1
|
Yagyu K, Ueda T, Miyamoto A, Uenishi R, Matsushita H. Previous Moraxella catarrhalis Infection as a Risk Factor of COPD Exacerbations Leading to Hospitalization. COPD 2025; 22:2460808. [PMID: 39963887 DOI: 10.1080/15412555.2025.2460808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 05/10/2025]
Abstract
Haemophilus influenzae (H. influenzae) and Moraxella catarrhalis (M. catarrhalis) are associated with acute exacerbation of chronic obstructive pulmonary disease (AECOPD); however, their role in the pathogenesis of COPD is unknown. We retrospectively analysed the clinical data of patients with AECOPD (modified British Medical Research Council scale score, Global Initiative for Chronic Obstructive Lung Disease [GOLD] classification, pre-admission antibiotic and inhalant usage, sputum culture and epidemic influenza virus antigen test) for association with admission frequency. Among 169 eligible patients, pathogens were and were not detected in 64 and 105, respectively. The GOLD classification grade was higher in the non-detection group with a prior antimicrobial administration rate of 21.9% than in the detection group. H. influenzae and M. catarrhalis, each identified in 24.6% of the total number of detected pathogens, were the most common infectious bacteria. The GOLD classification grade was higher in the re-hospitalisation group than in the one-time hospitalisation group (p < 0.01). Regarding type of pathogen, M. catarrhalis infection (n = 16) was more common in the re-hospitalisation group. History of M. catarrhalis, H. influenzae infection and GOLD grade ≥ III were risk factors for re-hospitalisation, with odds ratios of 92.7 (95% confidence interval [CI]: 3.68-2340.0, p < 0.01), 20.1 (CI: 1.48-274.0, p < 0.05) and 9.83 (CI: 2.33-41.4, p < 0.01), respectively. These bacterial infections and severe airway limitation were associated with increased AECOPD frequency. Routine microbial monitoring may be useful for AECOPD prevention, reducing medical burden and improving prognosis.
Collapse
Affiliation(s)
- Kyoko Yagyu
- Department of Respiratory Medicine, Osaka City General Hospital, Osaka, Japan
| | - Takahiro Ueda
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Atsushi Miyamoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Riki Uenishi
- Department of Respiratory Medicine, Izumi City General Hospital, Izumi, Japan
| | - Haruhiko Matsushita
- Department of Respiratory Medicine, Izumi City General Hospital, Izumi, Japan
| |
Collapse
|
2
|
Hu JC, Sethi S. New methods to detect bacterial or viral infections in patients with chronic obstructive pulmonary disease. Expert Rev Respir Med 2024; 18:693-707. [PMID: 39175157 PMCID: PMC11583054 DOI: 10.1080/17476348.2024.2396413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Patients with chronic obstructive pulmonary disease (COPD) are frequently colonized and infected by respiratory pathogens. Identifying these infectious etiologies is critical for understanding the microbial dynamics of COPD and for the appropriate use of antimicrobials during exacerbations. AREAS COVERED Traditional methods, such as bacterial and viral cultures, have been standard in diagnosing respiratory infections. However, these methods have significant limitations, including lack of sensitivity and prolonged turnaround time. Modern molecular approaches offer rapid, sensitive, and specific detection, though they also come with their own challenges. This review explores and evaluates the clinical utility of the latest advancements in detecting bacterial and viral respiratory infections in COPD, encompassing molecular techniques, biomarkers, and emerging technologies. EXPERT OPINION In the evolving landscape of COPD management, integrating molecular diagnostics and emerging technologies holds great promise. The enhanced sensitivity of molecular techniques has significantly advanced our understanding of the role of microbes in COPD. However, many of these technologies have primarily been developed for pneumonia diagnosis or research applications, and their clinical utility in managing COPD requires further evaluation.
Collapse
Affiliation(s)
- John C Hu
- Division of Infectious Diseases, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Sanjay Sethi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
3
|
Tran XD, Hoang VT, Dao TL, Marty P, Gautret P. High Prevalence of Non-typeable Haemophilus influenzae and Haemophilus haemolyticus Among Vaccinated Children with Community-Acquired Pneumonia in Vietnam. J Epidemiol Glob Health 2024; 14:498-501. [PMID: 38372891 PMCID: PMC11176107 DOI: 10.1007/s44197-024-00195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Among 467 children under five hospitalized with community-acquired pneumonia, the prevalence of Haemophilus influenzae or Haemophilus haemolyticus was 60.8%, all cases were non-typable H. influenzae (NTHi) or H. haemolyticus. NTHi/H. haemolyticus PCR detection was associated with about twice the risk for severe disease. The results highlight the need for increased awareness and research efforts to investigate the role of NTHi/H. haemolyticus in severe CAP among children.
Collapse
Affiliation(s)
- Xuan Duong Tran
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Van Thuan Hoang
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Thi Loi Dao
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Pierre Marty
- Université Côte d'Azur, Inserm, C3M, Nice Cedex 3, France
- Parasitologie-Mycologie, Centre Hospitalier Universitaire L'Archet, Nice Cedex 3, France
| | - Philippe Gautret
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam.
- IHU-Méditerranée Infection, Marseille, France.
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
| |
Collapse
|
4
|
Fulte S, Atto B, McCarty A, Horn KJ, Redzic JS, Eisenmesser E, Yang M, Marsh RL, Tristram S, Clark SE. Heme sequestration by hemophilin from Haemophilus haemolyticus reduces respiratory tract colonization and infection with non-typeable Haemophilus influenzae. mSphere 2024; 9:e0000624. [PMID: 38380941 PMCID: PMC10964412 DOI: 10.1128/msphere.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Iron acquisition is a key feature dictating the success of pathogen colonization and infection. Pathogens scavenging iron from the host must contend with other members of the microbiome similarly competing for the limited pool of bioavailable iron, often in the form of heme. In this study, we identify a beneficial role for the heme-binding protein hemophilin (Hpl) produced by the non-pathogenic bacterium Haemophilus haemolyticus against its close relative, the opportunistic respiratory tract pathogen non-typeable Haemophilus influenzae (NTHi). Using a mouse model, we found that pre-exposure to H. haemolyticus significantly reduced NTHi colonization of the upper airway and impaired NTHi infection of the lungs in an Hpl-dependent manner. Further, treatment with recombinant Hpl was sufficient to decrease airway burdens of NTHi without exacerbating lung immunopathology or systemic inflammation. Instead, mucosal production of the neutrophil chemokine CXCL2, lung myeloperoxidase, and serum pro-inflammatory cytokines IL-6 and TNFα were lower in Hpl-treated mice. Mechanistically, H. haemolyticus suppressed NTHi growth and adherence to human respiratory tract epithelial cells through the expression of Hpl, and recombinant Hpl could recapitulate these effects. Together, these findings indicate that heme sequestration by non-pathogenic, Hpl-producing H. haemolyticus is protective against NTHi colonization and infection. IMPORTANCE The microbiome provides a critical layer of protection against infection with bacterial pathogens. This protection is accomplished through a variety of mechanisms, including interference with pathogen growth and adherence to host cells. In terms of immune defense, another way to prevent pathogens from establishing infections is by limiting the availability of nutrients, referred to as nutritional immunity. Restricting pathogen access to iron is a central component of this approach. Here, we uncovered an example where these two strategies intersect to impede infection with the respiratory tract bacterial pathogen Haemophilus influenzae. Specifically, we find that a non-pathogenic (commensal) bacterium closely related to H. influenzae called Haemophilus haemolyticus improves protection against H. influenzae by limiting the ability of this pathogen to access iron. These findings suggest that beneficial members of the microbiome improve protection against pathogen infection by effectively contributing to host nutritional immunity.
Collapse
Affiliation(s)
- Sam Fulte
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Arianna McCarty
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kadi J. Horn
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, USA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, USA
| | - Michael Yang
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Robyn L. Marsh
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Stephen Tristram
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Sarah E. Clark
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
5
|
Duske H, Claus H, Krone M, Lâm TT. Prevalence of piperacillin/tazobactam resistance in invasive Haemophilus influenzae in Germany. JAC Antimicrob Resist 2024; 6:dlad148. [PMID: 38161964 PMCID: PMC10753915 DOI: 10.1093/jacamr/dlad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
Background Haemophilus influenzae (Hi) is a Gram-negative bacterium that may cause sepsis or meningitis, treatment of which mainly includes β-lactam antibiotics. Since 2019 EUCAST breakpoints for piperacillin/tazobactam have been available. Little is known about the prevalence and mechanisms of piperacillin/tazobactam resistance in Hi. Objectives To provide reliable prevalence data for piperacillin/tazobactam resistance in Hi in Germany, to evaluate different antibiotic susceptibility testing methods and to examine possible resistance mechanisms. Methods According to EUCAST breakpoints, the MIC for piperacillin/tazobactam resistance is >0.25 mg/L. All invasive Hi in Germany from 2019 were examined by gradient agar diffusion (GAD) for piperacillin/tazobactam susceptibility. Piperacillin/tazobactam broth microdilution (BMD), piperacillin GAD on tazobactam-containing agar [piperacillin GAD on Mueller-Hinton agar with horse blood (MH-F)/tazobactam) and piperacillin/tazobactam agar dilution (AD) were used for confirmation. Phenotypic testing was complemented by ftsI sequencing. Results Piperacillin/tazobactam GAD resulted in 2.9% (21/726) resistant Hi. BMD did not confirm piperacillin/tazobactam resistance. Two strains were found resistant by AD, of which one was also resistant using piperacillin GAD on MH-F/tazobactam. Overall, we found two strains with a piperacillin/tazobactam MIC >0.25 mg/L in at least two different tests (0.3%). Both were β-lactamase-producing amoxicillin/clavulanate-resistant with PBP3 mutations characterized as group III-like+. Relevant PBP3 mutations occurred in six strains without phenotypic piperacillin/tazobactam resistance. These mutations suggest a reduced efficacy of β-lactam antibiotics in these isolates. Conclusions Piperacillin/tazobactam resistance prevalence in invasive Hi is low in Germany. Reduced susceptibility was correlated with PBP3 mutations, in particular with group III mutations.
Collapse
Affiliation(s)
- Helene Duske
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080, Würzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080, Würzburg, Germany
| | - Manuel Krone
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080, Würzburg, Germany
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Josef-Schneider-Str. 2/E1, 97080, Würzburg, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080, Würzburg, Germany
| |
Collapse
|
6
|
Chen X, Zhang H, Feng J, Zhang L, Zheng M, Luo H, Zhuo H, Xu N, Zhang X, Chen C, Qu P, Li Y. Comparative Genomic Analysis Reveals Genetic Diversity and Pathogenic Potential of Haemophilus seminalis and Emended Description of Haemophilus seminalis. Microbiol Spectr 2023; 11:e0477222. [PMID: 37382545 PMCID: PMC10434262 DOI: 10.1128/spectrum.04772-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/10/2023] [Indexed: 06/30/2023] Open
Abstract
Haemophilus seminalis is a newly proposed species that is phylogenetically related to Haemophilus haemolyticus. The distribution of H. seminalis in the human population, its genomic diversity, and its pathogenic potential are still unclear. This study reports the finding of our comparative genomic analyses of four newly isolated Haemophilus strains (SZY H8, SZY H35, SZY H36, and SZY H68) from human sputum specimens (Guangzhou, China) along with the publicly available genomes of other phylogenetically related Haemophilus species. Based on pairwise comparisons of the 16S rRNA gene sequences, the four isolates showed <98.65% sequence identity to the type strains of all known Haemophilus species but were identified as belonging to H. seminalis, based on comparable phenotypic and genotypic features. Additionally, the four isolates showed high genome-genome relatedness indices (>95% ANI values) with 17 strains that were previously identified as either "Haemophilus intermedius" or hemin (X-factor)-independent H. haemolyticus and therefore required a more detailed classification study. Phylogenetically, these isolates, along with the two previously described H. seminalis isolates (a total of 23 isolates), shared a highly homologous lineage that is distinct from the clades of the main H. haemolyticus and Haemophilus influenzae strains. These isolates present an open pangenome with multiple virulence genes. Notably, all 23 isolates have a functional heme biosynthesis pathway that is similar to that of Haemophilus parainfluenzae. The phenotype of hemin (X-factor) independence and the analysis of the ispD, pepG, and moeA genes can be used to distinguish these isolates from H. haemolyticus and H. influenzae. Based on the above findings, we propose a reclassification for all "H. intermedius" and two H. haemolyticus isolates belonging to H. seminalis with an emended description of H. seminalis. This study provides a more accurate identification of Haemophilus isolates for use in the clinical laboratory and a better understanding of the clinical significance and genetic diversity in human environments. IMPORTANCE As a versatile opportunistic pathogen, the accurate identification of Haemophilus species is a challenge in clinical practice. In this study, we characterized the phenotypic and genotypic features of four H. seminalis strains that were isolated from human sputum specimens and propose the "H. intermedius" and hemin (X-factor)-independent H. haemolyticus isolates as belonging to H. seminalis. The prediction of virulence-related genes indicates that H. seminalis isolates carry several virulence genes that are likely to play an important role in its pathogenicity. In addition, we depict that the genes ispD, pepG, and moeA can be used as biomarkers for distinguishing H. seminalis from H. haemolyticus and H. influenzae. Our findings provide some insights into the identification, epidemiology, genetic diversity, pathogenic potential, and antimicrobial resistance of the newly proposed H. seminalis.
Collapse
Affiliation(s)
- Xiaowei Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanyun Zhang
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| | - Junhui Feng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zhang
- Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China
| | - Minling Zheng
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | - Haimin Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huiyan Zhuo
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| | - Ning Xu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuan Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Cha Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Pinghua Qu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Youqiang Li
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Murphy TF, Kirkham C, D’Mello A, Sethi S, Pettigrew MM, Tettelin H. Adaptation of Nontypeable Haemophilus influenzae in Human Airways in COPD: Genome Rearrangements and Modulation of Expression of HMW1 and HMW2. mBio 2023; 14:e0014023. [PMID: 36927061 PMCID: PMC10127715 DOI: 10.1128/mbio.00140-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common debilitating disorder that is the third most common cause of death globally. Chronic lower airway infection by nontypeable Haemophilus influenzae (NTHi) in adults with COPD increases airway inflammation, causes increased symptoms, and accelerates progressive loss of lung function. Little is known about the mechanisms by which NTHi survives in COPD airways. To explore this question, the present study analyzes, in detail, 14 prospectively collected, serial isolates of a strain that persisted for 543 days in a patient with COPD, including analysis of four gap-free complete genomes. The NTHi genome underwent inversion of a ~400-kb segment three times during persistence. This inversion event resulted in switching of expression of the HMW1A and HMW2A adhesins as the inversion sites are in the promoter regions of HMW1 and HMW2. Regulation of the level of expression of HMW 1 and HMW2 in the human airways was controlled by the ~400-kb inversion and by 7-bp repeats in the HMW promoters. Analysis of knockout mutants of the persistent strain demonstrated that HMW1 and HMW2 proteins both function in the adherence of NTHi to human respiratory epithelial cells during persistence and that HMW1 also facilitates invasion of epithelial cells. An inverse relationship between biofilm formation and HMW1 expression was observed during persistence. This work advances understanding of the mechanisms of persistence of NTHi in COPD airways, which can inform the development of novel interventions to treat and prevent chronic NTHi infection in COPD. IMPORTANCE Nontypeable Haemophilus influenzae (NTHi) persists in the lower airways of adults with chronic obstructive pulmonary disease (COPD) for months to years, increasing airway inflammation that accelerates the progressive loss of lung function. Understanding the mechanisms of persistence in human airways by NTHi is critical in developing novel interventions. Here, in detail, we studied longitudinally collected sequential isolates of a strain of NTHi that persisted in an adult with COPD, including analysis of four gap-free genomes and knockout mutants to elucidate how the genome adapts in human airways. The NTHi genome underwent a genome rearrangement during persistence and this inversion impacted regulation of expression of key virulence phenotypes, including adherence to respiratory epithelial cells, invasion of epithelial cells and biofilm formation. These novel observations advance our understanding of the mechanisms of persistence of NTHi in the airways of adults with COPD.
Collapse
Affiliation(s)
- Timothy F. Murphy
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Charmaine Kirkham
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Adonis D’Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sanjay Sethi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, New York, USA
- Department of Medicine, Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| | - Melinda M. Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Malvisi L, Yarraguntla A, Mortier MC, Osman K, Cleary DW, Sente B, Pascal TG, Weynants V, Clarke SC, Taddei L, Wilkinson TMA, Devaster JM, Devos N. Impact of bacterial strain acquisition in the lung of patients with COPD: the AERIS study. Infect Dis (Lond) 2022; 54:784-793. [PMID: 35794793 DOI: 10.1080/23744235.2022.2092648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Bacterial infections are associated with acute exacerbations of chronic obstructive pulmonary disease (AECOPD), but the mechanism is incompletely understood. METHOD In a COPD observational study (NCT01360398), sputum samples were collected monthly at the stable state and exacerbation. Post-hoc analyses of 1307 non-typeable Haemophilus influenzae (NTHi) isolates from 20 patients and 756 Moraxella catarrhalis isolates from 38 patients in one year of follow-up were conducted by multilocus sequence typing (MLST). All isolates came from cultured sputum samples that were analyzed for bacterial species presence, apparition (infection not detected at the preceding visit), or acquisition (first-time infection), with the first study visit as a baseline. Strain apparition or new strain acquisition was analyzed by MLST. The odds ratio (OR) of experiencing an exacerbation vs. stable state was estimated by conditional logistic regression modelling, stratified by patient. RESULTS The culture results confirmed a significant association with exacerbation only for NTHi species presence (OR 2.28; 95% confidence interval [CI]: 1.12-4.64) and strain apparition (OR 2.38; 95% CI: 1.08-5.27). For M. catarrhalis, although confidence intervals overlapped, the association with exacerbation for first-time species acquisition (OR 5.99; 2.75-13.02) appeared stronger than species presence (OR 3.67; 2.10-6.40), new strain acquisition (OR 2.94; 1.43-6.04), species apparition (OR 4.18; 2.29-7.63), and strain apparition (OR 2.78; 1.42-5.42). This may suggest that previous M. catarrhalis colonization may modify the risk of exacerbation associated with M. catarrhalis infection. CONCLUSIONS The results confirm that NTHi and M. catarrhalis infections are associated with AECOPD but suggest different dynamic mechanisms in triggering exacerbations.
Collapse
Affiliation(s)
| | | | | | - Karen Osman
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - David W Cleary
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,Southampton NIHR Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK
| | | | | | | | - Stuart C Clarke
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | | | - Tom M A Wilkinson
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,Southampton NIHR Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK.,Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | | | | | | |
Collapse
|
9
|
Schoonbroodt S, Ichanté JL, Boffé S, Devos N, Devaster JM, Taddei L, Rondini S, Arora AK, Pascal T, Malvaux L. Real-time PCR has advantages over culture-based methods in identifying major airway bacterial pathogens in chronic obstructive pulmonary disease: Results from three clinical studies in Europe and North America. Front Microbiol 2022; 13:1098133. [PMID: 36909845 PMCID: PMC10000296 DOI: 10.3389/fmicb.2022.1098133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/29/2022] [Indexed: 03/14/2023] Open
Abstract
Introduction We compared the performance of real-time PCR with culture-based methods for identifying bacteria in sputum samples from patients with chronic obstructive pulmonary disease (COPD) in three studies. Methods This was an exploratory analysis of sputum samples collected during an observational study of 127 patients (AERIS; NCT01360398), phase 2 study of 145 patients (NTHI-004; NCT02075541), and phase 2b study of 606 patients (NTHI-MCAT-002; NCT03281876). Bacteria were identified by culture-based microbiological methods in local laboratories using fresh samples or by real-time PCR in a central laboratory using frozen samples. Haemophilus influenzae positivity with culture was differentiated from H. haemolyticus positivity by microarray analysis or PCR. The feasibility of bacterial detection by culture-based methods on previously frozen samples was also examined in the NTHI-004 study. Results Bacterial detection results from both culture-based and PCR assays were available from 2,293 samples from AERIS, 974 from the NTHI-004 study, and 1736 from the NTHI-MCAT-002 study. Quantitative real-time PCR (qPCR) showed higher positivity rates than culture for H. influenzae (percentages for each study: 43.4% versus 26.2%, 47.1% versus 23.6%, 32.7% versus 10.4%) and Moraxella catarrhalis (12.9% versus 6.3%, 19.0% versus 6.0%, 15.5% versus 4.1%). In the NTHI-004 and NTHI-MCAT-002 studies, positivity rates were higher with qPCR for Streptococcus pneumoniae (15.6% versus 6.1%, 15.5% versus 3.8%); in AERIS, a lower rate with qPCR than with culture (11.0% versus 17.4%) was explained by misidentification of S. pseudopneumoniae/mitis isolates via conventional microbiological methods. Concordance analysis showed lowest overall agreement for H. influenzae (82.0%, 75.6%, 77.6%), due mainly to culture-negative/qPCR-positive samples, indicating lower sensitivity of the culture-based methods. The lowest positive agreement (culture-positive/qPCR-positive samples) was observed for S. pneumoniae (35.1%, 71.2%, 71.2%). Bacterial load values for each species showed a proportion of culture-negative samples with a load detected by qPCR; for some samples, the loads were in line with those observed in culture-positive samples. In the NTHI-004 study, of fresh samples that tested culture-positive, less than 50% remained culture-positive when tested from freeze/thawed samples. In the NTHI-004 study, of fresh samples that tested culture-positive, less than 50% remained culture-positive when tested from freeze/thawed samples. Discussion Real-time PCR on frozen sputum samples has enhanced sensitivity and specificity over culture-based methods, supporting its use for the identification of common respiratory bacterial species in patients with COPD.
Collapse
|
10
|
Tanaka E, Hirai Y, Wajima T, Ishida Y, Kawamura Y, Nakaminami H. High-Level Quinolone-Resistant Haemophilus haemolyticus in Pediatric Patient with No History of Quinolone Exposure. Emerg Infect Dis 2022; 28:104-110. [PMID: 34932443 PMCID: PMC8714209 DOI: 10.3201/eid2801.210248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The prevalence of antimicrobial resistance among Haemophilus spp. is a critical concern, but high-level quinolone-resistant strains had not been isolated from children. We isolated high-level quinolone-resistant H. haemolyticus from the suction sputum of a 9-year-old patient. The patient had received home medical care with mechanical ventilation for 2 years and had not been exposed to any quinolones for >3 years. The H. haemolyticus strain we isolated, 2019-19, shared biochemical features with H. influenzae. However, whole-genome analysis found this strain was closer to H. haemolyticus. Phylogenetic and mass spectrometry analyses indicated that strain 2019-19 was in the same cluster as H. haemolyticus. Comparison of quinolone resistance-determining regions showed strain 2019-19 possessed various amino acid substitutions, including those associated with quinolone resistance. This report highlights the existence of high-level quinolone-resistant Haemophilus species that have been isolated from both adults and children.
Collapse
|
11
|
Chien YC, Huang YT, Liao CH, Chien JY, Hsueh PR. Clinical characteristics of bacteremia caused by Haemophilus and Aggregatibacter species and antimicrobial susceptibilities of the isolates. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:1130-1138. [PMID: 33390332 DOI: 10.1016/j.jmii.2020.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND/PURPOSE This study aimed to investigate the clinical characteristics and outcomes of bacteremia caused by Haemophilus and Aggregatibacter species in patients who were treated at a medical center between 2006 and 2018. METHODS Haemophilus and Aggregatibacter isolates were identified up to the species level using Bruker Biotyper MALDI-TOF analysis and ancillary 16S rRNA gene sequencing analysis (in case of ambiguity). Clinical characteristics and outcomes of patients with bacteremia caused by these organisms were evaluated. RESULTS Sixty-five Haemophilus and Aggregatibacter species isolates causing bacteremia were identified from nonduplicated patients, including 51 (78.5%) Haemophilus influenzae, 6 (9.2%) Haemophilus parainfluenzae, 1 (1.5%) Haemophilus haemolyticus, 3 (4.6%) A. aphrophilus, and 4 (6.2%) A. segnis. Hospital mortality was observed in 18 (28.1%) of 64 patients with bacteremia caused by Haemophilus (n = 57) and Aggregatibacter species (n = 7). The majority of patients with bacteremia had community-acquired disease with low severity. The average Sequential Organ Failure Assessment (SOFA) score was low (4.4 ± 4.7). But, a higher SOFA score (adjusted odds ratio 2.5, 95% confidence interval 1.22-5.12; P = 0.01) was an independent factor predicting poor 7-day clinical outcomes in patients with community-acquired H. influenzae bacteremia (n = 39). CONCLUSIONS The overall hospital mortality of 28.1% was observed among patients with bacteremia due to Haemophilus and Aggregatibacter species. A higher SOFA score was and independent predictor of poor 7-day clinical outcomes in patients with community-acquired H. influenzae bacteremia.
Collapse
Affiliation(s)
- Ying-Chun Chien
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Tsung Huang
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Division of Infectious Diseases, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chun-Hsing Liao
- Division of Infectious Diseases, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Medicine, Yang-Ming University, Taipei, Taiwan
| | - Jung-Yien Chien
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Ren Hsueh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
12
|
Ruan W, Sun C, Gao Q, Shrivastava N. Metaproteomics associated with severe early childhood caries highlights the differences in salivary proteins. Arch Oral Biol 2021; 131:105220. [PMID: 34461447 DOI: 10.1016/j.archoralbio.2021.105220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the salivary metaproteomic characteristics of the children with and without severe early childhood caries (S-ECC). DESIGN In this study, we collected unstimulated saliva samples from 34 children (age 3-4 years) with caries free (NC, dmfs (= index of decayed, missing due to caries, or filled tooth surfaces) = 0, n = 23) and with S-ECC (dmfs≥10, n = 11). Salivary proteins were extracted and reduced, and then a Liquid Chromatography/Mass Spectrometry system was used to identify proteins. RESULTS Nearly 3000 proteins were identified in this study, and about 3.5 % of the proteins originated from human while 86 % were derived from microbes. The salivary protein types in the NC group were statistically greater than those in the S-ECC group (P <0.05). Specifically, the salivary protein types derived from microbes in the NC group were significantly greater than those in the S-ECC group. Three proteins, human lactoferrin, penicillin-binding protein 1C [Burkholderia ubonensis], human alpha-defensin 1 (F28a mutant), were decreased statistically in the NC group compared to the S-ECC group (P < 0.05). Only one protein, 50S ribosomal protein L17 secreted by Haemophilus haemolyticus, was significantly increased in the NC group compared to the S-ECC group. Salivary IgA was the top highest protein in the NC group whereas human lysozyme was the top highest protein in the S-ECC group. CONCLUSIONS The differential proteins recognized in this study may be conducive for finding a caries biomarker. Understanding the metaproteomic characteristics can help us to control the caries from human origin and microbial origin.
Collapse
Affiliation(s)
- Wenhua Ruan
- Department of Stomatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinic Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Zhejiang Province, Hangzhou, 310052, PR China.
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, No. 866 Yuhangtang Road, Xihu District, Zhejiang Province, PR China
| | - Qikang Gao
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, No. 866 Yuhangtang Road, Xihu District, Zhejiang Province, PR China.
| | - Neeraj Shrivastava
- Formerly visiting scientist at Zhejiang University, Hangzhou, Zhejiang Province, PR China; Amity Institute of Microbial Technology (AIMT), Amity University Uttar Pradesh (AUUP), Sector 125, Super Express Way, Noida, 201 303, UP, India
| |
Collapse
|
13
|
Nesbitt H, Burke C, Haghi M. Manipulation of the Upper Respiratory Microbiota to Reduce Incidence and Severity of Upper Respiratory Viral Infections: A Literature Review. Front Microbiol 2021; 12:713703. [PMID: 34512591 PMCID: PMC8432964 DOI: 10.3389/fmicb.2021.713703] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
There is a high incidence of upper respiratory viral infections in the human population, with infection severity being unique to each individual. Upper respiratory viruses have been associated previously with secondary bacterial infection, however, several cross-sectional studies analyzed in the literature indicate that an inverse relationship can also occur. Pathobiont abundance and/or bacterial dysbiosis can impair epithelial integrity and predispose an individual to viral infection. In this review we describe common commensal microorganisms that have the capacity to reduce the abundance of pathobionts and maintain bacterial symbiosis in the upper respiratory tract and discuss the potential and limitations of localized probiotic formulations of commensal bacteria to reduce the incidence and severity of viral infections.
Collapse
Affiliation(s)
- Henry Nesbitt
- Discipline of Pharmacy, Graduate School Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Catherine Burke
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Mehra Haghi
- Discipline of Pharmacy, Graduate School Health, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Zhu L, Chen Y, Chen M, Wang W. Mechanism of miR-204-5p in exosomes derived from bronchoalveolar lavage fluid on the progression of pulmonary fibrosis via AP1S2. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1068. [PMID: 34422980 PMCID: PMC8339838 DOI: 10.21037/atm-20-8033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/11/2021] [Indexed: 11/06/2022]
Abstract
Background Exosomes are nanoscale vesicles secreted by various types of cells that are responsible for intracellular communication. Despite that bronchoalveolar lavage fluid (BALF) has been proven to involve in tumor development, more efforts are required to investigate the impact of BALF on pulmonary fibrosis (PF). This study aimed to investigate the mechanism of how exosomal miR-204-5p from BALF facilitates PF progression in rats. Methods PF rat model was established by intratracheal injection of bleomycin. BALF-derived exosomes (Exo) were extracted from normal and PF rats. PF-Exo (BALF-derived Exo from PF rats) and miR-204-5p antagomir were injected into rats to investigate the effect of exosomal miR-204-5p on PF. Collagen content in lung tissues of rats was assessed by Masson staining, hydroxyproline (HYP) content assay and immunohistochemistry (IHC). Primary lung fibroblasts were isolated, and treated by TGF-β1. After co-transfection of PF-Exo, miR-204-5p inhibitor and sh-AP1S2, cell proliferation, levels of miR-204-5p, fibrotic markers α-SMA and collagen 1 (Col 1), and proteins of autophagy markers LC3II, LC3I and P62 were measured. The interaction between miR-204-5p and AP1S2 was determined by bioinformatics online software TargetScan and dual-luciferase reporter assay. Results miR-204-5p was abundantly expressed in the PF-Exo group. PF-Exo injection potentiated PF progression and proliferation ability of lung fibroblasts in vivo and in vitro. Injection with PF-Exo and miR-204-5p antagomir significantly increased the LC3II/I ratio and decreased the HYP content, proteins of α-SMA, Col 1 and P62, collagen content in rat lung tissues of PF rats. TGF-β1 induction elevated the LC3II/LC3I ratio, suppressed the cell proliferation rate, and decreased the levels of α-SMA, Col 1 and P62. Additionally, AP1S2 was a direct target of miR-204-5p. miR-204-5p inhibitor can counteract the effect of PF-Exo in proliferation of lung fibroblasts, while sh-AP1S2 eliminated the effect of miR-204-5p inhibitor. Conclusions Exosomal miR-204-5p from BALF inhibits autophagy to promote the progression of PF rats by targeting AP1S2.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Rheumatism Immunology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yahui Chen
- Department of Rheumatism Immunology, Ningbo Sixth Hospital, Ningbo, China
| | - Mo Chen
- Department of Rheumatism Immunology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenwen Wang
- Department of Rheumatism Immunology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Lâm TT, Nürnberg S, Claus H, Vogel U. Molecular epidemiology of imipenem resistance in invasive Haemophilus influenzae infections in Germany in 2016. J Antimicrob Chemother 2021; 75:2076-2086. [PMID: 32449913 DOI: 10.1093/jac/dkaa159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The carbapenems imipenem and meropenem play an important role in the empirical anti-infective treatment of critically ill patients. Carbapenem resistance in Haemophilus influenzae (Hi) has rarely been reported. OBJECTIVES We provide prevalence data for resistance to carbapenems from laboratory surveillance of invasive Hi infections in Germany in 2016. METHODS Phenotypic susceptibility testing against ampicillin, amoxicillin/clavulanate, cefotaxime and imipenem was carried out on 474 isolates from blood and CSF. The isolates were collected as part of the national laboratory surveillance programme. Imipenem-resistant strains were further tested for meropenem susceptibility. Molecular analysis was done by ftsI sequencing to detect mutations in PBP3, by acrR sequencing to detect alterations in the regulatory protein of the AcrAB-TolC efflux pump and by MLST. RESULTS No resistance to meropenem was detected. Cefotaxime resistance was rare (n = 3; 0.6%). Imipenem resistance was found in 64 strains (13.5%) using gradient agar diffusion and was confirmed in 26 isolates by broth microdilution (5.5%). Imipenem resistance occurred predominantly in Hi that were β-lactamase negative but ampicillin resistant and in those that were β-lactamase positive but nevertheless amoxicillin/clavulanate resistant. This finding suggested a β-lactamase-independent mechanism. Accordingly, sequence analysis of PBP3 identified previously described mutations. MLST of the imipenem-resistant strains, which were all non-typeable Hi, revealed a high diversity. CONCLUSIONS We conclude that imipenem, but not meropenem, resistance is frequent in Hi. It is likely to be supported by PBP3 mutations.
Collapse
Affiliation(s)
- Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080 Würzburg, Germany
| | - Sebastian Nürnberg
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080 Würzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080 Würzburg, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080 Würzburg, Germany
| |
Collapse
|
16
|
Li S, Zhang Y, Yang Z, Li J, Li Y, Li H, Li W, Jia J, Ge S, Sun Y. Helicobacter pylori infection is correlated with the incidence of erosive oral lichen planus and the alteration of the oral microbiome composition. BMC Microbiol 2021; 21:122. [PMID: 33879055 PMCID: PMC8059323 DOI: 10.1186/s12866-021-02188-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Oral lichen planus (OLP), a common clinical oral disease, is associated with an increased risk of malignant transformation. The mechanism underlying the pathogenesis of OLP is unknown. Oral dysbacteriosis is reported to be one of the aetiological factors of OLP. Although Helicobacter pylori infection is associated with various oral diseases, the correlation between H. pylori infection and OLP is unclear. This study aimed to investigate the effect of H. pylori infection on OLP pathogenesis and oral microbiome composition in the Chinese population, which has a high incidence of H. pylori infection. RESULT In this study, saliva samples of 30 patients with OLP (OLP group) and 21 negative controls (NC group) were collected. H. pylori infection was detected using the carbon-13-labeled urea breath test (UBT). The saliva samples were divided into the following four groups based on the H. pylori status: H. pylori-positive OLP (OLP+), H. pylori-positive NC (NC+), H. pylori-negative OLP (OLP-), and H. pylori-negative NC (NC-). Oral microbiome compositions were significantly different between the OLP and NC groups and between the OLP- and OLP+ groups. Compared with those in the OLP- group, those in the OLP+ group had a higher incidence of erosive OLP and higher levels of salivary cytokines. In contrast, the oral microbiome composition and cytokine levels were not significantly different between the NC- and NC+ groups. CONCLUSIONS This is the first report to demonstrate that H. pylori infection is significantly correlated with the pathogenesis of erosive OLP.
Collapse
Affiliation(s)
- Shutong Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, Shandong, China
| | - Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Zongcheng Yang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| | - Jingyuan Li
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, Shandong, China
| | - Ya Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Huanjie Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjuan Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jihui Jia
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, Shandong, China.
| | - Yundong Sun
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
17
|
Nürnberg S, Claus H, Krone M, Vogel U, Lâm TT. Cefotaxime resistance in invasive Haemophilus influenzae isolates in Germany 2016-19: prevalence, epidemiology and relevance of PBP3 substitutions. J Antimicrob Chemother 2021; 76:920-929. [PMID: 33501993 DOI: 10.1093/jac/dkaa557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Haemophilus influenzae can cause invasive infections, in which cefotaxime is among the first-line antibiotics for treatment. The prevalence of cefotaxime-resistant H. influenzae in Europe is reported to be on a low level. Nevertheless, systematic studies with a large set of invasive isolates are scarce. OBJECTIVES To provide prevalence data for cefotaxime resistance in invasive H. influenzae isolates in Germany 2016-19 and investigate the epidemiological relevance of PBP3 mutations known to elevate the cefotaxime MIC. METHODS Cefotaxime susceptibility of invasive H. influenzae isolates, collected in the national laboratory surveillance programme, was examined by gradient agar diffusion (GAD) testing. Cefotaxime resistance was determined according to EUCAST guidelines (resistance breakpoint MIC >0.125 mg/L). Therefore, the MIC for all resistant isolates was verified by broth microdilution method (BMD). WGS was performed to investigate the genetic relationship of cefotaxime-resistant isolates and to analyse alterations in the PBP3. An analysis of the geographic distribution of the resistant isolates was performed. RESULTS From 2016 to 2019, the German National Reference Laboratory for Meningococci and H. influenzae received 2432 invasive H. influenzae isolates from blood and CSF. According to GAD results, 27 strains were resistant to cefotaxime. BMD confirmed the resistance in 22 of these isolates, which equals a prevalence of cefotaxime resistance of 0.90% in invasive H. influenzae in Germany. Among cefotaxime-resistant isolates cgMLST revealed three clusters. PBP3 analysis showed previously described mutations in our strains. In comparison with cefotaxime-susceptible strains, the alterations L389F and Y557H were significantly associated with cefotaxime resistance, but were not present in all resistant strains. Geographic analysis showed that the disease cases with cefotaxime-resistant H. influenzae were evenly spread throughout the population in Germany. CONCLUSIONS Cefotaxime is still well suited for the treatment of invasive H. influenzae infections. Rarely occurring cefotaxime resistance is caused by sporadic mutations. The role of PBP3 mutations needs further investigation.
Collapse
Affiliation(s)
- Sebastian Nürnberg
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080, Würzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080, Würzburg, Germany
| | - Manuel Krone
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080, Würzburg, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080, Würzburg, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080, Würzburg, Germany
| |
Collapse
|
18
|
Malvisi L, Taddei L, Yarraguntla A, Wilkinson TMA, Arora AK. Sputum sample positivity for Haemophilus influenzae or Moraxella catarrhalis in acute exacerbations of chronic obstructive pulmonary disease: evaluation of association with positivity at earlier stable disease timepoints. Respir Res 2021; 22:67. [PMID: 33627095 PMCID: PMC7903661 DOI: 10.1186/s12931-021-01653-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/07/2021] [Indexed: 12/04/2022] Open
Abstract
Background Infection with Haemophilus influenzae (Hi) or Moraxella catarrhalis (Mcat) is a risk factor for exacerbation in chronic obstructive pulmonary disease (COPD). The ability to predict Hi- or Mcat-associated exacerbations may be useful for interventions developed to reduce exacerbation frequency. Methods In a COPD observational study, sputum samples were collected at monthly stable-state visits and at exacerbation during two years of follow-up. Bacterial species (Hi, Mcat) were identified by culture and quantitative PCR assay. Post-hoc analyses were conducted to assess: (1) first Hi- or Mcat-positive exacerbations given presence or absence of Hi or Mcat at the screening visit (stable-state timepoint); (2) first Hi- or Mcat-positive exacerbations given presence or absence of Hi or Mcat at stable timepoints within previous 90 days; (3) second Hi- or Mcat-positive exacerbations given presence or absence of Hi or Mcat at stable timepoints within previous 90 days. Percentages and risk ratios (RRs) with 95% confidence intervals were calculated. Results PCR results for analyses 1, 2 and 3 (samples from 84, 88 and 83 subjects, respectively) showed that the risk of an Hi- or Mcat-positive exacerbation is significantly higher if sputum sample was Hi- or Mcat-positive than if Hi- or Mcat-negative at previous stable timepoints (apart from Mcat in analysis 3); RRs ranged from 2.1 to 3.2 for Hi and 1.9 to 2.6 for Mcat.For all analyses, the percentage of Hi- or Mcat-positive exacerbations given previous Hi- or Mcat-positive stable timepoints was higher than the percentage of Hi- or Mcat-positive exacerbations if Hi- or Mcat-negative at previous stable timepoints. Percentage of Hi- or Mcat-positive exacerbations given previous Hi- or Mcat-negative stable timepoints was 26.3%–37.0% for Hi and 17.6%–19.7% for Mcat. Conclusions Presence of Hi or Mcat at a stable timepoint was associated with a higher risk of a subsequent Hi- or Mcat-associated exacerbation compared with earlier absence. However, a large percentage of Hi- or Mcat-associated exacerbations was not associated with Hi/Mcat detection at an earlier timepoint. This suggests that administration of an intervention to reduce these exacerbations should be independent of bacterial presence at baseline. Trial Registrationhttps://clinicaltrials.gov/; NCT01360398, registered May 25, 2011
Collapse
Affiliation(s)
| | | | | | - Tom M A Wilkinson
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,Southampton NIHR Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK.,Wessex Investigational Sciences Hub, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | | | | |
Collapse
|
19
|
Atto B, Gell D, Tristram S. Exploiting the struggle for haem: a novel therapeutic approach against Haemophilus influenzae. MICROBIOLOGY AUSTRALIA 2021. [DOI: 10.1071/ma21032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Over the past decade, nontypeable Haemophilus influenzae (NTHi) has gained recognition as a major opportunistic pathogen of the respiratory tract that imposes a substantial global burden of disease, owing to a high rate of morbidity and ensuing complications. Further amplifying the global impact of NTHi infections is the increasing spectrum and prevalence of antibiotic resistance, leading to higher rates of treatment failure with first- and second-line antibiotics regimes. The threat of antibiotic resistance was recognised by the World Health Organization in 2017, listing NTHi as a priority pathogen for which new therapies are urgently needed. Despite significant efforts, there are currently no effective vaccine strategies available that can slow the growing burden of NTHi disease. Consequently, alternative preventative or therapeutic approaches that do not rely on antibiotic susceptibility or stable vaccine targets are becoming more attractive. The nutritional dependency for haem at all stages of NTHi pathogenesis exposes a vulnerability that may be exploited for the development of such therapies. This article will discuss the therapeutic potential of strategies that limit NTHi access to this vital nutrient, with particular focus on a novel bacteriotherapeutic approach under development.
Collapse
|
20
|
Harris TM, Price EP, Sarovich DS, Nørskov-Lauritsen N, Beissbarth J, Chang AB, Smith-Vaughan HC. Comparative genomic analysis identifies X-factor (haemin)-independent Haemophilus haemolyticus: a formal re-classification of ' Haemophilus intermedius'. Microb Genom 2020; 6. [PMID: 31860436 PMCID: PMC7067038 DOI: 10.1099/mgen.0.000303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The heterogeneous and highly recombinogenic genus Haemophilus comprises several species, some of which are pathogenic to humans. All share an absolute requirement for blood-derived factors during growth. Certain species, such as the pathogen Haemophilus influenzae and the commensal Haemophilus haemolyticus, are thought to require both haemin (X-factor) and nicotinamide adenine dinucleotide (NAD, V-factor), whereas others, such as the informally classified 'Haemophilus intermedius subsp. intermedius', and Haemophilus parainfluenzae, only require V-factor. These differing growth requirements are commonly used for species differentiation, although a number of studies are now revealing issues with this approach. Here, we perform large-scale phylogenomics of 240 Haemophilus spp. genomes, including five 'H. intermedius' genomes generated in the current study, to reveal that strains of the 'H. intermedius' group are in fact haemin-independent H. haemolyticus (hiHh). Closer examination of these hiHh strains revealed that they encode an intact haemin biosynthesis pathway, unlike haemin-dependent H. haemolyticus and H. influenzae, which lack most haemin biosynthesis genes. Our results suggest that the common ancestor of modern-day H. haemolyticus and H. influenzae lost key haemin biosynthesis loci, likely as a consequence of specialized adaptation to otorhinolaryngeal and respiratory niches during their divergence from H. parainfluenzae. Genetic similarity analysis demonstrated that the haemin biosynthesis loci acquired in the hiHh lineage were likely laterally transferred from a H. parainfluenzae ancestor, and that this event probably occurred only once in hiHh. This study further challenges the validity of phenotypic methods for differentiating among Haemophilus species, and highlights the need for whole-genome sequencing for accurate characterization of species within this taxonomically challenging genus.
Collapse
Affiliation(s)
- Tegan M Harris
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Erin P Price
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Derek S Sarovich
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | | | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Anne B Chang
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Brisbane, QLD, Australia.,Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Heidi C Smith-Vaughan
- School of Medicine, Griffith University, Gold Coast, QLD, Australia.,Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| |
Collapse
|
21
|
Takla A, Schönfeld V, Claus H, Krone M, An der Heiden M, Koch J, Vogel U, Wichmann O, Lâm TT. Invasive Haemophilus influenzae Infections in Germany After the Introduction of Routine Childhood Immunization, 2001-2016. Open Forum Infect Dis 2020; 7:ofaa444. [PMID: 33134416 PMCID: PMC7585332 DOI: 10.1093/ofid/ofaa444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Haemophilus influenzae (Hi) serotype b (Hib) vaccination was introduced in Germany in 1990. This study presents a comprehensive overview on the burden of invasive Hi infections for 2001–2016, including serotype distribution and ampicillin resistance. Methods Nationwide data from statutory disease surveillance (2001–2016) were linked with laboratory surveillance data (2009–2016). Besides descriptive epidemiology, statistical analyses included multiple imputation to estimate secular trends. Results In 2001–2016, 4044 invasive Hi infections were reported. The mean incidence was 3.0 per million inhabitants, higher in males (3.2 vs 2.9 in females) and in the age groups <1 year (15.2) and ≥80 years (15.5). Nontypeable Hi (NTHi) caused 81% (n = 1545) of cases in 2009–2016. Of capsulated cases, 69% were serotype f and 17% serotype b. Of Hib cases eligible for vaccination, 10% (3/29) were fully vaccinated. For 2009–2016, significant increasing trends were observed for NTHi and Hif infections in the age groups <5 years and ≥60 years and for ampicillin resistance in NTHi. Conclusions This is one of the most comprehensive Hi data analyses since the introduction of Hib vaccines. NTHi and Hif cause an increasing disease burden among elderly patients and infants. Ampicillin resistance in NTHi must be considered in the treatment of invasive Hi infections.
Collapse
Affiliation(s)
- Anja Takla
- Robert Koch Institute, Department for Infectious Disease Epidemiology, Berlin, Germany
| | - Viktoria Schönfeld
- Robert Koch Institute, Department for Infectious Disease Epidemiology, Berlin, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, National Reference Laboratory for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| | - Manuel Krone
- Institute for Hygiene and Microbiology, National Reference Laboratory for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| | | | - Judith Koch
- Robert Koch Institute, Department for Infectious Disease Epidemiology, Berlin, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, National Reference Laboratory for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| | - Ole Wichmann
- Robert Koch Institute, Department for Infectious Disease Epidemiology, Berlin, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, National Reference Laboratory for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
22
|
Antibody Binding and Complement-Mediated Killing of Invasive Haemophilus influenzae Isolates from Spain, Portugal, and the Netherlands. Infect Immun 2020; 88:IAI.00454-20. [PMID: 32719154 DOI: 10.1128/iai.00454-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Haemophilus influenzae is a Gram-negative bacterium that can be classified into typeable (types a through f) and nontypeable (NTHi) groups. This opportunistic pathogen asymptomatically colonizes the mucosal epithelium of the upper respiratory tract, from where it spreads to other neighboring regions, potentially leading to disease. Infection with NTHi can cause otitis media, sinusitis, conjunctivitis, exacerbations of chronic obstructive pulmonary disease, and pneumonia, but it is increasingly causing invasive disease, including bacteremia and meningitis. Invasive NTHi strains are more resistant to complement-mediated killing. However, the mechanisms of complement resistance have never been studied in large numbers of invasive NTHi strains. In this study, we determined the relationship between binding of IgG or IgM and the bacterial survival in normal human serum for 267 invasive H. influenzae strains from Spain, Portugal, and the Netherlands, of which the majority (200 [75%]) were NTHi. NTHi bacteria opsonized with high levels of IgM had the lowest survival in human serum. IgM binding to the bacterial surface, but not IgG binding, was shown to be associated with complement-mediated killing of NTHi strains. We conclude that evasion of IgM binding by NTHi strains increases survival in blood, thereby potentially contributing to their ability to cause severe invasive diseases.
Collapse
|
23
|
Discriminative Potential of the Vitek MS In Vitro Diagnostic Device Regarding Haemophilus influenzae and Haemophilus haemolyticus. J Clin Microbiol 2020; 58:JCM.00278-20. [PMID: 32404483 DOI: 10.1128/jcm.00278-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
24
|
Nasal Delivery of a Commensal Pasteurellaceae Species Inhibits Nontypeable Haemophilus influenzae Colonization and Delays Onset of Otitis Media in Mice. Infect Immun 2020; 88:IAI.00685-19. [PMID: 31964748 PMCID: PMC7093147 DOI: 10.1128/iai.00685-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
Nasopharyngeal colonization with nontypeable Haemophilus influenzae (NTHi) is a prerequisite for developing NTHi-associated infections, including otitis media. Therapies that block NTHi colonization may prevent disease development. We previously demonstrated that Haemophilus haemolyticus, a closely related human commensal, can inhibit NTHi colonization and infection of human respiratory epithelium in vitro. We have now assessed whether Muribacter muris (a rodent commensal from the same family) can prevent NTHi colonization and disease in vivo using a murine NTHi otitis media model. Nasopharyngeal colonization with nontypeable Haemophilus influenzae (NTHi) is a prerequisite for developing NTHi-associated infections, including otitis media. Therapies that block NTHi colonization may prevent disease development. We previously demonstrated that Haemophilus haemolyticus, a closely related human commensal, can inhibit NTHi colonization and infection of human respiratory epithelium in vitro. We have now assessed whether Muribacter muris (a rodent commensal from the same family) can prevent NTHi colonization and disease in vivo using a murine NTHi otitis media model. Otitis media was modeled in BALB/c mice using coinfection with 1 × 104.5 PFU of influenza A virus MEM H3N2, followed by intranasal challenge with 5 × 107 CFU of NTHi R2866 Specr. Mice were pretreated or not with an intranasal inoculation of 5 × 107 CFU M. muris 24 h before coinfection. NTHi and M. muris viable counts and inflammatory mediators (gamma interferon [IFN-γ], interleukin-1β [IL-1β], IL-6, keratinocyte chemoattractant [KC], and IL-10) were measured in nasal washes and middle ear tissue homogenate. M. muris pretreatment decreased the median colonization density of NTHi from 6 × 105 CFU/ml to 9 × 103 CFU/ml (P = 0.0004). Only 1/12 M. muris-pretreated mice developed otitis media on day 5 compared to 8/15 mice with no pretreatment (8% versus 53%, P = 0.0192). Inflammation, clinical score, and weight loss were also lower in M. muris-pretreated mice. We have demonstrated that a single dose of a closely related commensal can delay onset of NTHi otitis media in vivo. Human challenge studies investigating prevention of NTHi colonization are warranted to reduce the global burden of otitis media and other NTHi diseases.
Collapse
|
25
|
Latham RD, Torrado M, Atto B, Walshe JL, Wilson R, Guss JM, Mackay JP, Tristram S, Gell DA. A heme-binding protein produced by Haemophilus haemolyticus inhibits non-typeable Haemophilus influenzae. Mol Microbiol 2019; 113:381-398. [PMID: 31742788 DOI: 10.1111/mmi.14426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/02/2023]
Abstract
Commensal bacteria serve as an important line of defense against colonisation by opportunisitic pathogens, but the underlying molecular mechanisms remain poorly explored. Here, we show that strains of a commensal bacterium, Haemophilus haemolyticus, make hemophilin, a heme-binding protein that inhibits growth of the opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) in culture. We purified the NTHi-inhibitory protein from H. haemolyticus and identified the hemophilin gene using proteomics and a gene knockout. An x-ray crystal structure of recombinant hemophilin shows that the protein does not belong to any of the known heme-binding protein folds, suggesting that it evolved independently. Biochemical characterisation shows that heme can be captured in the ferrous or ferric state, and with a variety of small heme-ligands bound, suggesting that hemophilin could function under a range of physiological conditions. Hemophilin knockout bacteria show a limited capacity to utilise free heme for growth. Our data suggest that hemophilin is a hemophore and that inhibition of NTHi occurs by heme starvation, raising the possibility that competition from hemophilin-producing H. haemolyticus could antagonise NTHi colonisation in the respiratory tract.
Collapse
Affiliation(s)
- Roger D Latham
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Mario Torrado
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - James L Walshe
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - J Mitchell Guss
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Stephen Tristram
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - David A Gell
- School of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
26
|
Identification and Characterization of " Haemophilus quentini" Strains Causing Invasive Disease in Ontario, Canada (2016 to 2018). J Clin Microbiol 2019; 57:JCM.01254-19. [PMID: 31578259 DOI: 10.1128/jcm.01254-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/07/2019] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is a well-established human pathogen capable of causing a range of respiratory and invasive diseases. Since the 1970s, it has been observed that a nontypeable cryptic genospecies of H. influenzae, most often biotype IV, has been associated with the genitourinary tracts of females and with invasive neonatal infections. This distinct genospecies has been provisionally named "Haemophilus quentini" Here, we report seven cases of invasive H. quentini disease in patients from Ontario, Canada, over a 2-year period. Significantly, while most reports of invasive disease with H. quentini to date have been in neonates, we observed five cases in adults (three in women of childbearing age and two in seniors) as well as two in neonates. Identification of H. quentini is challenging and was not possible for frontline laboratories, requiring work at the reference laboratory level. We describe in detail the biochemical results, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-Tof MS) results, and PCR results with several targets, including the 16S rRNA gene and multilocus sequence typing (MLST) genes, for the seven Ontario H. quentini isolates and several controls. Our data, combined with those of other publications, support the fact that H. quentini is distinct from H. influenzae and Haemophilus haemolyticus This organism is recognized as a pathogen of neonates, but we hypothesize that it may be underrecognized as an important pathogen in adults as well, particularly pregnant women. By sharing the detailed descriptions of these isolates, we hope to enable other laboratories to better identify H. quentini so that the true prevalence of this organism and disease can be explored.
Collapse
|
27
|
New therapeutic targets for the prevention of infectious acute exacerbations of COPD: role of epithelial adhesion molecules and inflammatory pathways. Clin Sci (Lond) 2019; 133:1663-1703. [PMID: 31346069 DOI: 10.1042/cs20181009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are among the leading causes of mortality worldwide, with the major contributor, chronic obstructive pulmonary disease (COPD) accounting for approximately 3 million deaths annually. Frequent acute exacerbations (AEs) of COPD (AECOPD) drive clinical and functional decline in COPD and are associated with accelerated loss of lung function, increased mortality, decreased health-related quality of life and significant economic costs. Infections with a small subgroup of pathogens precipitate the majority of AEs and consequently constitute a significant comorbidity in COPD. However, current pharmacological interventions are ineffective in preventing infectious exacerbations and their treatment is compromised by the rapid development of antibiotic resistance. Thus, alternative preventative therapies need to be considered. Pathogen adherence to the pulmonary epithelium through host receptors is the prerequisite step for invasion and subsequent infection of surrounding structures. Thus, disruption of bacterial-host cell interactions with receptor antagonists or modulation of the ensuing inflammatory profile present attractive avenues for therapeutic development. This review explores key mediators of pathogen-host interactions that may offer new therapeutic targets with the potential to prevent viral/bacterial-mediated AECOPD. There are several conceptual and methodological hurdles hampering the development of new therapies that require further research and resolution.
Collapse
|
28
|
Shehaj L, Choudary SK, Makwana KM, Gallo MC, Murphy TF, Kritzer JA. Small-Molecule Inhibitors of Haemophilus influenzae IgA1 Protease. ACS Infect Dis 2019; 5:1129-1138. [PMID: 31016966 PMCID: PMC6625846 DOI: 10.1021/acsinfecdis.9b00004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Newly identified, nontypable Haemophilus influenzae (H. influenza) strains represent a serious threat to global health. Due to the increasing prevalence of antibiotic resistance, virulence factors have emerged as potential therapeutic targets that would be less likely to promote resistance. IgA1 proteases are secreted virulence factors of many Gram-negative human pathogens. These enzymes play important roles in tissue invasion as well as evasion of the immune response, yet there has been limited work on pharmacological inhibitors. Here, we report the discovery of the first small molecule, nonpeptidic inhibitors of H. influenzae IgA1 proteases. We screened over 47 000 compounds in a biochemical assay using recombinant protease and identified a hit compound with micromolar potency. Preliminary structure-activity relationships produced additional inhibitors, two of which showed improved inhibition and selectivity for IgA protease over other serine proteases. We further showed dose-dependent inhibition against four different IgA1 protease variants collected from clinical isolates. These data support further development of IgA protease inhibitors as potential therapeutics for antibiotic-resistant H. influenza strains. The newly discovered inhibitors also represent valuable probes for exploring the roles of these proteases in bacterial colonization, invasion, and infection of mucosal tissues.
Collapse
Affiliation(s)
- Livia Shehaj
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, Massachusetts 02155, United States
| | - Santosh K. Choudary
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, Massachusetts 02155, United States
| | - Kamlesh M. Makwana
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, Massachusetts 02155, United States
| | - Mary C. Gallo
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 3435 Main St., Buffalo, NY 14203, United States
- Clinical and Translational Research Center, 875 Ellicott St., University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, United States
| | - Timothy F. Murphy
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 3435 Main St., Buffalo, NY 14203, United States
- Clinical and Translational Research Center, 875 Ellicott St., University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, United States
- Division of Infectious Disease, Department of Medicine, 875 Ellicott St., University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, United States
| | - Joshua A. Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, Massachusetts 02155, United States
| |
Collapse
|
29
|
Complete Whole-Genome Sequence of Haemophilus haemolyticus NCTC 10839. Microbiol Resour Announc 2019; 8:8/25/e00232-19. [PMID: 31221642 PMCID: PMC6588363 DOI: 10.1128/mra.00232-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus haemolyticus is a Gram-negative bacterium that is a commensal of the respiratory tract in humans. Here, we report the complete genome sequence available for Haemophilus haemolyticus strain NCTC 10839, which was originally isolated from the nasopharynx of a child.
Collapse
|
30
|
Hare KM, Chang AB, Smith-Vaughan HC, Bauert PA, Spain B, Beissbarth J, Grimwood K. Do combined upper airway cultures identify lower airway infections in children with chronic cough? Pediatr Pulmonol 2019; 54:907-913. [PMID: 31006971 DOI: 10.1002/ppul.24336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/11/2019] [Accepted: 03/07/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Obtaining lower airway specimens is important for guiding therapy in chronic lung infection but is difficult in young children unable to expectorate. While culture-based studies have assessed the diagnostic accuracy of nasopharyngeal or oropharyngeal specimens for identifying lower airway infection, none have used both together. We compared respiratory bacterial pathogens cultured from nasopharyngeal and oropharyngeal swabs with bronchoalveolar lavage (BAL) cultures as the "gold standard" to better inform the diagnosis of lower airway infection in children with chronic wet cough. METHODS Nasopharyngeal and oropharyngeal swabs and BAL fluid specimens were collected concurrently from consecutive children undergoing flexible bronchoscopy for chronic cough and cultured for bacterial pathogens. RESULTS In cultures from 309 children (median age, 2.3 years) with chronic endobronchial suppuration, all main pathogens detected (Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis) were more prevalent in nasopharyngeal than oropharyngeal swabs (37%, 34%, and 23% vs 21%, 6.2%, and 3.2%, respectively). Positive and negative predictive values for lower airway infection by any of these three pathogens were 63% (95% confidence interval [95% CI] 55, 70) and 85% (95% CI, 78, 91) for nasopharyngeal swabs, 65% (95% CI, 54, 75), and 66% (95% CI, 59, 72) for oropharyngeal swabs, and 61% (95% CI, 54,68), and 88% (95% CI, 81, 93) for both swabs, respectively. CONCLUSIONS Neither nasopharyngeal nor oropharyngeal swabs, alone or in combination, reliably predicted lower airway infection in children with chronic wet cough. Although upper airway specimens may be useful for bacterial carriage studies and monitoring antimicrobial resistance, their clinical utility in pediatric chronic lung disorders of endobronchial suppuration is limited.
Collapse
Affiliation(s)
- Kim M Hare
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Anne B Chang
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia.,Department of Respiratory Medicine, Queensland Children's Hospital, Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Heidi C Smith-Vaughan
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia.,School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Paul A Bauert
- Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Brian Spain
- Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Keith Grimwood
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast, Queensland, Australia
| |
Collapse
|
31
|
Yang Y, Ji P, Wang X, Zhou H, Wu J, Quan W, Shang A, Sun J, Gu C, Firrman J, Xiao W, Sun Z, Li D. Bronchoalveolar Lavage Fluid-Derived Exosomes: A Novel Role Contributing to Lung Cancer Growth. Front Oncol 2019; 9:197. [PMID: 31001469 PMCID: PMC6454045 DOI: 10.3389/fonc.2019.00197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/07/2019] [Indexed: 01/22/2023] Open
Abstract
Exosomes are nanovesicles produced by a number of different cell types and regarded as important mediators of cell-to-cell communication. Although bronchoalveolar lavage fluid (BALF) has been shown to be involved in the development of tumors, its role in lung cancer (LC) remains unclear. In this article, we systemically studied BALF-derived exosomes in LC. C57BL/6 mice were injected with Lewis lung carcinoma cells and exposed to non-typeable Haemophilus influenza (NTHi) lysate. The analysis showed that the growth of lung tumors in these mice was significantly enhanced compared with the control cohort (only exposure to air). Characterization of the exosomes derived from mouse BALF demonstrated elevated levels of tumor necrosis factor alpha and interleukin-6 in mice exposed to NTHi lysates. Furthermore, abnormal BALF-derived exosomes facilitated the development of LC in vitro and in vivo. The internalization of the BALF-derived exosomes contributed to the development of LC tumors. Collectively, our data demonstrated that exosomes in BALF are a key factor involved in the growth and progression of lung cancer.
Collapse
Affiliation(s)
- Yibao Yang
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Ji
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuan Wang
- Department of Pharmacy, Putuo People's Hospital, Shanghai, China
| | - Hao Zhou
- Department of Pharmacy, Putuo People's Hospital, Shanghai, China
| | - Junlu Wu
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenqing Quan
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Anquan Shang
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjun Sun
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenzheng Gu
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Agriculture Research Service, Eastern Regional Research Center, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Weidong Xiao
- Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA, United States
| | - Zujun Sun
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Drayß M, Claus H, Hubert K, Thiel K, Berger A, Sing A, van der Linden M, Vogel U, Lâm TT. Asymptomatic carriage of Neisseria meningitidis, Haemophilus influenzae, Streptococcus pneumoniae, Group A Streptococcus and Staphylococcus aureus among adults aged 65 years and older. PLoS One 2019; 14:e0212052. [PMID: 30735539 PMCID: PMC6368330 DOI: 10.1371/journal.pone.0212052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/10/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine the prevalence of Neisseria meningitidis, Haemophilus influenzae, Streptococcus pneumoniae, group A Streptococcus (GAS), and Staphylococcus aureus in asymptomatic elderly people and to unravel risk factors leading to colonization. METHODS A multi-centre cross-sectional study was conducted including 677 asymptomatic adults aged 65 years or more, living at home or in nursing homes. Study areas were Greater Aachen (North-Rhine-Westphalia) and Wuerzburg (Bavaria), both regions with medium to high population density. Nasal and oropharyngeal swabs as well as questionnaires were collected from October 2012 to May 2013. Statistical analysis included multiple logistic regression models. RESULTS The carriage rate was 1.9% ([95%CI: 1.0-3.3%]; 13/677) for H. influenzae, 0.3% ([95%CI: 0-1.1%]; 2/677) for N. meningitidis and 0% ([95% CI: 0-0.5%]; 0/677) for S. pneumoniae and GAS. Staphylococcus aureus was harboured by 28.5% of the individuals ([95% CI: 25.1-32.1%]; 193/677) and 0.7% ([95% CI: 0.2-1.7%]; 5/677) were positive for methicillin-resistant S. aureus. Among elderly community-dwellers colonization with S. aureus was significantly associated with higher educational level (adjusted OR: 1.905 [95% CI: 1.248-2.908]; p = 0.003). Among nursing home residents colonization was associated with being married (adjusted OR: 3.367 [1.502-7.546]; p = 0.003). CONCLUSION The prevalence of N. meningitidis, H. influenzae, S. pneumoniae and GAS was low among older people in Germany. The S. aureus rate was expectedly high, while MRSA was found in less than 1% of the individuals.
Collapse
Affiliation(s)
- Maria Drayß
- Institute for Hygiene and Microbiology, National Reference Centre for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, National Reference Centre for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| | - Kerstin Hubert
- Institute for Hygiene and Microbiology, National Reference Centre for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| | - Katrin Thiel
- Institute for Hygiene and Microbiology, National Reference Centre for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| | - Anja Berger
- Bavarian Health and Food Safety Authority, National Consulting Laboratory for Diphtheria, Oberschleißheim, Germany
| | - Andreas Sing
- Bavarian Health and Food Safety Authority, National Consulting Laboratory for Diphtheria, Oberschleißheim, Germany
| | - Mark van der Linden
- Institute of Medical Microbiology, National Reference Centre for Streptococci, University Hospital (RWTH), Aachen, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, National Reference Centre for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, National Reference Centre for Meningococci and Haemophilus influenzae, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
33
|
Prudent E, Raoult D. Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria. FEMS Microbiol Rev 2018; 43:88-107. [DOI: 10.1093/femsre/fuy040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Elsa Prudent
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
34
|
Osman KL, Jefferies JMC, Woelk CH, Devos N, Pascal TG, Mortier MC, Devaster JM, Wilkinson TMA, Cleary DW, Clarke SC. Patients with Chronic Obstructive Pulmonary Disease harbour a variation of Haemophilus species. Sci Rep 2018; 8:14734. [PMID: 30282975 PMCID: PMC6170463 DOI: 10.1038/s41598-018-32973-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/19/2018] [Indexed: 02/04/2023] Open
Abstract
H. haemolyticus is often misidentified as NTHi due to their close phylogenetic relationship. Differentiating between the two is important for correct identification and appropriate treatment of infective organism and to ensure any role of H. haemolyticus in disease is not being overlooked. Speciation however is not completely reliable by culture and PCR methods due to the loss of haemolysis by H. haemolyticus and the heterogeneity of NTHi. Haemophilus isolates from COPD as part of the AERIS study (ClinicalTrials - NCT01360398) were speciated by analysing sequence data for the presence of molecular markers. Further investigation into the genomic relationship was carried out using average nucleotide identity and phylogeny of allelic and genome alignments. Only 6.3% were identified as H. haemolyticus. Multiple in silico methods were able to distinguish H. haemolyticus from NTHi. However, no single gene target was found to be 100% accurate. A group of omp2 negative NTHi were observed to be phylogenetically divergent from H. haemolyticus and remaining NTHi. The presence of an atypical group from a geographically and disease limited set of isolates supports the theory that the heterogeneity of NTHi may provide a genetic continuum between NTHi and H. haemolyticus.
Collapse
Affiliation(s)
- Karen L Osman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK
| | - Johanna M C Jefferies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK.,Merck Exploratory Science Center, Merck Research Laboratories, Cambridge, MA, USA
| | | | | | | | | | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK.,NIHR Southampton Respiratory Biomedical Research Unit, Southampton, United Kingdom.,Wessex Investigational Sciences Hub, University of Southampton, Southampton, United Kingdom
| | - David W Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK.,NIHR Southampton Respiratory Biomedical Research Unit, Southampton, United Kingdom
| | - Stuart C Clarke
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK. .,NIHR Biomedical Research Centre, University of Southampton, Southampton, United Kingdom. .,Wessex Investigational Sciences Hub, University of Southampton, Southampton, United Kingdom. .,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom. .,Global Health Research Institute, University of Southampton, Southampton, United Kingdom.
| | | |
Collapse
|
35
|
Changes in IgA Protease Expression Are Conferred by Changes in Genomes during Persistent Infection by Nontypeable Haemophilus influenzae in Chronic Obstructive Pulmonary Disease. Infect Immun 2018; 86:IAI.00313-18. [PMID: 29760213 DOI: 10.1128/iai.00313-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an exclusively human pathobiont that plays a critical role in the course and pathogenesis of chronic obstructive pulmonary disease (COPD). NTHi causes acute exacerbations of COPD and also causes persistent infection of the lower airways. NTHi expresses four IgA protease variants (A1, A2, B1, and B2) that play different roles in virulence. Expression of IgA proteases varies among NTHi strains, but little is known about the frequency and mechanisms by which NTHi modulates IgA protease expression during infection in COPD. To assess expression of IgA protease during natural infection in COPD, we studied IgA protease expression by 101 persistent strains (median duration of persistence, 161 days; range, 2 to 1,422 days) collected longitudinally from patients enrolled in a 20-year study of COPD upon initial acquisition and immediately before clearance from the host. Upon acquisition, 89 (88%) expressed IgA protease. A total of 16 of 101 (16%) strains of NTHi altered expression of IgA protease during persistence. Indels and slipped-strand mispairing of mononucleotide repeats conferred changes in expression of igaA1, igaA2, and igaB1 Strains with igaB2 underwent frequent changes in expression of IgA protease B2 during persistence, mediated by slipped-strand mispairing of a 7-nucleotide repeat, TCAAAAT, within the open reading frame of igaB2 We conclude that changes in iga gene sequences result in changes in expression of IgA proteases by NTHi during persistent infection in the respiratory tract of patients with COPD.
Collapse
|
36
|
Beissbarth J, Binks MJ, Marsh RL, Chang AB, Leach AJ, Smith-Vaughan HC. Recommendations for application of Haemophilus influenzae PCR diagnostics to respiratory specimens for children living in northern Australia: a retrospective re-analysis. BMC Res Notes 2018; 11:323. [PMID: 29784027 PMCID: PMC5963172 DOI: 10.1186/s13104-018-3429-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/10/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Haemophilus haemolyticus can be misidentified as nontypeable Haemophilus influenzae (NTHi) due to their phenotypic similarities in microbiological culture. This study aimed to determine the prevalence of misidentified NTHi in respiratory specimens from children living in northern Australia. RESULTS Among respiratory specimens collected in studies between 2010 and 2013, retrospective PCR analysis found that routine culture misidentified H. haemolyticus as NTHi in 0.3% (3/879) of nasal specimens, 25% (14/55) of bronchoalveolar lavage and 40% (12/30) of throat specimens. Therefore, in this population, PCR-based NTHi diagnostics are indicated for throat and bronchoalveolar specimens, but not for nasal specimens.
Collapse
Affiliation(s)
- Jemima Beissbarth
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Australia.
| | - Michael J Binks
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Australia
| | - Robyn L Marsh
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Australia
| | - Anne B Chang
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Australia.,Department of Respiratory Medicine, Lady Cilento Children's Hospital, PO Box 3474, South Brisbane, QLD, 4101, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, QLD, 4001, Australia
| | - Amanda J Leach
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Australia
| | - Heidi C Smith-Vaughan
- Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Australia
| |
Collapse
|
37
|
Pettigrew MM, Ahearn CP, Gent JF, Kong Y, Gallo MC, Munro JB, D'Mello A, Sethi S, Tettelin H, Murphy TF. Haemophilus influenzae genome evolution during persistence in the human airways in chronic obstructive pulmonary disease. Proc Natl Acad Sci U S A 2018; 115:E3256-E3265. [PMID: 29555745 PMCID: PMC5889651 DOI: 10.1073/pnas.1719654115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) exclusively colonize and infect humans and are critical to the pathogenesis of chronic obstructive pulmonary disease (COPD). In vitro and animal models do not accurately capture the complex environments encountered by NTHi during human infection. We conducted whole-genome sequencing of 269 longitudinally collected cleared and persistent NTHi from a 15-y prospective study of adults with COPD. Genome sequences were used to elucidate the phylogeny of NTHi isolates, identify genomic changes that occur with persistence in the human airways, and evaluate the effect of selective pressure on 12 candidate vaccine antigens. Strains persisted in individuals with COPD for as long as 1,422 d. Slipped-strand mispairing, mediated by changes in simple sequence repeats in multiple genes during persistence, regulates expression of critical virulence functions, including adherence, nutrient uptake, and modification of surface molecules, and is a major mechanism for survival in the hostile environment of the human airways. A subset of strains underwent a large 400-kb inversion during persistence. NTHi does not undergo significant gene gain or loss during persistence, in contrast to other persistent respiratory tract pathogens. Amino acid sequence changes occurred in 8 of 12 candidate vaccine antigens during persistence, an observation with important implications for vaccine development. These results indicate that NTHi alters its genome during persistence by regulation of critical virulence functions primarily by slipped-strand mispairing, advancing our understanding of how a bacterial pathogen that plays a critical role in COPD adapts to survival in the human respiratory tract.
Collapse
Affiliation(s)
- Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510
| | - Christian P Ahearn
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14203
| | - Janneane F Gent
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510
| | - Yong Kong
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06510
- W.M. Keck Foundation Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT 06510
| | - Mary C Gallo
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14203
| | - James B Munro
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Adonis D'Mello
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sanjay Sethi
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Department of Medicine, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Timothy F Murphy
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203;
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14203
| |
Collapse
|
38
|
Osman KL, Jefferies JM, Woelk CH, Cleary DW, Clarke SC. The adhesins of non-typeable Haemophilus influenzae. Expert Rev Anti Infect Ther 2018; 16:187-196. [PMID: 29415569 DOI: 10.1080/14787210.2018.1438263] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen of the respiratory tract and the greatest contributor to invasive Haemophilus disease. Additionally, in children, NTHi is responsible for the majority of otitis media (OM) which can lead to chronic infection and hearing loss. In adults, NTHi infection in the lungs is responsible for the onset of acute exacerbations in chronic obstructive pulmonary disease (COPD). Unfortunately, there is currently no vaccine available to protect against NTHi infections. Areas covered: NTHi uses an arsenal of adhesins to colonise the respiratory epithelium. The adhesins also have secondary roles that aid in the virulence of NTHi, including mechanisms that avoid immune clearance, adjust pore size to avoid antimicrobial destruction, form micro-colonies and invoke phase variation for protein mediation. Bacterial adhesins can also be ideal antigens for subunit vaccine design due to surface exposure and immunogenic capabilities. Expert commentary: The host-pathogen interactions of the NTHi adhesins are not fully investigated. The relationship between adhesins and the extracellular matrix (ECM) play a part in the success of NTHi colonisation and virulence by immune evasion, migration and biofilm development. Further research into these immunogenic proteins would further our understanding and enable a basis for better combatting NTHi disease.
Collapse
Affiliation(s)
- Karen L Osman
- a Faulty of Medicine , University of Southampton , Southampton , UK
| | | | - Christopher H Woelk
- a Faulty of Medicine , University of Southampton , Southampton , UK.,b Merck Exploratory Science Center , Merck Research Laboratories , Cambridge , MA , USA
| | - David W Cleary
- a Faulty of Medicine , University of Southampton , Southampton , UK.,c Faculty of Medicine and Institute for Life Sciences , University of Southampton , Southampton SO17 1BJ , UK.,d NIHR Southampton Biomedical Research Centre , University Hospital Southampton Foundation NHS Trust , Southampton SO16 6YD , UK
| | - Stuart C Clarke
- a Faulty of Medicine , University of Southampton , Southampton , UK.,c Faculty of Medicine and Institute for Life Sciences , University of Southampton , Southampton SO17 1BJ , UK.,d NIHR Southampton Biomedical Research Centre , University Hospital Southampton Foundation NHS Trust , Southampton SO16 6YD , UK.,e Global Health Research Institute , University of Southampton , Southampton SO17 1BJ , UK
| |
Collapse
|
39
|
Martin JM, Hoberman A, Shaikh N, Shope T, onika Bhatnagar S, Block SL, Haralam MA, Kurs-Lasky M, Green M. Changes Over Time in Nasopharyngeal Colonization in Children Under 2 Years of Age at the Time of Diagnosis of Acute Otitis Media (1999-2014). Open Forum Infect Dis 2018; 5:ofy036. [PMID: 29588912 PMCID: PMC5842555 DOI: 10.1093/ofid/ofy036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/15/2018] [Indexed: 11/14/2022] Open
Abstract
Background In children with acute otitis media (AOM), a decrease in nasopharyngeal (NP) colonization with vaccine serotypes of Streptococcus pneumoniae has been noted since the introduction of pneumococcal conjugate vaccines (PCVs). The purpose of this study is to describe corresponding changes in colonization with Haemophilus influenzae. Methods In 4 separate studies, we obtained NP cultures from children aged 6-23 months presenting with AOM. Cohort 1 was recruited before routine use of PCV7 (1999-2000); 93% of children in cohort 2 (2003-2005) and 100% in cohort 3 (2006-2009) received ≥2 doses of PCV7. All children in cohort 4 (2012-2014) received ≥2 doses of PCV13. Isolates of H. influenzae were tested for ß-lactamase production; ß-lactamase negative isolates from cohorts 3 and 4 underwent susceptibility testing. Results A total of 899 children were evaluated. NP colonization with H. influenzae was found in 26% of children in cohort 1 (n = 175), 41% in cohort 2 (n = 87), 33% in cohort 3 (n = 282), and 29% in cohort 4 (n = 355). Colonization with H. influenzae increased initially from cohort 1 to cohort 2 (P = .01), then decreased across cohorts 2, 3, and 4 (P = .03, test for trend). The prevalence rates of ß-lactamase production were 27%, 42%, 33%, and 30% in each of the 4 cohorts, respectively (P = .50). Conclusions Although an initial increase in H. influenzae colonization was observed, suggesting an impact of PCVs, the most recent prevalence rates of NP colonization with H. influenzae and ß-lactamase production were like those observed before universal administration of PCV7. This knowledge is critical to guide appropriate treatment recommendations for children with AOM.
Collapse
Affiliation(s)
- Judith M Martin
- Divisions of General Academic Pediatrics and Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
- Correspondence: J. M. Martin, MD, Division of General Academic Pediatrics, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 3414 Fifth Ave, CHOB 3rd Floor Room 305, Pittsburgh, PA 15213 ()
| | - Alejandro Hoberman
- Divisions of General Academic Pediatrics and Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nader Shaikh
- Divisions of General Academic Pediatrics and Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy Shope
- Divisions of General Academic Pediatrics and Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - S onika Bhatnagar
- Divisions of General Academic Pediatrics and Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stan L Block
- Kentucky Pediatric Research, Inc., Bardstown, Kentucky
| | - Mary Ann Haralam
- Divisions of General Academic Pediatrics and Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marcia Kurs-Lasky
- Divisions of General Academic Pediatrics and Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Green
- Divisions of General Academic Pediatrics and Pediatric Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine and Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
Mayhew D, Devos N, Lambert C, Brown JR, Clarke SC, Kim VL, Magid-Slav M, Miller BE, Ostridge KK, Patel R, Sathe G, Simola DF, Staples KJ, Sung R, Tal-Singer R, Tuck AC, Van Horn S, Weynants V, Williams NP, Devaster JM, Wilkinson TMA. Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax 2018; 73:422-430. [PMID: 29386298 PMCID: PMC5909767 DOI: 10.1136/thoraxjnl-2017-210408] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022]
Abstract
Background Alterations in the composition of the lung microbiome associated with adverse clinical outcomes, known as dysbiosis, have been implicated with disease severity and exacerbations in COPD. Objective To characterise longitudinal changes in the lung microbiome in the AERIS study (Acute Exacerbation and Respiratory InfectionS in COPD) and their relationship with associated COPD outcomes. Methods We surveyed 584 sputum samples from 101 patients with COPD to analyse the lung microbiome at both stable and exacerbation time points over 1 year using high-throughput sequencing of the 16S ribosomal RNA gene. We incorporated additional lung microbiology, blood markers and in-depth clinical assessments to classify COPD phenotypes. Results The stability of the lung microbiome over time was more likely to be decreased in exacerbations and within individuals with higher exacerbation frequencies. Analysis of exacerbation phenotypes using a Markov chain model revealed that bacterial and eosinophilic exacerbations were more likely to be repeated in subsequent exacerbations within a subject, whereas viral exacerbations were not more likely to be repeated. We also confirmed the association of bacterial genera, including Haemophilus and Moraxella, with disease severity, exacerbation events and bronchiectasis. Conclusions Subtypes of COPD have distinct bacterial compositions and stabilities over time. Some exacerbation subtypes have non-random probabilities of repeating those subtypes in the future. This study provides insights pertaining to the identification of bacterial targets in the lung and biomarkers to classify COPD subtypes and to determine appropriate treatments for the patient. Trial registration number Results, NCT01360398.
Collapse
Affiliation(s)
- David Mayhew
- Computational Biology, Target Sciences, GSK R&D, King of Prussia, Pennsylvania, USA
| | | | | | - James R Brown
- Computational Biology, Target Sciences, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Stuart C Clarke
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK.,Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, UK
| | - Viktoriya L Kim
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, UK
| | - Michal Magid-Slav
- Computational Biology, Target Sciences, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Bruce E Miller
- Respiratory Therapy Area Unit, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Kristoffer K Ostridge
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, UK
| | - Ruchi Patel
- Target and Pathway Validation, Target Sciences, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Ganesh Sathe
- Target and Pathway Validation, Target Sciences, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Daniel F Simola
- Computational Biology, Target Sciences, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Karl J Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK.,Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, UK.,Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | - Ruby Sung
- Respiratory Therapy Area Unit, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Ruth Tal-Singer
- Respiratory Therapy Area Unit, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Andrew C Tuck
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | - Stephanie Van Horn
- Target and Pathway Validation, Target Sciences, GSK R&D, King of Prussia, Pennsylvania, USA
| | | | - Nicholas P Williams
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, UK
| | | | - Tom M A Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK.,Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, UK.,Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | | |
Collapse
|
41
|
Murphy TF, Kirkham C, Gallo MC, Yang Y, Wilding GE, Pettigrew MM. Immunoglobulin A Protease Variants Facilitate Intracellular Survival in Epithelial Cells By Nontypeable Haemophilus influenzae That Persist in the Human Respiratory Tract in Chronic Obstructive Pulmonary Disease. J Infect Dis 2017; 216:1295-1302. [PMID: 28968876 DOI: 10.1093/infdis/jix471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023] Open
Abstract
Background Nontypeable Haemophilus influenzae (NTHi) persists in the airways in chronic obstructive pulmonary disease (COPD). NTHi expresses 4 immunoglobulin (Ig)A protease variants (A1, A2, B1, B2) with distinct cleavage specificities for human IgA1. Little is known about the different roles of IgA protease variants in NTHi infection. Methods Twenty-six NTHi isolates from a 20-year longitudinal study of COPD were analyzed for IgA protease expression, survival in human respiratory epithelial cells, and cleavage of lysosomal-associated membrane protein 1 (LAMP1). Results IgA protease B1 and B2-expressing strains showed greater intracellular survival in host epithelial cells than strains expressing no IgA protease (P < .001) or IgA protease A1 or A2 (P < .001). Strains that lost IgA protease expression showed reduced survival in host cells compared with the same strain that expressed IgA protease B1 (P = .006) or B2 (P = .015). IgA proteases B1 and B2 cleave LAMP1. Passage of strains through host cells selected for expression of IgA proteases B1 and B2 but not A1. Conclusions IgA proteases B1 and B2 cleave LAMP1 and mediate intracellular survival in respiratory epithelial cells. Intracellular persistence of NTHi selects for expression of IgA proteases B1 and B2. The variants of NTHi IgA proteases play distinct roles in pathogenesis of infection.
Collapse
Affiliation(s)
- Timothy F Murphy
- Division of Infectious Diseases, Department of Medicine.,Department of Microbiology and Immunology.,Clinical and Translational Research Center, University at Buffalo, the State University of New York
| | - Charmaine Kirkham
- Division of Infectious Diseases, Department of Medicine.,Clinical and Translational Research Center, University at Buffalo, the State University of New York
| | - Mary C Gallo
- Department of Microbiology and Immunology.,Clinical and Translational Research Center, University at Buffalo, the State University of New York
| | | | | | - Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
| |
Collapse
|
42
|
Lang JM, Coil DA, Neches RY, Brown WE, Cavalier D, Severance M, Hampton-Marcell JT, Gilbert JA, Eisen JA. A microbial survey of the International Space Station (ISS). PeerJ 2017; 5:e4029. [PMID: 29492330 PMCID: PMC5827671 DOI: 10.7717/peerj.4029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Modern advances in sequencing technology have enabled the census of microbial members of many natural ecosystems. Recently, attention is increasingly being paid to the microbial residents of human-made, built ecosystems, both private (homes) and public (subways, office buildings, and hospitals). Here, we report results of the characterization of the microbial ecology of a singular built environment, the International Space Station (ISS). This ISS sampling involved the collection and microbial analysis (via 16S rDNA PCR) of 15 surfaces sampled by swabs onboard the ISS. This sampling was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Learning more about the microbial inhabitants of the "buildings" in which we travel through space will take on increasing importance, as plans for human exploration continue, with the possibility of colonization of other planets and moons. RESULTS Sterile swabs were used to sample 15 surfaces onboard the ISS. The sites sampled were designed to be analogous to samples collected for (1) the Wildlife of Our Homes project and (2) a study of cell phones and shoes that were concurrently being collected for another component of Project MERCCURI. Sequencing of the 16S rDNA genes amplified from DNA extracted from each swab was used to produce a census of the microbes present on each surface sampled. We compared the microbes found on the ISS swabs to those from both homes on Earth and data from the Human Microbiome Project. CONCLUSIONS While significantly different from homes on Earth and the Human Microbiome Project samples analyzed here, the microbial community composition on the ISS was more similar to home surfaces than to the human microbiome samples. The ISS surfaces are species-rich with 1,036-4,294 operational taxonomic units (OTUs per sample). There was no discernible biogeography of microbes on the 15 ISS surfaces, although this may be a reflection of the small sample size we were able to obtain.
Collapse
Affiliation(s)
- Jenna M. Lang
- Genome Center, University of California, Davis, CA, United States of America
| | - David A. Coil
- Genome Center, University of California, Davis, CA, United States of America
| | - Russell Y. Neches
- Genome Center, University of California, Davis, CA, United States of America
| | - Wendy E. Brown
- Science Cheerleader, United States of America
- Biomedical Engineering, University of California, Davis, CA, United States of America
| | - Darlene Cavalier
- Science Cheerleader, United States of America
- The Consortium for Science, Policy & Outcomes, Arizona State University, Tempe, AZ, United States of America
- Scistarter.org, United States of America
| | - Mark Severance
- Science Cheerleader, United States of America
- Scistarter.org, United States of America
| | - Jarrad T. Hampton-Marcell
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States of America
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Jack A. Gilbert
- Argonne National Laboratory, University of Chicago, Lemont, IL, United States of America
- Institute for Genomics and Systems Biology, Argonne National Laboratory, Lemont, IL, United States of America
| | - Jonathan A. Eisen
- Genome Center, University of California, Davis, CA, United States of America
- Evolution and Ecology, University of CaliforniaDavis, CA, United States of America
- Medical Microbiology and Immunology, University of California, Davis, CA, United States of America
| |
Collapse
|
43
|
Kaur R, Wischmeyer J, Morris M, Pichichero ME. Comparison of direct-plating and broth-enrichment culture methods for detection of potential bacterial pathogens in respiratory secretions. J Med Microbiol 2017; 66:1539-1544. [PMID: 29034852 DOI: 10.1099/jmm.0.000587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE We compared the recovery of potential respiratory bacterial pathogens and normal flora from nasopharyngeal specimens collected from children during health and at the onset of acute otitis media (AOM) by selective direct-plating and overnight broth-enrichment. METHODS Overall, 3442 nasal wash (NW) samples collected from young children were analysed from a 10-year prospective study. NWs were cultured by (1) direct-plating to TSAII/5 % sheep blood agar and chocolate agar plates and (2) overnight broth-enrichment in BacT/ALERT SA-broth followed by plating. Standard microbiology techniques were applied to identify three dominant respiratory bacterial pathogens: Streptococcus pneumoniae (Spn), Haemophilus influenzae (Hflu) and Moraxella catarrhalis (Mcat) as well as two common nasal flora, Staphylococcus aureus (SA) and alpha-haemolytic Streptococci (AHS).Results/Key findings. Direct-plating of NW resulted in isolation of Spn from 37.8 %, Hflu from 13.6 % and Mcat from 33.2 % of samples. In comparison, overnight broth-enrichment isolated fewer Spn (30.1 %), Hflu (6.2 %) and Mcat (16.2 %) (P<0.001-0.0001). Broth-enrichment resulted in significant increased isolation of SA (6.0 %) and AHS (30.1 %) (P<0.0001). Competition between bacterial species in broth when both species were detected by direct-plating was assessed, and it was found that SA and AHS out-competed other species during broth-enrichment when samples were collected from healthy children but not during AOM. In middle ear fluids (MEF) at the onset of AOM, broth-enrichment resulted in higher recovery of Spn (+10.4 %, P<0.001), Hflu (+4.4 %, P=0.39) and Mcat (+13.5 %, <0.001). CONCLUSION Broth-enrichment significantly reduces the accurate detection of bacterial respiratory pathogens and increases identification of SA and AHS in NW. Broth-enrichment improves detection of bacterial respiratory pathogens in MEF samples.
Collapse
Affiliation(s)
- Ravinder Kaur
- Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, 1425 Portland Avenue, Rochester, NY 14621, USA
| | - Jareth Wischmeyer
- Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, 1425 Portland Avenue, Rochester, NY 14621, USA
| | - Matthew Morris
- Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, 1425 Portland Avenue, Rochester, NY 14621, USA
| | - Michael E Pichichero
- Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, 1425 Portland Avenue, Rochester, NY 14621, USA
| |
Collapse
|
44
|
Gao K, Lai Y, Huang J, Wang Y, Wang X, Che G. [Preoperatiove Airway Bacterial Colonization: the Missing Link between Non-small Cell Lung Cancer Following Lobectomy and Postoperative Pneumonia?]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 20:239-247. [PMID: 28442012 PMCID: PMC5999674 DOI: 10.3779/j.issn.1009-3419.2017.04.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
背景与目的 外科手术是目前治疗肺癌的主要手段,肺癌患者围术期死亡的主要原因仍是术后肺炎。已有的研究结果显示致病性气道定植菌被认为是术后肺部并发症的一个独立危险因素,本研究旨在探讨术前致病性气道定植菌的存在与术后发生肺炎的关系及其危险因素。 方法 横断面调查2014年5月至2015年1月连续收治于成都市6家三级甲等医院胸外科行手术治疗的125例非小细胞肺癌患者,术前经纤维支气管镜取气管及支气管内液细菌学标本,并检测术前血清肺表面活性蛋白D(surfactant protein D, SP-D)水平,术后肺部相关并发症进行分析。 结果 肺癌患者术前合并致病性气道定植菌的发生率为15.2%(19/125),以革兰氏阴性菌为主(19/22, 86.36%);肺癌患者术前合并致病性气道定植菌的高危因素为:高龄(≥75岁)和长期吸烟史(吸烟指数≥400支/年);术后肺部相关并发症和术后肺炎发生率在肺癌合并致病性气道定植菌组(42.11%, 26.32%)均显著高于非合并组(16.04%, 6.60%)(P=0.021, P=0.019)。术前血清SP-D浓度在肺癌合并致病性气道定植菌(31.25±6.09)显著高于非合并组(28.17±5.23)(P=0.023)。并发术后肺炎患者中气道致病性定值菌发生率为41.67%(5/12),其发生率是无手术后肺炎患者的3.4倍(OR=3.363, 95%CI: 1.467-7.711)。 结论 肺癌患者合并致病性气道定植菌与术后肺炎发生密切相关,且高危险因素是高龄和长期吸烟史。
Collapse
Affiliation(s)
- Ke Gao
- Department of Thoracic and Cardiovascular Surgery, the Second People's Hospital of Chengdu, Chengdu 610017, China;Department of Thoracic and Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yutian Lai
- Department of Thoracic and Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jian Huang
- Department of Thoracic and Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yifan Wang
- Department of Thoracic and Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaowei Wang
- Department of Thoracic and Cardiovascular Surgery, the Second People's Hospital of Chengdu, Chengdu 610017, China
| | - Guowei Che
- Department of Thoracic and Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
45
|
Rapid Differentiation of Haemophilus influenzae and Haemophilus haemolyticus by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry with ClinProTools Mass Spectrum Analysis. J Clin Microbiol 2017. [PMID: 28637909 DOI: 10.1128/jcm.00267-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Haemophilus influenzae is associated with severe invasive disease, while Haemophilus haemolyticus is considered part of the commensal flora in the human respiratory tract. Although the addition of a custom mass spectrum library into the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system could improve identification of these two species, the establishment of such a custom database is technically complicated and requires a large amount of resources, which most clinical laboratories cannot afford. In this study, we developed a mass spectrum analysis model with 7 mass peak biomarkers for the identification of H. influenzae and H. haemolyticus using the ClinProTools software. We evaluated the diagnostic performance of this model using 408 H. influenzae and H. haemolyticus isolates from clinical respiratory specimens from 363 hospitalized patients and compared the identification results with those obtained with the Bruker IVD MALDI Biotyper. The IVD MALDI Biotyper identified only 86.9% of H. influenzae (311/358) and 98.0% of H. haemolyticus (49/50) clinical isolates to the species level. In comparison, the ClinProTools mass spectrum model could identify 100% of H. influenzae (358/358) and H. haemolyticus (50/50) clinical strains to the species level and significantly improved the species identification rate (McNemar's test, P < 0.0001). In conclusion, the use of ClinProTools demonstrated an alternative way for users lacking special expertise in mass spectrometry to handle closely related bacterial species when the proprietary spectrum library failed. This approach should be useful for the differentiation of other closely related bacterial species.
Collapse
|
46
|
Price EP, Harris TM, Spargo J, Nosworthy E, Beissbarth J, Chang AB, Smith-Vaughan HC, Sarovich DS. Simultaneous identification of Haemophilus influenzae and Haemophilus haemolyticus using real-time PCR. Future Microbiol 2017; 12:585-593. [PMID: 28604066 DOI: 10.2217/fmb-2016-0215] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIM To design a highly specific and sensitive multiplex real-time PCR assay for the differentiation of the pathogen Haemophilus influenzae from its nonpathogenic near-neighbor Haemophilus haemolyticus. MATERIALS & METHODS A comparison of 380 Haemophilus spp. genomes was used to identify loci specific for each species. Novel PCR assays targeting H. haemolyticus (hypD) and H. influenzae (siaT) were designed. RESULTS & DISCUSSION PCR screening across 143 isolates demonstrated 100% specificity for hypD and siaT. These two assays were multiplexed with the recently described fucP assay for further differentiation among H. influenzae. CONCLUSION The triplex assay provides rapid, unambiguous, sensitive and highly specific genotyping results for the simultaneous detection of hypD and siaT, including fucose-positive H. influenzae (fucP), in a single PCR.
Collapse
Affiliation(s)
- Erin P Price
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia.,Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Tegan M Harris
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Jessie Spargo
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Elizabeth Nosworthy
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Anne B Chang
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | | | - Derek S Sarovich
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia.,Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
47
|
Clarke C, Bakaletz LO, Ruiz-Guiñazú J, Borys D, Mrkvan T. Impact of protein D-containing pneumococcal conjugate vaccines on non-typeable Haemophilus influenzae acute otitis media and carriage. Expert Rev Vaccines 2017; 16:1-14. [PMID: 28571504 DOI: 10.1080/14760584.2017.1333905] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Protein D-containing vaccines may decrease acute otitis media (AOM) burden and nasopharyngeal carriage of non-typeable Haemophilus influenzae (NTHi). Protein D-containing pneumococcal conjugate vaccine PHiD-CV (Synflorix, GSK Vaccines) elicits robust immune responses against protein D. However, the phase III Clinical Otitis Media and PneumoniA Study (COMPAS), assessing PHiD-CV efficacy against various pneumococcal diseases, was not powered to demonstrate efficacy against NTHi; only trends of protective efficacy against NTHi AOM in children were shown. Areas covered: This review aims to consider all evidence available to date from pre-clinical and clinical phase III studies together with further evidence emerging from post-marketing studies since PHiD-CV has been introduced into routine clinical practice worldwide, to better describe the clinical utility of protein D in preventing AOM due to NTHi and its impact on NTHi nasopharyngeal carriage. Expert commentary: Protein D is an effective carrier protein in conjugate vaccines and evidence gathered from pre-clinical, clinical and observational studies suggest that it also elicits immune response that can help to reduce the burden of AOM due to NTHi. There remains a need to develop improved vaccines for prevention of NTHi disease, which could be achieved by combining protein D with other antigens.
Collapse
Affiliation(s)
- Christopher Clarke
- a Department of Vaccine Research and Development, GSK Vaccines , Wavre , Belgium
| | - Lauren O Bakaletz
- b Center for Microbial Pathogenesis , The Research Institute at Nationwide Children's Hospital , Columbus , OH , USA.,c The Ohio State University College of Medicine , Columbus , OH , USA
| | - Javier Ruiz-Guiñazú
- a Department of Vaccine Research and Development, GSK Vaccines , Wavre , Belgium
| | - Dorota Borys
- a Department of Vaccine Research and Development, GSK Vaccines , Wavre , Belgium
| | - Tomas Mrkvan
- a Department of Vaccine Research and Development, GSK Vaccines , Wavre , Belgium
| |
Collapse
|
48
|
Ahearn CP, Gallo MC, Murphy TF. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Pathog Dis 2017; 75:3753446. [PMID: 28449098 PMCID: PMC5437125 DOI: 10.1093/femspd/ftx042] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is the most common bacterial cause of infection of the lower airways in adults with chronic obstructive pulmonary disease (COPD). Infection of the COPD airways causes acute exacerbations, resulting in substantial morbidity and mortality. NTHi has evolved multiple mechanisms to establish infection in the hostile environment of the COPD airways, allowing the pathogen to persist in the airways for months to years. Persistent infection of the COPD airways contributes to chronic airway inflammation that increases symptoms and accelerates the progressive loss of pulmonary function, which is a hallmark of the disease. Persistence mechanisms of NTHi include the expression of multiple redundant adhesins that mediate binding to host cellular and extracellular matrix components. NTHi evades host immune recognition and clearance by invading host epithelial cells, forming biofilms, altering gene expression and displaying surface antigenic variation. NTHi also binds host serum factors that confer serum resistance. Here we discuss the burden of COPD and the role of NTHi infections in the course of the disease. We provide an overview of NTHi mechanisms of persistence that allow the pathogen to establish a niche in the hostile COPD airways.
Collapse
Affiliation(s)
- Christian P. Ahearn
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Mary C. Gallo
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Timothy F. Murphy
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Division of Infectious Disease, Department of Medicine, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
49
|
Pizzutto SJ, Hare KM, Upham JW. Bronchiectasis in Children: Current Concepts in Immunology and Microbiology. Front Pediatr 2017; 5:123. [PMID: 28611970 PMCID: PMC5447051 DOI: 10.3389/fped.2017.00123] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/08/2017] [Indexed: 12/26/2022] Open
Abstract
Bronchiectasis is a complex chronic respiratory condition traditionally characterized by chronic infection, airway inflammation, and progressive decline in lung function. Early diagnosis and intensive treatment protocols can stabilize or even improve the clinical prognosis of children with bronchiectasis. However, understanding the host immunologic mechanisms that contribute to recurrent infection and prolonged inflammation has been identified as an important area of research that would contribute substantially to effective prevention strategies for children at risk of bronchiectasis. This review will focus on the current understanding of the role of the host immune response and important pathogens in the pathogenesis of bronchiectasis (not associated with cystic fibrosis) in children.
Collapse
Affiliation(s)
- Susan J Pizzutto
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Kim M Hare
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - John W Upham
- Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Raclavsky V, Stromerova N, Safarova D, Bardon J, Zatloukal J, Zapalka M, Jakubec P, Navratilova L, Novotny R. McRAPD unlike MALDI-TOF MS is a suitable candidate for routine discrimination of new Haemophilus influenzae strain acquisition in chronic obstructive pulmonary disease (COPD) and cystic fibrosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:503-511. [PMID: 27752148 DOI: 10.5507/bp.2016.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND AIMS Haemophilus influenzae new strain acquisition has been demonstrated to increase the relative risk of acute exacerbation fourfold in contrast to colonisation or chronic infection by the same strain in chronic obstructive pulmonary disease (COPD). Unfortunately, molecular typing techniques are not suitable for routine use due to cost, labour-intensity and need for special expertise. We tested two techniques potentially useful for routine typing, namely the newly available MALDI-TOF MS and the modified McRAPD compared to MLST as the gold standard. METHODS In 10 patients (10.8%) suffering from COPD or cystic fibrosis, H. influenzae isolates were recovered repeatedly at different timepoints from the same patient during the study period. This allowed for thirteen pairwise comparisons of typing results in isolates recovered consecutively from the same patient to test the ability of the techniques to uncover new strain acquisition. RESULTS MLST detected 9 cases of new strain acquisition among the 13 pairwise comparisons. However, MALDI-TOF MS reported all 13 pairs as different and thus new. In contrast, McRAPD was able to differentiate all the new strain acquisitions from pre-existing ones, both by visual inspection of melting profiles and by Relative Significant Difference values. CONCLUSIONS Unlike MALDI-TOF MS, McRAPD appears to be a suitable candidate for routine discrimination of new strain acquisitions because of its accuracy and, rapid, easy and economic performance.
Collapse
Affiliation(s)
- Vladislav Raclavsky
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | | | - Dana Safarova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University Olomouc, Czech Republic
| | - Jan Bardon
- State Veterinary Institute Olomouc, Czech Republic
| | - Jaromir Zatloukal
- Department of Respiratory Medicine, University Hospital Olomouc, Czech Republic
| | - Martin Zapalka
- Department of Pediatrics, University Hospital Olomouc, Czech Republic
| | - Petr Jakubec
- Department of Respiratory Medicine, University Hospital Olomouc, Czech Republic
| | - Lucie Navratilova
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Radko Novotny
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|