1
|
Meinen-Jochum J, Skow CJ, Mellata M. Layer segmented filamentous bacteria colonize and impact gut health of broiler chickens. mSphere 2024:e0049224. [PMID: 39422489 DOI: 10.1128/msphere.00492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
In commercial poultry farms, chicks hatch away from their progenitors from which they acquire key host-specific microbiota, like segmented filamentous bacteria (SFB) involved in gut maturation in early life. This study investigated whether providing chicken SFB to newly hatched broilers would increase their gut maturation and resistance to bacteria relevant to broiler and human health. One-day-old Ross308 broilers were orally treated with either phosphate-buffered saline (CON) or layer-derived SFB (D-SFB). On days 5, 10, 17, and 24, feces were collected to detect and enumerate SFB and Enterobacteriaceae. On days 8, 15, 22, and 29, birds were euthanized, intestinal samples were collected to detect and enumerate SFB through quantitative PCR (qPCR) and microscopy and expression of genes associated with gut immune function through reverse transcription-qPCR. This study showed that, despite their host specificity, layer SFB can colonize their genetically distinct relative broilers. Ileal SFB colonization was accelerated by a week with the SFB treatment and covered the proximal, medial, and distal sections of the ileum. Colonization of the ileum by SFB in early life highly activated gene expression of intestinal barrier proteins and cytokines, e.g., IL-10 and IFNγ but not IL-17. SFB treatment reduced the level of Enterobacteriaceae in the gut and provided superior resistance to intestinal and extraintestinal pathogens as tested in vitro. Overall, early gut colonization of SFB is imperative for the maturation of the gut immune system and the establishment of a homeostatic gut environment. Improving our understanding of gut immune maturation in food-producing animals is crucial for both human and animal health.IMPORTANCEIn commercial farms, newly hatched chicks may lack host-specific microbiota that help mature their gut immune system for lifelong health benefits. Here, introducing an avian segmented filamentous bacteria (SFB) to commercially sourced chickens orally at hatch accelerated SFB colonization of the ileum. Remarkably, SFB from layers were able to colonize broilers and enhance gut immune maturation, and this immunomodulation impacted the ability to increase intestinal and extraintestinal resistance to bacteria relevant to poultry and human health. With the antibiotic restrictions in animal production, strategies that will help mitigate infections are urgently needed. In summary, we developed a live prophylactic for newly hatched chicks to improve animal health and food safety. Due to the host specificity of SFB, our data highlight the importance of investigating the molecular mechanism of SFB interaction in their own host.
Collapse
Affiliation(s)
- Jared Meinen-Jochum
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Caleb J Skow
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Melha Mellata
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
2
|
Wang H, Qiu J, Zhou M, Luo Y, Li X, Wang M. Monobutyrin Can Regulate the Gut Microbiota, Which Is Beneficial for the Development of Intestinal Barrier Function and Intestinal Health in Weaned Mice. Nutrients 2024; 16:2052. [PMID: 38999800 PMCID: PMC11243092 DOI: 10.3390/nu16132052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, we investigated the effect of monobutyrin (MB) on the gut microbiota and intestinal health of weaned mice. MB was administered via gavage to 21-day-old weaned mice. Samples of small intestinal and ileal contents were collected on day 1, day 7, and day 21 post-administration. Seven days of MB administration enhanced the mucin layer and morphological structure of the intestine and the integrity of the intestinal brush border. Both MB and sodium butyrate (SB) accelerated tight junction development. Compared to SB, MB modulated intestinal T cells in a distinct manner. MB increased the ratio of Treg cells in the small intestine upon the cessation of weaning. After 21 days of MB administration, enhancement of the villus structure of the ileum was observed. MB increased the proportion of Th17 cells in the ileum. MB facilitated the transition of the small intestinal microbiota toward an adult microbial community structure and enhanced the complexity of the microbial community structure. An increase in Th17 cells enhanced intestinal barrier function. The regulatory effect of MB on Th17 cells may occur through the intestinal microbiota. Therefore, MB can potentially be used to promote intestinal barrier function, especially for weaning animals, with promising application prospects.
Collapse
Affiliation(s)
- Haidong Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ji Qiu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minyao Zhou
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanqiu Luo
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Li
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minqi Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Filho AMC, Gomes NS, Lós DB, Leite IB, Tremblay MÈ, Macêdo DS. Microglia and Microbiome-Gut-Brain Axis. ADVANCES IN NEUROBIOLOGY 2024; 37:303-331. [PMID: 39207699 DOI: 10.1007/978-3-031-55529-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mammalian gut contains a community of microorganisms called gut microbiome. The gut microbiome is integrated into mammalian physiology, contributing to metabolism, production of metabolites, and promoting immunomodulatory actions. Microglia, the brain's resident innate immune cells, play an essential role in homeostatic neurogenesis, synaptic remodeling, and glial maturation. Microglial dysfunction has been implicated in the pathogenesis of several neuropsychiatric disorders. Recent findings indicate that microglia are influenced by the gut microbiome and their derived metabolites throughout life. The pathways by which microbiota regulate microglia have only started to be understood, but this discovery has the potential to provide valuable insights into the pathogenesis of brain disorders associated with an altered microbiome. Here, we discuss the recent literature on the role of the gut microbiome in modulating microglia during development and adulthood and summarize the key findings on this bidirectional crosstalk in selected examples of neuropsychiatric and neurodegenerative disorders. We also highlight some current caveats and perspectives for the field.
Collapse
Affiliation(s)
- Adriano Maia Chaves Filho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Deniele Bezerra Lós
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Isabel Bessa Leite
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Molecular Medicine, Université de Laval, Québec City, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Danielle S Macêdo
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Fu Z, Yang H, Xiao Y, Wang X, Yang C, Lu L, Wang W, Lyu W. Ileal Microbiota Alters the Immunity Statues to Affect Body Weight in Muscovy Ducks. Front Immunol 2022; 13:844102. [PMID: 35222437 PMCID: PMC8866836 DOI: 10.3389/fimmu.2022.844102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
The ileum is mainly responsible for food absorption and nutrients transportation. The microbes in its intestinal lumen play an essential role in the growth and health of the host. However, it is still unknown how the ileal microbes affect the body weight of the host. In this study, we used Muscovy ducks as an animal model to investigate the relationship between the ileal microbes and body weight and further explore the potential mechanism. The ileum tissue and ileal contents of 200 Muscovy ducks were collected for mRNA extraction and real-time quantitative PCR, as well as DNA separation and 16S rRNA gene sequencing. With body weight being ranked, the bottom 20% (n = 40) and top 20% (n = 40) were set as the low and high groups, respectively. Our results showed that in the ileum of Muscovy ducks, the Bacteroides, Firmicutes, and Proteobacteria were the predominant phyla with the 10 most abundant genera, namely Candidatus Arthromitus, Bacteroides, Streptococcus, Vibrio, Romboutsia, Cetobacterium, Clostridium sensu stricto 1, Terrisporobacter, Escherichia-Shigella, and Lactobacillus. We identified Streptococcus, Escherichia-Shigella, Candidatus Arthromitus, Bacteroides, Faecalibacterium, and Oscillospira were closely correlated to the growth of Muscovy ducks. Streptococcus and Escherichia-Shigella were negatively related to body weight (BW), while Candidatus Arthromitus, Bacteroides, Faecalibacterium, and Oscillospira were positively associated with BW. In addition, we found that the relative expression levels of tight junction proteins (Claudin 1, Claudin 2, ZO-1 and ZO-2) in the high group showed an upward trend, although this trend was not significant (P > 0.05). The expression of pro-inflammatory factors (IL-1β, IL-2 and TNF-α) decreased in the high group, while the anti-inflammatory factor IL-10 increased. Of course, except IL-2, these differences were not significant (P > 0.05). Finally, the correlation analysis showed that Escherichia-Shigella was significantly positively correlated with IL-1β (P < 0.05). These findings may provide fundamental data for the development of next-generation probiotics and assist the development of strategies for changing the gut microbiota to promote the growth performance in the duck industry.
Collapse
Affiliation(s)
- Zixian Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,College of Animal Science, Zhejiang A&F University, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Caimei Yang
- College of Animal Science, Zhejiang A&F University, Hangzhou, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
5
|
Woo V, Eshleman EM, Hashimoto-Hill S, Whitt J, Wu SE, Engleman L, Rice T, Karns R, Qualls JE, Haslam DB, Vallance BA, Alenghat T. Commensal segmented filamentous bacteria-derived retinoic acid primes host defense to intestinal infection. Cell Host Microbe 2021; 29:1744-1756.e5. [PMID: 34678170 DOI: 10.1016/j.chom.2021.09.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/14/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
Interactions between the microbiota and mammalian host are essential for defense against infection, but the microbial-derived cues that mediate this relationship remain unclear. Here, we find that intestinal epithelial cell (IEC)-associated commensal bacteria, segmented filamentous bacteria (SFB), promote early protection against the pathogen Citrobacter rodentium, independent of CD4+ T cells. SFB induced histone modifications in IECs at sites enriched for retinoic acid receptor motifs, suggesting that SFB may enhance defense through retinoic acid (RA). Consistent with this, inhibiting RA signaling suppressed SFB-induced protection. Intestinal RA levels were elevated in SFB mice, despite the inhibition of mammalian RA production, indicating that SFB directly modulate RA. Interestingly, RA was produced by intestinal bacteria, and the loss of bacterial-intrinsic aldehyde dehydrogenase activity decreased the RA levels and increased infection. These data reveal RA as an unexpected microbiota-derived metabolite that primes innate defense and suggests that pre- and probiotic approaches to elevate RA could prevent or combat infections.
Collapse
Affiliation(s)
- Vivienne Woo
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Emily M Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Seika Hashimoto-Hill
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jordan Whitt
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Shu-En Wu
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Laura Engleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Taylor Rice
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Joseph E Qualls
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - David B Haslam
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Bruce A Vallance
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
6
|
Wen C, Li S, Wang J, Zhu Y, Zong X, Wang Y, Jin M. Heat Stress Alters the Intestinal Microbiota and Metabolomic Profiles in Mice. Front Microbiol 2021; 12:706772. [PMID: 34512584 PMCID: PMC8430895 DOI: 10.3389/fmicb.2021.706772] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background Heat stress has negative effects on the intestinal health of humans and animals. However, the impact of heat stress on intestinal microbial and metabolic changes remains elusive. Here, we investigated the cecal microbial and metabolic profiles in mice in response to heat stress. Methods The mouse heat stress model was constructed by simulating a high-temperature environment. Twenty mice were randomly assigned to two groups, the control group (CON, 25°C) and the heat treatment group (HS, 40°C from 13:00 to 15:00 every day for 7 days). Serum and cecal contents were collected from the mice for serum biochemical analysis, 16S rRNA high-throughput sequencing, and non-targeted metabolomics. Results Both core body temperature and water intake were significantly increased in the HS group. Serum biochemical indicators were also affected, including significantly increased triglyceride and decreased low-density lipoprotein in the heat stress group. The composition and structure of intestinal microbiota were remarkably altered in the HS group. At the species level, the relative abundance of Candidatus Arthromitus sp. SFB-mouse-Japan and Lactobacillus murinus significantly reduced, while that of Lachnospiraceae bacterium 3-1 obviously increased after HS. Metabolomic analysis of the cecal contents clearly distinguished metabolite changes between the groups. The significantly different metabolites identified were mainly involved in the fatty acid synthesis, purine metabolism, fatty acid metabolism, cyanoamino acid metabolism, glyceride metabolism, and plasmalogen synthesis. Conclusion In summary, high temperature disrupted the homeostatic balance of the intestinal microbiota in mice and also induced significant alterations in intestinal metabolites. This study provides a basis for treating intestinal disorders caused by elevated temperature in humans and animals and can further formulate nutritional countermeasures to reduce heat stress-induced damage.
Collapse
Affiliation(s)
- Chaoyue Wen
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jiaojiao Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yimin Zhu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Zong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mingliang Jin
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.,School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
7
|
Zhang C, Franklin CL, Ericsson AC. Consideration of Gut Microbiome in Murine Models of Diseases. Microorganisms 2021; 9:microorganisms9051062. [PMID: 34068994 PMCID: PMC8156714 DOI: 10.3390/microorganisms9051062] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome (GM), a complex community of bacteria, viruses, protozoa, and fungi located in the gut of humans and animals, plays significant roles in host health and disease. Animal models are widely used to investigate human diseases in biomedical research and the GM within animal models can change due to the impact of many factors, such as the vendor, husbandry, and environment. Notably, variations in GM can contribute to differences in disease model phenotypes, which can result in poor reproducibility in biomedical research. Variation in the gut microbiome can also impact the translatability of animal models. For example, standard lab mice have different pathogen exposure experiences when compared to wild or pet store mice. As humans have antigen experiences that are more similar to the latter, the use of lab mice with more simplified microbiomes may not yield optimally translatable data. Additionally, the literature describes many methods to manipulate the GM and differences between these methods can also result in differing interpretations of outcomes measures. In this review, we focus on the GM as a potential contributor to the poor reproducibility and translatability of mouse models of disease. First, we summarize the important role of GM in host disease and health through different gut–organ axes and the close association between GM and disease susceptibility through colonization resistance, immune response, and metabolic pathways. Then, we focus on the variation in the microbiome in mouse models of disease and address how this variation can potentially impact disease phenotypes and subsequently influence research reproducibility and translatability. We also discuss the variations between genetic substrains as potential factors that cause poor reproducibility via their effects on the microbiome. In addition, we discuss the utility of complex microbiomes in prospective studies and how manipulation of the GM through differing transfer methods can impact model phenotypes. Lastly, we emphasize the need to explore appropriate methods of GM characterization and manipulation.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA;
| | - Craig L. Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA;
- Mutant Mouse Resource and Research Center, University of Missouri, Columbia, MO 65201, USA
- Metagenomics Center, University of Missouri, Columbia, MO 65201, USA
- Correspondence: (C.L.F.); (A.C.E.)
| | - Aaron C. Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA;
- Mutant Mouse Resource and Research Center, University of Missouri, Columbia, MO 65201, USA
- Metagenomics Center, University of Missouri, Columbia, MO 65201, USA
- Correspondence: (C.L.F.); (A.C.E.)
| |
Collapse
|
8
|
Ericsson AC, Franklin CL. The gut microbiome of laboratory mice: considerations and best practices for translational research. Mamm Genome 2021; 32:239-250. [PMID: 33689000 PMCID: PMC8295156 DOI: 10.1007/s00335-021-09863-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
Just as the gut microbiota (GM) is now recognized as an integral mediator of environmental influences on human physiology, susceptibility to disease, and response to pharmacological intervention, so too does the GM of laboratory mice affect the phenotype of research using mouse models. Multiple experimental factors have been shown to affect the composition of the GM in research mice, as well as the model phenotype, suggesting that the GM represents a major component in experimental reproducibility. Moreover, several recent studies suggest that manipulation of the GM of laboratory mice can substantially improve the predictive power or translatability of data generated in mouse models to the human conditions under investigation. This review provides readers with information related to these various factors and practices, and recommendations regarding methods by which issues with poor reproducibility or translatability can be transformed into discoveries.
Collapse
Affiliation(s)
- Aaron C Ericsson
- University of Missouri Metagenomics Center (MUMC), MU Mutant Mouse Resource and Research Center (MU MMRRC), Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| | - Craig L Franklin
- University of Missouri Metagenomics Center (MUMC), MU Mutant Mouse Resource and Research Center (MU MMRRC), Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Chen H, Wang L, Wang X, Wang X, Liu H, Yin Y. Distribution and Strain Diversity of Immunoregulating Segmented Filamentous Bacteria in Human Intestinal Lavage Samples. MICROBIAL ECOLOGY 2020; 79:1021-1033. [PMID: 31728601 DOI: 10.1007/s00248-019-01441-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Segmented filamentous bacteria (SFB) are well known for their functions in the immunoregulation of hosts including the promotion of Th17 cell differentiation, B cell maturation, and immune system development. However, most analyses of SFB have focused on animal models, and thus, investigation of SFB prevalence in humans and their roles in human immunoregulation and health is needed. Although little is known overall of SFB prevalence in humans, they are characteristically abundant in animals during weaning. In this study, SFB-like bacteria were detected in ileal lavage samples from human children that were aged between 1 to 17 years old by scanning electron microscopy (SEM) analysis, and their insertion into the mucosa was also observed. In addition, the expression of SFB flagellin at the human bacterial interface was observed by immunohistochemistry (IHC) and western blot. Moreover, two pairs of primers specific for SFB, but targeting different genes, were used to detect SFB in human intestinal lavage samples. These analyses indicated that SFB were present in over 50% of patient ileal samples independent of age. High-throughput gene sequencing indicated that different SFB strains were detected among samples. Between nine and 23 SFB flagellin gene operational taxonomic units were identified. In addition to evaluating the prevalence of SFB in human samples, correlations between SFB presence and chief complaints of clinical symptoms were evaluated, as well as the relationship between SFB and patient serum immunoglobulin concentrations. SFB prevalence was significantly higher in hematochezia patients (68%) than in abdominal pain (56.10%) and diarrhea (43.75%) patients. Furthermore, the concentrations of serum IgA, IgM, and IgE, were similar between SFB-positive and SFB-negative patient groups, although IgG concentrations were significantly higher in the SFB-negative group.
Collapse
Affiliation(s)
- Huahai Chen
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Zhejiang, Hangzhou, China
| | - Ling Wang
- Children's Hospital of Shanghai, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Xing Wang
- Children's Hospital of Shanghai, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Xin Wang
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Zhejiang, Hangzhou, China.
| | - Haifeng Liu
- Children's Hospital of Shanghai, Children's Hospital of Shanghai Jiaotong University, Shanghai, China.
| | - Yeshi Yin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China.
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Zhejiang, Hangzhou, China.
| |
Collapse
|
10
|
Rahimi S, Kathariou S, Fletcher O, Grimes JL. The effectiveness of a dietary direct-fed microbial and mannan oligosaccharide on ultrastructural changes of intestinal mucosa of turkey poults infected with Salmonella and Campylobacter. Poult Sci 2020; 99:1135-1149. [PMID: 32036965 PMCID: PMC7587720 DOI: 10.1016/j.psj.2019.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 01/03/2023] Open
Abstract
Salmonella and Campylobacter are considered major public health burdens worldwide, and poultry are known to be one of the main reservoirs for these zoonotic pathogens. This study was conducted to evaluate the effect of a commercial probiotic or direct-fed microbial (DFM) Calsporin (CSP), and prebiotic or mannan oligosaccharide (MOS) (IMW50) on ultrastructural changes and the villous integrity of intestinal mucosa in turkey poults challenged with Salmonella and Campylobacter. A 21-day battery cage study was conducted using 4 dietary treatments including a basal diet (corn and soybean-based) nonsupplemented and uninfected as a negative control (NC); basal diet supplemented with 0.05% DFM (CSP); basal diet supplemented with 0.05% MOS (IMW50); and basal diet supplemented with 0.05% mixture of DFM and MOS at equal proportions. Female large white turkey poults aged 336 days were obtained from a local commercial hatchery and randomly distributed in electrically heated battery cages with 12 treatments of 4 replicates per treatment containing 7 poults per pen. The first 16 pens were not infected with bacteria, poults in pens 17-32 were orally challenged at day 7 with 105 cfu Salmonella Heidelberg, and the poults in pens 33-48 were orally challenged at day 7 with 105 cfu Campylobacter jejuni. Feed and water were provided ad libitum throughout the study. At day 21, ileal tissue samples from 1 bird per cage were collected for intestinal integrity and ultrastructural examination by scanning and electron microscopy. DFM and MOS supplementation was effective in both challenged and nonchallenged (not infected with Salmonella and Campylobacter) birds. Goblet cells and mucus were increased, with the presence of large numbers of segmented filamentous bacteria in DFM- and MOS-supplemented groups compared with birds in control treatments. The number and size of villi were reduced in poults exposed to Salmonella and Campylobacter. Results show that CSP and IMW50 provide protection of ileal mucosal integrity in poults exposed to Salmonella or Campylobacter.
Collapse
Affiliation(s)
- Shaban Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, 14115-336 Tehran, Iran
| | - Sophia Kathariou
- Department of Food Bioprocessing and Nutrition Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695-7608
| | - Oscar Fletcher
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695-7608
| | - Jesse L Grimes
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7608.
| |
Collapse
|
11
|
Lai NY, Musser MA, Pinho-Ribeiro FA, Baral P, Jacobson A, Ma P, Potts DE, Chen Z, Paik D, Soualhi S, Yan Y, Misra A, Goldstein K, Lagomarsino VN, Nordstrom A, Sivanathan KN, Wallrapp A, Kuchroo VK, Nowarski R, Starnbach MN, Shi H, Surana NK, An D, Wu C, Huh JR, Rao M, Chiu IM. Gut-Innervating Nociceptor Neurons Regulate Peyer's Patch Microfold Cells and SFB Levels to Mediate Salmonella Host Defense. Cell 2020; 180:33-49.e22. [PMID: 31813624 PMCID: PMC6954329 DOI: 10.1016/j.cell.2019.11.014] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/08/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022]
Abstract
Gut-innervating nociceptor sensory neurons respond to noxious stimuli by initiating protective responses including pain and inflammation; however, their role in enteric infections is unclear. Here, we find that nociceptor neurons critically mediate host defense against the bacterial pathogen Salmonella enterica serovar Typhimurium (STm). Dorsal root ganglia nociceptors protect against STm colonization, invasion, and dissemination from the gut. Nociceptors regulate the density of microfold (M) cells in ileum Peyer's patch (PP) follicle-associated epithelia (FAE) to limit entry points for STm invasion. Downstream of M cells, nociceptors maintain levels of segmentous filamentous bacteria (SFB), a gut microbe residing on ileum villi and PP FAE that mediates resistance to STm infection. TRPV1+ nociceptors directly respond to STm by releasing calcitonin gene-related peptide (CGRP), a neuropeptide that modulates M cells and SFB levels to protect against Salmonella infection. These findings reveal a major role for nociceptor neurons in sensing and defending against enteric pathogens.
Collapse
Affiliation(s)
- Nicole Y Lai
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa A Musser
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Pankaj Baral
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Jacobson
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Pingchuan Ma
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - David E Potts
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Zuojia Chen
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donggi Paik
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Salima Soualhi
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yiqing Yan
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya Misra
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Kaitlin Goldstein
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anja Nordstrom
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kisha N Sivanathan
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Antonia Wallrapp
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Roni Nowarski
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Hailian Shi
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Neeraj K Surana
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Dingding An
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Chuan Wu
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun R Huh
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Probiotic microorganisms- identification, metabolic and physiological impact on poultry. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933913000603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
|
14
|
Zwirzitz B, Pinior B, Metzler-Zebeli B, Handler M, Gense K, Knecht C, Ladinig A, Dzieciol M, Wetzels SU, Wagner M, Schmitz-Esser S, Mann E. Microbiota of the Gut-Lymph Node Axis: Depletion of Mucosa-Associated Segmented Filamentous Bacteria and Enrichment of Methanobrevibacter by Colistin Sulfate and Linco-Spectin in Pigs. Front Microbiol 2019; 10:599. [PMID: 31031713 PMCID: PMC6470194 DOI: 10.3389/fmicb.2019.00599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Microorganisms are translocated from the gut to lymphatic tissues via immune cells, thereby challenging and training the mammalian immune system. Antibiotics alter the gut microbiome and consecutively might also affect the corresponding translocation processes, resulting in an imbalanced state between the intestinal microbiota and the host. Hence, understanding the variant effects of antibiotics on the microbiome of gut-associated tissues is of vital importance for maintaining metabolic homeostasis and animal health. In the present study, we analyzed the microbiome of (i) pig feces, ileum, and ileocecal lymph nodes under the influence of antibiotics (Linco-Spectin and Colistin sulfate) using 16S rRNA gene sequencing for high-resolution community profiling and (ii) ileocecal lymph nodes in more detail with two additional methodological approaches, i.e., cultivation of ileocecal lymph node samples and (iii) metatranscriptome sequencing of a single lymph node sample. Supplementation of medicated feed showed a local effect on feces and ileal mucosa-associated microbiomes. Pigs that received antibiotics harbored significantly reduced amounts of segmented filamentous bacteria (SFB) along the ileal mucosa (p = 0.048; 199.17-fold change) and increased amounts of Methanobrevibacter, a methanogenic Euryarchaeote in fecal samples (p = 0.005; 20.17-fold change) compared to the control group. Analysis of the porcine ileocecal lymph node microbiome exposed large differences between the viable and the dead fraction of microorganisms and the microbiome was altered to a lesser extent by antibiotics compared with feces and ileum. The core microbiome of lymph nodes was constituted mainly of Proteobacteria. RNA-sequencing of a single lymph node sample unveiled transcripts responsible for amino acid and carbohydrate metabolism as well as protein turnover, DNA replication and signal transduction. The study presented here is the first comparative study of microbial communities in feces, ileum, and its associated ileocecal lymph nodes. In each analyzed site, we identified specific phylotypes susceptible to antibiotic treatment that can have profound impacts on the host physiological and immunological state, or even on global biogeochemical cycles. Our results indicate that pathogenic bacteria, e.g., enteropathogenic Escherichia coli, could escape antibiotic treatment by translocating to lymph nodes. In general ileocecal lymph nodes harbor a more diverse and active community of microorganisms than previously assumed.
Collapse
Affiliation(s)
- Benjamin Zwirzitz
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| | - Beate Pinior
- Institute for Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Metzler-Zebeli
- University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria.,Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Monika Handler
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria
| | - Kristina Gense
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria
| | - Christian Knecht
- University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria
| | - Monika Dzieciol
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria
| | - Stefanie U Wetzels
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| | - Martin Wagner
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| | | | - Evelyne Mann
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| |
Collapse
|
15
|
Secher T, Maillet I, Mackowiak C, Le Bérichel J, Philippeau A, Panek C, Boury M, Oswald E, Saoudi A, Erard F, Le Bert M, Quesniaux V, Couturier-Maillard A, Ryffel B. The probiotic strain Escherichia coli Nissle 1917 prevents papain-induced respiratory barrier injury and severe allergic inflammation in mice. Sci Rep 2018; 8:11245. [PMID: 30050168 PMCID: PMC6062509 DOI: 10.1038/s41598-018-29689-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
Allergic asthma is characterized by a strong Th2 and Th17 response with inflammatory cell recruitment, airways hyperreactivity and structural changes in the lung. The protease allergen papain disrupts the airway epithelium triggering a rapid eosinophilic inflammation by innate lymphoid cell type 2 (ILC2) activation, leading to a Th2 immune response. Here we asked whether the daily oral administrations of the probiotic Escherichia coli strain Nissle 1917 (ECN) might affect the outcome of the papain protease induced allergic lung inflammation in BL6 mice. We find that ECN gavage significantly prevented the severe allergic response induced by repeated papain challenges and reduced lung inflammatory cell recruitment, Th2 and Th17 response and respiratory epithelial barrier disruption with emphysema and airway hyperreactivity. In conclusion, ECN administration attenuated severe protease induced allergic inflammation, which may be beneficial to prevent allergic asthma.
Collapse
Affiliation(s)
- Thomas Secher
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France. .,INSERM, UMR 1100, Research Center for Respiratory Diseases, and University of Tours, Tours, France.
| | - Isabelle Maillet
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Claire Mackowiak
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Jessica Le Bérichel
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Amandine Philippeau
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Corinne Panek
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Michèle Boury
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | - Abdelhadi Saoudi
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Francois Erard
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Marc Le Bert
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Valérie Quesniaux
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France.,University of Orleans, Orleans, France
| | | | - Bernhard Ryffel
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France. .,University of Orleans, Orleans, France. .,University of Cape Town, IDM, Cape Town, Republic of South Africa.
| |
Collapse
|
16
|
Flannigan KL, Denning TL. Segmented filamentous bacteria-induced immune responses: a balancing act between host protection and autoimmunity. Immunology 2018; 154:537-546. [PMID: 29771448 PMCID: PMC6050222 DOI: 10.1111/imm.12950] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Segmented filamentous bacteria (SFB) are Gram-positive, spore-forming, bacteria that primarily colonize the ileum of the small intestine. Upon direct adherence to intestinal epithelial cells, SFB actively stimulate innate and adaptive immune cell activation. The cardinal features of SFB-induced gut immunity - T helper type 17 (Th17) cell differentiation, IgA production and barrier protection - lead to the containment of SFB and further afford protection against invading pathogens. Th17 cells and interleukin-17A, however, can also reach peripheral sites and exacerbate autoimmunity. In this review, we highlight salient characteristics of SFB-host interactions and detail the cellular and molecular immune mechanisms involved in coordinating these responses.
Collapse
Affiliation(s)
- Kyle L. Flannigan
- Department of Physiology and PharmacologyCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Snyder Institute for Chronic DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | | |
Collapse
|
17
|
Magwira CA, Taylor MB. Composition of gut microbiota and its influence on the immunogenicity of oral rotavirus vaccines. Vaccine 2018; 36:3427-3433. [PMID: 29752022 DOI: 10.1016/j.vaccine.2018.04.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/09/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
Abstract
The introduction of oral rotavirus vaccines (ORVVs) has led to a reduction in number of hospitalisations and deaths due to rotavirus (RV) infection. However, the efficacy of the vaccines has been varied with low-income countries showing significantly lower efficacy as compared to high-income countries. The reasons for the disparity are not fully understood but are thought to be multi-factorial. In this review article, we discuss the concept that the disparity in the efficacy of oral rotavirus vaccines between the higher and lower socio-economical countries could be due the nature of the bacteria that colonises and establishes in the gut early in life. We further discuss recent studies that has demonstrated significant correlations between the composition of the gut bacteria and the immunogenicity of oral vaccines, and their implications in the development of novel oral RV vaccines or redesigning the current ones for maximum impact.
Collapse
Affiliation(s)
- Cliff A Magwira
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, South Africa.
| | - Maureen B Taylor
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, South Africa; School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, South Africa
| |
Collapse
|
18
|
Martín-Peláez S, Camps-Bossacoma M, Massot-Cladera M, Rigo-Adrover M, Franch À, Pérez-Cano FJ, Castell M. Effect of cocoa's theobromine on intestinal microbiota of rats. Mol Nutr Food Res 2017; 61. [PMID: 28605130 DOI: 10.1002/mnfr.201700238] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
SCOPE To establish the role of cocoa theobromine on gut microbiota composition and fermentation products after cocoa consumption in rats. METHODS AND RESULTS Lewis rats were fed either a standard diet (RF diet), a diet containing 10% cocoa (CC diet) or a diet including 0.25% theobromine (TB diet) for 15 days. Gut microbiota (fluorescence in situ hybridization coupled to flow cytometry and metagenomics analysis), SCFA and IgA-coated bacteria were analyzed in fecal samples. CC and TB diets induced lower counts of E. coli whereas TB diet led to lower counts of Bifidobacterium spp., Streptococcus spp. and Clostridium histolyticum-C. perfingens group compared to RF diet. Metagenomics analysis also revealed a different microbiota pattern among the studied groups. The SCFA content was higher after both CC and TB diets, which was mainly due to enhanced butyric acid production. Furthermore, both diets decreased the proportion of IgA-coated bacteria. CONCLUSION Cocoa's theobromine plays a relevant role in some effects related to cocoa intake, such as the lower proportion of IgA-coated bacteria. Moreover, theobromine modifies gut microbiota although other cocoa compounds could also act on intestinal bacteria, attenuating or enhancing the theobromine effects.
Collapse
Affiliation(s)
- Sandra Martín-Peláez
- Cardiovascular Risk and Nutrition Research Group, REGICOR Study Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Spanish Biomedical Research Networking Centre-Physiopathology of Obesity and Nutrition (CIBERobn), Health Institute Carlos III, Madrid, Spain.,Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Barcelona, Spain
| | - Mariona Camps-Bossacoma
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Malen Massot-Cladera
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Mar Rigo-Adrover
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Francisco J Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| |
Collapse
|
19
|
Burgess SL, Gilchrist CA, Lynn TC, Petri WA. Parasitic Protozoa and Interactions with the Host Intestinal Microbiota. Infect Immun 2017; 85:e00101-17. [PMID: 28584161 PMCID: PMC5520446 DOI: 10.1128/iai.00101-17] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Parasitic protozoan infections represent a major health burden in the developing world and contribute significantly to morbidity and mortality. These infections are often associated with considerable variability in clinical presentation. An emerging body of work suggests that the intestinal microbiota may help to explain some of these differences in disease expression. The objective of this minireview is to synthesize recent progress in this rapidly advancing field. Studies of humans and animals and in vitro studies of the contribution of the intestinal microbiota to infectious disease are discussed. We hope to provide an understanding of the human-protozoal pathogen-microbiome interaction and to speculate on how that might be leveraged for treatment.
Collapse
Affiliation(s)
- Stacey L Burgess
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Carol A Gilchrist
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Tucker C Lynn
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Ericsson AC, Personett AR, Turner G, Dorfmeyer RA, Franklin CL. Variable Colonization after Reciprocal Fecal Microbiota Transfer between Mice with Low and High Richness Microbiota. Front Microbiol 2017; 8:196. [PMID: 28280484 PMCID: PMC5322181 DOI: 10.3389/fmicb.2017.00196] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 12/29/2022] Open
Abstract
Several associations have been made between characteristics of the resident gut microbiota and human health and disease susceptibility. Animal models provide the means to test these correlations prospectively and evaluate causality. Experimental fecal microbiota transfer (FMT), or the intentional transplantation of gut microbes into recipient mice depleted of their autochthonous microbes with antibiotics, is a commonly used method of testing these relationships. The true completeness of microbial transfer through such procedures is poorly documented in the literature, particularly in the context of reciprocal transfer of microbes between recipient and donor mice harboring microbial populations of differing richness and diversity. Moreover, it is unclear whether the use of frozen fecal contents or cecal contents would confer any difference in the outcomes of transfer. Herein, groups of mice colonized with distinct gut microbiota of differing richness and composition were used in a reciprocal FMT study, with different groups receiving transfer of material prepared from fresh cecal contents, fresh feces, or frozen feces. Targeted 16S rRNA gene amplicon sequencing was used at intervals throughout the study to characterize the microbiota. Notably, despite comparable depletion of the microbiota in recipient mice prior to transfer, donor-specific taxa reliably colonized recipients only when relatively rich donor material was transferred to mice originally colonized with a simpler microbiota. It is unclear whether these differences were due to differences in the endogenous recipient microbiota or host factors induced in early life by microbial factors. These findings are of practical import for researchers using FMT to prospectively assess the influence of the gut microbiota in mouse models, and to those studying host-microbial interactions and their influence on gut barrier function.
Collapse
Affiliation(s)
- Aaron C Ericsson
- University of Missouri Metagenomics Center, University of MissouriColumbia, MO, USA; University of Missouri Mutant Mouse Resource and Research Center, University of MissouriColumbia, MO, USA; Comparative Metagenomics Laboratory, Department of Veterinary Pathobiology, University of MissouriColumbia, MO, USA
| | - Alexa R Personett
- Comparative Metagenomics Laboratory, Department of Veterinary Pathobiology, University of Missouri Columbia, MO, USA
| | - Giedre Turner
- University of Missouri Mutant Mouse Resource and Research Center, University of MissouriColumbia, MO, USA; Comparative Metagenomics Laboratory, Department of Veterinary Pathobiology, University of MissouriColumbia, MO, USA
| | - Rebecca A Dorfmeyer
- University of Missouri Mutant Mouse Resource and Research Center, University of MissouriColumbia, MO, USA; Comparative Metagenomics Laboratory, Department of Veterinary Pathobiology, University of MissouriColumbia, MO, USA
| | - Craig L Franklin
- University of Missouri Metagenomics Center, University of MissouriColumbia, MO, USA; University of Missouri Mutant Mouse Resource and Research Center, University of MissouriColumbia, MO, USA; Comparative Metagenomics Laboratory, Department of Veterinary Pathobiology, University of MissouriColumbia, MO, USA
| |
Collapse
|
21
|
Dupont A, Sommer F, Zhang K, Repnik U, Basic M, Bleich A, Kühnel M, Bäckhed F, Litvak Y, Fulde M, Rosenshine I, Hornef MW. Age-Dependent Susceptibility to Enteropathogenic Escherichia coli (EPEC) Infection in Mice. PLoS Pathog 2016; 12:e1005616. [PMID: 27159323 PMCID: PMC4861285 DOI: 10.1371/journal.ppat.1005616] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/15/2016] [Indexed: 01/14/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) represents a major causative agent of infant diarrhea associated with significant morbidity and mortality in developing countries. Although studied extensively in vitro, the investigation of the host-pathogen interaction in vivo has been hampered by the lack of a suitable small animal model. Using RT-PCR and global transcriptome analysis, high throughput 16S rDNA sequencing as well as immunofluorescence and electron microscopy, we characterize the EPEC-host interaction following oral challenge of newborn mice. Spontaneous colonization of the small intestine and colon of neonate mice that lasted until weaning was observed. Intimate attachment to the epithelial plasma membrane and microcolony formation were visualized only in the presence of a functional bundle forming pili (BFP) and type III secretion system (T3SS). Similarly, a T3SS-dependent EPEC-induced innate immune response, mediated via MyD88, TLR5 and TLR9 led to the induction of a distinct set of genes in infected intestinal epithelial cells. Infection-induced alterations of the microbiota composition remained restricted to the postnatal period. Although EPEC colonized the adult intestine in the absence of a competing microbiota, no microcolonies were observed at the small intestinal epithelium. Here, we introduce the first suitable mouse infection model and describe an age-dependent, virulence factor-dependent attachment of EPEC to enterocytes in vivo.
Collapse
Affiliation(s)
- Aline Dupont
- Institute for Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- * E-mail: (AD); (MWH)
| | - Felix Sommer
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Kaiyi Zhang
- Institute for Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Mark Kühnel
- Institute for Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Yael Litvak
- Department for Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marcus Fulde
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Ilan Rosenshine
- Department for Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mathias W. Hornef
- Institute for Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- * E-mail: (AD); (MWH)
| |
Collapse
|
22
|
Farkas AM, Panea C, Goto Y, Nakato G, Galan-Diez M, Narushima S, Honda K, Ivanov II. Induction of Th17 cells by segmented filamentous bacteria in the murine intestine. J Immunol Methods 2015; 421:104-111. [PMID: 25858227 DOI: 10.1016/j.jim.2015.03.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 11/26/2022]
Abstract
Segmented filamentous bacteria (SFB) are Gram-positive, anaerobic, spore-forming commensals that reside in the gut of many animal species. Described more than forty years ago, SFB have recently gained interest due to their unique ability to modulate the host immune system through induction of IgA and Th17 cells. Here, we describe a collection of methods to detect and quantify SFB and SFB adhesion in intestinal mucosa, as well as SFB-specific CD4 T cells in the lamina propria. In addition, we describe methods for purification of SFB from fecal material of SFB-monoassociated gnotobiotic mice. Using these methods we examine the kinetics of SFB colonization and Th17 cell induction. We also show that SFB colonize unevenly the intestinal mucosa and that SFB adherence occurs predominantly in the terminal ileum and correlates with an increased proportion of SFB-specific Th17 cells.
Collapse
Affiliation(s)
- Adam M Farkas
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, United States
| | - Casandra Panea
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, United States
| | - Yoshiyuki Goto
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, United States
| | - Gaku Nakato
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, United States
| | - Marta Galan-Diez
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, United States
| | - Seiko Narushima
- RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa, Japan
| | - Kenya Honda
- RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Kanagawa, Japan; Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
| | - Ivaylo I Ivanov
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, United States.
| |
Collapse
|
23
|
Salzman NH. The role of the microbiome in immune cell development. Ann Allergy Asthma Immunol 2015; 113:593-8. [PMID: 25466801 DOI: 10.1016/j.anai.2014.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/15/2014] [Accepted: 08/25/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Nita H Salzman
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
24
|
Affiliation(s)
- Takeshi Tanoue
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kenya Honda
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Kanagawa, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Payros D, Secher T, Boury M, Brehin C, Ménard S, Salvador-Cartier C, Cuevas-Ramos G, Watrin C, Marcq I, Nougayrède JP, Dubois D, Bedu A, Garnier F, Clermont O, Denamur E, Plaisancié P, Theodorou V, Fioramonti J, Olier M, Oswald E. Maternally acquired genotoxic Escherichia coli alters offspring's intestinal homeostasis. Gut Microbes 2014; 5:313-25. [PMID: 24971581 PMCID: PMC4153768 DOI: 10.4161/gmic.28932] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The neonatal gut is rapidly colonized by a newly dominant group of commensal Escherichia coli strains among which a large proportion produces a genotoxin called colibactin. In order to analyze the short- and long-term effects resulting from such evolution, we developed a rat model mimicking the natural transmission of E. coli from mothers to neonates. Genotoxic and non-genotoxic E. coli strains were equally transmitted to the offspring and stably colonized the gut across generations. DNA damage was only detected in neonates colonized with genotoxic E. coli strains. Signs of genotoxic stress such as anaphase bridges, higher occurrence of crypt fission and accelerated renewal of the mature epithelium were detected at adulthood. In addition, we observed alterations of secretory cell populations and gut epithelial barrier. Our findings illustrate how critical is the genotype of E. coli strains acquired at birth for gut homeostasis at adulthood.
Collapse
Affiliation(s)
- Delphine Payros
- INRA; USC 1360; Toulouse, France,Inserm; UMR1043; Toulouse, France,CNRS; UMR5282; Toulouse, France,Université de Toulouse; UPS; Toulouse, France,Neuro-gastroenterologie & Nutrition; UMR Toxalim INRA/ENVT 1331; Toulouse, France
| | - Thomas Secher
- INRA; USC 1360; Toulouse, France,Inserm; UMR1043; Toulouse, France,CNRS; UMR5282; Toulouse, France,Université de Toulouse; UPS; Toulouse, France
| | - Michèle Boury
- INRA; USC 1360; Toulouse, France,Inserm; UMR1043; Toulouse, France,CNRS; UMR5282; Toulouse, France,Université de Toulouse; UPS; Toulouse, France
| | - Camille Brehin
- INRA; USC 1360; Toulouse, France,Inserm; UMR1043; Toulouse, France,CNRS; UMR5282; Toulouse, France,Université de Toulouse; UPS; Toulouse, France,CHU Toulouse; Hôpital Purpan; Service de bactériologie-Hygiène; Toulouse, France
| | - Sandrine Ménard
- Neuro-gastroenterologie & Nutrition; UMR Toxalim INRA/ENVT 1331; Toulouse, France
| | | | - Gabriel Cuevas-Ramos
- INRA; USC 1360; Toulouse, France,Inserm; UMR1043; Toulouse, France,CNRS; UMR5282; Toulouse, France,Université de Toulouse; UPS; Toulouse, France
| | - Claude Watrin
- INRA; USC 1360; Toulouse, France,Inserm; UMR1043; Toulouse, France,CNRS; UMR5282; Toulouse, France,Université de Toulouse; UPS; Toulouse, France
| | - Ingrid Marcq
- Université de Picardie Jules Verne; EA 4666 UFR de médecine d’Amiens, France
| | - Jean-Philippe Nougayrède
- INRA; USC 1360; Toulouse, France,Inserm; UMR1043; Toulouse, France,CNRS; UMR5282; Toulouse, France,Université de Toulouse; UPS; Toulouse, France
| | - Damien Dubois
- INRA; USC 1360; Toulouse, France,Inserm; UMR1043; Toulouse, France,CNRS; UMR5282; Toulouse, France,Université de Toulouse; UPS; Toulouse, France,CHU Toulouse; Hôpital Purpan; Service de bactériologie-Hygiène; Toulouse, France
| | - Antoine Bedu
- CHU Limoge; Service de Pédiatrie; Limoges, France
| | - Fabien Garnier
- Université de Limoges UMR-S1092; Limoges, France,Inserm U1092; Limoges, France
| | - Olivier Clermont
- Inserm UMR-S 722; Univ Paris Diderot; PRES Sorbonne Cité; Paris, France
| | - Erick Denamur
- Inserm UMR-S 722; Univ Paris Diderot; PRES Sorbonne Cité; Paris, France
| | | | - Vassilia Theodorou
- Neuro-gastroenterologie & Nutrition; UMR Toxalim INRA/ENVT 1331; Toulouse, France
| | - Jean Fioramonti
- Neuro-gastroenterologie & Nutrition; UMR Toxalim INRA/ENVT 1331; Toulouse, France
| | - Maïwenn Olier
- INRA; USC 1360; Toulouse, France,Inserm; UMR1043; Toulouse, France,CNRS; UMR5282; Toulouse, France,Université de Toulouse; UPS; Toulouse, France,Neuro-gastroenterologie & Nutrition; UMR Toxalim INRA/ENVT 1331; Toulouse, France,Correspondence to: Maïwenn Olier, and Eric Oswald,
| | - Eric Oswald
- INRA; USC 1360; Toulouse, France,Inserm; UMR1043; Toulouse, France,CNRS; UMR5282; Toulouse, France,Université de Toulouse; UPS; Toulouse, France,CHU Toulouse; Hôpital Purpan; Service de bactériologie-Hygiène; Toulouse, France,Correspondence to: Maïwenn Olier, and Eric Oswald,
| |
Collapse
|
26
|
Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N. Host interactions with Segmented Filamentous Bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system. Semin Immunol 2013; 25:342-51. [PMID: 24184014 DOI: 10.1016/j.smim.2013.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Segmented Filamentous Bacteria (SFB) are present in the gut microbiota of a large number of vertebrate species where they are found intimately attached to the intestinal epithelium. SFB has recently attracted considerable attention due to its outstanding capacity to stimulate innate and adaptive host immune responses without causing pathology. Recent genomic analysis placed SFB between obligate and facultative symbionts, unraveled its highly auxotrophic needs, and provided a rationale for the complex SFB life-style in close contact with the epithelium. Herein, we examine how the SFB life-style may underlie its potent immunostimulatory properties and discuss how the trade-off set up between SFB and its hosts can simultaneously help to establish and maintain the ecological niche of SFB in the intestine and drive the post-natal maturation of the host gut immune barrier.
Collapse
Affiliation(s)
- Pamela Schnupf
- INSERM, U989, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, and Institut IMAGINE, 75015 Paris, France; Institut Pasteur, Unité de Pathogénie Microbienne Moleculaire, 25-28 rue du Dr. Roux, 75015 Paris, France
| | | | | |
Collapse
|
27
|
Abstract
Probiotics and gut microbiota have a significant impact on gut homeostasis in the host. Recent clinical studies demonstrated the ameliorative features of several kinds of probiotics in intestinal disorders, such as inflammatory bowel diseases (IBDs). Interleukin (IL)-17 is a potent inflammatory cytokine, and T-helper (Th)17 cells and other IL-17-producing cells are involved in the pathogenesis of IBD. Multiple mechanisms of action have been suggested to explain the protective anti-inflammatory effects of probiotics in intestinal inflammation, including the immunoregulation and suppression of Th17 activity and IL-17 production in part by signaling through pattern-recognition receptors such as Toll-like receptor family. However, steady-state Th17 cells have an important role in host defense against fungi and bacteria. Interestingly, recent studies revealed that specific commensal bacterial species such as segmented filamentous bacteria (SFB) induce the accumulation of Th17 cells in the small intestine in many species, including mice. It is important to determine the mechanisms by which intestinal Th17 cells are induced by SFB and whether these or other bacteria with similar properties are present in the human intestine. This brief review focuses on the interaction between probiotics/microbiota and Th17 cells during inflammation (war) and during steady-state homeostatic regulation (peace).
Collapse
Affiliation(s)
- Soichi Tanabe
- Graduate School of Biosphere Science, Hiroshima University , Higashihiroshima , Japan
| |
Collapse
|
28
|
Abstract
In rabbits, the bacterial and archaeal community of caecal ecosystem is composed mostly of species not yet described and very specific to that species. In mammals, the digestive ecosystem plays important physiological roles: hydrolysis and fermentation of nutrients, immune system regulation, angiogenesis, gut development and acting as a barrier against pathogens. Understanding the functioning of the digestive ecosystem and how to control its functional and specific diversity is a priority, as this could provide new strategies to improve the resistance of the young rabbit to digestive disorders and improve feed efficiency. This review first recalls some facts about the specificity of rabbit digestive microbiota composition in the main fermentation compartment, and its variability with some new insights based on recent molecular approaches. The main functions of the digestive microbiota will then be explained. Finally, some possible ways to control rabbit caecal microbiota will be proposed and a suitable timing for action will be defined.
Collapse
|
29
|
Abstract
Commensal bacteria are necessary for the development and maintenance of a healthy immune system. Harnessing the ability of microbiota to affect host immunity is considered an important therapeutic strategy for many mucosal and nonmucosal immune-related conditions, such as inflammatory bowel diseases (IBDs), celiac disease, metabolic syndrome, diabetes, and microbial infections. In addition to well-established immunostimulatory effects of the microbiota, the presence of individual mutualistic commensal bacteria with immunomodulatory effects has been described. These organisms are permanent members of the commensal microbiota and affect host immune homeostasis in specific ways. Identification of individual examples of such immunomodulatory commensals and understanding their mechanisms of interaction with the host will be invaluable in designing therapeutic strategies to reverse intestinal dysbiosis and recover immunological homeostasis.
Collapse
Affiliation(s)
- Ivaylo I Ivanov
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| | | |
Collapse
|
30
|
Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME JOURNAL 2013; 7:1200-10. [PMID: 23389106 DOI: 10.1038/ismej.2013.1] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with <10% organic matter, while Proteobacteria dominated higher-organic matter soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future.
Collapse
|
31
|
Intestinal epithelial cells as mediators of the commensal-host immune crosstalk. Immunol Cell Biol 2013; 91:204-14. [PMID: 23318659 DOI: 10.1038/icb.2012.80] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Commensal bacteria regulate the homeostasis of host effector immune cell subsets. The mechanisms involved in this commensal-host crosstalk are not well understood. Intestinal epithelial cells (IECs) not only create a physical barrier between the commensals and immune cells in host tissues, but also facilitate interactions between them. Perturbations of epithelial homeostasis or function lead to the development of intestinal disorders such as inflammatory bowel diseases (IBD) and intestinal cancer. IECs receive signals from commensals and produce effector immune molecules. IECs also affect the function of immune cells in the lamina propria. Here we discuss some of these properties of IECs that define them as innate immune cells. We focus on how IECs may integrate and transmit signals from individual commensal bacteria to mucosal innate and adaptive immune cells for the establishment of the unique mucosal immunological equilibrium.
Collapse
|
32
|
Muniz LR, Knosp C, Yeretssian G. Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front Immunol 2012; 3:310. [PMID: 23087688 PMCID: PMC3466489 DOI: 10.3389/fimmu.2012.00310] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/17/2012] [Indexed: 12/25/2022] Open
Abstract
Antimicrobial peptides (AMPs), including defensins and cathelicidins, constitute an arsenal of innate regulators of paramount importance in the gut. The intestinal epithelium is exposed to myriad of enteric pathogens and these endogenous peptides are essential to fend off microbes and protect against infections. It is becoming increasingly evident that AMPs shape the composition of the commensal microbiota and help maintain intestinal homeostasis. They contribute to innate immunity, hence playing important functions in health and disease. AMP expression is tightly controlled by the engagement of pattern recognition receptors (PRRs) and their impairment is linked to abnormal host responses to infection and inflammatory bowel diseases (IBD). In this review, we provide an overview of the mucosal immune barriers and the intricate crosstalk between the host and the microbiota during homeostasis. We focus on the AMPs and pay particular attention to how PRRs promote their secretion in the intestine. Furthermore, we discuss their production and main functions in three different scenarios, at steady state, throughout infection with enteric pathogens and IBD.
Collapse
Affiliation(s)
- Luciana R Muniz
- Department of Medicine, Immunology Institute, Mount Sinai School of Medicine New York, NY, USA
| | | | | |
Collapse
|
33
|
Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR, Umesaki Y, Mathis D, Benoist C, Relman DA, Kasper DL. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 2012; 149:1578-93. [PMID: 22726443 DOI: 10.1016/j.cell.2012.04.037] [Citation(s) in RCA: 856] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 01/03/2012] [Accepted: 04/07/2012] [Indexed: 02/06/2023]
Abstract
Gut microbial induction of host immune maturation exemplifies host-microbe mutualism. We colonized germ-free (GF) mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota. Gut bacterial numbers and phylum abundance were similar in MMb and HMb mice, but bacterial species differed, especially the Firmicutes. HMb mouse intestines had low levels of CD4(+) and CD8(+) T cells, few proliferating T cells, few dendritic cells, and low antimicrobial peptide expression--all characteristics of GF mice. Rat microbiota also failed to fully expand intestinal T cell numbers in mice. Colonizing GF or HMb mice with mouse-segmented filamentous bacteria (SFB) partially restored T cell numbers, suggesting that SFB and other MMb organisms are required for full immune maturation in mice. Importantly, MMb conferred better protection against Salmonella infection than HMb. A host-specific microbiota appears to be critical for a healthy immune system.
Collapse
Affiliation(s)
- Hachung Chung
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Matrix metalloproteinase 9 contributes to gut microbe homeostasis in a model of infectious colitis. BMC Microbiol 2012; 12:105. [PMID: 22694805 PMCID: PMC3676156 DOI: 10.1186/1471-2180-12-105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 05/31/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Inflammatory bowel diseases are associated with increased expression of zinc-dependent Matrix Metalloproteinase 9 (MMP-9). A stark dysregulation of intestinal mucosal homeostasis has been observed in patients with chronic inflammatory bowel diseases. We therefore sought to determine the contribution of MMP-9 to the pathogenesis of Citrobacter rodentium-induced colitis and its effects on gut microbiome homeostasis. RESULTS Wild-type and MMP-9-/- mice aged 5-6 weeks were challenged with C. rodentium by orogastric gavage and sacrificed either 10 or 30 days post-infection. Disease severity was assessed by histological analysis of colonic epithelial hyperplasia and by using an in vivo intestinal permeability assay. Changes in the inflammatory responses were measured by using qPCR, and the composition of the fecal microbiome evaluated with both qPCR and terminal restriction fragment length polymorphism. Activation and localization of MMP-9 to the apical surface of the colonic epithelium in response to C. rodentium infection was demonstrated by both zymography and immunocytochemistry. The pro-inflammatory response to infection, including colonic epithelial cell hyperplasia and barrier dysfunction, was similar, irrespective of genotype. Nonmetric multidimensional scaling of terminal restriction fragments revealed a different fecal microbiome composition and C. rodentium colonization pattern between genotypes, with MMP-9-/- having elevated levels of protective segmented filamentous bacteria and interleukin-17, and lower levels of C. rodentium. MMP-9-/- but not wild-type mice were also protected from reductions in fecal microbial diversity in response to the bacterial enteric infection. CONCLUSIONS These results demonstrate that MMP-9 expression in the colon causes alterations in the fecal microbiome and has an impact on the pathogenesis of bacterial-induced colitis in mice.
Collapse
|
35
|
Enzootic enteropathogenic Escherichia coli infection in laboratory rabbits. J Clin Microbiol 2012; 50:2353-8. [PMID: 22573597 DOI: 10.1128/jcm.00832-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is the most important cause of persistent diarrhea in children, particularly in developing countries. Animals serve as pathogenic E. coli reservoirs, and compelling evidence for cross-species EPEC transmission exists. In this report, enzootic EPEC infection associated with up to 10.5% diarrhea-associated morbidity in a large laboratory Dutch Belted rabbit colony was investigated. These rabbits were obtained from a commercial vendor and had acute diarrhea following shipment. Fecal culture of 20 rabbits yielded 48 E. coli isolates, 83% of which were eae positive. Repetitive sequence-based PCR (REP-PCR) and serologic analysis identified a single disease-associated EPEC O145:H2 strain. In sampled rabbits, EPEC-positive culture and the presence of diarrhea were significantly associated. This strain displayed a localized adherence-like HEp-2 cell adherence pattern, as seen in diarrheic human infant EPEC isolates. Treatment was instituted with the fluoroquinolone antibiotic enrofloxacin, to which all isolates were susceptible. Preshipment parenteral enrofloxacin administration reduced diarrhea-associated morbidity 22-fold and mortality 12-fold in subsequent deliveries. This report emphasizes the zoonotic potential of animal EPEC strains and the need for virulence determinant-based screening of E. coli isolates from diarrheic animals.
Collapse
|
36
|
Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of th17 cell differentiation. Cell Host Microbe 2012; 10:273-84. [PMID: 21925114 DOI: 10.1016/j.chom.2011.08.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/04/2011] [Accepted: 08/17/2011] [Indexed: 12/12/2022]
Abstract
Segmented filamentous bacteria (SFB) are noncultivable commensals inhabiting the gut of various vertebrate species and have been shown to induce Th17 cells in mice. We present the complete genome sequences of both rat and mouse SFB isolated from SFB-monocolonized hosts. The rat and mouse SFB genomes each harbor a single circular chromosome of 1.52 and 1.59 Mb encoding 1346 and 1420 protein-coding genes, respectively. The overall nucleotide identity between the two genomes is 86%, and the substitution rate was estimated to be similar to that of the free-living E. coli. SFB genomes encode typical genes for anaerobic fermentation and spore and flagella formation, but lack most of the amino acid biosynthesis enzymes, reminiscent of pathogenic Clostridia, exhibiting large dependency on the host. However, SFB lack most of the clostridial virulence-related genes. Comparative analysis with clostridial genomes suggested possible mechanisms for host responses and specific adaptations in the intestine.
Collapse
|
37
|
Bleich A, Hansen AK. Time to include the gut microbiota in the hygienic standardisation of laboratory rodents. Comp Immunol Microbiol Infect Dis 2012; 35:81-92. [PMID: 22257867 DOI: 10.1016/j.cimid.2011.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 11/17/2011] [Accepted: 12/19/2011] [Indexed: 02/06/2023]
Abstract
The gut microbiota (GM) composition and its impact on animal experiments has become currently dramatically relevant in our days: (1) recent progress in metagenomic technologies, (2) the availability of large scale quantitative analyses to characterize even subtle phenotypes, (3) the limited diversity of laboratory rodent GM due to strict barriers at laboratory animal vendors, and (4) the availability of up to 300.000 different transgenic mouse strains from different sources displaying a huge variety in their GM composition. In this review the GM is described as a variable in animal experiments which need to be reduced for scientific as well as ethical reasons, and strategies how to implement this in routine diagnostic procedures are proposed. We conclude that we have both enough information available to state that the GM has an essential impact on animal models, as well as the methods available to start dealing with these impacts.
Collapse
Affiliation(s)
- André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany, Hannover, Germany.
| | | |
Collapse
|
38
|
Abstract
The mammalian alimentary tract harbors hundreds of species of commensal microorganisms (microbiota) that intimately interact with the host and provide it with genetic, metabolic, and immunological attributes. Recent reports have indicated that the microbiota composition and its collective genomes (microbiome) are major factors in predetermining the type and robustness of mucosal immune responses. In this review, we discuss the recent advances in our understanding of host-microbiota interactions and their effect on the health and disease susceptibility of the host.
Collapse
Affiliation(s)
- Kenya Honda
- Department of Immunology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
39
|
Atarashi K, Honda K. Microbiota in autoimmunity and tolerance. Curr Opin Immunol 2011; 23:761-8. [PMID: 22115876 DOI: 10.1016/j.coi.2011.11.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/17/2011] [Accepted: 11/10/2011] [Indexed: 12/18/2022]
Abstract
The composition of a host's intestinal microbiota directs the type of mucosal and systemic immune responses by affecting the proportion and number of functionally distinct T cell subsets. In particular, the microbiota composition affects the differentiation of intestinal Th17 cells and Foxp3(+) regulatory T cells, both of which play critical roles in maintaining mucosal barrier functions and in controlling immunological homeostasis. In this review, we discuss the recent advances in our understanding of how the intestinal microbiota affects T cell differentiation and host susceptibility to autoimmune disease.
Collapse
Affiliation(s)
- Koji Atarashi
- Department of Immunology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
40
|
Reading NC, Kasper DL. The starting lineup: key microbial players in intestinal immunity and homeostasis. Front Microbiol 2011; 2:148. [PMID: 21779278 PMCID: PMC3133820 DOI: 10.3389/fmicb.2011.00148] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/26/2011] [Indexed: 12/29/2022] Open
Abstract
The complexity of microbiota inhabiting the intestine is increasingly apparent. Delicate balance of numerous bacterial species can affect development of the immune system, how susceptible a host is to pathogenic organisms, and the auto-inflammatory state of the host. In the last decade, with the increased use of germ-free mice, gnotobiotic mice, and animal models in which a germ-free animal has been colonized with a foreign microbiota such as humanized mice, it has been possible to delineate relationships that specific bacteria have with the host immune system and to show what role they may play in overall host health. These models have not only allowed us to tease out the roles of individual species, but have also allowed the discovery and characterization of functionally unknown organisms. For example, segmented filamentous bacteria (SFB) have been shown to play a vital role in expansion of IL-17 producing cells. Prior to linking their key role in immune system development, little was known about these organisms. Bacteroides fragilis can rescue some of the immune defects of gnotobiotic mice after mono-colonization and have anti-inflammatory properties that can alleviate colitis and experimental allergic encephalitis in murine models. Additionally, Clostridium species have most recently been shown to expand regulatory T-cell populations leading to anti-inflammatory conditions. This review will highlight and summarize some of the major findings within the last decade concerning the role of select groups of bacteria including SFB, Clostridium, Bacteroides, Bifidobacterium, and Lactobacillus, and their impact on host mucosal immune systems.
Collapse
Affiliation(s)
- Nicola C Reading
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital Boston, MA, USA
| | | |
Collapse
|
41
|
Abstract
Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.
Collapse
|
42
|
Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 2011. [PMID: 21423246 DOI: 10.1038/nrmicro2546.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.
Collapse
|
43
|
Atarashi K, Umesaki Y, Honda K. Microbiotal influence on T cell subset development. Semin Immunol 2011; 23:146-53. [PMID: 21292500 DOI: 10.1016/j.smim.2011.01.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/10/2011] [Indexed: 12/16/2022]
Abstract
The mammalian alimentary tract harbors hundreds of bacterial species that constitute the indigenous microbial flora. The indigenous microbial flora has long been appreciated for its role in host immune system development. Recent reports suggest that components of the microbial flora differentially affect the proportion and number of functionally distinct subsets of T cells in the intestine. Substantial changes in the composition of the microbiota are associated with inflammatory bowel disease. This review will discuss the importance of individual species of microbial flora in the induction of T cell subsets, particularly Th17 cells and regulatory T (Treg) cells in the intestine.
Collapse
Affiliation(s)
- Koji Atarashi
- Department of Immunology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
44
|
Abstract
Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this “organ” has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Collapse
Affiliation(s)
- Inna Sekirov
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon L. Russell
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - L. Caetano M. Antunes
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
45
|
Del-Pozo J, Crumlish M, Turnbull JF, Ferguson HW. Histopathology and ultrastructure of segmented filamentous bacteria-associated rainbow trout gastroenteritis. Vet Pathol 2010; 47:220-30. [PMID: 20106826 DOI: 10.1177/0300985809359381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rainbow trout gastroenteritis (RTGE) is an emerging syndrome linked to the presence of large numbers of the segmented filamentous bacterium "Candidatus arthromitus" within the intestine. The present study examined the histopathological changes of the digestive tract of 152 trout with gross lesions typical of RTGE. Histopathology showed that 129 of 152 fish (85%) affected with RTGE had segmented filamentous bacteria in the distal intestine and/or pyloric caeca. The presence and number of segmented filamentous bacteria were always significantly higher (P < .001) in pyloric caeca, thereby suggesting the preferred site for these bacteria. Histopathological changes included enterocyte detachment and congestion of the lamina propria and adventitial layers. Samples from 6 RTGE-affected trout were examined using scanning and transmission electron microscopy, revealing a close interaction of segmented filamentous bacteria with the mucosa of distal intestine and pyloric caeca, with the presence of bacterial attachment sites, and with associated morphological changes of the apical membrane of enterocytes. Despite these interactions, segmented filamentous bacteria were not always adjacent to the areas with pathological changes, suggesting that if these organisms play a role in the pathogenesis of RTGE, extracellular products may be involved. Ultrastructural changes included loss of microvillar structure, membrane blebbing, hydropic mitochondrial damage, and basal hydropic degeneration of enterocytes, which frequently resulted in disruption of tight junctions and enterocyte detachment. The resulting exposure of large areas of lamina propria probably resulted in the compromise of the host osmotic balance and the facilitation of the entry of secondary pathogens.
Collapse
Affiliation(s)
- J Del-Pozo
- Institute of Aquaculture, University of Stirling, Stirling, UK.
| | | | | | | |
Collapse
|
46
|
|
47
|
Caselli M, Holton J, Boldrini P, Vaira D, Calò G. Morphology of segmented filamentous bacteria and their patterns of contact with the follicle-associated epithelium of the mouse terminal ileum: implications for the relationship with the immune system. Gut Microbes 2010; 1:367-72. [PMID: 21468217 PMCID: PMC3056100 DOI: 10.4161/gmic.1.6.14390] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/04/2010] [Accepted: 12/06/2010] [Indexed: 02/03/2023] Open
Abstract
Recent evidence indicates that segmented filamentous bacteria (SFB), "Candidatus Arthromitus", play a unique role in different aspects of the maturation of the immune system, including T cell responses. Thus, it seems particularly relevant in this moment to shortly review the information on these bacteria and their relationship with the immune system, and to actively investigate their morphological aspects. We distinguished a developmental form from a vegetative form of these organisms. These different forms have distinct roles in the life cycle: the developmental form permits a rapid growth of the organisms while the vegetative form permits the attachment of SFB to the follicular epithelium. We have also given special attention to the modes of contact between SFB and the epithelial cells of the terminal ileum to better understand the unique relationship between these bacteria and the immune system.
Collapse
Affiliation(s)
- Michele Caselli
- School of Gastroenterology; Department of Experimental and Clinical Medicine; University of Ferrara; Ferrara, Italy
| | - John Holton
- University of Middlesex; Windeyer Insitiute of Medical Sciences; London, UK
| | - Paola Boldrini
- Center of Electron Microscopy; University of Ferrara; Ferrara, Italy
| | - Dino Vaira
- University College Hospital Trust; Windeyer Insitiute of Medical Sciences; London, UK
| | - Girolamo Calò
- Section of Pharmacology; University of Ferrara; Ferrara, Italy
| |
Collapse
|
48
|
Tanoue T, Umesaki Y, Honda K. Immune responses to gut microbiota-commensals and pathogens. Gut Microbes 2010; 1:224-233. [PMID: 21327029 PMCID: PMC3023604 DOI: 10.4161/gmic.1.4.12613] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/28/2010] [Accepted: 06/07/2010] [Indexed: 02/03/2023] Open
Abstract
The mammalian alimentary tract harbors hundreds of species of commensal microorganisms that intimately interact with the host immune system. Within the gut, the immune system actively reacts with potentially pathogenic microbes, while simultaneously remaining ignorant towards the vast majority of non-pathogenic microbiota. The disruption of this delicate balance results in inflammatory bowel diseases. In this review, we describe the recent advances in our understanding of how host-microbiota interactions shape the immune system and how they affect the responses against pathogenic bacteria.
Collapse
Affiliation(s)
- Takeshi Tanoue
- Department of Immunology; Graduate School of Medicine; The University of Tokyo; Tokyo, Japan
| | | | - Kenya Honda
- Department of Immunology; Graduate School of Medicine; The University of Tokyo; Tokyo, Japan,Precursory Research for Embryonic Science and Technology (PRESTO); Japan Science and Technology Agency; Saitama, Japan
| |
Collapse
|
49
|
Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139:485-98. [PMID: 19836068 PMCID: PMC2796826 DOI: 10.1016/j.cell.2009.09.033] [Citation(s) in RCA: 3382] [Impact Index Per Article: 225.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/02/2009] [Accepted: 09/30/2009] [Indexed: 11/21/2022]
Abstract
The gastrointestinal tract of mammals is inhabited by hundreds of distinct species of commensal microorganisms that exist in a mutualistic relationship with the host. How commensal microbiota influence the host immune system is poorly understood. We show here that colonization of the small intestine of mice with a single commensal microbe, segmented filamentous bacterium (SFB), is sufficient to induce the appearance of CD4(+) T helper cells that produce IL-17 and IL-22 (Th17 cells) in the lamina propria. SFB adhere tightly to the surface of epithelial cells in the terminal ileum of mice with Th17 cells but are absent from mice that have few Th17 cells. Colonization with SFB was correlated with increased expression of genes associated with inflammation and antimicrobial defenses and resulted in enhanced resistance to the intestinal pathogen Citrobacter rodentium. Thus, manipulation of this commensal-regulated pathway may provide new opportunities for enhancing mucosal immunity and treating autoimmune disease.
Collapse
Affiliation(s)
- Ivaylo I. Ivanov
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Koji Atarashi
- Laboratory of Immune Regulation, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nicolas Manel
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Eoin L. Brodie
- Center for Environmental Biotechnology, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tatsuichiro Shima
- Yakult Central Institute for Microbiological Research, Yaho 1796, Kunitachi, Tokyo 186-8650, Japan
| | - Ulas Karaoz
- Center for Environmental Biotechnology, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dongguang Wei
- Carl Zeiss SMT, Inc., Nanotechnology Systems Div. One Corporation Way, Peabody, MA 01960, USA
| | - Katherine C. Goldfarb
- Center for Environmental Biotechnology, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Clark A. Santee
- Center for Environmental Biotechnology, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Susan V. Lynch
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA
| | - Takeshi Tanoue
- Laboratory of Immune Regulation, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Akemi Imaoka
- Yakult Central Institute for Microbiological Research, Yaho 1796, Kunitachi, Tokyo 186-8650, Japan
| | - Kikuji Itoh
- Department of Veterinary Public Health, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshinori Umesaki
- Yakult Central Institute for Microbiological Research, Yaho 1796, Kunitachi, Tokyo 186-8650, Japan
| | - Kenya Honda
- Laboratory of Immune Regulation, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
- Precursory Research for Embryonic Science and Technology (PREST), Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
| | - Dan R. Littman
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
50
|
Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjöberg J, Amir E, Teggatz P, Barman M, Hayward M, Eastwood D, Stoel M, Zhou Y, Sodergren E, Weinstock GM, Bevins CL, Williams CB, Bos NA. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 2009; 11:76-83. [PMID: 19855381 PMCID: PMC2795796 DOI: 10.1038/ni.1825] [Citation(s) in RCA: 880] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/16/2009] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides are important effectors of innate immunity throughout the plant and animal kingdoms. In the mammalian small intestine, Paneth cell alpha-defensins are antimicrobial peptides that contribute to host defense against enteric pathogens. To determine if alpha-defensins also govern intestinal microbial ecology, we analyzed the intestinal microbiota of mice expressing a human alpha-defensin gene (DEFA5) and in mice lacking an enzyme required for the processing of mouse alpha-defensins. In these complementary models, we detected significant alpha-defensin-dependent changes in microbiota composition, but not in total bacterial numbers. Furthermore, DEFA5-expressing mice had striking losses of segmented filamentous bacteria and fewer interleukin 17 (IL-17)-producing lamina propria T cells. Our data ascribe a new homeostatic role to alpha-defensins in regulating the makeup of the commensal microbiota.
Collapse
Affiliation(s)
- Nita H Salzman
- Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|