1
|
Schäfer N, Rothhaar P, Heuss C, Neumann-Haefelin C, Thimme R, Dietz J, Sarrazin C, Schnitzler P, Merle U, Pérez-del-Pulgar S, Laketa V, Lohmann V. Detection of Hepatitis C Virus Infection from Patient Sera in Cell Culture Using Semi-Automated Image Analysis. Viruses 2024; 16:1871. [PMID: 39772180 PMCID: PMC11680372 DOI: 10.3390/v16121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera. We used Huh7-Lunet cells ectopically expressing SEC14L2, CD81, and a GFP reporter with nuclear translocation upon cleavage by the HCV protease to study HCV replication, combined with a drug-based regimen for stimulation of non-modified wild-type isolates. RT-qPCR-based quantification of HCV infections using patient sera suffered from a high background in the daclatasvir-treated controls. We therefore established an automated image analysis pipeline based on imaging of whole wells and iterative training of a machine learning tool, using nuclear GFP localization as a readout for HCV infection. Upon visual validation of hits assigned by the automated image analysis, the method revealed no background in daclatasvir-treated samples. Thereby, infection events were found for 15 of 34 high titer HCV genotype (gt) 1b sera, revealing a significant correlation between serum titer and successful infection. We further show that transfection of viral RNA extracted from sera can be used in this model as well, albeit with so far limited efficiency. Overall, we generated a robust serum infection assay for gt1b isolates using semi-automated image analysis, which was superior to conventional RT-qPCR-based quantification of viral genomes.
Collapse
Affiliation(s)
- Noemi Schäfer
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany
| | - Paul Rothhaar
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany
| | - Christian Heuss
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- Department of Gastroenterology and Hepatology, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Julia Dietz
- Department of Internal Medicine 1, University Hospital, Goethe University, 60596 Frankfurt, Germany
- German Center for Infection Research (DZIF), Partner Site Frankfurt, 60596 Frankfurt, Germany
| | - Christoph Sarrazin
- Department of Internal Medicine 1, University Hospital, Goethe University, 60596 Frankfurt, Germany
- German Center for Infection Research (DZIF), Partner Site Frankfurt, 60596 Frankfurt, Germany
- Medizinische Klinik 2, St. Josefs-Hospital, 65189 Wiesbaden, Germany
| | - Paul Schnitzler
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Sofía Pérez-del-Pulgar
- Liver Unit, Hospital Clínic, IDIBAPS and CIBEREHD, University of Barcelona, 08036 Barcelona, Spain;
| | - Vibor Laketa
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
De Meyer A, Meuleman P. Preclinical animal models to evaluate therapeutic antiviral antibodies. Antiviral Res 2024; 225:105843. [PMID: 38548022 DOI: 10.1016/j.antiviral.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Despite the availability of effective preventative vaccines and potent small-molecule antiviral drugs, effective non-toxic prophylactic and therapeutic measures are still lacking for many viruses. The use of monoclonal and polyclonal antibodies in an antiviral context could fill this gap and provide effective virus-specific medical interventions. In order to develop these therapeutic antibodies, preclinical animal models are of utmost importance. Due to the variability in viral pathogenesis, immunity and overall characteristics, the most representative animal model for human viral infection differs between virus species. Therefore, throughout the years researchers sought to find the ideal preclinical animal model for each virus. The most used animal models in preclinical research include rodents (mice, ferrets, …) and non-human primates (macaques, chimpanzee, ….). Currently, antibodies are tested for antiviral efficacy against a variety of viruses including different hepatitis viruses, human immunodeficiency virus (HIV), influenza viruses, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rabies virus. This review provides an overview of the current knowledge about the preclinical animal models that are used for the evaluation of therapeutic antibodies for the abovementioned viruses.
Collapse
Affiliation(s)
- Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Mosca M, Bacchetta J, Chamouard V, Rascle P, Dubois V, Paul S, Mekki Y, Picard C, Bertholet-Thomas A, Ranchin B, Sellier-Leclerc AL. IVIg therapy in the management of BK virus infections in pediatric kidney transplant patients. Arch Pediatr 2023; 30:165-171. [PMID: 36907728 DOI: 10.1016/j.arcped.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/23/2022] [Accepted: 01/15/2023] [Indexed: 03/12/2023]
Abstract
BK virus-associated nephropathy (BKPyVAN) induces kidney allograft dysfunction. Although decreasing immunosuppression is the standard for managing BK virus (BKPyV) infection, this strategy is not always effective. The use of polyvalent immunoglobulins (IVIg) may be of interest in this setting. We performed a retrospective single-center evaluation of the management of BKPyV infection in pediatric kidney transplant patients. Among the 171 patients who underwent transplantation between January 2010 and December 2019, 54 patients were excluded (combined transplant n = 15, follow-up in another center n = 35, early postoperative graft loss n= 4). Thus, 117 patients (120 transplants) were included. Overall, 34 (28%) and 15 (13%) transplant recipients displayed positive BKPyV viruria and viremia, respectively. Three had biopsy-confirmed BKPyVAN. The pre-transplant prevalence of CAKUT and HLA antibodies was higher among BKPyV-positive patients compared to non-infected patients. After the detection of BKPyV replication and/or BKPyVAN, the immunosuppressive regimen was modified in 13 (87%) patients: either by decreasing or changing the calcineurin inhibitors (n = 13) and/or switching from mycophenolate mofetil to mTor inhibitors (n = 10). Starting IVIg therapy was based on graft dysfunction or an increase in the viral load despite reduced immunosuppressive regimen. Seven of 15(46%) patients received IVIg. These patients had a higher viral load (5.4 [5.0-6.8]log vs. 3.5 [3.3-3.8]log). In total, 13 of 15 (86%) achieved viral load reduction, five of seven after IVIg therapy. As long as specific antivirals are not available for the management of BKPyV infections in pediatric kidney transplant patients, polyvalent IVIg may be discussed for the management of severe BKPyV viremia, in combination with decreased immunosuppression.
Collapse
Affiliation(s)
- M Mosca
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Centre de Référence des Maladies Rénales Rares, Bron Cedex F-69677, France.
| | - J Bacchetta
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Centre de Référence des Maladies Rénales Rares, Bron Cedex F-69677, France
| | - V Chamouard
- Hospices Civils de Lyon, Hôpital Louis Pradel, Unité d'Hémostase Clinique, Université Claude Bernard Lyon 1, Bron Cedex F-69677, France
| | - P Rascle
- Hospices Civils de Lyon, OMEDIT Rhône-Alpes, Bron Cedex F-69677, France
| | - V Dubois
- EFS Auvergne Rhône Alpes, laboratoire HLA, Décines Cedex F- 69151, France
| | - S Paul
- EFS Auvergne Rhône Alpes, laboratoire HLA, Décines Cedex F- 69151, France
| | - Y Mekki
- Hospices Civils de Lyon, Groupement hospitalier Nord, Laboratoire de virologie, Lyon Cedex F-69003
| | - C Picard
- Institut de Pathologie Multisite, Site Est, Hospices Civils de Lyon, Lyon, France
| | - A Bertholet-Thomas
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Centre de Référence des Maladies Rénales Rares, Bron Cedex F-69677, France
| | - B Ranchin
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Centre de Référence des Maladies Rénales Rares, Bron Cedex F-69677, France
| | - A L Sellier-Leclerc
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Centre de Référence des Maladies Rénales Rares, Bron Cedex F-69677, France
| |
Collapse
|
4
|
Roehlen N, Saviano A, El Saghire H, Crouchet E, Nehme Z, Del Zompo F, Jühling F, Oudot MA, Durand SC, Duong FHT, Cherradi S, Gonzalez Motos V, Almeida N, Ponsolles C, Heydmann L, Ostyn T, Lallement A, Pessaux P, Felli E, Cavalli A, Sgrignani J, Thumann C, Koutsopoulos O, Fuchs BC, Hoshida Y, Hofmann M, Vyberg M, Viuff BM, Galsgaard ED, Elson G, Toso A, Meyer M, Iacone R, Schweighoffer T, Teixeira G, Moll S, De Vito C, Roskams T, Davidson I, Heide D, Heikenwälder M, Zeisel MB, Lupberger J, Mailly L, Schuster C, Baumert TF. A monoclonal antibody targeting nonjunctional claudin-1 inhibits fibrosis in patient-derived models by modulating cell plasticity. Sci Transl Med 2022; 14:eabj4221. [PMID: 36542691 DOI: 10.1126/scitranslmed.abj4221] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tissue fibrosis is a key driver of end-stage organ failure and cancer, overall accounting for up to 45% of deaths in developed countries. There is a large unmet medical need for antifibrotic therapies. Claudin-1 (CLDN1) is a member of the tight junction protein family. Although the role of CLDN1 incorporated in tight junctions is well established, the function of nonjunctional CLDN1 (njCLDN1) is largely unknown. Using highly specific monoclonal antibodies targeting a conformation-dependent epitope of exposed njCLDN1, we show in patient-derived liver three-dimensional fibrosis and human liver chimeric mouse models that CLDN1 is a mediator and target for liver fibrosis. Targeting CLDN1 reverted inflammation-induced hepatocyte profibrogenic signaling and cell fate and suppressed the myofibroblast differentiation of hepatic stellate cells. Safety studies of a fully humanized antibody in nonhuman primates did not reveal any serious adverse events even at high steady-state concentrations. Our results provide preclinical proof of concept for CLDN1-specific monoclonal antibodies for the treatment of advanced liver fibrosis and cancer prevention. Antifibrotic effects in lung and kidney fibrosis models further indicate a role of CLDN1 as a therapeutic target for tissue fibrosis across organs. In conclusion, our data pave the way for further therapeutic exploration of CLDN1-targeting therapies for fibrotic diseases in patients.
Collapse
Affiliation(s)
- Natascha Roehlen
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Antonio Saviano
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France.,Institut Hospitalo-Universitaire (IHU), Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Houssein El Saghire
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Emilie Crouchet
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Zeina Nehme
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Fabio Del Zompo
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Frank Jühling
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Marine A Oudot
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Sarah C Durand
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - François H T Duong
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Sara Cherradi
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Victor Gonzalez Motos
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Nuno Almeida
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Clara Ponsolles
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Laura Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Tessa Ostyn
- Department of Imaging and Pathology, University of Leuven, 3000 Leuven, Belgium
| | - Antonin Lallement
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France.,Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 67400 Illkirch, France
| | - Patrick Pessaux
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France.,Institut Hospitalo-Universitaire (IHU), Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Emanuele Felli
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France.,Institut Hospitalo-Universitaire (IHU), Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Christine Thumann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Olga Koutsopoulos
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Bryan C Fuchs
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Mogens Vyberg
- Center of RNA Medicine, Department of Clinical Medicine, Aalborg University Copenhagen, 2450 København, Denmark.,Department of Pathology, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | | | | | - Greg Elson
- Alentis Therapeutics, 4123 Allschwil, Switzerland
| | - Alberto Toso
- Alentis Therapeutics, 4123 Allschwil, Switzerland
| | - Markus Meyer
- Alentis Therapeutics, 4123 Allschwil, Switzerland
| | | | | | | | - Solange Moll
- Department of Pathology, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Claudio De Vito
- Department of Pathology, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Tania Roskams
- Department of Imaging and Pathology, University of Leuven, 3000 Leuven, Belgium
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 67400 Illkirch, France
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Mirjam B Zeisel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Joachim Lupberger
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Laurent Mailly
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR-S1110, 67000 Strasbourg, France.,Institut Hospitalo-Universitaire (IHU), Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.,Institut Universitaire de France, 75006 Paris, France
| |
Collapse
|
5
|
Sahin M, Remy MM, Fallet B, Sommerstein R, Florova M, Langner A, Klausz K, Straub T, Kreutzfeldt M, Wagner I, Schmidt CT, Malinge P, Magistrelli G, Izui S, Pircher H, Verbeek JS, Merkler D, Peipp M, Pinschewer DD. Antibody bivalency improves antiviral efficacy by inhibiting virion release independently of Fc gamma receptors. Cell Rep 2022; 38:110303. [PMID: 35108544 PMCID: PMC8822495 DOI: 10.1016/j.celrep.2022.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Across the animal kingdom, multivalency discriminates antibodies from all other immunoglobulin superfamily members. The evolutionary forces conserving multivalency above other structural hallmarks of antibodies remain, however, incompletely defined. Here, we engineer monovalent either Fc-competent or -deficient antibody formats to investigate mechanisms of protection of neutralizing antibodies (nAbs) and non-neutralizing antibodies (nnAbs) in virus-infected mice. Antibody bivalency enables the tethering of virions to the infected cell surface, inhibits the release of virions in cell culture, and suppresses viral loads in vivo independently of Fc gamma receptor (FcγR) interactions. In return, monovalent antibody formats either do not inhibit virion release and fail to protect in vivo or their protective efficacy is largely FcγR dependent. Protection in mice correlates with virus-release-inhibiting activity of nAb and nnAb rather than with their neutralizing capacity. These observations provide mechanistic insights into the evolutionary conservation of antibody bivalency and help refining correlates of nnAb protection for vaccine development.
Collapse
Affiliation(s)
- Mehmet Sahin
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Melissa M Remy
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Benedict Fallet
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Rami Sommerstein
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Marianna Florova
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Anna Langner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Tobias Straub
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Cinzia T Schmidt
- BioEM Lab, Center for Cellular Imaging & Nano Analytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Pauline Malinge
- Light Chain Bioscience, Novimmune SA, Plan-les-Ouates, Switzerland
| | | | - Shozo Izui
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Hanspeter Pircher
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
6
|
Desombere I, Van Houtte F, Farhoudi A, Verhoye L, Buysschaert C, Gijbels Y, Couvent S, Swinnen W, Van Vlierberghe H, Elewaut A, Magri A, Stamataki Z, Meuleman P, McKeating JA, Leroux-Roels G. A Role for B Cells to Transmit Hepatitis C Virus Infection. Front Immunol 2021; 12:775098. [PMID: 34975862 PMCID: PMC8716873 DOI: 10.3389/fimmu.2021.775098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
Hepatitis C virus (HCV) is highly variable and transmits through infected blood to establish a chronic liver infection in the majority of patients. Our knowledge on the infectivity of clinical HCV strains is hampered by the lack of in vitro cell culture systems that support efficient viral replication. We and others have reported that HCV can associate with and infect immune cells and may thereby evade host immune surveillance and elimination. To evaluate whether B cells play a role in HCV transmission, we assessed the ability of B cells and sera from recent (<2 years) or chronic (≥ 2 years) HCV patients to infect humanized liver chimeric mice. HCV was transmitted by B cells from chronic infected patients whereas the sera were non-infectious. In contrast, B cells from recently infected patients failed to transmit HCV to the mice, whereas all serum samples were infectious. We observed an association between circulating anti-glycoprotein E1E2 antibodies and B cell HCV transmission. Taken together, our studies provide evidence for HCV transmission by B cells, findings that have clinical implications for prophylactic and therapeutic antibody-based vaccine design.
Collapse
Affiliation(s)
| | - Freya Van Houtte
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Ali Farhoudi
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Lieven Verhoye
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Yvonne Gijbels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Sibyl Couvent
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Hans Van Vlierberghe
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium
- Laboratory of Hepatology Research, Ghent University, Ghent, Belgium
| | - André Elewaut
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium
- Laboratory of Hepatology Research, Ghent University, Ghent, Belgium
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Researc (NIHR) Birmingham Liver Biomedical Research Centre, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Philip Meuleman
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
7
|
Abstract
Antibody responses in hepatitis C virus (HCV) have been a rather mysterious research topic for many investigators working in the field. Chronic HCV infection is often associated with dysregulation of immune functions particularly in B cells, leading to abnormal lymphoproliferation or the production of autoantibodies that exacerbate inflammation and extrahepatic diseases. When considering the antiviral function of antibody, it was difficult to endorse its role in HCV protection, whereas T-cell response has been shown unequivocally critical for natural recovery. Recent breakthroughs in the study of HCV and antigen-specific antibody responses provide important insights into viral vulnerability to antibodies and the immunogenetic and structural properties of the neutralizing antibodies. The new knowledge reinvigorates HCV vaccine research by illuminating a new path for the rational design of vaccine antigens to elicit broadly neutralizing antibodies for protection.
Collapse
Affiliation(s)
- Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92109, USA
| |
Collapse
|
8
|
Martinez MA, Franco S. Therapy Implications of Hepatitis C Virus Genetic Diversity. Viruses 2020; 13:E41. [PMID: 33383891 PMCID: PMC7824680 DOI: 10.3390/v13010041] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen with a high chronicity rate. An estimated 71 million people worldwide are living with chronic hepatitis C (CHC) infection, which carries the risk of progression to hepatic fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Similar to other RNA viruses, HCV has a high rate of genetic variability generated by its high mutation rate and the actions of evolutionary forces over time. There are two levels of HCV genetic variability: intra-host variability, characterized by the distribution of HCV mutant genomes present in an infected individual, and inter-host variability, represented by the globally circulating viruses that give rise to different HCV genotypes and subtypes. HCV genetic diversity has important implications for virus persistence, pathogenesis, immune responses, transmission, and the development of successful vaccines and antiviral strategies. Here we will discuss how HCV genetic heterogeneity impacts viral spread and therapeutic control.
Collapse
Affiliation(s)
- Miguel Angel Martinez
- Miguel Angel Martínez, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | | |
Collapse
|
9
|
Ferrari C, Barili V, Varchetta S, Mondelli MU. Immune Mechanisms of Viral Clearance and Disease Pathogenesis During Viral Hepatitis. THE LIVER 2020:821-850. [DOI: 10.1002/9781119436812.ch63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Wrensch F, Ligat G, Heydmann L, Schuster C, Zeisel MB, Pessaux P, Habersetzer F, King BJ, Tarr AW, Ball JK, Winkler M, Pöhlmann S, Keck ZY, Foung SK, Baumert TF. Interferon-Induced Transmembrane Proteins Mediate Viral Evasion in Acute and Chronic Hepatitis C Virus Infection. Hepatology 2019; 70:1506-1520. [PMID: 31062385 PMCID: PMC6819197 DOI: 10.1002/hep.30699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Although adaptive immune responses against hepatitis C virus (HCV) infection have been studied in great detail, the role of innate immunity in protection against HCV infection and immune evasion is only partially understood. Interferon-induced transmembrane proteins (IFITMs) are innate effector proteins restricting host cell entry of many enveloped viruses, including HCV. However, the clinical impact of IFITMs on HCV immune escape remains to be determined. Here, we show that IFITMs promote viral escape from the neutralizing antibody (nAb) response in clinical cohorts of HCV-infected patients. Using pseudoparticles bearing HCV envelope proteins from acutely infected patients, we show that HCV variants isolated preseroconversion are more sensitive to the antiviral activity of IFITMs than variants from patients isolated during chronic infection postseroconversion. Furthermore, HCV variants escaping nAb responses during liver transplantation exhibited a significantly higher resistance to IFITMs than variants that were eliminated posttransplantation. Gain-of-function and mechanistic studies revealed that IFITMs markedly enhance the antiviral activity of nAbs and suggest a cooperative effect of human monoclonal antibodies and IFITMs for antibody-mediated neutralization driving the selection pressure in viral evasion. Perturbation studies with the IFITM antagonist amphotericin B revealed that modulation of membrane properties by IFITM proteins is responsible for the IFITM-mediated blockade of viral entry and enhancement of antibody-mediated neutralization. Conclusion: Our results indicate IFITM proteins as drivers of viral immune escape and antibody-mediated HCV neutralization in acute and chronic HCV infection. These findings are of clinical relevance for the design of urgently needed HCV B-cell vaccines and might help to increase the efficacy of future vaccine candidates.
Collapse
Affiliation(s)
- Florian Wrensch
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Gaëtan Ligat
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Laura Heydmann
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Mirjam B. Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), 69373 Lyon, France
| | - Patrick Pessaux
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - François Habersetzer
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Barnabas J. King
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Michael Winkler
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany,Faculty of Biology and Psychology, University of Göttingen, 37073 Göttingen, Germany
| | - Zhen-yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven K.H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France,Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
11
|
Walker MR, Leung P, Eltahla AA, Underwood A, Abayasingam A, Brasher NA, Li H, Wu BR, Maher L, Luciani F, Lloyd AR, Bull RA. Clearance of hepatitis C virus is associated with early and potent but narrowly-directed, Envelope-specific antibodies. Sci Rep 2019; 9:13300. [PMID: 31527718 PMCID: PMC6746763 DOI: 10.1038/s41598-019-49454-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is one of very few viruses that are either naturally cleared, or alternatively persist to cause chronic disease. Viral diversity and escape, as well as host adaptive immune factors, are believed to control the outcome. To date, there is limited understanding of the critical, early host-pathogen interactions. The asymptomatic nature of early HCV infection generally prevents identification of the transmitted/founder (T/F) virus, and thus the study of host responses directed against the autologous T/F strain. In this study, 14 rare subjects identified from very early in infection (4–45 days) with varied disease outcomes (n = 7 clearers) were examined in regard to the timing, breadth, and magnitude of the neutralizing antibody (nAb) response, as well as evolution of the T/F strain. Clearance was associated with earlier onset and more potent nAb responses appearing at a mean of 71 days post-infection (DPI), but these responses were narrowly directed against the autologous T/F virus or closely related variants. In contrast, a delayed onset of nAbs (mean 425 DPI) was observed in chronic progressors that appear to have targeted longitudinal variants rather than the T/F strain. The nAb responses in the chronic progressors mapped to known CD81 binding epitopes, and were associated with rapid emergence of new viral variants with reduced CD81 binding. We propose that the prolonged period of viremia in the absence of nAbs in these subjects was associated with an increase in viral diversity, affording the virus greater options to escape nAb pressure once it emerged. These findings indicate that timing of the nAb response is essential for clearance. Further investigation of the specificities of the early nAbs and the factors regulating early induction of protective nAbs is needed.
Collapse
Affiliation(s)
- Melanie R Walker
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Preston Leung
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Auda A Eltahla
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Alexander Underwood
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Arunasingam Abayasingam
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Nicholas A Brasher
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Hui Li
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Bing-Ru Wu
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Lisa Maher
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia
| | - Fabio Luciani
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia
| | - Rowena A Bull
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia. .,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
12
|
Zhuang X, Magri A, Hill M, Lai AG, Kumar A, Rambhatla SB, Donald CL, Lopez-Clavijo AF, Rudge S, Pinnick K, Chang WH, Wing PAC, Brown R, Qin X, Simmonds P, Baumert TF, Ray D, Loudon A, Balfe P, Wakelam M, Butterworth S, Kohl A, Jopling CL, Zitzmann N, McKeating JA. The circadian clock components BMAL1 and REV-ERBα regulate flavivirus replication. Nat Commun 2019; 10:377. [PMID: 30670689 PMCID: PMC6343007 DOI: 10.1038/s41467-019-08299-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
The circadian clock regulates immune responses to microbes and affects pathogen replication, but the underlying molecular mechanisms are not well understood. Here we demonstrate that the circadian components BMAL1 and REV-ERBα influence several steps in the hepatitis C virus (HCV) life cycle, including particle entry into hepatocytes and RNA genome replication. Genetic knock out of Bmal1 and over-expression or activation of REV-ERB with synthetic agonists inhibits the replication of HCV and the related flaviruses dengue and Zika via perturbation of lipid signaling pathways. This study highlights a role for the circadian clock component REV-ERBα in regulating flavivirus replication.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Michelle Hill
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Abhinav Kumar
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Simon Rudge
- The Babraham Institute, Cambridge CB22 3AT, UK
| | - Katherine Pinnick
- Oxford Centre for Diabetes Endocrinology Metabolism, University of Oxford, Oxford OX3 9DU, UK
| | - Wai Hoong Chang
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Peter A C Wing
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Ryan Brown
- Department of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Ximing Qin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg 67000, France
| | - David Ray
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Andrew Loudon
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Peter Balfe
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9NT, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
13
|
Mailly L, Wrensch F, Heydmann L, Fauvelle C, Brignon N, Zeisel MB, Pessaux P, Keck ZY, Schuster C, Fuerst TR, Foung SKH, Baumert TF. In vivo combination of human anti-envelope glycoprotein E2 and -Claudin-1 monoclonal antibodies for prevention of hepatitis C virus infection. Antiviral Res 2018; 162:136-141. [PMID: 30599173 DOI: 10.1016/j.antiviral.2018.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022]
Abstract
Despite the development of direct-acting antivirals (DAAs), hepatitis C virus (HCV) infection remains a major cause for liver disease and cancer worldwide. Entry inhibitors block virus host cell entry and, therefore, prevent establishment of chronic infection and liver disease. Due to their unique mechanism of action, entry inhibitors provide an attractive antiviral strategy in organ transplantation. In this study, we developed an innovative approach in preventing HCV infection using a synergistic combination of a broadly neutralizing human monoclonal antibody (HMAb) targeting the HCV E2 protein and a host-targeting anti-claudin 1 (CLDN1) humanized monoclonal antibody. An in vivo proof-of-concept study in human liver-chimeric FRG-NOD mice proved the efficacy of the combination therapy at preventing infection by an HCV genotype 1b infectious serum. While administration of individual antibodies at lower doses only showed a delay in HCV infection, the combination therapy was highly protective. Furthermore, the combination proved to be effective in preventing infection of primary human hepatocytes by neutralization-resistant HCV escape variants selected during liver transplantation, suggesting that a combination therapy is suited for the neutralization of difficult-to-treat variants. In conclusion, our findings suggest that the combination of two HMAbs targeting different steps of virus entry improves treatment efficacy while simultaneously reducing treatment duration and costs. Our approach not only provides a clinical perspective to employ HMAb combination therapies to prevent graft re-infection and its associated liver disease but may also help to alleviate the urgent demand for organ transplants by allowing the transplantation of organs from HCV-positive donors.
Collapse
Affiliation(s)
- Laurent Mailly
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France
| | - Florian Wrensch
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France
| | - Laura Heydmann
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France
| | - Catherine Fauvelle
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France
| | - Nicolas Brignon
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France
| | - Mirjam B Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France; Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
| | - Patrick Pessaux
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France
| | - Thomas R Fuerst
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut Universitaire de France, Paris, France.
| |
Collapse
|
14
|
Wrensch F, Crouchet E, Ligat G, Zeisel MB, Keck ZY, Foung SKH, Schuster C, Baumert TF. Hepatitis C Virus (HCV)-Apolipoprotein Interactions and Immune Evasion and Their Impact on HCV Vaccine Design. Front Immunol 2018; 9:1436. [PMID: 29977246 PMCID: PMC6021501 DOI: 10.3389/fimmu.2018.01436] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
With more than 71 million people chronically infected, hepatitis C virus (HCV) is one of the leading causes of liver disease and hepatocellular carcinoma. While efficient antiviral therapies have entered clinical standard of care, the development of a protective vaccine is still elusive. Recent studies have shown that the HCV life cycle is closely linked to lipid metabolism. HCV virions associate with hepatocyte-derived lipoproteins to form infectious hybrid particles that have been termed lipo-viro-particles. The close association with lipoproteins is not only critical for virus entry and assembly but also plays an important role during viral pathogenesis and for viral evasion from neutralizing antibodies. In this review, we summarize recent findings on the functional role of apolipoproteins for HCV entry and assembly. Furthermore, we highlight the impact of HCV-apolipoprotein interactions for evasion from neutralizing antibodies and discuss the consequences for antiviral therapy and vaccine design. Understanding these interactions offers novel strategies for the development of an urgently needed protective vaccine.
Collapse
Affiliation(s)
- Florian Wrensch
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Emilie Crouchet
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Gaetan Ligat
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Mirjam B Zeisel
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Catherine Schuster
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
15
|
Keck ML, Wrensch F, Pierce BG, Baumert TF, Foung SKH. Mapping Determinants of Virus Neutralization and Viral Escape for Rational Design of a Hepatitis C Virus Vaccine. Front Immunol 2018; 9:1194. [PMID: 29904384 PMCID: PMC5991293 DOI: 10.3389/fimmu.2018.01194] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) continues to spread worldwide with an annual increase of 1.75 million new infections. The number of HCV cases in the U.S. is now greater than the number of HIV cases and is increasing in young adults because of the opioid epidemic sweeping the country. HCV-related liver disease is the leading indication of liver transplantation. An effective vaccine is of paramount importance to control and prevent HCV infection. While this vaccine will need to induce both cellular and humoral immunity, this review is focused on the required antibody responses. For highly variable viruses, such as HCV, isolation and characterization of monoclonal antibodies mediating broad virus neutralization are an important guide for vaccine design. The viral envelope glycoproteins, E1 and E2, are the main targets of these antibodies. Epitopes on the E2 protein have been studied more extensively than epitopes on E1, due to higher antibody targeting that reflects these epitopes having higher degrees of immunogenicity. E2 epitopes are overall organized in discrete clusters of overlapping epitopes that ranged from high conservation to high variability. Other epitopes on E1 and E1E2 also are targets of neutralizing antibodies. Taken together, these regions are important for vaccine design. Another element in vaccine design is based on information on how the virus escapes from broadly neutralizing antibodies. Escape mutations can occur within the epitopes that are involved in antibody binding and in regions that are not involved in their epitopes, but nonetheless reduce the efficiency of neutralizing antibodies. An understanding on the specificities of a protective B cell response, the molecular locations of these epitopes on E1, E2, and E1E2, and the mechanisms, which enable the virus to negatively modulate neutralizing antibody responses to these regions will provide the necessary guidance for vaccine design.
Collapse
Affiliation(s)
- Mei-Le Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Florian Wrensch
- INSERM U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Thomas F Baumert
- INSERM U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
16
|
Colpitts CC, Tawar RG, Mailly L, Thumann C, Heydmann L, Durand SC, Xiao F, Robinet E, Pessaux P, Zeisel MB, Baumert TF. Humanisation of a claudin-1-specific monoclonal antibody for clinical prevention and cure of HCV infection without escape. Gut 2018; 67:736-745. [PMID: 28360099 PMCID: PMC5868241 DOI: 10.1136/gutjnl-2016-312577] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE HCV infection is a leading cause of chronic liver disease and a major indication for liver transplantation. Although direct-acting antivirals (DAAs) have much improved the treatment of chronic HCV infection, alternative strategies are needed for patients with treatment failure. As an essential HCV entry factor, the tight junction protein claudin-1 (CLDN1) is a promising antiviral target. However, genotype-dependent escape via CLDN6 and CLDN9 has been described in some cell lines as a possible limitation facing CLDN1-targeted therapies. Here, we evaluated the clinical potential of therapeutic strategies targeting CLDN1. DESIGN We generated a humanised anti-CLDN1 monoclonal antibody (mAb) (H3L3) suitable for clinical development and characterised its anti-HCV activity using cell culture models, a large panel of primary human hepatocytes (PHH) from 12 different donors, and human liver chimeric mice. RESULTS H3L3 pan-genotypically inhibited HCV pseudoparticle entry into PHH, irrespective of donor. Escape was likely precluded by low surface expression of CLDN6 and CLDN9 on PHH. Co-treatment of a panel of PHH with a CLDN6-specific mAb did not enhance the antiviral effect of H3L3, confirming that CLDN6 does not function as an entry factor in PHH from multiple donors. H3L3 also inhibited DAA-resistant strains of HCV and synergised with current DAAs. Finally, H3L3 cured persistent HCV infection in human-liver chimeric uPA-SCID mice in monotherapy. CONCLUSIONS Overall, these findings underscore the clinical potential of CLDN1-targeted therapies and describe the functional characterisation of a humanised anti-CLDN1 antibody suitable for further clinical development to complement existing therapeutic strategies for HCV.
Collapse
Affiliation(s)
- Che C Colpitts
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Rajiv G Tawar
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Laurent Mailly
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Christine Thumann
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Laura Heydmann
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Sarah C Durand
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Fei Xiao
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Eric Robinet
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Patrick Pessaux
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Mirjam B Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
17
|
Development and characterization of a human monoclonal antibody targeting the N-terminal region of hepatitis C virus envelope glycoprotein E1. Virology 2017; 514:30-41. [PMID: 29128754 DOI: 10.1016/j.virol.2017.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies (mAbs) targeting the hepatitis C virus (HCV) envelope have been raised mainly against envelope protein 2 (E2), while the antigenic epitopes of envelope protein 1 (E1) are not fully identified. Here we describe the detailed characterization of a human mAb, designated A6, generated from an HCV genotype 1b infected patient. ELISA results showed reactivity of mAb A6 to full-length HCV E1E2 of genotypes 1a, 1b and 2a. Epitope mapping identified a region spanning amino acids 230-239 within the N-terminal region of E1 as critical for binding. Antibody binding to this epitope was not conformation dependent. Neutralization assays showed that mAb A6 lacks neutralizing capacity and does not interfere with the activity of known neutralizing antibodies. In summary, mAb A6 is an important tool to study the structure and function of E1 within the viral envelope, a crucial step in the development of an effective prophylactic HCV vaccine.
Collapse
|
18
|
Desombere I, Mesalam AA, Urbanowicz RA, Van Houtte F, Verhoye L, Keck ZY, Farhoudi A, Vercauteren K, Weening KE, Baumert TF, Patel AH, Foung SKH, Ball J, Leroux-Roels G, Meuleman P. A novel neutralizing human monoclonal antibody broadly abrogates hepatitis C virus infection in vitro and in vivo. Antiviral Res 2017; 148:53-64. [PMID: 29074219 PMCID: PMC5785094 DOI: 10.1016/j.antiviral.2017.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
Abstract
Infections with hepatitis C virus (HCV) represent a worldwide health burden and a prophylactic vaccine is still not available. Liver transplantation (LT) is often the only option for patients with HCV-induced end-stage liver disease. However, immediately after transplantation, the liver graft becomes infected by circulating virus, resulting in accelerated progression of liver disease. Although the efficacy of HCV treatment using direct-acting antivirals has improved significantly, immune compromised LT-patients and patients with advanced liver disease remain difficult to treat. As an alternative approach, interfering with viral entry could prevent infection of the donor liver. We generated a human monoclonal antibody (mAb), designated 2A5, which targets the HCV envelope. The neutralizing activity of mAb 2A5 was assessed using multiple prototype and patient-derived HCV pseudoparticles (HCVpp), cell culture produced HCV (HCVcc), and a human-liver chimeric mouse model. Neutralization levels observed for mAb 2A5 were generally high and mostly superior to those obtained with AP33, a well-characterized HCV-neutralizing monoclonal antibody. Using humanized mice, complete protection was observed after genotype 1a and 4a HCV challenge, while only partial protection was achieved using gt1b and 6a isolates. Epitope mapping revealed that mAb 2A5 binding is conformation-dependent and identified the E2-region spanning amino acids 434 to 446 (epitope II) as the predominant contact domain. CONCLUSION mAb 2A5 shows potent anti-HCV neutralizing activity both in vitro and in vivo and could hence represent a valuable candidate to prevent HCV recurrence in LT-patients. In addition, the detailed identification of the neutralizing epitope can be applied for the design of prophylactic HCV vaccines.
Collapse
Affiliation(s)
- Isabelle Desombere
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Ahmed Atef Mesalam
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium; Therapeutic Chemistry Department, National Research Centre (NRC), Dokki, Cairo, Egypt.
| | - Richard A Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK; Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Freya Van Houtte
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Lieven Verhoye
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Ali Farhoudi
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Koen Vercauteren
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Karin E Weening
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg et Pole Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jonathan Ball
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK; Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Geert Leroux-Roels
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Philip Meuleman
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| |
Collapse
|
19
|
Solis M, Velay A, Porcher R, Domingo-Calap P, Soulier E, Joly M, Meddeb M, Kack-Kack W, Moulin B, Bahram S, Stoll-Keller F, Barth H, Caillard S, Fafi-Kremer S. Neutralizing Antibody-Mediated Response and Risk of BK Virus-Associated Nephropathy. J Am Soc Nephrol 2017; 29:326-334. [PMID: 29042457 DOI: 10.1681/asn.2017050532] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/04/2017] [Indexed: 11/03/2022] Open
Abstract
BK virus-associated nephropathy (BKVAN) causes renal allograft dysfunction. The current management of BKVAN relies on pre-emptive adaptation of immunosuppression according to viral load monitoring. However, this empiric strategy is not always successful. Therefore, pretransplant predictive markers are needed. In a prospective longitudinal study, we enrolled 168 kidney transplant recipients and 69 matched donors. To assess the value of BKV genotype-specific neutralizing antibody (NAb) titers as a predictive marker for BKV replication, we measured BKV DNA load and NAb titers at transplant and followed patients for 24 months. After transplant, 52 (31%) patients displayed BKV replication: 24 (46%) patients were viruric and 28 (54%) patients were viremic, including 13 with biopsy-confirmed BKVAN. At any time, patients with high NAb titers against the replicating strain had a lower risk of developing BKV viremia (hazard ratio [HR], 0.44; 95% confidence interval [95% CI], 0.26 to 0.73; P=0.002). Each log10 increase in NAb titer decreased the risk of developing viremia by 56%. Replicating strains were consistent with donor transmission in 95% of cases of early BKV replication. Genotype mismatch between recipients' neutralization profiles before transplant and their subsequently replicating strain significantly increased the risk of developing viremia (HR, 2.27; 95% CI, 1.06 to 4.88; P=0.04). A NAb titer against the donor's strain <4 log10 before transplant significantly associated with BKV replication after transplant (HR, 1.88; 95% CI, 1.06 to 3.45; P=0.03). BKV genotype-specific NAb titers may be a meaningful predictive marker that allows patient stratification by BKV disease risk before and after transplant.
Collapse
Affiliation(s)
- Morgane Solis
- Virology Laboratory and.,Unité Mixte de Recherche 1109, Institut National de la Santé et de la Recherche Médicale, Strasbourg University, Strasbourg, France; and
| | - Aurélie Velay
- Virology Laboratory and.,Unité Mixte de Recherche 1109, Institut National de la Santé et de la Recherche Médicale, Strasbourg University, Strasbourg, France; and
| | - Raphaël Porcher
- Clinical Epidemiology Center, Centre de Recherche Épidémiologie et Statistique Sorbonne Paris Cité (CRESS), Unité Mixte de Recherche 1153, Institut National de la Santé et de la Recherche Médicale, Paris Descartes University, Paris, France
| | - Pilar Domingo-Calap
- Unité Mixte de Recherche 1109, Institut National de la Santé et de la Recherche Médicale, Strasbourg University, Strasbourg, France; and
| | - Eric Soulier
- Unité Mixte de Recherche 1109, Institut National de la Santé et de la Recherche Médicale, Strasbourg University, Strasbourg, France; and
| | - Mélanie Joly
- Unité Mixte de Recherche 1109, Institut National de la Santé et de la Recherche Médicale, Strasbourg University, Strasbourg, France; and.,Nephrology Department, Strasbourg University Hospitals, Strasbourg, France
| | | | | | - Bruno Moulin
- Unité Mixte de Recherche 1109, Institut National de la Santé et de la Recherche Médicale, Strasbourg University, Strasbourg, France; and.,Nephrology Department, Strasbourg University Hospitals, Strasbourg, France
| | - Siamak Bahram
- Unité Mixte de Recherche 1109, Institut National de la Santé et de la Recherche Médicale, Strasbourg University, Strasbourg, France; and
| | - Françoise Stoll-Keller
- Virology Laboratory and.,Unité Mixte de Recherche 1109, Institut National de la Santé et de la Recherche Médicale, Strasbourg University, Strasbourg, France; and
| | - Heidi Barth
- Virology Laboratory and.,Unité Mixte de Recherche 1109, Institut National de la Santé et de la Recherche Médicale, Strasbourg University, Strasbourg, France; and
| | - Sophie Caillard
- Unité Mixte de Recherche 1109, Institut National de la Santé et de la Recherche Médicale, Strasbourg University, Strasbourg, France; and.,Nephrology Department, Strasbourg University Hospitals, Strasbourg, France
| | - Samira Fafi-Kremer
- Virology Laboratory and .,Unité Mixte de Recherche 1109, Institut National de la Santé et de la Recherche Médicale, Strasbourg University, Strasbourg, France; and
| |
Collapse
|
20
|
Wolski D, Foote PK, Chen DY, Lewis-Ximenez LL, Fauvelle C, Aneja J, Walker A, Tonnerre P, Torres-Cornejo A, Kvistad D, Imam S, Waring MT, Tully DC, Allen TM, Chung RT, Timm J, Haining WN, Kim AY, Baumert TF, Lauer GM. Early Transcriptional Divergence Marks Virus-Specific Primary Human CD8 + T Cells in Chronic versus Acute Infection. Immunity 2017; 47:648-663.e8. [PMID: 29045899 PMCID: PMC5708133 DOI: 10.1016/j.immuni.2017.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/13/2017] [Accepted: 09/13/2017] [Indexed: 01/11/2023]
Abstract
Distinct molecular pathways govern the differentiation of CD8+ effector T cells into memory or exhausted T cells during acute and chronic viral infection, but these are not well studied in humans. Here, we employed an integrative systems immunology approach to identify transcriptional commonalities and differences between virus-specific CD8+ T cells from patients with persistent and spontaneously resolving hepatitis C virus (HCV) infection during the acute phase. We observed dysregulation of metabolic processes during early persistent infection that was linked to changes in expression of genes related to nucleosomal regulation of transcription, T cell differentiation, and the inflammatory response and correlated with subject age, sex, and the presence of HCV-specific CD4+ T cell populations. These early changes in HCV-specific CD8+ T cell transcription preceded the overt establishment of T cell exhaustion, making this signature a prime target in the search for the regulatory origins of T cell dysfunction in chronic viral infection.
Collapse
Affiliation(s)
- David Wolski
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg 67000, France; Université de Strasbourg, Strasbourg 67081, France
| | - Peter K Foote
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Diana Y Chen
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lia L Lewis-Ximenez
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040, Brazil
| | - Catherine Fauvelle
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg 67000, France; Université de Strasbourg, Strasbourg 67081, France
| | - Jasneet Aneja
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andreas Walker
- Institute for Virology, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Pierre Tonnerre
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Almudena Torres-Cornejo
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel Kvistad
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sabrina Imam
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Michael T Waring
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Damien C Tully
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Todd M Allen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Raymond T Chung
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jörg Timm
- Institute for Virology, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf 40225, Germany
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Arthur Y Kim
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg 67000, France; Université de Strasbourg, Strasbourg 67081, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg 67000, France
| | - Georg M Lauer
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
21
|
Arthur Huang KY, Chen MF, Huang YC, Shih SR, Chiu CH, Lin JJ, Wang JR, Tsao KC, Lin TY. Epitope-associated and specificity-focused features of EV71-neutralizing antibody repertoires from plasmablasts of infected children. Nat Commun 2017; 8:762. [PMID: 28970483 PMCID: PMC5624920 DOI: 10.1038/s41467-017-00736-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022] Open
Abstract
Protective antibody levels are critical for protection from severe enterovirus 71 infection. However, little is known about the specificities and functional properties of the enterovirus 71-specific antibodies induced by natural infection in humans. Here we characterize 191 plasmablast-derived monoclonal antibodies from three enterovirus 71-infected children, each of whom shows a distinct serological response. Of the 84 enterovirus 71-specific antibodies, neutralizing antibodies that target the rims and floor of the capsid canyon exhibit broad and potent activities at the nanogram level against viruses isolated in 1998–2016. We also find a subset of infected children whose enterovirus 71-specific antibodies are focused on the 3- and 2-fold plateau epitopes localized at the margin of pentamers, and this type of antibody response is associated with lower serum titers against recently circulating strains. Our data provide new insights into the enterovirus 71-specific antibodies induced by natural infection at the serological and clonal levels. Enterovirus 71 is a leading cause of hand-foot-and-mouth disease and herpangina. Here, the authors characterize a large panel of plasmablast-derived IgG mAbs that target the capsid of EV71 to identify neutralizing antibodies induced by natural infection.
Collapse
Affiliation(s)
- Kuan-Ying Arthur Huang
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.
| | - Mei-Feng Chen
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, 33302, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
| | - Yhu-Chering Huang
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Cheng-Hsun Chiu
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.,Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
| | - Jainn-Jim Lin
- Division of Pediatric Critical Care, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
| | - Tzou-Yien Lin
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
| |
Collapse
|
22
|
Abdelhafez TH, Bader El Din NG, Tabll AA, Mashaly MM, Dawood RM, Yassin NA, El-Awady MK. Mice Antibody Response to Conserved Nonadjuvanted Multiple Antigenic Peptides Derived from E1/E2 Regions of Hepatitis C Virus. Viral Immunol 2017; 30:359-365. [PMID: 28402196 DOI: 10.1089/vim.2016.0123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Synthetic peptides are one of the hepatitis C virus (HCV)-specific small molecules that have antiviral activity and represent a target for HCV vaccine. This study aims to determine the lowest concentration of adjuvanted and non-adjuvanted (multiple antigenic peptide [MAP]) form of three conserved HCV envelope peptides that can induce murine immunogenic responses and evaluate the neutralization capacities of the generated antibodies (Abs) against HCV in cultured Huh7.5 cells. In this study, three HCV synthetic peptides, E1 peptide (a.a 315-323) and E2 peptides (a.a 412-419 and a.a 516-531) were synthesized. Female Balb/c mice were immunized with different concentration of either adjuvanted linear peptides or nonadjuvanted MAP peptides to determine the lowest dose that generates Ab responses enough to confer viral neutralization in vitro. The humoral responses targeting these peptides in immunized mice sera were measured by enzyme-linked immunosorbent assay (ELISA). Viral neutralization capacities of the generated mice Abs were assessed using Huh7.5 cells infected with the HCVcc infectious system (J6/JFH-1). The results of this study showed that the MAPs induce higher Ab titers than adjuvanted linear peptides after 4 weeks of immunization (p = 0.003). The viral neutralization experiments showed that the immunized mice sera contain anti E1/E2 Abs that blocked HCVcc (J6/JFH-1) entry into Huh7.5 cells. In conclusion, the three HCV envelope MAP peptides are more immunogenic and produce higher neutralizing Abs than linear peptides; therefore, they can be essential components for HCV vaccine.
Collapse
Affiliation(s)
- Tawfeek H Abdelhafez
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| | - Noha G Bader El Din
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| | - Ashraf A Tabll
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| | - Mohammad M Mashaly
- 2 Department of Chemistry, Faculty of Science, Damietta University , Damietta, Egypt
| | - Reham M Dawood
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| | - Nemat A Yassin
- 3 Department of Pharmacology, National Research Center , Dokki, Giza, Egypt
| | - Mostafa K El-Awady
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| |
Collapse
|
23
|
Chang CC, Hsu HJ, Yen JH, Lo SY, Liou JW. A Sequence in the loop domain of hepatitis C virus E2 protein identified in silico as crucial for the selective binding to human CD81. PLoS One 2017; 12:e0177383. [PMID: 28481946 PMCID: PMC5421814 DOI: 10.1371/journal.pone.0177383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/26/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is a species-specific pathogenic virus that infects only humans and chimpanzees. Previous studies have indicated that interactions between the HCV E2 protein and CD81 on host cells are required for HCV infection. To determine the crucial factors for species-specific interactions at the molecular level, this study employed in silico molecular docking involving molecular dynamic simulations of the binding of HCV E2 onto human and rat CD81s. In vitro experiments including surface plasmon resonance measurements and cellular binding assays were applied for simple validations of the in silico results. The in silico studies identified two binding regions on the HCV E2 loop domain, namely E2-site1 and E2-site2, as being crucial for the interactions with CD81s, with the E2-site2 as the determinant factor for human-specific binding. Free energy calculations indicated that the E2/CD81 binding process might follow a two-step model involving (i) the electrostatic interaction-driven initial binding of human-specific E2-site2, followed by (ii) changes in the E2 orientation to facilitate the hydrophobic and van der Waals interaction-driven binding of E2-site1. The sequence of the human-specific, stronger-binding E2-site2 could serve as a candidate template for the future development of HCV-inhibiting peptide drugs.
Collapse
Affiliation(s)
- Chun-Chun Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Laboratory Medicine, Tzu Chi Medical Center, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Je-Wen Liou
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
24
|
Tracking HCV protease population diversity during transmission and susceptibility of founder populations to antiviral therapy. Antiviral Res 2017; 139:129-137. [PMID: 28062191 DOI: 10.1016/j.antiviral.2017.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 01/02/2017] [Indexed: 12/16/2022]
Abstract
Due to the highly restricted species-tropism of Hepatitis C virus (HCV) a limited number of animal models exist for pre-clinical evaluation of vaccines and antiviral compounds. The human-liver chimeric mouse model allows heterologous challenge with clinically relevant strains derived from patients. However, to date, the transmission and longitudinal evolution of founder viral populations in this model have not been characterized in-depth using state-of-the-art sequencing technologies. Focusing on NS3 protease encoding region of the viral genome, mutant spectra in a donor inoculum and individual recipient mice were determined via Illumina sequencing and compared, to determine the effects of transmission on founder viral population complexity. In all transmissions, a genetic bottleneck was observed, although diverse viral populations were transmitted in each case. A low frequency cloud of mutations (<1%) was detectable in the donor inoculum and recipient mice, with single nucleotide variants (SNVs) > 1% restricted to a subset of nucleotides. The population of SNVs >1% was reduced upon transmission while the low frequency SNV cloud remained stable. Fixation of multiple identical synonymous substitutions was apparent in independent transmissions, and no evidence for reversion of T-cell epitopes was observed. In addition, susceptibility of founder populations to antiviral therapy was assessed. Animals were treated with protease inhibitor (PI) monotherapy to track resistance associated substitution (RAS) emergence. Longitudinal analyses revealed a decline in population diversity under therapy, with no detectable RAS >1% prior to therapy commencement. Despite inoculation from a common source and identical therapeutic regimens, unique RAS emergence profiles were identified in different hosts prior to and during therapeutic failure, with complex mutational signatures at protease residues 155, 156 and 168 detected. Together these analyses track viral population complexity at high-resolution in the human-liver chimeric mouse model post-transmission and under therapeutic intervention, revealing novel insights into the evolutionary processes which shape viral protease population composition at various critical stages of the viral life-cycle.
Collapse
|
25
|
Vahedi F, Giles EC, Ashkar AA. The Application of Humanized Mouse Models for the Study of Human Exclusive Viruses. Methods Mol Biol 2017; 1656:1-56. [PMID: 28808960 DOI: 10.1007/978-1-4939-7237-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The symbiosis between humans and viruses has allowed human tropic pathogens to evolve intricate means of modulating the human immune response to ensure its survival among the human population. In doing so, these viruses have developed profound mechanisms that mesh closely with our human biology. The establishment of this intimate relationship has created a species-specific barrier to infection, restricting the virus-associated pathologies to humans. This specificity diminishes the utility of traditional animal models. Humanized mice offer a model unique to all other means of study, providing an in vivo platform for the careful examination of human tropic viruses and their interaction with human cells and tissues. These types of animal models have provided a reliable medium for the study of human-virus interactions, a relationship that could otherwise not be investigated without questionable relevance to humans.
Collapse
Affiliation(s)
- Fatemeh Vahedi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
- MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
| | - Elizabeth C Giles
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
- MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
| | - Ali A Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5.
- MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5.
| |
Collapse
|
26
|
Keck ZY, Wang Y, Lau P, Lund G, Rangarajan S, Fauvelle C, Liao GC, Holtsberg FW, Warfield KL, Aman MJ, Pierce BG, Fuerst TR, Bailey JR, Baumert TF, Mariuzza RA, Kneteman NM, Foung SKH. Affinity maturation of a broadly neutralizing human monoclonal antibody that prevents acute hepatitis C virus infection in mice. Hepatology 2016; 64:1922-1933. [PMID: 27641232 PMCID: PMC5115987 DOI: 10.1002/hep.28850] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 01/12/2023]
Abstract
UNLABELLED Direct-acting antivirals (DAAs) have led to a high cure rate in treated patients with chronic hepatitis C virus (HCV) infection, but this still leaves a large number of treatment failures secondary to the emergence of resistance-associated variants (RAVs). To increase the barrier to resistance, a complementary strategy is to use neutralizing human monoclonal antibodies (HMAbs) to prevent acute infection. However, earlier efforts with the selected antibodies led to RAVs in animal and clinical studies. Therefore, we identified an HMAb that is less likely to elicit RAVs for affinity maturation to increase potency and, more important, breadth of protection. Selected matured antibodies show improved affinity and neutralization against a panel of diverse HCV isolates. Structural and modeling studies reveal that the affinity-matured HMAb mediates virus neutralization, in part, by inducing conformational change to the targeted epitope, and that the maturated light chain is responsible for the improved affinity and breadth of protection. A matured HMAb protected humanized mice when challenged with an infectious HCV human serum inoculum for a prolonged period. However, a single mouse experienced breakthrough infection after 63 days when the serum HMAb concentration dropped by several logs; sequence analysis revealed no viral escape mutation. CONCLUSION The findings suggest that a single broadly neutralizing antibody can prevent acute HCV infection without inducing RAVs and may complement DAAs to reduce the emergence of RAVs. (Hepatology 2016;64:1922-1933).
Collapse
Affiliation(s)
- Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Yong Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Patrick Lau
- Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Garry Lund
- KMT Hepatech, Inc., Edmonton, Alberta, Canada
| | - Sneha Rangarajan
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Catherine Fauvelle
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Grant C. Liao
- Integrated BioTherapeutics, Inc., Gaithersburg, Maryland, USA
| | | | | | - M. Javad Aman
- Integrated BioTherapeutics, Inc., Gaithersburg, Maryland, USA
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Thomas R. Fuerst
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Justin R. Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, Institut Hopitalo-universitaire (IHU), 67000 Strasbourg, France
| | - Roy A. Mariuzza
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Norman M. Kneteman
- Departments of Surgery and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305, USA,Corresponding Author: Address: Stanford Blood Center, 3373 Hillview Avenue, Palo Alto, CA 94304; Telephone: 650-723-6481;
| |
Collapse
|
27
|
Vercauteren K, Brown RJP, Mesalam AA, Doerrbecker J, Bhuju S, Geffers R, Van Den Eede N, McClure CP, Troise F, Verhoye L, Baumert T, Farhoudi A, Cortese R, Ball JK, Leroux-Roels G, Pietschmann T, Nicosia A, Meuleman P. Targeting a host-cell entry factor barricades antiviral-resistant HCV variants from on-therapy breakthrough in human-liver mice. Gut 2016; 65:2029-2034. [PMID: 26306759 DOI: 10.1136/gutjnl-2014-309045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Direct-acting antivirals (DAAs) inhibit hepatitis C virus (HCV) infection by targeting viral proteins that play essential roles in the replication process. However, selection of resistance-associated variants (RAVs) during DAA therapy has been a cause of therapeutic failure. In this study, we wished to address whether such RAVs could be controlled by the co-administration of host-targeting entry inhibitors that prevent intrahepatic viral spread. DESIGN We investigated the effect of adding an entry inhibitor (the anti-scavenger receptor class B type I mAb1671) to a DAA monotherapy (the protease inhibitor ciluprevir) in human-liver mice chronically infected with HCV of genotype 1b. Clinically relevant non-laboratory strains were used to achieve viraemia consisting of a cloud of related viral variants (quasispecies) and the emergence of RAVs was monitored at high resolution using next-generation sequencing. RESULTS HCV-infected human-liver mice receiving DAA monotherapy rapidly experienced on-therapy viral breakthrough. Deep sequencing of the HCV protease domain confirmed the manifestation of drug-resistant mutants upon viral rebound. In contrast, none of the mice treated with a combination of the DAA and the entry inhibitor experienced on-therapy viral breakthrough, despite detection of RAV emergence in some animals. CONCLUSIONS This study provides preclinical in vivo evidence that addition of an entry inhibitor to an anti-HCV DAA regimen restricts the breakthrough of DAA-resistant viruses. Our approach is an excellent strategy to prevent therapeutic failure caused by on-therapy rebound of DAA-RAVs. Inclusion of an entry inhibitor to the newest DAA combination therapies may further increase response rates, especially in difficult-to-treat patient populations.
Collapse
Affiliation(s)
- Koen Vercauteren
- Department Clinical Chemistry, Microbiology and Immunology, Center for Vaccinology, Ghent University, Ghent, Belgium
| | - Richard J P Brown
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Ahmed Atef Mesalam
- Department Clinical Chemistry, Microbiology and Immunology, Center for Vaccinology, Ghent University, Ghent, Belgium
| | - Juliane Doerrbecker
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Sabin Bhuju
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Naomi Van Den Eede
- Department Clinical Chemistry, Microbiology and Immunology, Center for Vaccinology, Ghent University, Ghent, Belgium
| | - C Patrick McClure
- School of Life Sciences and the NIHR Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | - Lieven Verhoye
- Department Clinical Chemistry, Microbiology and Immunology, Center for Vaccinology, Ghent University, Ghent, Belgium
| | - Thomas Baumert
- Institut National de la Santé et de la Recherche Médicale, U1110, Strasbourg, France.,Université de Strasbourg, Strasbourg et Pole Hépato-digestif, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ali Farhoudi
- Department Clinical Chemistry, Microbiology and Immunology, Center for Vaccinology, Ghent University, Ghent, Belgium
| | | | - Jonathan K Ball
- School of Life Sciences and the NIHR Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Geert Leroux-Roels
- Department Clinical Chemistry, Microbiology and Immunology, Center for Vaccinology, Ghent University, Ghent, Belgium
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
| | - Alfredo Nicosia
- CEINGE, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Philip Meuleman
- Department Clinical Chemistry, Microbiology and Immunology, Center for Vaccinology, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Tawar RG, Heydmann L, Bach C, Schüttrumpf J, Chavan S, King BJ, McClure CP, Ball JK, Pessaux P, Habersetzer F, Bartenschlager R, Zeisel MB, Baumert TF. Broad neutralization of hepatitis C virus-resistant variants by Civacir hepatitis C immunoglobulin. Hepatology 2016; 64:1495-1506. [PMID: 27531416 PMCID: PMC7615276 DOI: 10.1002/hep.28767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV)-induced end-stage liver disease is the major indication for liver transplantation (LT). However, reinfection of the liver graft is still common, especially in patients with detectable viral load at the time of LT. Limited data are available on direct-acting antivirals in the transplant setting for prevention of graft infection. The human hepatitis C immunoglobulin (HCIG) Civacir is an investigational drug that is currently being developed in an ongoing phase 3 clinical trial assessing its safety and efficacy at preventing HCV recurrence after liver transplantation (LT) in the United States. Using well-characterized patient-derived HCV variants selected during LT, we studied the molecular mechanism of action of Civacir. Inhibition of HCV infection was studied using infectious HCV models including HCV pseudoparticles (HCVpp) and cell culture-derived HCV (HCVcc) containing patient-derived viral envelope glycoproteins from 22 HCV variants isolated from patients before and after LT. The human hepatitis C immune globulin Civacir is an investigational drug that is currently being developed in an ongoing phase 3 clinical trial assessing safety and efficacy to prevent HCV recurrence after LT in the United States. Using well-characterized patient-derived HCV variants selected during LT, we studied the molecular mechanism of action of Civacir. Inhibition of HCV infection was studied using infectious HCV models including HCV pseudoparticles and cell culture-derived HCV containing patient-derived viral envelope glycoproteins from 22 HCV variants isolated from patients before and after liver transplantation. Additionally, we studied neutralization of different HCV genotypes and of direct-acting antiviral-resistant viruses. Our results indicate that Civacir potently, broadly, and dose-dependently neutralizes all tested patient variants in HCV pseudoparticles and cell culture-derived HCV assays including variants displaying resistance to host neutralizing antibodies and antiviral monoclonal antibodies. The half-maximal inhibitory concentrations were independent of the phenotype of the viral variant, indicating that virus neutralization by Civacir is not affected by viral selection. Furthermore, Civacir is equally active against tested direct-acting antiviral-resistant HCV isolates in cell culture. CONCLUSION Collectively, these results demonstrate broad neutralizing activity of Civacir against resistant viruses, likely due to synergy between anti-HCV antibodies derived from different plasma donors, and support its further clinical development for prevention of liver graft infection. (Hepatology 2016;64:1495-1506).
Collapse
Affiliation(s)
- Rajiv G Tawar
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Laura Heydmann
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Charlotte Bach
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | | | | | - Barnabas J King
- School of Life Sciences and the NIHR Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - C Patrick McClure
- School of Life Sciences and the NIHR Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Jonathan K Ball
- School of Life Sciences and the NIHR Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Patrick Pessaux
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Institut Hospitalo-universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - François Habersetzer
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Institut Hospitalo-universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Mirjam B Zeisel
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.
- University of Strasbourg, Strasbourg, France.
- Institut Hospitalo-universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
29
|
Viral evasion and challenges of hepatitis C virus vaccine development. Curr Opin Virol 2016; 20:55-63. [PMID: 27657659 DOI: 10.1016/j.coviro.2016.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a major global disease burden, often leading to chronic liver diseases, cirrhosis, cancer, and death in those infected. Despite the recent approval of antiviral therapeutics, a preventative vaccine is recognized as the most effective means to control HCV globally, particularly in at-risk and developing country populations. Here we describe the efforts and challenges related to the development of an HCV vaccine, which after decades of research have not been successful. Viral sequence variability poses a major challenge, yet recent research has provided unprecedented views of the atomic structure of HCV epitopes and immune recognition by antibodies and T cell receptors. This, coupled with insights from deep sequencing, robust neutralization assays, and other technological advances, is spurring research toward rationally HCV designed vaccines that preferentially elicit responses toward conserved epitopes of interest that are associated with viral neutralization and clearance.
Collapse
|
30
|
Urbanowicz RA, McClure CP, King B, Mason CP, Ball JK, Tarr AW. Novel functional hepatitis C virus glycoprotein isolates identified using an optimized viral pseudotype entry assay. J Gen Virol 2016; 97:2265-2279. [PMID: 27384448 PMCID: PMC5042129 DOI: 10.1099/jgv.0.000537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Retrovirus pseudotypes are a highly tractable model used to study the entry pathways of enveloped viruses. This model has been extensively applied to the study of the hepatitis C virus (HCV) entry pathway, preclinical screening of antiviral antibodies and for assessing the phenotype of patient-derived viruses using HCV pseudoparticles (HCVpp) possessing the HCV E1 and E2 glycoproteins. However, not all patient-isolated clones produce particles that are infectious in this model. This study investigated factors that might limit phenotyping of patient-isolated HCV glycoproteins. Genetically related HCV glycoproteins from quasispecies in individual patients were discovered to behave very differently in this entry model. Empirical optimization of the ratio of packaging construct and glycoprotein-encoding plasmid was required for successful HCVpp genesis for different clones. The selection of retroviral packaging construct also influenced the function of HCV pseudoparticles. Some glycoprotein constructs tolerated a wide range of assay parameters, while others were much more sensitive to alterations. Furthermore, glycoproteins previously characterized as unable to mediate entry were found to be functional. These findings were validated using chimeric cell-cultured HCV bearing these glycoproteins. Using the same empirical approach we demonstrated that generation of infectious ebolavirus pseudoviruses (EBOVpv) was also sensitive to the amount and ratio of plasmids used, and that protocols for optimal production of these pseudoviruses are dependent on the exact virus glycoprotein construct. These findings demonstrate that it is crucial for studies utilizing pseudoviruses to conduct empirical optimization of pseudotype production for each specific glycoprotein sequence to achieve optimal titres and facilitate accurate phenotyping.
Collapse
Affiliation(s)
- Richard A. Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - C. Patrick McClure
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Barnabas King
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Christopher P. Mason
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Correspondence Alexander W. Tarr
| |
Collapse
|
31
|
Fauvelle C, Colpitts CC, Keck ZY, Pierce BG, Foung SKH, Baumert TF. Hepatitis C virus vaccine candidates inducing protective neutralizing antibodies. Expert Rev Vaccines 2016; 15:1535-1544. [PMID: 27267297 DOI: 10.1080/14760584.2016.1194759] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION With more than 150 million chronically infected people, hepatitis C virus (HCV) remains a substantial global health burden. Direct-acting antivirals have dramatically improved viral cure. However, limited access to therapy, late stage detection of infection and re-infection following cure illustrate the need for a vaccine for global control of infection. Vaccines with induction of neutralizing antibodies (nAbs) have been shown to protect successfully against infections by multiple viruses and are currently developed for HCV. Areas covered: Here we review the progress towards the development of vaccines aiming to confer protection against chronic HCV infection by inducing broadly nAbs. The understanding or viral immune evasion in infected patients, the development of novel model systems and the recent structural characterization of viral envelope glycoprotein E2 has markedly advanced our understanding of the molecular mechanisms of virus neutralization with the concomitant development of several vaccine candidates. Expert commentary: While HCV vaccine development remains challenged by the high viral diversity and immune evasion, marked progress in HCV research has advanced vaccine design. Several vaccine candidates have shown robust induction of nAbs in animal models and humans. Randomized clinical trials are the next step to assess their clinical efficacy for protection against chronic infection.
Collapse
Affiliation(s)
- Catherine Fauvelle
- a Inserm, U1110 , Institut de Recherche sur les Maladies Virales et Hépatiques , Strasbourg , France.,b Université de Strasbourg , Strasbourg , France
| | - Che C Colpitts
- a Inserm, U1110 , Institut de Recherche sur les Maladies Virales et Hépatiques , Strasbourg , France.,b Université de Strasbourg , Strasbourg , France
| | - Zhen-Yong Keck
- c Department of Pathology , Stanford University School of Medicine , Stanford , CA , USA
| | - Brian G Pierce
- d Institute for Bioscience and Biotechnology Research , University of Maryland , Rockville , MD , USA
| | - Steven K H Foung
- c Department of Pathology , Stanford University School of Medicine , Stanford , CA , USA
| | - Thomas F Baumert
- a Inserm, U1110 , Institut de Recherche sur les Maladies Virales et Hépatiques , Strasbourg , France.,b Université de Strasbourg , Strasbourg , France.,e Institut Hospitalo-Universitaire, Pôle Hépato-digestif , Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| |
Collapse
|
32
|
Felmlee DJ, Coilly A, Chung RT, Samuel D, Baumert TF. New perspectives for preventing hepatitis C virus liver graft infection. THE LANCET. INFECTIOUS DISEASES 2016; 16:735-745. [PMID: 27301929 PMCID: PMC4911897 DOI: 10.1016/s1473-3099(16)00120-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 01/29/2016] [Accepted: 02/15/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease that necessitates liver transplantation. The incidence of virus-induced cirrhosis and hepatocellular carcinoma continues to increase, making liver transplantation increasingly common. Infection of the engrafted liver is universal and accelerates progression to advanced liver disease, with 20-30% of patients having cirrhosis within 5 years of transplantation. Treatments of chronic HCV infection have improved dramatically, albeit with remaining challenges of failure and access, and therapeutic options to prevent graft infection during liver transplantation are emerging. Developments in directed use of new direct-acting antiviral agents (DAAs) to eliminate circulating HCV before or after transplantation in the past 5 years provide renewed hope for prevention and treatment of liver graft infection. Identification of the ideal regimen and use of DAAs reveals new ways to treat this specific population of patients. Complementing DAAs, viral entry inhibitors have been shown to prevent liver graft infection in animal models and delay graft infection in clinical trials, which shows their potential for use concomitant to transplantation. We review the challenges and pathology associated with HCV liver graft infection, highlight current and future strategies of DAA treatment timing, and discuss the potential role of entry inhibitors that might be used synergistically with DAAs to prevent or treat graft infection.
Collapse
Affiliation(s)
- Daniel J Felmlee
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Hepatology Research Group, Peninsula School of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Audrey Coilly
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France; University Paris-Sud, UMR-S 1193, Villejuif, France; Inserm Unit 1193, Villejuif F-94800, France
| | - Raymond T Chung
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Didier Samuel
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France; University Paris-Sud, UMR-S 1193, Villejuif, France; Inserm Unit 1193, Villejuif F-94800, France.
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
33
|
Hepatitis C virus cell entry: a target for novel antiviral strategies to address limitations of direct acting antivirals. Hepatol Int 2016; 10:741-8. [DOI: 10.1007/s12072-016-9724-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/16/2016] [Indexed: 12/12/2022]
|
34
|
Desombere I, Fafi-Kremer S, Van Houtte F, Pessaux P, Farhoudi A, Heydmann L, Verhoye L, Cole S, McKeating JA, Leroux-Roels G, Baumert TF, Patel AH, Meuleman P. Monoclonal anti-envelope antibody AP33 protects humanized mice against a patient-derived hepatitis C virus challenge. Hepatology 2016; 63:1120-34. [PMID: 26710081 PMCID: PMC7613414 DOI: 10.1002/hep.28428] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/04/2015] [Accepted: 12/23/2015] [Indexed: 01/01/2023]
Abstract
UNLABELLED End-stage liver disease (ESLD) caused by hepatitis C virus (HCV) infection is a major indication for liver transplantation. However, immediately after transplantation, the liver graft of viremic patients universally becomes infected by circulating virus, resulting in accelerated liver disease progression. Currently available direct-acting antiviral therapies have reduced efficacy in patients with ESLD and prophylactic strategies to prevent HCV recurrence are still highly needed. In this study, we compared the ability of two broadly reactive monoclonal antibodies (mAbs), designated 3/11 and AP33, recognizing a distinct, but overlapping, epitope in the viral E2 glycoprotein to protect humanized mice from a patient-derived HCV challenge. Their neutralizing activity was assessed using the HCV pseudoparticles and cell-culture-derived HCV systems expressing multiple patient-derived envelopes and a human-liver chimeric mouse model. HCV RNA was readily detected in all control mice challenged with a patient-derived HCV genotype 1b isolate, whereas 3 of 4 AP33-treated mice were completely protected. In contrast, only one of four 3/11-treated mice remained HCV-RNA negative throughout the observation period, whereas the other 3 had a viral load that was indistinguishable from that in the control group. The increased in vivo efficacy of AP33 was in line with its higher affinity and neutralizing capacity observed in vitro. CONCLUSIONS Although mAbs AP33 and 3/11 target the same region in E2, only mAb AP33 can efficiently protect from challenge with a heterologous HCV population in vivo. Given that mAb AP33 efficiently neutralizes viral variants that escaped the humoral immune response and reinfected the liver graft of transplant patients, it may be a valuable candidate to prevent HCV recurrence. In addition, our data are valuable for the design of a prophylactic vaccine.
Collapse
Affiliation(s)
| | - Samira Fafi-Kremer
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques,Université de Strasbourg, Strasbourg, France,Laboratoire de Virologie
| | | | - Patrick Pessaux
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques,Université de Strasbourg, Strasbourg, France,Laboratoire de Virologie
| | - Ali Farhoudi
- Center for Vaccinology, Ghent University, Ghent, Belgium
| | - Laura Heydmann
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques,Université de Strasbourg, Strasbourg, France
| | - Lieven Verhoye
- Center for Vaccinology, Ghent University, Ghent, Belgium
| | - Sarah Cole
- MRC – University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Jane A. McKeating
- Viral Hepatitis Research Group, Centre for Human Virology, University of Birmingham, Birmingham, UK
| | | | - Thomas F. Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques,Université de Strasbourg, Strasbourg, France,Laboratoire de Virologie,corresponding authors; Contact information: Prof. Philip Meuleman, PhD, Center for Vaccinology - Ghent University, University Hospital Ghent, Building A, 1st floor, De Pintelaan 185, B-9000 Gent, Belgium, Phone: +32 (0)9 332 02 05 (direct); Phone: +32 (0)9 332 36 58 (office administrator), Fax: +32 (0)9 332 63 11; , Thomas F. Baumert: , Arvind H. Patel:
| | - Arvind H. Patel
- MRC – University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK,corresponding authors; Contact information: Prof. Philip Meuleman, PhD, Center for Vaccinology - Ghent University, University Hospital Ghent, Building A, 1st floor, De Pintelaan 185, B-9000 Gent, Belgium, Phone: +32 (0)9 332 02 05 (direct); Phone: +32 (0)9 332 36 58 (office administrator), Fax: +32 (0)9 332 63 11; , Thomas F. Baumert: , Arvind H. Patel:
| | - Philip Meuleman
- Center for Vaccinology, Ghent University, Ghent, Belgium,corresponding authors; Contact information: Prof. Philip Meuleman, PhD, Center for Vaccinology - Ghent University, University Hospital Ghent, Building A, 1st floor, De Pintelaan 185, B-9000 Gent, Belgium, Phone: +32 (0)9 332 02 05 (direct); Phone: +32 (0)9 332 36 58 (office administrator), Fax: +32 (0)9 332 63 11; , Thomas F. Baumert: , Arvind H. Patel:
| |
Collapse
|
35
|
Rowe IA, Tully DC, Armstrong MJ, Parker R, Guo K, Barton D, Morse GD, Venuto CS, Ogilvie CB, Hedegaard DL, McKelvy JF, Wong-Staal F, Allen TM, Balfe P, McKeating JA, Mutimer. DJ. Effect of scavenger receptor class B type I antagonist ITX5061 in patients with hepatitis C virus infection undergoing liver transplantation. Liver Transpl 2016; 22:287-97. [PMID: 26437376 PMCID: PMC4901184 DOI: 10.1002/lt.24349] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) entry inhibitors have been hypothesized to prevent infection of the liver after transplantation. ITX5061 is a scavenger receptor class B type I antagonist that blocks HCV entry and infection in vitro. We assessed the safety and efficacy of ITX5061 to limit HCV infection of the graft. The study included 23 HCV-infected patients undergoing liver transplantation. The first 13 "control" patients did not receive drug. The subsequent 10 patients received 150 mg of ITX5061 immediately before and after transplant and daily for 1 week thereafter. ITX5061 pharmacokinetics and plasma HCV RNA were quantified. Viral genetic diversity was measured by ultradeep pyrosequencing (UDPS). ITX5061 was well tolerated with measurable plasma concentrations during therapy. Although the median HCV RNA reduction was greater in ITX-treated patients at all time points in the first week after transplantation, there was no difference in the overall change in the area over the HCV RNA curve in the 7-day treatment period. However, in genotype (GT) 1-infected patients, treatment was associated with a sustained reduction in HCV RNA levels compared to the control group (area over the HCV RNA curve analysis, P = 0.004). UDPS revealed a complex and evolving pattern of HCV variants infecting the graft during the first week. ITX5061 significantly limited viral evolution where the median divergence between day 0 and day 7 was 3.5% in the control group compared to 0.1% in the treated group. In conclusion, ITX5061 reduces plasma HCV RNA after transplant notably in GT 1-infected patients and slows viral evolution. Following liver transplantation, the likely contribution of extrahepatic reservoirs of HCV necessitates combining entry inhibitors such as ITX5061 with inhibitors of replication in future studies.
Collapse
Affiliation(s)
- Ian A Rowe
- Viral Hepatitis Laboratory, Centre for Human Virology, University of Birmingham, UK,NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK,Liver and Hepatobiliary Unit, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | | | - Matthew J Armstrong
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK,Liver and Hepatobiliary Unit, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Richard Parker
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK,Liver and Hepatobiliary Unit, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Kathy Guo
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK
| | - Darren Barton
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK,Cancer Research UK Clinical Trials Unit, University of Birmingham, UK
| | - Gene D Morse
- School of Pharmacy and Pharmaceutical Sciences and NYS Centre of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York, NY, US
| | - Charles S Venuto
- Center for Human Experimental Therapeutics, University of Rochester School of Medicine, Rochester, NY, US
| | | | - Ditte L Hedegaard
- Viral Hepatitis Laboratory, Centre for Human Virology, University of Birmingham, UK
| | | | | | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Harvard, US
| | - Peter Balfe
- Viral Hepatitis Laboratory, Centre for Human Virology, University of Birmingham, UK
| | - Jane A McKeating
- Viral Hepatitis Laboratory, Centre for Human Virology, University of Birmingham, UK,NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK
| | - David J Mutimer.
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK,Liver and Hepatobiliary Unit, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| |
Collapse
|
36
|
Fauvelle C, Felmlee DJ, Crouchet E, Lee J, Heydmann L, Lefèvre M, Magri A, Hiet MS, Fofana I, Habersetzer F, Foung SKH, Milne R, Patel AH, Vercauteren K, Meuleman P, Zeisel MB, Bartenschlager R, Schuster C, Baumert TF. Apolipoprotein E Mediates Evasion From Hepatitis C Virus Neutralizing Antibodies. Gastroenterology 2016; 150:206-217.e4. [PMID: 26404951 DOI: 10.1053/j.gastro.2015.09.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 08/06/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Efforts to develop an effective vaccine against hepatitis C virus (HCV) have been hindered by the propensity of the virus to evade host immune responses. HCV particles in serum and in cell culture associate with lipoproteins, which contribute to viral entry. Lipoprotein association has also been proposed to mediate viral evasion of the humoral immune response, though the mechanisms are poorly defined. METHODS We used small interfering RNAs to reduce levels of apolipoprotein E (apoE) in cell culture-derived HCV-producing Huh7.5-derived hepatoma cells and confirmed its depletion by immunoblot analyses of purified viral particles. Before infection of naïve hepatoma cells, we exposed cell culture-derived HCV strains of different genotypes, subtypes, and variants to serum and polyclonal and monoclonal antibodies isolated from patients with chronic HCV infection. We analyzed the interaction of apoE with viral envelope glycoprotein E2 and HCV virions by immunoprecipitation. RESULTS Through loss-of-function studies on patient-derived HCV variants of several genotypes and subtypes, we found that the HCV particle apoE allows the virus to avoid neutralization by patient-derived antibodies. Functional studies with human monoclonal antiviral antibodies showed that conformational epitopes of envelope glycoprotein E2 domains B and C were exposed after depletion of apoE. The level and conformation of virion-associated apoE affected the ability of the virus to escape neutralization by antibodies. CONCLUSIONS In cell-infection studies, we found that HCV-associated apoE helps the virus avoid neutralization by antibodies against HCV isolated from chronically infected patients. This method of immune evasion poses a challenge for the development of HCV vaccines.
Collapse
Affiliation(s)
- Catherine Fauvelle
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Daniel J Felmlee
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; University of Plymouth, Centre for Biomedical Research, Plymouth, UK
| | - Emilie Crouchet
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - JiYoung Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Laura Heydmann
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Mathieu Lefèvre
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Andrea Magri
- MRC, University of Glasgow, Centre for Virus Research, Glasgow, UK
| | - Marie-Sophie Hiet
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Isabel Fofana
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - François Habersetzer
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Ross Milne
- Department of Pathology and Laboratory Medicine, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Arvind H Patel
- MRC, University of Glasgow, Centre for Virus Research, Glasgow, UK
| | - Koen Vercauteren
- Center for Vaccinology, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Philip Meuleman
- Center for Vaccinology, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Mirjam B Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
37
|
A Diverse Panel of Hepatitis C Virus Glycoproteins for Use in Vaccine Research Reveals Extremes of Monoclonal Antibody Neutralization Resistance. J Virol 2015; 90:3288-301. [PMID: 26699643 PMCID: PMC4794667 DOI: 10.1128/jvi.02700-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023] Open
Abstract
Despite significant advances in the treatment of hepatitis C virus (HCV) infection, the need to develop preventative vaccines remains. Identification of the best vaccine candidates and evaluation of their performance in preclinical and clinical development will require appropriate neutralization assays utilizing diverse HCV isolates. We aimed to generate and characterize a panel of HCV E1E2 glycoproteins suitable for subsequent use in vaccine and therapeutic antibody testing. Full-length E1E2 clones were PCR amplified from patient-derived serum samples, cloned into an expression vector, and used to generate viral pseudoparticles (HCVpp). In addition, some of these clones were used to generate cell culture infectious (HCVcc) clones. The infectivity and neutralization sensitivity of these viruses were then determined. Bioinformatic and HCVpp infectivity screening of approximately 900 E1E2 clones resulted in the assembly of a panel of 78 functional E1E2 proteins representing distinct HCV genotypes and different stages of infection. These HCV glycoproteins differed markedly in their sensitivity to neutralizing antibodies. We used this panel to predict antibody efficacy against circulating HCV strains, highlighting the likely reason why some monoclonal antibodies failed in previous clinical trials. This study provides the first objective categorization of cross-genotype patient-derived HCV E1E2 clones according to their sensitivity to antibody neutralization. It has shown that HCV isolates have clearly distinguishable neutralization-sensitive, -resistant, or -intermediate phenotypes, which are independent of genotype. The panel provides a systematic means for characterization of the neutralizing response elicited by candidate vaccines and for defining the therapeutic potential of monoclonal antibodies. IMPORTANCE Hepatitis C virus (HCV) has a global burden of more than 170 million people, many of whom cannot attain the new, expensive, direct-acting antiviral therapies. A safe and effective vaccine that generates both T cell responses and neutralizing antibodies is required to eradicate the disease. Regions within the HCV surface glycoproteins E1 and E2 are essential for virus entry and are targets for neutralizing antibodies. Screening of vaccine candidates requires suitable panels of glycoproteins that represent the breadth of neutralization resistance. Use of a standard reference panel for vaccine studies will ensure comparability of data sets, as has become routine for HIV-1. Here, we describe a large panel of patient-derived HCV glycoproteins with an assessment of their neutralization sensitivity to defined monoclonal antibodies, which has enabled us to predict their likely efficacy in the wider HCV-infected population. The panel could also be important for future selection of additional therapeutic antibodies and for vaccine design.
Collapse
|
38
|
Ahmed A, Felmlee DJ. Mechanisms of Hepatitis C Viral Resistance to Direct Acting Antivirals. Viruses 2015; 7:6716-29. [PMID: 26694454 PMCID: PMC4690891 DOI: 10.3390/v7122968] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 12/28/2022] Open
Abstract
There has been a remarkable transformation in the treatment of chronic hepatitis C in recent years with the development of direct acting antiviral agents targeting virus encoded proteins important for viral replication including NS3/4A, NS5A and NS5B. These agents have shown high sustained viral response (SVR) rates of more than 90% in phase 2 and phase 3 clinical trials; however, this is slightly lower in real-life cohorts. Hepatitis C virus resistant variants are seen in most patients who do not achieve SVR due to selection and outgrowth of resistant hepatitis C virus variants within a given host. These resistance associated mutations depend on the class of direct-acting antiviral drugs used and also vary between hepatitis C virus genotypes and subtypes. The understanding of these mutations has a clear clinical implication in terms of choice and combination of drugs used. In this review, we describe mechanism of action of currently available drugs and summarize clinically relevant resistance data.
Collapse
Affiliation(s)
- Asma Ahmed
- Plymouth University, Peninsula School of Medicine and Dentistry, Plymouth PL6 8BU, UK.
| | - Daniel J Felmlee
- Plymouth University, Peninsula School of Medicine and Dentistry, Plymouth PL6 8BU, UK.
| |
Collapse
|
39
|
Sommerstein R, Flatz L, Remy MM, Malinge P, Magistrelli G, Fischer N, Sahin M, Bergthaler A, Igonet S, ter Meulen J, Rigo D, Meda P, Rabah N, Coutard B, Bowden TA, Lambert PH, Siegrist CA, Pinschewer DD. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection. PLoS Pathog 2015; 11:e1005276. [PMID: 26587982 PMCID: PMC4654586 DOI: 10.1371/journal.ppat.1005276] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/22/2015] [Indexed: 01/05/2023] Open
Abstract
Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein’s globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy. Neutralizing antibodies (nAbs) represent a key principle of antiviral immunity. Protective vaccines aim at inducing nAbs to prevent viral infection, and infusion of nAbs in convalescent patient serum can offer a potent antiviral therapy. Certain viruses, however, have found ways to evade nAb control. Amongst them are high-risk pathogens of the arenavirus family such as Lassa virus (LASV), which is a frequent cause of hemorrhagic fever in West Africa. Here we unveil the molecular strategy by which arenaviruses escape antibody neutralization and avoid efficient immune control. We show that their surface is decorated with sugar moieties, serving to shield the virus against the neutralizing effect of the host’s antibodies. This immune evasion strategy differs from those described for other viruses, in which sugars impair primarily the induction of antibodies or allow for viral mutational escape. The arenavirus sugar coat renders the host nAb response inefficient and as a consequence thereof, the host fails to promptly control the infection. Our results offer a compelling explanation for the long history of failures in trying to make a nAb-based vaccine against LASV or in using convalescent serum for therapy. These mechanistic insights will support vaccine development efforts against arenaviruses such as LASV.
Collapse
Affiliation(s)
- Rami Sommerstein
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- World Health Organization Collaborating Centre for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| | - Lukas Flatz
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Melissa M. Remy
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | - Mehmet Sahin
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andreas Bergthaler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Sebastien Igonet
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale and CNRS UMR 3569 Virologie, Paris, France
| | - Jan ter Meulen
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Dorothée Rigo
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nadia Rabah
- AFMB, UMR7257 CNRS/Aix Marseille Université, Marseille, France
| | - Bruno Coutard
- AFMB, UMR7257 CNRS/Aix Marseille Université, Marseille, France
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Paul-Henri Lambert
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- World Health Organization Collaborating Centre for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- World Health Organization Collaborating Centre for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| | - Daniel D. Pinschewer
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- World Health Organization Collaborating Centre for Vaccine Immunology, University of Geneva, Geneva, Switzerland
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
40
|
Schwab A, Meyering SS, Lepene B, Iordanskiy S, van Hoek ML, Hakami RM, Kashanchi F. Extracellular vesicles from infected cells: potential for direct pathogenesis. Front Microbiol 2015; 6:1132. [PMID: 26539170 PMCID: PMC4611157 DOI: 10.3389/fmicb.2015.01132] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022] Open
Abstract
Infections that result in natural or manmade spread of lethal biological agents are a concern and require national and focused preparedness. In this manuscript, as part of an early diagnostics and pathogen treatment strategy, we have focused on extracellular vesicles (EVs) that arise following infections. Although the field of biodefense does not currently have a rich resource in EVs literature, none the less, similar pathogens belonging to the more classical emerging and non-emerging diseases have been studied in their EV/exosomal contents and function. These exosomes are formed in late endosomes and released from the cell membrane in almost every cell type in vivo. These vesicles contain proteins, RNA, and lipids from the cells they originate from and function in development, signal transduction, cell survival, and transfer of infectious material. The current review focuses on how different forms of infection exploit the exosomal pathway and how exosomes can be exploited artificially to treat infection and disease and potentially also be used as a source of vaccine. Virally-infected cells can secrete viral as well as cellular proteins and RNA in exosomes, allowing viruses to cause latent infection and spread of miRNA to nearby cells prior to a subsequent infection. In addition to virally-infected host cells, bacteria, protozoa, and fungi can all release small vesicles that contain pathogen-associated molecular patterns, regulating the neighboring uninfected cells. Examples of exosomes from both virally and bacterially infected cells point toward a re-programming network of pathways in the recipient cells. Finally, many of these exosomes contain cytokines and miRNAs that in turn can effect gene expression in the recipient cells through the classical toll-like receptor and NFκB pathway. Therefore, although exosomes do not replicate as an independent entity, they however facilitate movement of infectious material through tissues and may be the cause of many pathologies seen in infected hosts.
Collapse
Affiliation(s)
- Angela Schwab
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, VA, USA
| | - Shabana S Meyering
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, VA, USA ; School of Nursing and Health Studies, Georgetown University , Washington, DC, USA
| | - Ben Lepene
- Ceres Nanosciences, Inc. , Manassas, VA, USA
| | - Sergey Iordanskiy
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, VA, USA
| | - Monique L van Hoek
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, VA, USA
| | - Ramin M Hakami
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, VA, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, VA, USA
| |
Collapse
|
41
|
Vercauteren K, de Jong YP, Meuleman P. Animal models for the study of HCV. Curr Opin Virol 2015; 13:67-74. [PMID: 26304554 PMCID: PMC4549803 DOI: 10.1016/j.coviro.2015.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/18/2022]
Abstract
The development and evaluation of effective therapies and vaccines for the hepatitis C virus (HCV) and the study of its interactions with the mammalian host have been hindered for a long time by the absence of suitable small animal models. Immune compromised mouse models that recapitulate the complete HCV life cycle have been useful to investigate many aspects of the HCV life cycle including antiviral interventions. However, HCV has a high propensity to establish persistence and associated histopathological manifestations such as steatosis, fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Better understanding of these processes requires the development of a permissive and fully immunocompetent small animal model. In this review we summarize the in vivo models that are available for the study of HCV.
Collapse
Affiliation(s)
- Koen Vercauteren
- Center for Vaccinology, Dept. of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, USA; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, USA
| | - Philip Meuleman
- Center for Vaccinology, Dept. of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| |
Collapse
|
42
|
Tarr AW, Khera T, Hueging K, Sheldon J, Steinmann E, Pietschmann T, Brown RJP. Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design. Viruses 2015; 7:3995-4046. [PMID: 26193307 PMCID: PMC4517138 DOI: 10.3390/v7072809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
In the 26 years since the discovery of Hepatitis C virus (HCV) a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA) regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.
Collapse
Affiliation(s)
- Alexander W Tarr
- School of Life Sciences, Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Tanvi Khera
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Kathrin Hueging
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Julie Sheldon
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Eike Steinmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig 38124, Germany.
| | - Richard J P Brown
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| |
Collapse
|
43
|
Liu S, Chen R, Hagedorn CH. Tannic Acid Inhibits Hepatitis C Virus Entry into Huh7.5 Cells. PLoS One 2015; 10:e0131358. [PMID: 26186636 PMCID: PMC4505941 DOI: 10.1371/journal.pone.0131358] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 06/01/2015] [Indexed: 12/15/2022] Open
Abstract
Chronic infection with the hepatitis C virus (HCV) is a cause of cirrhosis and hepatocellular carcinoma worldwide. Although antiviral therapy has dramatically improved recently, a number of patients remain untreated and some do not clear infection with treatment. Viral entry is an essential step in initiating and maintaining chronic HCV infections. One dramatic example of this is the nearly 100% infection of newly transplanted livers in patients with chronic hepatitis C. HCV entry inhibitors could play a critical role in preventing HCV infection of newly transplanted livers. Tannic acid, a polymer of gallic acid and glucose molecules, is a plant-derived polyphenol that defends some plants from insects and microbial infections. It has been shown to have a variety of biological effects, including antiviral activity, and is used as a flavoring agent in foods and beverages. In this study, we demonstrate that tannic acid is a potent inhibitor of HCV entry into Huh7.5 cells at low concentrations (IC50 5.8 μM). It also blocks cell-to-cell spread in infectious HCV cell cultures, but does not inhibit HCV replication following infection. Moreover, experimental results indicate that tannic acid inhibits an early step of viral entry, such as the docking of HCV at the cell surface. Gallic acid, tannic acid’s structural component, did not show any anti-HCV activity including inhibition of HCV entry or replication at concentrations up to 25 μM. It is possible the tannin structure is related on the effect on HCV inhibition. Tannic acid, which is widely distributed in plants and foods, has HCV antiviral activity in cell culture at low micromolar concentrations, may provide a relative inexpensive adjuvant to direct-acting HCV antivirals and warrants future investigation.
Collapse
Affiliation(s)
- Shuanghu Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, United States of America; Department of Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Ren Chen
- Department of Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Curt H Hagedorn
- Department of Medicine, University of Utah, Salt Lake City, UT, United States of America; Department of Medicine, University of Arkansas for Medical Sciences Little Rock, AR, United States of America; Program in Genetics, University of Arkansas for Medical Sciences Little Rock, AR, United States of America; The Central Arkansas Veterans Healthcare System, Little Rock, AR, United States of America
| |
Collapse
|
44
|
Padmanabhan P, Dixit NM. Modeling Suggests a Mechanism of Synergy Between Hepatitis C Virus Entry Inhibitors and Drugs of Other Classes. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2015; 4:445-53. [PMID: 26380153 PMCID: PMC4562160 DOI: 10.1002/psp4.12005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 12/25/2022]
Abstract
Hepatitis C virus (HCV) entry inhibitors (EIs) act synergistically with drugs targeting other stages of the HCV lifecycle. The origin of this synergy remains unknown. Here, we argue that the synergy may arise from the complementary activities of the drugs across cell subpopulations expressing different levels of HCV entry receptors. We employ mathematical modeling of viral kinetics in vitro, where cells with a distribution of entry receptor expression levels are exposed to HCV with or without drugs. The drugs act independently in each cell, as expected in the absence of underlying interactions. Yet, at the cell population level our model predicts that the drugs exhibit synergy. EIs effectively block infection of cells with low receptor levels. With high receptor levels, where EIs are compromised, other drugs are potent. This novel mechanism of synergy, arising at the cell population level may facilitate interpretation of drug activity and treatment optimization.
Collapse
Affiliation(s)
- P Padmanabhan
- Department of Chemical Engineering, Indian Institute of Science Bangalore, Karnataka, India
| | - N M Dixit
- Department of Chemical Engineering, Indian Institute of Science Bangalore, Karnataka, India
| |
Collapse
|
45
|
Immunization with Recombinant Adenoviral Vectors Expressing HCV Core or F Proteins Leads to T Cells with Reduced Effector Molecules Granzyme B and IFN-γ: A Potential New Strategy for Immune Evasion in HCV Infection. Viral Immunol 2015; 28:309-24. [DOI: 10.1089/vim.2015.0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
46
|
de Jong YP, Dorner M, Mommersteeg MC, Xiao JW, Balazs AB, Robbins JB, Winer BY, Gerges S, Vega K, Labitt RN, Donovan BM, Giang E, Krishnan A, Chiriboga L, Charlton MR, Burton DR, Baltimore D, Law M, Rice CM, Ploss A. Broadly neutralizing antibodies abrogate established hepatitis C virus infection. Sci Transl Med 2015; 6:254ra129. [PMID: 25232181 DOI: 10.1126/scitranslmed.3009512] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most exposed individuals, hepatitis C virus (HCV) establishes a chronic infection; this long-term infection in turn contributes to the development of liver diseases such as cirrhosis and hepatocellular carcinoma. The role of antibodies directed against HCV in disease progression is poorly understood. Neutralizing antibodies (nAbs) can prevent HCV infection in vitro and in animal models. However, the effects of nAbs on an established HCV infection are unclear. We demonstrate that three broadly nAbs-AR3A, AR3B, and AR4A-delivered with adeno-associated viral vectors can confer protection against viral challenge in humanized mice. Furthermore, we provide evidence that nAbs can abrogate an ongoing HCV infection in primary hepatocyte cultures and in a human liver chimeric mouse model. These results showcase a therapeutic approach to interfere with HCV infection by exploiting a previously unappreciated need for HCV to continuously infect new hepatocytes to sustain a chronic infection.
Collapse
Affiliation(s)
- Ype P de Jong
- Center for the Study of Hepatitis C, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY 10065, USA. Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| | - Marcus Dorner
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Michiel C Mommersteeg
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jing W Xiao
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Justin B Robbins
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin Y Winer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sherif Gerges
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kevin Vega
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Rachael N Labitt
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Bridget M Donovan
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Erick Giang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anuradha Krishnan
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, NY 10016, USA
| | - Michael R Charlton
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Dennis R Burton
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA. Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Baltimore
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles M Rice
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Alexander Ploss
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA. Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
47
|
Catanese MT, Dorner M. Advances in experimental systems to study hepatitis C virus in vitro and in vivo. Virology 2015; 479-480:221-33. [PMID: 25847726 DOI: 10.1016/j.virol.2015.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/04/2015] [Accepted: 03/03/2015] [Indexed: 12/25/2022]
Abstract
Hepatitis C virus (HCV) represents a global health concern affecting over 185 million people worldwide. Chronic HCV infection causes liver fibrosis and cirrhosis and is the leading indication for liver transplantation. Recent advances in the field of direct-acting antiviral drugs (DAAs) promise a cure for HCV in over 90% of cases that will get access to these expensive treatments. Nevertheless, the lack of a protective vaccine and likely emergence of drug-resistant viral variants call for further studies of HCV biology. With chimpanzees being for a long time the only non-human in vivo model of HCV infection, strong efforts were put into establishing in vitro experimental systems. The initial models only enabled to study specific aspects of the HCV life cycle, such as viral replication with the subgenomic replicon and entry using HCV pseudotyped particles (HCVpp). Subsequent development of protocols to grow infectious HCV particles in cell-culture (HCVcc) ignited investigations on the full cycle of HCV infection and the virus-host interactions required for virus propagation. More recently, small animal models permissive to HCV were generated that allowed in vivo testing of novel antiviral therapies as well as vaccine candidates. This review provides an overview of the currently available in vitro and in vivo experimental systems to study HCV biology. Particular emphasis is given to how these model systems furthered our understanding of virus-host interactions, viral pathogenesis and immunological responses to HCV infection, as well as drug and vaccine development.
Collapse
Affiliation(s)
| | - Marcus Dorner
- Section of Virology, Imperial College London, London, United Kingdom; Section of Hepatology, Imperial College London, London, United Kingdom.
| |
Collapse
|
48
|
Xiao F, Fofana I, Thumann C, Mailly L, Alles R, Robinet E, Meyer N, Schaeffer M, Habersetzer F, Doffoël M, Leyssen P, Neyts J, Zeisel MB, Baumert TF. Synergy of entry inhibitors with direct-acting antivirals uncovers novel combinations for prevention and treatment of hepatitis C. Gut 2015; 64:483-94. [PMID: 24848265 PMCID: PMC4345833 DOI: 10.1136/gutjnl-2013-306155] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Although direct-acting antiviral agents (DAAs) have markedly improved the outcome of treatment in chronic HCV infection, there continues to be an unmet medical need for improved therapies in difficult-to-treat patients as well as liver graft infection. Viral entry is a promising target for antiviral therapy. DESIGN Aiming to explore the role of entry inhibitors for future clinical development, we investigated the antiviral efficacy and toxicity of entry inhibitors in combination with DAAs or other host-targeting agents (HTAs). Screening a large series of combinations of entry inhibitors with DAAs or other HTAs, we uncovered novel combinations of antivirals for prevention and treatment of HCV infection. RESULTS Combinations of DAAs or HTAs and entry inhibitors including CD81-, scavenger receptor class B type I (SR-BI)- or claudin-1 (CLDN1)-specific antibodies or small-molecule inhibitors erlotinib and dasatinib were characterised by a marked and synergistic inhibition of HCV infection over a broad range of concentrations with undetectable toxicity in experimental designs for prevention and treatment both in cell culture models and in human liver-chimeric uPA/SCID mice. CONCLUSIONS Our results provide a rationale for the development of antiviral strategies combining entry inhibitors with DAAs or HTAs by taking advantage of synergy. The uncovered combinations provide perspectives for efficient strategies to prevent liver graft infection and novel interferon-free regimens.
Collapse
Affiliation(s)
- Fei Xiao
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Isabel Fofana
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Christine Thumann
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Laurent Mailly
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Roxane Alles
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France,Inserm, U977, Strasbourg, France
| | - Eric Robinet
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Nicolas Meyer
- Pôle de Santé Publique, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Mickaël Schaeffer
- Pôle de Santé Publique, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - François Habersetzer
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France,Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Michel Doffoël
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France,Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pieter Leyssen
- Rega Institute for Medical Research, KULeuven, Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, KULeuven, Leuven, Belgium
| | - Mirjam B Zeisel
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France,Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France,Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
49
|
Nassar W, El-Ansary M, Aziz MA, El-Hakim E. Extracellular vesicles: fundamentals and clinical relevance. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2015. [DOI: 10.4103/1110-7782.155824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
50
|
Lin J, Wang W, Xu Y, Di Bisceglie AM, Fan X. Patterns of longitudinal change in hepatitis C virus neutralization titers correlate with the outcome of peginterferon and ribavirin combination therapy. J Med Virol 2015; 87:821-8. [PMID: 25652546 DOI: 10.1002/jmv.24120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2014] [Indexed: 11/08/2022]
Abstract
In chronic hepatitis C virus (HCV) infection, combination therapy of peginterferon and ribavirin does not guarantee viral eradication. Among factors relevant to therapeutic efficacy, the role of humoral immunity has not been examined thoroughly. In the current study, HCV pseudoparticles (HCVpp) were first generated with 80 patient-derived full-length HCV envelope clones, followed by detailed characterization with regard to virus productivity, infectivity and neutralizing activity. Selective HCVpp were used to measure HCV neutralization titers in two independent patient cohorts consisting of 102 patients undergoing antiviral therapy. The HCV neutralization titers at the baseline fitted with a power-law distribution among patients. Pretreatment neutralization titers in both patient cohorts were not correlated with treatment outcomes. In the patient cohort 2 (n = 28) that had samples available at multiple time points, however, HCV neutralization titers displayed clearly distinct patterns over therapeutic course and follow-up. No virological responders (n = 10) had neutralization titers stabilized at low level while it was increased significantly in both sustained virological responders (n = 10) and relapsers (n = 8). High HCV neutralization titers were maintained only in sustained virological responders but not in relapsers after treatment cessation. Therefore, patterns of longitudinal change of HCV neutralization titers, but not pretreatment titers, correlate with the treatment outcome in patients undergoing peginterferon and ribavirin combination therapy.
Collapse
Affiliation(s)
- Jianguo Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | | | | | | | | |
Collapse
|