nigra, as measured by stereological counting of TH + and Nissl-stained neurons, that was largely abolished by pomalidomide. The inflammatory response to H-αSynOs infusion and the pomalidomide treatment was evaluated both in CNS affected areas and peripherally in the serum. A reactive microgliosis, measured as the volume occupied by the microglial marker Iba-1, was present in the substantia nigra three months after H-αSynOs infusion as well as after H-αSynOs plus pomalidomide treatment. However, microglia differed for their phenotype among experimental groups. After H-αSynOs infusion, microglia displayed a proinflammatory profile, producing a large amount of the proinflammatory cytokine TNF-α. In contrast, pomalidomide inhibited the TNF-α overproduction and elevated the anti-inflammatory cytokine IL-10. Moreover, the H-αSynOs infusion induced a systemic inflammation with overproduction of serum proinflammatory cytokines and chemokines, that was largely mitigated by pomalidomide. Results provide evidence of the disease modifying potential of pomalidomide in a neuropathological rodent model of PD and support the repurposing of this drug for clinical testing in PD patients.
Collapse
Affiliation(s)
| | - Anna Ena
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Michela Etzi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giuliana Fusco
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Maria Cristina Cardia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Luca Picci
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Valentina Coroneo
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, Cagliari, Italy.
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
37
|
Costa PDSS, Maciel-Fiuza MF, Kowalski TW, Fraga LR, Feira MF, Camargo LMA, Caldoncelli DIDO, Silveira MIDS, Schuler-Faccini L, Vianna FSL. Evaluation of the influence of genetic variants in Cereblon gene on the response to the treatment of erythema nodosum leprosum with thalidomide. Mem Inst Oswaldo Cruz 2022; 117:e220039. [DOI: 10.1590/0074-02760220039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Perpétua do Socorro Silva Costa
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Universidade Federal do Maranhão, Brazil
| | - Miriãn Ferrão Maciel-Fiuza
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil
| | - Thayne Woycinck Kowalski
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil; Hospital de Clínicas de Porto Alegre, Brasil
| | - Lucas Rosa Fraga
- Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| | - Mariléa Furtado Feira
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil
| | - Luís Marcelo Aranha Camargo
- Universidade de São Paulo, Brazil; Centro de Pesquisa em Medicina Tropical, Brasil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, Brasil; Centro Universitário São Lucas, Brazil
| | | | | | - Lavínia Schuler-Faccini
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil
| | - Fernanda Sales Luiz Vianna
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
38
|
Domingo S, Solé C, Moliné T, Ferrer B, Cortés-Hernández J. Thalidomide Exerts Anti-Inflammatory Effects in Cutaneous Lupus by Inhibiting the IRF4/NF-ҡB and AMPK1/mTOR Pathways. Biomedicines 2021; 9:biomedicines9121857. [PMID: 34944673 PMCID: PMC8698478 DOI: 10.3390/biomedicines9121857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Thalidomide is effective in patients with refractory cutaneous lupus erythematosus (CLE). However, the mechanism of action is not completely understood, and its use is limited by its potential, severe side-effects. Immune cell subset analysis in thalidomide’s CLE responder patients showed a reduction of circulating and tissue cytotoxic T-cells with an increase of iNKT cells and a shift towards a Th2 response. We conducted an RNA-sequencing study using CLE skin biopsies performing a Therapeutic Performance Mapping System (TMPS) analysis in order to generate a predictive model of its mechanism of action and to identify new potential therapeutic targets. Integrating RNA-seq data, public databases, and literature, TMPS analysis generated mathematical models which predicted that thalidomide acts via two CRBN-CRL4A- (CRL4CRBN) dependent pathways: IRF4/NF-ҡB and AMPK1/mTOR. Skin biopsies showed a significant reduction of IRF4 and mTOR in post-treatment samples by immunofluorescence. In vitro experiments confirmed the effect of thalidomide downregulating IRF4 in PBMCs and mTOR in keratinocytes, which converged in an NF-ҡB reduction that led to a resolution of the inflammatory lesion. These results emphasize the anti-inflammatory role of thalidomide in CLE treatment, providing novel molecular targets for the development of new therapies that could avoid thalidomide’s side effects while maintaining its efficacy.
Collapse
Affiliation(s)
- Sandra Domingo
- Lupus Unit, Rheumatology Departament, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (S.D.); (J.C.-H.)
| | - Cristina Solé
- Lupus Unit, Rheumatology Departament, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (S.D.); (J.C.-H.)
- Correspondence: ; Tel.: +34-93-489-4045
| | - Teresa Moliné
- Department of Pathology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (B.F.)
| | - Berta Ferrer
- Department of Pathology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (T.M.); (B.F.)
| | - Josefina Cortés-Hernández
- Lupus Unit, Rheumatology Departament, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (S.D.); (J.C.-H.)
| |
Collapse
|
39
|
Comprehensive targeting of resistance to inhibition of RTK signaling pathways by using glucocorticoids. Nat Commun 2021; 12:7014. [PMID: 34853306 PMCID: PMC8636603 DOI: 10.1038/s41467-021-27276-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/09/2021] [Indexed: 01/27/2023] Open
Abstract
Inhibition of RTK pathways in cancer triggers an adaptive response that promotes therapeutic resistance. Because the adaptive response is multifaceted, the optimal approach to blunting it remains undetermined. TNF upregulation is a biologically significant response to EGFR inhibition in NSCLC. Here, we compared a specific TNF inhibitor (etanercept) to thalidomide and prednisone, two drugs that block TNF and also other inflammatory pathways. Prednisone is significantly more effective in suppressing EGFR inhibition-induced inflammatory signals. Remarkably, prednisone induces a shutdown of bypass RTK signaling and inhibits key resistance signals such as STAT3, YAP and TNF-NF-κB. Combined with EGFR inhibition, prednisone is significantly superior to etanercept or thalidomide in durably suppressing tumor growth in multiple mouse models, indicating that a broad suppression of adaptive signals is more effective than blocking a single component. We identify prednisone as a drug that can effectively inhibit adaptive resistance with acceptable toxicity in NSCLC and other cancers.
Collapse
|
40
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
41
|
Lu J, Liu D, Tan Y, Li R, Wang X, Deng F. Thalidomide Attenuates Colitis and Is Associated with the Suppression of M1 Macrophage Polarization by Targeting the Transcription Factor IRF5. Dig Dis Sci 2021; 66:3803-3812. [PMID: 34085173 DOI: 10.1007/s10620-021-07067-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel disease. The TNF-α inhibitor thalidomide is reported to be effective for inducing remission in pediatric Crohn's disease (CD) and adults with refractory CD. The mechanisms underlying the immunomodulatory and anti-inflammatory properties of thalidomide are unclear. METHODS Histological assessments were firstly performed in thalidomide treated UC patients. Then the effect of thalidomide in vivo was detected in DSS-induced murine colitis. The mechanism involving IRF5, and M1 macrophage polarization was investigated by using plasmid transfection, western blotting, and real-time PCR. Finally, AOM/DSS model was used to detect the role of thalidomide in colitis associated cancer. RESULTS We first found that treatment with thalidomide could ameliorate colon inflammation for 8 weeks and promote mucosal healing in human UC. Moreover, treatment with thalidomide protected mice from dextran sodium sulfate (DSS)-induced acute colitis, with treated mice presenting with a higher body weight, lower histological score, and lower DAI. Concomitantly, in comparison with control mice, mice treated with thalidomide showed accelerated recovery following colitis after 10 days of thalidomide treatment. Mechanistically, we observed that thalidomide could increase epithelial cell self-renewal capacity and modulate M1/M2 polarization by decreasing M1 markers CD86 and CCR7 and increasing M2 protein signatures CD206 and Arg-1. Thalidomide controls M1 macrophage polarization by targeting the transcription factor IRF5. Finally, by using the classical AOM/DSS model, we found that thalidomide-treated mice presented with a lower incidence and growth of colitis-associated carcinoma (CAC) than negative control mice. CONCLUSIONS In summary, thalidomide suppresses M1 polarization in the inflammatory microenvironment, which not only attenuates colonic inflammation to facilitate mucosal healing after DSS-induced injury but also represses the progression of CAC.
Collapse
Affiliation(s)
- Jiaxi Lu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Center of Digestive Disease, Central South University, Changsha, 410011, Hunan, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Center of Digestive Disease, Central South University, Changsha, 410011, Hunan, China
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Center of Digestive Disease, Central South University, Changsha, 410011, Hunan, China
| | - Rong Li
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Center of Digestive Disease, Central South University, Changsha, 410011, Hunan, China
| | - Xuehong Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Center of Digestive Disease, Central South University, Changsha, 410011, Hunan, China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Center of Digestive Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
42
|
Abstract
Tumour necrosis factor (TNF) is a classical, pleiotropic pro-inflammatory cytokine. It is also the first 'adipokine' described to be produced from adipose tissue, regulated in obesity and proposed to contribute to obesity-associated metabolic disease. In this review, we provide an overview of TNF in the context of metabolic inflammation or metaflammation, its discovery as a metabolic messenger, its sites and mechanisms of action and some critical considerations for future research. Although we focus on TNF and the studies that elucidated its immunometabolic actions, we highlight a conceptual framework, generated by these studies, that is equally applicable to the complex network of pro-inflammatory signals, their biological activity and their integration with metabolic regulation, and to the field of immunometabolism more broadly.
Collapse
Affiliation(s)
- Jaswinder K Sethi
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard-MIT Broad Institute, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
- The Joslin Diabetes Center, Boston, MA, USA.
| |
Collapse
|
43
|
Sundaresan L, Giri S, Singh H, Chatterjee S. Repurposing of thalidomide and its derivatives for the treatment of SARS-coV-2 infections: Hints on molecular action. Br J Clin Pharmacol 2021; 87:3835-3850. [PMID: 33609410 PMCID: PMC8013920 DOI: 10.1111/bcp.14792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 01/08/2023] Open
Abstract
AIMS The SARS-coV-2 pandemic continues to cause an unprecedented global destabilization requiring urgent attention towards drug and vaccine development. Thalidomide, a drug with known anti-inflammatory and immunomodulatory effects has been indicated to be effective in treating a SARS-coV-2 pneumonia patient. Here, we study the possible mechanisms through which thalidomide might affect coronavirus disease-19 (COVID-19). METHODS The present study explores the possibility of repurposing thalidomide for the treatment of SARS-coV-2 pneumonia by reanalysing transcriptomes of SARS-coV-2 infected tissues with thalidomide and lenalidomide induced transcriptomic changes in transformed lung and haematopoietic models as procured from databases, and further comparing them with the transcriptome of primary endothelial cells. RESULTS Thalidomide and lenalidomide exhibited pleiotropic effects affecting a range of biological processes including inflammation, immune response, angiogenesis, MAPK signalling, NOD-like receptor signalling, Toll-like receptor signalling, leucocyte differentiation and innate immunity, the processes that are aberrantly regulated in severe COVID-19 patients. CONCLUSION The present study indicates thalidomide analogues as a better fit for treating severe cases of novel viral infections, healing the damaged network by compensating the impairment caused by the COVID-19.
Collapse
Affiliation(s)
| | - Suvendu Giri
- Vascular Biology LaboratoryAU‐KBC Research CentreChennaiIndia
- Department of BiotechnologyAnna UniversityChennaiIndia
| | - Himanshi Singh
- Vascular Biology LaboratoryAU‐KBC Research CentreChennaiIndia
- Department of BiotechnologyAnna UniversityChennaiIndia
| | - Suvro Chatterjee
- Vascular Biology LaboratoryAU‐KBC Research CentreChennaiIndia
- Department of BiotechnologyAnna UniversityChennaiIndia
| |
Collapse
|
44
|
Santana AC, Andraus W, Silva FMO, Dellê H, Pepineli R, de Moraes EL, Scavone C, de Sá Lima L, Degaspari S, Brasil S, Solla DJF, Ruiz LM, de Oliveira-Braga KA, Nepomuceno NA, Pêgo-Fernandes PM, Tullius SG, Figueiredo EG. Immunomodulatory effects of thalidomide in an experimental brain death liver donor model. Sci Rep 2021; 11:19221. [PMID: 34584130 PMCID: PMC8479052 DOI: 10.1038/s41598-021-98538-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
Brain death is characterized by a generalized inflammatory response that results in multiorgan damage. This process is mainly mediated through cytokines, which amplify graft immunogenicity. We investigated the immunological response in a brain death liver donor model and analysed the effects of thalidomide, a drug with powerful immunomodulatory properties. Brain death was induced in male Lewis rats. We studied three groups: Control (sham-operated rats in which trepanation was performed without inserting the balloon catheter), BD (rats subjected to brain death by increasing intracranial pressure) and BD + Thalid (BD rats receiving thalidomide after brain death). After 6 h, serum levels of AST, ALT, LDH, and ALP as well as systemic and hepatic levels of TNF-α, IL1-β, IL-6, and IL-10 were analysed. We also determined the mRNA expression of MHC Class I and Class II, NF-κB, and macrophage infiltration. NF-κB was also examined by electrophoretic mobility shift assay. Thalidomide treatment significantly reduced serum levels of hepatic enzymes and TNF-α, IL-1-β, and IL-6. These cytokines were evaluated at either the mRNA expression or protein level in liver tissue. In addition, thalidomide administration resulted in a significant reduction in macrophages, MHC Class I and Class II, and NF-κB activation. This study reveals that thalidomide significantly inhibited the immunologic response and graft immunogenicity, possibly through suppression of NF-κB activation.
Collapse
Affiliation(s)
- Alexandre Chagas Santana
- Neurological Surgery Department, University of Sao Paulo School of Medicine, Av. Dr. Enéas Carvalho de Aguiar, 255, 5th Floor, São Paulo, CEP: 05402-000, Brazil. .,Organ Procurement Organization Department, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
| | - Wellington Andraus
- Gastroenterology Department, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Humberto Dellê
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Rafael Pepineli
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Edvaldo Leal de Moraes
- Organ Procurement Organization Department, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristoforo Scavone
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Larissa de Sá Lima
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Sabrina Degaspari
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Sergio Brasil
- Neurological Surgery Department, University of Sao Paulo School of Medicine, Av. Dr. Enéas Carvalho de Aguiar, 255, 5th Floor, São Paulo, CEP: 05402-000, Brazil
| | - Davi Jorge Fontoura Solla
- Neurological Surgery Department, University of Sao Paulo School of Medicine, Av. Dr. Enéas Carvalho de Aguiar, 255, 5th Floor, São Paulo, CEP: 05402-000, Brazil
| | - Liliane Moreira Ruiz
- Cardiopneumology Department, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Stefan Gunther Tullius
- Department of Surgery, Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eberval Gadelha Figueiredo
- Neurological Surgery Department, University of Sao Paulo School of Medicine, Av. Dr. Enéas Carvalho de Aguiar, 255, 5th Floor, São Paulo, CEP: 05402-000, Brazil
| |
Collapse
|
45
|
Thalidomide alleviates neuropathic pain through microglial IL-10/β-endorphin signaling pathway. Biochem Pharmacol 2021; 192:114727. [PMID: 34390739 DOI: 10.1016/j.bcp.2021.114727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 01/08/2023]
Abstract
Thalidomide is an antiinflammatory, antiangiogenic and immunomodulatory agent which has been used for the treatment of erythema nodosum leprosum and multiple myeloma. It has also been employed in treating complex regional pain syndromes. The current study aimed to reveal the molecular mechanisms underlying thalidomide-induced pain antihypersensitive effects in neuropathic pain. Thalidomide gavage, but not its more potent analogs lenalidomide and pomalidomide, inhibited mechanical allodynia and thermal hyperalgesia in neuropathic pain rats induced by tight ligation of spinal nerves, with ED50 values of 44.9 and 23.5 mg/kg, and Emax values of 74% and 84% MPE respectively. Intrathecal injection of thalidomide also inhibited mechanical allodynia and thermal hyperalgesia in neuropathic pain. Treatment with thalidomide, lenalidomide and pomalidomide reduced peripheral nerve injury-induced proinflammatory cytokines (TNFα, IL-1β and IL-6) in the ipsilateral spinal cords of neuropathic rats and LPS-treated primary microglial cells. In contrast, treatment with thalidomide, but not lenalidomide or pomalidomide, stimulated spinal expressions of IL-10 and β-endorphin in neuropathic rats. Particularly, thalidomide specifically stimulated IL-10 and β-endorphin expressions in microglia but not astrocytes or neurons. Furthermore, pretreatment with the IL-10 antibody blocked upregulation of β-endorphin in neuropathic rats and cultured microglial cells, whereas it did not restore thalidomide-induced downregulation of proinflammatory cytokine expression. Importantly, pretreatment with intrathecal injection of the microglial metabolic inhibitor minocycline, IL-10 antibody, β-endorphin antiserum, and preferred or selective μ-opioid receptor antagonist naloxone or CTAP entirely blocked thalidomide gavage-induced mechanical antiallodynia. Our results demonstrate that thalidomide, but not lenalidomide or pomalidomide, alleviates neuropathic pain, which is mediated by upregulation of spinal microglial IL-10/β-endorphin expression, rather than downregulation of TNFα expression.
Collapse
|
46
|
3,6'-Dithiopomalidomide Ameliorates Hippocampal Neurodegeneration, Microgliosis and Astrogliosis and Improves Cognitive Behaviors in Rats with a Moderate Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22158276. [PMID: 34361041 PMCID: PMC8348060 DOI: 10.3390/ijms22158276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide. It can instigate immediate cell death, followed by a time-dependent secondary injury that results from disproportionate microglial and astrocyte activation, excessive inflammation and oxidative stress in brain tissue, culminating in both short- and long-term cognitive dysfunction and behavioral deficits. Within the brain, the hippocampus is particularly vulnerable to a TBI. We studied a new pomalidomide (Pom) analog, namely, 3,6′-dithioPom (DP), and Pom as immunomodulatory imide drugs (IMiD) for mitigating TBI-induced hippocampal neurodegeneration, microgliosis, astrogliosis and behavioral impairments in a controlled cortical impact (CCI) model of TBI in rats. Both agents were administered as a single intravenous dose (0.5 mg/kg) at 5 h post injury so that the efficacies could be compared. Pom and DP significantly reduced the contusion volume evaluated at 24 h and 7 days post injury. Both agents ameliorated short-term memory deficits and anxiety behavior at 7 days after a TBI. The number of degenerating neurons in the CA1 and dentate gyrus (DG) regions of the hippocampus after a TBI was reduced by Pom and DP. DP, but not Pom, significantly attenuated the TBI-induced microgliosis and DP was more efficacious than Pom at attenuating the TBI-induced astrogliosis in CA1 and DG at 7D after a TBI. In summary, a single intravenous injection of Pom or DP, given 5 h post TBI, significantly reduced hippocampal neurodegeneration and prevented cognitive deficits with a concomitant attenuation of the neuroinflammation in the hippocampus.
Collapse
|
47
|
Uhelski ML, Li Y, Fonseca MM, Romero-Snadoval EA, Dougherty PM. Role of innate immunity in chemotherapy-induced peripheral neuropathy. Neurosci Lett 2021; 755:135941. [PMID: 33961945 DOI: 10.1016/j.neulet.2021.135941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/18/2023]
Abstract
It has become increasingly clear that the innate immune system plays an essential role in the generation of many types of neuropathic pain including that which accompanies cancer treatment. In this article we review current findings of the role of the innate immune system in contributing to cancer treatment pain at the distal endings of peripheral nerve, in the nerve trunk, in the dorsal root ganglion and in the spinal dorsal horn.
Collapse
Affiliation(s)
- Megan L Uhelski
- The Department of Pain Medicine Research, The Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, United States
| | - Yan Li
- The Department of Pain Medicine Research, The Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, United States
| | - Miriam M Fonseca
- The Department of Anesthesiology, Wake Forest School of Medicine, United States
| | | | - Patrick M Dougherty
- The Department of Pain Medicine Research, The Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, United States.
| |
Collapse
|
48
|
Pyrrolo[2,3 -b]quinoxalines in attenuating cytokine storm in COVID-19: their sonochemical synthesis and in silico / in vitro assessment. J Mol Struct 2021; 1230:129868. [PMID: 33424034 PMCID: PMC7778832 DOI: 10.1016/j.molstruc.2020.129868] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022]
Abstract
In view of the recent global pandemic caused by COVID-19 intense efforts have been devoted worldwide towards the development of an effective treatment for this disease. Recently, PDE4 inhibitors have been suggested to attenuate the cytokine storm in COVID-19 especially tumour necrosis factor alpha (TNF-α). In our effort we have explored the 2-substituted pyrrolo[2,3-b]quinoxalines for this purpose because of their potential inhibitory properties of PDE-4 / TNF-α. Moreover, several of these compounds appeared to be promising in silico when assessed for their binding affinities via docking into the N-terminal RNA-binding domain (NTD) of N-protein of SARS-CoV-2. A rapid and one-pot synthesis of this class of molecules was achieved via the Cu-catalyzed coupling-cyclization-desulfinylation of 3-alkynyl-2-chloroquinoxalines with t-butyl sulfinamide as the ammonia surrogate under ultrasound irradiation. Most of these compounds showed good to significant inhibition of TNF-α in vitro establishing a SAR (Structure Activity Relationship) within the series. One compound e.g. 3i was identified as a promising hit for which the desirable ADME and acceptable toxicity profile was predicted in silico.
Collapse
|
49
|
Hsueh SC, Luo W, Tweedie D, Kim DS, Kim YK, Hwang I, Gil JE, Han BS, Chiang YH, Selman W, Hoffer BJ, Greig NH. N-Adamantyl Phthalimidine: A New Thalidomide-like Drug That Lacks Cereblon Binding and Mitigates Neuronal and Synaptic Loss, Neuroinflammation, and Behavioral Deficits in Traumatic Brain Injury and LPS Challenge. ACS Pharmacol Transl Sci 2021; 4:980-1000. [PMID: 33860215 DOI: 10.1021/acsptsci.1c00042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Neuroinflammation contributes to delayed secondary cell death following traumatic brain injury (TBI), has the potential to chronically exacerbate the initial insult, and represents a therapeutic target that has largely failed to translate into human efficacy. Thalidomide-like drugs have effectively mitigated neuroinflammation across cellular and animal models of TBI and neurodegeneration but are complicated by adverse actions in humans. We hence developed N-adamantyl phthalimidine (NAP) as a new thalidomide-like drug to mitigate inflammation without binding to cereblon, a key target associated with the antiproliferative, antiangiogenic, and teratogenic actions seen in this drug class. We utilized a phenotypic drug discovery approach that employed multiple cellular and animal models and ultimately examined immunohistochemical, biochemical, and behavioral measures following controlled cortical impact (CCI) TBI in mice. NAP mitigated LPS-induced inflammation across cellular and rodent models and reduced oligomeric α-synuclein and amyloid-β mediated inflammation. Following CCI TBI, NAP mitigated neuronal and synaptic loss, neuroinflammation, and behavioral deficits, and is unencumbered by cereblon binding, a key protein underpinning the teratogenic and adverse actions of thalidomide-like drugs in humans. In summary, NAP represents a new class of thalidomide-like drugs with anti-inflammatory actions for promising efficacy in the treatment of TBI and potentially longer-term neurodegenerative disorders.
Collapse
Affiliation(s)
- Shih Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, Maryland 21224, United States
| | - Weiming Luo
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, Maryland 21224, United States
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, Maryland 21224, United States
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg Maryland 20878, United States.,Aevis Bio, Inc., Daejeon 34141, Republic of Korea
| | - Yu Kyung Kim
- Aevis Bio, Inc., Daejeon 34141, Republic of Korea
| | - Inho Hwang
- Aevis Bio, Inc., Daejeon 34141, Republic of Korea
| | - Jung-Eun Gil
- Aevis Bio, Inc., Daejeon 34141, Republic of Korea
| | - Baek-Soo Han
- Research Center for Biodefence, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan.,Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Warren Selman
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Barry J Hoffer
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, Maryland 21224, United States
| |
Collapse
|
50
|
Jung YJ, Tweedie D, Scerba MT, Kim DS, Palmas MF, Pisanu A, Carta AR, Greig NH. Repurposing Immunomodulatory Imide Drugs (IMiDs) in Neuropsychiatric and Neurodegenerative Disorders. Front Neurosci 2021; 15:656921. [PMID: 33854417 PMCID: PMC8039148 DOI: 10.3389/fnins.2021.656921] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation represents a common trait in the pathology and progression of the major psychiatric and neurodegenerative disorders. Neuropsychiatric disorders have emerged as a global crisis, affecting 1 in 4 people, while neurological disorders are the second leading cause of death in the elderly population worldwide (WHO, 2001; GBD 2016 Neurology Collaborators, 2019). However, there remains an immense deficit in availability of effective drug treatments for most neurological disorders. In fact, for disorders such as depression, placebos and behavioral therapies have equal effectiveness as antidepressants. For neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, drugs that can prevent, slow, or cure the disease have yet to be found. Several non-traditional avenues of drug target identification have emerged with ongoing neurological disease research to meet the need for novel and efficacious treatments. Of these novel avenues is that of neuroinflammation, which has been found to be involved in the progression and pathology of many of the leading neurological disorders. Neuroinflammation is characterized by glial inflammatory factors in certain stages of neurological disorders. Although the meta-analyses have provided evidence of genetic/proteomic upregulation of inflammatory factors in certain stages of neurological disorders. Although the mechanisms underpinning the connections between neuroinflammation and neurological disorders are unclear, and meta-analysis results have shown high sensitivity to factors such as disorder severity and sample type, there is significant evidence of neuroinflammation associations across neurological disorders. In this review, we summarize the role of neuroinflammation in psychiatric disorders such as major depressive disorder, generalized anxiety disorder, post-traumatic stress disorder, and bipolar disorder, as well as in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and introduce current research on the potential of immunomodulatory imide drugs (IMiDs) as a new treatment strategy for these disorders.
Collapse
Affiliation(s)
- Yoo Jin Jung
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, United States
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD, United States
- Aevis Bio, Inc., Daejeon, South Korea
| | | | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|