1
|
Thu MS, Campbell BJ, Hirankarn N, Nopsopon T, Ondee T, Hall SR, Jagota A, Fothergill JL, Pongpirul K. Cannabis and cannabinoid-microbiome interactions in varied clinical contexts: A comprehensive systematic review. Biomed Pharmacother 2025; 182:117764. [PMID: 39689514 DOI: 10.1016/j.biopha.2024.117764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
With legalisation of cannabis for both medicinal and recreational use expanding to more world nations, grasping its effects on the human body is vital. The microbiome is critical to human health and disease, and accumulating data suggests that it is influenced by a variety of external variables, including marijuana/cannabis and cannabinoids. We therefore conducted a comprehensive assessment of the literature to analyse cannabis and cannabinoid effects on the human microbiota. We searched PubMed, Embase and Cochrane Library CENTRAL databases for studies involving the use of marijuana, medical cannabis, cannabinoids and cannabinoid-like lipid mediators on microbiota, across all clinical conditions. Nine studies were identified: 2 clinical trials and 7 observational studies examining cannabis and cannabinoid impact on oral, gastrointestinal, faecal and vaginal microbial abundance and diversity. Outcomes illustrated positive and negative impacts of cannabis use/cannabinoid actions on microbiota in adults with cognitive deficiency, depression, HIV infection, inflammation/pain, oral disease or obesity. Changes in alpha diversity were identified with cannabis/cannabinoid use, although this varied depending on the clinical context. A positive association exists between serum endocannabinoids and gut microbiota, via elevation in SCFAs and anti-inflammatory actions, beneficial for musculoskeletal pain relief and to counter obesity. Marijuana use in HIV patients showed protective effects by decreasing abundance of pro-inflammatory Prevotella, though excessive consumption leads to reduced microbiome richness and diversity, and increased systemic inflammation. Overall, this review underscores the need for further exploration in understanding the complex effects of cannabis, cannabinoids and cannabinoid-like mediators on composition and metabolic activity of the human microbiota.
Collapse
Affiliation(s)
- May Soe Thu
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Joint Chulalongkorn University-University of Liverpool Ph.D. Programme in Biomedical Sciences and Biotechnology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Barry J Campbell
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 3GE, UK.
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 3GE, UK.
| | - Tanawin Nopsopon
- Center of Excellence in Preventive and Integrative Medicine, Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Division of Allergy and Clinical Immunology, Department of Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Thunnicha Ondee
- Center of Excellence in Preventive and Integrative Medicine, Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Szaye Rawicha Hall
- School of Life Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Ananya Jagota
- Center of Excellence in Preventive and Integrative Medicine, Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Krit Pongpirul
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 3GE, UK; Center of Excellence in Preventive and Integrative Medicine, Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Bumrungrad International Hospital, Bangkok 10110, Thailand
| |
Collapse
|
2
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
3
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
4
|
Yuan S, Zhang Y, Dong PY, Chen Yan YM, Liu J, Zhang BQ, Chen MM, Zhang SE, Zhang XF. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024; 10:e34975. [PMID: 39144956 PMCID: PMC11320318 DOI: 10.1016/j.heliyon.2024.e34975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao, 266100, China
| | - Bing-Qiang Zhang
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Meng-Meng Chen
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
5
|
Zachos KA, Gamboa JA, Dewji AS, Lee J, Brijbassi S, Andreazza AC. The interplay between mitochondria, the gut microbiome and metabolites and their therapeutic potential in primary mitochondrial disease. Front Pharmacol 2024; 15:1428242. [PMID: 39119601 PMCID: PMC11306032 DOI: 10.3389/fphar.2024.1428242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The various roles of the mitochondria and the microbiome in health and disease have been thoroughly investigated, though they are often examined independently and in the context of chronic disease. However, the mitochondria and microbiome are closely connected, namely, through their evolution, maternal inheritance patterns, overlapping role in many diseases and their importance in the maintenance of human health. The concept known as the "mitochondria-microbiome crosstalk" is the ongoing bidirectional crosstalk between these two entities and warrants further exploration and consideration, especially in the context of primary mitochondrial disease, where mitochondrial dysfunction can be detrimental for clinical manifestation of disease, and the role and composition of the microbiome is rarely investigated. A potential mechanism underlying this crosstalk is the role of metabolites from both the mitochondria and the microbiome. During digestion, gut microbes modulate compounds found in food, which can produce metabolites with various bioactive effects. Similarly, mitochondrial metabolites are produced from substrates that undergo biochemical processes during cellular respiration. This review aims to provide an overview of current literature examining the mitochondria-microbiome crosstalk, the role of commonly studied metabolites serve in signaling and mediating these biochemical pathways, and the impact diet has on both the mitochondria and the microbiome. As a final point, this review highlights the up-to-date implications of the mitochondria-microbiome crosstalk in mitochondrial disease and its potential as a therapeutic tool or target.
Collapse
Affiliation(s)
- Kassandra A. Zachos
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Jann Aldrin Gamboa
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Aleena S. Dewji
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jocelyn Lee
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Sonya Brijbassi
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Ana C. Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Ziaka M, Exadaktylos A. Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis. Crit Care 2024; 28:71. [PMID: 38454447 PMCID: PMC10918982 DOI: 10.1186/s13054-024-04855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
It has been convincingly demonstrated in recent years that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after ABI. The pathophysiology of the bidirectional brain-lung interactions is multifactorial and involves inflammatory cascades, immune suppression, and dysfunction of the autonomic system. Indeed, the systemic effects of inflammatory mediators in patients with ABI create a systemic inflammatory environment ("first hit") that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery, and infections ("second hit"). Moreover, accumulating evidence supports the knowledge that gut microbiota constitutes a critical superorganism and an organ on its own, potentially modifying various physiological functions of the host. Furthermore, experimental and clinical data suggest the existence of a communication network among the brain, gastrointestinal tract, and its microbiome, which appears to regulate immune responses, gastrointestinal function, brain function, behavior, and stress responses, also named the "gut-microbiome-brain axis." Additionally, recent research evidence has highlighted a crucial interplay between the intestinal microbiota and the lungs, referred to as the "gut-lung axis," in which alterations during critical illness could result in bacterial translocation, sustained inflammation, lung injury, and pulmonary fibrosis. In the present work, we aimed to further elucidate the pathophysiology of acute lung injury (ALI) in patients with ABI by attempting to develop the "double-hit" theory, proposing the "triple-hit" hypothesis, focused on the influence of the gut-lung axis on the lung. Particularly, we propose, in addition to sympathetic hyperactivity, blast theory, and double-hit theory, that dysbiosis and intestinal dysfunction in the context of ABI alter the gut-lung axis, resulting in the development or further aggravation of existing ALI, which constitutes the "third hit."
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic for Geriatric Medicine, Center for Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Saroukhani S, Samms-Vaughan M, Bressler J, Lee M, Byrd-Williams C, Hessabi M, Grove ML, Shakespeare-Pellington S, Loveland KA, Rahbar MH. Additive or Interactive Associations of Food Allergies with Glutathione S-Transferase Genes in Relation to ASD and ASD Severity in Jamaican Children. J Autism Dev Disord 2024; 54:704-724. [PMID: 36436147 DOI: 10.1007/s10803-022-05813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 11/29/2022]
Abstract
To investigate additive and interactive associations of food allergies with three glutathione S-transferase (GST) genes in relation to ASD and ASD severity in Jamaican children. Using data from 344 1:1 age- and sex-matched ASD cases and typically developing controls, we assessed additive and interactive associations of food allergies with polymorphisms in GST genes (GSTM1, GSTP1 and GSTT1) in relation to ASD by applying conditional logistic regression models, and in relation to ASD severity in ASD cases as measured by the Autism Diagnostic Observation Schedule-2nd Edition (ADOS-2) total and domains specific comparison scores (CSs) by fitting general linear models. Although food allergies and GST genes were not associated with ASD, ASD cases allergic to non-dairy food had higher mean ADOS-2 Restricted and Repetitive Behaviors (RRB) CS (8.8 vs. 8.0, P = 0.04). In addition, allergy to dairy was associated with higher mean RRB CS only among ASD cases with GSTT1 DD genotype (9.9 vs. 7.8, P < 0.01, interaction P = 0.01), and GSTP1 Val/Val genotype under a recessive genetic model (9.8 vs. 7.8, P = 0.02, interaction P = 0.06). Our findings are consistent with the role for GST genes in ASD and food allergies, though require replication in other populations.
Collapse
Affiliation(s)
- Sepideh Saroukhani
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Maureen Samms-Vaughan
- Department of Child & Adolescent Health, The University of the West Indies (UWI), Mona Campus, Kingston 7, Kingston, Jamaica
| | - Jan Bressler
- Department of Epidemiology, Human Genetics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - MinJae Lee
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Courtney Byrd-Williams
- Department of Health Promotion and Behavioral Sciences, Michael & Susan Dell Center for Healthy Living, School of Public Health Regional Campus at Austin, The University of Texas Health Science Center at Houston, Austin, TX, 78701, USA
| | - Manouchehr Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Megan L Grove
- Department of Epidemiology, Human Genetics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sydonnie Shakespeare-Pellington
- Department of Child & Adolescent Health, The University of the West Indies (UWI), Mona Campus, Kingston 7, Kingston, Jamaica
| | - Katherine A Loveland
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, 77030, Houston, USA
| | - Mohammad H Rahbar
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Department of Epidemiology, Human Genetics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Chattopadhyay A, Lee CY, Lee YC, Liu CL, Chen HK, Li YH, Lai LC, Tsai MH, Ni YH, Chiu HM, Lu TP, Chuang EY. Twnbiome: a public database of the healthy Taiwanese gut microbiome. BMC Bioinformatics 2023; 24:474. [PMID: 38097965 PMCID: PMC10722848 DOI: 10.1186/s12859-023-05585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
With new advances in next generation sequencing (NGS) technology at reduced costs, research on bacterial genomes in the environment has become affordable. Compared to traditional methods, NGS provides high-throughput sequencing reads and the ability to identify many species in the microbiome that were previously unknown. Numerous bioinformatics tools and algorithms have been developed to conduct such analyses. However, in order to obtain biologically meaningful results, the researcher must select the proper tools and combine them to construct an efficient pipeline. This complex procedure may include tens of tools, each of which require correct parameter settings. Furthermore, an NGS data analysis involves multiple series of command-line tools and requires extensive computational resources, which imposes a high barrier for biologists and clinicians to conduct NGS analysis and even interpret their own data. Therefore, we established a public gut microbiome database, which we call Twnbiome, created using healthy subjects from Taiwan, with the goal of enabling microbiota research for the Taiwanese population. Twnbiome provides users with a baseline gut microbiome panel from a healthy Taiwanese cohort, which can be utilized as a reference for conducting case-control studies for a variety of diseases. It is an interactive, informative, and user-friendly database. Twnbiome additionally offers an analysis pipeline, where users can upload their data and download analyzed results. Twnbiome offers an online database which non-bioinformatics users such as clinicians and doctors can not only utilize to access a control set of data, but also analyze raw data with a few easy clicks. All results are customizable with ready-made plots and easily downloadable tables. Database URL: http://twnbiome.cgm.ntu.edu.tw/ .
Collapse
Affiliation(s)
- Amrita Chattopadhyay
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Yueh Lee
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Ya-Chin Lee
- Department of Public Health, Institute of Health Data Analytics and Statistics, National Taiwan University, Taipei, Taiwan
| | - Chiang-Lin Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Hsin-Kuang Chen
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yung-Hua Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Liang-Chuan Lai
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yen-Hsuan Ni
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Mo Chiu
- College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Pin Lu
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Public Health, Institute of Health Data Analytics and Statistics, National Taiwan University, Taipei, Taiwan.
- Institute of Health Data Analytics and Statistics, National Taiwan University, Taipei, Taiwan.
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan.
- Division Research and Development Center for Medical Devices, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Li CC, Hsu WF, Chiang PC, Kuo MC, Wo AM, Tseng YJ. Characterization of markers, functional properties, and microbiome composition in human gut-derived bacterial extracellular vesicles. Gut Microbes 2023; 15:2288200. [PMID: 38038385 PMCID: PMC10730231 DOI: 10.1080/19490976.2023.2288200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
Past studies have confirmed the etiologies of bacterial extracellular vesicles (BEVs) in various diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC). This study aimed to investigate the characteristics of stool-derived bacterial extracellular vesicles (stBEVs) and discuss their association with stool bacteria. First, three culture models - gram-positive (G+)BcBEVs (from B.coagulans), gram-negative (G-)EcBEVs (from E.coli), and eukaryotic cell-derived EVs (EEV, from Colo205 cell line) - were used to benchmark various fractions of stEVs separated from optimized density gradient approach (DG). As such, WB, TEM, NTA, and functional assays, were utilized to analyze properties and distribution of EVs in cultured and stool samples. Stool samples from healthy individuals were interrogated using the approaches developed. Results demonstrated successful separation of most stBEVs (within DG fractions 8&9) from stEEVs (within DG fractions 5&6). Data also suggest the presence of stBEV DNA within vesicles after extraction of BEV DNA and DNase treatment. Metagenomic analysis from full-length (FL) region sequencing results confirmed significant differences between stool bacteria and stBEVs. Significantly, F8&9 and the pooled sample (F5-F9) exhibited a similar microbial composition, indicating that F8&9 were enriched in most stBEV species, primarily dominated by Firmicutes (89.6%). However, F5&6 and F7 still held low-density BEVs with a significantly higher proportion of Proteobacteria (20.5% and 40.7%, respectively) and Bacteroidetes (24% and 13.7%, respectively), considerably exceeding the proportions in stool and F8&9. Importantly, among five healthy individuals, significant variations were observed in the gut microbiota composition of their respective stBEVs, indicating the potential of stBEVs as a target for personalized medicine and research.
Collapse
Affiliation(s)
- Chih-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
| | - Wei-Fan Hsu
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
- Department of R&D, Reliance Biosciences Inc, New Taipei City, Taiwan
| | - Po-Chieh Chiang
- Department of R&D, Reliance Biosciences Inc, New Taipei City, Taiwan
| | - Ming-Che Kuo
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Andrew M. Wo
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
- Department of R&D, Reliance Biosciences Inc, New Taipei City, Taiwan
| | - Yufeng Jane Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
- Master’s Program in Smart Medicine and Health Informatics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Yeo J. Influence of food-derived bioactives on gut microbiota compositions and their metabolites by focusing on neurotransmitters. Food Sci Biotechnol 2023; 32:1019-1027. [PMID: 37215258 PMCID: PMC10195957 DOI: 10.1007/s10068-023-01293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
The behavior of gut microbiota is closely involved in sustaining balanced immune and metabolic homeostasis, and the dysbiosis of gut microbiota can lead to severe disease. Foods and dietary patterns are the primary drivers in shaping/designing gut microbiota compositions and their metabolites across the lifetime. This indicates the importance of functional molecules present in the food matrix in the life of gut microbiota and their influence on the host's biological system. In this contribution, the effects of different dietary choices and bioactive compounds (i.e., phenolics, vitamins, carotenoids) on gut microbiome compositions and their metabolites are comprehensively discussed by focusing on neurotransmitters. This study may provide useful information that fills a gap in understanding the role of the gut microbiota and its alterations as affected by foods and food-derived bioactives.
Collapse
Affiliation(s)
- JuDong Yeo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul Campus, Seoul, 05029 Republic of Korea
| |
Collapse
|
11
|
Taş E, Ülgen KO. Understanding the ADHD-Gut Axis by Metabolic Network Analysis. Metabolites 2023; 13:592. [PMID: 37233633 PMCID: PMC10223614 DOI: 10.3390/metabo13050592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder diagnosed with hyperactivity, impulsivity, and a lack of attention inconsistent with the patient's development level. The fact that people with ADHD frequently experience gastrointestinal (GI) dysfunction highlights the possibility that the gut microbiome may play a role in this condition. The proposed research aims to determine a biomarker for ADHD by reconstructing a model of the gut-microbial community. Genome-scale metabolic models (GEM) considering the relationship between gene-protein-reaction associations are used to simulate metabolic activities in organisms of gut. The production rates of dopamine and serotonin precursors and the key short chain fatty acids which affect the health status are determined under three diets (Western, Atkins', Vegan) and compared with those of healthy people. Elasticities are calculated to understand the sensitivity of exchange fluxes to changes in diet and bacterial abundance at the species level. The presence of Bacillota (genus Coprococcus and Subdoligranulum), Actinobacteria (genus Collinsella), Bacteroidetes (genus Bacteroides), and Bacteroidota (genus Alistipes) may be possible gut microbiota indicators of ADHD. This type of modeling approach taking microbial genome-environment interactions into account helps us understand the gastrointestinal mechanisms behind ADHD, and establish a path to improve the quality of life of ADHD patients.
Collapse
Affiliation(s)
| | - Kutlu O. Ülgen
- Department of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey;
| |
Collapse
|
12
|
Crost EH, Coletto E, Bell A, Juge N. Ruminococcus gnavus: friend or foe for human health. FEMS Microbiol Rev 2023; 47:fuad014. [PMID: 37015876 PMCID: PMC10112845 DOI: 10.1093/femsre/fuad014] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 04/06/2023] Open
Abstract
Ruminococcus gnavus was first identified in 1974 as a strict anaerobe in the gut of healthy individuals, and for several decades, its study has been limited to specific enzymes or bacteriocins. With the advent of metagenomics, R. gnavus has been associated both positively and negatively with an increasing number of intestinal and extraintestinal diseases from inflammatory bowel diseases to neurological disorders. This prompted renewed interest in understanding the adaptation mechanisms of R. gnavus to the gut, and the molecular mediators affecting its association with health and disease. From ca. 250 publications citing R. gnavus since 1990, 94% were published in the last 10 years. In this review, we describe the biological characterization of R. gnavus, its occurrence in the infant and adult gut microbiota and the factors influencing its colonization of the gastrointestinal tract; we also discuss the current state of our knowledge on its role in host health and disease. We highlight gaps in knowledge and discuss the hypothesis that differential health outcomes associated with R. gnavus in the gut are strain and niche specific.
Collapse
Affiliation(s)
- Emmanuelle H Crost
- Quadram Institute Bioscience, Rosalind Franklin Road, Colney, Norwich NR4 7UQ, United Kingdom
| | - Erika Coletto
- Quadram Institute Bioscience, Rosalind Franklin Road, Colney, Norwich NR4 7UQ, United Kingdom
| | - Andrew Bell
- Quadram Institute Bioscience, Rosalind Franklin Road, Colney, Norwich NR4 7UQ, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Rosalind Franklin Road, Colney, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
13
|
Liu H, Yan C, Hao C, Wang D, Liu Y, Luo ZB, Han SZ, Wang JX, Li D, Zhu J, Chang SY, Yang LH, Lin X, Yan C, Kang JD, Quan LH. Dynamic changes in intestinal microbiota and metabolite composition of pre-weaned beef calves. Microb Pathog 2023; 175:105991. [PMID: 36649780 DOI: 10.1016/j.micpath.2023.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Gut microbes and their metabolites are essential for maintaining host health and production. The intestinal microflora of pre-weaned calves gradually tends to mature with growth and development and has high plasticity, but few studies have explored the dynamic changes of intestinal microbiota and metabolites in pre-weaned beef calves. In this study, we tracked the dynamics of faecal microbiota in 13 new-born calves by 16S rRNA gene sequencing and analysed changes in faecal amino acid levels using metabolomics. Calves were divided into the relatively high average daily gain group (HA) and the relatively low average daily gain group (LA) for comparison. The results demonstrated that the alpha diversity of the faecal microbiota increased with calf growth and development. The abundance of Porphyromonadaceae bacterium DJF B175 increased in the HA group, while that of Lactobacillus reuteri decreased. The results of the LEfSe analysis showed that the microbiota of faeces of HA calves at eight weeks of age was enriched with P. bacterium DJF B175, while Escherichia coli and L. reuteri were enriched in the microbiota of faeces of LA calves. Besides, the total amino acid concentration decreased significantly in the eighth week compared with that in the first week (P < 0.05). Overall, even under the same management conditions, microorganisms and their metabolites interact to play different dynamic regulatory roles. Our results provide new insights into changes in the gut microbiota and metabolites of pre-weaned calves.
Collapse
Affiliation(s)
- Hongye Liu
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Chunri Yan
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, 133002, China.
| | - Chunyun Hao
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| | - Danqi Wang
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| | - Yize Liu
- College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Zhao-Bo Luo
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Jun-Xia Wang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Dongxu Li
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| | - Jun Zhu
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Liu-Hui Yang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Xuemei Lin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Changguo Yan
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Lin-Hu Quan
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Pharmacy, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
14
|
Moderating Gut Microbiome/Mitochondrial Axis in Oxazolone Induced Ulcerative Colitis: The Evolving Role of β-Glucan and/or, Aldose Reductase Inhibitor, Fidarestat. Int J Mol Sci 2023; 24:ijms24032711. [PMID: 36769034 PMCID: PMC9917140 DOI: 10.3390/ijms24032711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
A mechanistic understanding of the dynamic interactions between the mitochondria and the gut microbiome is thought to offer innovative explanations for many diseases and thus provide innovative management approaches, especially in GIT-related autoimmune diseases, such as ulcerative colitis (UC). β-Glucans, important components of many nutritious diets, including oats and mushrooms, have been shown to exhibit a variety of biological anti-inflammatory and immune-modulating actions. Our research study sought to provide insight into the function of β-glucan and/or fidarestat in modifying the microbiome/mitochondrial gut axis in the treatment of UC. A total of 50 Wistar albino male rats were grouped into five groups: control, UC, β-Glucan, Fidarestat, and combined treatment groups. All the groups were tested for the presence of free fatty acid receptors 2 and 3 (FFAR-2 and -3) and mitochondrial transcription factor A (TFAM) mRNA gene expressions. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP content were found. The trimethylamine N-oxide (TMAO) and short-chain fatty acid (SCFA) levels were also examined. Nuclear factor kappa β (NF-kβ), nuclear factor (erythroid-2)-related factor 2 (Nrf2) DNA binding activity, and peroxisome proliferator-activated receptor gamma co-activator-1 (PGC-1) were identified using the ELISA method. We observed a substantial increase FFAR-2, -3, and TFAM mRNA expression after the therapy. Similar increases were seen in the ATP levels, MMP, SCFA, PGC-1, and Nrf2 DNA binding activity. The levels of ROS, TMAO, and NF-kβ, on the other hand, significantly decreased. Using β-glucan and fidarestat together had unique therapeutic benefits in treating UC by focusing on the microbiota/mitochondrial axis, opening up a new avenue for a potential treatment for such a complex, multidimensional illness.
Collapse
|
15
|
Timmis JK, Roussilhon DF, van de Burgwal LHM. Innovations for microbiome targeting interventions - a patent landscape analysis indicating overall patenting activity decline and promising target disease areas. Benef Microbes 2022; 13:265-282. [PMID: 35979711 DOI: 10.3920/bm2021.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human microbiota have been implicated in the aetiology and remedy of a host of disorders. However, due to the pervasive uncertainty inherent in the field of microbiota-targeting interventions and associated issues with establishing rigorous safety and efficacy profiles, regulatory oversight is suboptimal. This can dissuade innovators from further exploring novel and much needed health interventions. Modification of regulatory protocols and practices requires focussed efforts and funding to build the evidence base around future regulatory needs. Such modification can be critically informed by identification of changes and trends in technology fields to facilitate identification of regulatory gaps. To this purpose, this study rigorously collected and analysed patent data from Espacenet - covering the years 2013-2018 - and created a patent landscape analysis of microbiome targeting interventions with a focus on medicinal products. Pertinent patenting activity has declined overall. While, in absolute terms, patents most frequently claimed inventions targeting disorders of the gut and alimentary tract, relative year-on-year interest increases have been substantial for cancer, and disorders of the (neuro-)muscular and respiratory systems - driven by the private sector. Academic stakeholders showed top interest in disorders of the metabolism, anti-infectives, and skeletal and dermatological diseases. Although medicinal preparation claims dominated our dataset, a third of patents claimed food preparations, while only 1% claimed application as a diagnostic. Finally, China is, by an inordinate margin, a market of particular interest for both domestic and foreign innovators, indicating that microbiome targeting intervention innovation for EU and US markets might be frustrated. This study is the first to empirically demonstrate that live biotherapeutic product innovation is decelerating and potentially frustrated, supporting the urgent need for improved regulatory standards. Our results indicate which disease areas deserve particular attention for research funding to facilitate proper regulatory appraisal in the near- to mid-term future.
Collapse
Affiliation(s)
- J K Timmis
- Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Boelelaan, 1081 HV Amsterdam, the Netherlands
| | - D Flaherty Roussilhon
- Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Boelelaan, 1081 HV Amsterdam, the Netherlands
| | - L H M van de Burgwal
- Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Boelelaan, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
16
|
Nandwana V, Nandwana NK, Das Y, Saito M, Panda T, Das S, Almaguel F, Hosmane NS, Das BC. The Role of Microbiome in Brain Development and Neurodegenerative Diseases. Molecules 2022; 27:3402. [PMID: 35684340 PMCID: PMC9182002 DOI: 10.3390/molecules27113402] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Hundreds of billions of commensal microorganisms live in and on our bodies, most of which colonize the gut shortly after birth and stay there for the rest of our lives. In animal models, bidirectional communications between the central nervous system and gut microbiota (Gut-Brain Axis) have been extensively studied, and it is clear that changes in microbiota composition play a vital role in the pathogenesis of various neurodevelopmental and neurodegenerative disorders, such as Autism Spectrum Disorder, Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, anxiety, stress, and so on. The makeup of the microbiome is impacted by a variety of factors, such as genetics, health status, method of delivery, environment, nutrition, and exercise, and the present understanding of the role of gut microbiota and its metabolites in the preservation of brain functioning and the development of the aforementioned neurological illnesses is summarized in this review article. Furthermore, we discuss current breakthroughs in the use of probiotics, prebiotics, and synbiotics to address neurological illnesses. Moreover, we also discussed the role of boron-based diet in memory, boron and microbiome relation, boron as anti-inflammatory agents, and boron in neurodegenerative diseases. In addition, in the coming years, boron reagents will play a significant role to improve dysbiosis and will open new areas for researchers.
Collapse
Affiliation(s)
- Varsha Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
| | - Nitesh K. Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yogarupa Das
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (Y.D.); (M.S.)
| | - Tanisha Panda
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
| | - Frankis Almaguel
- School of Medicine, Loma Linda University Health, Loma Linda, CA 92350, USA;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Bhaskar C. Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (V.N.); (N.K.N.); (T.P.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
17
|
Desruelle AV, de Maistre S, Gaillard S, Richard S, Tardivel C, Martin JC, Blatteau JE, Boussuges A, Rives S, Risso JJ, Vallee N. Cecal Metabolomic Fingerprint of Unscathed Rats: Does It Reflect the Good Response to a Provocative Decompression? Front Physiol 2022; 13:882944. [PMID: 35655958 PMCID: PMC9152359 DOI: 10.3389/fphys.2022.882944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
On one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the cecal metabolome of rats. On the other side, there is also a specific and different metabolomic signature in the cecum of a strain of DCS-resistant rats, that are not exposed to hyperbaric protocol. We decide to study a conventional strain of rats that resist to an accident-provoking hyperbaric exposure, and we hypothesize that the metabolomic signature put forward may correspond to a physiological response adapted to the stress induced by diving. The aim is to verify and characterize whether the cecal compounds of rats resistant to the provocative dive have a cecal metabolomic signature different from those who do not dive. 35 asymptomatic diver rats are selected to be compared to 21 rats non-exposed to the hyperbaric protocol. Because our aim is essentially to study the differences in the cecal metabolome associated with the hyperbaric exposure, about half of the rats are fed soy and the other half of maize in order to better rule out the effect of the diet itself. Lower levels of IL-1β and glutathione peroxidase (GPX) activity are registered in blood of diving rats. No blood cell mobilization is noted. Conventional and ChemRICH approaches help the metabolomic interpretation of the 185 chemical compounds analyzed in the cecal content. Statistical analysis show a panel of 102 compounds diet related. 19 are in common with the hyperbaric protocol effect. Expression of 25 compounds has changed in the cecal metabolome of rats resistant to the provocative dive suggesting an alteration of biliary acids metabolism, most likely through actions on gut microbiota. There seem to be also weak changes in allocations dedicated to various energy pathways, including hormonal reshuffle. Some of the metabolites may also have a role in regulating inflammation, while some may be consumed for the benefit of oxidative stress management.
Collapse
Affiliation(s)
- Anne-Virginie Desruelle
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Sébastien de Maistre
- Service de Médecine Hyperbare Expertise Plongée, Hôpital d'Instruction des Armées Sainte-Anne, Toulon Cedex, France
| | | | | | - Catherine Tardivel
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille University, Faculté de Médecine La Timone, Marseille, France
| | - Jean-Charles Martin
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille University, Faculté de Médecine La Timone, Marseille, France
| | - Jean-Eric Blatteau
- Service de Médecine Hyperbare Expertise Plongée, Hôpital d'Instruction des Armées Sainte-Anne, Toulon Cedex, France
| | - Alain Boussuges
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Sarah Rives
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Nicolas Vallee
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
- *Correspondence: Nicolas Vallee,
| |
Collapse
|
18
|
Sabahi S, Homayouni Rad A, Aghebati-Maleki L, Sangtarash N, Ozma MA, Karimi A, Hosseini H, Abbasi A. Postbiotics as the new frontier in food and pharmaceutical research. Crit Rev Food Sci Nutr 2022; 63:8375-8402. [PMID: 35348016 DOI: 10.1080/10408398.2022.2056727] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food is the essential need of human life and has nutrients that support growth and health. Gastrointestinal tract microbiota involves valuable microorganisms that develop therapeutic effects and are characterized as probiotics. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. The probiotics must maintain their survival against inappropriate lethal conditions of the processing, storage, distribution, preparation, and digestion system so that they can exhibit their most health effects. Conversely, probiotic metabolites (postbiotics) have successfully overcome these unfavorable conditions and may be an appropriate alternative to probiotics. Due to their specific chemical structure, safe profile, long shelf-life, and the fact that they contain various signaling molecules, postbiotics may have anti-inflammatory, immunomodulatory, antihypertensive properties, inhibiting abnormal cell proliferation and antioxidative activities. Consequently, present scientific literature approves that postbiotics can mimic the fundamental and clinical role of probiotics, and due to their unique characteristics, they can be applied in an oral delivery system (pharmaceutical/functional foods), as a preharvest food safety hurdle, to promote the shelf-life of food products and develop novel functional foods or/and for developing health benefits, and therapeutic aims. This review addresses the latest postbiotic applications with regard to pharmaceutical formulations and commercial food-based products. Potential postbiotic applications in the promotion of host health status, prevention of disease, and complementary treatment are also reviewed.
Collapse
Affiliation(s)
- Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Narges Sangtarash
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Asghari Ozma
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Karimi
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ramírez-Acosta S, Selma-Royo M, Collado MC, Navarro-Roldán F, Abril N, García-Barrera T. Selenium supplementation influences mice testicular selenoproteins driven by gut microbiota. Sci Rep 2022; 12:4218. [PMID: 35273298 PMCID: PMC8913620 DOI: 10.1038/s41598-022-08121-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/24/2022] [Indexed: 01/04/2023] Open
Abstract
Selenium is a well-known essential element with important roles in human reproductive health mainly due to its antioxidant character. This study aimed to investigate the potential role of selenoproteins on gut microbiota and male reproductive health. A new assay for the absolute quantification of selenoproteins in testicular tissue based on two dimensional chromatography with inductively coupled plasma mass spectrometry was performed for the first time. The gut microbiota profile was obtained by 16S rRNA gene sequencing. Numerous associations were found between testicular selenoproteins and gut microbiota (e.g. Mucispirillum, related with sperm activity and testosterone, was associated with glutathione peroxidase (GPx) and selenoalbumin (SeAlb), while Escherichia/Shigella, related to sex hormones, correlated with GPx, selenoprotein P (SelP) and SeAlb). The effects of Se-supplementation on testicular selenoproteins only occur in conventional mice, suggesting a potential selenoproteins-microbiota interplay that underlies testicular function. The selenoproteins GPx and SelP have been quantified for the first time in the testicles, and the novel identification of SeAlb, a protein with nonspecifically incorporated Se, is also reported. These findings demonstrate the significant impact of Se-supplementation on gut microbiota and male reproductive health. In addition, the analytical methodology applied here in selenoprotein quantification in testicular tissue opens new possibilities to evaluate their role in gut microbiota and reproductive health axis.
Collapse
Affiliation(s)
- Sara Ramírez-Acosta
- Department of Chemistry, Faculty of Experimental Sciences, Research Center of Natural Resources, Health and the Environment (RENSMA), Campus El Carmen, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Francisco Navarro-Roldán
- Department of Integrated Sciences, Cell Biology, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071, Córdoba, Spain
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, Research Center of Natural Resources, Health and the Environment (RENSMA), Campus El Carmen, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain.
| |
Collapse
|
20
|
Safwat El-Deeb O, El-Esawy RO, Al-Shenawy HA, Ghanem HB. Modulating gut dysbiosis and mitochondrial dysfunction in oxazolone-induced ulcerative colitis: the restorative effects of β-glucan and/or celastrol. Redox Rep 2022; 27:60-69. [PMID: 35246012 PMCID: PMC8903761 DOI: 10.1080/13510002.2022.2046425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Microbiome–Mitochondria interaction is gaining a significant attention; thus, studying its mechanism emerges as a must to provide restorative lines in managing diseases. The aim is to study the mechanistic effects of β-Glucan and/or Celastrol in oxazolone-induced ulcerative colitis (UC). Methods 75 Wistar rats were allocated into 5 equal groups. Group I: control group. Group II: UC group, Group III: β-Glucan-treated UC group, Group IV: Celastrol-treated UC group & Group V: mutual treatment group. All groups were subjected to the detection of free fatty acid receptor 2 (FFAR-2) and peroxisome proliferator-activated receptor gamma co-activator1α (PGC-1α) mRNA gene expressions. Citrate synthase (CS) activity, mitochondrial membrane potential (MMP), ATP concentration, reactive oxygen species (ROS) were detected. Trimethylamine N-oxide (TMAO) concentration was measured. Results After treatment we monitored significant upregulation of FFAR-2 and PGC-1α mRNA expression. Likewise, ATP level and CS activity were significantly increased. On the contrary, there was a significant lessening in ROS and TMAO levels with improvement of MMP. Conclusion Mutual use of β- Glucan and Celastrol had a greater effect than each alone against UC, which is considered a novel finding highlighting the ameliorative effects of this combined treatment in modulating Microbiome/Mitochondria axis, thus launching promising avenues for UC.
Collapse
Affiliation(s)
- Omnia Safwat El-Deeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - Heba Bassiony Ghanem
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt.,Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
21
|
Sengupta A, Uppoor A, Joshi MB. Metabolomics: Paving the path for personalized periodontics - A literature review. J Indian Soc Periodontol 2022; 26:98-103. [PMID: 35321302 PMCID: PMC8936015 DOI: 10.4103/jisp.jisp_267_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
The pathogenesis of periodontal disease is governed by a multitude of factors ranging from the macroscopic to the microscopic scale. Among the factors that constitute the etiological agents of the disease, a major element is the role played by the body's metabolome-i.e., the complete collection of microscopic molecules and metabolic products of cells and tissues in the body. Being of a regulatory nature, the interplay of these molecules exerts a considerable effect on the development as well as the progression of disease, which differs in each individual based on their phenotype. Exploring this connection and application into the field of diagnostic as well as prediction of risk for periodontitis will ultimately result in a personalized standard of care for patients in the future.
Collapse
Affiliation(s)
- Antarleena Sengupta
- Department of Periodontology, Manipal College of Dental Sciences, Mangalore, Karnataka, India
| | - Ashita Uppoor
- Department of Periodontology, Manipal College of Dental Sciences, Mangalore, Karnataka, India
| | - Manjunath Bandu Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
22
|
Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin Microbiol Rev 2022; 35:e0033820. [PMID: 34985325 PMCID: PMC8729913 DOI: 10.1128/cmr.00338-20] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human body is full of an extensive number of commensal microbes, consisting of bacteria, viruses, and fungi, collectively termed the human microbiome. The initial acquisition of microbiota occurs from both the external and maternal environments, and the vast majority of them colonize the gastrointestinal tract (GIT). These microbial communities play a central role in the maturation and development of the immune system, the central nervous system, and the GIT system and are also responsible for essential metabolic pathways. Various factors, including host genetic predisposition, environmental factors, lifestyle, diet, antibiotic or nonantibiotic drug use, etc., affect the composition of the gut microbiota. Recent publications have highlighted that an imbalance in the gut microflora, known as dysbiosis, is associated with the onset and progression of neurological disorders. Moreover, characterization of the microbiome-host cross talk pathways provides insight into novel therapeutic strategies. Novel preclinical and clinical research on interventions related to the gut microbiome for treating neurological conditions, including autism spectrum disorders, Parkinson's disease, schizophrenia, multiple sclerosis, Alzheimer's disease, epilepsy, and stroke, hold significant promise. This review aims to present a comprehensive overview of the potential involvement of the human gut microbiome in the pathogenesis of neurological disorders, with a particular emphasis on the potential of microbe-based therapies and/or diagnostic microbial biomarkers. This review also discusses the potential health benefits of the administration of probiotics, prebiotics, postbiotics, and synbiotics and fecal microbiota transplantation in neurological disorders.
Collapse
Affiliation(s)
| | | | - Reza Jafarzadeh-Esfehani
- Blood Borne Infectious Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Sampani K. Pathogenic mitochondrial dysfunction and metabolic abnormalities. Biochem Pharmacol 2021; 193:114809. [PMID: 34673016 DOI: 10.1016/j.bcp.2021.114809] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Herein we trace links between biochemical pathways, pathogenesis, and metabolic diseases to set the stage for new therapeutic advances. Cellular and acellular microorganisms including bacteria and viruses are primary pathogenic drivers that cause disease. Missing from this statement are subcellular compartments, importantly mitochondria, which can be pathogenic by themselves, also serving as key metabolic disease intermediaries. The breakdown of food molecules provides chemical energy to power cellular processes, with mitochondria as powerhouses and ATP as the principal energy carrying molecule. Most animal cell ATP is produced by mitochondrial synthase; its central role in metabolism has been known for >80 years. Metabolic disorders involving many organ systems are prevalent in all age groups. Progressive pathogenic mitochondrial dysfunction is a hallmark of genetic mitochondrial diseases, the most common phenotypic expression of inherited metabolic disorders. Confluent genetic, metabolic, and mitochondrial axes surface in diabetes, heart failure, neurodegenerative disease, and even in the ongoing coronavirus pandemic.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - David N Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Natalia Kamperi
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Anastasios N Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Constantin Tamvakopoulos
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Robert J Zamboni
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Nannini G, Meoni G, Tenori L, Ringressi MN, Taddei A, Niccolai E, Baldi S, Russo E, Luchinat C, Amedei A. Fecal metabolomic profiles: A comparative study of patients with colorectal cancer vs adenomatous polyps. World J Gastroenterol 2021; 27:6430-6441. [PMID: 34720532 PMCID: PMC8517777 DOI: 10.3748/wjg.v27.i38.6430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/17/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC), the third most common cause of death in both males and females worldwide, shows a positive response to therapy and usually a better prognosis when detected at an early stage. However, the survival rate declines when the diagnosis is late and the tumor spreads to other organs. Currently, the measures widely used in the clinic are fecal occult blood test and evaluation of serum tumor markers, but the lack of sensitivity and specificity of these markers restricts their use for CRC diagnosis. Due to its high sensitivity and precision, colonoscopy is currently the gold-standard screening technique for CRC, but it is a costly and invasive procedure. Therefore, the implementation of custom-made methodologies including those with minimal invasiveness, protection, and reproducibility is highly desirable. With regard to other screening methods, the screening of fecal samples has several benefits, and metabolomics is a successful method to classify the metabolite shift in living systems as a reaction to pathophysiological influences, genetic modifications, and environmental factors.
AIM To characterize the variation groups and potentially recognize some diagnostic markers, we compared with healthy controls (HCs) the fecal nuclear magnetic resonance (NMR) metabolomic profiles of patients with CRC or adenomatous polyposis (AP).
METHODS Proton nuclear magnetic resonance spectroscopy was used in combination with multivariate and univariate statistical approaches, to define the fecal metabolic profiles of 32 CRC patients, 16 AP patients, and 38 HCs well matched in age, sex, and body mass index.
RESULTS NMR metabolomic analyses revealed that fecal sample profiles differed among CRC patients, AP patients, and HCs, and some discriminatory metabolites including acetate, butyrate, propionate, 3-hydroxyphenylacetic acid, valine, tyrosine and leucine were identified.
CONCLUSION In conclusion, we are confident that our data can be a forerunner for future studies on CRC management, especially the diagnosis and evaluation of the effectiveness of treatments.
Collapse
Affiliation(s)
- Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Gaia Meoni
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence 50134, Italy
| | - Leonardo Tenori
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence 50134, Italy
| | - Maria Novella Ringressi
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Antonio Taddei
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Claudio Luchinat
- Department of Chemistry & Magnetic Resonance Center (CERM), University of Florence, Florence 50134, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| |
Collapse
|
25
|
Arslanova A, Tarasova A, Alexandrova A, Novoselova V, Shaidullov I, Khusnutdinova D, Grigoryeva T, Yarullina D, Yakovleva O, Sitdikova G. Protective Effects of Probiotics on Cognitive and Motor Functions, Anxiety Level, Visceral Sensitivity, Oxidative Stress and Microbiota in Mice with Antibiotic-Induced Dysbiosis. Life (Basel) 2021; 11:764. [PMID: 34440509 PMCID: PMC8398215 DOI: 10.3390/life11080764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
Accumulating clinical and preclinical data indicate a prominent role of gut microbiota in regulation of physiological functions. The gut-brain axis imbalance due to gut dysbiosis is associated with a range of neurodegenerative diseases. Probiotics were suggested not only to restore intestinal dysbiosis but also modulate stress response and improve mood and anxiety symptoms. In this study, we assessed the effects of probiotic lactobacilli on behavioral reactions, the level of oxidative stress and microbiota content in mice administered to broad-spectrum antibiotics. Our study demonstrates that antibiotic treatment of adolescent mice for two weeks resulted in higher mortality and lower weight gain and induced significant changes in behavior including lower locomotor and exploratory activity, reduced muscle strength, visceral hypersensitivity, higher level of anxiety and impaired cognitive functions compared to the control group. These changes were accompanied by decreased diversity and total amount of bacteria, abundance of Proteobacteria and Verrucomicrobia phyla, and reduced Firmicutes/Bacteroides ratio in the gut microbiota. Moreover, a higher level of oxidative stress was found in brain and skeletal muscle tissues of mice treated with antibiotics. Oral administration of two Lactobacillus strains prevented the observed changes and improved not only microbiota content but also the behavioral alterations, suggesting a neuroprotective and antioxidant role of probiotics.
Collapse
Affiliation(s)
- Alisa Arslanova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (A.T.); (I.S.); (O.Y.)
| | - Aksiniya Tarasova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (A.T.); (I.S.); (O.Y.)
| | - Anastasia Alexandrova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (V.N.); (D.Y.)
| | - Vera Novoselova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (V.N.); (D.Y.)
| | - Ilnar Shaidullov
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (A.T.); (I.S.); (O.Y.)
| | - Dilyara Khusnutdinova
- “Omics Technologies” Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (D.K.); (T.G.)
| | - Tatiana Grigoryeva
- “Omics Technologies” Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (D.K.); (T.G.)
| | - Dina Yarullina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (V.N.); (D.Y.)
| | - Olga Yakovleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (A.T.); (I.S.); (O.Y.)
| | - Guzel Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (A.A.); (A.T.); (I.S.); (O.Y.)
| |
Collapse
|
26
|
Role of Microbiota-Derived Extracellular Vesicles in Gut-Brain Communication. Int J Mol Sci 2021; 22:ijms22084235. [PMID: 33921831 PMCID: PMC8073592 DOI: 10.3390/ijms22084235] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
Human intestinal microbiota comprise of a dynamic population of bacterial species and other microorganisms with the capacity to interact with the rest of the organism and strongly influence the host during homeostasis and disease. Commensal and pathogenic bacteria coexist in homeostasis with the intestinal epithelium and the gastrointestinal tract’s immune system, or GALT (gut-associated lymphoid tissue), of the host. However, a disruption to this homeostasis or dysbiosis by different factors (e.g., stress, diet, use of antibiotics, age, inflammatory processes) can cause brain dysfunction given the communication between the gut and brain. Recently, extracellular vesicles (EVs) derived from bacteria have emerged as possible carriers in gut-brain communication through the interaction of their vesicle components with immune receptors, which lead to neuroinflammatory immune response activation. This review discusses the critical role of bacterial EVs from the gut in the neuropathology of brain dysfunctions by modulating the immune response. These vesicles, which contain harmful bacterial EV contents such as lipopolysaccharide (LPS), peptidoglycans, toxins and nucleic acids, are capable of crossing tissue barriers including the blood-brain barrier and interacting with the immune receptors of glial cells (e.g., Toll-like receptors) to lead to the production of cytokines and inflammatory mediators, which can cause brain impairment and behavioral dysfunctions.
Collapse
|
27
|
Laswi I, Shafiq A, Al-Ali D, Burney Z, Pillai K, Salameh M, Mhaimeed N, Zakaria D, Chaari A, Yousri NA, Bendriss G. A Comparative Pilot Study of Bacterial and Fungal Dysbiosis in Neurodevelopmental Disorders and Gastrointestinal Disorders: Commonalities, Specificities and Correlations with Lifestyle. Microorganisms 2021; 9:741. [PMID: 33918112 PMCID: PMC8065742 DOI: 10.3390/microorganisms9040741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/15/2023] Open
Abstract
Gastrointestinal disorders (GIDs) are a common comorbidity in patients with neurodevelopmental disorders (NDDs), while anxiety-like behaviors are common among patients with gastrointestinal diseases. It is still unclear as to which microbes differentiate these two groups. This pilot study aims at proposing an answer by exploring both the bacteriome and the mycobiome in a cohort of 55 volunteers with NDD, GID or controls, while accounting for additional variables that are not commonly included such as probiotic intake and diet. Recruited participants answered a questionnaire and provided a stool sample using the Fisherbrand collection kit. Bacterial and fungal DNA was extracted using the Qiagen Stool minikit. Sequencing (16sRNA and ITS) and phylogenetic analyses were performed using the PE300 Illumina Miseq v3 sequencing. Statistical analysis was performed using the R package. Results showed a significant decrease in bacterial alpha diversity in both NDD and GID, but an increased fungal alpha diversity in NDD. Data pointed at a significant bacterial dysbiosis between the three groups, but the mycobiome dysbiosis is more pronounced in NDD than in GID. Fungi seem to be more affected by probiotics, diet and antibiotic exposure and are proposed to be the main key player in differentiation between NDD and GID dybiosis.
Collapse
Affiliation(s)
- Ibrahim Laswi
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Ameena Shafiq
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Dana Al-Ali
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Zain Burney
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Krishnadev Pillai
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Mohammad Salameh
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Nada Mhaimeed
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Dalia Zakaria
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Ali Chaari
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| | - Noha A. Yousri
- Research Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar;
- Computers and System Engineering, Alexandria University, Alexandria 21526, Egypt
| | - Ghizlane Bendriss
- Premedical Education Department, Weill Cornell Medicine Qatar, Doha 24144, Qatar; (I.L.); (A.S.); (D.A.-A.); (Z.B.); (K.P.); (M.S.); (N.M.); (D.Z.); (A.C.)
| |
Collapse
|
28
|
George AK, Behera J, Homme RP, Tyagi N, Tyagi SC, Singh M. Rebuilding Microbiome for Mitigating Traumatic Brain Injury: Importance of Restructuring the Gut-Microbiome-Brain Axis. Mol Neurobiol 2021; 58:3614-3627. [PMID: 33774742 PMCID: PMC8003896 DOI: 10.1007/s12035-021-02357-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a damage to the brain from an external force that results in temporary or permanent impairment in brain functions. Unfortunately, not many treatment options are available to TBI patients. Therefore, knowledge of the complex interplay between gut microbiome (GM) and brain health may shed novel insights as it is a rapidly expanding field of research around the world. Recent studies show that GM plays important roles in shaping neurogenerative processes such as blood-brain-barrier (BBB), myelination, neurogenesis, and microglial maturation. In addition, GM is also known to modulate many aspects of neurological behavior and cognition; however, not much is known about the role of GM in brain injuries. Since GM has been shown to improve cellular and molecular functions via mitigating TBI-induced pathologies such as BBB permeability, neuroinflammation, astroglia activation, and mitochondrial dysfunction, herein we discuss how a dysbiotic gut environment, which in fact, contributes to central nervous system (CNS) disorders during brain injury and how to potentially ward off these harmful effects. We further opine that a better understanding of GM-brain (GMB) axis could help assist in designing better treatment and management strategies in future for the patients who are faced with limited options.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Jyotirmaya Behera
- Bone Biology Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA. .,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky, 40202, USA.
| |
Collapse
|
29
|
Sabit H, Tombuloglu H, Rehman S, Almandil NB, Cevik E, Abdel-Ghany S, Rashwan S, Abasiyanik MF, Yee Waye MM. Gut microbiota metabolites in autistic children: An epigenetic perspective. Heliyon 2021; 7:e06105. [PMID: 33553761 PMCID: PMC7848646 DOI: 10.1016/j.heliyon.2021.e06105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Gut microbiota has become an issue of great importance recently due to its major role in autism spectrum disorder (ASD). Over the past three decades, there has been a sustained research activity focused to explain the actual mechanism by which gut microbiota triggers/develops autism. Several genetic and epigenetic factors are involved in this disorder, with epigenetics being the most active area of research. Although the constant investigation and advancements, epigenetic implications in ASD still need a deeper functional/causal analysis. In this review, we describe the major gut microbiota metabolites and how they induce epigenetic changes in ASD along with interactions through the gut-brain axis.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Suriya Rehman
- Department of Epidemic Diseases, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Noor B Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Emre Cevik
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Sanaa Rashwan
- Pediatrics Department, Madinat Zayed Hospital, SEHA, Abu Dhabi, United Arab Emirates
| | - Mustafa Fatih Abasiyanik
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Mary Miu Yee Waye
- The Nethersole School of Nursing, The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong
| |
Collapse
|
30
|
Gorlé N, Bauwens E, Haesebrouck F, Smet A, Vandenbroucke RE. Helicobacter and the Potential Role in Neurological Disorders: There Is More Than Helicobacter pylori. Front Immunol 2021; 11:584165. [PMID: 33633723 PMCID: PMC7901999 DOI: 10.3389/fimmu.2020.584165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Trillions of symbiotic microbial cells colonize our body, of which the larger part is present in the human gut. These microbes play an essential role in our health and a shift in the microbiome is linked to several diseases. Recent studies also suggest a link between changes in gut microbiota and neurological disorders. Gut microbiota can communicate with the brain via several routes, together called the microbiome–gut–brain axis: the neuronal route, the endocrine route, the metabolic route and the immunological route. Helicobacter is a genus of Gram-negative bacteria colonizing the stomach, intestine and liver. Several papers show the role of H. pylori in the development and progression of neurological disorders, while hardly anything is known about other Helicobacter species and the brain. We recently reported a high prevalence of H. suis in patients with Parkinson’s disease and showed an effect of a gastric H. suis infection on the mouse brain homeostasis. Here, we discuss the potential role of H. suis in neurological disorders and how it may affect the brain via the microbiome–gut–brain axis.
Collapse
Affiliation(s)
- Nina Gorlé
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Eva Bauwens
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Yang F, Yang Y, Chen Y, Li G, Zhang G, Chen L, Zhang Z, Mai Q, Zeng G. MiR-21 Is Remotely Governed by the Commensal Bacteria and Impairs Anti-TB Immunity by Down-Regulating IFN-γ. Front Microbiol 2021; 11:512581. [PMID: 33552001 PMCID: PMC7859650 DOI: 10.3389/fmicb.2020.512581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB), which is a frequent and important infectious disease caused by Mycobacterium tuberculosis, has resulted in an extremely high burden of morbidity and mortality. The importance of intestinal dysbacteriosis in regulating host immunity has been implicated in TB, and accumulating evidence suggests that microRNAs (miRNAs) might act as a key mediator in maintaining intestinal homeostasis through signaling networks. However, the involvement of miRNA in gut microbiota, TB and the host immune system remains unknown. Here we showed that intestinal dysbacteriosis increases the susceptibility to TB and remotely increased the expression of miR-21 in lung. Systemic antagonism of miR-21 enhanced IFN-γ production and further conferred immune protection against TB. Molecular experiments further indicated that miR-21a-3p could specifically target IFN-γ mRNA. These findings revealed regulatory pathways implicating intestinal dysbacteriosis induced-susceptibility to TB: intestinal dysbiosis→lung miRNA→targeting IFN-γ→impaired anti-TB immunity. This study also suggested that deregulated miRNAs by commensal bacteria could become promising targets as TB therapeutics.
Collapse
Affiliation(s)
- Fang Yang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministryof Education, Sun Yat-sen University, Guangzhou, China
| | - Yi Yang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministryof Education, Sun Yat-sen University, Guangzhou, China
| | - Yiwei Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministryof Education, Sun Yat-sen University, Guangzhou, China
| | - Guobao Li
- Department of Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Guoliang Zhang
- National Clinical Research Center for Tuberculosis, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Lingming Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministryof Education, Sun Yat-sen University, Guangzhou, China
| | - Zhiyi Zhang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministryof Education, Sun Yat-sen University, Guangzhou, China
| | - Qiongdan Mai
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministryof Education, Sun Yat-sen University, Guangzhou, China
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministryof Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Blanke EN, Holmes GM, Besecker EM. Altered physiology of gastrointestinal vagal afferents following neurotrauma. Neural Regen Res 2021; 16:254-263. [PMID: 32859772 PMCID: PMC7896240 DOI: 10.4103/1673-5374.290883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The adaptability of the central nervous system has been revealed in several model systems. Of particular interest to central nervous system-injured individuals is the ability for neural components to be modified for regain of function. In both types of neurotrauma, traumatic brain injury and spinal cord injury, the primary parasympathetic control to the gastrointestinal tract, the vagus nerve, remains anatomically intact. However, individuals with traumatic brain injury or spinal cord injury are highly susceptible to gastrointestinal dysfunctions. Such gastrointestinal dysfunctions attribute to higher morbidity and mortality following traumatic brain injury and spinal cord injury. While the vagal efferent output remains capable of eliciting motor responses following injury, evidence suggests impairment of the vagal afferents. Since sensory input drives motor output, this review will discuss the normal and altered anatomy and physiology of the gastrointestinal vagal afferents to better understand the contributions of vagal afferent plasticity following neurotrauma.
Collapse
Affiliation(s)
- Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Emily M Besecker
- Department of Health Sciences, Gettysburg College, Gettysburg, PA, USA
| |
Collapse
|
33
|
Rutsch A, Kantsjö JB, Ronchi F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front Immunol 2020; 11:604179. [PMID: 33362788 PMCID: PMC7758428 DOI: 10.3389/fimmu.2020.604179] [Citation(s) in RCA: 386] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The human microbiota has a fundamental role in host physiology and pathology. Gut microbial alteration, also known as dysbiosis, is a condition associated not only with gastrointestinal disorders but also with diseases affecting other distal organs. Recently it became evident that the intestinal bacteria can affect the central nervous system (CNS) physiology and inflammation. The nervous system and the gastrointestinal tract are communicating through a bidirectional network of signaling pathways called the gut-brain axis, which consists of multiple connections, including the vagus nerve, the immune system, and bacterial metabolites and products. During dysbiosis, these pathways are dysregulated and associated with altered permeability of the blood-brain barrier (BBB) and neuroinflammation. However, numerous mechanisms behind the impact of the gut microbiota in neuro-development and -pathogenesis remain poorly understood. There are several immune pathways involved in CNS homeostasis and inflammation. Among those, the inflammasome pathway has been linked to neuroinflammatory conditions such as multiple sclerosis, Alzheimer's and Parkinson's diseases, but also anxiety and depressive-like disorders. The inflammasome complex assembles upon cell activation due to exposure to microbes, danger signals, or stress and lead to the production of pro-inflammatory cytokines (interleukin-1β and interleukin-18) and to pyroptosis. Evidences suggest that there is a reciprocal influence of microbiota and inflammasome activation in the brain. However, how this influence is precisely working is yet to be discovered. Herein, we discuss the status of the knowledge and the open questions in the field focusing on the function of intestinal microbial metabolites or products on CNS cells during healthy and inflammatory conditions, such as multiple sclerosis, Alzheimer's and Parkinson's diseases, and also neuropsychiatric disorders. In particular, we focus on the innate inflammasome pathway as immune mechanism that can be involved in several of these conditions, upon exposure to certain microbes.
Collapse
Affiliation(s)
| | | | - Francesca Ronchi
- Maurice Müller Laboratories, Department of Biomedical Research, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Berne, Berne, Switzerland
| |
Collapse
|
34
|
Abdellatif B, McVeigh C, Bendriss G, Chaari A. The Promising Role of Probiotics in Managing the Altered Gut in Autism Spectrum Disorders. Int J Mol Sci 2020; 21:E4159. [PMID: 32532137 PMCID: PMC7312735 DOI: 10.3390/ijms21114159] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal symptoms (GIS) have been reported repeatedly in people with autism spectrum disorder (ASD) and studies have reported interesting correlations between severity of behavioral and gastrointestinal symptoms. Growing evidence indicates that the gut microbiota in ASD is altered with various shifts described at different taxonomic levels, pointing to the importance of considering the gut-brain axis in treatment of these disorders. Probiotics are live beneficial bacteria that are ingested as food or customized pills. These beneficial bacteria, when added in sufficient amounts, can correct the dysbiosis. Because probiotics have shown success in treating irritable bowel syndrome (IBS), it is plausible to investigate whether they can induce alleviation of behavioral symptoms as well. Probiotics show, in some clinical studies, their potential benefits (1) in improving gastrointestinal dysfunction, (2) in correcting dysbiosis, (3) in consequently reducing the severity of ASD symptoms. This review compiles data from selected studies that investigate these benefits and the mechanisms that mediate these effects, which include the production of metabolites, hormones, and neurotransmitters and the regulation of pro-inflammatory and regulatory cytokines. Future research based on more randomized, controlled studies with a larger population size and standardized use of strains, concentration of probiotics, duration of treatments, and methods of DNA extraction is still needed in this area, which may lead to more robust results.
Collapse
Affiliation(s)
| | | | | | - Ali Chaari
- Premedical Department, Weill Cornell Medicine, Qatar Foundation, Education City, Doha, P.O. Box 24144, Qatar; (B.A.); (C.M.); (G.B.)
| |
Collapse
|
35
|
Hoffman JB, Petriello MC, Morris AJ, Mottaleb MA, Sui Y, Zhou C, Deng P, Wang C, Hennig B. Prebiotic inulin consumption reduces dioxin-like PCB 126-mediated hepatotoxicity and gut dysbiosis in hyperlipidemic Ldlr deficient mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114183. [PMID: 32105967 PMCID: PMC7220843 DOI: 10.1016/j.envpol.2020.114183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/25/2020] [Accepted: 02/11/2020] [Indexed: 05/04/2023]
Abstract
Exposure to some environmental pollutants increases the risk of developing inflammatory disorders such as steatosis and cardiometabolic diseases. Diets high in fermentable fibers such as inulin can modulate the gut microbiota and lessen the severity of pro-inflammatory diseases, especially in individuals with elevated circulating cholesterol. Thus, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with 8% inulin would be protected from the pro-inflammatory toxic effects of PCB 126. Four groups of male Ldlr-/- mice were fed a high cholesterol diet containing 8% inulin or 8% cellulose (control) for 12 weeks. At weeks 2 and 4, mice were exposed to PCB 126 or vehicle (control). PCB 126 exposure induced wasting and impaired glucose tolerance, which were attenuated by inulin consumption. PCB 126 exposure induced hepatic lipid accumulation and increased inflammatory gene expression, which were both decreased by inulin consumption. In addition, inulin feeding decreased atherosclerotic lesion development in the aortic root and modulated the expression of enzymes related to glycolysis. Finally, 16S rRNA sequencing of gut microbial populations showed that PCB 126 modulated multiple microbiota genera (e.g., 3-fold decrease in Allobaculum and 3-fold increase in Coprococcus) which were normalized in inulin fed mice. Overall our data support the hypothesis that a dietary intervention that targets the gut microbiota may be an effective means of attenuating dioxin-like pollutant-mediated diseases.
Collapse
Affiliation(s)
- Jessie B Hoffman
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA
| | - Michael C Petriello
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Andrew J Morris
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - M Abdul Mottaleb
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Yipeng Sui
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA
| | - Pan Deng
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Chunyan Wang
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
36
|
Liu H, Wang HH. Impact of Microbiota Transplant on Resistome of Gut Microbiota in Gnotobiotic Piglets and Human Subjects. Front Microbiol 2020; 11:932. [PMID: 32508773 PMCID: PMC7248251 DOI: 10.3389/fmicb.2020.00932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Microbiota transplant is becoming a popular process to restore or initiate “healthy” gut microbiota and immunity. But, the potential risks of the related practices need to be carefully evaluated. This study retrospectively examined the resistomes of donated fecal microbiota for treating intestinal disorders, vaginal microbiota of pregnant women, and infant fecal microbiota from rural and urban communities, as well as the impact of transplants on the fecal resistome of human and animal recipients. Antibiotic resistance (AR) genes were found to be abundant in all donor microbiota. An overall surge of resistomes with higher prevalence and abundance of AR genes was observed in the feces of all transplanted gnotobiotic pigs as well as in the feces of infant subjects, compared to those in donor fecal and maternal vaginal microbiota. Surprisingly, transplants using rural Amish microbiota led to more instead of less AR genes in the fecal microbiota of gnotobiotic pigs than did transplants using urban microbiota. New AR gene subtypes undetected originally also appeared in gnotobiotic pigs, in Crohn’s Disease (CD) patients after transplant, and in feces of infant subjects. The data illustrated the key role of the host gastrointestinal tract system in amplifying the ever-increasing AR gene pool, even without antibiotic exposure. The data further suggest that the current approaches of microbiota transplant can introduce significant health risk factor(s) to the recipients, and newborn human and animal hosts with naïve gut microbiota were especially susceptible. Given the illustrated public health risks of microbiota transplant, minimizing massive and unnecessary damages to gut microbiota by oral antibiotics and other gut impacting drugs becomes important. Since eliminating risk factors including AR bacteria and opportunistic pathogens directly from donor microbiota is still difficult to achieve, developing microbial cocktails with defined organisms and functions has further become an urgent need, should microbiota transplantation become necessary.
Collapse
Affiliation(s)
- Hu Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Hua H Wang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
37
|
Pascale A, Marchesi N, Govoni S, Barbieri A. Targeting the microbiota in pharmacology of psychiatric disorders. Pharmacol Res 2020; 157:104856. [PMID: 32389857 DOI: 10.1016/j.phrs.2020.104856] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
There is increasing interest in the role of the gut microbiota in health and disease. In particular, gut microbiota influences the Central Nervous System (CNS) development and homeostasis through neural pathways or routes involving the immune and circulatory systems. The CNS, in turn, shapes the intestinal flora through endocrine or stress-mediated responses. These overall bidirectional interactions, known as gut microbiota-brain axis, profoundly affect some brain functions, such as neurogenesis and the production of neurotransmitters, up to influence behavioral aspects of healthy subjects. Consequently, a dysfunction within this axis, as observed in case of dysbiosis, can have an impact on the behavior of a given individual (e.g. anxiety and depression) or on the development of pathologies affecting the CNS, such as autism spectrum disorders and neurodegenerative diseases (e.g. Alzheimer's disease and Parkinson's disease). It should be considered that the whole microbiota has a significant role not only on aspects concerning human physiology, such as harvesting of nutrients and energy from the ingested food or production of a wide range of bioactive compounds, but also has positive effects on the gastrointestinal barrier function and actively contributes to the pharmacokinetics of several compounds including neuropsychiatric drugs. Indeed, the microbiota is able to affect drug absorption and metabolism up to have an impact on drug activity and/or toxicity. On the other hand, drugs are able to shape the human gut microbiota itself, where these changes may contribute to their pharmacologic profile. Therefore, the emerging picture on the complex drug-microbiota bidirectional interplay will have considerable implications in the future not only in terms of clinical practice but also, upstream, on drug development.
Collapse
Affiliation(s)
- Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy.
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Annalisa Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| |
Collapse
|
38
|
Isaiah S, Loots DT, Solomons R, van der Kuip M, Tutu Van Furth AM, Mason S. Overview of Brain-to-Gut Axis Exposed to Chronic CNS Bacterial Infection(s) and a Predictive Urinary Metabolic Profile of a Brain Infected by Mycobacterium tuberculosis. Front Neurosci 2020; 14:296. [PMID: 32372900 PMCID: PMC7186443 DOI: 10.3389/fnins.2020.00296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
A new paradigm in neuroscience has recently emerged - the brain-gut axis (BGA). The contemporary focus in this paradigm has been gut → brain ("bottom-up"), in which the gut-microbiome, and its perturbations, affects one's psychological state-of-mind and behavior, and is pivotal in neurodegenerative disorders. The emerging brain → gut ("top-down") concept, the subject of this review, proposes that dysfunctional brain health can alter the gut-microbiome. Feedback of this alternative bidirectional highway subsequently aggravates the neurological pathology. This paradigm shift, however, focuses upon non-communicable neurological diseases (progressive neuroinflammation). What of infectious diseases, in which pathogenic bacteria penetrate the blood-brain barrier and interact with the brain, and what is this effect on the BGA in bacterial infection(s) that cause chronic neuroinflammation? Persistent immune activity in the CNS due to chronic neuroinflammation can lead to irreversible neurodegeneration and neuronal death. The properties of cerebrospinal fluid (CSF), such as immunological markers, are used to diagnose brain disorders. But what of metabolic markers for such purposes? If a BGA exists, then chronic CNS bacterial infection(s) should theoretically be reflected in the urine. The premise here is that chronic CNS bacterial infection(s) will affect the gut-microbiome and that perturbed metabolism in both the CNS and gut will release metabolites into the blood that are filtered (kidneys) and excreted in the urine. Here we assess the literature on the effects of chronic neuroinflammatory diseases on the gut-microbiome caused by bacterial infection(s) of the CNS, in the context of information attained via metabolomics-based studies of urine. Furthermore, we take a severe chronic neuroinflammatory infectious disease - tuberculous meningitis (TBM), caused by Mycobacterium tuberculosis, and examine three previously validated CSF immunological biomarkers - vascular endothelial growth factor, interferon-gamma and myeloperoxidase - in terms of the expected changes in normal brain metabolism. We then model the downstream metabolic effects expected, predicting pivotal altered metabolic pathways that would be reflected in the urinary profiles of TBM subjects. Our cascading metabolic model should be adjustable to account for other types of CNS bacterial infection(s) associated with chronic neuroinflammation, typically prevalent, and difficult to distinguish from TBM, in the resource-constrained settings of poor communities.
Collapse
Affiliation(s)
- Simon Isaiah
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Regan Solomons
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Martijn van der Kuip
- Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Academic Medical Center, Emma Children’s Hospital, Amsterdam, Netherlands
| | - A. Marceline Tutu Van Furth
- Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Academic Medical Center, Emma Children’s Hospital, Amsterdam, Netherlands
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
39
|
Khan MS, Ikram M, Park JS, Park TJ, Kim MO. Gut Microbiota, Its Role in Induction of Alzheimer's Disease Pathology, and Possible Therapeutic Interventions: Special Focus on Anthocyanins. Cells 2020; 9:cells9040853. [PMID: 32244729 PMCID: PMC7226756 DOI: 10.3390/cells9040853] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
The human gut is a safe environment for several microbes that are symbiotic and important for the wellbeing of human health. However, studies on gut microbiota in different animals have suggested that changes in the composition and structure of these microbes may promote gut inflammation by releasing inflammatory cytokines and lipopolysaccharides, gut-wall leakage, and may affect systemic inflammatory and immune mechanisms that are important for the normal functioning of the body. There are many factors that aid in the gut’s dysbiosis and neuroinflammation, including high stress levels, lack of sleep, fatty and processed foods, and the prolonged use of antibiotics. These neurotoxic mechanisms of dysbiosis may increase susceptibility to Alzheimer’s disease (AD) and other neurodegenerative conditions. Therefore, studies have recently been conducted to tackle AD-like conditions by specifically targeting gut microbes that need further elucidation. It was suggested that gut dyshomeostasis may be regulated by using available options, including the use of flavonoids such as anthocyanins, and restriction of the use of high-fatty-acid-containing food. In this review, we summarize the gut microbiota, factors promoting it, and possible therapeutic interventions especially focused on the therapeutic potential of natural dietary polyflavonoid anthocyanins. Our study strongly suggests that gut dysbiosis and systemic inflammation are critically involved in the development of neurodegenerative disorders, and the natural intake of these flavonoids may provide new therapeutic opportunities for preclinical or clinical studies.
Collapse
Affiliation(s)
- Muhammad Sohail Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
| | - Muhammad Ikram
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
| | - Jun Sung Park
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
| | - Tae Ju Park
- Paul O’Gorman Leukaemia Research, Centre Institute of Cancer, Sciences University of Glasgow, 0747 657 5394 Glasgow, UK;
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
40
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kanara I, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG, Zamboni RJ, Kodukula K, Chen X. Klotho Pathways, Myelination Disorders, Neurodegenerative Diseases, and Epigenetic Drugs. Biores Open Access 2020; 9:94-105. [PMID: 32257625 PMCID: PMC7133426 DOI: 10.1089/biores.2020.0004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we outline a rationale for identifying neuroprotectants aimed at inducing endogenous Klotho activity and expression, which is epigenetic action, by definition. Such an approach should promote remyelination and/or stimulate myelin repair by acting on mitochondrial function, thereby heralding a life-saving path forward for patients suffering from neuroinflammatory diseases. Disorders of myelin in the nervous system damage the transmission of signals, resulting in loss of vision, motion, sensation, and other functions depending on the affected nerves, currently with no effective treatment. Klotho genes and their single-pass transmembrane Klotho proteins are powerful governors of the threads of life and death, true to the origin of their name, Fates, in Greek mythology. Among its many important functions, Klotho is an obligatory co-receptor that binds, activates, and/or potentiates critical fibroblast growth factor activity. Since the discovery of Klotho a little over two decades ago, it has become ever more apparent that when Klotho pathways go awry, oxidative stress and mitochondrial dysfunction take over, and age-related chronic disorders are likely to follow. The physiological consequences can be wide ranging, potentially wreaking havoc on the brain, eye, kidney, muscle, and more. Central nervous system disorders, neurodegenerative in nature, and especially those affecting the myelin sheath, represent worthy targets for advancing therapies that act upon Klotho pathways. Current drugs for these diseases, even therapeutics that are disease modifying rather than treating only the symptoms, leave much room for improvement. It is thus no wonder that this topic has caught the attention of biomedical researchers around the world.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, San Francisco, California
- ShangPharma Innovation, Inc., South San Francisco, California
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ioannis P. Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Anastasios N. Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, Massachusetts
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Carl A. Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Konstantina Sampani
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Demetrios G. Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | | | | | - Xiaohong Chen
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| |
Collapse
|
41
|
Madan S, Mehra MR. Gut dysbiosis and heart failure: navigating the universe within. Eur J Heart Fail 2020; 22:629-637. [DOI: 10.1002/ejhf.1792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/09/2020] [Accepted: 02/23/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Shivank Madan
- Brigham and Women's Hospital Heart and Vascular Center and Harvard Medical School Boston MA USA
| | - Mandeep R. Mehra
- Brigham and Women's Hospital Heart and Vascular Center and Harvard Medical School Boston MA USA
| |
Collapse
|
42
|
Chen X, Zheng R, Liu R, Li L. Goat milk fermented by lactic acid bacteria modulates small intestinal microbiota and immune responses. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
43
|
Pieczynska MD, Yang Y, Petrykowski S, Horbanczuk OK, Atanasov AG, Horbanczuk JO. Gut Microbiota and Its Metabolites in Atherosclerosis Development. Molecules 2020; 25:molecules25030594. [PMID: 32013236 PMCID: PMC7037843 DOI: 10.3390/molecules25030594] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota metabolites have a great influence on host digestive function and body health itself. The effects of intestinal microbes on the host metabolism and nutrients absorption are mainly due to regulatory mechanisms related to serotonin, cytokines, and metabolites. Multiple studies have repeatedly reported that the gut microbiota plays a fundamental role in the absorption of bioactive compounds by converting dietary polyphenols into absorbable bioactive substances. Moreover, some intestinal metabolites derived from natural polyphenol products have more biological activities than their own fundamental biological functions. Bioactive like polyphenolic compounds, prebiotics and probiotics are the best known dietary strategies for regulating the composition of gut microbial populations or metabolic/immunological activities, which are called “three “p” for gut health”. Intestinal microbial metabolites have an indirect effect on atherosclerosis, by regulating lipid metabolism and inflammation. It has been found that the diversity of intestinal microbiota negatively correlates with the development of atherosclerosis. The fewer the variation and number of microbial species in the gut, the higher the risk of developing atherosclerosis. Therefore, the atherosclerosis can be prevented and treated from the perspective of improving the number and variability of gut microbiota. In here, we summarize the effects of gut metabolites of natural products on the pathological process of the atherosclerosis, since gut intestinal metabolites not only have an indirect effect on macrophage foaming in the vessel wall, but also have a direct effect on vascular endothelial cells.
Collapse
Affiliation(s)
- Magdalena D. Pieczynska
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A Street, 02-106 Warsaw, Poland
- Correspondence: (M.D.P.); (J.O.H.); Tel.: +48-22-736-70-00
| | - Yang Yang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - S. Petrykowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
| | - Olaf K. Horbanczuk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska, 02-776 Warsaw, Poland;
| | - Atanas G. Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Jaroslaw O. Horbanczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A Street, 05-552 Jastrzebiec, Poland; (Y.Y.); (S.P.); (A.G.A.)
- Correspondence: (M.D.P.); (J.O.H.); Tel.: +48-22-736-70-00
| |
Collapse
|
44
|
Flannery JE, Stagaman K, Burns AR, Hickey RJ, Roos LE, Giuliano RJ, Fisher PA, Sharpton TJ. Gut Feelings Begin in Childhood: the Gut Metagenome Correlates with Early Environment, Caregiving, and Behavior. mBio 2020; 11:e02780-19. [PMID: 31964729 PMCID: PMC6974564 DOI: 10.1128/mbio.02780-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Psychosocial environments impact normative behavioral development in children, increasing the risk of problem behaviors and psychiatric disorders across the life span. Converging evidence demonstrates that early normative development is affected by the gut microbiome, which itself can be altered by early psychosocial environments. However, much of our understanding of the gut microbiome's role in early development stems from nonhuman animal models and predominately focuses on the first years of life, during peri- and postnatal microbial colonization. As a first step to identify if these findings translate to humans and the extent to which these relationships are maintained after initial microbial colonization, we conducted a metagenomic investigation among a cross-sectional sample of early school-aged children with a range of adverse experiences and caregiver stressors and relationships. Our results indicate that the taxonomic and functional composition of the gut microbiome correlates with behavior during a critical period of child development. Furthermore, our analysis reveals that both socioeconomic risk exposure and child behaviors associate with the relative abundances of specific taxa (e.g., Bacteroides and Bifidobacterium species) as well as functional modules encoded in their genomes (e.g., monoamine metabolism) that have been linked to cognition and health. While we cannot infer causality within this study, these findings suggest that caregivers may moderate the gut microbiome's link to environment and behaviors beyond the first few years of life.IMPORTANCE Childhood is a formative period of behavioral and biological development that can be modified, for better or worse, by the psychosocial environment that is in part determined by caregivers. Not only do our own genes and the external environment influence such developmental trajectories, but the community of microbes living in, on, and around our bodies-the microbiome-plays an important role as well. By surveying the gut microbiomes of a cross-sectional cohort of early school-aged children with a range of psychosocial environments and subclinical mental health symptoms, we demonstrated that caregiving behaviors modified the child gut microbiome's association to socioeconomic risk and behavioral dysregulation.
Collapse
Affiliation(s)
| | - Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Adam R Burns
- Department of Medicine Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Roxana J Hickey
- Biology of the Built Environment Center, University of Oregon, Eugene, Oregon, USA
- Phylagen, San Francisco, California, USA
| | - Leslie E Roos
- Department of Psychology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryan J Giuliano
- Department of Psychology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Philip A Fisher
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
45
|
Sasmita AO. Modification of the gut microbiome to combat neurodegeneration. Rev Neurosci 2019; 30:795-805. [DOI: 10.1515/revneuro-2019-0005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/16/2019] [Indexed: 12/11/2022]
Abstract
Abstract
The gut microbiome was extensively researched for its biological variety and its potential role in propagating diseases outside of the gastrointestinal (GI) tract. Recently, a lot of effort was focused on comprehending the gut-brain axis and the bizarre communication between the GI system and the nervous system. Ample amount of studies being carried out also revealed the involvement of the gut microbiome in enhancing the degree of many neurological disorders, including neurodegenerative diseases. It was widely observed that there were distinct microbiome profiles and dysbiosis within patients suffering from Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis. Various approaches to re-establish the balance of the gut microbiome, from antibiotic therapy, fecal microbiota transplant, or ingestion of psychobiotics, are discussed within this review within the specific context of combating neurodegenerative diseases. Present studies and clinical trials indicate that although there is an immense potential of gut microbiome modification to be preventive or therapeutic, there are still many intercalated components of the gut-brain axis at play and thus, more research needs to be carried out to delineate microbiome factors that may potentially alleviate symptoms of neurodegeneration.
Collapse
|
46
|
Palmer E, Tyacke R, Sastre M, Lingford-Hughes A, Nutt D, Ward RJ. Alcohol Hangover: Underlying Biochemical, Inflammatory and Neurochemical Mechanisms. Alcohol Alcohol 2019; 54:196-203. [PMID: 30916313 DOI: 10.1093/alcalc/agz016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
AIM To review current alcohol hangover research in animals and humans and evaluate key evidence for contributing biological factors. METHOD Narrative review with alcohol hangover defined as the state the day after a single episode of heavy drinking, when the alcohol concentration in the blood approaches zero. RESULTS Many of the human studies of hangover are not well controlled, with subjects consuming different concentrations of alcohol over variable time periods and evaluation not blinded. Also, studies have measured different symptoms and use varying methods of measurement. Animal studies show variations with respect to the route of administration (intragastric or intraperitoneal), the behavioural tests utilised and discrepancy in the timepoint used for hangover onset. Human studies have the advantage over animal models of being able to assess subjective hangover severity and its correlation with specific behaviours and/or biochemical markers. However, animal models provide valuable insight into the neural mechanisms of hangover. Despite such limitations, several hangover models have identified pathological changes which correlate with the hangover state. We review studies examining the contribution of alcohol's metabolites, neurotransmitter changes with particular reference to glutamate, neuroinflammation and ingested congeners to hangover severity. CONCLUSION Alcohol metabolites, neurotransmitter alterations, inflammatory factors and mitochondrial dysfunction are the most likely factors in hangover pathology. Future research should aim to investigate the relationship between these factors and their causal role.
Collapse
Affiliation(s)
- Emily Palmer
- Department of Medicine, Imperial College London, London, UK
| | - Robin Tyacke
- Department of Medicine, Imperial College London, London, UK
| | | | | | - David Nutt
- Department of Medicine, Imperial College London, London, UK
| | - Roberta J Ward
- Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
47
|
Paprotny Ł, Celejewska A, Frajberg M, Wianowska D. Development and validation of GC-MS/MS method useful in diagnosing intestinal dysbiosis. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1130-1131:121822. [PMID: 31669633 DOI: 10.1016/j.jchromb.2019.121822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022]
Abstract
Dysbiosis is a disorder of the bacterial flora of the human digestive tract. It is usually diagnosed clinically by direct detection of an abnormal pattern of the intestinal microbiota. The intermediate diagnosis based on determining the content of microflora metabolites, considered as chemical markers of this disorder, is still rarely used. This is, among others, due to the variety of properties of compounds recognised as dysbiosis markers and as a consequence, the use of different methods for their analysis. To the best of our knowledge, there is still no analytical procedure that would allow unambiguous determination of all compounds in one procedure. In the present study, we have established a detailed method for the quantitative analysis of hydrocinnamic, citramalic, p-hydroxybenzeneacetic, tartaric, hippuric, 4-hydroxybenzoic, indoxylsulfuric, tricarballylic, 3,4-dihydroxyhydrocinnamic and benzoic acids along with DL-arabitol that employs the direct derivatization of compounds in a small volume of urine sample followed by gas chromatography - tandem mass spectrometry (GC-MS/MS). To show that the optimised method is a useful tool for chemical diagnosis of dysbiosis, it was applied for determination of the dysbiosis markers in the authentic urine samples.
Collapse
Affiliation(s)
- Łukasz Paprotny
- Research and Development Centre, ALAB Laboratories, ul. Ceramiczna 1, 20-150 Lublin, Poland
| | - Agnieszka Celejewska
- Research and Development Centre, ALAB Laboratories, ul. Ceramiczna 1, 20-150 Lublin, Poland
| | - Małgorzata Frajberg
- Research and Development Centre, ALAB Laboratories, ul. Ceramiczna 1, 20-150 Lublin, Poland
| | - Dorota Wianowska
- Department of Chromatographic Methods, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland.
| |
Collapse
|
48
|
Gubert C, Kong G, Renoir T, Hannan AJ. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis 2019; 134:104621. [PMID: 31628992 DOI: 10.1016/j.nbd.2019.104621] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/14/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
The last decade has witnessed an exponentially growing interest in gut microbiota and the gut-brain axis in health and disease. Accumulating evidence from preclinical and clinical research indicate that gut microbiota, and their associated microbiomes, may influence pathogenic processes and thus the onset and progression of various diseases, including neurological and psychiatric disorders. In fact, gut dysbiosis (microbiota dysregulation) has been associated with a range of neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's and motor neuron disease, as well as multiple sclerosis. The gut microbiota constitutes a dynamic microbial system constantly challenged by many biological variables, including environmental factors. Since the gut microbiota constitute a changeable and experience-dependent ecosystem, they provide potential therapeutic targets that can be modulated as new interventions for dysbiosis-related disorders, including neurodegenerative diseases. This article reviews the evidence for environmental modulation of gut microbiota and its relevance to brain disorders, exploring in particular the implications for neurodegenerative diseases. We will focus on three major environmental factors that are known to influence the onset and progression of those diseases, namely exercise, diet and stress. Further exploration of environmental modulation, acting via both peripheral (e.g. gut microbiota and associated metabolic dysfunction or 'metabolopathy') and central (e.g. direct effects on CNS neurons and glia) mechanisms, may lead to the development of novel therapeutic approaches, such as enviromimetics, for a wide range of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
49
|
Niccolai E, Baldi S, Ricci F, Russo E, Nannini G, Menicatti M, Poli G, Taddei A, Bartolucci G, Calabrò AS, Stingo FC, Amedei A. Evaluation and comparison of short chain fatty acids composition in gut diseases. World J Gastroenterol 2019; 25:5543-5558. [PMID: 31576099 PMCID: PMC6767983 DOI: 10.3748/wjg.v25.i36.5543] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND An altered (dysbiosis) and unhealthy status of the gut microbiota is usually responsible for a reduction of short chain fatty acids (SCFAs) concentration. SCFAs obtained from the carbohydrate fermentation processes are crucial in maintaining gut homeostasis and their determination in stool samples could provide a faster, reliable and cheaper method to highlight the presence of an intestinal dysbiosis and a biomarker for various gut diseases. We hypothesize that different intestinal diseases, such as celiac disease (CD), adenomatous polyposis (AP) and colorectal cancer (CRC) could display a particular fecal SCFAs' signature. AIM To compare the fecal SCFAs' profiles of CD, AP, CRC patients and healthy controls, using the same analytical method. METHODS In this cross-sectional study, we defined and compared the SCFAs' concentration in fecal samples of 9 AP, 16 CD, 19 CRC patients and 16 healthy controls (HC). The SCFAs' analysis were performed using a gas-chromatography coupled with mass spectrometry method. Data analysis was carried out using Wilcoxon rank-sum test to assess pairwise differences of SCFAs' profiles, partial least squares-discriminate analysis (PLS-DA) to determine the status membership based on distinct SCFAs' profiles, and Dirichlet regression to determine factors influencing concentration levels of SCFAs. RESULTS We have not observed any difference in the SCFAs' amount and composition between CD and healthy control. On the contrary, the total amount of SCFAs was significantly lower in CRC patients compared to HC (P = 0.044) and CD (P = 0.005). Moreover, the SCFAs' percentage composition was different in CRC and AP compared to HC. In detail, HC displayed higher percentage of acetic acid (P value = 1.3 × 10-6) and a lower amount of butyric (P value = 0.02192), isobutyric (P value = 7.4 × 10-5), isovaleric (P value = 0.00012) and valeric (P value = 0.00014) acids compared to CRC patients. AP showed a lower abundance of acetic acid (P value = 0.00062) and higher percentages of propionic (P value = 0.00433) and isovaleric (P value = 0.00433) acids compared to HC. Moreover, AP showed higher levels of propionic acid (P value = 0.03251) and a lower level of isobutyric acid (P value = 0.00427) in comparison to CRC. The PLS-DA model demonstrated a significant separation of CRC and AP groups from HC, although some degree of overlap was observed between CRC and AP. CONCLUSION Analysis of fecal SCFAs shows the potential to provide a non-invasive means of diagnosis to detect patients with CRC and AP, while CD patients cannot be discriminated from healthy subjects.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Federica Ricci
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Florence 50134, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Marta Menicatti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence 50134, Italy
| | - Giovanni Poli
- Department of Statistics, Computer Science, Applications “G.Parenti”, Florence 50134, Italy
| | - Antonio Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence 50134, Italy
| | - Antonino Salvatore Calabrò
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Florence 50134, Italy
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
- Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi, Florence 50134, Italy
| |
Collapse
|
50
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kanara I, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG, Kodukula K, Zamboni RJ. Epigenetic treatment of dermatologic disorders. Drug Dev Res 2019. [DOI: 10.1002/ddr.21562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of PharmacyUniversity of California, San Francisco San Francisco California
- ShangPharma Innovation Inc. South San Francisco California
| | - Douglas V. Faller
- Department of MedicineBoston University School of Medicine Boston Massachusetts
- Cancer Research CenterBoston University School of Medicine Boston Massachusetts
| | - Ioannis P. Glavas
- Department of OphthalmologyNew York University School of Medicine New York City New York
| | - David N. Harpp
- Department of ChemistryMcGill University Montreal Quebec Canada
| | | | - Carl A. Pinkert
- Department of Pathobiology, College of Veterinary MedicineAuburn University Auburn Alabama
| | - Whitney R. Powers
- Department of Health SciencesBoston University Boston Massachusetts
- Department of AnatomyBoston University School of Medicine Boston Massachusetts
| | - Konstantina Sampani
- Beetham Eye InstituteJoslin Diabetes Center Boston Massachusetts
- Department of MedicineHarvard Medical School Boston Massachusetts
| | - Kosta Steliou
- Cancer Research CenterBoston University School of Medicine Boston Massachusetts
- PhenoMatriX, Inc. Natick Massachusetts
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis LaboratoryMassachusetts Eye and Ear Infirmary Boston Massachusetts
- Department of OphthalmologyHarvard Medical School Boston Massachusetts
| | - Krishna Kodukula
- ShangPharma Innovation Inc. South San Francisco California
- PhenoMatriX, Inc. Natick Massachusetts
| | | |
Collapse
|