1
|
Sun JM, Liu YX, Liu YD, Ho CK, Tsai YT, Wen DS, Huang L, Zheng DN, Gao Y, Zhang YF, Yu L. Salvianolic acid B protects against UVB-induced skin aging via activation of NRF2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155676. [PMID: 38820663 DOI: 10.1016/j.phymed.2024.155676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Prolonged exposure to sun radiation may result in harmful skin photoaging. Therefore, discovering novel anti-photoaging treatment modalities is critical. An active component isolated from Salvia miltiorrhiza (SM), Salvianolic acid B (Sal-B), is a robust antioxidant and anti-inflammatory agent. This investigation aimed to discover the therapeutic impact and pathways of salvianolic acid B for UVB-induced skin photoaging, an area that remains unexplored. METHODS We conducted in vitro experiments on human dermal fibroblasts (HDFs) exposed to UVB radiation, assessing cellular senescence, superoxide dismutase (SOD) activity, cell viability, proliferation, migration, levels of reactive oxygen species (ROS), and mitochondrial health. The potential mechanism of Sal-B was analyzed using RNA sequencing, with further validation through Western blotting, PCR, and nuclear factor erythroid 2-related factor 2 (NRF2) silencing methods. In vivo, a model of skin photoaging induced by UVB in nude mice was employed. The collagen fiber levels were assessed utilizing hematoxylin and eosin (H&E), Masson, and Sirus red staining. Additionally, NRF2 and related gene and protein expression levels were identified utilizing PCR and Western blotting. RESULTS Sal-B was found to significantly counteract photoaging in UVB-exposed skin fibroblasts, reducing aging-related decline in fibroblast proliferation and an increase in apoptosis. It was observed that Sal-B aids in protecting mitochondria from excessive ROS production by promoting NRF2 nuclear translocation. NRF2 knockdown experiments established its necessity for Sal-B's anti-photoaging effects. The in vivo studies also verified Sal-B's anti-photoaging efficacy, surpassing that of tretinoin (Retino-A). These outcomes offer novel insights into the contribution of Sal-B in developing clinical treatment modalities for UVB-induced photodamage in skin fibroblasts. CONCLUSION In this investigation, we identified the Sal-B protective impact on the senescence of dermal fibroblasts and skin photoaging induced by radiation of UVB. The outcomes suggest Sal-B as a potential modulator of the NRF2 signaling pathway.
Collapse
Affiliation(s)
- Jia-Ming Sun
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Yu-Xin Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Yang-Dan Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Chia-Kang Ho
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Yi-Tung Tsai
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Dong-Sheng Wen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Lu Huang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Dan-Ning Zheng
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China
| | - Ya Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China.
| | - Yi-Fan Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China.
| | - Li Yu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai 200011, PR China.
| |
Collapse
|
2
|
Wang L, Gao J, Li G, Cheng J, Yuan G, Zhang T, Zeng W, Lu H. Identification of Metabolites in Muscles of Lueyang Black-Bone Chickens: A Comparative Analysis of Caged and Cage-Free Rearing Modes Using Untargeted Metabolomic Techniques. Animals (Basel) 2024; 14:2041. [PMID: 39061503 PMCID: PMC11274139 DOI: 10.3390/ani14142041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The Lueyang black-bone chicken is a specific native chicken strain in China. This study aimed to investigate the effects of different rearing systems on the meat quality of Lueyang black-bone chickens. Six hundred Lueyang black-bone hens were randomly divided into two groups at 7 weeks of age and raised in cage and cage-free systems for 20 weeks. The carcass yield, meat quality, and total metabolites were measured in both the leg and breast muscles. By comparison, the carcass yield of hens in the cage-free (CF) group (1.26 ± 0.09 kg) was significantly lower than that in the caged rearing (CR) group (1.52 ± 0.15 kg). However, the shear force of leg muscles in the CF group (27.98 ± 2.43 N) was significantly greater than that in the CR group (24.15 ± 1.93 N). In addition, six samples from each group were randomly selected and their metabolites were detected by the non-targeted metabolomics technique. Among these metabolites, 408 and 354 significantly differentially abundant metabolites were identified in breast and leg muscles, which were mainly involved in glycerophospholipid metabolism, unsaturated fatty acid biosynthesis, arginine and proline metabolism, and nucleotide metabolism. We found that the levels of 19 phospholipids, mainly phosphatidylcholines and lysophosphatidylcholines, were significantly greater in the CF group than in the CR group. Additionally, the contents of eight unsaturated fatty acids, linoleic acid, and linolenic acid were dramatically greater in the CF group than in the caged group. The accumulation of 4-hydroxy-proline, glutamate, and adenosine 3'-monophosphate (AMP) was enhanced in the CF group. Moreover, many more volatile organic compounds were identified in the muscles of the cage-free group, enhancing the flavor of the chicken meat. In conclusion, the cage-free rearing mode facilitates the accumulation of nutrients and flavor substances in the chicken meat and is a better rearing system for Lueyang black-bone chickens.
Collapse
Affiliation(s)
- Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jie Gao
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Guojin Li
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jia Cheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Guoqiang Yuan
- Shaanxi Baiweiyuan Network Technology Company, Hanzhong 724300, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
3
|
Wan J, Ding J, Zhang X, Hu X, Chen R, Han S. Exploration of the Amino Acid Metabolic Profiling and Pathway in Clonorchis sinensis-Infected Rats Revealed by the Targeted Metabolomic Analysis. Vector Borne Zoonotic Dis 2024; 24:428-438. [PMID: 38574253 DOI: 10.1089/vbz.2023.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Background: Clonorchiasis remains a serious public health problem. However, the molecular mechanism underlying clonorchiasis remains largely unknown. Amino acid (AA) metabolism plays key roles in protein synthesis and energy sources, and improves immunity in pathological conditions. Therefore, this study aimed to explore the AA profiles of spleen in clonorchiasis and speculate the interaction between the host and parasite. Methods: Here targeted ultrahigh performance liquid chromatography multiple reaction monitoring mass spectrometry was applied to discover the AA profiles in spleen of rats infected with Clonorchis sinensis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis (KEGG) was performed to characterize the dysregulated metabolic pathways. Results: Pathway analysis revealed that phenylalanine, tyrosine, and tryptophan biosynthesis and β-alanine metabolism were significantly altered in clonorchiasis. There were no significant correlations between 14 significant differential AAs and interleukin (IL)-1β. Although arginine, asparagine, histidine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine were positively correlated with IL-6, IL-10, tumor necrosis factor (TNF)-α as well as aspartate aminotransferase and alanine aminotransferase; β-alanine and 4-hydroxyproline were negatively correlated with IL-6, IL-10, and TNF-α. Conclusion: This study reveals the dysregulation of AA metabolism in clonorchiasis and provides a useful insight of metabolic mechanisms at the molecular level.
Collapse
Affiliation(s)
- Jie Wan
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Jiangnan University Medical Center, Wuxi, China
| | - Jian Ding
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiaoli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xinyi Hu
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Rui Chen
- Jiangnan University Medical Center, Wuxi, China
| | - Su Han
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Jiangnan University Medical Center, Wuxi, China
- Department of Parasitology, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Posma RA, Bakker SJL, Nijsten MW, Touw DJ, Tsikas D. Comprehensive GC-MS Measurement of Amino Acids, Metabolites, and Malondialdehyde in Metformin-Associated Lactic Acidosis at Admission and during Renal Replacement Treatment. J Clin Med 2024; 13:3692. [PMID: 38999257 PMCID: PMC11242773 DOI: 10.3390/jcm13133692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Metformin is the most widely used drug in type 2 diabetes. Regular metformin use has been associated with changes in concentrations of amino acids. In the present study, we used valid stable-isotope labeled GC-MS methods to measure amino acids and metabolites, including creatinine as well as malondialdehyde (MDA), as an oxidative stress biomarker in plasma, urine, and dialysate samples in a patient at admission to the intensive care unit and during renal replacement treatment because of metformin-associated lactic acidosis (MALA, 21 mM lactate, 175 µM metformin). GC-MS revealed lower concentrations of amino acids in plasma, normal concentrations of the nitric oxide (NO) metabolites nitrite and nitrate, and normal concentrations of MDA. Renal tubular reabsorption rates were altered on admission. The patient received renal replacement therapy over 50 to 70 h of normalized plasma amino acid concentrations and their tubular reabsorption, as well as the tubular reabsorption of nitrite and nitrate. This study indicates that GC-MS is a versatile analytical tool to measure different classes of physiological inorganic and organic substances in complex biological samples in clinical settings such as MALA.
Collapse
Affiliation(s)
- Rene A Posma
- Department of Critical Care, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Maarten W Nijsten
- Department of Critical Care, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany
| |
Collapse
|
5
|
Yang L, Wang F, Liu S, Xian Z, Yang S, Xu Y, Shu L, Yan X, He J, Li X, Peng C, Bi C, Yuan Y, Chen S, Han L, Yang R, Li Y. Unique metabolomics characteristics for distinguishing cirrhosis related to different liver diseases: A systematic review and meta-analysis. Diabetes Metab Syndr 2024; 18:103068. [PMID: 38959546 DOI: 10.1016/j.dsx.2024.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/24/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND AND AIM Clinical evidence for early identification and diagnosis of liver cirrhosis (LC) caused by different types of liver disease is limited. We investigated this topic through a meta-analysis of quantitative metabolomics. METHODS Four databases were searched until October 31, 2022 for studies comparing metabolite levels between patients with different types of liver disease and control individuals. A random-effects model was applied for the meta-analysis. RESULTS This study included 55 studies with 8266 clinical participants, covering 348 metabolites. In LC related to drug-induced liver injury (DILI), hepatitis B virus (HBV) infection, and non-alcoholic fatty liver disease (NAFLD), the primary bile acid biosynthesis (taurocholic acid: SMD, 1.08[0.81, 1.35]; P < 0.00001; glycocholic acid: SMD, 1.35[1.07, 1.62]; P < 0.00001; taurochenodeoxycholic acid: SMD, 1.36[0.94, 1.78]; P < 0.00001; glycochenodeoxycholic acid: SMD, 1.49[0.93, 2.06]; P < 0.00001), proline and arginine (l-proline: SMD, 1.06[0.53, 1.58]; P < 0.0001; hydroxyproline: SMD, 0.81[0.30, 1.33]; P = 0.002), and fatty acid biosynthesis (palmitic acid: SMD, 0.44[0.21, 0.67]; P = 0.0002; oleic acid: SMD, 0.46[0.19, 0.73]; P = 0.0008; stearic acid: SMD, 0.37[0.07, 0.68]; P = 0.02) metabolic pathways were significantly altered. CONCLUSION We identified key biomarkers and metabolic characteristics for distinguishing and identifying LC related to different types of liver disease, providing a new perspective for early diagnosis, disease monitoring, and precise treatment.
Collapse
Affiliation(s)
- Liu Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sijia Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zicheng Xian
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shenshen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanyan Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lexin Shu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingxu Yan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Junjie He
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xia Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Cheng Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chenghao Bi
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yu Yuan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Siyu Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Liwen Han
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Rongrong Yang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
6
|
Chen X, Mao Y, Liang R, Zhu L, Yang X, Hopkins DL, Zhang Y. LC-MS-based metabolomics reveals metabolite dynamic changes of beef after superchilling early post-mortem. Food Res Int 2024; 183:114208. [PMID: 38760138 DOI: 10.1016/j.foodres.2024.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 05/19/2024]
Abstract
To explore the underlying mechanisms by which superchilling (SC, -3 °C within 5 h of slaughter) improves beef tenderness, an untargeted metabolomics strategy was employed. M. Longissimus lumborum (LL) muscles from twelve beef carcasses were assigned to either SC or very fast chilling (VFC, 0 °C within 5 h of slaughter) treatments, with conventional chilling (CC, 0 ∼ 4 °C until 24 h post-mortem) serving as the control (6 per group). Biochemical properties and metabolites were investigated during the early post-mortem period. The results showed that the degradation of μ-calpain and caspase 3 occurred earlier in SC treated sample, which might be attributed to the accelerated accumulation of free Ca2+. The metabolomic profiles of samples from the SC and CC treatments were clearly distinguished based on partial least squares-discriminant analysis (PLS-DA) at each time point. It is noteworthy that more IMP and 4-hydroxyproline were found in the comparison between SC and CC treatments. According to the results of metabolic pathways analysis and the correlation analysis between traits related to tenderness and metabolites with significant differences (SC vs. CC), it can be suggested that the tenderization effect of the SC treatment may be related to the alteration of arginine and proline metabolism, and purine metabolism in the early post-mortem phase.
Collapse
Affiliation(s)
- Xue Chen
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong 252000, PR China; Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - David L Hopkins
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; Canberra ACT, 2903, Australia
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
7
|
Li Y, Yang F, Liu J, Jiang M, Yu Y, Zhou Q, Sun L, Zhang Z, Zhou L. Protective effects of sodium butyrate on fluorosis in rats by regulating bone homeostasis and serum metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116284. [PMID: 38581912 DOI: 10.1016/j.ecoenv.2024.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Fluorosis due to high fluoride levels in drinking water profoundly affects the development of human skeletal and dental structures. Sodium butyrate (NaB) has been found to regulate overall bone mass and prevent pathological bone loss. However, the mechanism of NaB action on fluorosis remains unclear. In this study, a rat model of fluorosis induced by 100 mg/L sodium fluoride was used to investigate the impact of NaB on bone homeostasis and serum metabolomics. It was found that NaB significantly reduced the levels of bone resorption markers CTX-Ⅰ and TRACP-5B in fluorosis rats. Moreover, NaB increased calcium and magnesium levels in bone, while decreasing phosphorus levels. In addition, NaB improved various bone microstructure parameters, including bone mineral density (BMD), trabecular thickness (Tb. Th), trabecular bone separation (Tb. SP), and structural model index (SMI) in the femur. Notably, NaB intervention also enhanced the antioxidant capacity of plasma in fluorosis rats. Furthermore, a comprehensive analysis of serum metabolomics by LC-MS revealed a significant reversal trend of seven biomarkers after the intervention of NaB. Finally, pathway enrichment analysis based on differential metabolites indicated that NaB exerted protective effects on fluorosis by modulating arginine and proline metabolic pathways. These findings suggest that NaB has a beneficial effect on fluorosis and can regulate bone homeostasis by ameliorating metabolic disorders.
Collapse
Affiliation(s)
- Ying Li
- School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Fengmei Yang
- School of Public Health, Shenyang Medical College, Shenyang 110034, China; Yulin Center for Disease Control and Prevention, Yulin Municipal Health Committee, Yulin 719100, China
| | - Jie Liu
- School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Mengqi Jiang
- School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Ye Yu
- School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Qingyi Zhou
- School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Lu Sun
- Radiation Health Center, Liaoning Provincial Center for Disease Control and Prevention, Shenyang 110015, China.
| | - Zhuo Zhang
- School of Public Health, Shenyang Medical College, Shenyang 110034, China.
| | - Lin Zhou
- School of Public Health, Shenyang Medical College, Shenyang 110034, China.
| |
Collapse
|
8
|
Chen H, Wang J, Chen S, Chen X, Liu J, Tang H, Zhou J, Tian Y, Wang X, Cao X, Zhou J. Abnormal energy metabolism, oxidative stress, and polyunsaturated fatty acid metabolism in depressed adolescents associated with childhood maltreatment: A targeted metabolite analysis. Psychiatry Res 2024; 335:115795. [PMID: 38460351 DOI: 10.1016/j.psychres.2024.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 03/11/2024]
Abstract
The purpose of this study was to explore the metabolomic differences between Major depressive disorder (MDD) and healthy individuals among adolescents and the association between childhood maltreatment (CM) and differentially abundant metabolites. The exploratory study included 40 first-episode drug-naïve adolescents with MDD and 20 healthy volunteers. We used the Beck Depression Inventory (BDI-13) to assess the severity of depression and the Childhood Trauma Questionnaire (CTQ) to assess the presence of childhood maltreatment. The plasma samples from all participants were collected for targeted metabolomics analysis using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC‒MS/MS) methods. Spearman correlation was applied to analyse the correlations between clinical variables and metabolites. We found 11 increased metabolites and 37 decreased metabolites that differed between adolescents with MDD and healthy individuals. Pathway enrichment analysis of differentially abundant metabolites showed abnormalities in energy metabolism and oxidative stress in MDD. Importantly, we found that creatine, valine, isoleucine, glutamic acid and pyroglutamic acid were negatively correlated with the BDI-13, while isocitric acid, fatty acid and acylcarnitine were negatively associated with CTQ, and 4-hydroxyproline was positively related to CTQ in adolescents with MDD. These studies provide new ideas for the pathogenesis and potential treatment of adolescents with MDD.
Collapse
Affiliation(s)
- Hui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jinfeng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shurui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xianliang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiali Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Huajia Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiawei Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yusheng Tian
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xia Cao
- Health Management Center, Health Management Research Center of Central South University, The Third Xiangya Hospital, Central South University, Hunan Province, 410013, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Biswas D, Yoon JD, Mishra B, Hyun SH. Epigen enhances the developmental potential of in vitro fertilized embryos by improving cytoplasmic maturation. Theriogenology 2024; 218:16-25. [PMID: 38290231 DOI: 10.1016/j.theriogenology.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Numerous growth factors contribute to oocyte maturation and embryonic development in vivo; however, only a few are understood. One such factor is epigen, a new member of the epidermal growth factor (EGF) family that is secreted by the granulosa cells of immature oocytes. We hypothesized that epigen may play a role in oocyte maturation, specifically in the nuclear and cytoplasmic aspects. This study aimed to investigate the effects of epigen on porcine oocyte maturation and embryo development in vitro. In this study, three different concentrations of epigen (3, 6, and 30 ng/mL) were added to tissue culture medium-199 (TCM-199) during in vitro maturation of porcine oocytes. A control group that did not receive epigen supplementation was also included. Mature porcine oocytes were fertilized, and the resulting zygotes were cultured until day 7. The levels of intracellular glutathione (GSH) and reactive oxygen species (ROS) were measured in the in vitro matured oocytes. At the same time, the expression patterns of genes related to apoptosis were detected in day 7 blastocysts (BLs) using real-time quantitative PCR Apoptosis was detected by annexin-V assays in mature oocytes. Data were analyzed using ANOVA and Duncan's test on SPSS, and results are presented as mean ± SEM. The group that received 6 ng/mL epigen had a significantly lower rate of germinal vesicle breakdown (GVBD) than the control group without affecting the nuclear maturation among the experimental groups. Among the treatment groups, the 6 ng/mL epigen group showed significantly higher levels of intracellular GSH and lower ROS production. Supplementation with 6 ng/mL epigen significantly improved blastocyst (BL) formation rates compared to those in the control and 3 ng/mL groups. Additionally, the blastocyst expansion rate was significantly higher with epigen supplementation (6 ng/mL). In the fertilization experiment, the group supplemented with 6 ng/mL epigen exhibited significantly higher levels of monospermy and fertilization efficiency and lower levels of polyspermy than the control group. This study indicated that adding epigen at a concentration of 6 ng/mL can significantly enhance the developmental potential of porcine oocytes fertilized in vitro. Specifically, the study found that epigen improves cytoplasmic maturation, which helps prevent polyspermy and emulates monospermic penetration.
Collapse
Affiliation(s)
- Dibyendu Biswas
- Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Department of Medicine, Surgery and Obstetrics, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal Campus, Barisal, 8210, Bangladesh
| | - Junchul David Yoon
- Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Birendra Mishra
- Dept. of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Sang Hwan Hyun
- Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
10
|
Baskal S, Posma RA, Bollenbach A, Dieperink W, Bakker SJL, Nijsten MW, Touw DJ, Tsikas D. GC-MS analysis of 4-hydroxyproline: elevated proline hydroxylation in metformin-associated lactic acidosis and metformin-treated Becker muscular dystrophy patients. Amino Acids 2024; 56:21. [PMID: 38461423 PMCID: PMC10925573 DOI: 10.1007/s00726-024-03383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Metformin (N,N-dimethylbiguanide), an inhibitor of gluconeogenesis and insulin sensitizer, is widely used for the treatment of type 2 diabetes. In some patients with renal insufficiency, metformin can accumulate and cause lactic acidosis, known as metformin-associated lactic acidosis (MALA, defined as lactate ≥ 5 mM, pH < 7.35, and metformin concentration > 38.7 µM). Here, we report on the post-translational modification (PTM) of proline (Pro) to 4-hydroxyproline (OH-Pro) in metformin-associated lactic acidosis and in metformin-treated patients with Becker muscular dystrophy (BMD). Pro and OH-Pro were measured simultaneously by gas chromatography-mass spectrometry before, during, and after renal replacement therapy in a patient admitted to the intensive care unit (ICU) because of MALA. At admission to the ICU, plasma metformin concentration was 175 µM, with a corresponding lactate concentration of 20 mM and a blood pH of 7.1. Throughout ICU admission, the Pro concentration was lower compared to healthy controls. Renal excretion of OH-Pro was initially high and decreased over time. Moreover, during the first 12 h of ICU admission, OH-Pro seems to be renally secreted while thereafter, it was reabsorbed. Our results suggest that MALA is associated with hyper-hydroxyprolinuria due to elevated PTM of Pro to OH-Pro by prolyl-hydroxylase and/or inhibition of OH-Pro metabolism in the kidneys. In BMD patients, metformin, at the therapeutic dose of 3 × 500 mg per day for 6 weeks, increased the urinary excretion of OH-Pro suggesting elevation of Pro hydroxylation to OH-Pro. Our study suggests that metformin induces specifically the expression/activity of prolyl-hydroxylase in metformin intoxication and BMD.
Collapse
Affiliation(s)
- Svetlana Baskal
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Rene A Posma
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander Bollenbach
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Willem Dieperink
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten W Nijsten
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
11
|
Zheng H, Choi H, Oh D, Kim M, Cai L, Jawad A, Kim S, Lee J, Hyun SH. Supplementation with fibroblast growth factor 7 during in vitro maturation of porcine cumulus-oocyte complexes improves oocyte maturation and early embryonic development. Front Vet Sci 2023; 10:1250551. [PMID: 38026656 PMCID: PMC10662523 DOI: 10.3389/fvets.2023.1250551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
In vitro generation of porcine embryos is an indispensable method in the realms of both agriculture and biomedicine. Nonetheless, the extant procedures encounter substantial obstacles pertaining to both the caliber and efficacy of the produced embryos, necessitating extensive research to in vitro maturation (IVM), the seminal commencement phase. One potentially fruitful approach may lie in refining the media and supplements composition utilized for oocyte maturation. Fibroblast growth factor-7 (FGF7), alternatively termed keratinocyte growth factor, is a theca-derived cytokine integral to folliculogenesis. This study aimed to examine the ramifications of supplementing FGF7 during the IVM phase. To determine the FGF7 location and its receptor in porcine ovaries, immunohistochemistry was executed based on follicle size categories (1-2, 3-6, and 7-9 mm). Regardless of follicle size, it was determined that FGF7 was expressed in theca and granulosa cells (GCs), whereas the FGF7 receptor was only expressed in the GCs of the larger follicles. During the IVM process, the maturation medium was supplied with various concentrations of FGF7, aiming to mature porcine cumulus-oocyte complexes (COCs). The data indicated a significant augmentation in the nuclear maturation rate only within the group treated with 10 ng/mL of FGF7 (p < 0.05). Post-IVM, the oocytes diameter exhibited a significant expansion in all groups that received FGF7 supplementation (p < 0.05). Additionally, all FGF7-supplemented groups exhibited a substantial elevation in intracellular glutathione levels, coupled with a noticeable reduction in reactive oxygen species levels (p < 0.05). With respect to gene expressions related to apoptosis, FGF7 treatment elicited a downregulation of pro-apoptotic genes and an upregulation of anti-apoptotic genes. The expression of genes associated with antioxidants underwent a significant enhancement (p < 0.05). In terms of the FGF7 signaling pathway-associated genes, there was a significant elevation in the mRNA expression of ERK1, ERK2, c-kit, and KITLG (p < 0.05). Remarkably, the group of 10 ng/mL of FGF7 demonstrated an appreciable uptick in the blastocyst formation rate during embryonic development post-parthenogenetic activation (p < 0.05). In conclusion, the FGF7 supplementation during IVM substantially augments the quality of matured oocytes and facilitates the subsequent development of parthenogenetically activated embryos. These results offer fresh perspectives on improved maturation and following in vitro evolution of porcine oocytes.
Collapse
Affiliation(s)
- Haomiao Zheng
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, United States
| | - Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Sohee Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Research Institute for Natural Science, Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
12
|
Hu S, He W, Bazer FW, Johnson GA, Wu G. Synthesis of glycine from 4-hydroxyproline in tissues of neonatal pigs with intrauterine growth restriction. Exp Biol Med (Maywood) 2023; 248:1446-1458. [PMID: 37837389 PMCID: PMC10666732 DOI: 10.1177/15353702231199080] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 10/16/2023] Open
Abstract
This study tested the hypothesis that the synthesis of glycine from 4-hydroxyproline (an abundant amino acid in milk and neonatal blood) was impaired in tissues of piglets with intrauterine growth restriction (IUGR), thereby contributing to a severe glycine deficiency in these compromised neonates. At 0, 7, 14, and 21 days of age, IUGR piglets were euthanized, and tissues (liver, small intestine, kidney, pancreas, stomach, skeletal muscle, and heart) were obtained for metabolic studies, as well as the determination of enzymatic activities, cell-specific localization, and expression of mRNAs for glycine-synthetic enzymes. The results indicated relatively low enzymatic activities for 4-hydroxyproline oxidase (OH-POX), proline oxidase, serine hydroxymethyltransferase, threonine dehydrogenase (TDH), alanine: glyoxylate transaminase, and 4-hydroxy-2-oxoglutarate aldolase in the kidneys and liver from 0- to 21-day-old IUGR pigs, in the pancreas of 7- to 21-day-old IUGR pigs, and in the small intestine and skeletal muscle (except TDH) of 21-day-old IUGR pigs. Accordingly, the rates of conversion of 4-hydroxyproline into glycine were relatively low in tissues of IUGR piglets. The expression of mRNAs for glycine-synthetic enzymes followed the patterns of enzymatic activities and was also low. Immunohistochemical analyses revealed the relatively low abundance of OH-POX protein in the liver, kidney, and small intestine of IUGR piglets, and the lack of OH-POX zonation in their livers. These novel results provide a metabolic basis to explain why the endogenous synthesis of glycine is insufficient for optimum growth of IUGR piglets and have important implications for improving the nutrition and health of other mammalian neonates including humans with IUGR.
Collapse
Affiliation(s)
- Shengdi Hu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
13
|
Mikuteit M, Baskal S, Klawitter S, Dopfer-Jablonka A, Behrens GMN, Müller F, Schröder D, Klawonn F, Steffens S, Tsikas D. Amino acids, post-translational modifications, nitric oxide, and oxidative stress in serum and urine of long COVID and ex COVID human subjects. Amino Acids 2023; 55:1173-1188. [PMID: 37516715 PMCID: PMC10564820 DOI: 10.1007/s00726-023-03305-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
In this study, we investigated the status of amino acids, their post-translational modifications (PTM), major nitric oxide (NO) metabolites and of malondialdehyde (MDA) as a biomarker of oxidative stress in serum and urine samples of long COVID (LoCo, n = 124) and ex COVID (ExCo, n = 24) human subjects collected in 2022. Amino acids and metabolites were measured by gas chromatography-mass spectrometry (GC-MS) methods using stable-isotope labelled analogs as internal standards. There were no differences with respect to circulating and excretory arginine and asymmetric dimethylarginine (ADMA). LoCo participants excreted higher amounts of guanidino acetate than ExCo participants (17.8 ± 10.4 µM/mM vs. 12.6 ± 8.86 µM/mM, P = 0.005). By contrast, LoCo participants excreted lower amounts of the advanced glycation end-product (AGE) NG-carboxyethylarginine (CEA) than ExCo participants did (0.675 ± 0.781 µM/mM vs. 1.16 ± 2.04 µM/mM, P = 0.0326). The serum concentrations of MDA did not differ between the groups, indicating no elevated oxidative stress in LoCo or ExCo. The serum concentration of nitrite was lower in LoCo compared to ExCo (1.96 ± 0.92 µM vs. 2.56 ± 1.08 µM; AUC, 0.718), suggesting altered NO synthesis in the endothelium. The serum concentration of nitrite correlated inversely with the symptom anxiety (r = - 0.293, P = 0.0003). The creatinine-corrected urinary excretion of Lys and its metabolite L-5-hydroxy-Lys correlated positively with COVID toes (r = 0.306, P = 0.00027) and sore throat (r = 0.302, P = 0.0003). Our results suggest that amino acid metabolism, PTM and oxidative stress are not severely affected in long COVID. LoCo participants may have a lower circulating NO reservoir than ExCo.
Collapse
Affiliation(s)
- Marie Mikuteit
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Hannover Medical School, Dean’s Office–Curriculum Development, Hannover, Germany
| | - Svetlana Baskal
- Hannover Medical School, Institute of Toxicology, Core Unit Proteomics, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Sandra Klawitter
- Institute for Information Engineering, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
| | | | - Georg M. N. Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Centre for Individualized Infection Medicine (CiiM), Hannover Medical School, Hannover, Germany
| | - Frank Müller
- Department of General Practice, University Medical Center Göttingen, Göttingen, Germany
- Department of Family Medicine, Michigan State University, Grand Rapids, MI USA
| | - Dominik Schröder
- Department of General Practice, University Medical Center Göttingen, Göttingen, Germany
| | - Frank Klawonn
- Institute for Information Engineering, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
- Biostatistics Research Group, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Sandra Steffens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Hannover Medical School, Dean’s Office–Curriculum Development, Hannover, Germany
| | - Dimitrios Tsikas
- Hannover Medical School, Institute of Toxicology, Core Unit Proteomics, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
14
|
Singh A, Kinnebrew G, Hsu PC, Weng DY, Song MA, Reisinger SA, McElroy JP, Keller-Hamilton B, Ferketich AK, Freudenheim JL, Shields PG. Untargeted Metabolomics and Body Mass in Adolescents: A Cross-Sectional and Longitudinal Analysis. Metabolites 2023; 13:899. [PMID: 37623843 PMCID: PMC10456720 DOI: 10.3390/metabo13080899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Obesity in children and adolescents has increased globally. Increased body mass index (BMI) during adolescence carries significant long-term adverse health outcomes, including chronic diseases such as cardiovascular disease, stroke, diabetes, and cancer. Little is known about the metabolic consequences of changes in BMI in adolescents outside of typical clinical parameters. Here, we used untargeted metabolomics to assess changing BMI in male adolescents. Untargeted metabolomic profiling was performed on urine samples from 360 adolescents using UPLC-QTOF-MS. The study includes a baseline of 235 subjects in a discovery set and 125 subjects in a validation set. Of them, a follow-up of 81 subjects (1 year later) as a replication set was studied. Linear regression analysis models were used to estimate the associations of metabolic features with BMI z-score in the discovery and validation sets, after adjusting for age, race, and total energy intake (kcal) at false-discovery-rate correction (FDR) ≤ 0.1. We identified 221 and 16 significant metabolic features in the discovery and in the validation set, respectively. The metabolites associated with BMI z-score in validation sets are glycylproline, citrulline, 4-vinylsyringol, 3'-sialyllactose, estrone sulfate, carnosine, formiminoglutamic acid, 4-hydroxyproline, hydroxyprolyl-asparagine, 2-hexenoylcarnitine, L-glutamine, inosine, N-(2-Hydroxyphenyl) acetamide glucuronide, and galactosylhydroxylysine. Of those 16 features, 9 significant metabolic features were associated with a positive change in BMI in the replication set 1 year later. Histidine and arginine metabolism were the most affected metabolic pathways. Our findings suggest that obesity and its metabolic outcomes in the urine metabolome of children are linked to altered amino acids, lipid, and carbohydrate metabolism. These identified metabolites may serve as biomarkers and aid in the investigation of obesity's underlying pathological mechanisms. Whether these features are associated with the development of obesity, or a consequence of changing BMI, requires further study.
Collapse
Affiliation(s)
- Amarnath Singh
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1240, USA; (A.S.); (D.Y.W.)
| | - Garrett Kinnebrew
- Department of Biomedical Informatics, Biomedical Informatics Shared Resources (BISR), The Ohio State University, Columbus, OH 43210-1240, USA;
| | - Ping-Ching Hsu
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Daniel Y. Weng
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1240, USA; (A.S.); (D.Y.W.)
| | - Min-Ae Song
- College of Public Health, The Ohio State University, Columbus, OH 43210-1240, USA; (M.-A.S.); (A.K.F.)
| | - Sarah A. Reisinger
- Center for Tobacco Research, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1240, USA; (S.A.R.); (B.K.-H.)
| | - Joseph P. McElroy
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210-1240, USA;
| | - Brittney Keller-Hamilton
- Center for Tobacco Research, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1240, USA; (S.A.R.); (B.K.-H.)
- Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210-1240, USA
| | - Amy K. Ferketich
- College of Public Health, The Ohio State University, Columbus, OH 43210-1240, USA; (M.-A.S.); (A.K.F.)
| | - Jo L. Freudenheim
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA;
| | - Peter G. Shields
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1240, USA; (A.S.); (D.Y.W.)
| |
Collapse
|
15
|
Hu S, He W, Bazer FW, Johnson GA, Wu G. Synthesis of glycine from 4-hydroxyproline in tissues of neonatal pigs. Exp Biol Med (Maywood) 2023; 248:1206-1220. [PMID: 37632196 PMCID: PMC10621473 DOI: 10.1177/15353702231181360] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/01/2023] [Indexed: 08/27/2023] Open
Abstract
Glycine from sow's milk only meets 20% of the requirement of suckling piglets. However, how glycine is synthesized endogenously in neonates is not known. This study determined glycine synthesis from 4-hydroxyproline (an abundant amino acid in milk and neonatal blood) in tissues of sow-reared piglets with normal birth weights. Piglets were euthanized at 0, 7, 14 and 21 days of age, and their tissues were used to determine glycine synthesis from 0 to 5 mM 4-hydroxyproline, activities and mRNA expression of key glycine-synthetic enzymes, and their cell-specific localization. Activities of 4-hydroxyproline oxidase (OH-POX), proline oxidase (POX), serine hydroxymethyltransferase (SHMT), threonine dehydrogenase (TDH), alanine:glyoxylate transaminase (AGT), and 4-hydroxy-2-oxoglutarate aldolase (HOA) occurred in the kidneys and liver from all age groups of piglets, and in the pancreas of 7- to 21-day-old piglets. Activities of OH-POX and HOA were absent from the small intestine of newborn pigs but present in the small intestine of 7- to 21-day-old piglets and in the skeletal muscle of 14- to 21-day-old piglets. Between days 0 and 21 of age, the enzymatic activities of OH-POX, AGT, and HOA decreased in the liver and kidneys but increased in the pancreas and small intestine with age. The mRNA levels of these three enzymes changed in a manner similar to their enzymatic activities. In contrast to OH-POX, AGT, and HOA, the enzymatic activities of POX, SHMT, and TDH were present in the kidneys, liver, and intestine of all age groups of piglets. Glycine was synthesized from 0.1 to 5 mM 4-hydroxyproline in the liver and kidney from 0- to 21-day-old piglets, as well as the pancreas, small intestine, and skeletal muscle from 14- to 21-day-old piglets in a concentration-dependent manner. Collectively, our findings indicate that 4-hydroxyproline is used for the synthesis of glycine in tissues of piglets to compensate for the deficiency of glycine in milk.
Collapse
Affiliation(s)
- Shengdi Hu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Sharma R, Sehrawat R, Ahlawat S, Sharma V, Thakur MS, Mishra AK, Arora R, Tantia MS. Functional Quality Characteristics of the Meat from a Dual-Purpose Poultry Crossbreed Suitable for Backyard Rearing in Comparison to Commercial Broilers. Foods 2023; 12:2434. [PMID: 37444172 DOI: 10.3390/foods12132434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Backyard poultry farming contributes to food security, nutrition, and the regular income of rural farmers in India. Their products have a niche market here and fetch higher prices than those of commercial poultry. Improved varieties are being developed to overcome the slow growth, late sexual maturity, and low production of indigenous breeds, while retaining their positive attributes. A comprehensive study was conducted to analyze the functional attributes of meat from the Jabalpur color (JBC), a colored, improved dual-purpose synthetic line, developed by Nanaji Deshmukh Veterinary Science University, Jabalpur, India. The birds were managed in a deep litter system under a backyard type of housing (night shelter and free range). Primal meat cuts (breast and thigh) of the male birds (n = 20/group) were evaluated at the age of marketing. The corresponding attributes were compared with the results obtained for commercial Cobb (400) broilers. The protein concentration of JBC breast (25.65 ± 0.39 g/100 g of tissue) and thigh (19.04 ± 0.23 g/100 g of tissue) meat was superior (p ≤ 0.05) to that of Cobb broilers. Established assays (in vitro) identified a better (p ≤ 0.05) antioxidation capacity in the JBC meat. High-performance liquid chromatography confirmed a considerable quantity of functional biomolecules (carnosine, anserine, and creatine) in the JBC breast and thigh meat extracts. The average carnosine concentration (mg/g of tissue) was 2.66 ± 0.09 and 1.11 ± 0.04 in the JBC breast and thigh meat, respectively. The mRNA expression was quantified by qRT-PCR for the carnosine-related genes: β-alanine transporter (SLC36A1), carnosine-synthesizing enzyme (CARNS1), and carnosine-degrading enzyme (CNDP2); this explained the comparable carnosine in the JBC and Cobb meat. Meat extracts from both genetic groups (JBC and Cobb) had high anti-glycation potential. Higher protein content and antioxidant capacity, along with the bioactive dipeptides in the JBC meat, herald exciting research opportunities for its use in improving the traditional backyard poultry farming system.
Collapse
Affiliation(s)
- Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132 001, India
| | - Renuka Sehrawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132 001, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132 001, India
| | - Vivek Sharma
- ICAR-National Dairy Research Institute, Karnal 132 001, India
| | - Mohan Singh Thakur
- Department of Animal Genetics and Breeding, Nanaji Deshmukh Veterinary Science University, Jabalpur 482 001, India
| | - A K Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132 001, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132 001, India
| | - M S Tantia
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132 001, India
| |
Collapse
|
17
|
Yang Z, Chen G, Shen J, Ma C, Gu J, Zhu C, Li L, Gao H. A hydrogen bonding based SERS method for direct label-free L-hydroxyproline detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122834. [PMID: 37178585 DOI: 10.1016/j.saa.2023.122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The detection of non-protein nitrogen adulterants is a major challenge in dairy testing. As a marker molecule of animal hydrolyzed protein, the presence of non-edible L-hydroxyproline (L-Hyp) molecules can be used to identify low-quality milk containing components of animal hydrolyzed protein. However, it is still difficult to detect L-Hyp directly in milk. The Ag@COF-COOH substrate in this paper can be used to realize label-free L-Hyp sensitive detection based on the hydrogen bond transition mechanism. To explore the mechanism, the binding sites of hydrogen bond interaction have been verified experimentally and computationally, and the charge transfer process was also explained in terms of HOMO/LOMO energy level. In conclusion, the quantitative models for L-Hyp in an aqueous environment and in milk were developed. The limit of detection (LOD) of L-Hyp in an aqueous environment could reach 8.18 ng/mL, with R2 of 0.982. The linear range of quantitative detection in milk was 0.5-1000 μg/mL and the LOD was as low as 0.13 μg/mL. In this work, a hydrogen bond interaction based Surface-enhanced Raman spectroscopy (SERS) method for the label-free detection of L-Hyp was proposed, which complemented the application of SERS technology in the detection of dairy products.
Collapse
Affiliation(s)
- Zichen Yang
- School of Science, Jiangnan University, Wuxi, China; School of Internet of Things Engineering, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Guoqing Chen
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China.
| | - Jialu Shen
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Chaoqun Ma
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Jiao Gu
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Chun Zhu
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Lei Li
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Hui Gao
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| |
Collapse
|
18
|
Jitjumnong J, Tang PC. Bone Morphogenetic Protein 15 (BMP-15) Improves In Vitro Mouse Folliculogenesis. Animals (Basel) 2023; 13:ani13060980. [PMID: 36978521 PMCID: PMC10044016 DOI: 10.3390/ani13060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Multilayered secondary follicles were encapsulated in a 0.5% alginate matrix and cultured in a 3D culture system supplemented with bone morphogenetic protein 15 (BMP-15; 15 ng/mL) for 12 days. The in vitro development of ovarian follicles was evaluated. On day 12, the follicle diameter, follicle survival rate, and antrum formation rate were significantly higher for follicles cultured in BMP-15-supplemented medium than those cultured in regular medium. The percentage of ovulated metaphase II oocytes retrieved from follicles cultured in BMP-15-supplemented medium was greater than that of oocytes retrieved from follicles cultured in regular medium. The secretion of P4 was significantly higher on days 6, 8, and 10 in follicles cultured in BMP-15-supplemented medium. The result for E2 tended toward significance on day 12. Intracellular reactive oxygen species levels were higher and glutathione levels were lower in mature oocytes from the in vitro culture than in mature oocytes from an in vivo control. A 3D culture system using an alginate matrix and supplemented with BMP-15 effectively improves the outcomes of in vitro ovarian follicle culture.
Collapse
Affiliation(s)
- Jakree Jitjumnong
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0365 (ext. 222); Fax: +886-4-2286-0265
| |
Collapse
|
19
|
Phang JM. The regulatory mechanisms of proline and hydroxyproline metabolism: Recent advances in perspective. Front Oncol 2023; 12:1118675. [PMID: 36818667 PMCID: PMC9930595 DOI: 10.3389/fonc.2022.1118675] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/29/2022] [Indexed: 01/28/2023] Open
Abstract
For diverse human tumors, growth and metastasis are dependent on proline synthesis, but the mechanisms underlying this association are not clear. Proline incorporated into collagen is primarily synthesized from glutamine. Thus, rates of collagen synthesis are modulated by the enzymes of proline synthesis. On the other hand, the hydroxylation of collagen proline requires αKG, ascorbate and ferrous iron, substrates necessary for the epigenetic demethylation of DNA and histones. The metabolic relationship of proline and hydroxyproline degradation are initiated by distinct dehydrogenases but the respective oxidized products, P5C and OH-P5C are substrates for P5C Reductase and P5C Dehydrogenase allowing for mutual competition. This provides a model by which proline synthesis in cancer plays a role in reprogramming gene expression. The metabolism of proline and hydroxyproline are also linked to the HIF response to hypoxia. Hypoxia increased the expression of ALDH18A1, which is the limiting step in proline and collagen synthesis. Hydroxyproline increases levels of HIF-1α presumably by inhibiting its degradation. These new findings allow the suggestion that there is a regulatory axis from glutamine to proline and collagen synthesis, and the release of free hydroxyproline can feed back on the HIF pathway.
Collapse
|
20
|
Liu N, Si X, Ji Y, Yang Q, Bai J, He Y, Jia H, Song Z, Chen J, Yang L, Zeng S, Yang Y, Wu Z. l-Proline improves the cytoplasmic maturation of mouse oocyte by regulating glutathione-related redox homeostasis. Theriogenology 2023; 195:159-167. [DOI: 10.1016/j.theriogenology.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
21
|
Sarandy MM, Pelinsari SM, de Souza LM, Novaes RD, Zanuncio VV, Gonçalves RV. l-arginine and l-citrulline supplementation accelerates second intention wound healing in iNOS knockout mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
22
|
Wang H, Wang Y, Li X, Deng X, Kong Y, Wang W, Zhou Y. Machine learning of plasma metabolome identifies biomarker panels for metabolic syndrome: findings from the China Suboptimal Health Cohort. Cardiovasc Diabetol 2022; 21:288. [PMID: 36564831 PMCID: PMC9789589 DOI: 10.1186/s12933-022-01716-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) has been proposed as a clinically identifiable high-risk state for the prediction and prevention of cardiovascular diseases and type 2 diabetes mellitus. As a promising "omics" technology, metabolomics provides an innovative strategy to gain a deeper understanding of the pathophysiology of MetS. The study aimed to systematically investigate the metabolic alterations in MetS and identify biomarker panels for the identification of MetS using machine learning methods. METHODS Nuclear magnetic resonance-based untargeted metabolomics analysis was performed on 1011 plasma samples (205 MetS patients and 806 healthy controls). Univariate and multivariate analyses were applied to identify metabolic biomarkers for MetS. Metabolic pathway enrichment analysis was performed to reveal the disturbed metabolic pathways related to MetS. Four machine learning algorithms, including support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), and logistic regression were used to build diagnostic models for MetS. RESULTS Thirteen significantly differential metabolites were identified and pathway enrichment revealed that arginine, proline, and glutathione metabolism are disturbed metabolic pathways related to MetS. The protein-metabolite-disease interaction network identified 38 proteins and 23 diseases are associated with 10 MetS-related metabolites. The areas under the receiver operating characteristic curve of the SVM, RF, KNN, and logistic regression models based on metabolic biomarkers were 0.887, 0.993, 0.914, and 0.755, respectively. CONCLUSIONS The plasma metabolome provides a promising resource of biomarkers for the predictive diagnosis and targeted prevention of MetS. Alterations in amino acid metabolism play significant roles in the pathophysiology of MetS. The biomarker panels and metabolic pathways could be used as preventive targets in dealing with cardiometabolic diseases related to MetS.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Epidemiology and Evidence-Based Medicine, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xingang Li
- Center for Precision Medicine, School of Medical and Health Sciences, Edith Cowan University, Perth, WA6027, Australia
| | - Xuan Deng
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Yuanyuan Kong
- Department of Clinical Epidemiology and Evidence-Based Medicine, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, 100069, China
- Center for Precision Medicine, School of Medical and Health Sciences, Edith Cowan University, Perth, WA6027, Australia
| | - Yong Zhou
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
23
|
Ma L, Huang M, Sun G, Lin Y, Lu D, Wu B. Puerariae lobatae radix protects against UVB-induced skin aging via antagonism of REV-ERBα in mice. Front Pharmacol 2022; 13:1088294. [PMID: 36618934 PMCID: PMC9813444 DOI: 10.3389/fphar.2022.1088294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Puerariae lobatae radix (PLR) is a wildly used herbal medicine. Here we aimed to assess the PLR efficacy against UVB (ultraviolet-B)-induced skin aging and to determine the mechanisms thereof. We found a significant protective effect of PLR (topical application) on UVB-induced skin aging in mice, as evidenced by reduced skin wrinkles, epidermal thickness, and MDA (malondialdehyde) content as well as increased levels of HYP (hydroxyproline) and SOD (superoxide dismutase) in the skin. In the meantime, Mmp-1, p21 and p53 levels were decreased in the skin of PLR-treated mice. Anti-aging effects of PLR were also confirmed in L929 cells. Furthermore, PLR up-regulated skin expression of BMAL1, which is a known regulator of aging by promoting Nrf2 and antioxidant enzymes. Consistently, Nrf2 and several genes (i.e., Prdx6, Sod1, and Sod2) encoding antioxidant enzymes in the skin were increased in PLR-treated mice. Moreover, based on Gal4 chimeric assay, Bmal1 reporter gene and expression assays, we identified PLR as an antagonist of REV-ERBα that can increase Bmal1 expression. Intriguingly, loss of Rev-erbα protected mice against UVB-induced skin aging and abrogated the protective effect of PLR. In conclusion, PLR acts as an antagonist of REV-ERBα and promotes the expression of BMAL1 to protect against skin aging in mice.
Collapse
Affiliation(s)
- Luyao Ma
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiping Huang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghui Sun
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanke Lin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Ji Y, Yang Y, Sun S, Dai Z, Ren F, Wu Z. Insights into diet-associated oxidative pathomechanisms in inflammatory bowel disease and protective effects of functional amino acids. Nutr Rev 2022; 81:95-113. [PMID: 35703919 DOI: 10.1093/nutrit/nuac039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There has been a substantial rise in the incidence and prevalence of clinical patients presenting with inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis. Accumulating evidence has corroborated the view that dietary factors (particularly diets with high levels of saturated fat or sugar) are involved in the development and progression of IBD, which is predominately associated with changes in the composition of the gut microbiota and an increase in the generation of reactive oxygen species. Notably, the ecological imbalance of the gut microbiome exacerbates oxidative stress and inflammatory responses, leading to perturbations of the intestinal redox balance and immunity, as well as mucosal integrity. Recent findings have revealed that functional amino acids, including L-glutamine, glycine, L-arginine, L-histidine, L-tryptophan, and hydroxyproline, are effectively implicated in the maintenance of intestinal redox and immune homeostasis. These amino acids and their metabolites have oxygen free-radical scavenging and inflammation-relieving properties, and they participate in modulation of the microbial community and the metabolites in the gut. The principal focus of this article is a review of recent advances in the oxidative pathomechanisms of IBD development and progression in relation to dietary factors, with a particular emphasis on the redox and signal transduction mechanisms of host cells in response to unbalanced diets and enterobacteria. In addition, an update on current understanding of the protective effects of functional amino acids against IBD, together with the underlying mechanisms for this protection, have been provided.
Collapse
Affiliation(s)
- Yun Ji
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ying Yang
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, ChinaChina
| | - Fazheng Ren
- are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Bernardo-Bermejo S, Adámez-Rodríguez S, Sánchez-López E, Castro-Puyana M, Luisa Marina M. Stereoselective separation of 4-hydroxyproline by electrokinetic chromatography. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
26
|
Zhao S, Guo J, Xue H, Meng J, Xie D, Liu X, Yu Q, Zhong H, Jiang P. Systematic impacts of fluoride exposure on the metabolomics of rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113888. [PMID: 35872488 DOI: 10.1016/j.ecoenv.2022.113888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Fluoride is widely present in the environment. Excessive fluoride exposure leads to fluorosis, which has become a global public health problem and will cause damage to various organs and tissues. Only a few studies focus on serum metabolomics, and there is still a lack of systematic metabolomics associated with fluorosis within the main organs. Therefore, in the current study, a non-targeted metabolomics method using gas chromatography-mass spectrometry (GC-MS) was used to research the effects of fluoride exposure on metabolites in different organs, to uncover potential biomarkers and study whether the affected metabolic pathways are related to the mechanism of fluorosis. Male Sprague-Dawley rats were randomly divided into two groups: a control group and a fluoride exposure group. GC-MS technology was used to identify metabolites. Multivariate statistical analysis identified 16, 24, 20, 20, 24, 13, 7, and 13 differential metabolites in the serum, liver, kidney, heart, hippocampus, cortex, kidney fat, and brown fat, respectively, in the two groups of rats. Fifteen metabolic pathways were affected, involving toxic mechanisms such as oxidative stress, mitochondrial damage, inflammation, and fatty acid, amino acid and energy metabolism disorders. This study provides a new perspective on the understanding of the mechanism of toxicity associated with sodium fluoride, contributing to the prevention and treatment of fluorosis.
Collapse
Affiliation(s)
- Shiyuan Zhao
- Translational pharmaceutical laboratory of Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| | - Jinxiu Guo
- Translational pharmaceutical laboratory of Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| | - Hongjia Xue
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Junjun Meng
- Translational pharmaceutical laboratory of Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| | - Dadi Xie
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou 277500, China.
| | - Xi Liu
- Department of Pharmacy, Linfen People's Hospital, Linfen 041000, China.
| | - Qingqing Yu
- Department of Oncology, Jining First People's Hospital, Jining Medical University, Jining 272000, China; Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Science, Ocean University of China, Qingdao 266003, China.
| | - Haitao Zhong
- Translational pharmaceutical laboratory of Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| | - Pei Jiang
- Translational pharmaceutical laboratory of Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| |
Collapse
|
27
|
Tang Y, Shah S, Cho KS, Sun X, Chen DF. Metabolomics in Primary Open Angle Glaucoma: A Systematic Review and Meta-Analysis. Front Neurosci 2022; 16:835736. [PMID: 35645711 PMCID: PMC9135181 DOI: 10.3389/fnins.2022.835736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 01/01/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide. It is suggested that primary open angle glaucoma (POAG), the most common form of glaucoma, may be associated with significant metabolic alternations, but the systemic literature review and meta-analysis in the area have been missing. Altered metabolomic profiles in the aqueous humor and plasma may serve as possible biomarkers for early detection or treatment targets. In this article, we performed a systematic meta-analysis of the current literature surrounding the metabolomics of patients with POAG and metabolites associated with the disease. Results suggest several metabolites found to be specifically altered in patients with POAG, suggesting broad generalizability and pathways for future research.
Collapse
Affiliation(s)
- Yizhen Tang
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Simran Shah
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Xinghuai Sun
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
- *Correspondence: Dong Feng Chen,
| |
Collapse
|
28
|
Abstract
Amino acids (AAs) are required for syntheses of proteins and low-molecular-weight substances with enormous physiological importance. Since 1912, AAs have been classified as nutritionally essential amino acids (EAAs) or nonessential amino acids (NEAAs) for animals. EAAs are those AAs that are either not synthesized or insufficiently synthesized de novo in the organisms. It was assumed that all NEAAs (now known as AAs that are synthesizable in animal cells de novo [AASAs]) were formed sufficiently in animals and were not needed in diets. However, studies over the past three decades have shown that sufficient dietary AASAs (e.g. glutamine, glutamate, glycine, and proline) are necessary for the maximum growth and optimum health of pigs, chickens, and fish. Thus, the concept of "ideal protein" (protein with an optimal EAA pattern that precisely meets the physiological needs of animals), which was originally proposed in the 1950s but ignored AASAs, is not ideal in animal nutrition. Ideal diets must provide all physiologically and nutritionally essential AAs. Improved patterns of AAs in diets for swine and chickens as well as zoo and companion animals have been proposed in recent years. Animal-sourced feedstuffs supply abundant EAAs and AASAs (including glutamate, glutamine, glycine, proline, 4-hydroxyproline, and taurine) for diets of swine, poultry, fish, and crustaceans to improve their growth, development, reproduction, and health, while sustaining global animal production. Nutritionists should move beyond the "ideal protein" concept to consider optimum ratios and amounts of all proteinogenic AAs in diets for mammals, birds, and aquatic animals, and, in the case of carnivores, also taurine.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Peng Li
- North American Renderers Association, Alexandria, VA 22314, USA
| |
Collapse
|
29
|
Lu P, Li J, Liu C, Yang J, Peng H, Xue Z, Liu Z. Salvianolic acid B dry powder inhaler for the treatment of idiopathic pulmonary fibrosis. Asian J Pharm Sci 2022; 17:447-461. [PMID: 35782322 PMCID: PMC9237582 DOI: 10.1016/j.ajps.2022.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/27/2022] [Accepted: 04/03/2022] [Indexed: 12/02/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a serious and fatal pulmonary inflammatory disease with an increasing incidence worldwide. The drugs nintedanib and pirfenidone, are listed as conditionally recommended drugs in the “Evidence-Based Guidelines for the Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis”. However, these two drugs have many adverse reactions in clinical application. Salvianolic acid B (Sal B), a water-soluble component of Salvia miltiorrhiza, could alleviate bleomycin-induced peroxidative stress damage, and prevent or delay the onset of IPF by regulating inflammatory factors and fibrotic cytokines during the disease's progression. However, Sal B is poorly absorbed orally, and patient compliance is poor when administered intravenously. Therefore, there is an urgent need to find a new non-injection route of drug delivery. In this study, Sal B was used as model drug and l-leucine (LL) as excipient to prepare Sal B dry powder inhaler (Sal B-DPI) by spray drying method. Modern preparation evaluation methods were used to assess the quality of Sal B-DPI. Sal B-DPI is promising for the treatment of IPF, according to studies on pulmonary irritation evaluation, in vivo and in vitro pharmacodynamics, metabolomics, pharmacokinetics, and lung tissue distribution.
Collapse
Affiliation(s)
- Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- Department of Pharmacy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, China
| | - Jiawei Li
- College of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chuanxin Liu
- Endocrine and Metabolic Disease Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Medical Key Laboratory of Hereditary Rare Diseases of Henan, Luoyang Sub-center of National Clinical Research Center for Metabolic Diseases, Luoyang, Henan 471003, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hui Peng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhifeng Xue
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- Corresponding authors.
| |
Collapse
|
30
|
Shan M, Liu H, Hao Y, Song K, Meng T, Feng C, Wang Y, Huang Y. Metabolomic Profiling Reveals That 5-Hydroxylysine and 1-Methylnicotinamide Are Metabolic Indicators of Keloid Severity. Front Genet 2022; 12:804248. [PMID: 35222522 PMCID: PMC8864098 DOI: 10.3389/fgene.2021.804248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Keloid is a skin fibroproliferative disease with unknown pathogenesis. Metabolomics provides a new perspective for revealing biomarkers related to metabolites and their metabolic mechanisms. Method: Metabolomics and transcriptomics were used for data analysis. Quality control of the data was performed to standardize the data. Principal component analysis (PCA), PLS-DA, OPLS-DA, univariate analysis, CIBERSORT, neural network model, and machine learning correlation analysis were used to calculate differential metabolites. The molecular mechanisms of characteristic metabolites and differentially expressed genes were identified through enrichment analysis and topological analysis. Result: Compared with normal tissue, lipids have a tendency to decrease in keloids, while peptides have a tendency to increase in keloids. Significantly different metabolites between the two groups were identified by random forest analysis, including 1-methylnicotinamide, 4-hydroxyproline, 5-hydroxylysine, and l-prolinamide. The metabolic pathways which play important roles in the pathogenesis of keloids included arachidonic acid metabolism and d-arginine and d-ornithine metabolism. Metabolomic profiling reveals that 5-hydroxylysine and 1-methylnicotinamide are metabolic indicators of keloid severity. The high-risk early warning index for 5-hydroxylysine is 4 × 108-6.3×108 (p = 0.0008), and the high-risk predictive index for 1-methylnicotinamide is 0.95 × 107-1.6×107 (p = 0.0022). Conclusion: This study was the first to reveal the metabolome profile and transcriptome of keloids. Differential metabolites and metabolic pathways were calculated by machine learning. Metabolomic profiling reveals that 5-hydroxylysine and 1-methylnicotinamide may be metabolic indicators of keloid severity.
Collapse
Affiliation(s)
- Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China.,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China.,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China.,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kexin Song
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Tian Meng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Cheng Feng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yongsheng Huang
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Chiral secondary amino acids, their importance, and methods of analysis. Amino Acids 2022; 54:687-719. [PMID: 35192062 DOI: 10.1007/s00726-022-03136-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 11/01/2022]
Abstract
Naturally occurring secondary amino acids, with proline as the main representative, contain an alpha-imino group in a cycle that is typically four-, five-, and six-membered. The unique ring structure exhibits exceptional properties-conformational rigidity, chemical stability, and specific roles in protein structure and folding. Many proline analogues have been used as valuable compounds for the study of metabolism of both prokaryotic and eukaryotic cells and for the synthesis of compounds with desired biological, pharmaceutical, or industrial properties. The D-forms of secondary amino acids play different roles in living organisms than the L-forms. They have different metabolic pathways, biological, physiological, and pharmacological effects, they can be indicators of changes and also serve as biomarkers of diseases. In the scientific literature, the number of articles examining D-amino acids in biological samples is increasing. The review summarises information on the occurrence and importance of D- and L-secondary amino acids-azetidic acid, proline, hydroxyprolines, pipecolic, nipecotic, hydroxypipecolic acids and related peptides containing these D-AAs, as well as the main analytical methods (mostly chromatographic) used for their enantiomeric determination in different matrices (biological samples, plants, food, water, and soil).
Collapse
|
32
|
Wu Y, Cui S, Wang W, Jian T, Kan B, Jian X. Kidney and lung injury in rats following acute diquat exposure. Exp Ther Med 2022; 23:275. [PMID: 35251341 PMCID: PMC8892614 DOI: 10.3892/etm.2022.11201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022] Open
Abstract
Diquat (1,1'-ethylene-2,2'-bipyridylium) is a type of widely used agricultural chemical, whose toxicity results in damage to numerous tissues, including the lung, liver, kidney and brain. The aim of the present study was to establish a rat model of acute diquat exposure and explore the relationship between diquat concentration, and kidney and lung injury, in order to provide an experimental basis for clinical treatment. A total of 140 healthy adult male Wistar rats were randomly divided into control and exposure groups. The diquat solution was administered intragastrically to the exposure group at 1/2 of the lethal dose (140 mg/kg). An equal volume of water was administered to the control group. The dynamic changes in the plasma and tissue diquat levels were quantitatively determined at 0.5, 1, 2, 4, 8, 16 and 24 h following exposure using liquid chromatography mass spectrometry. The content of hydroxyproline (HYP) in the lung tissues, as well as the levels of blood urea nitrogen (BUN), creatinine (Cr), uric acid (UA), kidney injury molecule-1 (KIM-1) and tumor growth factor (TGF)-β1, were detected using western blot analysis at every time point. Lung and kidney morphology were also assessed. Electron microscopy showed that the degree of renal damage gradually increased with time. Vacuolation gradually increased, some mitochondrial bilayer membrane structures disappeared and lysosomes increased. The lung tissue damage was mild, and the cell membrane integrity and organelles were damaged to varying degrees. The plasma and organ levels of diquat peaked at ~2 h, followed by a steady decrease, depending on the excretion rate. Over time, the serum concentrations of UA, BUN, Cr and KIM-1 were all significantly increased (P<0.05). Serum KIM-1 in rats was increased after 0.5 h, and was significantly increased after 4 h, suggesting that KIM-1 is an effective predictor of early renal injury. Early TGF-β1 expression was clearly observed in renal tissue, while no clear TGF-β1 expression was observed in the lung tissue. In conclusion, the concentration of diquat in the serum and tissue of rats with acute diquat poisoning peaked at an early stage and then rapidly decreased. The renal function damage and pathological changes persisted, the lung tissue was slightly damaged with inflammatory cell infiltration, and early pulmonary fibrosis injury was not obvious.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Poisoning and Occupational Diseases, Emergency Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Siqi Cui
- Department of Poisoning and Occupational Diseases, Emergency Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenjun Wang
- Department of Poisoning and Occupational Diseases, Emergency Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tianzi Jian
- Department of Poisoning and Occupational Diseases, Emergency Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Baotian Kan
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiangdong Jian
- Department of Poisoning and Occupational Diseases, Emergency Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
33
|
The Serum and Fecal Metabolomic Profiles of Growing Kittens Treated with Amoxicillin/Clavulanic Acid or Doxycycline. Animals (Basel) 2022; 12:ani12030330. [PMID: 35158655 PMCID: PMC8833518 DOI: 10.3390/ani12030330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This study investigated the impact of antibiotic treatment οn the serum and fecal metabolome (the collection of all small molecules produced by the gut bacteria and the host) of young cats. Thirty 2-month-old cats with an upper respiratory tract infection were treated with either amoxicillin/clavulanic acid for 20 days or doxycycline for 28 days. In addition, another 15 control cats that did not receive antibiotics were included. Blood was collected on days 0 (before treatment), 20/28 (last day of treatment), and 300 (10 months after the end of treatment), while feces were collected on days 0, 20/28, 60, 120, and 300. Seven serum and fecal metabolites differed between cats treated with antibiotics and control cats at the end of treatment period. Ten months after treatment, no metabolites differed from healthy cats, suggesting that amoxicillin/clavulanic acid or doxycycline treatment only temporarily affects the abundance of the serum and fecal metabolome. Abstract The long-term impact of antibiotics on the serum and fecal metabolome of kittens has not yet been investigated. Therefore, the objective of this study was to evaluate the serum and fecal metabolome of kittens with an upper respiratory tract infection (URTI) before, during, and after antibiotic treatment and compare it with that of healthy control cats. Thirty 2-month-old cats with a URTI were randomly assigned to receive either amoxicillin/clavulanic acid for 20 days or doxycycline for 28 days, and 15 cats of similar age were enrolled as controls. Fecal samples were collected on days 0, 20/28, 60, 120, and 300, while serum was collected on days 0, 20/28, and 300. Untargeted and targeted metabolomic analyses were performed on both serum and fecal samples. Seven metabolites differed significantly in antibiotic-treated cats compared to controls on day 20/28, with two differing on day 60, and two on day 120. Alterations in the pattern of serum amino acids, antioxidants, purines, and pyrimidines, as well as fecal bile acids, sterols, and fatty acids, were observed in antibiotic-treated groups that were not observed in control cats. However, the alterations caused by either amoxicillin/clavulanic acid or doxycycline of the fecal and serum metabolome were only temporary and were resolved by 10 months after their withdrawal.
Collapse
|
34
|
Aird TP, Farquharson AJ, Bermingham KM, O'Sulllivan A, Drew JE, Carson BP. Divergent serum metabolomic, skeletal muscle signaling, transcriptomic, and performance adaptations to fasted versus whey protein-fed sprint interval training. Am J Physiol Endocrinol Metab 2021; 321:E802-E820. [PMID: 34747202 PMCID: PMC8906818 DOI: 10.1152/ajpendo.00265.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/01/2022]
Abstract
Sprint interval training (SIT) is a time-efficient alternative to endurance exercise, conferring beneficial skeletal muscle metabolic adaptations. Current literature has investigated the nutritional regulation of acute and chronic exercise-induced metabolic adaptations in muscle following endurance exercise, principally comparing the impact of training in fasted and carbohydrate-fed (CHO) conditions. Alternative strategies such as exercising in low CHO, protein-fed conditions remain poorly characterized, specifically pertaining to adaptations associated with SIT. Thus, this study aimed to compare the metabolic and performance adaptations to acute and short-term SIT in the fasted state with preexercise hydrolyzed (WPH) or concentrated (WPC) whey protein supplementation. In healthy males, preexercise protein ingestion did not alter exercise-induced increases in PGC-1α, PDK4, SIRT1, and PPAR-δ mRNA expression following acute SIT. However, supplementation of WPH beneficially altered acute exercise-induced CD36 mRNA expression. Preexercise protein ingestion attenuated acute exercise-induced increases in muscle pan-acetylation and PARP1 protein content compared with fasted SIT. Acute serum metabolomic differences confirmed greater preexercise amino acid delivery in protein-fed compared with fasted conditions. Following 3 wk of SIT, training-induced increases in mitochondrial enzymatic activity and exercise performance were similar across nutritional groups. Interestingly, resting muscle acetylation status was downregulated in WPH conditions following training. Such findings suggest preexercise WPC and WPH ingestion positively influences metabolic adaptations to SIT compared with fasted training, resulting in either similar or enhanced performance adaptations. Future studies investigating nutritional modulation of metabolic adaptations to exercise are warranted to build upon these novel findings.NEW & NOTEWORTHY These are the first data to show the influence of preexercise protein on serum and skeletal muscle metabolic adaptations to acute and short-term sprint interval training (SIT). Preexercise whey protein concentrate (WPC) or hydrolysate (WPH) feeding acutely affected the serum metabolome, which differentially influenced acute and chronic changes in mitochondrial gene expression, intracellular signaling (acetylation and PARylation) resulting in either similar or enhanced performance outcomes when compared with fasted training.
Collapse
Affiliation(s)
- Tom P Aird
- Physical Education and Sports Sciences, University of Limerick, Limerick, Ireland
- Physical Activity for Health, Health Research Institute, University of Limerick, Limerick, Ireland
| | | | - Kate M Bermingham
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Aifric O'Sulllivan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Janice E Drew
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Brian P Carson
- Physical Education and Sports Sciences, University of Limerick, Limerick, Ireland
- Physical Activity for Health, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
35
|
Phang JM. Perspectives, past, present and future: the proline cycle/proline-collagen regulatory axis. Amino Acids 2021; 53:1967-1975. [PMID: 34825974 PMCID: PMC8651602 DOI: 10.1007/s00726-021-03103-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 01/19/2023]
Abstract
In the 35 years since the introduction of the "proline cycle", its relevance to human tumors has been widely established. These connections are based on a variety of mechanisms discovered by many laboratories and have stimulated the search for small molecule inhibitors to treat cancer or metastases. In addition, the multi-layered connections of the proline cycle and the role of proline and hydroxyproline in collagen provide an important regulatory link between the extracellular matrix and metabolism.
Collapse
Affiliation(s)
- James M Phang
- Scientist Emeritus, Mouse Cancer Genetics Program, CCR, NCI at Frederick, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
36
|
Functional Molecules of Intestinal Mucosal Products and Peptones in Animal Nutrition and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:263-277. [PMID: 34807446 DOI: 10.1007/978-3-030-85686-1_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is growing interest in the use of intestinal mucosal products and peptones (partial protein hydrolysates) to enhance the food intake, growth, development, and health of animals. The mucosa of the small intestine consists of the epithelium, the lamina propria, and the muscularis mucosa. The diverse population of cells (epithelial, immune, endocrine, neuronal, vascular, and elastic cells) in the intestinal mucosa contains not only high-quality food protein (e.g., collagen) but also a wide array of low-, medium-, and high-molecular-weight functional molecules with enormous nutritional, physiological, and immunological importance. Available evidence shows that intestinal mucosal products and peptones provide functional substances, including growth factors, enzymes, hormones, large peptides, small peptides, antimicrobials, cytokines, bioamines, regulators of nutrient metabolism, unique amino acids (e.g., taurine and 4-hydroxyproline), and other bioactive substances (e.g., creatine and glutathione). Therefore, dietary supplementation with intestinal mucosal products and peptones can cost-effectively improve feed intake, immunity, health (the intestine and the whole body), well-being, wound healing, growth performance, and feed efficiency in livestock, poultry, fish, and crustaceans. In feeding practices, an inclusion level of an intestinal mucosal product or a mucosal peptone product at up to 5% (as-fed basis) is appropriate in the diets of these animals, as well as companion and zoo animals.
Collapse
|
37
|
Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun Y. L-Arginine Nutrition and Metabolism in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:177-206. [PMID: 34807443 DOI: 10.1007/978-3-030-85686-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-Arginine (Arg) plays a central role in the nitrogen metabolism (e.g., syntheses of protein, nitric oxide, polyamines, and creatine), blood flow, nutrient utilization, and health of ruminants. This amino acid is produced by ruminal bacteria and is also synthesized from L-glutamine, L-glutamate, and L-proline via the formation of L-citrulline (Cit) in the enterocytes of young and adult ruminants. In pre-weaning ruminants, most of the Cit formed de novo by the enterocytes is used locally for Arg production. In post-weaning ruminants, the small intestine-derived Cit is converted into Arg primarily in the kidneys and, to a lesser extent, in endothelial cells, macrophages, and other cell types. Under normal feeding conditions, Arg synthesis contributes 65% and 68% of total Arg requirements for nonpregnant and late pregnany ewes fed a diet with ~12% crude protein, respectively, whereas creatine production requires 40% and 36% of Arg utilized by nonpregnant and late pregnant ewes, respectively. Arg has not traditionally been considered a limiting nutrient in diets for post-weaning, gestating, or lactating ruminants because it has been assumed that these animals can synthesize sufficient Arg to meet their nutritional and physiological needs. This lack of a full understanding of Arg nutrition and metabolism has contributed to suboptimal efficiencies for milk production, reproductive performance, and growth in ruminants. There is now considerable evidence that dietary supplementation with rumen-protected Arg (e.g., 0.25-0.5% of dietary dry matter) can improve all these production indices without adverse effects on metabolism or health. Because extracellular Cit is not degraded by microbes in the rumen due to the lack of uptake, Cit can be used without any encapsulation as an effective dietary source for the synthesis of Arg in ruminants, including dairy and beef cows, as well as sheep and goats. Thus, an adequate amount of supplemental rumen-protected Arg or unencapsulated Cit is necessary to support maximum survival, growth, lactation, reproductive performance, and feed efficiency, as well as optimum health and well-being in all ruminants.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| | - Fuller W Bazer
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Carey Satterfield
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kyler R Gilbreath
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Erin A Posey
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
38
|
Eriksson AL, Friedrich N, Karlsson MK, Ljunggren Ö, Lorentzon M, Nethander M, Wallaschofski H, Mellström D, Ohlsson C. Serum Glycine Levels Are Associated With Cortical Bone Properties and Fracture Risk in Men. J Clin Endocrinol Metab 2021; 106:e5021-e5029. [PMID: 34297085 DOI: 10.1210/clinem/dgab544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT In a recent study a pattern of 27 metabolites, including serum glycine, associated with bone mineral density (BMD). OBJECTIVE To investigate associations for serum and urinary glycine levels with BMD, bone microstructure, and fracture risk in men. METHODS In the population-based Osteoporotic Fractures in Men (MrOS) Sweden study (men, 69-81 years) serum glycine and BMD were measured at baseline (n = 965) and 5-year follow-up (n = 546). Cortical and trabecular bone parameters of the distal tibia were measured at follow-up using high-resolution peripheral quantitative computed tomography. Urinary (n = 2682) glycine was analyzed at baseline. X-ray-validated fractures (n = 594) were ascertained during a median follow-up of 9.6 years. Associations were evaluated using linear regression (bone parameters) or Cox regression (fractures). RESULTS Circulating glycine levels were inversely associated with femoral neck (FN)-BMD. A meta-analysis (n = 7543) combining MrOS Sweden data with data from 3 other cohorts confirmed a robust inverse association between serum glycine levels and FN-BMD (P = 7.7 × 10-9). Serum glycine was inversely associated with the bone strength parameter failure load in the distal tibia (P = 0.002), mainly as a consequence of an inverse association with cortical cross-sectional area and a direct association with cortical porosity. Both serum and urinary glycine levels predicted major osteoporotic fractures (serum: hazard ratio [HR] per SD increase = 1.22, 95% CI, 1.05-1.43; urine: HR = 1.13, 95% CI, 1.02-1.24). These fracture associations were only marginally reduced in models adjusted by FRAX with BMD. CONCLUSIONS Serum and urinary glycine are indirectly associated with FN-BMD and cortical bone strength, and directly associated with fracture risk in men.
Collapse
Affiliation(s)
- Anna L Eriksson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Department of Clinical Pharmacology, Sahlgrenska University Hospital, Region Västra Götaland, SE-413 45 Gothenburg, Sweden
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, DE-17489 Greifswald, Germany
| | - Magnus K Karlsson
- Department of Orthopaedics and Clinical Sciences, Skåne University Hospital, Lund University, SE-217 74 Malmö, Sweden
| | - Östen Ljunggren
- Department of Medical Sciences, Uppsala University, SE-751 05 Uppsala, Sweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg and Geriatric Medicine, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Maria Nethander
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, DE-17489 Greifswald, Germany
| | - Dan Mellström
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg and Geriatric Medicine, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Department of Clinical Pharmacology, Sahlgrenska University Hospital, Region Västra Götaland, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
39
|
Glutamine Homeostasis and Its Role in the Adaptive Strategies of the Blind Mole Rat, Spalax. Metabolites 2021; 11:metabo11110755. [PMID: 34822413 PMCID: PMC8620300 DOI: 10.3390/metabo11110755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative metabolism is fine-tuned machinery that combines two tightly coupled fluxes of glucose and glutamine-derived carbons. Hypoxia interrupts the coordination between the metabolism of these two nutrients and leads to a decrease of the system efficacy and may eventually cause cell death. The subterranean blind mole rat, Spalax, is an underexplored, underground, hypoxia-tolerant mammalian group which spends its life under sharply fluctuating oxygen levels. Primary Spalax cells are an exceptional model to study the metabolic strategies that have evolved in mammals inhabiting low-oxygen niches. In this study we explored the metabolic frame of glutamine (Gln) homeostasis in Spalax skin cells under normoxic and hypoxic conditions and their impacts on the metabolism of rat cells. Targeted metabolomics employing liquid chromatography and mass spectrometry (LC-MS) was used to track the fate of heavy glutamine carbons (13C5 Gln) after 24 h under normoxia or hypoxia (1% O2). Our results indicated that large amounts of glutamine-originated carbons were detected as proline (Pro) and hydroxyproline (HPro) in normoxic Spalax cells with a further increase under hypoxia, suggesting a strategy for reduced Gln carbons storage in proteins. The intensity of the flux and the presence of HPro suggests collagen as a candidate protein that is most abundant in animals, and as the primary source of HPro. An increased conversion of αKG to 2 HG that was indicated in hypoxic Spalax cells prevents the degradation of hypoxia-inducible factor 1α (HIF-1α) and, consequently, maintains cytosolic and mitochondrial carbons fluxes that were uncoupled via inhibition of the pyruvate dehydrogenase complex. A strong antioxidant defense in Spalax cells can be attributed, at least in part, to the massive usage of glutamine-derived glutamate for glutathione (GSH) production. The present study uncovers additional strategies that have evolved in this unique mammal to support its hypoxia tolerance, and probably contribute to its cancer resistance, longevity, and healthy aging.
Collapse
|
40
|
Hydroxyproline in animal metabolism, nutrition, and cell signaling. Amino Acids 2021; 54:513-528. [PMID: 34342708 DOI: 10.1007/s00726-021-03056-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
trans-4-Hydroxy-L-proline is highly abundant in collagen (accounting for about one-third of body proteins in humans and other animals). This imino acid (loosely called amino acid) and its minor analogue trans-3-hydroxy-L-proline in their ratio of approximately 100:1 are formed from the post-translational hydroxylation of proteins (primarily collagen and, to a much lesser extent, non-collagen proteins). Besides their structural and physiological significance in the connective tissue, both trans-4-hydroxy-L-proline and trans-3-hydroxy-L-proline can scavenge reactive oxygen species and have both structural and physiological significance in animals. The formation of trans-4-hydroxy-L-proline residues in protein kinases B and DYRK1A, eukaryotic elongation factor 2 activity, and hypoxia-inducible transcription factor plays an important role in regulating their phosphorylation and catalytic activation as well as cell signaling in animal cells. These biochemical events contribute to the modulation of cell metabolism, growth, development, responses to nutritional and physiological changes (e.g., dietary protein intake and hypoxia), and survival. Milk, meat, skin hydrolysates, and blood, as well as whole-body collagen degradation provide a large amount of trans-4-hydroxy-L-proline. In animals, most (nearly 90%) of the collagen-derived trans-4-hydroxy-L-proline is catabolized to glycine via the trans-4-hydroxy-L-proline oxidase pathway, and trans-3-hydroxy-L-proline is degraded via the trans-3-hydroxy-L-proline dehydratase pathway to ornithine and glutamate, thereby conserving dietary and endogenously synthesized proline and arginine. Supplementing trans-4-hydroxy-L-proline or its small peptides to plant-based diets can alleviate oxidative stress, while increasing collagen synthesis and accretion in the body. New knowledge of hydroxyproline biochemistry and nutrition aids in improving the growth, health and well-being of humans and other animals.
Collapse
|
41
|
Hamanaka RB, Mutlu GM. The role of metabolic reprogramming and de novo amino acid synthesis in collagen protein production by myofibroblasts: implications for organ fibrosis and cancer. Amino Acids 2021; 53:1851-1862. [PMID: 33963932 DOI: 10.1007/s00726-021-02996-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022]
Abstract
Fibrosis is a pathologic condition resulting from aberrant wound healing responses that lead to excessive accumulation of extracellular matrix components, distortion of organ architecture, and loss of organ function. Fibrotic disease can affect every organ system; moreover, fibrosis is an important microenvironmental component of many cancers, including pancreatic, cervical, and hepatocellular cancers. Fibrosis is also an independent risk factor for cancer. Taken together, organ fibrosis contributes to up to 45% of all deaths worldwide. There are no approved therapies that halt or reverse fibrotic disease, highlighting the great need for novel therapeutic targets. At the heart of almost all fibrotic disease is the TGF-β-mediated differentiation of fibroblasts into myofibroblasts, the primary cell type responsible for the production of collagen and other matrix proteins and distortion of tissue architecture. Recent advances, particularly in the field of lung fibrosis, have highlighted the role that metabolic reprogramming plays in the pathogenic phenotype of myofibroblasts, particularly the induction of de novo amino acid synthesis pathways that are required to support collagen matrix production by these cells. In this review, we will discuss the metabolic changes associated with myofibroblast differentiation, focusing on the de novo production of glycine and proline, two amino acids which compose over half of the primary structure of collagen protein. We will also discuss the important role that synthesis of these amino acids plays in regulating cellular redox balance and epigenetic state.
Collapse
Affiliation(s)
- Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL, 60637, USA
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL, 60637, USA.
| |
Collapse
|
42
|
Li X, Zheng S, Wu G. Nutrition and Functions of Amino Acids in Fish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:133-168. [PMID: 33770406 DOI: 10.1007/978-3-030-54462-1_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aquaculture is increasingly important for providing humans with high-quality animal protein to improve growth, development and health. Farm-raised fish and shellfish now exceed captured fisheries for foods. More than 70% of the production cost is dependent on the supply of compound feeds. A public debate or concern over aquaculture is its environmental sustainability as many fish species have high requirements for dietary protein and fishmeal. Protein or amino acids (AAs), which are the major component of tissue growth, are generally the most expensive nutrients in animal production and, therefore, are crucial for aquatic feed development. There is compelling evidence that an adequate supply of both traditionally classified nutritionally essential amino acids (EAAs) and non-essential amino acids (NEAAs) in diets improve the growth, development and production performance of aquatic animals (e.g., larval metamorphosis). The processes for the utilization of dietary AAs or protein utilization by animals include digestion, absorption and metabolism. The digestibility and bioavailability of AAs should be carefully evaluated because feed production processes and AA degradation in the gut affect the amounts of dietary AAs that enter the blood circulation. Absorbed AAs are utilized for the syntheses of protein, peptides, AAs, and other metabolites (including nucleotides); biological oxidation and ATP production; gluconeogenesis and lipogenesis; and the regulation of acid-base balance, anti-oxidative reactions, and immune responses. Fish producers usually focus on the content or digestibility of dietary crude protein without considering the supply of AAs in the diet. In experiments involving dietary supplementation with AAs, inappropriate AAs (e.g., glycine and glutamate) are often used as the isonitrogenous control. At present, limited knowledge is available about either the cell- and tissue-specific metabolism of AAs or the effects of feed processing methods on the digestion and utilization of AAs in different fish species. These issues should be addressed to develop environment-friendly aquafeeds and reduce feed costs to sustain the global aquaculture.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Shixuan Zheng
- Guangdong Yuehai Feeds Group Co., Ltd., Zhanjiang, Guangdong, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
43
|
Zhang Q, Hou Y, Bazer FW, He W, Posey EA, Wu G. Amino Acids in Swine Nutrition and Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:81-107. [PMID: 33770404 DOI: 10.1007/978-3-030-54462-1_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids are the building blocks of proteins in animals, including swine. With the development of new analytical methods and biochemical research, there is a growing interest in fundamental and applied studies to reexamine the roles and usage of amino acids (AAs) in swine production. In animal nutrition, AAs have been traditionally classified as nutritionally essential (EAAs) or nutritionally nonessential (NEAAs). AAs that are not synthesized de novo must be provided in diets. However, NEAAs synthesized by cells of animals are more abundant than EAAs in the body, but are not synthesized de novo in sufficient amounts for the maximal productivity or optimal health (including resistance to infectious diseases) of swine. This underscores the conceptual limitations of NEAAs in swine protein nutrition. Notably, the National Research Council (NRC 2012) has recognized both arginine and glutamine as conditionally essential AAs for pigs to improve their growth, development, reproduction, and lactation. Results of recent work have also provided compelling evidence for the nutritional essentiality of glutamate, glycine, and proline for young pigs. The inclusion of so-called NEAAs in diets can help balance AAs in diets, reduce the dietary levels of EAAs, and protect the small intestine from oxidative stress, while enhancing the growth performance, feed efficiency, and health of pigs. Thus, both EAAs and NEAAs are needed in diets to meet the requirements of pigs. This notion represents a new paradigm shift in our understanding of swine protein nutrition and is transforming pork production worldwide.
Collapse
Affiliation(s)
- Qian Zhang
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China
| | - Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Erin A Posey
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
44
|
Konjevod M, Nedic Erjavec G, Nikolac Perkovic M, Sáiz J, Tudor L, Uzun S, Kozumplik O, Svob Strac D, Zarkovic N, Pivac N. Metabolomics in posttraumatic stress disorder: Untargeted metabolomic analysis of plasma samples from Croatian war veterans. Free Radic Biol Med 2021; 162:636-641. [PMID: 33249139 DOI: 10.1016/j.freeradbiomed.2020.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a severe, multifactorial and debilitating neuropsychiatric disorder, which can develop in a subset of individuals as a result of the exposure to severe stress or trauma. Such traumatic experiences have a major impact on molecular, biochemical and cellular systems, causing psychological and somatic alterations that affect the whole organism. Although the etiology of PTSD is still unclear, it seems to involve complex interaction between various biological genetic and environmental factors. Metabolomics, as one of the rapidly developing "omics" techniques, might be a useful tool for determining altered metabolic pathways and stress-related metabolites as new potential biomarkers of PTSD. The aim of our study was to identify metabolites whose altered levels allow us to differentiate between patients with PTSD and healthy control individuals. The study included two cohorts. The first, exploratory, group included 50 Croatian veterans with PTSD and 50 healthy control subjects, whereas a validation group consisted of 52 veterans with PTSD and 52 control subjects. The metabolomic analysis of plasma samples was conducted using liquid chromatography coupled with mass spectrometry (LC-MS), as well as gas chromatography coupled with mass spectrometry (GC-MS). The LC-MS analysis determined significantly different levels of two glycerophospholipids, PE(18:1/0:0) and PC(18:1/0:0), between control subjects and PTSD patients in both cohorts. The altered metabolites might play a role in multiple cellular processes, including inflammation, mitochondrial dysfunction, membrane breakdown, oxidative stress and neurotoxicity, which could be associated with PTSD pathogenesis.
Collapse
Affiliation(s)
- Marcela Konjevod
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000, Zagreb, Croatia; Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla Del Monte, Madrid, Spain
| | - Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000, Zagreb, Croatia; Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla Del Monte, Madrid, Spain
| | - Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000, Zagreb, Croatia; Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla Del Monte, Madrid, Spain
| | - Jorge Sáiz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla Del Monte, Madrid, Spain
| | - Lucija Tudor
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000, Zagreb, Croatia
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, Bolnicka cesta 32, 10000, Zagreb, Croatia; University Josip Juraj Strossmayer Osijek, School of Medicine, Trg Svetog Trojstva 3, 31000, Osijek, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, Bolnicka cesta 32, 10000, Zagreb, Croatia; University Josip Juraj Strossmayer Osijek, School of Medicine, Trg Svetog Trojstva 3, 31000, Osijek, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000, Zagreb, Croatia.
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000, Zagreb, Croatia.
| | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka Cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
45
|
Interorgan Metabolism of Amino Acids in Human Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:129-149. [PMID: 34251642 DOI: 10.1007/978-3-030-74180-8_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amino acids are integral for human health, influencing an array of physiological processes from gene expression to vasodilation to the immune response. In accordance with this expansive range of unique functions, the tissues of the body engage in a complex interplay of amino acid exchange and metabolism to respond to the organism's dynamic needs for a range of nitrogenous products. Interorgan amino acid metabolism is required for numerous metabolic pathways, including the synthesis of functional amino acids like arginine, glutamate, glutamine, and glycine. This physiological process requires the cooperative handling of amino acids by organs (e.g., the small intestine, skeletal muscle, kidneys, and liver), as well as the complete catabolism of nutritionally essential amino acids such as the BCAAs, with their α-ketoacids shuttled from muscle to liver. These exchanges are made possible by several mechanisms, including organ location, as well as the functional zonation of enzymes and the cell-specific expression of amino acid transporters. The cooperative handling of amino acids between the various organs does not appear to be under the control of any centralized regulation, but is instead influenced by factors such as fluctuations in nutrient availability, hormones, changes associated with development, and altered environmental factors. While the normal function of these pathways is associated with health and homeostasis, affected by physical activity, diet and body composition, dysregulation is observed in numerous disease states, including cardiovascular disease and cancer cachexia, presenting potential avenues for the manipulation of amino acid consumption as part of the therapeutic approach to these conditions in individuals.
Collapse
|
46
|
Composition of Amino Acids in Foodstuffs for Humans and Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:189-210. [PMID: 34251645 DOI: 10.1007/978-3-030-74180-8_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amino acids (AAs) are the building blocks of proteins that have both structural and metabolic functions in humans and other animals. In mammals, birds, fish, and crustaceans, proteinogenic AAs are alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. All animals can synthesize de novo alanine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and serine, whereas most mammals (including humans and pigs) can synthesize de novo arginine. Results of extensive research over the past three decades have shown that humans and other animals have dietary requirements for AAs that are synthesizable de novo in animal cells. Recent advances in analytical methods have allowed us to determine all proteinogenic AAs in foods consumed by humans, livestock, poultry, fish, and crustaceans. Both plant- and animal-sourced foods contain high amounts of glutamate, glutamine, aspartate, asparagine, and branched-chain AAs. Cysteine, glycine, lysine, methionine, proline, threonine, and tryptophan generally occur in low amounts in plant products but are enriched in animal products. In addition, taurine and creatine (essential for the integrity and function of tissues) are absent from plants but are abundant in meat and present in all animal-sourced foods. A combination of plant- and animal products is desirable for the healthy diets of humans and omnivorous animals. Furthermore, animal-sourced feedstuffs can be included in the diets of farm and companion animals to cost-effectively improve their growth performance, feed efficiency, and productivity, while helping to sustain the global animal agriculture (including aquaculture).
Collapse
|
47
|
He W, Li P, Wu G. Amino Acid Nutrition and Metabolism in Chickens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:109-131. [PMID: 33770405 DOI: 10.1007/978-3-030-54462-1_7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both poultry meat and eggs provide high-quality animal protein [containing sufficient amounts and proper ratios of amino acids (AAs)] for human consumption and, therefore, play an important role in the growth, development, and health of all individuals. Because there are growing concerns about the suboptimal efficiencies of poultry production and its impact on environmental sustainability, much attention has been paid to the formulation of low-protein diets and precision nutrition through the addition of low-cost crystalline AAs or alternative sources of animal-protein feedstuffs. This necessitates a better understanding of AA nutrition and metabolism in chickens. Although historic nutrition research has focused on nutritionally essential amino acids (EAAs) that are not synthesized or are inadequately synthesized in the body, increasing evidence shows that the traditionally classified nutritionally nonessential amino acids (NEAAs), such as glutamine and glutamate, have physiological and regulatory roles other than protein synthesis in chicken growth and egg production. In addition, like other avian species, chickens do not synthesize adequately glycine or proline (the most abundant AAs in the body but present in plant-source feedstuffs at low content) relative to their nutritional and physiological needs. Therefore, these two AAs must be sufficient in poultry diets. Animal proteins (including ruminant meat & bone meal and hydrolyzed feather meal) are abundant sources of both glycine and proline in chicken nutrition. Clearly, chickens (including broilers and laying hens) have dietary requirements for all proteinogenic AAs to achieve their maximum productivity and maintain optimum health particularly under adverse conditions such as heat stress and disease. This is a paradigm shift in poultry nutrition from the 70-year-old "ideal protein" concept that concerned only about EAAs to the focus of functional AAs that include both EAAs and NEAAs.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Peng Li
- North American Renderers Association, Alexandria, VA, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
48
|
Herring CM, Bazer FW, Wu G. Amino Acid Nutrition for Optimum Growth, Development, Reproduction, and Health of Zoo Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:233-253. [PMID: 33770410 DOI: 10.1007/978-3-030-54462-1_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins are large polymers of amino acids (AAs) linked via peptide bonds, and major components for the growth and development of tissues in zoo animals (including mammals, birds, and fish). The proteinogenic AAs are alanine, arginine, aspartate, asparagine, cysteine, glutamate, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. Except for glycine, they are all present in the L-isoform. Some carnivores may also need taurine (a nonproteinogenic AA) in their diet. Adequate dietary intakes of AAs are necessary for the growth, development, reproduction, health and longevity of zoo animals. Extensive research has established dietary nutrient requirements for humans, domestic livestock and companion animals. However, this is not true for many exotic or endangered species found in zoos due to the obstacles that accompany working with these species. Information on diets and nutrient profiles of free-ranging animals is needed. Even with adequate dietary intake of crude protein, dietary AAs may still be unbalanced, which can lead to nutrition-related diseases and disorders commonly observed in captive zoo species, such as dilated cardiomyopathy, urolithiasis, gut dysbiosis, and hormonal imbalances. There are differences in AA metabolism among carnivores, herbivores and omnivores. It is imperative to consider these idiosyncrasies when formulating diets based on established nutritional requirements of domestic species. With optimal health, populations of zoo animals will have a vastly greater chance of thriving in captivity. For endangered species especially, maintaining stable captive populations is crucial for conservation. Thus, adequate provision of AAs in diets plays a crucial role in the management, sustainability and expansion of healthy zoo animals.
Collapse
Affiliation(s)
- Cassandra M Herring
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
49
|
Lazado CC, Pedersen LF, Kirste KH, Soleng M, Breiland MW, Timmerhaus G. Oxidant-induced modifications in the mucosal transcriptome and circulating metabolome of Atlantic salmon. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105625. [PMID: 32927179 DOI: 10.1016/j.aquatox.2020.105625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Here we report the molecular networks associated with the mucosal and systemic responses to peracetic acid (PAA), a candidate oxidative chemotherapeutic in Atlantic salmon (Salmo salar). Smolts were exposed to different therapeutic doses (0, 0.6 and 2.4 mg/L) of PAA for 5 min, followed by a re-exposure to the same concentrations for 30 min 2 weeks later. PAA-exposed groups have higher external welfare score alterations, especially 2 weeks after the re-exposure. Cases of fin damage and scale loss were prevalent in the PAA-exposed groups. Transcriptomic profiling of mucosal tissues revealed that the skin had 12.5 % more differentially regulated genes (DEGs) than the gills following PAA exposure. The largest cluster of DEGs, both in the skin and gills, were involved in tissue extracellular matrix and metabolism. There were 22 DEGs common to both mucosal tissues, which were represented primarily by genes involved in the biophysical integrity of the mucosal barrier, including cadherin, collagen I α 2 chain, mucin-2 and spondin 1a. The absence of significant clustering in the plasma metabolomes amongst the three treatment groups indicates that PAA treatment did not induce any global metabolomic disturbances. Nonetheless, five metabolites with known functions during oxidative stress were remarkably affected by PAA treatments such as citrulline, histidine, tryptophan, methionine and trans-4-hydroxyproline. Collectively, these results indicate that salmon were able to mount mucosal and systemic adaptive responses to therapeutic doses of PAA and that the molecules identified are potential markers for assessing the health and welfare consequences of oxidant exposure.
Collapse
Affiliation(s)
- Carlo C Lazado
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, 1433, Ås, Norway.
| | | | - Katrine H Kirste
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, 1433, Ås, Norway
| | - Malene Soleng
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, 9019, Tromsø, Norway
| | - Mette W Breiland
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, 9019, Tromsø, Norway
| | - Gerrit Timmerhaus
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, 1433, Ås, Norway
| |
Collapse
|
50
|
Solano F. Metabolism and Functions of Amino Acids in the Skin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:187-199. [PMID: 32761577 DOI: 10.1007/978-3-030-45328-2_11] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amino acids are the building blocks of all proteins, including the most abundant fibrous proteins in the skin, as keratins, collagen and elastin. Sagging and wrinkled skin are features of chronic sun-damaged and aged uncared skin, and they are mainly associated with the deterioration of collagen and elastic fibers. The maintenance of skin structures by self-repair processes is essential to skin health. Thus, amino acids significantly impact the appearance of the skin. Amino acids are important nutrients required for (a) wound healing promotion and repair of the damaged skin; (b) acid-base balance and water retention in cellular layers, such as stratum corneum; (c) protection against sunlight damage; (d) maintenance of an appropriate skin microbiome. This review highlights the contribution of all proteinogenic amino acids and some related metabolites to the skin structures as constituents of the main cutaneous proteins or as signaling molecules for the regulation and determination of skin physiology.
Collapse
Affiliation(s)
- F Solano
- Department Biochemistry and Molecular Biology B and Immunology, School of Medicine, LAIB-IMIB University of Murcia, Murcia, Spain.
| |
Collapse
|