1
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Downs CJ, Sobolewski ME. The Promise of a Pointillist Perspective for Comparative Immunology. Physiology (Bethesda) 2024; 39:0. [PMID: 38808754 PMCID: PMC11573282 DOI: 10.1152/physiol.00012.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024] Open
Abstract
Most studies in comparative immunology involve investigations into the detailed mechanisms of the immune system of a nonmodel organism. Although this approach has been insightful, it has promoted a deep understanding of only a handful of species, thus inhibiting the recognition of broad taxonomic patterns. Here, we call for investigating the immune defenses of numerous species within a pointillist framework, that is, the meticulous, targeted collection of data from dozens of species and investigation of broad patterns of organismal, ecological, and evolutionary forces shaping those patterns. Without understanding basic immunological patterns across species, we are limited in our ability to extrapolate and/or translate our findings to other organisms, including humans. We illustrate this point by focusing predominantly on the biological scaling literature with some integrations of the pace of life literature, as these perspectives have been the most developed within this framework. We also highlight how the more traditional approach in comparative immunology works synergistically with a pointillist approach, with each approach feeding back into the other. We conclude that the pointillist approach promises to illuminate comprehensive theories about the immune system and enhance predictions in a wide variety of domains, including host-parasite dynamics and disease ecology.
Collapse
Affiliation(s)
- Cynthia J Downs
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Marissa E Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
3
|
Mohammadi M, Asvar Z, Solhjoo SP, Sarikhanikhorrami M, Abadi HG, Ghazizadeh S, Mahmoodi H, Habibolah NK, Moradi O, Kesharwani P, Amani AM, Sahebkar A. COVID-19 diagnosis on the basis of nanobiosensors' prompt interactivity: A holistic review. Pathol Res Pract 2024; 262:155565. [PMID: 39226801 DOI: 10.1016/j.prp.2024.155565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
The fast spread and severe consequences of novel coronavirus disease 2019 (COVID-19) have once again underscored the critical necessity of early detection of viral infections. Several serology-based techniques, including as point-of-care assays and high-throughput enzyme immunoassays that support the diagnosis of COVID-19 are utilized in the detection and identification of coronaviruses. A rapid, precise, simple, affordable, and adaptable diagnostic tool is required for controlling COVID-19 as well as for outbreak management, since the calculation and monitoring of viral loads are crucial for predicting the infection stage and recovery time. Nowadays, the most popular method for diagnosing COVID-19 is reverse transcription polymerase chain reaction (RT-PCR) testing, and chest computed tomography (CT) scans are also used to determine the disease's phases. This is all because of the fact that RT-PCR method caries with itself a number of downsides comprising of being immovable, expensive, and laborious. RT-PCR has not well proven to be capable of detection on the very early infection stages. Nanomaterial-based diagnostics, together with traditional clinical procedures, have a lot of promise against COVID-19. It is worthy of attention that nanotechnology has the mainstay capacity for purposes of developing even more modern stratagems fighting COVID-19 by means of focusing on state-of-the-art diagnostics. What we have centered on in this review, is bringing out even more efficient detection techniques whereby nanobiosensors are employed so that we might obstruct any further development and spreading of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Pooria Solhjoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sarikhanikhorrami
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Ghader Abadi
- Department of Biological Sciences, Faculty of Science, Islamic Azad University of Kazerun, Kazerun, Iran
| | - Shirin Ghazizadeh
- Department of Biological Sciences, Faculty of Science, Islamic Azad University of Jahrom, Jahrom, Iran
| | - Hassan Mahmoodi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Karbalaee Habibolah
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Omar Moradi
- Department of Electrical Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Sankar P, Ramos RB, Corro J, Mishra LK, Nafiz TN, Bhargavi G, Saqib M, Poswayo SKL, Parihar SP, Cai Y, Subbian S, Ojha AK, Mishra BB. Fatty acid metabolism in neutrophils promotes lung damage and bacterial replication during tuberculosis. PLoS Pathog 2024; 20:e1012188. [PMID: 39365825 PMCID: PMC11482725 DOI: 10.1371/journal.ppat.1012188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/16/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection induces a marked influx of neutrophils into the lungs, which intensifies the severity of tuberculosis (TB). The metabolic state of neutrophils significantly influences their functional response during inflammation and interaction with bacterial pathogens. However, the effect of Mtb infection on neutrophil metabolism and its consequent role in TB pathogenesis remain unclear. In this study, we examined the contribution of glycolysis and fatty acid metabolism on neutrophil responses to Mtb HN878 infection using ex-vivo assays and murine infection models. We discover that blocking glycolysis aggravates TB pathology, whereas inhibiting fatty acid oxidation (FAO) yields protective outcomes, including reduced weight loss, immunopathology, and bacterial burden in lung. Intriguingly, FAO inhibition preferentially disrupts the recruitment of a pathogen-permissive immature neutrophil population (Ly6Glo/dim), known to accumulate during TB. Targeting carnitine palmitoyl transferase 1a (Cpt1a)-a crucial enzyme in mitochondrial β-oxidation-either through chemical or genetic methods impairs neutrophils' ability to migrate to infection sites while also enhancing their antimicrobial function. Our findings illuminate the critical influence of neutrophil immunometabolism in TB pathogenesis, suggesting that manipulating fatty acid metabolism presents a novel avenue for host-directed TB therapies by modulating neutrophil functions.
Collapse
Affiliation(s)
- Poornima Sankar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Jamie Corro
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Lokesh K. Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Tanvir Noor Nafiz
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Gunapati Bhargavi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Sibongiseni K. L. Poswayo
- Center for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suraj P. Parihar
- Center for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Yi Cai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Anil K. Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Bibhuti B. Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
5
|
South K, Roberts L, Gray A, Luka N, Strangward P, Coutts G, Smith CJ, Schiessl I, Allan SM. Inhibition of neutrophil rolling and migration by caADAMTS13 in vitro and in mouse models of thrombosis and inflammation. Biomed Pharmacother 2024; 178:117166. [PMID: 39029401 DOI: 10.1016/j.biopha.2024.117166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Recent investigation of a constitutively active ADAMTS13 variant (caADAMTS13) in murine models of acute ischaemic stroke (AIS) have revealed a potential anti-inflammatory mechanism of action contributing to its protective effect. However, it remains unclear whether these observations are a direct result of VWF proteolysis by caADAMTS13. We have implemented state of the art in vitro assays of neutrophil rolling and transmigration to quantify the impact of caADAMTS13 on these processes. Moreover, we have tested caADAMTS13 in two in vivo assays of neutrophil migration to confirm the impact of the treatment on the neutrophil response to sterile inflammation. Neutrophil rolling, over an interleukin-1β stimulated hCMEC/D3 monolayer, is directly inhibited by caADAMTS13, reducing the proportion of neutrophils rolling to 9.5 ± 3.8 % compared to 18.0 ± 4.5 % in untreated controls. Similarly, neutrophil transmigration recorded in real-time, was significantly suppressed in the presence of caADAMTS13 which reduced the number of migration events to a level like that in unstimulated controls (18.0 ± 4.5 and 15.8 ± 7.5 cells/mm2/h, respectively). Brain tissue from mice undergoing experimental focal cerebral ischaemia has indicated the inhibition of this process by caADAMTS13. This is supported by caADAMTS13's ability to reduce neutrophil migration into the peritoneal cavity in an ischaemia-independent model of sterile inflammation, with the VWF-dependent mechanism by which this occurs being confirmed using a second experimental stroke model. These findings will be an important consideration in the further development of caADAMTS13 as a potential therapy for AIS and other thromboinflammatory pathologies, including cardiovascular disease.
Collapse
Affiliation(s)
- Kieron South
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
| | - Lucy Roberts
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Anna Gray
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Nadim Luka
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Patrick Strangward
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Graham Coutts
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Craig J Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK; Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
| | - Ingo Schiessl
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Boussetta T, Raad H, Bedouhene S, Arabi Derkawi R, Gougerot-Pocidalo MA, Hayem G, Dang PMC, El-Benna J. The peptidyl-prolyl isomerase Pin1 controls GM-CSF-induced priming of NADPH oxidase in human neutrophils and priming at inflammatory sites. Int Immunopharmacol 2024; 137:112425. [PMID: 38851160 DOI: 10.1016/j.intimp.2024.112425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The production of superoxide anions and other reactive oxygen species (ROS) by neutrophils is necessary for host defense against microbes. However, excessive ROS production can induce cell damage that participates in the inflammatory response. Superoxide anions are produced by the phagocyte NADPH oxidase, a multicomponent enzyme system consisting of two transmembrane proteins (gp91phox/NOX2 and p22phox) and four soluble cytosolic proteins (p40phox, p47phox, p67phox and the small G proteins Rac1/2). Stimulation of neutrophils by various agonists, such as the bacterial peptide formyl-Met-Leu-Phe (fMLF), induces NADPH oxidase activation and superoxide production, a process that is enhanced by the pro-inflammatory cytokines such as GM-CSF. The pathways involved in this GM-CSF-induced up-regulation or priming are not fully understood. Here we show that GM-CSF induces the activation of the prolyl cis/trans isomerase Pin1 in human neutrophils. Juglone and PiB, two selective Pin1 inhibitors, were able to block GM-CSF-induced priming of ROS production by human neutrophils. Interestingly, GM-CSF induced Pin1 binding to phosphorylated p47phox at Ser345. Neutrophils isolated from synovial fluid of patients with rheumatoid arthritis are known to be primed. Here we show that Pin1 activity was also increased in these neutrophils and that Pin1 inhibitors effectively inhibited ROS hyperproduction by the same cells. These results suggest that the prolyl cis/trans isomerase Pin1 may control GM-CSF-induced priming of ROS production by neutrophils and priming of neutrophils in synovial fluid of rheumatoid arthritis patients. Pharmacological targeting of Pin1 may be a valuable approach to the treatment of inflammation.
Collapse
Affiliation(s)
- Tarek Boussetta
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris F-75018, France
| | - Houssam Raad
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris F-75018, France; Lebanese University - Faculty of Public Health, Branche 4, Zahlé-Bekaa, Lebanon
| | - Samia Bedouhene
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris F-75018, France; Laboratoire de Biochimie appliquée et de biotechnologie, Faculté des Sciences Biologiques et des Sciences Agronomiques, Université M. Mammeri, 15000 Tizi-Ouzou, Algeria
| | - Riad Arabi Derkawi
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris F-75018, France
| | - Marie-Anne Gougerot-Pocidalo
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris F-75018, France
| | - Gilles Hayem
- Rheumatology Department, Paris Saint-Joseph Hospital Group, Paris F75014, France
| | - Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris F-75018, France
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris F-75018, France.
| |
Collapse
|
7
|
Wazib S, Quasimi H, Bhagat S, Alam A, Ealhi AA, Sharma S, Khan GA, Alam I. The Correlation Between Neutrophil Elastase and Neutrophil-Lymphocyte Ratio in Endothelial Dysfunction of Preeclampsia. Cureus 2024; 16:e67312. [PMID: 39301340 PMCID: PMC11412614 DOI: 10.7759/cureus.67312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Preeclampsia (PE) is a serious inflammatory process that is unique to pregnancy, occurring at or after the 20th week of pregnancy, and leading to maternal and neonatal illness and systemic disruptions. Placental hypoxia leads to increased levels of cytokines and inflammatory syncytiotrophoblast microvillus membrane microparticles (STBM) which activates neutrophils leading to oxidative stress and endothelial dysfunction in preeclampsia. The mechanisms that cause PE in people remain unknown. To understand the pathophysiology of PE, numerous theories have been given. There is currently no proven treatment or early detecting marker for PE available so far. METHODS The present study includes 40 patients (20 controls and 20 PE patients) aged 20-45 years hospitalized at the Department of Obstetrics and Gynecology, Hamdard Institute of Medical Sciences and Research (HIMSR) and Hakeem Abdul Hameed Centenary (HAHC) Hospital, Jamia Hamdard, New Delhi. Nitric oxide (NO), neutrophil elastase (NE), and the neutrophil-to-lymphocyte ratio were measured. The blood and biochemical parameters in PE patients were also analyzed. RESULTS The neutrophil-to-lymphocyte ratio (NLR) was significantly increased in PE patients as compared to healthy pregnant. All the biochemical and hemodynamic parameters were assessed. The serum NO concentrations were lower in PE patients and endothelial dysfunction markers (NE and von Willebrand factor {vWF}) were markedly increased in PE patients. The difference was statistically significant with a p-value <0.05. CONCLUSIONS NLR is greatly increased in PE patients. An increase in NLR in PE patients occurs due to an increase in inflammatory markers and endothelial damage. Hence, the NLR could act as a novel diagnostic biomarker for depicting PE progression.
Collapse
Affiliation(s)
- Sheema Wazib
- Physiology, Hamdard Institute of Medical Sciences and Research (HIMSR), New Delhi, IND
| | - Huma Quasimi
- Physiology, Hamdard Institute of Medical Sciences and Research (HIMSR), New Delhi, IND
| | - Saumya Bhagat
- Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, UMI
| | - Ayaan Alam
- Physiology, Hamdard Institute of Medical Sciences and Research (HIMSR), New Delhi, IND
| | - Arifa A Ealhi
- Obstetrics and Gynecology, Hamdard Institute of Medical Sciences and Research (HIMSR), New Delhi, IND
| | - Sumedha Sharma
- Obstetrics and Gynecology, Hamdard Institute of Medical Sciences and Research (HIMSR), New Delhi, IND
| | - Gausal Azam Khan
- Clinical Nutrition, College of Applied Medical Sciences, King Faisal University, Alhasa, SAU
| | - Iqbal Alam
- Physiology, Hamdard Institute of Medical Sciences and Research (HIMSR), New Delhi, IND
| |
Collapse
|
8
|
Kwak JW, Nguyen HQ, Camai A, Huffman GM, Mekvanich S, Kenney NN, Zhu X, Randolph TW, Houghton AM. CXCR1/2 antagonism inhibits neutrophil function and not recruitment in cancer. Oncoimmunology 2024; 13:2384674. [PMID: 39076249 PMCID: PMC11285219 DOI: 10.1080/2162402x.2024.2384674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
The level of tumor and circulating CXCR1/2-expressing neutrophils and CXCR1/2 ligands correlate with poor patient outcomes, inversely correlate with tumoral lymphocyte content, and predict immune checkpoint inhibitor (ICI) treatment failure. Accordingly, CXCR2-selective and CXCR1/2 dual inhibitors exhibit activity both as single agents and in combination with ICI treatment in mouse tumor models. Based on such reports, clinical trials combining CXCR1/2 axis antagonists with ICI treatment for cancer patients are underway. It has been assumed that CXCR1/2 blockade impacts tumors by blocking neutrophil chemotaxis and reducing neutrophil content in tumors. Here, we show that while CXCR2 antagonism does slow tumor growth, it does not preclude neutrophil recruitment into tumor. Instead, CXCR1/2 inhibition alters neutrophil function by blocking the polarization of transcriptional programs toward immune suppressive phenotypes and rendering neutrophils incapable of suppressing lymphocyte proliferation. This is associated with decreased release of reactive oxygen species and Arginase-1 into the extracellular milieu. Remarkably, these therapeutics do not impact the ability of neutrophils to phagocytose and kill ingested bacteria. Taken together, these results mechanistically explain why CXCR1/2 inhibition has been active in cancer but without infectious complications.
Collapse
Affiliation(s)
- Jeff W. Kwak
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Helena Q. Nguyen
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Alex Camai
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Grace M. Huffman
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Surapat Mekvanich
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Naia N. Kenney
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Xiaodong Zhu
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | | | - A. McGarry Houghton
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Criado M, Silva M, Mendívil P, Molina E, Pérez V, Benavides J, Elguezabal N, Gutiérrez-Expósito D. No Evidence of Neutrophil Response Modulation in Goats after Immunization against Paratuberculosis with a Heat-Inactivated Vaccine. Animals (Basel) 2024; 14:1694. [PMID: 38891741 PMCID: PMC11171245 DOI: 10.3390/ani14111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Neutrophils are believed to play a role in the initial stages of paratuberculosis, and it has recently been demonstrated that vaccination can modulate their function via priming or through epigenetic and metabolic reprogramming (training). Modulation of the neutrophil response against Mycobacterium avium subspecies paratuberculosis (Map) through vaccination has been demonstrated in a rabbit model but not in ruminants. Therefore, in the present work, the effect of vaccination on the response of caprine neutrophils against Map was studied. Neutrophils were isolated from non-vaccinated (n = 7) and Gudair®-vaccinated goat kids (n = 7), before vaccination and 30 days post-vaccination. Then, several neutrophil functions were quantified ex vivo: cell-free and anchored neutrophil extracellular trap (NET) release, phagocytosis, and the differential expression of several cytokines and TLR2. The induction of cell-free NETosis and TLR2 expression by Map is reported for the first time. However, vaccination showed no significant effect on any of the functions studied. This suggests that the protection conferred by Gudair® vaccination is based on mechanisms that are independent of the neutrophil function modulation. Further research into the impact of alternative vaccination strategies or the paratuberculosis infection stage on ruminant neutrophil function could provide valuable insights into its role in paratuberculosis.
Collapse
Affiliation(s)
- Miguel Criado
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Marta Silva
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Pedro Mendívil
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Elena Molina
- Departamento de Sanidad Animal, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, 48160 Derio, Spain; (E.M.); (N.E.)
| | - Valentín Pérez
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Julio Benavides
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
| | - Natalia Elguezabal
- Departamento de Sanidad Animal, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, 48160 Derio, Spain; (E.M.); (N.E.)
| | - Daniel Gutiérrez-Expósito
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Ctra León-Vega de Infanzones, 24346 León, Spain; (M.S.); (P.M.); (V.P.); (J.B.); (D.G.-E.)
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
10
|
Parrott AC, Coburn PS, Miller FC, LaGrow AL, Mursalin MH, Callegan MC. The Role of CCL Chemokines in Experimental Staphylococcus aureus Endophthalmitis. Invest Ophthalmol Vis Sci 2024; 65:12. [PMID: 38842829 PMCID: PMC11160947 DOI: 10.1167/iovs.65.6.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Purpose To test the hypothesis that (C-C motif) ligand 2 (CCL2) and CCL3 impact retinal function decline and inflammation during Staphylococcus aureus endophthalmitis. Methods Experimental endophthalmitis was initiated by intravitreal injection of 5000 colony-forming units of S. aureus into the eyes of C57BL/6J, CCL2-/-, or CCL3-/- mice. At 12 and 24 hours post-infection, retinal function, bacterial load, and myeloperoxidase levels were quantified. Results During S. aureus endophthalmitis, we observed a significant improvement in retinal function in CCL2-/- mice relative to C57BL/6J mice at 12 hours but not at 24 hours. In CCL3-/- mice, retinal function was significantly improved relative to C57BL/6J mice at 12 and 24 hours. The absence of CCL2 did not alter intraocular S. aureus intraocular concentrations. However, CCL3-/- mice had significantly lower intraocular S. aureus at 12 hours but not at 24 hours. No difference in myeloperoxidase levels was observed between C57BL/6J and CCL2-/- mice at 12 hours. CCL3-/- mice had almost no myeloperoxidase at 12 hours. At 24 hours, increased myeloperoxidase was observed in CCL2-/- and CCL3-/- mice relative to C57BL/6J mice. Conclusions Although the absence of CCL2 resulted in improved retinal function retention at 12 hours, CCL3 deficiency resulted in improved retinal function at 12 and 24 hours. CCL3 deficiency, but not CCL2 deficiency, resulted in almost no inflammation at 12 hours. However, at 24 hours, the absence of CCL2 or CCL3 resulted in significantly increased inflammation. These results suggest that, although both CCL2 and CCL3 impact intraocular infection outcomes, CCL3 may have a more significant impact in S. aureus endophthalmitis.
Collapse
Affiliation(s)
- Aaron C. Parrott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Frederick C. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Austin L. LaGrow
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Md Huzzatul Mursalin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michelle C. Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| |
Collapse
|
11
|
Kumar S, Dikshit M. Nitric Oxide: Regulation and Function in Neutrophil Immune Responses. Antioxid Redox Signal 2024; 40:998-1024. [PMID: 38251644 DOI: 10.1089/ars.2022.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Affiliation(s)
- Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Ghaziabad, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
12
|
Aslanian-Kalkhoran L, Mehdizadeh A, Aghebati-Maleki L, Danaii S, Shahmohammadi-Farid S, Yousefi M. The role of neutrophils and neutrophil extracellular traps (NETs) in stages, outcomes and pregnancy complications. J Reprod Immunol 2024; 163:104237. [PMID: 38503075 DOI: 10.1016/j.jri.2024.104237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Neutrophils are the main components of innate immunity to eliminate infectious pathogens. Neutrophils play a role in several stages of the reproductive cycle, and their presence in the female reproductive system is highly regulated, so their function may change during pregnancy. Emerging evidence suggests that neutrophils are important at all stages of pregnancy, from implantation, placentation, and connective tissue regeneration to birth, as well as birth itself. Neutrophil extracellular traps (NETs) are defined as extracellular strands of unfolded DNA together with histone complexes and neutrophil granule proteins. NET formation is a new mechanism of these cells for their defense function. These strands containing DNA and antimicrobial peptides were initially recognized as one of the defense mechanisms of neutrophils, but later it was explained that they are involved in a variety of non-infectious diseases. Since the source of inflammation and tissue damage is the irregular activity of neutrophils, it is not surprising that NETosis are associated with a number of inflammatory conditions and diseases. The overexpression of NET components or non-principled NET clearance is associated with the risk of production and activation of autoantibodies, which results in participation in autoinflammatory and autoimmune disorders (SLE, RA), fibrosis, sepsis and other disorders such as vascular diseases, for example, thrombosis and atherosclerosis. Recent published articles have shown the role of neutrophils and extracellular traps (NETs) in pregnancy, childbirth and pregnancy-related diseases. The aim of this study was to identify and investigate the role of neutrophils and neutrophil extracellular traps (NETs) in the stages of pregnancy, as well as the complications caused by these cells.
Collapse
Affiliation(s)
- Lida Aslanian-Kalkhoran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Wang C, Li B, Zhu Q, Zhang Q, Xie Z, Xie H, Li X. Dietary vitamin B6 intake and stroke are negatively associated in adults: A cross-sectional study from the NHANES. Heliyon 2024; 10:e31125. [PMID: 38778939 PMCID: PMC11109891 DOI: 10.1016/j.heliyon.2024.e31125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Background The relationship between dietary vitamin B6 and stroke risk is controversial; thus, we analyzed their correlation using data from the National Health and Nutrition Examination Survey (NHANES). Method Data from 2005 to 2018 were collected from the NHANES database. Two 24-h dietary recalls and a standard questionnaire were used to evaluate vitamin B6 intake and stroke prevalence. We used logistic regression models to estimate the association between dietary vitamin B6 intake and stroke risk and investigated the nonlinear relationship between them using a restricted cubic spline (RCS). Sensitivity analysis was conducted using propensity score matching (PSM). Results Among 24,214 participants, 921 were patients diagnosed with stroke, while 23,293 were without stroke. The multivariate logistic regression model revealed that individuals in the highest quartile of vitamin B6 consumption had a significantly lower stroke risk than those in the lowest quartile under the fully adjusted model (OR: 0.48, 95 % CI: 0.35-0.66, P < 0.001). Subgroup analyses showed that dietary intake of vitamin B6 was a significant protective factor against stroke risk in different populations, with the most pronounced effect in the population engaging in moderate-intensity physical activity (OR: 0.34, 95%CI: 0.20-0.57). The RCS models revealed a non-linear L-shaped relationship (P for nonlinearity = 0.006) between stroke and dietary intake of vitamin B6. Conclusions Our study shows that an increased intake of vitamin B6 could be an effective strategy in reducing the risk of stroke.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Bo Li
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Qian Zhu
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Qikeng Zhang
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Zhenyan Xie
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| | - Huixi Xie
- Department of Neurosurgery, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Xuesong Li
- Department of Neurosurgery, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
- Department of Neurosurgery, Huizhou Third People's Hospital, Huizhou Hospital Affiliated to Guangzhou Medical University, Huizhou, China
| |
Collapse
|
14
|
Thimmappa PY, Nair AS, D'silva S, Aravind A, Mallya S, Soman SP, Guruprasad KP, Shastry S, Raju R, Prasad TSK, Joshi MB. Neutrophils display distinct post-translational modifications in response to varied pathological stimuli. Int Immunopharmacol 2024; 132:111950. [PMID: 38579564 DOI: 10.1016/j.intimp.2024.111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Neutrophils play a vital role in the innate immunity by perform effector functions through phagocytosis, degranulation, and forming extracellular traps. However, over-functioning of neutrophils has been associated with sterile inflammation such as Type 2 Diabetes, atherosclerosis, cancer and autoimmune disorders. Neutrophils exhibiting phenotypical and functional heterogeneity in both homeostatic and pathological conditions suggests distinct signaling pathways are activated in disease-specific stimuli and alter neutrophil functions. Hence, we examined mass spectrometry based post-translational modifications (PTM) of neutrophil proteins in response to pathologically significant stimuli, including high glucose, homocysteine and bacterial lipopolysaccharides representing diabetes-indicator, an activator of thrombosis and pathogen-associated molecule, respectively. Our data revealed that these aforesaid stimulators differentially deamidate, citrullinate, acetylate and methylate neutrophil proteins and align to distinct biological functions associated with degranulation, platelet activation, innate immune responses and metabolic alterations. The PTM patterns in response to high glucose showed an association with neutrophils extracellular traps (NETs) formation, homocysteine induced proteins PTM associated with signaling of systemic lupus erythematosus and lipopolysaccharides induced PTMs were involved in pathways related to cardiomyopathies. Our study provides novel insights into neutrophil PTM patterns and functions in response to varied pathological stimuli, which may serve as a resource to design therapeutic strategies for the management of neutrophil-centred diseases.
Collapse
Affiliation(s)
- Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Aswathy S Nair
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sian D'silva
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sreelakshmi Pathappillil Soman
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kanive Parashiva Guruprasad
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
15
|
Hagar HH, Alhazmi SM, Arafah M, Bayoumy NM. Inhibition of sepsis-induced pancreatic injury by leukotriene receptor antagonism via modulation of oxidative injury, and downregulation of inflammatory markers in experimental rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3425-3435. [PMID: 37962585 DOI: 10.1007/s00210-023-02812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
The purpose of this study is to investigate the effect of montelukast on lipopolysaccharide (LPS)-induced pancreatitis. Adult male Wistar rats were divided into 5 groups: normal control, control montelukast, LPS group, and two LPS + montelukast-treated groups. Acute pancreatitis (AP) was induced by a single dose of LPS (6 mg/kg, i.p.), while montelukast was given in two different doses (10 and 20 mg/kg/day) for 3 consecutive days prior to the injection of LPS. AP was demonstrated by significant increases in serum levels of lactate dehydrogenase (LDH) and pancreatic enzymes lipase and amylase. Proinflammatory response activation was evident by elevated serum levels of nitric oxide (NO) and increased pancreatic concentrations of tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1β), and intercellular adhesion molecule-1 (ICAM-1). The activity of myeloperoxidase (MPO), a neutrophil infiltration marker, has also been increased. Oxidative stress was confirmed by significant increases in the concentrations of lipid peroxides measured as thiobarbituric acid reactive substances (TBARS) and decreases in the concentrations of reduced glutathione (GSH) in the pancreatic tissues of animals treated with LPS. Histological examination confirmed the biochemical alterations. Montelukast treatment reversed all these biochemical indices and histopathological changes that LPS induced. Montelukast reduced the increase in serum levels of lipase, amylase, LDH, total nitrite/nitrate, TNF-α, IL-1β, and ICAM-1. MPO activities and TBARS concentrations were also suppressed while GSH content was increased in pancreatic tissues. These results show that montelukast may be a beneficial pharmacological agent in protection against LPS-induced oxidative pancreatic injury by inhibiting neutrophil infiltration, counteracting oxidative stress, and suppressing inflammatory mediators.
Collapse
Affiliation(s)
- Hanan H Hagar
- Department of Physiology, College of Medicine & King Khalid University Hospital, King Saud University, P.O. BOX 2925, Riyadh, 11461, Saudi Arabia.
| | - Shaima M Alhazmi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Arafah
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Nervana Mustafa Bayoumy
- Department of Physiology, College of Medicine & King Khalid University Hospital, King Saud University, P.O. BOX 2925, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
16
|
Gunčar G, Kukar M, Smole T, Moškon S, Vovko T, Podnar S, Černelč P, Brvar M, Notar M, Köster M, Jelenc MT, Osterc Ž, Notar M. Differentiating viral and bacterial infections: A machine learning model based on routine blood test values. Heliyon 2024; 10:e29372. [PMID: 38644832 PMCID: PMC11033127 DOI: 10.1016/j.heliyon.2024.e29372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
The growing threat of antibiotic resistance necessitates accurate differentiation between bacterial and viral infections for proper antibiotic administration. In this study, a Virus vs. Bacteria machine learning model was developed to distinguish between these infection types using 16 routine blood test results, C-reactive protein concentration (CRP), biological sex, and age. With a dataset of 44,120 cases from a single medical center, the model achieved an accuracy of 82.2 %, a sensitivity of 79.7 %, a specificity of 84.5 %, a Brier score of 0.129, and an area under the ROC curve (AUC) of 0.905, outperforming a CRP-based decision rule. Notably, the machine learning model enhanced accuracy within the CRP range of 10-40 mg/L, a range where CRP alone is less informative. These results highlight the advantage of integrating multiple blood parameters in diagnostics. The "Virus vs. Bacteria" model paves the way for advanced diagnostic tools, leveraging machine learning to optimize infection management.
Collapse
Affiliation(s)
- Gregor Gunčar
- Smart Blood Analytics Swiss SA, CH-8008, Zürich, Switzerland
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Matjaž Kukar
- Smart Blood Analytics Swiss SA, CH-8008, Zürich, Switzerland
- Faculty of Computer and Information Science, University of Ljubljana, Slovenia
| | - Tim Smole
- Smart Blood Analytics Swiss SA, CH-8008, Zürich, Switzerland
| | - Sašo Moškon
- Smart Blood Analytics Swiss SA, CH-8008, Zürich, Switzerland
| | - Tomaž Vovko
- Department of Infectious Diseases, University Medical Centre Ljubljana, Slovenia
| | - Simon Podnar
- Division of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Peter Černelč
- Smart Blood Analytics Swiss SA, CH-8008, Zürich, Switzerland
| | - Miran Brvar
- Centre for Clinical Toxicology and Pharmacology, University Medical Centre Ljubljana, Slovenia
| | - Mateja Notar
- Smart Blood Analytics Swiss SA, CH-8008, Zürich, Switzerland
| | - Manca Köster
- Smart Blood Analytics Swiss SA, CH-8008, Zürich, Switzerland
| | | | - Žiga Osterc
- Smart Blood Analytics Swiss SA, CH-8008, Zürich, Switzerland
| | - Marko Notar
- Smart Blood Analytics Swiss SA, CH-8008, Zürich, Switzerland
| |
Collapse
|
17
|
Firouzjaie F, Taghipour N, Akhavan AA, Seyyed Tabaei SJ, Rouhani S, Shirazian M, Koochaki A, Fatemi M, Mosaffa N, Moin Vaziri V. Neutrophil extracellular traps formation: effect of Leishmania major promastigotes and salivary gland homogenates of Phlebotomus papatasi in human neutrophil culture. BMC Microbiol 2024; 24:117. [PMID: 38575882 PMCID: PMC10993452 DOI: 10.1186/s12866-024-03270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Leishmaniasis as a neglected tropical disease (NTD) is caused by the inoculation of Leishmania parasites via the bite of phlebotomine sand flies. After an infected bite, a series of innate and adaptive immune responses occurs, among which neutrophils can be mentioned as the initiators. Among the multiple functions of these fighting cells, neutrophil extracellular traps (NETs) were studied in the presence of Leishmania major promastigotes and salivary gland homogenates (SGH) of Phlebotomus papatasi alone, and in combination to mimic natural conditions of transmission. MATERIAL & METHODS The effect of L. major and SGH on NETs formation was studied in three different groups: neutrophils + SGH (NS), neutrophils + L. major (NL), neutrophils + L. major + SGH (NLS) along with negative and positive controls in 2, 4 and 6 h post-incubation. Different microscopic methods were used to visualize NETs comprising: fluorescence microscopy by Acridine Orange/ Ethidium Bromide staining, optical microscopy by Giemsa staining and scanning electron microscopy. In addition, the expression level of three different genes NE, MPO and MMP9 was evaluated by Real-Time PCR. RESULTS All three microscopical methods revealed similar results, as in NS group, chromatin extrusion as a sign of NETosis, was not very evident in each three time points; but, in NL and especially NLS group, more NETosis was observed and the interaction between neutrophils and promastigotes in NL and also with saliva in NLS group, gradually increased over times. Real-time reveals that, the expression of MPO, NE and MMP9 genes increased during 2 and 4 h after exposure, and then decreased at 6 h in most groups. CONCLUSION Hence, it was determined that the simultaneous presence of parasite and saliva in NLS group has a greater impact on the formation of NETs compared to NL and NS groups.
Collapse
Affiliation(s)
- Fahimeh Firouzjaie
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ahmad Akhavan
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Rouhani
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Shirazian
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Fatemi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Vahideh Moin Vaziri
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Zheng X, Zhao Y, Wang D, Pan S, Yushuaima, Huang Z, Ye M, Zhang S. A new hematological parameter model for the diagnosis and prognosis of sepsis in emergency department: A single-center retrospective study. Int J Lab Hematol 2024; 46:250-258. [PMID: 37904344 DOI: 10.1111/ijlh.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023]
Abstract
INTRODUCTION Sepsis, a syndrome of organ dysfunction caused by an unregulated host response to infection. This study aimed to develop a novel sepsis diagnostic model of hematological parameters and evaluate its effectiveness in the early identification and prognosis of sepsis in emergency departments. METHODS A retrospective study was conducted in Emergency Department. Cell population data parameters related to monocytes and neutrophils were obtained using the Mindary BC-6800 plus hematology analyzer. Receiver operating characteristic (ROC) curve analysis, logistic regression analysis was performed to assess the performance of the parameters and establish a diagnostic and prognostic model of sepsis, which was then verified with a validation cohort. RESULTS Mon_XW exhibited the best diagnostic performance (area under the ROC curve [AUC] = 0.848, 95% confidence interval [CI]: 0.810-0.885, p < 0.001), followed by Neu_Y and Neu_YW (AUC = 0.777 95% CI: 0.730-0.824, p < 0.001). Logistic regression analysis identified Mon_XW and Neu_Y as independent predictors, which were used to establish a diagnostic model named hematological parameter for sepsis (HPS). HPS demonstrated the best diagnostic performance with an AUC of 0.862 (95% CI: 0.826-0.898, p < 0.001), sensitivity of 70.0%, and specificity of 87.1%, compared to C-reactive protein (CRP) and procalcitonin (PCT). The validation cohort also found that the positive predictive value of HPS was 70.4% and the negative predictive value was 92.2%. CONCLUSION The developed HPS model showed promising diagnostic efficacy for sepsis in the emergency department, which outperformed CRP and PCT in terms of sensitivity and specificity. By enabling early identification and prognosis of sepsis, that contributes to reducing sepsis-related mortality.
Collapse
Affiliation(s)
- Xiaohe Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yating Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiyao Pan
- Department of Clinical Research and Medical Affairs, Shenzhen Mindray Bio-Medical Electronic Co. Ltd., Shenzhen, China
| | - Yushuaima
- Department of Clinical Research and Medical Affairs, Shenzhen Mindray Bio-Medical Electronic Co. Ltd., Shenzhen, China
| | - Zena Huang
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou, China
| | - Manman Ye
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shihong Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Kaleem S, Zhang C, Gusdon AM, Oh S, Merkler AE, Avadhani R, Awad I, Hanley DF, Kamel H, Ziai WC, Murthy SB. Association Between Neutrophil-Lymphocyte Ratio and 30-Day Infection and Thrombotic Outcomes After Intraventricular Hemorrhage: A CLEAR III Analysis. Neurocrit Care 2024; 40:529-537. [PMID: 37349600 DOI: 10.1007/s12028-023-01774-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Serum neutrophil-lymphocyte ratio (NLR) is a surrogate marker for the inflammatory response after intracerebral hemorrhage (ICH) and is associated with perihematomal edema and long-term functional outcomes. Whether NLR is associated with short-term ICH complications is poorly understood. We hypothesized that NLR is associated with 30-day infection and thrombotic events after ICH. METHODS We performed a post hoc exploratory analysis of the Clot Lysis: Evaluating Accelerated Resolution of Intraventricular Hemorrhage III trial. The study exposure was the serum NLR obtained at baseline and on days 3 and 5. The coprimary outcomes, ascertained at 30 days, were any infection and a thrombotic event, defined as composite of cerebral infarction, myocardial infarction, or venous thromboembolism; both infection and thrombotic event were determined through adjudicated adverse event reporting. Binary logistic regression was used to study the relationship between NLR and outcomes, after adjustment for demographics, ICH severity and location, and treatment randomization. RESULTS Among the 500 patients enrolled in the Clot Lysis: Evaluating Accelerated Resolution of Intraventricular Hemorrhage III trial, we included 303 (60.6%) without missing data on differential white blood cell counts at baseline. There were no differences in demographics, comorbidities, or ICH severity between patients with and without data on NLR. In adjusted logistic regression models, NLR ascertained at baseline (odds ratio [OR] 1.03; 95% confidence interval [CI] 1.01-1.07, p = 0.03) and NLR ascertained at day 3 were associated with infection (OR 1.15; 95% CI 1.05-1.20, p = 0.001) but not with thrombotic events. Conversely, NLR at day 5 was associated with thrombotic events (OR 1.07, 95% CI 1.01-1.13, p = 0.03) but not with infection (OR 1.13; 95% CI 0.76-1.70, p = 0.56). NLR at baseline was not associated with either outcome. CONCLUSIONS Serum NLR ascertained at baseline and on day 3 after randomization was associated with 30-day infection, whereas NLR obtained on day 5 was associated with thrombotic events after ICH, suggesting that NLR could be a potential early biomarker for ICH-related complications.
Collapse
Affiliation(s)
- Safa Kaleem
- Clinical and Translational Neuroscience Unit, Department of Neurology, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Cenai Zhang
- Clinical and Translational Neuroscience Unit, Department of Neurology, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Aaron M Gusdon
- Department of Neurological Surgery, University of Texas Health Science Center, Houston, TX, USA
| | - Stephanie Oh
- Clinical and Translational Neuroscience Unit, Department of Neurology, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alexander E Merkler
- Clinical and Translational Neuroscience Unit, Department of Neurology, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Radhika Avadhani
- Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isaam Awad
- Department of Neurological Surgery, University of Chicago School of Medicine, Chicago, IL, USA
| | - Daniel F Hanley
- Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hooman Kamel
- Clinical and Translational Neuroscience Unit, Department of Neurology, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Wendy C Ziai
- Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurological Surgery, University of Chicago School of Medicine, Chicago, IL, USA
| | - Santosh B Murthy
- Clinical and Translational Neuroscience Unit, Department of Neurology, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Division of Neurosciences Critical Care, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Zhao S, Chang X, Li J, Zhu Y, Pan X, Hua Z, Li J. The two-way immunotoxicity in native fish induced by exudates of Microcystis aeruginosa: Immunostimulation and immunosuppression. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132554. [PMID: 37741215 DOI: 10.1016/j.jhazmat.2023.132554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Secondary metabolites of cyanobacterial blooms have caused serious risks to aquatic animals. The immune system is an important barrier for fish against pollutants in aquatic systems. The immunetoxic mechanism of the exudates of Microcystis aeruginosa (MaE) on fish was lacking due to the complex components of MaE. In this project, Sinocyclocheilus grahami was used as the model to study the immunotoxic effects of MaE and PHS (one of the main components of the MaE) in fish. The immunosuppression effects of MaE are mainly in, decreased head-kindey index, damaged tissue structure of head-kidney and downregulated NF-κB, IL-1β. PHS induce immunostimulation via, increasing spleen index, apparently increasing leucocytes, increasing the IgM and lysozyme levels in serum and skin mucus, upregulating protease in skin mucus, increasing pro-immunologic factors (IL-1β, IL-6, IL-8, IL-10, TNF-α and NF-κB), probably activating the TLRs/NF-κB, MAPK, FoxO1 and PPARγ signaling pathways. Therefore, our research identified potential data gaps that how the exudates of cyanobacteria induces immunostimulation and immunosuppression from immune organs level to skin mucus to blood cells to inflammatory factors to potential molecular initiating event of MaE and PHS. Further research is needed to obtain a deeper view of the molecular mechanisms involved in MaE and PHS immunotoxicity and its consequences in long-time exposures.
Collapse
Affiliation(s)
- Sen Zhao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Jun Li
- Institute of International Rivers and Eco-security, Kunming, Yunnan 650500, China
| | - Yanhua Zhu
- No. 1 School of Clinical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xiaofu Pan
- The State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Zexiang Hua
- Aquatic Technology Promotion Station of Yunnan Province, Kunming 650034, China
| | - Jiaojiao Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650500, China.
| |
Collapse
|
21
|
Maisat W, Hou L, Sandhu S, Sin YC, Kim S, Pelt HV, Chen Y, Emani S, Kong SW, Emani S, Ibla J, Yuki K. Neutrophil extracellular traps formation is associated with postoperative complications in neonates and infants undergoing congenital cardiac surgery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572768. [PMID: 38187754 PMCID: PMC10769315 DOI: 10.1101/2023.12.21.572768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pediatric patients with congenital heart diseases (CHD) often undergo surgical repair on cardiopulmonary bypass (CPB). Despite a significant medical and surgical improvement, the mortality of neonates and infants remains high. Damage-associated molecular patterns (DAMPs) are endogenous molecules released from injured/damaged tissues as danger signals. We examined 101 pediatric patients who underwent congenital cardiac surgery on CPB. The mortality rate was 4.0%, and the complication rate was 31.6%. We found that neonates/infants experienced multiple complications most, consistent with the previous knowledge. Neonates and infants in the complication group had received more transfusion intraoperatively than the non-complication arm with lower maximum amplitude (MA) on rewarming CPB thromboelastography (TEG). Despite TEG profiles were comparable at ICU admission between the two groups, the complication arm had higher postoperative chest tube output, requiring more blood transfusion. The complication group showed greater neutrophil extracellular traps (NETs) formation at the end of CPB and postoperatively. Plasma histones and high mobility group box 1 (HMGB1) levels were significantly higher in the complication arm. Both induced NETs in vitro and in vivo . As histones and HMGB1 target Toll-like receptor (TLR)2 and TLR4, their mRNA expression in neutrophils was upregulated in the complication arm. Taken together, NETs play a major role in postoperative complication in pediatric cardiac surgery and would be considered a target for intervention. Key points Neonates and infants showed highest postoperative complications with more upregulation of inflammatory transcriptomes of neutrophils.Neonates and infants with organ dysfunction had more NETs formation with higher plasma histones and HMGB1 levels.
Collapse
|
22
|
Obeagu EI, Obeagu GU. Type 1 diabetes mellitus: Roles of neutrophils in the pathogenesis. Medicine (Baltimore) 2023; 102:e36245. [PMID: 38115297 PMCID: PMC10727583 DOI: 10.1097/md.0000000000036245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/21/2023] Open
Abstract
Circulating neutrophil counts are reduced both in healthy autoantibody-positive individuals and in patients with type 1 diabetes, which may be related on cell-specific autoimmunity. This paper was written to give an update on roles of neutrophils in the pathogenesis of type 1 diabetes mellitus. Different research search engines like PubMed Central, Scopus, Web of Science, Researchgate, Google Scholar etc were utilised for writing this paper. A drop in blood neutrophil counts in type 1 diabetes may be caused by decreased neutrophil generation and maturation, tissue maintenance, consumption, or peripheral damage. Neutrophil count variations between studies may be explained by results from various stages of diabetes or by ethnic groups. Neutrophils can induce type 1 diabetes by colonizing pancreatic islets and interacting with other immune cells, according to exciting findings that shed new light on their role in the pathogenesis of the disease. Knowing more about the function of neutrophils in the pathogenesis of type 1 diabetes will help in early diagnosis, treatment, and even prevention of the disease.
Collapse
|
23
|
Hickman E, Rebuli ME, Robinette C, Jaspers I. Understanding the Relationship Between Neutrophil Function and Demographic Variables. RESEARCH SQUARE 2023:rs.3.rs-3622445. [PMID: 38045266 PMCID: PMC10690322 DOI: 10.21203/rs.3.rs-3622445/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Neutrophils play a crucial role in the body's defense against respiratory pathogens, and dysregulation is linked to airway diseases. The study presented here explores the association between demographic factors (age, BMI, and sex) and functional phenotypes (oxidative burst and bioenergetics) of neutrophils. We measured PMA-stimulated oxidative burst (Seahorse XF) and phagocytosis (pHrodo red S. aureus ) of human peripheral blood neutrophils and determined whether there were significant demographic associations with cellular function. There were no significant associations between neutrophil oxidative burst bioenergetic parameters or phagocytosis and BMI or age. However, our data revealed sexual dimorphism in neutrophil phagocytosis, with males exhibiting significantly higher phagocytic capacity than females. Additionally, phagocytic capacity and bioenergetic parameters were correlated in males but not in females. The study indicates potential variations in neutrophil activation pathways between males and female and emphasizes the importance of considering sex as a biological variable in respiratory host defense research.
Collapse
|
24
|
Chikama T, Shinji K, Yokota C, Hayashi K, Kiuchi Y. Inflammatory Cells and Lipid Deposits Detected by in Vivo Confocal Microscopy in Brimonidine Tartrate Ophthalmic Solution-Related Corneal Disorders: A Case Series. Ocul Immunol Inflamm 2023; 31:1842-1847. [PMID: 36306423 DOI: 10.1080/09273948.2022.2137045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
Abstract
We reviewed the medical charts of five patients diagnosed with brimonidine tartrate (BT)-related corneal disorders. A fan-shaped corneal opacity was present in four patients and limbal corneal infiltrations were present in one patient. In vivo confocal microscopy revealed dendritic cells and lipid deposits in the fan-shaped opacity as well as neutrophils in limbal infiltrations. BT instillation was discontinued and topical administration of a corticosteroid was initiated for all patients. The limbal infiltrations improved after BT discontinuation. Conversely, the fan-shaped opacity remained in all affected patients. After a fan-shaped opacity has developed in a patient with a BT-related corneal disorder, the lesion is difficult to resolve. However, limbal infiltrations respond well to treatment. Therefore, BT should be discontinued and anti-inflammatory treatment initiated before a fan-shaped opacity forms.
Collapse
Affiliation(s)
- Taiichiro Chikama
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichiro Shinji
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chika Yokota
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
25
|
Liu R, Luo S, Zhang YS, Tsang CK. Plasma metabolomic profiling of patients with transient ischemic attack reveals positive role of neutrophils in ischemic tolerance. EBioMedicine 2023; 97:104845. [PMID: 37890369 PMCID: PMC10630611 DOI: 10.1016/j.ebiom.2023.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Transient ischemic attack (TIA) induces ischemic tolerance that can reduce the subsequent ischemic damage and improve prognosis of patients with stroke. However, the underlying mechanisms remain elusive. Recent advances in plasma metabolomics analysis have made it a powerful tool to investigate human pathophysiological phenotypes and mechanisms of diseases. In this study, we aimed to identify the bioactive metabolites from the plasma of patients with TIA for determination of their prophylactic and therapeutic effects on protection against cerebral ischemic stroke, and the mechanism of TIA-induced ischemic tolerance against subsequent stroke. METHODS Metabolomic profiling using liquid chromatography-mass spectrometry was performed to identify the TIA-induced differential bioactive metabolites in the plasma samples of 20 patients at day 1 (time for basal metabolites) and day 7 (time for established chronic ischemic tolerance-associated metabolites) after onset of TIA. Mouse middle cerebral artery occlusion (MCAO)-induced stroke model was used to verify their prophylactic and therapeutic potentials. Transcriptomics changes in circulating neutrophils of patients with TIA were determined by RNA-sequencing. Multivariate statistics and integrative analysis of metabolomics and transcriptomics were performed to elucidate the potential mechanism of TIA-induced ischemic tolerance. FINDINGS Plasma metabolomics analysis identified five differentially upregulated metabolites associated with potentially TIA-induced ischemic tolerance, namely all-trans 13,14 dihydroretinol (atDR), 20-carboxyleukotriene B4, prostaglandin B2, cortisol and 9-KODE. They were associated with the metabolic pathways of retinol, arachidonic acid, and neuroactive ligand-receptor interaction. Prophylactic treatment of MCAO mice with these five metabolites significantly improved neurological functions. Additionally, post-stroke treatment with atDR or 9-KODE significantly reduced the cerebral infarct size and enhanced sensorimotor functions, demonstrating the therapeutic potential of these bioactive metabolites. Mechanistically, we found in patients with TIA that these metabolites were positively correlated with circulating neutrophil counts. Integrative analysis of plasma metabolomics and neutrophil transcriptomics further revealed that TIA-induced metabolites are significantly correlated with specific gene expression in circulating neutrophils which showed prominent enrichment in FoxO signaling pathway and upregulation of the anti-inflammatory cytokine IL-10. Finally, we demonstrated that the protective effect of atDR-pretreatment on MCAO mice was abolished when circulating neutrophils were depleted. INTERPRETATION TIA-induced potential ischemic tolerance is associated with upregulation of plasma bioactive metabolites which can protect against cerebral ischemic damage and improve neurological functions through a positive role of circulating neutrophils. FUNDING National Natural Science Foundation of China (81974210), Science and Technology Planning Project of Guangdong Province, China (2020A0505100045), Natural Science Foundation of Guangdong Province (2019A1515010671), Science and Technology Program of Guangzhou, China (2023A03J0577), and Natural Science Foundation of Jiangxi, China(20224BAB216043).
Collapse
Affiliation(s)
- Rongrong Liu
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Siwei Luo
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Yu-Sheng Zhang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China.
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
26
|
Goral A, Sledz M, Manda-Handzlik A, Cieloch A, Wojciechowska A, Lachota M, Mroczek A, Demkow U, Zagozdzon R, Matusik K, Wachowska M, Muchowicz A. Regulatory T cells contribute to the immunosuppressive phenotype of neutrophils in a mouse model of chronic lymphocytic leukemia. Exp Hematol Oncol 2023; 12:89. [PMID: 37817276 PMCID: PMC10563345 DOI: 10.1186/s40164-023-00452-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Impaired neutrophil activity is an important issue in chronic lymphocytic leukemia (CLL), as it contributes to a dysfunctional immune response leading to life-threatening infections in patients. Some features typical of CLL neutrophils, e.g., the B-cell-supportive secretion profile, have already been described. However, most of these studies were performed on cells isolated from peripheral blood. It is still unclear which molecular factors and cell types are involved in shaping neutrophil function and phenotype in the CLL microenvironment. Since regulatory T cells (Treg) play an important role in CLL progression and influence the activity of neutrophils, we investigated the crosstalk between Treg and neutrophils in the spleen using a murine model of CLL. METHODS In this work, we used an Eµ-TCL1 mouse model of human CLL. For our in vivo and ex vivo experiments, we inoculated wild-type mice with TCL1 leukemic cells isolated from Eµ-TCL1 transgenic mice and then monitored disease progression by detecting leukemic cells in peripheral blood. We analyzed both the phenotype and activity of neutrophils isolated from the spleens of TCL1 leukemia-bearing mice. To investigate the interrelation between Treg and neutrophils in the leukemia microenvironment, we performed experiments using TCL1-injected DEREG mice with Treg depletion or RAG2KO mice with adoptively transferred TCL1 cells alone or together with Treg. RESULTS The obtained results underline the plasticity of the neutrophil phenotype, observed under the influence of leukemic cells alone and depending on the presence of Treg. In particular, Treg affect the expression of CD62L and IL-4 receptor in neutrophils, both of which are crucial for the function of these cells. Additionally, we show that Treg depletion and IL-10 neutralization induce changes in the leukemia microenvironment, partially restoring the "healthy" phenotype of neutrophils. CONCLUSIONS Altogether, the results indicate that the crosstalk between Treg and neutrophils in CLL may play an important role in CLL progression by interfering with the immune response.
Collapse
Affiliation(s)
- Agnieszka Goral
- Department of Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Marta Sledz
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Adrianna Cieloch
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Alicja Wojciechowska
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
- Department of Ophthalmology, Children's Memorial Health Institute, Warsaw, 04-730, Poland
| | - Agnieszka Mroczek
- Doctoral School, Medical University of Warsaw, Warsaw, 02-091, Poland
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Radoslaw Zagozdzon
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Katarzyna Matusik
- Doctoral School, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Malgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland.
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland.
| |
Collapse
|
27
|
Manda-Handzlik A, Cieloch A, Kuźmicka W, Mroczek A, Stelmaszczyk-Emmel A, Demkow U, Wachowska M. Secretomes of M1 and M2 macrophages decrease the release of neutrophil extracellular traps. Sci Rep 2023; 13:15633. [PMID: 37730741 PMCID: PMC10511515 DOI: 10.1038/s41598-023-42167-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
The release of neutrophil extracellular traps (NETs) can be either beneficial or detrimental for the host, thus it is necessary to maintain a balance between formation and clearance of NETs. Multiple physiological factors eliciting NET release have been identified, yet the studies on natural signals limiting NET formation have been scarce. Accordingly, our aim was to analyze whether cytokines or immune cells can inhibit NET formation. To that end, human granulocytes were incubated with interleukin (IL)-4, IL-10, transforming growth factor beta-2 or adenosine and then stimulated to release NETs. Additionally, neutrophils were cultured in the presence of natural killer (NK) cells, regulatory T cells (Tregs), pro-inflammatory or anti-inflammatory macrophages (M1 or M2 macrophages), or in the presence of NK/Tregs/M1 macrophages or M2 macrophages-conditioned medium and subsequently stimulated to release NETs. Our studies showed that secretome of M1 and M2 macrophages, but not of NK cells and Tregs, diminishes NET formation. Co-culture experiments did not reveal any effect of immune cells on NET release. No effect of cytokines or adenosine on NET release was found. This study highlights the importance of paracrine signaling at the site of infection and is the first to show that macrophage secretome can regulate NET formation.
Collapse
Affiliation(s)
- Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland.
| | - Adrianna Cieloch
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091, Warsaw, Poland
| | - Weronika Kuźmicka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Agnieszka Mroczek
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Małgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| |
Collapse
|
28
|
Sikora JP, Karawani J, Sobczak J. Neutrophils and the Systemic Inflammatory Response Syndrome (SIRS). Int J Mol Sci 2023; 24:13469. [PMID: 37686271 PMCID: PMC10488036 DOI: 10.3390/ijms241713469] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
We are not entirely able to understand, assess, and modulate the functioning of the immune system in clinical situations that lead to a systemic inflammatory response. In the search for diagnostic and treatment strategies (which are still far from perfect), it became very important to study the pathogenesis and participation of endogenous inflammation mediators. This study attempts to more precisely establish the role of neutrophils in individual phenomena occurring during an inflammatory and anti-inflammatory reaction, taking into account their cidal, immunoregulatory, and reparative abilities. Pro- and anticoagulatory properties of endothelium in systemic inflammatory response syndrome (SIRS) are emphasised, along with the resulting clinical implications (the application of immunotherapy using mesenchymal stem/stromal cells (MSCs) or IL-6 antagonists in sepsis and COVID-19 treatment, among others). Special attention is paid to reactive oxygen species (ROS), produced by neutrophils activated during "respiratory burst" in the course of SIRS; the protective and pathogenic role of these endogenous mediators is highlighted. Moreover, clinically useful biomarkers of SIRS (neutrophil extracellular traps, cell-free DNA, DAMP, TREMs, NGAL, miRNA, selected cytokines, ROS, and recognised markers of endothelial damage from the group of adhesins by means of immunohistochemical techniques) related to the neutrophils are presented, and their role in the diagnosing and forecasting of sepsis, burn disease, and COVID-19 is emphasised. Finally, examples of immunomodulation of sepsis and antioxidative thermal injury therapy are presented.
Collapse
Affiliation(s)
- Janusz P. Sikora
- Department of Paediatric Emergency Medicine, 2nd Chair of Paediatrics, Central Clinical Hospital, Medical University of Łódź, ul. Sporna 36/50, 91-738 Łódź, Poland;
| | - Jakub Karawani
- Faculty of Medicine, Lazarski University, ul. Świeradowska 43, 02-662 Warsaw, Poland;
| | - Jarosław Sobczak
- Department of Paediatric Emergency Medicine, 2nd Chair of Paediatrics, Central Clinical Hospital, Medical University of Łódź, ul. Sporna 36/50, 91-738 Łódź, Poland;
- Department of Management and Logistics in Healthcare, Medical University of Łódź, ul. Lindleya 6, 90-131 Łódź, Poland
| |
Collapse
|
29
|
Alshehri S, Ahmad SF, Albekairi NA, Alqarni SS, Al-Harbi NO, Al-Ayadhi LY, Attia SM, Alfardan AS, Bakheet SA, Nadeem A. Thioredoxin 1 and Thioredoxin Reductase 1 Redox System Is Dysregulated in Neutrophils of Subjects with Autism: In Vitro Effects of Environmental Toxicant, Methylmercury. TOXICS 2023; 11:739. [PMID: 37755749 PMCID: PMC10536321 DOI: 10.3390/toxics11090739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Autism spectrum disorder (ASD) is a complex developmental disorder in children that results in abnormal communicative and verbal behaviors. Exposure to heavy metals plays a significant role in the pathogenesis or progression of ASD. Mercury compounds pose significant risk for the development of ASD as children are more exposed to environmental toxicants. Increased concentration of mercury compounds has been detected in different body fluids/tissues in ASD children, which suggests an association between mercury exposure and ASD. Thioredoxin1 (Trx1) and thioredoxin reductase1 (TrxR1) redox system plays a crucial role in detoxification of oxidants generated in different immune cells. However, the effect of methylmercury and the Nrf2 activator sulforaphane on the Trx1/TrxR1 antioxidant system in neutrophils of ASD subjects has not been studied previously. Therefore, this study examined the effect of methylmercury on Trx1/TrxR1 expression, TrxR activity, nitrotyrosine, and ROS in neutrophils of ASD and TDC subjects. Our study shows that Trx1/TrxR1 protein expression is dysregulated in ASD subjects as compared to the TDC group. Further, methylmercury treatment significantly inhibits the activity of TrxR in both ASD and TDC groups. Inhibition of TrxR by mercury is associated with upregulation of the Trx1 protein in TDC neutrophils but not in ASD neutrophils. Furthermore, ASD neutrophils have exaggerated ROS production after exposure to methylmercury, which is much greater in magnitude than TDC neutrophils. Sulforaphane reversed methylmercury-induced effects on neutrophils through Nrf2-mediated induction of the Trx1/TrxR1 system. These observations suggest that exposure to the environmental toxicant methylmercury may elevate systemic oxidative inflammation due to a dysregulated Trx1/TrxR1 redox system in the neutrophils of ASD subjects, which may play a role in the progression of ASD.
Collapse
Affiliation(s)
- Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sana S. Alqarni
- Department of Medical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y. Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Criado M, Pérez V, Arteche-Villasol N, Elguezabal N, Molina E, Benavides J, Gutiérrez-Expósito D. Evaluation of the innate immune response of caprine neutrophils against Mycobacterium avium subspecies paratuberculosis in vitro. Vet Res 2023; 54:61. [PMID: 37464437 DOI: 10.1186/s13567-023-01193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/22/2023] [Indexed: 07/20/2023] Open
Abstract
Neutrophils constitute an essential component of the innate immune response, readily killing most bacteria through phagocytosis, degranulation, and the release of neutrophil extracellular traps (NETs) among other mechanisms. These cells play an unclear role in mycobacterial infections such as Mycobacterium avium subspecies paratuberculosis (Map), the etiological agent of paratuberculosis, and its response is particularly understudied in ruminants. Herein, a wide set of techniques were adapted, or newly developed, to study the in vitro response of caprine neutrophils after Map infection. Immunofluorescence was used to demonstrate, simultaneously, chemotaxis, phagocytosis, degranulation, and NETs. The quantification of neutrophil phagocytic activity against Map at a 1:10 multiplicity of infection (MOI), through flow cytometry, showed values that varied from 4.54 to 5.63% of phagocyting neutrophils. By immunofluorescence, a 73.3 ± 14.5% of the fields showed NETs, and the mean release of DNA, attributable to NETosis, calculated through a fluorometric method, was 16.2 ± 3.5%. In addition, the RNA expression of TGF-β, TNF and IL-1β cytokines, measured through reverse transcription qPCR, was significantly higher in the two latter. Overall, neutrophil response was proportional to the number of bacteria. This work confirms that the simultaneous study of several neutrophil mechanisms, and the combination of different methodologies, are essential to reach a comprehensive understanding of neutrophil response against pathogens, demonstrates that, in vitro, caprine neutrophils display a strong innate response against Map, using their entire repertoire of effector functions, and sets the basis for further in vitro and in vivo studies on the role of neutrophils in paratuberculosis.
Collapse
Affiliation(s)
- Miguel Criado
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Grulleros, León, Spain.
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| | - Valentín Pérez
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Grulleros, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Noive Arteche-Villasol
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Grulleros, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Natalia Elguezabal
- Departamento de Sanidad Animal, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, 48160, Derio, Vizcaya, Spain
| | - Elena Molina
- Departamento de Sanidad Animal, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, 48160, Derio, Vizcaya, Spain
| | - Julio Benavides
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Grulleros, León, Spain
| | - Daniel Gutiérrez-Expósito
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Grulleros, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| |
Collapse
|
31
|
Futosi K, Németh T, Horváth ÁI, Abram CL, Tusnády S, Lowell CA, Helyes Z, Mócsai A. Myeloid Src-family kinases are critical for neutrophil-mediated autoinflammation in gout and motheaten models. J Exp Med 2023; 220:e20221010. [PMID: 37074415 PMCID: PMC10120404 DOI: 10.1084/jem.20221010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Autoinflammatory diseases include a number of monogenic systemic inflammatory diseases, as well as acquired autoinflammatory diseases such as gout. Here, we show that the myeloid Src-family kinases Hck, Fgr, and Lyn are critical for experimental models of gout, as well as for genetically determined systemic inflammation in the Ptpn6me-v/me-v (motheaten viable) mouse model. The Hck-/-Fgr-/-Lyn-/- mutation abrogated various monosodium urate (MSU) crystal-induced pro-inflammatory responses of neutrophils, and protected mice from the development of gouty arthritis. The Src-family inhibitor dasatinib abrogated MSU crystal-induced responses of human neutrophils and reduced experimental gouty arthritis in mice. The Hck-/-Fgr-/-Lyn-/- mutation also abrogated spontaneous inflammation and prolonged the survival of the Ptpn6me-v/me-v mice. Spontaneous adhesion and superoxide release of Ptpn6me-v/me-v neutrophils were also abolished by the Hck-/-Fgr-/-Lyn-/- mutation. Excessive activation of tyrosine phosphorylation pathways in myeloid cells may characterize a subset of autoinflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE “Lendület” Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Ádám I. Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Clare L. Abram
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Simon Tusnády
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Pécs, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| | - Attila Mócsai
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| |
Collapse
|
32
|
Yao H, Cheng L, Chen D, Zhang Q, Qiu L, Ren SH, Dou BT, Wang H, Huang J, Fan FY. Role of the bone marrow microenvironment in multiple myeloma treatment using CAR-T therapy. Expert Rev Anticancer Ther 2023; 23:807-815. [PMID: 37343305 DOI: 10.1080/14737140.2023.2229029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Multiple myeloma (MM) is a malignant tumor caused by abnormal proliferation of bone marrow (BM) plasma cells and is the second most common hematologic malignancy. A variety of CAR-T cells targeting multiple myeloma-specific markers have shown good efficacy in clinical trials. However, CAR-T therapy still limits the insufficient duration of efficacy and recurrence of the disease. AREAS COVERED This article reviews the cell populations in the bone marrow of MM, and discusses the potential way to improve the efficiency of CAR-T cells in the treatment of MM by targeting the bone marrow microenvironment. EXPERT OPINION The limits of CAR-T therapy in MM may related to the impairment of T cell activity in the bone marrow microenvironment. This article reviews the cell populations of the immune microenvironment and nonimmune microenvironment in the bone marrow of multiple myeloma, and discusses the potential way to improve the efficiency of CAR-T cells in the treatment of MM by targeting the bone marrow. This may provides a new idea for the CAR-T therapy of multiple myeloma.
Collapse
Affiliation(s)
- Hao Yao
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Lei Cheng
- Department of Pharmacy, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Dan Chen
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Qian Zhang
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Ling Qiu
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Shi-Hui Ren
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Bai-Tao Dou
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Huan Wang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, SiChuan, China
- University of Electronic Science and Technology of China, Chengdu, SiChuan, China
| | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, SiChuan, China
| | - Fang-Yi Fan
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| |
Collapse
|
33
|
Arora A, Singh A. Exploring the role of neutrophils in infectious and noninfectious pulmonary disorders. Int Rev Immunol 2023; 43:41-61. [PMID: 37353973 DOI: 10.1080/08830185.2023.2222769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/31/2023] [Indexed: 06/25/2023]
Abstract
With the change in global environment, respiratory disorders are becoming more threatening to the health of people all over the world. These diseases are closely linked to performance of immune system. Within the innate arm of immune system, Neutrophils are an important moiety to serve as an immune defense barrier. They are one of the first cells recruited to the site of infection and plays a critical role in pathogenesis of various pulmonary diseases. It is established that the migration and activation of neutrophils can lead to inflammation either directly or indirectly and this inflammation caused is very crucial for the clearance of pathogens and resolution of infection. However, the immunopathological mechanisms involved to carry out the same is very complex and not well understood. Despite there being studies concentrating on the role of neutrophils in multiple respiratory diseases, there is still a long way to go in order to completely understand the complexity of the participation of neutrophils and mechanisms involved in the development of these respiratory diseases. In the present article, we have reviewed the literature to comprehensively provide an insight in the current development and advancements about the role of neutrophils in infectious respiratory disorders including viral respiratory disorders such as Coronavirus disease (COVID-19) and bacterial pulmonary disorders with a focused review on pulmonary tuberculosis as well as in noninfectious disorders like Chronic obstructive pulmonary disease (COPD) and asthma. Also, future directions into research and therapeutic targets have been discussed for further exploration.
Collapse
Affiliation(s)
- Alisha Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archana Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
34
|
Lin Y, Lai X, Lei T, Qiu Y, Deng Q, Liu Q, Wang Z, Huang W. Neutrophil-Related Gene Expression Signatures in Idiopathic Pulmonary Fibrosis: Implications for Disease Characteristic and Identification of Diagnostic Hub Genes. J Inflamm Res 2023; 16:2503-2519. [PMID: 37337515 PMCID: PMC10277023 DOI: 10.2147/jir.s414734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a disease with unclear etiology and a poor prognosis. Although the involvement of neutrophils in IPF pathogenesis has been suggested, the exact nature of this relationship remains unclear. Methods We analyzed data from the Gene Expression Omnibus (GEO) using immune infiltration analysis, weighted gene co-expression network analysis (WGCNA), and consensus cluster analysis. Neutrophil-related genes and hub genes related to neutrophils were identified and differentially expressed between IPF patients and healthy controls. We also validated the expression differences of hub genes in a bleomycin-induced mice model. Results Immune infiltration analysis revealed a significantly decreased percentage of neutrophils in the lung tissue of IPF patients compared with healthy controls (P<0.001) in both the train and validation sets. Neutrophil-related genes in IPF were identified by WGCNA, and functional enrichment analysis showed that these genes were mainly involved in the cytokine-cytokine receptor interaction pathway and correlated with lung disease, consistent with DEGs between IPF and healthy controls. Eight hub genes related to neutrophils were identified, including MMP16, ARG1, IL1R2, PROK2, MS4A2, PIR, and ZNF436. Consensus cluster analysis revealed a low neutrophil-infiltrating cluster that was correlated with IPF (P<0.001), and a principal component analysis-generated score could distinguish IPF patients from healthy controls, with an area under the curve of 0.930 in the train set and 0.768 in the validation set. We also constructed a diagnostic model using hub genes related to neutrophils, which showed a reliable diagnostic value with an area under the curve of 0.955 in the train set and 0.995 in the validation set. Conclusion Our findings provide evidence of a low neutrophil-infiltrating characteristic in the IPF microenvironment and identify hub genes related to neutrophils that may serve as diagnostic biomarkers for the disease.
Collapse
Affiliation(s)
- Yingying Lin
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiaofan Lai
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tianxiang Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Qiwen Deng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qi Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
35
|
de Oliveira Formiga R, Amaral FC, Souza CF, Mendes DAGB, Wanderley CWS, Lorenzini CB, Santos AA, Antônia J, Faria LF, Natale CC, Paula NM, Silva PCS, Fonseca FR, Aires L, Heck N, Starick MR, Queiroz‐Junior CM, Santos FRS, de Souza FRO, Costa VV, Barroso SPC, Morrot A, Van Weyenbergh J, Sordi R, Alisson‐Silva F, Cunha FQ, Rocha EL, Chollet‐Martin S, Hurtado‐Nedelec MM, Martin C, Burgel P, Mansur DS, Maurici R, Macauley MS, Báfica A, Witko‐Sarsat V, Spiller F. Neuraminidase is a host-directed approach to regulate neutrophil responses in sepsis and COVID-19. Br J Pharmacol 2023; 180:1460-1481. [PMID: 36526272 PMCID: PMC9877938 DOI: 10.1111/bph.16013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Because pathogen-derived neuraminidase (NEU) stimulates neutrophils, we investigated whether host NEU can be targeted to regulate the neutrophil dysregulation observed in severe infections. EXPERIMENTAL APPROACH The effects of NEU inhibitors on lipopolysaccharide (LPS)-stimulated neutrophils from healthy donors or COVID-19 patients were determined by evaluating the shedding of surface sialic acids, cell activation, and reactive oxygen species (ROS) production. Re-analysis of single-cell RNA sequencing of respiratory tract samples from COVID-19 patients also was carried out. The effects of oseltamivir on sepsis and betacoronavirus-induced acute lung injury were evaluated in murine models. KEY RESULTS Oseltamivir and zanamivir constrained host NEU activity, surface sialic acid release, cell activation, and ROS production by LPS-activated human neutrophils. Mechanistically, LPS increased the interaction of NEU1 with matrix metalloproteinase 9 (MMP-9). Inhibition of MMP-9 prevented LPS-induced NEU activity and neutrophil response. In vivo, treatment with oseltamivir fine-tuned neutrophil migration and improved infection control as well as host survival in peritonitis and pneumonia sepsis. NEU1 also is highly expressed in neutrophils from COVID-19 patients, and treatment of whole-blood samples from these patients with either oseltamivir or zanamivir reduced neutrophil overactivation. Oseltamivir treatment of intranasally infected mice with the mouse hepatitis coronavirus 3 (MHV-3) decreased lung neutrophil infiltration, viral load, and tissue damage. CONCLUSION AND IMPLICATIONS These findings suggest that interplay of NEU1-MMP-9 induces neutrophil overactivation. In vivo, NEU may serve as a host-directed target to dampen neutrophil dysfunction during severe infections.
Collapse
Affiliation(s)
- Rodrigo de Oliveira Formiga
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Université de Paris, Institut Cochin, INSERM U1016, CNRSParisFrance
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Flávia C. Amaral
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Camila F. Souza
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Daniel A. G. B. Mendes
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Carlos W. S. Wanderley
- Department of Pharmacology, School of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Cristina B. Lorenzini
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Adara A. Santos
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Juliana Antônia
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Lucas F. Faria
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Caio C. Natale
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Nicholas M. Paula
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Priscila C. S. Silva
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Fernanda R. Fonseca
- Department of Clinical MedicineFederal University of Santa CatarinaFlorianópolisBrazil
| | - Luan Aires
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Nicoli Heck
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Márick R. Starick
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Celso M. Queiroz‐Junior
- Department of Morphology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil
| | - Felipe R. S. Santos
- Department of Biochemistry and Immunology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil
| | - Filipe R. O. de Souza
- Department of Morphology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil
| | - Vivian V. Costa
- Department of Morphology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil
| | - Shana P. C. Barroso
- Molecular Biology Laboratory, Institute of Biomedical ResearchMarcilio Dias Naval Hospital, Navy of BrazilRio de JaneiroBrazil
| | - Alexandre Morrot
- Tuberculosis Research Laboratory, Faculty of MedicineFederal University of Rio de JaneiroRio de JaneiroBrazil
- Immunoparasitology LaboratoryOswaldo Cruz Foundation (FIOCRUZ)Rio de JaneiroBrazil
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological VirologyKU LeuvenLeuvenBelgium
| | - Regina Sordi
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Frederico Alisson‐Silva
- Department of Immunology, Paulo de Goes Institute of MicrobiologyFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Fernando Q. Cunha
- Department of Pharmacology, School of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Edroaldo L. Rocha
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Sylvie Chollet‐Martin
- INSERM UMR 996, ‘Infammation, Microbiome and Immunosurveillance’, Faculty of PharmacyUniversité Paris‐SaclayChâtenay‐MalabryFrance
| | | | - Clémence Martin
- Université de Paris, Institut Cochin, INSERM U1016, CNRSParisFrance
- Department of PneumologyAP‐HP, Hôpital CochinParisFrance
| | - Pierre‐Régis Burgel
- Université de Paris, Institut Cochin, INSERM U1016, CNRSParisFrance
- Department of PneumologyAP‐HP, Hôpital CochinParisFrance
| | - Daniel S. Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Rosemeri Maurici
- Department of Clinical MedicineFederal University of Santa CatarinaFlorianópolisBrazil
| | - Matthew S. Macauley
- Department of Chemistry, Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | - André Báfica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | | | - Fernando Spiller
- Department of PharmacologyFederal University of Santa CatarinaFlorianópolisBrazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| |
Collapse
|
36
|
Ryu HM, Islam SMS, Sayeed HM, Babita R, Seong JK, Lee H, Sohn S. Characterization of immune responses associated with ERAP-1 expression in HSV-induced Behçet's disease mouse model. Clin Immunol 2023; 250:109305. [PMID: 37003592 DOI: 10.1016/j.clim.2023.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Behçet's disease (BD) is a chronic multisystem inflammatory disorder. Endoplasmic reticulum aminopeptidase 1 (ERAP1) polymorphism has been reported as a risk factor for BD. However, the immunological role of ERAP1 in BD remains unclear. Therefore, the purpose of this study was to investigate the immunological role of ERAP1 in BD using a mouse model. ERAP1 incomplete expressing mice (ERAP1 hetero, +/-) were generated and inoculated with herpes simplex virus 1 to produce a BD mouse model. In these mice, dendritic cell activation markers and other immune response-related markers were analyzed. Among them, the factor showing a significant difference between ERAP+/- BD mice and WT BD mice was IL-17. In ERAP+/-, BD had significantly different expression levels of CD80, CD11b, Ly6G, RORγt, IFNγ, and IL-17 compared to asymptomatic controls. This study demonstrates ERAP1 defective expressions play an important role in BD development through inappropriate regulation of Th17.
Collapse
Affiliation(s)
- Hye-Myung Ryu
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - S M Shamsul Islam
- Department of Biomedical Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Hasan M Sayeed
- Department of Biomedical Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Rahar Babita
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Interdiscplinary Program for Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Lee
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi 10408, Republic of Korea
| | - Seonghyang Sohn
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
37
|
Iwaniuk A, Jablonska E. Neutrophils in Health and Disease: From Receptor Sensing to Inflammasome Activation. Int J Mol Sci 2023; 24:ijms24076340. [PMID: 37047314 PMCID: PMC10094305 DOI: 10.3390/ijms24076340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Neutrophils—polymorphonuclear cells (PMNs) are the cells of the initial immune response and make up the majority of leukocytes in the peripheral blood. After activation, these cells modify their functional status to meet the needs at the site of action or according to the agent causing injury. They receive signals from their surroundings and “plan” the course of the response in both temporal and spatial contexts. PMNs dispose of intracellular signaling pathways that allow them to perform a wide range of functions associated with the development of inflammatory processes. In addition to these cells, some protein complexes, known as inflammasomes, also have a special role in the development and maintenance of inflammation. These complexes participate in the proteolytic activation of key pro-inflammatory cytokines, such as IL-1β and IL-18. In recent years, there has been significant progress in the understanding of the structure and molecular mechanisms behind the activation of inflammasomes and their participation in the pathogenesis of numerous diseases. The available reports focus primarily on macrophages and dendritic cells. According to the literature, the activation of inflammasomes in neutrophils and the associated death type—pyroptosis—is regulated in a different manner than in other cells. The present work is a review of the latest reports concerning the course of inflammasome activation and inflammatory cytokine secretion in response to pathogens in neutrophils, as well as the role of these mechanisms in the pathogenesis of selected diseases.
Collapse
|
38
|
Carmona-Rivera C, Kaplan MJ. Low-density granulocytes in systemic autoimmunity and autoinflammation. Immunol Rev 2023; 314:313-325. [PMID: 36305174 PMCID: PMC10050110 DOI: 10.1111/imr.13161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A body of evidence has re-energized the interest on the role neutrophils in inflammatory and autoimmune conditions. For decades, neutrophils have been considered a homogenous population. Nevertheless, accumulating evidence suggests that neutrophils are more versatile and heterogeneous than initially considered. The notion of neutrophil heterogeneity has been supported by the identification of low-density granulocytes (LDGs) in systemic lupus erythematosus (SLE) and other systemic autoimmune and autoinflammatory conditions. Transcriptomic, epigenetic, proteomic, and functional analyses support that LDGs are a distinct subset of proinflammatory neutrophils implicated in the pathogenesis of SLE and other autoimmune diseases. Importantly, it remains incompletely characterized whether LDGs detected in other inflammatory/autoimmune conditions display the same phenotype that those present in SLE. A shared feature of LDGs across diseases is their association with vascular damage, an important contributor to morbidity and mortality in chronic inflammatory conditions. Additionally, the lack of specific markers to identify LDGs in circulation or in tissue, makes it a challenge to elucidate their role in the pathogenesis of inflammatory and autoimmune conditions. In this review, we aim to examine the evidence on the biology and the putative pathogenic role of LDGs in systemic autoimmune diseases.
Collapse
Affiliation(s)
- Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
39
|
Abstract
The respiratory tree maintains sterilizing immunity against human fungal pathogens. Humans inhale ubiquitous filamentous molds and geographically restricted dimorphic fungal pathogens that form small airborne conidia. In addition, pathogenic yeasts, exemplified by encapsulated Cryptococcus species, and Pneumocystis pose significant fungal threats to the lung. Classically, fungal pneumonia occurs in immune compromised individuals, specifically in patients with HIV/AIDS, in patients with hematologic malignancies, in organ transplant recipients, and in patients treated with corticosteroids and targeted biologics that impair fungal immune surveillance in the lung. The emergence of fungal co-infections during severe influenza and COVID-19 underscores the impairment of fungus-specific host defense pathways in the lung by respiratory viruses and by medical therapies to treat viral infections. Beyond life-threatening invasive syndromes, fungal antigen exposure can exacerbate allergenic disease in the lung. In this review, we discuss emerging principles of lung-specific antifungal immunity, integrate the contributions and cooperation of lung epithelial, innate immune, and adaptive immune cells to mucosal barrier immunity, and highlight the pathogenesis of fungal-associated allergenic disease. Improved understanding of fungus-specific immunity in the respiratory tree has paved the way to develop improved diagnostic, pre-emptive, therapeutic, and vaccine approaches for fungal diseases of the lung.
Collapse
Affiliation(s)
- Lena J Heung
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Darin L Wiesner
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
40
|
Naish E, Wood AJT, Stewart AP, Routledge M, Morris AC, Chilvers ER, Lodge KM. The formation and function of the neutrophil phagosome. Immunol Rev 2023; 314:158-180. [PMID: 36440666 PMCID: PMC10952784 DOI: 10.1111/imr.13173] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neutrophils are the most abundant circulating leukocyte and are crucial to the initial innate immune response to infection. One of their key pathogen-eliminating mechanisms is phagocytosis, the process of particle engulfment into a vacuole-like structure called the phagosome. The antimicrobial activity of the phagocytic process results from a collaboration of multiple systems and mechanisms within this organelle, where a complex interplay of ion fluxes, pH, reactive oxygen species, and antimicrobial proteins creates a dynamic antimicrobial environment. This complexity, combined with the difficulties of studying neutrophils ex vivo, has led to gaps in our knowledge of how the neutrophil phagosome optimizes pathogen killing. In particular, controversy has arisen regarding the relative contribution and integration of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived antimicrobial agents and granule-delivered antimicrobial proteins. Clinical syndromes arising from dysfunction in these systems in humans allow useful insight into these mechanisms, but their redundancy and synergy add to the complexity. In this article, we review the current knowledge regarding the formation and function of the neutrophil phagosome, examine new insights into the phagosomal environment that have been permitted by technological advances in recent years, and discuss aspects of the phagocytic process that are still under debate.
Collapse
Affiliation(s)
- Emily Naish
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Alexander JT Wood
- Medical SchoolUniversity of Western AustraliaPerthAustralia
- Department of Critical CareUniversity of MelbourneMelbourneAustralia
| | | | - Matthew Routledge
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Andrew Conway Morris
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Edwin R Chilvers
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | |
Collapse
|
41
|
Orthobiologic Treatment of Ligament Injuries. Phys Med Rehabil Clin N Am 2023; 34:135-163. [DOI: 10.1016/j.pmr.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
The Role of Neutrophils in Lower Limb Peripheral Artery Disease: State of the Art and Future Perspectives. Int J Mol Sci 2023; 24:ijms24021169. [PMID: 36674682 PMCID: PMC9866688 DOI: 10.3390/ijms24021169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
In recent years, increasing attention has been paid to the role of neutrophils in cardiovascular (CV) disease (CVD) with evidence supporting their role in the initiation, progression, and rupture of atherosclerotic plaque. Although these cells have long been considered as terminally differentiated cells with a relatively limited spectrum of action, recent research has revealed intriguing novel cellular functions, including neutrophil extracellular trap (NET) generation and inflammasome activation, which have been linked to several human diseases, including CVD. While most research to date has focused on the role of neutrophils in coronary artery and cerebrovascular diseases, much less information is available on lower limb peripheral artery disease (PAD). PAD is a widespread condition associated with great morbidity and mortality, though physician and patient awareness of the disease remains low. To date, several studies have produced some evidence on the role of certain biomarkers of neutrophil activation in this clinical setting. However, the etiopathogenetic role of neutrophils, and in particular of some of the newly discovered mechanisms, has yet to be fully elucidated. In the future, complementary assessment of neutrophil activity should improve CV risk stratification and provide personalized treatments to patients with PAD. This review aims to summarize the basic principles and recent advances in the understanding of neutrophil biology, current knowledge about the role of neutrophils in atherosclerosis, as well as available evidence on their role of PAD.
Collapse
|
43
|
Farshbafnadi M, Razi S, Rezaei N. Transplantation. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Xie M, Hao Y, Feng L, Wang T, Yao M, Li H, Ma D, Feng J. Neutrophil Heterogeneity and its Roles in the Inflammatory Network after Ischemic Stroke. Curr Neuropharmacol 2023; 21:621-650. [PMID: 35794770 PMCID: PMC10207908 DOI: 10.2174/1570159x20666220706115957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
As the first peripheral immune cells to enter the brain after ischemic stroke, neutrophils are important participants in stroke-related neuroinflammation. Neutrophils are quickly mobilized from the periphery in response to a stroke episode and cross the blood-brain barrier to reach the ischemic brain parenchyma. This process involves the mobilization and activation of neutrophils from peripheral immune organs (including the bone marrow and spleen), their chemotaxis in the peripheral blood, and their infiltration into the brain parenchyma (including disruption of the blood-brain barrier, inflammatory effects on brain tissue, and interactions with other immune cell types). In the past, it was believed that neutrophils aggravated brain injuries through the massive release of proteases, reactive oxygen species, pro-inflammatory factors, and extracellular structures known as neutrophil extracellular traps (NETs). With the failure of early clinical trials targeting neutrophils and uncovering their underlying heterogeneity, our view of their role in ischemic stroke has become more complex and multifaceted. As neutrophils can be divided into N1 and N2 phenotypes in tumors, neutrophils have also been found to have similar phenotypes after ischemic stroke, and play different roles in the development and prognosis of ischemic stroke. N1 neutrophils are dominant during the acute phase of stroke (within three days) and are responsible for the damage to neural structures via the aforementioned mechanisms. However, the proportion of N2 neutrophils gradually increases in later phases, and this has a beneficial effect through the release of anti-inflammatory factors and other neuroprotective mediators. Moreover, the N1 and N2 phenotypes are highly plastic and can be transformed into each other under certain conditions. The pronounced differences in their function and their high degree of plasticity make these neutrophil subpopulations promising targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Meizhen Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Tian Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Mengyue Yao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Hui Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| |
Collapse
|
45
|
Kerr MD, McBride DA, Johnson WT, Chumber AK, Najibi AJ, Seo BR, Stafford AG, Scadden DT, Mooney DJ, Shah NJ. Immune-responsive biodegradable scaffolds for enhancing neutrophil regeneration. Bioeng Transl Med 2023; 8:e10309. [PMID: 36684088 PMCID: PMC9842036 DOI: 10.1002/btm2.10309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 01/30/2023] Open
Abstract
Neutrophils are essential effector cells for mediating rapid host defense and their insufficiency arising from therapy-induced side-effects, termed neutropenia, can lead to immunodeficiency-associated complications. In autologous hematopoietic stem cell transplantation (HSCT), neutropenia is a complication that limits therapeutic efficacy. Here, we report the development and in vivo evaluation of an injectable, biodegradable hyaluronic acid (HA)-based scaffold, termed HA cryogel, with myeloid responsive degradation behavior. In mouse models of immune deficiency, we show that the infiltration of functional myeloid-lineage cells, specifically neutrophils, is essential to mediate HA cryogel degradation. Post-HSCT neutropenia in recipient mice delayed degradation of HA cryogels by up to 3 weeks. We harnessed the neutrophil-responsive degradation to sustain the release of granulocyte colony stimulating factor (G-CSF) from HA cryogels. Sustained release of G-CSF from HA cryogels enhanced post-HSCT neutrophil recovery, comparable to pegylated G-CSF, which, in turn, accelerated cryogel degradation. HA cryogels are a potential approach for enhancing neutrophils and concurrently assessing immune recovery in neutropenic hosts.
Collapse
Affiliation(s)
- Matthew D. Kerr
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - David A. McBride
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Wade T. Johnson
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Arun K. Chumber
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Alexander J. Najibi
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMassachusettsUSA
| | - Bo Ri Seo
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMassachusettsUSA
| | - Alexander G. Stafford
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMassachusettsUSA
| | - David T. Scadden
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMassachusettsUSA
- Harvard Stem Cell InstituteCambridgeMassachusettsUSA
- Center for Regenerative MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMassachusettsUSA
| | - Nisarg J. Shah
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
- Program in ImmunologyUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
46
|
Hey G, Bhutani S, Woolridge M, Patel A, Walls A, Lucke-Wold B. Immunologic Implications for Stroke Recovery: Unveiling the Role of the Immune System in Pathogenesis, Neurorepair, and Rehabilitation. JOURNAL OF CELLULAR IMMUNOLOGY 2023; 5:65-81. [PMID: 37854481 PMCID: PMC10583807 DOI: 10.33696/immunology.5.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Stroke is a debilitating neurologic condition characterized by an interruption or complete blockage of blood flow to certain areas of the brain. While the primary injury occurs at the time of the initial ischemic event or hemorrhage, secondary injury mechanisms contribute to neuroinflammation, disruption of the blood-brain barrier (BBB), excitotoxicity, and cerebral edema in the days and hours after stroke. Of these secondary mechanisms of injury, significant dysregulation of various immune populations within the body plays a crucial role in exacerbating brain damage after stroke. Pathological activity of glial cells, infiltrating leukocytes, and the adaptive immune system promote neuroinflammation, BBB damage, and neuronal death. Chronic immune activation can additionally encourage the development of neurologic deficits, immunosuppression, and dysregulation of the gut microbiome. As such, immunotherapy has emerged as a promising strategy for the clinical management of stroke in a highly patient-specific manner. These strategies include regulatory T cells (Tregs), cell adhesion molecules, cytokines, and monoclonal antibodies. However, the use of immunotherapy for stroke remains largely in the early stages, highlighting the need for continued research efforts before widespread clinical use.
Collapse
Affiliation(s)
- Grace Hey
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Siya Bhutani
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Maxwell Woolridge
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Anna Walls
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
47
|
High-Dose Intravenous Ascorbate in Sepsis, a Pro-Oxidant Enhanced Microbicidal Activity and the Effect on Neutrophil Functions. Biomedicines 2022; 11:biomedicines11010051. [PMID: 36672559 PMCID: PMC9855518 DOI: 10.3390/biomedicines11010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Vitamin C (ascorbic acid), a water-soluble essential vitamin, is well-known as an antioxidant and an essential substrate for several neutrophil functions. Because of (i) the importance of neutrophils in microbial control and (ii) the relatively low vitamin C level in neutrophils and in plasma during stress, vitamin C has been studied in sepsis (a life-threatening organ dysfunction from severe infection). Surprisingly, the supraphysiologic blood level of vitamin C (higher than 5 mM) after the high-dose intravenous vitamin C (HDIVC) for 4 days possibly induces the pro-oxidant effect in the extracellular space. As such, HDIVC demonstrates beneficial effects in sepsis which might be due to the impacts on an enhanced microbicidal activity through the improved activity indirectly via enhanced neutrophil functions and directly from the extracellular pro-oxidant effect on the organismal membrane. The concentration-related vitamin C properties are also observed in the neutrophil extracellular traps (NETs) formation as ascorbate inhibits NETs at 1 mM (or less) but facilitates NETs at 5 mM (or higher) concentration. The longer duration of HDIVC administration might be harmful in sepsis because NETs and pro-oxidants are partly responsible for sepsis-induced injuries, despite the possible microbicidal benefit. Despite the negative results in several randomized control trials, the short course HDIVC might be interesting to use in some selected groups, such as against anti-biotic resistant organisms. More studies on the proper use of vitamin C, a low-cost and widely available drug, in sepsis are warranted.
Collapse
|
48
|
Rawat K, Shrivastava A. Neutrophils as emerging protagonists and targets in chronic inflammatory diseases. Inflamm Res 2022; 71:1477-1488. [PMID: 36289077 PMCID: PMC9607713 DOI: 10.1007/s00011-022-01627-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Neutrophils are the key cells of our innate immune system with a primary role in host defense. They rapidly arrive at the site of infection and display a range of effector functions including phagocytosis, degranulation, and NETosis to eliminate the invading pathogens. However, in recent years, studies focusing on neutrophil biology have revealed the highly adaptable nature and versatile functions of these cells which extend beyond host defense. Neutrophils are now referred to as powerful mediators of chronic inflammation. In several chronic inflammatory diseases, their untoward actions, such as immense infiltration, hyper-activation, dysregulation of effector functions, and extended survival, eventually contribute to disease pathogenesis. Therefore, a better understanding of neutrophils and their effector functions in prevalent chronic diseases will not only shed light on their role in disease pathogenesis but will also reveal them as novel therapeutic targets. METHODS We performed a computer-based online search using the databases, PubMed.gov and Clinical trials.gov for published research and review articles. RESULTS AND CONCLUSIONS This review provides an assessment of neutrophils and their crucial involvement in various chronic inflammatory disorders ranging from respiratory, neurodegenerative, autoimmune, and cardiovascular diseases. In addition, we also discuss the therapeutic approach for targeting neutrophils in disease settings that will pave the way forward for future research.
Collapse
Affiliation(s)
- Kavita Rawat
- Department of Zoology, University of Delhi, New Delhi, Delhi 110007 India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, New Delhi, Delhi 110007 India
| |
Collapse
|
49
|
Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E. Crosslinking of membrane CD13 in human neutrophils mediates phagocytosis and production of reactive oxygen species, neutrophil extracellular traps and proinflammatory cytokines. Front Immunol 2022; 13:994496. [PMID: 36439182 PMCID: PMC9686367 DOI: 10.3389/fimmu.2022.994496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 09/08/2023] Open
Abstract
Aminopeptidase N, or CD13, is a cell membrane ectopeptidase highly expressed in myeloid cells. Through its enzymatic activity, CD13 regulates the activity of several bioactive peptides, such as endorphins and enkephalins, chemotactic peptides like MCP-1 and IL-8, angiotensin III, bradikinin, etc. In recent years, it has been appreciated that independently of its peptidase activity, CD13 can activate signal transduction pathways and mediate effector functions such as phagocytosis and cytokine secretion in monocytes and macrophages. Although neutrophils are known to express CD13 on its membrane, it is currently unknown if CD13 can mediate effector functions in these cells. Here, we show that in human neutrophils CD13 can mediate phagocytosis, which is dependent on a signaling pathway that involves Syk, and PI3-K. Phagocytosis mediated by CD13 is associated with production of reactive oxygen species (ROS). The level of phagocytosis and ROS production mediated by CD13 are similar to those through FcγRIII (CD16b), a widely studied receptor of human neutrophils. Also, CD13 ligation induces the release of neutrophil extracellular traps (NETs) as well as cytokine secretion from neutrophils. These results support the hypothesis that CD13 is a membrane receptor able to activate effector functions in human neutrophils.
Collapse
Affiliation(s)
| | | | - Enrique Ortega
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico, Mexico
| |
Collapse
|
50
|
The Role of Innate Immune Cells in the Prediction of Early Renal Allograft Injury Following Kidney Transplantation. J Clin Med 2022; 11:jcm11206148. [PMID: 36294469 PMCID: PMC9605224 DOI: 10.3390/jcm11206148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Despite recent advances and refinements in perioperative management of kidney transplantation (KT), early renal graft injury (eRGI) remains a critical problem with serious impairment of graft function as well as short- and long-term outcome. Serial monitoring of peripheral blood innate immune cells might be a useful tool in predicting post-transplant eRGI and graft outcome after KT. Methods: In this prospective study, medical data of 50 consecutive patients undergoing KT at the University Hospital of Leipzig were analyzed starting at the day of KT until day 10 after the transplantation. The main outcome parameter was the occurrence of eRGI and other outcome parameters associated with graft function/outcome. eRGI was defined as graft-related complications and clinical signs of renal IRI (ischemia reperfusion injury), such as acute tubular necrosis (ATN), delayed graft function (DGF), initial nonfunction (INF) and graft rejection within 3 months following KT. Typical innate immune cells including neutrophils, natural killer (NK) cells, monocytes, basophils and dendritic cells (myeloid, plasmacytoid) were measured in all patients in peripheral blood at day 0, 1, 3, 7 and 10 after the transplantation. Receiver operating characteristics (ROC) curves were performed to assess their predictive value for eRGI. Cutoff levels were calculated with the Youden index. Significant diagnostic immunological cutoffs and other prognostic clinical factors were tested in a multivariate logistic regression model. Results: Of the 50 included patients, 23 patients developed eRGI. Mean levels of neutrophils and monocytes were significantly higher on most days in the eRGI group compared to the non-eRGI group after transplantation, whereas a significant decrease in NK cell count, basophil levels and DC counts could be found between baseline and postoperative course. ROC analysis indicated that monocytes levels on POD 7 (AUC: 0.91) and NK cell levels on POD 7 (AUC: 0.92) were highly predictive for eRGI after KT. Multivariable analysis identified recipient age (OR 1.53 (95% CI: 1.003−2.350), p = 0.040), recipient body mass index > 25 kg/m2 (OR 5.6 (95% CI: 1.36−23.9), p = 0.015), recipient cardiovascular disease (OR 8.17 (95% CI: 1.28−52.16), p = 0.026), donor age (OR 1.068 (95% CI: 1.011−1.128), p = 0.027), <0.010), deceased-donor transplantation (OR 2.18 (95% CI: 1.091−4.112), p = 0.027) and cold ischemia time (CIT) of the renal graft (OR 1.005 (95% CI: 1.001−1.01), p = 0.019) as clinically relevant prognostic factors associated with increased eRGI following KT. Further, neutrophils > 9.4 × 103/μL on POD 7 (OR 16.1 (95% CI: 1.31−195.6), p = 0.031), monocytes > 1150 cells/ul on POD 7 (OR 7.81 (95% CI: 1.97−63.18), p = 0.048), NK cells < 125 cells/μL on POD 3 (OR 6.97 (95% CI: 3.81−12.7), p < 0.01), basophils < 18.1 cells/μL on POD 10 (OR 3.45 (95% CI: 1.37−12.3), p = 0.02) and mDC < 4.7 cells/μL on POD 7 (OR 11.68 (95% CI: 1.85−73.4), p < 0.01) were revealed as independent biochemical predictive variables for eRGI after KT. Conclusions: We show that the combined measurement of immunological innate variables (NK cells and monocytes on POD 7) and specific clinical factors such as prolonged CIT, increased donor and recipient age and morbidity together with deceased-donor transplantation were significant and specific predictors of eRGI following KT. We suggest that intensified monitoring of these parameters might be a helpful clinical tool in identifying patients at a higher risk of postoperative complication after KT and may therefore help to detect and—by diligent clinical management—even prevent deteriorated outcome due to IRI and eRGI after KT.
Collapse
|