1
|
Lüdecke T, Leichliter JN, Stratford D, Sigman DM, Vonhof H, Haug GH, Bamford MK, Martínez-García A. Australopithecus at Sterkfontein did not consume substantial mammalian meat. Science 2025; 387:309-314. [PMID: 39818884 DOI: 10.1126/science.adq7315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025]
Abstract
Incorporation of animal-based foods into early hominin diets has been hypothesized to be a major catalyst of many important evolutionary events, including brain expansion. However, direct evidence of the onset and evolution of animal resource consumption in hominins remains elusive. The nitrogen-15 to nitrogen-14 ratio of collagen provides trophic information about individuals in modern and geologically recent ecosystems (<200,000 years ago), but diagenetic loss of this organic matter precludes studies of greater age. By contrast, nitrogen in tooth enamel is preserved for millions of years. We report enamel-bound organic nitrogen and carbonate carbon isotope measurements of Sterkfontein Member 4 mammalian fauna, including seven Australopithecus specimens. Our results suggest a variable but plant-based diet (largely C3) for these hominins. Therefore, we argue that Australopithecus at Sterkfontein did not engage in regular mammalian meat consumption.
Collapse
Affiliation(s)
- Tina Lüdecke
- Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany
- Emmy Noether Group for Hominin Meat Consumption, Max Planck Institute for Chemistry, Mainz, Germany
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Jennifer N Leichliter
- Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany
- Emmy Noether Group for Hominin Meat Consumption, Max Planck Institute for Chemistry, Mainz, Germany
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| | - Daniel M Sigman
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Hubert Vonhof
- Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Gerald H Haug
- Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany
- Department of Earth Sciences, ETH Zürich, Zürich, Switzerland
| | - Marion K Bamford
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
2
|
Zhu J, Gilbert RG. Starch molecular structure and diabetes. Carbohydr Polym 2024; 344:122525. [PMID: 39218548 DOI: 10.1016/j.carbpol.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Starch is a primary source of food energy for human beings. Its chain-length distribution (CLD) is a major structural feature influencing physiologically-important properties, such as digestibility and palatability, of starch-containing foods. Diabetes, which is of epidemic proportions in many countries, is related to the rate of starch digestion in foods. Isoforms of three biosynthesis enzymes, starch synthase, starch branching enzymes and debranching enzymes, control the CLDs of starch, which can be measured by methods such as size-exclusion chromatography and fluorophore-assisted carbohydrate electrophoresis. Fitting observed CLDs to biosynthesis-based models based on the ratios of the activities of those isoforms yields biosynthesis-related parameters describing CLD features. This review examines CLD measurement, fitting CLDs to models, relations between CLDs, the occurrence and management of diabetes, and how plant breeders can develop varieties to optimize digestibility and palatability together, to develop starch-based foods with both a lower risk of diabetes and acceptable taste.
Collapse
Affiliation(s)
- Jihui Zhu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education and Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education and Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| |
Collapse
|
3
|
Bragazzi NL, Del Rio D, Mayer EA, Mena P. We Are What, When, And How We Eat: The Evolutionary Impact of Dietary Shifts on Physical and Cognitive Development, Health, and Disease. Adv Nutr 2024; 15:100280. [PMID: 39067763 PMCID: PMC11367649 DOI: 10.1016/j.advnut.2024.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
"We are what, when, and how we eat": the evolution of human dietary habits mirrors the evolution of humans themselves. Key developments in human history, such as the advent of stone tool technology, the shift to a meat-based diet, control of fire, advancements in cooking and fermentation techniques, and the domestication of plants and animals, have significantly influenced human anatomical, physiological, social, cognitive, and behavioral changes. Advancements in scientific methods, such as the analysis of microfossils like starch granules, plant-derived phytoliths, and coprolites, have yielded unprecedented insights into past diets. Nonetheless, the isolation of ancient food matrices remains analytically challenging. Future technological breakthroughs and a more comprehensive integration of paleogenomics, paleoproteomics, paleoglycomics, and paleometabolomics will enable a more nuanced understanding of early human ancestors' diets, which holds the potential to guide contemporary dietary recommendations and tackle modern health challenges, with far-reaching implications for human well-being, and ecological impact on the planet.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Human Nutrition Unit (HNU), Department of Food and Drugs, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit (HNU), Department of Food and Drugs, University of Parma, Parma, Italy.
| | - Emeran A Mayer
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, CA, United States; G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Pedro Mena
- Human Nutrition Unit (HNU), Department of Food and Drugs, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Letourneau J, Carrion VM, Jiang S, Osborne OW, Holmes ZC, Fox A, Epstein P, Tan CY, Kirtley M, Surana NK, David LA. Interplay between particle size and microbial ecology in the gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591376. [PMID: 38712077 PMCID: PMC11071529 DOI: 10.1101/2024.04.26.591376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Physical particles can serve as critical abiotic factors that structure the ecology of microbial communities. For non-human vertebrate gut microbiomes, fecal particle size (FPS) has been known to be shaped by chewing efficiency and diet. However, little is known about what drives FPS in the human gut. Here, we analyzed FPS by laser diffraction across a total of 76 individuals and found FPS to be strongly individualized. Surprisingly, a behavioral intervention with 41 volunteers designed to increase chewing efficiency did not impact FPS. Dietary patterns could also not be associated with FPS. Instead, we found evidence that mammalian and human gut microbiomes shaped FPS. Fecal samples from germ-free and antibiotic-treated mice exhibited increased FPS relative to colonized mice. In humans, markers of longer transit time were correlated with smaller FPS. Gut microbiota diversity and composition were also associated with FPS. Finally, ex vivo culture experiments using human fecal microbiota from distinct donors showed that differences in microbiota community composition can drive variation in particle size. Together, our results support an ecological model in which the human gut microbiome plays a key role in reducing the size of food particles during digestion, and that the microbiomes of individuals vary in this capacity. These new insights also suggest FPS in humans to be governed by processes beyond those found in other mammals and emphasize the importance of gut microbiota in shaping their own abiotic environment.
Collapse
Affiliation(s)
- Jeffrey Letourneau
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Verónica M Carrion
- Duke Office of Clinical Research, Duke University School of Medicine, Durham, NC 27710
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Olivia W Osborne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Zachary C Holmes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Aiden Fox
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Piper Epstein
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Chin Yee Tan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710
| | - Michelle Kirtley
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Neeraj K Surana
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
5
|
Bischoff SC, Arends J, Decker-Baumann C, Hütterer E, Koch S, Mühlebach S, Roetzer I, Schneider A, Seipt C, Simanek R, Stanga Z. S3-Leitlinie Heimenterale und heimparenterale Ernährung der Deutschen
Gesellschaft für Ernährungsmedizin (DGEM). AKTUELLE ERNÄHRUNGSMEDIZIN 2024; 49:73-155. [DOI: 10.1055/a-2270-7667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
ZusammenfassungMedizinische Ernährungstherapie, die enterale und parenterale Ernährung umfasst,
ist ein wesentlicher Teil der Ernährungstherapie. Medizinische
Ernährungstherapie beschränkt sich nicht auf die Krankenhausbehandlung, sondern
kann effektiv und sicher auch zu Hause eingesetzt werden. Dadurch hat sich der
Stellenwert der Medizinischen Ernährungstherapie deutlich erhöht und ist zu
einem wichtigen Bestandteil der Therapie vieler chronischer Erkrankungen
geworden. Für Menschen mit chronischem Darmversagen, z. B. wegen Kurzdarmsyndrom
ist die Medizinische Ernährungstherapie sogar lebensrettend. In der Leitlinie
wird die Evidenz für die Medizinische Ernährungstherapie in 161 Empfehlungen
dargestellt. Die Leitlinie wendet sich in erster Linie an Ärzte,
Ernährungsfachkräfte und Pflegekräfte, sie dient der Information für
Pharmazeuten und anderes Fachpersonal, kann aber auch für den interessierten
Laien hilfreich sein.
Collapse
Affiliation(s)
- Stephan C. Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart,
Deutschland
| | - Jann Arends
- Klinik für Innere Medizin I, Universitätsklinikum Freiburg,
Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg,
Deutschland
| | - Christiane Decker-Baumann
- Nationales Centrum für Tumorerkrankungen (NCT), Universitätsklinikum
Heidelberg, Heidelberg, Deutschland
| | - Elisabeth Hütterer
- Medizinische Universität Wien, Universitätsklinik für Innere Medizin I,
Wien, Österreich
| | - Sebastian Koch
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie
Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin,
Deutschland
| | - Stefan Mühlebach
- Universität Basel, Institut für Klinische Pharmazie & Epidemiologe,
Spitalpharmazie, Basel, Schweiz
| | - Ingeborg Roetzer
- Nationales Centrum für Tumorerkrankungen (NCT), Universitätsklinikum
Heidelberg, Heidelberg, Deutschland
- Klinik für Hämatologie und Onkologie, Krankenhaus Nordwest, Frankfurt
am Main, Deutschland
| | - Andrea Schneider
- Medizinische Hochschule Hannover, Klinik für Gastroenterologie,
Hepatologie, Infektiologie und Endokrinologie, Hannover,
Deutschland
| | - Claudia Seipt
- Medizinische Hochschule Hannover, Klinik für Gastroenterologie,
Hepatologie, Infektiologie und Endokrinologie, Hannover,
Deutschland
| | - Ralph Simanek
- Gesundheitszentrum Floridsdorf der Österreichischen Gesundheitskasse,
Hämatologische Ambulanz, Wien, Österreich
| | - Zeno Stanga
- Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin
und Metabolismus, Inselspital, Universitätsspital Bern und Universität Bern,
Bern, Schweiz
| |
Collapse
|
6
|
Page AE, Ringen EJ, Koster J, Borgerhoff Mulder M, Kramer K, Shenk MK, Stieglitz J, Starkweather K, Ziker JP, Boyette AH, Colleran H, Moya C, Du J, Mattison SM, Greaves R, Sum CY, Liu R, Lew-Levy S, Kiabiya Ntamboudila F, Prall S, Towner MC, Blumenfield T, Migliano AB, Major-Smith D, Dyble M, Salali GD, Chaudhary N, Derkx IE, Ross CT, Scelza BA, Gurven MD, Winterhalder BP, Cortez C, Pacheco-Cobos L, Schacht R, Macfarlan SJ, Leonetti D, French JC, Alam N, Zohora FT, Kaplan HS, Hooper PL, Sear R. Women's subsistence strategies predict fertility across cultures, but context matters. Proc Natl Acad Sci U S A 2024; 121:e2318181121. [PMID: 38346210 PMCID: PMC10907265 DOI: 10.1073/pnas.2318181121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 02/15/2024] Open
Abstract
While it is commonly assumed that farmers have higher, and foragers lower, fertility compared to populations practicing other forms of subsistence, robust supportive evidence is lacking. We tested whether subsistence activities-incorporating market integration-are associated with fertility in 10,250 women from 27 small-scale societies and found considerable variation in fertility. This variation did not align with group-level subsistence typologies. Societies labeled as "farmers" did not have higher fertility than others, while "foragers" did not have lower fertility. However, at the individual level, we found strong evidence that fertility was positively associated with farming and moderate evidence of a negative relationship between foraging and fertility. Markers of market integration were strongly negatively correlated with fertility. Despite strong cross-cultural evidence, these relationships were not consistent in all populations, highlighting the importance of the socioecological context, which likely influences the diverse mechanisms driving the relationship between fertility and subsistence.
Collapse
Affiliation(s)
- Abigail E. Page
- Division of Psychology, Brunel University of London, LondonUB8 3PN, United Kingdom
- Department of Population Health, London School of Hygiene and Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - Erik J. Ringen
- University of Zürich, Zürich8050, Switzerland
- Department of Comparative Language Science, University of Zürich, Zürich8050, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zürich, Zürich8050, Switzerland
| | - Jeremy Koster
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Monique Borgerhoff Mulder
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
- Department of Anthropology, University of California, Davis, CA95616
| | - Karen Kramer
- Department of Anthropology, University of Utah, Salt Lake City, UT84112
| | - Mary K. Shenk
- Department of Anthropology, Penn State College of the Liberal Arts, State College, PA16801
| | - Jonathan Stieglitz
- Institute for Advanced Study in Toulouse, Universite Toulouse 1 Capitole, Toulouse31080, France
| | | | - John P. Ziker
- Department of Anthropology, Boise State University, Boise, ID83725
| | - Adam H. Boyette
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Heidi Colleran
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Cristina Moya
- Department of Anthropology, University of California, Davis, CA95616
| | - Juan Du
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Siobhán M. Mattison
- Department of Anthropology, The University of New Mexico, Albuquerque, NM87106
| | - Russell Greaves
- Maxwell Museum of Anthropology, University of New Mexico, Albuquerque, NM87106
| | - Chun-Yi Sum
- Anthropology Department, Boston University, Boston, MA02215
| | - Ruizhe Liu
- Department of Anthropology, The University of New Mexico, Albuquerque, NM87106
| | - Sheina Lew-Levy
- Department of Psychology, Durham University, DurhamDH1 3LE, United Kingdom
| | - Francy Kiabiya Ntamboudila
- Faculté des Lettres, Arts, et Sciences Humaines, Département d’anthropologie, Marien Ngouabi University, Brazzaville, Congo
| | - Sean Prall
- Department of Anthropology, University of Missouri, Columbia, MO65201
| | - Mary C. Towner
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK74078
| | - Tami Blumenfield
- Department of Anthropology, The University of New Mexico, Albuquerque, NM87106
| | | | - Daniel Major-Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, BristolBS8 2PS, United Kingdom
| | - Mark Dyble
- Department of Archaeology, University of Cambridge, CambridgeCB2 3DZ, United Kingdom
| | - Gul Deniz Salali
- Department of Anthropology, University College London, LondonWC1H 0BW, United Kingdom
| | - Nikhil Chaudhary
- Department of Archaeology, University of Cambridge, CambridgeCB2 3DZ, United Kingdom
| | - Inez E. Derkx
- Department of Anthropology, Universität Zürich, Zürich8050, Switzerland
| | - Cody T. Ross
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | - Brooke A. Scelza
- Department of Anthropology, University of California, Los Angeles, CA90095
| | - Michael D. Gurven
- Department of Anthropology, University of California, Santa Barbara, CA93106
| | | | | | - Luis Pacheco-Cobos
- Facultad de Biología–Xalapa, Universidad Veracruzana, Zalapa-Enriquez91090, México
| | - Ryan Schacht
- Department of Anthropology, East Carolina University, Greenville, NC27858
| | | | - Donna Leonetti
- Department of Anthropology, University of Washington, Settle, WA98105
| | - Jennifer C. French
- Department of Archaeology, Classics and Egyptology, University of Liverpool, LiverpoolL69 7WZ, United Kingdom
| | - Nurul Alam
- Health Systems and Population Studies Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka1213, Bangladesh
| | - Fatema tuz Zohora
- Health Systems and Population Studies Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka1213, Bangladesh
| | - Hillard S. Kaplan
- Department of Anthropology, The University of New Mexico, Albuquerque, NM87106
| | - Paul L. Hooper
- Department of Anthropology, The University of New Mexico, Albuquerque, NM87106
| | - Rebecca Sear
- Department of Population Health, London School of Hygiene and Tropical Medicine, LondonWC1E 7HT, United Kingdom
| |
Collapse
|
7
|
Awan ZA, Khan HA, Jamal A, Shams S, Zheng G, Wadood A, Shahab M, Khan MI, Kalantan AA. In silico exploration of the potential inhibitory activities of in-house and ZINC database lead compounds against alpha-glucosidase using structure-based virtual screening and molecular dynamics simulation approach. J Biomol Struct Dyn 2024:1-11. [PMID: 38294714 DOI: 10.1080/07391102.2023.2298391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/14/2023] [Indexed: 02/01/2024]
Abstract
Inhibitors of α-glucosidase have been used to treat type-2 diabetes (T2DM) by preventing the breakdown of carbohydrates into glucose and prevent enhancing glucose conversion. Structure-based virtual screening (SBVS) was used to generate novel chemical scaffold-ligand α-glucosidase inhibitors. The databases were screened against the receptor α-glucosidase using SBVS and molecular dynamics simulation (MDS) techniques in this study. Based on molecular docking studies, three and two compounds of α-glucosidase inhibitors were chosen from a commercial database (ZINC) and an In-house database for this study respectively. The mode of binding interactions of the selected compounds later predicted their α-glucosidase inhibitory potential. Finally, one out of three lead compound from ZINC and one out of two lead compound from In-house database were shortlisted based on interactions. Furthermore, MDS and post-MDS strategies were used to refine and validate the shortlisted leads along with the reference acarbose/α-glucosidase. The Hits' ability to inhibit α-glucosidase was predicted by SBVS, indicating that these compounds have good inhibitory activities. The lead inhibitor's structure may serve as templates for the design of novel inhibitors, and in vitro testing to confirm their anti-diabetic potential is necessary. These insights can help rationally design new effective anti-diabetic drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zuhier A Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haider Ali Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Alam Jamal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulaziz A Kalantan
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Letourneau J, Carrion VM, Zeng J, Jiang S, Osborne OW, Holmes ZC, Fox A, Epstein P, Tan CY, Kirtley M, Surana NK, David LA. Interplay between particle size and microbial ecology in the gut microbiome. THE ISME JOURNAL 2024; 18:wrae168. [PMID: 39214074 PMCID: PMC11406467 DOI: 10.1093/ismejo/wrae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Physical particles can serve as critical abiotic factors that structure the ecology of microbial communities. For non-human vertebrate gut microbiomes, fecal particle size (FPS) has been known to be shaped by chewing efficiency and diet. However, little is known about what drives FPS in the human gut. Here, we analyzed FPS by laser diffraction across a total of 76 individuals and found FPS to be strongly individualized. Contrary to our initial hypothesis, a behavioral intervention with 41 volunteers designed to increase chewing efficiency did not impact FPS. Dietary patterns could also not be associated with FPS. Instead, we found evidence that human and mouse gut microbiomes shaped FPS. Fecal samples from germ-free and antibiotic-treated mice exhibited increased FPS relative to colonized mice. In humans, markers of longer transit time were correlated with smaller FPS. Gut microbiota diversity and composition were also associated with FPS. Finally, ex vivo culture experiments using human fecal microbiota from distinct donors showed that differences in microbiota community composition can drive variation in particle size. Together, our results support an ecological model in which the human gut microbiome plays a key role in reducing the size of food particles during digestion. This finding has important implications for our understanding of energy extraction and subsequent uptake in gastrointestinal tract. FPS may therefore be viewed as an informative functional readout, providing new insights into the metabolic state of the gut microbiome.
Collapse
Affiliation(s)
- Jeffrey Letourneau
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Verónica M Carrion
- Duke Office of Clinical Research, Duke University School of Medicine, Durham, NC 27710, United States
| | - Jun Zeng
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Olivia W Osborne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Zachary C Holmes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Aiden Fox
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Piper Epstein
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Chin Yee Tan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, United States
| | - Michelle Kirtley
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Neeraj K Surana
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, United States
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, United States
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, United States
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
9
|
Oketch DJA, Giulietti M, Piva F. Copy Number Variations in Pancreatic Cancer: From Biological Significance to Clinical Utility. Int J Mol Sci 2023; 25:391. [PMID: 38203561 PMCID: PMC10779192 DOI: 10.3390/ijms25010391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, characterized by high tumor heterogeneity and a poor prognosis. Inter- and intra-tumoral heterogeneity in PDAC is a major obstacle to effective PDAC treatment; therefore, it is highly desirable to explore the tumor heterogeneity and underlying mechanisms for the improvement of PDAC prognosis. Gene copy number variations (CNVs) are increasingly recognized as a common and heritable source of inter-individual variation in genomic sequence. In this review, we outline the origin, main characteristics, and pathological aspects of CNVs. We then describe the occurrence of CNVs in PDAC, including those that have been clearly shown to have a pathogenic role, and further highlight some key examples of their involvement in tumor development and progression. The ability to efficiently identify and analyze CNVs in tumor samples is important to support translational research and foster precision oncology, as copy number variants can be utilized to guide clinical decisions. We provide insights into understanding the CNV landscapes and the role of both somatic and germline CNVs in PDAC, which could lead to significant advances in diagnosis, prognosis, and treatment. Although there has been significant progress in this field, understanding the full contribution of CNVs to the genetic basis of PDAC will require further research, with more accurate CNV assays such as single-cell techniques and larger cohorts than have been performed to date.
Collapse
Affiliation(s)
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
10
|
Zareei S, Ranjbar S, Mohammadi M, Ghasemi Y, Golestanian S, Avizheh L, Moazzam A, Larijani B, Mohammadi-Khanaposhtani M, Tarahomi MM, Mahdavi M, Sadeghian N, Taslimi P. Discovery of novel 4,5-diphenyl-imidazol-α-aminophosphonate hybrids as promising anti-diabetic agents: Design, synthesis, in vitro, and in silico enzymatic studies. Bioorg Chem 2023; 141:106846. [PMID: 37713948 DOI: 10.1016/j.bioorg.2023.106846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Herein, a novel series of 4,5-diphenyl-imidazol-α-aminophosphonate hybrids 4a-m was designed, synthesized, and evaluated as new anti-diabetic agents. These compounds were evaluated against two important target enzymes in the diabetes treatment: α-glucosidase and α-amylase. These new compounds were synthesized in three steps and characterized by different spectroscopic techniques. The in vitro evaluations demonstrated that all the synthesized compounds 4a-m were more potent that standard inhibitor acarbose against studied enzymes. Among these compound, the most potent compound against both studied enzymes was 3-bromo derivative 4l. The latter compound with IC50 = 5.96 nM was 18-times more potent than acarbose (IC50 = 106.63 nM) against α-glucosidase. Moreover, compound 4l with IC50 = 1.62 nM was 27-times more potent than acarbose (IC50 = 44.16 nM) against α-amylase. Molecular docking analysis revealed that this compound well accommodated in the binding site of α-glucosidase and α-amylase enzymes with notably more favorable binding energy as compared to acarbose.
Collapse
Affiliation(s)
- Samira Zareei
- School of Chemistry, Alborz Campus, University of Tehran, 14155-6619 Tehran, Iran
| | - Sara Ranjbar
- Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mohammadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Younes Ghasemi
- Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahand Golestanian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Laya Avizheh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Majid Tarahomi
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey.
| |
Collapse
|
11
|
Goldman IL, Wang Y, Alfaro AV, Brainard S, Oravec MW, McGregor CE, van der Knaap E. Form and contour: breeding and genetics of organ shape from wild relatives to modern vegetable crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1257707. [PMID: 37841632 PMCID: PMC10568141 DOI: 10.3389/fpls.2023.1257707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Shape is a primary determinant of consumer preference for many horticultural crops and it is also associated with many aspects of marketing, harvest mechanics, and postharvest handling. Perceptions of quality and preference often map to specific shapes of fruits, tubers, leaves, flowers, roots, and other plant organs. As a result, humans have greatly expanded the palette of shapes available for horticultural crops, in many cases creating a series of market classes where particular shapes predominate. Crop wild relatives possess organs shaped by natural selection, while domesticated species possess organs shaped by human desires. Selection for visually-pleasing shapes in vegetable crops resulted from a number of opportunistic factors, including modification of supernumerary cambia, allelic variation at loci that control fundamental processes such as cell division, cell elongation, transposon-mediated variation, and partitioning of photosynthate. Genes that control cell division patterning may be universal shape regulators in horticultural crops, influencing the form of fruits, tubers, and grains in disparate species. Crop wild relatives are often considered less relevant for modern breeding efforts when it comes to characteristics such as shape, however this view may be unnecessarily limiting. Useful allelic variation in wild species may not have been examined or exploited with respect to shape modifications, and newly emergent information on key genes and proteins may provide additional opportunities to regulate the form and contour of vegetable crops.
Collapse
Affiliation(s)
- Irwin L. Goldman
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Yanbing Wang
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Andrey Vega Alfaro
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Scott Brainard
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Madeline W. Oravec
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Cecilia Elizabeth McGregor
- Department of Horticulture, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Department of Horticulture, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| |
Collapse
|
12
|
Toh JY, Cai S, Lim SX, Pang WW, Godfrey KM, Shek LP, Tan KH, Yap F, Lee YS, Chong YS, Eriksson JG, Broekman BFP, Rifkin-Graboi A, Chong MFF. Nutrient trajectories during infancy and their associations with childhood neurodevelopment. Eur J Nutr 2023; 62:2429-2439. [PMID: 37118033 DOI: 10.1007/s00394-023-03164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
PURPOSE To examine the associations between infants' dietary nutrient trajectories and subsequent neurodevelopment during childhood in the Growing Up in Singapore Towards healthy Outcomes study. METHODS One-day food records were collected at ages 6, 9 and 12 months, whilst Bayley Scales of Infant and Toddler Development-III and Kaufman Brief Intelligence Test-2 were conducted at ages 24 and 54 months respectively. Nutrient trajectories were constructed using multi-level mixed modelling and associations with neurodevelopment (24 months: n = 484; 54 months: n = 444) were examined using adjusted multivariable linear regression. RESULTS At age 24 months, higher protein intake (at 6 months) and increasing rate of intake (from 6 to 12 months) were associated with higher fine motor score [β = 0.17 SD (95% CI 0.03, 0.31) and 0.62 SD (0.10, 1.14) respectively]. Higher fat intake was associated with higher receptive language score [0.04 SD (0.003, 0.07)], but increasing rate of intake was associated with lower expressive language [- 0.20 SD (- 0.39, - 0.01)] and fine motor [- 0.29 SD (- 0.48, - 0.10)] scores. Higher carbohydrate intake was associated with lower gross motor score [- 0.07 SD (- 0.14, - 0.005)], but increasing rate of intake was associated with higher receptive language [0.44 SD (0.08, 0.81)] and fine motor [0.56 SD (0.18, 0.93)] scores. Increasing rate of dietary fibre intake was associated with higher fine motor scores [0.63 SD (0.16, 1.10)]. No significant associations were observed with neurodevelopment at 54 months. CONCLUSION Our findings provide greater understanding of how nutrition over time could have varying effects on child neurodevelopment.
Collapse
Affiliation(s)
- Jia Ying Toh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shirong Cai
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shan Xuan Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Wei Wei Pang
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Keith M Godfrey
- Medical Research Council Lifecourse Epidemiology Centre and National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital, Southampton National Health Service Foundation Trust, Southampton, UK
| | - Lynette P Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Fabian Yap
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
- Department of Paediatric Endocrinology, KK Women's and Children's Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Paediatric Endocrinology and Diabetes, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Folkhälsan Research Center, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Birit F P Broekman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Psychiatry, OLVG and Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Anne Rifkin-Graboi
- Centre for Research in Child Development, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Mary F F Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
| |
Collapse
|
13
|
Lieberman DE, Worthington S, Schell LD, Parkent CM, Devinsky O, Carmody RN. Comparing measured dietary variation within and between tropical hunter-gatherer groups to the Paleo Diet. Am J Clin Nutr 2023; 118:549-560. [PMID: 37343704 DOI: 10.1016/j.ajcnut.2023.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Although human diets varied considerably before the spread of agriculture, public perceptions of preagricultural diets have been strongly influenced by the Paleo Diet, which prescribes percentage calorie ranges of 19-35% protein, 22-40% carbohydrate, and 28-47% fat, and prohibits foods with added sugar, dairy, grains, most starchy tubers, and legumes. However, the empirical basis for Paleolithic nutrition remains unclear, with some of its assumptions challenged by the archaeological record and theoretical first principles. OBJECTIVES We assessed the variation in diets among tropical hunter-gatherers, including the effect of collection methods on implied macronutrient percentages. METHODS We analyzed data on animal food, plant food, and honey consumption by weight and kcal from 15 high-quality published ethnographic studies representing 11 recent tropical hunter-gatherer groups. We used Bayesian analyses to perform inference and included data collection methods and environmental variables as predictors in our models. RESULTS Our analyses reveal high levels of variation in animal versus plant foods consumed and in corresponding percentages of protein, fat, and carbohydrates. In addition, studies that weighed food items consumed in and out of camp and across seasons and years reported higher consumption of animal foods, which varied with annual mean temperature. CONCLUSIONS The ethnographic evidence from tropical foragers refutes the concept of circumscribed macronutrient ranges modeling preagricultural diets.
Collapse
Affiliation(s)
- Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States.
| | - Steven Worthington
- Institute for Quantitative Social Science, Harvard University, Cambridge, MA, United States
| | - Laura D Schell
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Christine M Parkent
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States; Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, United States
| | - Orrin Devinsky
- Department of Neurology, Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, United States
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States.
| |
Collapse
|
14
|
Tian Y, Wang Y, Zhong Y, Møller MS, Westh P, Svensson B, Blennow A. Interfacial Catalysis during Amylolytic Degradation of Starch Granules: Current Understanding and Kinetic Approaches. Molecules 2023; 28:molecules28093799. [PMID: 37175208 PMCID: PMC10180094 DOI: 10.3390/molecules28093799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Enzymatic hydrolysis of starch granules forms the fundamental basis of how nature degrades starch in plant cells, how starch is utilized as an energy resource in foods, and develops efficient, low-cost saccharification of starch, such as bioethanol and sweeteners. However, most investigations on starch hydrolysis have focused on its rates of degradation, either in its gelatinized or soluble state. These systems are inherently more well-defined, and kinetic parameters can be readily derived for different hydrolytic enzymes and starch molecular structures. Conversely, hydrolysis is notably slower for solid substrates, such as starch granules, and the kinetics are more complex. The main problems include that the surface of the substrate is multifaceted, its chemical and physical properties are ill-defined, and it also continuously changes as the hydrolysis proceeds. Hence, methods need to be developed for analyzing such heterogeneous catalytic systems. Most data on starch granule degradation are obtained on a long-term enzyme-action basis from which initial rates cannot be derived. In this review, we discuss these various aspects and future possibilities for developing experimental procedures to describe and understand interfacial enzyme hydrolysis of native starch granules more accurately.
Collapse
Affiliation(s)
- Yu Tian
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Interfacial Enzymology, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
15
|
Delaney S, Alexander M, Radini A. More than what we eat: Investigating an alternative pathway for intact starch granules in dental calculus using Experimental Archaeology. QUATERNARY INTERNATIONAL : THE JOURNAL OF THE INTERNATIONAL UNION FOR QUATERNARY RESEARCH 2023; 653-654:19-32. [PMID: 37089909 PMCID: PMC10109111 DOI: 10.1016/j.quaint.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 05/03/2023]
Abstract
Starch granules and other plant tissues are commonly found as part of the microdebris assemblage analysed within dental calculus. These are often interpreted as evidence of past diets. However, many of the starch granules extracted from dental calculus are intact, and do not show evidence of alterations as a result of being processed for consumption. This research examines if plant material can accidently enter the mouth while being processed for a meal, with a focus on starch granules. Grinding experiments were performed on three types of cereal grains (wheat, oat and millet). We compare the presence of intact and altered starch granules in mouthwash samples (in place of dental calculus samples) from individuals involved in grinding and also from samples in the environment surrounding the grinding activity. This experiment is a proof of concept aimed to expand experimental research in the field of dental calculus analysis and to encourage the exploration of pathways beyond direct and deliberate consumption.
Collapse
Affiliation(s)
- Sarah Delaney
- BioArCh, Department of Archaeology, The University of York, Wentworth Way, York, UK
- Corresponding author.
| | - Michelle Alexander
- BioArCh, Department of Archaeology, The University of York, Wentworth Way, York, UK
| | - Anita Radini
- BioArCh, Department of Archaeology, The University of York, Wentworth Way, York, UK
- York JEOL Nanocentre, The University of York, Science Park, York, UK
- Corresponding author. BioArCh, Department of Archaeology, The University of York, Wentworth Way, York, UK.
| |
Collapse
|
16
|
Yermakovich D, Pankratov V, Võsa U, Yunusbayev B, Dannemann M. Long-range regulatory effects of Neandertal DNA in modern humans. Genetics 2023; 223:6957427. [PMID: 36560850 PMCID: PMC9991505 DOI: 10.1093/genetics/iyac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The admixture between modern humans and Neandertals has resulted in ∼2% of the genomes of present-day non-Africans being composed of Neandertal DNA. Introgressed Neandertal DNA has been demonstrated to significantly affect the transcriptomic landscape in people today and via this molecular mechanism influence phenotype variation as well. However, little is known about how much of that regulatory impact is mediated through long-range regulatory effects that have been shown to explain ∼20% of expression variation. Here we identified 60 transcription factors (TFs) with their top cis-eQTL SNP in GTEx being of Neandertal ancestry and predicted long-range Neandertal DNA-induced regulatory effects by screening for the predicted target genes of those TFs. We show that the TFs form a significantly connected protein-protein interaction network. Among them are JUN and PRDM5, two brain-expressed TFs that have their predicted target genes enriched in regions devoid of Neandertal DNA. Archaic cis-eQTLs for the 60 TFs include multiple candidates for local adaptation, some of which show significant allele frequency increases over the last ∼10,000 years. A large proportion of the cis-eQTL-associated archaic SNPs have additional associations with various immune traits, schizophrenia, blood cell type composition and anthropometric measures. Finally, we demonstrate that our results are consistent with those of Neandertal DNA-associated empirical trans-eQTLs. Our results suggest that Neandertal DNA significantly influences regulatory networks, that its regulatory reach goes beyond the 40% of genomic sequence it still covers in present-day non-Africans and that via the investigated mechanism Neandertal DNA influences the phenotypic variation in people today.
Collapse
Affiliation(s)
- Danat Yermakovich
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Vasili Pankratov
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Bayazit Yunusbayev
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | | | - Michael Dannemann
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| |
Collapse
|
17
|
Pomeroy E. Review: The different adaptive trajectories in Neanderthals and Homo sapiens and their implications for contemporary human physiological variation. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111420. [PMID: 37001690 DOI: 10.1016/j.cbpa.2023.111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Neanderthals are our one of our closest evolutionary cousins, but while they evolved in Eurasia, we (anatomically modern humans, AMH) originated in Africa. This contrasting evolutionary history has led to morphological and genetic distinctions between our species. Neanderthals are characterised by a relatively stocky build, high body mass, proportionally wide bodies and shorter limbs, a bell-shaped ribcage with a wide pelvis, and a long, low cranial vault compared with AMH. Classic readings of Neanderthal morphology link many of these traits to cold climate adaptations, however these interpretations have been questioned and alternative hypotheses including behavioural factors, dietary adaptations, locomotor specialisations, evolutionary history and neutral evolutionary processes have been invoked. Compared with AMH, Neanderthals may have been adapted for strength and power rather than endurance and may have consumed a diet high in animal products. However, reviewing these hypotheses highlights a number of limitations in our understanding of contemporary human physiology and metabolism, including the relationship between climate and morphology in AMH and Neanderthals, physiological limits on protein consumption, and the relationship between gut morphology and diet. As various relevant factors are clearly linked (e.g. diet, behaviour, metabolism, morphology, activity), ultimately a more integrated approach may be needed to fully understand Neanderthal biology. Variation among contemporary AMHs may offer, with caveats, a useful model for understanding the evolution of both Neanderthal and modern human characteristics, which in turn may further deepen our understanding of variability within and between contemporary humans. Neanderthals; Anatomically modern humans; morphology; climate adaptation; power adaptations; metabolism; diet; physiology; endurance running.
Collapse
|
18
|
Garnås E. Fermented Vegetables as a Potential Treatment for Irritable Bowel Syndrome. Curr Dev Nutr 2023; 7:100039. [PMID: 37181929 PMCID: PMC10111609 DOI: 10.1016/j.cdnut.2023.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Foods and supplements containing microorganisms with expected beneficial effects are increasingly investigated and utilized in the treatment of human illness, including irritable bowel syndrome (IBS). Research points to a prominent role of gut dysbiosis in the multiple aberrations in gastrointestinal function, immune balance, and mental health seen in IBS. The proposition of the current Perspective is that fermented vegetable foods, in combination with a healthy and stable diet, may be particularly useful for addressing these disturbances. This is based on the recognition that plants and their associated microorganisms have contributed to shaping human microbiota and adaptation over evolutionary time. In particular, lactic acid bacteria with immunomodulatory, antipathogenic, and digestive properties are prevalent in products such as sauerkraut and kimchi. Additionally, by adjusting the salt content and fermentation time, products with a microbial and therapeutic potential beyond that of regular ferments could potentially be produced. Although more clinical data are required to make firm assertions, the low-risk profile, combined with biological considerations and reasoning and considerable circumstantial and anecdotal evidence, indicate that fermented vegetables are worthy of consideration by health professionals and patients dealing with IBS-related issues. To maximize microbial diversity and limit the risk of adverse effects, small doses of multiple products, containing different combinations of traditionally fermented vegetables and/or fruits, is suggested for experimental research and care.
Collapse
|
19
|
Andrewson TS, Martin LE, Lim J, Penner MH. Chromatographic fractionation of food-grade oligosaccharides: Recognizing and avoiding sensory-relevant impurities. Food Chem 2023; 401:134071. [PMID: 36115234 PMCID: PMC9945451 DOI: 10.1016/j.foodchem.2022.134071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 02/08/2023]
Abstract
Flash chromatography utilizing microcrystalline cellulose (MCC) stationary phases and aqueous ethanol mobile phases have shown promise for the production of food-grade oligosaccharides. The current work extends the scope of these systems by demonstrating their use for the production of food-grade maltooligosaccharide preparations enriched in high degree of polymerization (DP) components. Furthermore, it is shown herein that caution must be exercised when using these MCC-based chromatographic systems in order to avoid sensory-relevant contamination of the final oligosaccharide preparations. Such contamination, most notably off-taste, is shown to arise from impurities common to commercially available MCC that manifest under certain chromatographic scenarios. A mitigation strategy based on washing the stationary phase with appropriate aqueous-ethanol solutions (i.e., accounting for the entire mobile phase concentration range) prior to oligosaccharide fractionation is presented as a means by which to avoid contamination.
Collapse
Affiliation(s)
- Toren S Andrewson
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Laura E Martin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Juyun Lim
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA.
| | - Michael H Penner
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
20
|
Hernandez TL, Rozance PJ. Re-examination of the estimated average requirement for carbohydrate intake during pregnancy: Addition of placental glucose consumption. Am J Clin Nutr 2023; 117:227-234. [PMID: 36811561 PMCID: PMC10196558 DOI: 10.1016/j.ajcnut.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/23/2022] Open
Abstract
Evidence-based dietary reference intakes for nutrients in healthy individuals were last set in 2005 by the Institute of Medicine. For the first time, these recommendations included a guideline for carbohydrate intake during pregnancy. The recommended dietary allowance (RDA) was set at ≥175 g/d or 45%-65% of total energy intake. In the decades since, carbohydrate intake has been declining in some populations, and many pregnant women consume carbohydrates below the RDA. The RDA was developed to account for both maternal brain and fetal brain glucose requirements. However, the placenta also requires glucose as its dominant energy substrate and is as dependent on maternal glucose as the brain. Prompted by the availability of evidence demonstrating the rate and quantity of human placental glucose consumption, we calculated a potential new estimated average requirement (EAR) for carbohydrate intake to account for placental glucose consumption. Further, by narrative review, we have re-examined the original RDA by applying contemporary measurements of adult brain and whole-body fetal glucose consumption. We also propose, using physiologic rationale, that placental glucose consumption be included in pregnancy nutrition considerations. Calculated from human in vivo placental glucose consumption data, we suggest that 36 g/d represents an EAR for adequate glucose to support placental metabolism without supplementation by other fuels. A potential new EAR of 171 g/d accounts for maternal (100 g) and fetal (35 g) brain, and now placental glucose utilization (36 g), and with extrapolation to meet the needs of nearly all healthy pregnant women, would result in a modified RDA of 220 g/d. Lower and upper safety thresholds for carbohydrate intake remain to be determined, of importance as preexisting and gestational diabetes continue to rise globally, and nutrition therapy remains the cornerstone of treatment.
Collapse
Affiliation(s)
- Teri L Hernandez
- College of Nursing, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA; Children's Hospital Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| | - Paul J Rozance
- Department of Pediatrics, Perinatal Research Center, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
21
|
Cornelissen JHC, Cornwell WK, Freschet GT, Weedon JT, Berg MP, Zanne AE. Coevolutionary legacies for plant decomposition. Trends Ecol Evol 2023; 38:44-54. [PMID: 35945074 DOI: 10.1016/j.tree.2022.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022]
Abstract
Coevolution has driven speciation and evolutionary novelty in functional traits across the Tree of Life. Classic coevolutionary syndromes such as plant-pollinator, plant-herbivore, and host-parasite have focused strongly on the fitness consequences during the lifetime of the interacting partners. Less is known about the consequences of coevolved traits for ecosystem-level processes, in particular their 'afterlife' legacies for litter decomposition, nutrient cycling, and the functional ecology of decomposers. We review the mechanisms by which traits resulting from coevolution between plants and their consumers, microbial symbionts, or humans, and between microbial decomposers and invertebrates, drive plant litter decomposition pathways and rates. This supports the idea that much of current global variation in the decomposition of plant material is a legacy of coevolution.
Collapse
Affiliation(s)
- J Hans C Cornelissen
- Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands.
| | - William K Cornwell
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Grégoire T Freschet
- Station d'Ecologie Théorique et Expérimentale, Centre National de la Recherche Scientifique (CNRS), Moulis, France
| | - James T Weedon
- Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Matty P Berg
- A-LIFE, Ecology and Evolution Section, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Community and Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Amy E Zanne
- Department of Biology, University of Miami, Miami, FL, USA
| |
Collapse
|
22
|
Garnås E. Perspective: Darwinian Applications to Nutrition-The Value of Evolutionary Insights to Teachers and Students. Adv Nutr 2022; 13:1431-1439. [PMID: 35675225 PMCID: PMC9526857 DOI: 10.1093/advances/nmac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 01/28/2023] Open
Abstract
Evolutionary biology informs us that the living world is a product of evolution, guided by the Darwinian mechanism of natural selection. This recognition has been fruitfully employed in a number of issues in health and nutrition sciences; however, it has not been incorporated into education. Nutrition and dietetics students generally learn very little or nothing on the subject of evolution, despite the fact that evolution is the process by which our genetically determined physiological traits and needs were shaped. In the present Perspective article, 3 examples of topics (inflammatory diseases, nutrition transition, and food intolerance) that can benefit from evolutionary information and reasoning are given, with relevant lines of research and inquiry provided throughout. It is argued that the application of evolutionary science to these and other areas of nutrition education can facilitate a deeper and more coherent teaching and learning experience. By recognizing and reframing nutrition as an aspect and discipline of biology, grounded in the fundamental principle of adaptation, revelatory light is shed on physiological states and responses, contentious and unresolved issues, genomic, epigenomic, and microbiomic features, and optimal nutrient status and intakes.
Collapse
Affiliation(s)
- Eirik Garnås
- Institute of Health, Oslo New University College, Oslo, Norway
| |
Collapse
|
23
|
Alt KW, Al-Ahmad A, Woelber JP. Nutrition and Health in Human Evolution-Past to Present. Nutrients 2022; 14:3594. [PMID: 36079850 PMCID: PMC9460423 DOI: 10.3390/nu14173594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Anyone who wants to understand the biological nature of humans and their special characteristics must look far back into evolutionary history. Today's way of life is drastically different from that of our ancestors. For almost 99% of human history, gathering and hunting have been the basis of nutrition. It was not until about 12,000 years ago that humans began domesticating plants and animals. Bioarchaeologically and biochemically, this can be traced back to our earliest roots. Modern living conditions and the quality of human life are better today than ever before. However, neither physically nor psychosocially have we made this adjustment and we are paying a high health price for it. The studies presented allow us to reconstruct food supply, lifestyles, and dietary habits: from the earliest primates, through hunter-gatherers of the Paleolithic, farming communities since the beginning of the Anthropocene, to the Industrial Age and the present. The comprehensive data pool allows extraction of all findings of medical relevance. Our recent lifestyle and diet are essentially determined by our culture rather than by our millions of years of ancestry. Culture is permanently in a dominant position compared to natural evolution. Thereby culture does not form a contrast to nature but represents its result. There is no doubt that we are biologically adapted to culture, but it is questionable how much culture humans can cope with.
Collapse
Affiliation(s)
- Kurt W. Alt
- Center of Natural and Cultural Human History, Danube Private University, 3500 Krems, Austria
- Integrative Prehistory and Archaeological Science, University of Basel, 4055 Basel, Switzerland
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, 71906 Freiburg, Germany
| | - Johan Peter Woelber
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, 71906 Freiburg, Germany
| |
Collapse
|
24
|
Wu Y, Tao D, Wu X, Liu W, Cai Y. Diet of the earliest modern humans in East Asia. FRONTIERS IN PLANT SCIENCE 2022; 13:989308. [PMID: 36119583 PMCID: PMC9471156 DOI: 10.3389/fpls.2022.989308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Reconstructing diet can offer an improved understanding toward the origin and evolution of modern humans. However, the diet of early modern humans in East Asia is poorly understood. Starch analysis of dental calculus is harmless to precious fossil hominins and provides the most direct evidence of plant food sources in early modern human dietary records. In this paper, we examined the starch grains in dental calculus from Fuyan Cave hominins in Daoxian (South China), which were the earliest modern humans in East Asia. Our results reveal the earliest direct evidence of a hominin diet made of acorns, roots, tubers, grass seeds, and other yet-unidentified plants in marine isotope stage 5 between 120 and 80 ka. Our study also provides the earliest evidence that acorns may have played an important role in subsistence strategies. There may have been a long-lasting tradition of using these plants during the Late Pleistocene in China. Plant foods would have been a plentiful source of carbohydrates that greatly increased energy availability to human tissues with high glucose demands. Our study provides the earliest direct consumption of carbohydrates-rich plant resources from modern humans in China for the first time. In addition, it also helps elucidate the evolutionary advantages of early modern humans in the late Middle and early Upper Pleistocene.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Dawei Tao
- Department of Archaeology, School of History, Zhengzhou University, Zhengzhou, China
| | - Xiujie Wu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Wu Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Yanjun Cai
- Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
25
|
Odeh R, Diehl ERM, Nixon SJ, Tisher CC, Klempner D, Sonke JK, Colquhoun TA, Li Q, Espinosa M, Perdomo D, Rosario K, Terzi H, Guy CL. A pilot randomized controlled trial of group-based indoor gardening and art activities demonstrates therapeutic benefits to healthy women. PLoS One 2022; 17:e0269248. [PMID: 35793277 PMCID: PMC9258874 DOI: 10.1371/journal.pone.0269248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background
There is mounting anecdotal and empirical evidence that gardening and art-making afford therapeutic benefits.
Objectives
This randomly controlled pilot study tested the hypothesis that participation in group-based indoor gardening or art-making activities for one hour twice a week for four weeks would provide quantifiably different therapeutic benefits to a population of healthy women ages 26–49.
Methods
A population of 42 volunteers was randomly assigned to parallel gardening or art-making treatment groups. A total of 36 participants initiated the treatment protocol and 32 (Gardening n = 15 and Art n = 17) received the interventions and completed all assessments. Treatments included eight one-hour group-based gardening or art intervention sessions. Self-report psychometric assessments were conducted for anxiety, depression symptomatology, mood disturbance, stress, satisfaction with discretionary social activities, and quality of life measures. Cardiac physiological data were also collected. Outcomes were measured at baseline, during, and post-intervention.
Results
Engaging in both gardening and art-making activities resulted in apparent therapeutic improvements for self-reported total mood disturbance, depression symptomatology, and perceived stress with different effect sizes following eight one-hour treatment sessions. Gardening also resulted in improvements for indications of trait anxiety. Based on time-course evidence, dosage responses were observed for total mood disturbance, perceived stress, and depression symptomatology for both gardening and art-making. However, gardening or art-making did not have an apparent influence on heart rate or blood pressure or result in marked improvement for satisfaction with discretionary leisure activities.
Conclusion
The data did not support the hypothesis of differential therapeutic benefits of gardening and art-making for healthy women. When taken together, group-based gardening or art-making can provide quantitatively measurable improvements in healthy women’s psychosocial health status that imply potentially important public health benefits.
Trial registration
ClinicalTrials.gov NCT03266120.
Collapse
Affiliation(s)
- Raymond Odeh
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida, United States of America
| | - Elizabeth R. M. Diehl
- Wilmot Botanical Gardens, University of Florida, Gainesville, Florida, United States of America
| | - Sara Jo Nixon
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
| | - C. Craig Tisher
- Wilmot Botanical Gardens, University of Florida, Gainesville, Florida, United States of America
| | - Dylan Klempner
- Center for Arts in Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jill K. Sonke
- Center for Arts in Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Thomas A. Colquhoun
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida, United States of America
| | - Qian Li
- Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, Florida, United States of America
| | - Maria Espinosa
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida, United States of America
| | - Dianela Perdomo
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida, United States of America
| | - Kaylee Rosario
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida, United States of America
| | - Hannah Terzi
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida, United States of America
| | - Charles L. Guy
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
26
|
Askarzadeh M, Azizian H, Adib M, Mohammadi-Khanaposhtani M, Mojtabavi S, Faramarzi MA, Sajjadi-Jazi SM, Larijani B, Hamedifar H, Mahdavi M. Design, synthesis, in vitro α-glucosidase inhibition, docking, and molecular dynamics of new phthalimide-benzenesulfonamide hybrids for targeting type 2 diabetes. Sci Rep 2022; 12:10569. [PMID: 35732907 PMCID: PMC9217978 DOI: 10.1038/s41598-022-14896-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
In the present work, a new series of 14 novel phthalimide-benzenesulfonamide derivatives 4a-n were synthesized, and their inhibitory activity against yeast α-glucosidase was screened. The obtained results indicated that most of the newly synthesized compounds showed prominent inhibitory activity against α-glucosidase. Among them, 4-phenylpiperazin derivative 4m exhibited the strongest inhibition with the IC50 value of 52.2 ± 0.1 µM. Enzyme kinetic study of compound 4m proved that its inhibition mode was competitive and Ki value of this compound was calculated to be 52.7 µM. In silico induced fit docking and molecular dynamics studies were performed to further investigate the interaction, orientation, and conformation of the target compounds over the active site of α-glucosidase. Obtained date of these studies demonstrated that our new compounds interacted as well with the α-glucosidase active site with the acceptable binding energies. Furthermore, in silico druglikeness/ADME/Toxicity studies of compound 4m were performed and predicted that this compound is druglikeness and has good ADME and toxicity profiles.
Collapse
Affiliation(s)
- Mohammad Askarzadeh
- School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Adib
- School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran.
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Herzog NM, Pruetz JD, Hawkes K. Investigating foundations for hominin fire exploitation: Savanna-dwelling chimpanzees (Pan troglodytes verus) in fire-altered landscapes. J Hum Evol 2022; 167:103193. [DOI: 10.1016/j.jhevol.2022.103193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
|
28
|
Lafiandra D, Sestili F, Sissons M, Kiszonas A, Morris CF. Increasing the Versatility of Durum Wheat through Modifications of Protein and Starch Composition and Grain Hardness. Foods 2022; 11:foods11111532. [PMID: 35681282 PMCID: PMC9180912 DOI: 10.3390/foods11111532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Although durum wheat (Triticum durum L. ssp. durum Desf.) has traditionally been used to make a range of food products, its use has been restricted due to the absence of the D-genome glutenin proteins, the relatively low variability in starch composition, and its very hard grain texture. This review focuses on the manipulation of the starch and protein composition and modification of the hardness of durum wheat in order to improve its technological and nutritional value and expand its utilization for application to a wider number of end products. Starch is composed of amylopectin and amylose in a 3:1 ratio, and their manipulation has been explored for achieving starch with modified composition. In particular, silencing of the genes involved in amylose and amylopectin synthesis has made it possible to isolate durum wheat lines with amylose content varying from 2–3% up to 75%. This has created opportunities for new products with different properties and enhanced nutritional value. Durum-made bread has generally inferior quality to bread made from common wheat. Attempts to introduce the Glu-D1 subunits 1Dx5 + 1Dy10 and 1Dx2 + 1Dy12 produced stronger dough, but the former produced excessively strong, inelastic doughs, and loaf volume was either inferior or not affected. In contrast, the 1Dx2 + 1Dy12 sometimes improved bread loaf volume (LV) depending on the glutenin subunit background of the genotype receiving these genes. Further breeding and selection are needed to improve the dough extensibility to allow higher LV and better texture. The versatility of durum wheat has been greatly expanded with the creation of soft-textured durum via non-GMO introgression means. This soft durum mills like soft hexaploid wheat and has similar baking properties. The pasta quality is also not diminished by the soft-textured kernels. The Glu-D1 locus containing the subunits 1Dx2 + 1Dy12 has also been introgressed to create higher quality soft durum bread.
Collapse
Affiliation(s)
- Domenico Lafiandra
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
- Correspondence: (D.L.); (M.S.)
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Mike Sissons
- NSW Department of Primary Industries, Tamworth 2340, Australia
- Correspondence: (D.L.); (M.S.)
| | - Alecia Kiszonas
- United States Department of Agriculture, Agriculture Research Service, Western Wheat Quality Lab, Pullman, WA 99164, USA; (A.K.); (C.F.M.)
| | - Craig F. Morris
- United States Department of Agriculture, Agriculture Research Service, Western Wheat Quality Lab, Pullman, WA 99164, USA; (A.K.); (C.F.M.)
| |
Collapse
|
29
|
Palma-Morales M, Mateos A, Rodríguez J, Casuso RA, Huertas JR. Food made us humans: Recent genetic variability and its relevance 2 to the current distribution of macronutrients 3. Nutrition 2022; 101:111702. [DOI: 10.1016/j.nut.2022.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
|
30
|
Daujeard C, Prat S. What Are the “Costs and Benefits” of Meat-Eating in Human Evolution? The Challenging Contribution of Behavioral Ecology to Archeology. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.834638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the omnivorous diet of most human populations, meat foraging gradually increased during the Paleolithic, in parallel with the development of hunting capacities. There is evidence of regular meat consumption by extinct hominins from 2 Ma onward, with the first occurrence prior to 3 Ma in Eastern Africa. The number of sites with cut-marked animal remains and stone tools increased after 2 Ma. In addition, toolkits became increasingly complex, and various, facilitating carcass defleshing and marrow recovery, the removal of quarters of meat to avoid carnivore competition, and allowing the emergence of cooperative (i.e., social) hunting of large herbivores. How can we assess the energy costs and benefits of meat and fat acquisition and consumption for hunter-gatherers in the past, and is it possible to accurately evaluate them? Answering this question would provide a better understanding of extinct hominin land use, food resource management, foraging strategies, and cognitive abilities related to meat and fat acquisition, processing, and consumption. According to the Optimal Foraging Theory (OFT), resources may be chosen primarily on the basis of their efficiency rank in term of calories. But, could other factors, and not only calorific return, prevail in the choice of prey, such as the acquisition of non-food products, like pelts, bone tools or ornaments, or symbolic or traditional uses? Our main goal here is to question the direct application of behavioral ecology data to archeology. For this purpose, we focus on the issue of animal meat and fat consumption in human evolution. We propose a short review of available data from energetics and ethnographic records, and provide examples of several various-sized extant animals, such as elephants, reindeer, or lagomorphs, which were some of the most common preys of Paleolithic hominins.
Collapse
|
31
|
Reconstructing Neanderthal diet: The case for carbohydrates. J Hum Evol 2021; 162:103105. [PMID: 34923240 DOI: 10.1016/j.jhevol.2021.103105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Evidence for plants rarely survives on Paleolithic sites, while animal bones and biomolecular analyses suggest animal produce was important to hominin populations, leading to the perspective that Neanderthals had a very-high-protein diet. But although individual and short-term survival is possible on a relatively low-carbohydrate diet, populations are unlikely to have thrived and reproduced without plants and the carbohydrates they provide. Today, nutritional guidelines recommend that around half the diet should be carbohydrate, while low intake is considered to compromise physical performance and successful reproduction. This is likely to have been the same for Paleolithic populations, highlighting an anomaly in that the basic physiological recommendations do not match the extensive archaeological evidence. Neanderthals had large, energy-expensive brains and led physically active lifestyles, suggesting that for optimal health they would have required high amounts of carbohydrates. To address this anomaly, we begin by outlining the essential role of carbohydrates in the human reproduction cycle and the brain and the effects on physical performance. We then evaluate the evidence for resource availability and the archaeological evidence for Neanderthal diet and investigate three ways that the anomaly between the archaeological evidence and the hypothetical dietary requirements might be explained. First, Neanderthals may have had an as yet unidentified genetic adaptation to an alternative physiological method to spare blood glucose and glycogen reserves for essential purposes. Second, they may have existed on a less-than-optimum diet and survived rather than thrived. Third, the methods used in dietary reconstruction could mask a complex combination of dietary plant and animal proportions. We end by proposing that analyses of Paleolithic diet and subsistence strategies need to be grounded in the minimum recommendations throughout the life course and that this provides a context for interpretation of the archaeological evidence from the behavioral and environmental perspectives.
Collapse
|
32
|
A novel route for identifying starch diagenetic products in the archaeological record. PLoS One 2021; 16:e0258779. [PMID: 34793489 PMCID: PMC8601532 DOI: 10.1371/journal.pone.0258779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022] Open
Abstract
This work introduces a novel analytical chemistry method potentially applicable to the study of archaeological starch residues. The investigation involved the laboratory synthesis of model Maillard reaction mixtures and their analysis through Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS). Thus, starch from sixteen plant species were matured while reacting it with the amino acid glycine. The FTICR-MS analysis revealed > 5,300 molecular compounds, with numerous unique heteroatom rich compound classes, ranging from 20 (Zea mays) to 50 (Sorghum bicolor). These classes were investigated as repositories of chemical structure retaining source and process-specific character, linked back to botanical provenance. We discussed the Maillard reaction products thus generated, a possible pathway for the preservation of degraded starch, while also assessing diagenetic recalcitrance and adsorption potential to mineral surfaces. In some cases, hydrothermal experimentation on starches without glycine reveals that the chemical complexity of the starch itself is sufficient to produce some Maillard reaction products. The article concludes that FTICR-MS offers a new analytical window to characterize starchy residue and its diagenetic products, and is able to recognize taxonomic signals with the potential to persist in fossil contexts.
Collapse
|
33
|
The cost of cooking for foragers. J Hum Evol 2021; 162:103091. [PMID: 34801770 DOI: 10.1016/j.jhevol.2021.103091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022]
Abstract
Cooked food provides more calories to a consumer than raw food. When our human ancestors adopted cooking, the result was an increase in the caloric value of the diet. Generating the heat to cook, however, requires fuel, and accessing fuel was and remains a common problem for humanity. Cooking also frequently requires monitoring, special technology and other investments. These cooking costs should vary greatly across multiple contexts. Here I explain how to quantify this cooking trade-off as the ratio of the energetic benefits of cooking to the increased cost in handling time and examine the implications for foragers, including the first of our ancestors to cook. Ethnographic and experimental return rates and nutritional analysis about important prey items exploited by ethnohistoric Numic foragers in the North American Great Basin provide a demonstration of how the costs of cooking impact different types of prey. Foragers should make choices about which prey to capture based on expectations about the costs involved to cook them. The results indicate that the caloric benefit achieved by cooking meat is quickly lost as the cost of cooking increases, whereas many plant foods are beneficially cooked across a range of cooking costs. These findings affirm the importance of plant foods, especially geophytes, among foragers, and are highly suggestive of their importance at the onset of cooking in the human lineage.
Collapse
|
34
|
A way to break bones? The weight of intuitiveness. PLoS One 2021; 16:e0259136. [PMID: 34714863 PMCID: PMC8555848 DOI: 10.1371/journal.pone.0259136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/13/2021] [Indexed: 11/19/2022] Open
Abstract
During the Paleolithic period, bone marrow extraction was an essential source of fat nutrients for hunter-gatherers especially throughout cold and dry seasons. This is attested by the recurrent findings of percussion marks in osteological material from anthropized archaeological levels. Among them some showed indicators that the marrow extraction process was part of a butchery cultural practice, meaning that the inflicted fracturing gestures and techniques were recurrent, standardized and counter-intuitive. In order to assess the weight of the counter-intuitive factor in the percussion mark pattern distribution, we carried out an experiment that by contrast focuses on the intuitive approach of fracturing bones to extract marrow, involving individual without experience in this activity. We wanted to evaluate the influence of bone morphology and the individuals' behaviour on the distribution of percussion marks. Twelve experimenters broke 120 limb bones, a series of 10 bones per individual. During the experiment, information concerning the fracture of the bones as well as individual behaviour was collected and was subsequently compared to data from the laboratory study of the remains. Then, we applied an innovative GIS (Geographic Information System) method to analyze the distribution of percussion marks to highlight recurrent patterns. Results show that in spite of all the variables there is a high similarity in the distribution of percussion marks which we consider as intuitive patterns. The factor influenced the distribution for the humerus, radius-ulna and tibia series is the bone morphology, while for the femur series individual behaviour seems to have more weight in the distribution. To go further in the subject we need to compare the intuitive models with the distributions of percussion marks registered in fossil assemblages. Thus, it would be possible to propose new hypotheses on butchering practices based on the results presented in this work.
Collapse
|
35
|
de la O V, Zazpe I, Goni L, Santiago S, Martín-Calvo N, Bes-Rastrollo M, Martínez JA, Martínez-González MÁ, Ruiz-Canela M. A score appraising Paleolithic diet and the risk of cardiovascular disease in a Mediterranean prospective cohort. Eur J Nutr 2021; 61:957-971. [PMID: 34671828 PMCID: PMC8854325 DOI: 10.1007/s00394-021-02696-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/01/2021] [Indexed: 02/01/2023]
Abstract
Purpose To assess the association between a score appraising adherence to the PaleoDiet and the risk of cardiovascular disease (CVD) in a Mediterranean cohort. Methods We included 18,210 participants from the Seguimiento Universidad de Navarra (SUN) cohort study. The PaleoDiet score comprised six food groups promoted within this diet (fruit, nuts, vegetables, eggs, meat and fish) and five food groups whose consumption is discouraged (cereals and grains, dairy products, legumes, culinary ingredients, and processed/ultra-processed foods). CVD was defined as acute myocardial infarction with or without ST elevation, non-fatal stroke and cardiovascular death. Cox proportional hazards models adjusted for potential confounders were fitted to assess the association between the PaleoDiet score and CVD risk, and the PaleoDiet and MedDiet indices to explore differences between both diets. Results During 12.2 years of follow-up, 165 incident CVD cases were confirmed. A significant inverse association was found between the PaleoDiet score and CVD (HR Q5 vs. Q1: 0.45, 95% CI 0.27–0.76, P for trend = 0.007). A weaker association that became non-significant was observed when the item for low consumption of ultra-processed foods was removed from the score. Joint analysis of PaleoDiet and MedDiet Trichopoulou scores suggested that the inverse association between PaleoDiet and CVD was mainly present when adherence to the MedDiet was also high (HR for high adherence vs low adherence to both diet scores: 0.22, 95% CI 0.08–0.64). Conclusions Our findings suggest that the PaleoDiet may have cardiovascular benefits in participants from a Mediterranean country. Avoidance of ultra-processed foods seems to play a key role in this inverse association. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02696-9.
Collapse
Affiliation(s)
- Víctor de la O
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Itziar Zazpe
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Department of Nutrition, Food Sciences and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Leticia Goni
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Susana Santiago
- Department of Nutrition, Food Sciences and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Nerea Martín-Calvo
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maira Bes-Rastrollo
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Precision Nutrition Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Miguel Á Martínez-González
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, USA
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
36
|
Potter JHT, Davies KTJ, Yohe LR, Sanchez MKR, Rengifo EM, Struebig M, Warren K, Tsagkogeorga G, Lim BK, dos Reis M, Dávalos LM, Rossiter SJ. Dietary Diversification and Specialization in Neotropical Bats Facilitated by Early Molecular Evolution. Mol Biol Evol 2021; 38:3864-3883. [PMID: 34426843 PMCID: PMC8382914 DOI: 10.1093/molbev/msab028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dietary adaptation is a major feature of phenotypic and ecological diversification, yet the genetic basis of dietary shifts is poorly understood. Among mammals, Neotropical leaf-nosed bats (family Phyllostomidae) show unmatched diversity in diet; from a putative insectivorous ancestor, phyllostomids have radiated to specialize on diverse food sources including blood, nectar, and fruit. To assess whether dietary diversification in this group was accompanied by molecular adaptations for changing metabolic demands, we sequenced 89 transcriptomes across 58 species and combined these with published data to compare ∼13,000 protein coding genes across 66 species. We tested for positive selection on focal lineages, including those inferred to have undergone dietary shifts. Unexpectedly, we found a broad signature of positive selection in the ancestral phyllostomid branch, spanning genes implicated in the metabolism of all major macronutrients, yet few positively selected genes at the inferred switch to plantivory. Branches corresponding to blood- and nectar-based diets showed selection in loci underpinning nitrogenous waste excretion and glycolysis, respectively. Intriguingly, patterns of selection in metabolism genes were mirrored by those in loci implicated in craniofacial remodeling, a trait previously linked to phyllostomid dietary specialization. Finally, we show that the null model of the widely-used branch-site test is likely to be misspecified, with the implication that the test is too conservative and probably under-reports true cases of positive selection. Our findings point to a complex picture of adaptive radiation, in which the evolution of new dietary specializations has been facilitated by early adaptations combined with the generation of new genetic variation.
Collapse
Affiliation(s)
- Joshua H T Potter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Kalina T J Davies
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Laurel R Yohe
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Department of Earth and Planetary Science, Yale University, 210 Whitney Ave, New Haven, CT, USA
| | - Miluska K R Sanchez
- Escuela Profesional de Ciencias Biológicas, Universidad Nacional de Piura, Piura, Peru
| | - Edgardo M Rengifo
- Escola Superior de Agricultura ‘Luiz de Queiroz,’ Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
- Centro de Investigación Biodiversidad Sostenible (BioS), Lima, Peru
| | - Monika Struebig
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Kim Warren
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Georgia Tsagkogeorga
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, ON, Canada
| | - Mario dos Reis
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
37
|
Chiu BC, Olson ME, Fahey JW. Exploring the use of
Moringa oleifera
as a vegetable in Agua Caliente Nueva, Jalisco, Mexico: A qualitative study. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Belinda C. Chiu
- Johns Hopkins University Bloomberg School of Public Health Department of International Health Baltimore Maryland USA
| | - Mark E. Olson
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 Mexico
| | - Jed W. Fahey
- Johns Hopkins University School of Medicine Department of Medicine Division of Clinical Pharmacology Department of Pharmacology and Molecular Sciences Lewis B. & Dorothy Cullman Chemoprotection Center, Bloomberg School of Public Health Department of International Health Center for Human Nutrition Baltimore Maryland USA
| |
Collapse
|
38
|
Abstract
The microbiome plays key roles in human health, but little is known about its evolution. We investigate the evolutionary history of the African hominid oral microbiome by analyzing dental biofilms of humans and Neanderthals spanning the past 100,000 years and comparing them with those of chimpanzees, gorillas, and howler monkeys. We identify 10 core bacterial genera that have been maintained within the human lineage and play key biofilm structural roles. However, many remain understudied and unnamed. We find major taxonomic and functional differences between the oral microbiomes of Homo and chimpanzees but a high degree of similarity between Neanderthals and modern humans, including an apparent Homo-specific acquisition of starch digestion capability in oral streptococci, suggesting microbial coadaptation with host diet. The oral microbiome plays key roles in human biology, health, and disease, but little is known about the global diversity, variation, or evolution of this microbial community. To better understand the evolution and changing ecology of the human oral microbiome, we analyzed 124 dental biofilm metagenomes from humans, including Neanderthals and Late Pleistocene to present-day modern humans, chimpanzees, and gorillas, as well as New World howler monkeys for comparison. We find that a core microbiome of primarily biofilm structural taxa has been maintained throughout African hominid evolution, and these microbial groups are also shared with howler monkeys, suggesting that they have been important oral members since before the catarrhine–platyrrhine split ca. 40 Mya. However, community structure and individual microbial phylogenies do not closely reflect host relationships, and the dental biofilms of Homo and chimpanzees are distinguished by major taxonomic and functional differences. Reconstructing oral metagenomes from up to 100 thousand years ago, we show that the microbial profiles of both Neanderthals and modern humans are highly similar, sharing functional adaptations in nutrient metabolism. These include an apparent Homo-specific acquisition of salivary amylase-binding capability by oral streptococci, suggesting microbial coadaptation with host diet. We additionally find evidence of shared genetic diversity in the oral bacteria of Neanderthal and Upper Paleolithic modern humans that is not observed in later modern human populations. Differences in the oral microbiomes of African hominids provide insights into human evolution, the ancestral state of the human microbiome, and a temporal framework for understanding microbial health and disease.
Collapse
|
39
|
Liu YS, Wu QJ, Lv JL, Jiang YT, Sun H, Xia Y, Chang Q, Zhao YH. Dietary Carbohydrate and Diverse Health Outcomes: Umbrella Review of 30 Systematic Reviews and Meta-Analyses of 281 Observational Studies. Front Nutr 2021; 8:670411. [PMID: 33996880 PMCID: PMC8116488 DOI: 10.3389/fnut.2021.670411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Aims: The associations between dietary carbohydrate and diverse health outcomes remain controversial and confusing. To summarize the existing evidence of the association between dietary carbohydrate intake and diverse health outcomes and to evaluate the credibility of these sources of evidence. We performed this umbrella review of evidence from meta-analyses of observational studies. Methods: PubMed, Embase, Web of Science databases, and manual screening of references up to July 2020 were searched. Systematic reviews with meta-analyses of observational studies in humans investigating the association between dietary carbohydrate intake and multiple health outcomes were identified. We assessed the evidence levels by using summary effect sizes, 95% prediction intervals, between-study heterogeneity, evidence of small-study effects, and evidence of excess significance bias for each meta-analysis. Results: We included 43 meta-analyses of observational research studies with 23 health outcomes, including cancer (n = 26), mortality (n = 4), metabolic diseases (n = 4), digestive system outcomes (n = 3), and other outcomes [coronary heart disease (n = 2), stroke (n = 1), Parkinson's disease (n = 1), and bone fracture (n = 2)]. This umbrella review summarized 281 individual studies with 13,164,365 participants. Highly suggestive evidence of an association between dietary carbohydrate intake and metabolic syndrome was observed with adjusted summary odds ratio of 1.25 [95% confidence interval (CI) 1.15–1.37]. The suggestive evidences were observed in associations of carbohydrate consumption with esophageal adenocarcinoma (0.57, 95% CI = 0.42–0.78) and all-cause mortality (adjusted summary hazard ratio 1.19, 95% CI = 1.09–1.30). Conclusions: Despite the fact that numerous systematic reviews and meta-analyses have explored the relationship between carbohydrate intake and diverse health outcomes, there is no convincing evidence of a clear role of carbohydrate intake. However, there is highly suggestive evidence suggested carbohydrate intake is associated with high risk of metabolic syndrome, suggestive evidence found its association with increased risk of all-cause mortality and decreased risk of esophageal adenocarcinoma. Systematic Review Registration: CRD42020197424.
Collapse
Affiliation(s)
- Ya-Shu Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Ting Jiang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Sun
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
40
|
Carney M, Tushingham S, McLaughlin T, d'Alpoim Guedes J. Harvesting strategies as evidence for 4000 years of camas ( Camassia quamash) management in the North American Columbia Plateau. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202213. [PMID: 33996124 PMCID: PMC8059633 DOI: 10.1098/rsos.202213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
One of the greatest archaeological enigmas is in understanding the role of decision-making, intentionality and interventions in plant life cycles by foraging peoples in transitions to and from low-level food production practices. We bring together archaeological, palaeoclimatological and botanical data to explore relationships over the past 4000 years between people and camas (Camassia quamash), a perennial geophyte with an edible bulb common across the North American Pacific Northwest. In this region throughout the late Holocene, people began experimenting with selective harvesting practices through targeting sexually mature bulbs by 3500 cal BP, with bulb harvesting practices akin to ethnographic descriptions firmly established by 1000 cal BP. While we find no evidence that such interventions lead to a selection for larger bulbs or a reduction in time to maturity, archaeological bulbs do exhibit several other domestication syndrome traits. This establishes considerable continuity to human intervention into camas life cycles, but these dynamic relationships did not result in unequivocal morphological indications of domestication. This approach to tracking forager plant management practices offers an alternative explanatory framework to conventional management studies, supplements oral histories of Indigenous traditional resource management and can be applied to other vegetatively propagated species.
Collapse
Affiliation(s)
- Molly Carney
- Department of Anthropology, Washington State University, College Hall, Pullman, WA 99164, USA
| | - Shannon Tushingham
- Department of Anthropology, Washington State University, College Hall, Pullman, WA 99164, USA
| | - Tara McLaughlin
- Department of Natural Resources, Kalispel Tribe of Indians, PO Box 39, Usk, WA 99180, USA
| | - Jade d'Alpoim Guedes
- Department of Anthropology, Scripps Institution of Oceanography, University of California San Diego, 9500 Gillman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
41
|
Mapping Early Pleistocene environments and the availability of plant food as a potential driver of early Homo presence in the Guadix-Baza Basin (Spain). J Hum Evol 2021; 155:102986. [PMID: 33865005 DOI: 10.1016/j.jhevol.2021.102986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 11/20/2022]
Abstract
The Guadix-Baza Basin, in SE Spain, harbors hominin fossils and lithic artifacts dated to ca. 1.4-1.3 Ma, representing the first hominin habitat in the Iberian Peninsula and possibly in Western Europe. Recent palynological studies have described a high diversity of plant taxa and biomes existing in the basin at the time of hominin presence. However, the relationship between these hominins and their environment has not been fully explored. Two novel methodologies are developed. The first method maps the distribution of the Early Pleistocene vegetation units based on paleobotanical and paleogeographic data. The second method assesses the availability of edible plant parts using a combination of Early Pleistocene and modern taxa lists. The resulting vegetation maps reveal a great diversity of vegetation types. During dry (glacial) periods, the vegetation of the basin was represented mostly by steppes, with the appearance of forested vegetation only in the mountainous regions. During humid (interglacial) periods, Mediterranean woodlands represented the dominant vegetation, accompanied by deciduous and conifer forests in the areas of higher altitude. The lake system present in the basin also allowed for the presence of marshland vegetation. The assessment of the availability of edible plant parts reveals that early Homo could have found a high number of resources in marshland and riparian environments throughout the year. Mediterranean woodlands and deciduous forests also provided numerous edible plant parts. During dry periods, the availability of plant resources decreased heavily, but the prevalence of marshland and riparian vegetation and of forested vegetation in the areas of higher altitude could have sustained hominin communities during harsher climatic periods. However, the disappearance of the lake system and an increase of aridity after the Mid-Pleistocene Transition and during the Middle Pleistocene probably led to an impoverishment of plant resources available to early Homo in the Guadix-Baza Basin.
Collapse
|
42
|
Xu H, Zhou J, Yu J, Wang S, Wang S. Mechanisms underlying the effect of gluten and its hydrolysates on in vitro enzymatic digestibility of wheat starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106507] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Mora MR, Dando R. The sensory properties and metabolic impact of natural and synthetic sweeteners. Compr Rev Food Sci Food Saf 2021; 20:1554-1583. [PMID: 33580569 DOI: 10.1111/1541-4337.12703] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
The global rise in obesity, type II diabetes, and other metabolic disorders in recent years has been attributed in part to the overconsumption of added sugars. Sugar reduction strategies often rely on synthetic and naturally occurring sweetening compounds to achieve their goals, with popular synthetic sweeteners including saccharin, cyclamate, acesulfame potassium, aspartame, sucralose, neotame, alitame, and advantame. Natural sweeteners can be further partitioned into nutritive, including polyols, rare sugars, honey, maple syrup, and agave, and nonnutritive, which include steviol glycosides and rebaudiosides, luo han guo (monk fruit), and thaumatin. We choose the foods we consume largely on their sensory properties, an area in which these sugar substitutes often fall short. Here, we discuss the most popular synthetic and natural sweeteners, with the goal of providing an understanding of differences in the sensory profiles of these sweeteners versus sucrose, that they are designed to replace, essential for the effectiveness of sugar reduction strategies. In addition, we break down the influence of these sweeteners on metabolism, and present results from a large survey of consumers' opinions on these sweeteners. Consumer interest in clean label foods has driven a move toward natural sweeteners; however, neither natural nor synthetic sweeteners are metabolically inert. Identifying sugar replacements that not only closely imitate the sensory profile of sucrose but also exert advantageous effects on body weight and metabolism is critical in successfully the ultimate goals of reducing added sugar in the average consumer's diet. With so many options for sucrose replacement available, consumer opinion and cost, which vary widely with suagr replacements, will also play a vital role in which sweeteners are successful in widespread adoption.
Collapse
Affiliation(s)
- Margaux R Mora
- Department of Food Science, Cornell University, Ithaca, New York
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, New York
| |
Collapse
|
44
|
Byman E, Nägga K, Gustavsson AM, Andersson-Assarsson J, Hansson O, Sonestedt E, Wennström M. Alpha-amylase 1A copy number variants and the association with memory performance and Alzheimer's dementia. ALZHEIMERS RESEARCH & THERAPY 2020; 12:158. [PMID: 33220711 PMCID: PMC7680592 DOI: 10.1186/s13195-020-00726-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Background Previous studies have shown that copy number variation (CNV) in the alpha (α)-amylase gene (AMY1A) is associated with body mass index, insulin resistance, and blood glucose levels, factors also shown to increase the risk of Alzheimer’s dementia (AD). We have previously demonstrated the presence of α-amylase in healthy neuronal dendritic spines and a reduction of the same in AD patients. In the current study, we investigate the relationship between AMY1A copy number and AD, memory performance, and brain α-amylase activity. Methods and materials The association between AMY1A copy number and development of AD was analyzed in 5422 individuals (mean age at baseline 57.5 ± 5.9, females 58.2%) from the Malmö diet and cancer study genotyped for AMY1A copy number, whereof 247 where diagnosed with AD during a mean follow-up of 20 years. Associations between AMY1A copy number and cognitive performance where analyzed in 791 individuals (mean age at baseline 54.7 ± 6.3, females 63%), who performed Montreal Cognitive Assessment (MoCA) test. Correlation analysis between α-amylase activity or α-amylase gene expression and AMY1A copy number in post-mortem hippocampal tissue from on demented controls (n = 8) and AD patients (n = 10) was also performed. Results Individuals with very high ( ≥10) AMY1A copy number had a significantly lower hazard ratio of AD (HR = 0.62, 95% CI 0.41–0.94) and performed significantly better on MoCA delayed word recall test, compared to the reference group with AMY1A copy number 6. A trend to lower hazard ratio of AD was also found among individuals with low AMY1A copy number (1–5) (HR = 0.74, 95% CI 0.53–1.02). A tendency towards a positive correlation between brain α-amylase activity and AMY1A copy number was found, and females showed higher brain α-amylase activity compared to males. Conclusion Our study suggests that the degree of α-amylase activity in the brain is affected by AMY1A copy number and gender, in addition to AD pathology. The study further suggests that very high AMY1A copy number is associated with a decreased hazard ratio of AD and we speculate that this effect is mediated via a beneficial impact of AMY1A copy number on episodic memory performance.
Collapse
Affiliation(s)
- Elin Byman
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Inga Marie Nilssons gata 53, SE-214 28, Malmö, Sweden
| | - Katarina Nägga
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Inga Marie Nilssons gata 53, SE-214 28, Malmö, Sweden.,Department of Acute Internal Medicine and Geriatrics, Linköping University, Linköping, Sweden
| | - Anna-Märta Gustavsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Inga Marie Nilssons gata 53, SE-214 28, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Johanna Andersson-Assarsson
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Inga Marie Nilssons gata 53, SE-214 28, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Emily Sonestedt
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Malin Wennström
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Inga Marie Nilssons gata 53, SE-214 28, Malmö, Sweden.
| |
Collapse
|
45
|
Best AW. Why does strength training improve endurance performance? Am J Hum Biol 2020; 33:e23526. [PMID: 33089638 DOI: 10.1002/ajhb.23526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE The specificity of training principle holds that adaptations to exercise training closely match capacity to the specific demands of the stimulus. Improvements in endurance sport performance gained through strength training are a notable exception to this principle. While the proximate mechanisms for how strength training produces muscular adaptations beneficial to endurance sports are increasingly well understood, the ultimate causes of this phenomenon remain unexplored. METHODS Using a holistic approach tying together exercise physiology and evolution, I argue that we can reconcile the apparent "endurance training specificity paradox." RESULTS AND CONCLUSIONS Competing selective pressures, inherited mammalian biology, and millennia of living in energy-scarce environments constrained our evolution as endurance athletes, but also imparted high muscular plasticity which can be exploited to improve endurance performance beyond what was useful in our evolutionary past.
Collapse
Affiliation(s)
- Andrew W Best
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
46
|
Remesar X, Alemany M. Dietary Energy Partition: The Central Role of Glucose. Int J Mol Sci 2020; 21:E7729. [PMID: 33086579 PMCID: PMC7593952 DOI: 10.3390/ijms21207729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Humans have developed effective survival mechanisms under conditions of nutrient (and energy) scarcity. Nevertheless, today, most humans face a quite different situation: excess of nutrients, especially those high in amino-nitrogen and energy (largely fat). The lack of mechanisms to prevent energy overload and the effective persistence of the mechanisms hoarding key nutrients such as amino acids has resulted in deep disorders of substrate handling. There is too often a massive untreatable accumulation of body fat in the presence of severe metabolic disorders of energy utilization and disposal, which become chronic and go much beyond the most obvious problems: diabetes, circulatory, renal and nervous disorders included loosely within the metabolic syndrome. We lack basic knowledge on diet nutrient dynamics at the tissue-cell metabolism level, and this adds to widely used medical procedures lacking sufficient scientific support, with limited or nil success. In the present longitudinal analysis of the fate of dietary nutrients, we have focused on glucose as an example of a largely unknown entity. Even most studies on hyper-energetic diets or their later consequences tend to ignore the critical role of carbohydrate (and nitrogen disposal) as (probably) the two main factors affecting the substrate partition and metabolism.
Collapse
Affiliation(s)
- Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| |
Collapse
|
47
|
Archer E, Arjmandi B. Falsehoods and facts about dietary sugars: a call for evidence-based policy. Crit Rev Food Sci Nutr 2020; 61:3725-3739. [PMID: 32799555 DOI: 10.1080/10408398.2020.1804320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sugar, tobacco, and alcohol have been demonized since the seventeenth century. Yet unlike tobacco and alcohol, there is indisputable scientific evidence that dietary sugars were essential for human evolution and are essential for human health and development. Therefore, the purpose of this analytic review and commentary is to demonstrate that anti-sugar rhetoric is divorced from established scientific facts and has led to politically expedient but ill-informed policies reminiscent of those enacted about alcohol a century ago in the United States. Herein, we present a large body of interdisciplinary research to illuminate several misconceptions, falsehoods, and facts about dietary sugars. We argue that anti-sugar policies and recommendations are not merely unscientific but are regressive and unjust because they harm the most vulnerable members of our society while providing no personal or public health benefits.
Collapse
Affiliation(s)
| | - Bahram Arjmandi
- Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
48
|
Mijatovic J, Louie JCY, Buso MEC, Atkinson FS, Ross GP, Markovic TP, Brand-Miller JC. Effects of a modestly lower carbohydrate diet in gestational diabetes: a randomized controlled trial. Am J Clin Nutr 2020; 112:284-292. [PMID: 32537643 DOI: 10.1093/ajcn/nqaa137] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 05/15/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Lower carbohydrate diets have the potential to improve glycemia but may increase ketonemia in women with gestational diabetes (GDM). We hypothesized that modestly lower carbohydrate intake would not increase ketonemia. OBJECTIVE To compare blood ketone concentration, risk of ketonemia, and pregnancy outcomes in women with GDM randomly assigned to a lower carbohydrate diet or routine care. METHODS Forty-six women aged (mean ± SEM) 33.3 ± 0.6 y and prepregnancy BMI 26.8 ± 0.9 kg/m2 were randomly assigned at 28.5 ± 0.4 wk to a modestly lower carbohydrate diet (MLC, ∼135 g/d carbohydrate) or routine care (RC, ∼200 g/d) for 6 wk. Blood ketones were ascertained by finger prick test strips and 3-d food diaries were collected at baseline and end of the intervention. RESULTS There were no detectable differences in blood ketones between completers in the MLC group compared with the RC group (0.1 ± 0.0 compared with 0.1 ± 0.0 mmol/L, n = 33, P = 0.31, respectively), even though carbohydrate and total energy intake were significantly lower in the intervention group (carbohydrate 165 ± 7 compared with 190 ± 9 g, P = 0.04; energy 7040 ± 240 compared with 8230 ± 320 kJ, P <0.01, respectively). Only 20% of participants in the MLC group met the target intake compared with 65% in the RC group (P <0.01). There were no differences in birth weight, rate of large-for-gestational-age infants, percent fat mass, or fat-free mass between groups. CONCLUSIONS An intervention to reduce carbohydrate intake in GDM did not raise ketones to clinical significance, possibly because the target of 135 g/d was difficult to achieve in pregnancy. Feeding studies with food provision may be needed to assess the benefits and risks of low-carbohydrate diets. This trial was registered at www.anzctr.org.au as ACTRN12616000018415.
Collapse
Affiliation(s)
- Jovana Mijatovic
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Boden Collaboration Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jimmy Chun Yu Louie
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Marion E C Buso
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Fiona S Atkinson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Glynis P Ross
- Boden Collaboration Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, Australia
| | - Tania P Markovic
- Boden Collaboration Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, Australia
| | - Jennie C Brand-Miller
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
49
|
Building GLUT4 Vesicles: CHC22 Clathrin's Human Touch. Trends Cell Biol 2020; 30:705-719. [PMID: 32620516 DOI: 10.1016/j.tcb.2020.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Insulin stimulates glucose transport by triggering regulated delivery of intracellular vesicles containing the GLUT4 glucose transporter to the plasma membrane. This process is defective in diseases such as type 2 diabetes (T2DM). While studies in rodent cells have been invaluable in understanding GLUT4 traffic, evolutionary plasticity must be considered when extrapolating these findings to humans. Recent work has identified species-specific distinctions in GLUT4 traffic, notably the participation of a novel clathrin isoform, CHC22, in humans but not rodents. Here, we discuss GLUT4 sorting in different species and how studies of CHC22 have identified new routes for GLUT4 trafficking. We further consider how different sorting-protein complexes relate to these routes and discuss other implications of these pathways in cell biology and disease.
Collapse
|
50
|
Chen YQ, Pottanat TG, Siegel RW, Ehsani M, Qian YW, Zhen EY, Regmi A, Roell WC, Guo H, Luo MJ, Gimeno RE, Van't Hooft F, Konrad RJ. Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids. J Lipid Res 2020; 61:1203-1220. [PMID: 32487544 PMCID: PMC7397750 DOI: 10.1194/jlr.ra120000781] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
Angiopoietin-like protein (ANGPTL)8 has been implicated in metabolic syndrome and reported to regulate adipose FA uptake through unknown mechanisms. Here, we studied how complex formation of ANGPTL8 with ANGPTL3 or ANGPTL4 varies with feeding to regulate LPL. In human serum, ANGPTL3/8 and ANGPTL4/8 complexes both increased postprandially, correlated negatively with HDL, and correlated positively with all other metabolic syndrome markers. ANGPTL3/8 also correlated positively with LDL-C and blocked LPL-facilitated hepatocyte VLDL-C uptake. LPL-inhibitory activity of ANGPTL3/8 was >100-fold more potent than that of ANGPTL3, and LPL-inhibitory activity of ANGPTL4/8 was >100-fold less potent than that of ANGPTL4. Quantitative analyses of inhibitory activities and competition experiments among the complexes suggested a model in which localized ANGPTL4/8 blocks the LPL-inhibitory activity of both circulating ANGPTL3/8 and localized ANGPTL4, allowing lipid sequestration into fat rather than muscle during the fed state. Supporting this model, insulin increased ANGPTL3/8 secretion from hepatocytes and ANGPTL4/8 secretion from adipocytes. These results suggest that low ANGPTL8 levels during fasting enable ANGPTL4-mediated LPL inhibition in fat tissue to minimize adipose FA uptake. During feeding, increased ANGPTL8 increases ANGPTL3 inhibition of LPL in muscle via circulating ANGPTL3/8, while decreasing ANGPTL4 inhibition of LPL in adipose tissue through localized ANGPTL4/8, thereby increasing FA uptake into adipose tissue. Excessive caloric intake may shift this system toward the latter conditions, possibly predisposing to metabolic syndrome.
Collapse
Affiliation(s)
- Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Thomas G Pottanat
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Robert W Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Mariam Ehsani
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Yue-Wei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Eugene Y Zhen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ajit Regmi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - William C Roell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Haihong Guo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - M Jane Luo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ferdinand Van't Hooft
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet Karolinska University Hospital Solna, Stockholm, Sweden
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| |
Collapse
|