1
|
Badoni S, Rawat D, Mahato AK, Jangwan NS, Ashraf GM, Alexiou A, Tayeb HO, Alghamdi BS, Papadakis M, Singh MF. Therapeutic Potential of Cornus Genus: Navigating Phytochemistry, Pharmacology, Clinical Studies, and Advanced Delivery Approaches. Chem Biodivers 2024; 21:e202301888. [PMID: 38403786 DOI: 10.1002/cbdv.202301888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
The genus Cornus (Cornaceae) plants are widely distributed in Europe, southwest Asia, North America, and the mountains of Central America, South America, and East Africa. Cornus plants exhibit antimicrobial, antioxidative, antiproliferative, cytotoxic, antidiabetic, anti-inflammatory, neuroprotective and immunomodulatory activities. These plants are exploited to possess various phytoconstituents such as triterpenoids, iridoids, anthocyanins, tannins and flavonoids. Pharmacological research and clinical investigations on various Cornus species have advanced significantly in recent years. Over the past few decades, a significant amount of focus has also been made into developing new delivery systems for Cornus mas and Cornus officinalis. This review focuses on the morphological traits, ethnopharmacology, phytochemistry, pharmacological activities and clinical studies on extracts and active constituents from plants of Cornus genus. The review also highlights recent novel delivery systems for Cornus mas and Cornus officinalis extracts to promote sustained and targeted delivery in diverse disorders. The overwhelming body of research supports the idea that plants from the genus Cornus have therapeutic potential and can be investigated in the future for treatingseveral ailments.
Collapse
Affiliation(s)
- Subhashini Badoni
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Deepshikha Rawat
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Arun Kumar Mahato
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Nitish Singh Jangwan
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, Delhi, 110017, India
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, Research Institute for Medical and Health Sciences, College of Health Sciences, University of Sharjah
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Haythum O Tayeb
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Neurology, Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marios Papadakis
- Department of SurgeryI. I., University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| | - Mamta F Singh
- College of Pharmacy, COER University, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
2
|
Han X, Ning Y, Dou X, Wang Y, Shan Q, Shi K, Wang Z, Ding C, Hao M, Wang K, Peng M, Kuang H, Yang Q, Sang X, Cao G. Cornus officinalis with high pressure wine steaming enhanced anti-hepatic fibrosis: Possible through SIRT3-AMPK axis. J Pharm Anal 2024; 14:100927. [PMID: 38646453 PMCID: PMC11024659 DOI: 10.1016/j.jpha.2023.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 04/23/2024] Open
Abstract
Cornus officinalis, a medicinal and edible plant known for its liver-nourishing properties, has shown promise in inhibiting the activation of hepatic stellate cells (HSCs), crucial indicators of hepatic fibrosis, especially when processed by high pressure wine steaming (HPWS). Herein, this study aims to investigate the regulatory effects of cornus officinalis, both in its raw and HPWS forms, on inflammation and apoptosis in liver fibrosis and their underlying mechanisms. In vivo liver fibrosis models were established by subcutaneous injection of CCl4, while in vitro HSCs were exposed to transforming growth factor-β (TGF-β). These findings demonstrated that cornus officinalis with HPWS conspicuously ameliorated histopathological injury, reduced the release of proinflammatory factors, and decreased collagen deposition in CCl4-induced rats compared to its raw form. Utilizing ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS) combined with network analysis, we identified that the pharmacological effects of the changed components of cornus officinalis before and after HPWS, primarily centered on the adenosine phosphate (AMP)-activated protein kinase (AMPK) pathway. Of note, cornus officinalis activated AMPK and Sirtuin 3 (SIRT3), promoting the apoptosis of activated HSCs through the caspase cascade by regulating caspase3, caspase6 and caspase9. siRNA experiments showed that cornus officinalis could regulate AMPK activity and its mediated-apoptosis through SIRT3. In conclusion, cornus officinalis exhibited the ability to reduce inflammation and apoptosis, with the SIRT3-AMPK signaling pathway identified as a potential mechanism underlying the synergistic effect of cornus officinalis with HPWS on anti-liver fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kao Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
4
|
Zhou X, Zhao Y, Dai L, Xu G. Bacillus subtilis and Bifidobacteria bifidum Fermentation Effects on Various Active Ingredient Contents in Cornus officinalis Fruit. Molecules 2023; 28:molecules28031032. [PMID: 36770698 PMCID: PMC9920020 DOI: 10.3390/molecules28031032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Microbial fermentation has been widely used to improve the quality and functional composition of food and edibles; however, the approach has rarely been applied to traditional Chinese medicines. In this study, to understand the effect of microbial fermentation on the active ingredients of traditional Chinese medicines, we used Bifidobacterium bifidum and Bacillus subtilis to ferment the traditional Chinese medicine, Cornus officinalis fruit (COF), and determined the levels of active ingredients using HPLC (high-performance liquid chromatography). According to the results, both B. subtilis and B. bifidum substantially increased the amount of gallic acid in the COF culture broth after fermentation; however, the two species of bacteria had no effect on the loganin content. Moreover, the B. subtilis fermentation reduced the contents of ursolic acid and oleanolic acid in the COF broth, whereas the B. bifidum fermentation did not. This study contributes to a better understanding of the mechanism by which microbial fermentation alters the active ingredient levels of traditional Chinese medicines, and suggests that fermentation may potentially improve their functional ingredients.
Collapse
Affiliation(s)
- Xiuren Zhou
- Department of Biotechnology, School of Life Science and Technology, Henan Institute of Science and Technology, Hualan Road 90#, Xinxiang 453002, China
- Correspondence: ; Tel.: +86-373-3040337
| | - Yimin Zhao
- Guangxi Botanical Garden of Medicinal Plants, Changgang Road 189#, Nanning 530010, China
| | - Lei Dai
- Department of Biotechnology, School of Life Science and Technology, Henan Institute of Science and Technology, Hualan Road 90#, Xinxiang 453002, China
| | - Guifang Xu
- Department of Biotechnology, School of Life Science and Technology, Henan Institute of Science and Technology, Hualan Road 90#, Xinxiang 453002, China
| |
Collapse
|
5
|
Lee HL, Kim JM, Moon JH, Kim MJ, Jeong HR, Go MJ, Kim HJ, Eo HJ, Lee U, Heo HJ. Anti-Amnesic Effect of Synbiotic Supplementation Containing Corni fructus and Limosilactobacillus reuteri in DSS-Induced Colitis Mice. Int J Mol Sci 2022; 24:ijms24010090. [PMID: 36613533 PMCID: PMC9820465 DOI: 10.3390/ijms24010090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
This study was conducted to compare the synbiotic activity between Corni fructus (C. fructus) and Limosilactobacillus reuteri (L. reuteri) on dextran sulfate sodium (DSS)-induced colitis and cognitive dysfunction in C57BL/6 mice. C. fructus (as prebiotics, PRE), L. reuteri (as probiotics, PRO), and synbiotics (as a mixture of L. reuteri and C. fructus, SYN) were fed to mice for 3 weeks. Consumption of PRE, PRO, and SYN ameliorated colitis symptoms in body weight, large intestinal length, and serum albumin level. Moreover, SYN showed a synergistic effect on intestinal permeability and intestinal anti-inflammation response. Also, SYN significantly improved cognitive function as a result of measuring the Y-maze and passive avoidance tests in DSS-induced behavioral disorder mice. Especially, SYN also restored memory function by increasing the cholinergic system and reducing tau and amyloid β pathology. In addition, PRE, PRO, and SYN ameliorated dysbiosis by regulating the gut microbiota and the concentration of short-chain fatty acids (SCFAs) in feces. The bioactive compounds of C. fructus were identified with quinic acid, morroniside, loganin, and cornuside, using ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS2). In conclusion, synbiotic supplementation alleviated DSS-induced colitis and cognitive dysfunction by modulating gut microbiota, proinflammatory cytokines, and SCFAs production.
Collapse
Affiliation(s)
- Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Hyun Moon
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hye Rin Jeong
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun Ji Eo
- Division of Special Forest Resources, Department of Forest Bioresources, National Institute of Forest Science (NIFoS), Suwon 16631, Republic of Korea
| | - Uk Lee
- Division of Special Forest Resources, Department of Forest Bioresources, National Institute of Forest Science (NIFoS), Suwon 16631, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Correspondence: ; Tel.: +82-(55)-7721907
| |
Collapse
|
6
|
Yang HJ, Jeong SJ, Ryu MS, Ha G, Jeong DY, Park YM, Lee HY, Bae JS. Protective effect of traditional Korean fermented soybean foods ( doenjang) on a dextran sulfate sodium-induced colitis mouse model. Food Funct 2022; 13:8616-8626. [PMID: 35894596 DOI: 10.1039/d2fo01347a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
Objective: The cause of ulcerative colitis (UC) is unknown, and the use of anti-inflammatory and immunosuppressive drugs with certain side effects is currently replacing treatment. Therefore, it is important to find new healthy foods or ingredients that exhibit potential protective and anti-inflammatory effects on UC. This study investigated the potential protective effect of doenjang on dextran sulfate sodium (DSS)-induced colitis in a mouse model. Materials and methods: Four doenjang samples (TCD21-51-1, TCD21-55-1, TMD21-16-1, and TFD21-1-1) were used. To examine the effects of the four doenjang samples on UC caused by DSS in a mouse model, the clinical symptoms of UC, such as body weight, disease activity index (DAI), and colon macroscopic damage index (CMDI) were analyzed. Moreover, immune-related blood cell counts, serum levels and protein expression of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), and nitric oxide (NO) production were measured in DSS-induced UC in mice for analysis. Results: The four doenjang samples increased the colon length shortened by DSS, reduced DAI (diarrhea and hemoccult), CMDI (ulceration, inflammation, and hemorrhage) and the content of immune-related cells in the blood. Moreover, the levels of TNF-α, IL-6, and NO increased by DSS were decreased by doenjang, and tissue damage was significantly reduced. Conclusions: These findings confirmed that doenjang exerts protective effects against UC, suggesting its possible use in developing therapeutic strategies or functional products.
Collapse
Affiliation(s)
- Hee-Jong Yang
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Su-Ji Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Myeong Seon Ryu
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Gwangsu Ha
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Young Mi Park
- INVIVO Co. Ltd., Deahak-ro, 121, Nonsan, Chungnam, 32992, Korea
| | - Hak Yong Lee
- INVIVO Co. Ltd., Deahak-ro, 121, Nonsan, Chungnam, 32992, Korea
| | - Jun Sang Bae
- Department of Pathology, College of Korean Medicine, Wonkwang University, 460, Iksan, Jeonbuk, 54538, Korea.
| |
Collapse
|
7
|
Wang CC, Li YL, Chiu PY, Chen C, Chen HC, Chen FA. Protective effects of corni fructus extract in mice with potassium oxonate-induced hyperuricemia. J Vet Med Sci 2022; 84:1134-1141. [PMID: 35781421 PMCID: PMC9412062 DOI: 10.1292/jvms.21-0671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Corni fructus is consumed as food and herbal medicine in Chinese culture. Studies have
revealed that corni fructus exhibits potent antioxidant activity; however, few studies
have investigated the ability of corni fructus to lower uric acid concentrations. In this
study, the xanthine oxidase (XO) inhibition and uric acid–lowering effect of corni fructus
extract (CFE) were evaluated in mice with potassium oxonate–induced hyperuricemia.
Hyperuricemia is a chronic disease prevalent worldwide and is associated with high
recurrence rates. In addition, drugs used to treat hyperuricemia induce side effects that
discourage patient compliance. Hyperuricemia induces metabolic imbalances resulting in
accumulative uric acid deposition in the joints and soft tissues. Hyperuricemia not only
induces gout but also interrupts hepatic and renal function, thereby trigging severe
inflammation and various complications, including obesity, nonalcoholic fatty liver
disease, diabetes, and metabolic diseases. In this study, the ethyl acetate fraction (EAF)
of CFE resulted in yields of antioxidant photochemical components significantly higher
than those of CFEs formed using other substances. The EAF of CFE exhibited high free
radical scavenging activity and XO inhibition and effectively lowered uric acid
concentrations in the animal model of chemically induced hyperuricemia. The results of
this study can serve as a reference for the prevention of preclinical gout as well as for
functional food research.
Collapse
Affiliation(s)
| | - You-Liang Li
- Department of Pharmacy and Master Program, Tajen University
| | - Po-Yen Chiu
- Department of Pharmacy and Master Program, Tajen University
| | - Chun Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University
| | - Hung-Che Chen
- Department of Pharmacy and Master Program, Tajen University
| | - Fu-An Chen
- Department of Pharmacy and Master Program, Tajen University
| |
Collapse
|
8
|
Khan A, Pervaiz A, Ansari B, Ullah R, Shah SMM, Khan H, Saeed Jan M, Hussain F, Ijaz Khan M, Albadrani GM, Altyar AE, Abdel-Daim MM. Phytochemical Profiling, Anti-Inflammatory, Anti-Oxidant and In-Silico Approach of Cornus macrophylla Bioss (Bark). Molecules 2022; 27:molecules27134081. [PMID: 35807324 PMCID: PMC9268425 DOI: 10.3390/molecules27134081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
The objective of the current study was to evaluate the phytochemical and pharmacological potential of the Cornus macrophylla. C. macrophylla belongs to the family Cornaceae. It is locally known as khadang and is used for the treatment of different diseases such as analgesic, tonic, diuretic, malaria, inflammation, allergy, infections, cancer, diabetes, and lipid peroxidative. The crude extract and different fractions of C. macrophyll were evaluated by gas chromatography and mass spectroscopy (GC-MS), which identified the most potent bioactive phytochemicals. The antioxidant ability of C. macrophylla was studied by 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) and 1,1 diphenyl-2-picryl-hydrazyl (DPPH) methods. The crude and subsequent fractions of the C. macrophylla were also tested against anti-inflammatory enzymes using COX-2 (Cyclooxygenase-2) and 5-LOX (5-lipoxygenase) assays. The molecular docking was carried out using molecular operating environment (MOE) software. The GC-MS study of C. macrophylla confirmed forty-eight compounds in ethyl acetate (Et.AC) fraction and revealed that the Et.AC fraction was the most active fraction. The antioxidant ability of the Et.AC fraction showed an IC50 values of 09.54 μg/mL and 7.8 μg/mL against ABTS and DPPH assay respectively. Among all the fractions of C. macrophylla, Et.AC showed excellent activity against COX-2 and 5-LOX enzyme. The observed IC50 values were 93.35 μg/mL against COX-2 and 75.64 μg/mL for 5-LOX respectively. Molecular docking studies supported these in vitro results and confirmed the anti-inflammatory potential of C. macrophylla. C. macrophylla has promising potential as a source for the development of new drugs against inflammation in the future.
Collapse
Affiliation(s)
- Ali Khan
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Aini Pervaiz
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Bushra Ansari
- Departement of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; (B.A.); (H.K.)
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Syed Muhammad Mukarram Shah
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
- Correspondence: ; Tel.: +92-33-3925-6603
| | - Haroon Khan
- Departement of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; (B.A.); (H.K.)
| | - Muhammad Saeed Jan
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Fida Hussain
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Mohammad Ijaz Khan
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ahmed E. Altyar
- Department Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
9
|
Kim C, Kim N, Bae JS. Anti-Inflammatory and Anti-oxidant Functions of Cornuside by Regulating NF-[Formula: see text]B, STAT-1, and Nrf2-HO-1 Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1349-1360. [PMID: 35748214 DOI: 10.1142/s0192415x22500574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/15/2023]
Abstract
Cornuside (CNS), found in the fruit of Cornus officinalis Seib, is a natural bisiridoid glucoside that possesses therapeutic effects by suppressing inflammation. This study aimed to determine whether CNS could inhibit the inflammatory response induced by lipopolysaccharide (LPS) in human umbilical vein endothelial cells (HUVECs) and mice, as well as to decipher the mechanisms. After activating HUVECs with LPS, the cells were treated with CNS. Cells were then isolated for protein or mRNA assays to analyze signaling and inflammatory molecules. In addition, mice received an intraperitoneal injection of LPS, followed by an intravenously administered dose of CNS. CNS inhibited cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) expressions induced by LPS. CNS decreased phosphorylated signal transducer and activator of transcription 1 (STAT1)-1 by promoting HO-1 expression, inhibiting nuclear factor (NF)-[Formula: see text]B-luciferase activity, and decreasing COX-2/prostaglandin E2 (PGE2) and iNOS/NO. Furthermore, CNS treatment in LPS-activated HUVECs increased the nuclear translocation of nuclear factor erythrocyte 2-related factor 2 (Nrf2) and combined Nrf2 to anti-oxidant response elements and decreased IL-1[Formula: see text] production. Reduced iNOS/NO expression by CNS was restored when HO-1 RNAi inhibited heme oxygenase-1 (HO-1). After CNS treatment in vivo, iNOS levels in lung tissue and tumor necrosis factor (TNF)-[Formula: see text] expression in the bronchoalveolar lavage fluid were significantly decreased. The results indicated that CNS increased HO-1 expression, reduced LPS-activated NF-[Formula: see text]B-luciferase activity, and inhibited iNOS/NO and COX-2/PGE2, all of which contributed to the inhibition of STAT-1 phosphorylation. Thus, CNS can be a potential new substance for treating inflammatory disorders.
Collapse
Affiliation(s)
- Chaeyeong Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nayeon Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
Majdan M, Bobrowska-Korczak B. Active Compounds in Fruits and Inflammation in the Body. Nutrients 2022; 14:2496. [PMID: 35745226 PMCID: PMC9229651 DOI: 10.3390/nu14122496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammation plays an important role in the pathogenesis of many diseases, including cardiovascular diseases, atherosclerosis, diabetes, asthma, and cancer. An appropriate diet and the active compounds contained in it can affect various stages of the inflammatory process and significantly affect the course of inflammatory diseases. Recent reports indicate that polyphenolic acids, vitamins, minerals, and other components of fruits may exhibit activity stimulating an anti-inflammatory response, which may be of importance in maintaining health and reducing the risk of disease. The article presents the latest data on the chemical composition of fruits and the health benefits arising from their anti-inflammatory and antioxidant effects. The chemical composition of fruits determines their anti-inflammatory and antioxidant properties, but the mechanisms of action are not fully understood.
Collapse
Affiliation(s)
| | - Barbara Bobrowska-Korczak
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
11
|
Corni Fructus Alleviates UUO-Induced Renal Fibrosis via TGF-β/Smad Signaling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5780964. [PMID: 35572722 PMCID: PMC9106464 DOI: 10.1155/2022/5780964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/15/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022]
Abstract
Renal fibrosis is a type of chronic kidney disease (CKD) induced by infiltration of inflammatory cells, myofibroblast accumulation, and ECM production in the kidney. From a long time ago, Corni Fructus (CF) is known to supplement the liver and kidney with its tepid properties. In this study, we investigated the renal protective mechanism of CF, which is known to supplement the kidney, in rat model of unilateral ureteral obstruction (UUO). After inducing UUO through surgery, the group was separated (
) and the drug was administered for 2 weeks; normal rats (normal), water-treated UUO rats (control), CF 100 mg/kg-treated UUO rats (CF100), and CF 200 mg/kg-treated UUO rats (CF200). As a result of histopathological examination of kidney tissue with H&E, MT, and PAS staining, it was confirmed that the infiltration of inflammatory cells and the erosion of collagen were relatively decreased in the kidneys treated with CF. Also, CF significantly reduced the levels of MDA and BUN in serum. As a result of confirming the expression of the factors through western blotting, CF treatment significantly reduced the expression of NADPH oxidase and significantly regulated the AMPK/LKB1/NF-κB pathway associated with inflammation. In addition, it downregulated the expression of major fibrotic signaling factors, such as α-SMA, collagen I, MMP-2, and TIMP-1, and significantly regulated the TGF-β1/Smad pathway, which is known as a major regulator of renal fibrosis. Taken together, these findings indicate that CF can alleviate renal fibrosis by regulating the TGF-β1/Smad pathway through inhibition of oxidative stress in UUO.
Collapse
|
12
|
Najjar RS, Akhavan NS, Pourafshar S, Arjmandi BH, Feresin RG. Cornus officinalis var. koreana Kitam polyphenol extract decreases pro-inflammatory markers in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages by reducing Akt phosphorylation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113734. [PMID: 33359857 DOI: 10.1016/j.jep.2020.113734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/12/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis var. koreana Kitam (CO) is found predominantly in China but also in Korea and Japan and has been used in Eastern medicine for over 2000 years to treat several conditions including diabetes, cardiovascular disease and kidney disease. Chronic inflammation underlies the pathogenesis of these diseases. The mechanisms by which CO may exert its anti-inflammatory effects have not been well defined. AIM OF THE STUDY We aimed to determine whether Cornus officinalis var. koreana Kitam extract (COE) attenuate the inflammatory response induced by lipopolysaccharide (LPS) in RAW 264.7 macrophages, and to elucidate the mechanisms which contribute to these anti-inflammatory effects. MATERIALS AND METHODS COE was prepared using ethanolic extraction, followed by solvent evaporation and freeze-drying. RAW 264.7 macrophages were treated with 0, 50, 100, 200 and 400 μg/ml of COE. After 2 h, cells were treated with 100 ng/ml of LPS for 6 h. Cells were then collected for whole cell protein expression analysis of signaling and inflammatory molecules via western blot. RESULTS Pre-treatment with 100, 200 and 400 μg/ml of COE significantly reduced Akt phosphorylation in LPS stimulated macrophages compared to LPS alone (P ≤ 0.003). NF-κB expression was significantly attenuated with 400 μg/ml of COE compared to LPS treatment alone (P = 0.01). LPS induced cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) expression, which was significantly decreased by treatment with 400 μg/ml COE (P = 0.0001 and 0.02, respectively). COE dose-dependently decreased LPS-induced expression of interleukin (IL)-1β (P ≤ 0.0008) and IL-6 (P = 0.01). CONCLUSION In summary, COE attenuated the inflammatory response induced by LPS in RAW 264.7 macrophages, likely due to Akt inhibition.
Collapse
Affiliation(s)
- Rami S Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA, 30302, USA
| | - Neda S Akhavan
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32304, USA; Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32304, USA
| | - Shirin Pourafshar
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32304, USA; Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, VA 22903, USA
| | - Bahram H Arjmandi
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32304, USA; Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32304, USA
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA, 30302, USA.
| |
Collapse
|
13
|
Thu NT, The Hung N, Thuy An NT, Vinh LB, Binh BT, Thu NTB, Khoi NM, Ha DT. Four new phenolic compounds from the fruit of Cornus officinalis (Cornaceae) and their anti-inflammatory activity in RAW 264.7 cells. Nat Prod Res 2021; 36:3806-3812. [PMID: 33593150 DOI: 10.1080/14786419.2021.1887865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022]
Abstract
Using various chromatographic methods, four new phenolics, coroffesters A-D (1 - 4) were isolated from the fruit of Cornus officinalis (Cornaceae). Their structures (1 - 4) were elucidated unambiguously by spectroscopic methods such as one- and two-dimensional nuclear magnetic resonance (1 D- and 2 D-NMR) spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The anti-inflammatory activity of the isolated compounds was also evaluated. All compounds (1 - 4) showed moderate inhibitory activity against NO production in a dose-dependent manner in RAW 264.7 cells.
Collapse
Affiliation(s)
- Nguyen Thi Thu
- Department of Analytical Chemistry and Standardization, National Institute of Medical Materials, Hanoi, Vietnam
| | | | | | - Le Ba Vinh
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea.,Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Bui Thi Binh
- Falculty of pharmacy, Thai Binh University of Medicine and Pharmacy, Thái Bình, Vietnam
| | | | - Nguyen Minh Khoi
- Department of Analytical Chemistry and Standardization, National Institute of Medical Materials, Hanoi, Vietnam
| | - Do Thi Ha
- Department of Analytical Chemistry and Standardization, National Institute of Medical Materials, Hanoi, Vietnam
| |
Collapse
|
14
|
Park S, Moon BR, Kim JE, Kim HJ, Zhang T. Aqueous Extracts of Morus alba Root Bark and Cornus officinalis Fruit Protect against Osteoarthritis Symptoms in Testosterone-Deficient and Osteoarthritis-Induced Rats. Pharmaceutics 2020; 12:pharmaceutics12121245. [PMID: 33371279 PMCID: PMC7767081 DOI: 10.3390/pharmaceutics12121245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Water extracts of both Morus alba L. root bark (MBW) and Cornus officinalis Siebold and Zucc fruit (CFW) have traditionally been used to promote men's health in the elderly in Asia. We determined that the 12-week consumption of MBW and CFW could alleviate testosterone-deficiency syndrome and osteoarthritis (OA) symptoms in testosterone-deficient rats, and the action mechanisms were explored. Rats with bilateral orchiectomy (ORX) were fed a 45% fat diet containing either 0.5% MBW (ORX-MBW), 0.5% CFW(ORX-CFW), or 0.5% dextrin (ORX-CON). Sham-operated rats also received 0.5% dextrin (Non-ORX-CON). After 8 weeks of treatment, all rats had an injection of monoiodoacetate (MIA) into the left knee, and they continued the same diet for the additional 4 weeks. ORX-CFW and ORX-MBW partially prevented the reduction of serum testosterone concentrations and decreased insulin resistance, compared to the ORX-CON. ORX-CFW and ORX-MBW protected against the reduction of bone mineral density (BMD) and lean body mass (LBM) compared to the ORX-CON. The limping and edema scores were lower in the order of the ORX-CON, ORX-CRF = ORX-MBW, and Non-ORX-CON (p < 0.05). The scores for pain behaviors, measured by weight-distribution on the OA leg and maximum running velocity on a treadmill, significantly decreased in the same order as limping scores. ORX-MBW protected against the increased expression of matrix metalloproteinase (MMP)-3 and MMP-13 and reduced the production of inflammatory markers such as TNF-α and IL-1β, by MIA in the articular cartilage, compared to the ORX-CON (p < 0.05). The cartilage damage near the tidemark of the knee and proteoglycan loss was significantly less in ORX-MBW than ORX-CON. In conclusion, MBW, possibly CFW, could be effective alternative therapeutic agents for preventing osteoarthritis in testosterone-deficient elderly men.
Collapse
Affiliation(s)
- Sunmin Park
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea
- Correspondence: ; Tel.: +82-41-540-5345; Fax: +82-41-548-0670
| | - Bo Reum Moon
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
| | - Ji Eun Kim
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
| | - Hyun Joo Kim
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
| | - Ting Zhang
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea
| |
Collapse
|
15
|
Zhang XW, Sui Y, Liu XX, Fu CY, Qiao YH, Liu WJ, Li ZZ, Li XQ, Cao W. Structures and anti-atherosclerotic effects of 1,6-α-glucans from Fructus Corni. Int J Biol Macromol 2020; 161:1346-1357. [PMID: 32784023 DOI: 10.1016/j.ijbiomac.2020.08.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022]
Abstract
In this study, two homogeneous polysaccharides (PFC-1 and PFC-2) having anti-atherosclerotic activity were isolated from Fructus Corni. PFC-1 and PFC-2 were 1,6-α-glucans with the molecular weight of 4.4 kDa and 82.0 kDa, respectively. In the in vitro experiments, PFC-1 and PFC-2 showed significant inhibitory effects on the cholesterol accumulation in RAW264.7 macrophages induced by oxidized low-density lipoproteins (ox-LDL), and the inhibitory rate of PFC-2 was 81.62%. Apolipoprotein E-deficient (ApoE-/-) mice fed high-fat diet (HFD) were used to evaluate the anti-atherosclerotic effects of PFC-2 in vivo. The aortic root lipid area decreased by 55.01% in the PFC-2-administered group as compared to the model group. PFC-2 decreased the levels of serum low-density lipoprotein cholesterol, total cholesterol, triglycerides, and malondialdehyde, increased the superoxide dismutase activity, and reduced the contents of lipid and macrophages in the aortic sinus plaque in ApoE-/- mice fed with HFD. Furthermore, PFC-2 markedly inhibited the expression of type A1 scavenger receptor (SR-A1) and cluster of differentiation 36 (CD36) in ox-LDL-treated macrophages. Taken together, 1,6-α-glucans from Fructus Corni showed significant anti-atherogenic effect, and the mechanism is related to enhanced antioxidant activity of the ApoE-/- mice and down-regulated the expression of SR-A1 and CD36 proteins in macrophages.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine and Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China; Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; Shangluo University, Shangluo 726000, China
| | - Yi Sui
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Xiao-Xiao Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine and Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Cheng-Yang Fu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yu-He Qiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Wen-Juan Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Ze-Zhi Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Xiao-Qiang Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine and Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| | - Wei Cao
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine and Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China; Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
16
|
Castejón-Vega B, Giampieri F, Alvarez-Suarez JM. Nutraceutical Compounds Targeting Inflammasomes in Human Diseases. Int J Mol Sci 2020; 21:E4829. [PMID: 32650482 PMCID: PMC7402342 DOI: 10.3390/ijms21144829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
The macromolecular complex known as "inflammasome" is defined as an intracellular multi-protein complex composed of a sensor receptor (PRR), an adaptor protein and an effector enzyme (caspase-1), which oligomerize when they sense danger, such as how the NLR family, AIM-2 and RIG-1 receptors protect the body against danger via cytokine secretion. Within the NLR members, NLRP3 is the most widely known and studied inflammasome and has been linked to many diseases. Nowadays, people's interest in their lifestyles and nutritional habits is increasing, mainly due to the large number of diseases that seem to be related to both. The term "nutraceutical" has recently emerged as a hybrid term between "nutrition" and "pharmacological" and it refers to a wide range of bioactive compounds contained in food with relevant effects on human health. The relationship between these compounds and diseases based on inflammatory processes has been widely exposed and the compounds stand out as an alternative to the pathological consequences that inflammatory processes may have, beyond their defense and repair action. Against this backdrop, here we review the results of studies using several nutraceutical compounds in common diseases associated with the inflammation and activation of the NLRP3 inflammasomes complex. In general, it was found that there is a wide range of nutraceuticals with effects through different molecular pathways that affect the activation of the inflammasome complex, with positive effects mainly in cardiovascular, neurological diseases, cancer and type 2 diabetes.
Collapse
Affiliation(s)
- Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Sevilla, 41009 Sevilla, Spain;
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - José M. Alvarez-Suarez
- Facultad de Ingeniería y Ciencias Aplicadas (FICA), AgroScience & Food Research Group, Universidad de Las Américas, 170125 Quito, Ecuador
- King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Jin SE, Ha H, Shin HK. Effects of Herbal Formulas Bojungikgi-tang and Palmijihwang-hwan on Inflammation in RAW 264.7 Cells and the Activities of Drug-Metabolizing Enzymes in Human Hepatic Microsomes. J Med Food 2018; 21:1173-1187. [PMID: 30457473 DOI: 10.1089/jmf.2017.4123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
In the present study, Bojungikgi-tang (BJIKT: Buzhongyiqi-tang, Hochuekki-to) and Palmijihwang-hwan (PMJHH: Baweidìhuang-wan, Hachimijio-gan), traditional herbal formulas, investigated anti-inflammatory efficacies in murine macrophage cell line and the influence on the activities of drug-metabolizing enzymes (DMEs). The anti-inflammatory potentials of the herbal formulas were evaluated to inhibit the production of the inflammatory mediators and cytokines and the protein expression of inducible nitric oxide and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-treated RAW 264.7 cells. The activities of the major human DMEs, cytochrome P450 isozymes (CYP450s) and UDP-glucuronosyltransferase isozymes (UGTs), were measured by in vitro enzyme assay systems. BJIKT and PMJHH significantly suppressed the prostaglandin E2 (PGE2) production (IC50 = 317.3 and 282.2 μg/mL, respectively) and the protein expression of COX-2 in LPS-treated RAW264.7 cells. On the human microsomal DMEs, BJIKT inhibited the activities of CYP1A2 (IC50 = 535.05 μg/mL), CYP2B6 (IC50 > 1000 μg/mL), CYP2C9 (IC50 = 800.78 μg/mL), CYP2C19 (IC50 = 563.11 μg/mL), CYP2D6 (IC50 > 1000 μg/mL), CYP2E1 (IC50 > 1000 μg/mL), CYP3A4 (IC50 = 879.60 μg/mL), UGT1A1 (IC50 > 1000 μg/mL), and UGT1A4 (IC50 > 1000 μg/mL), but it showed no inhibition of the UGT2B7 activity at doses less than 1000 μg/mL. PMJHH inhibited the CYP2D6 activity (IC50 = 280.89 μg/mL), but IC50 values of PMJHH exceeded 1000 μg/mL on the activities of CYP1A2, CYP2C19, CYP2E1, and CYP3A4. At concentrations less than 1000 μg/mL, PMJHH did not affect the activities of CYP2B6, CYP2C9, UGT1A1, UGT1A4, and UGT2B7. The results indicate that both BJIKT and PMJHH may be potential candidates to prevent and treat PGE2- and COX-2-mediated inflammatory diseases. In addition, this study will expand current knowledge about herb-drug interactions by BJIKT and PMJHH.
Collapse
Affiliation(s)
- Seong Eun Jin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine , Daejeon, Korea
| | - Hyekyung Ha
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine , Daejeon, Korea
| | - Hyeun-Kyoo Shin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine , Daejeon, Korea
| |
Collapse
|
18
|
Lee JY, Joo B, Nam JH, Nam HY, Lee W, Nam Y, Seo Y, Kang HJ, Cho HJ, Jang YP, Kim J, We YM, Koo JW, Hoe HS. An Aqueous Extract of Herbal Medicine ALWPs Enhances Cognitive Performance and Inhibits LPS-Induced Neuroinflammation via FAK/NF-κB Signaling Pathways. Front Aging Neurosci 2018; 10:269. [PMID: 30319390 PMCID: PMC6168635 DOI: 10.3389/fnagi.2018.00269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have shown that Liuwei Dihuang pills (LWPs) can positively affect learning, memory and neurogenesis. However, the underlying molecular mechanisms are not understood. In the present study, we developed ALWPs, a mixture of Antler and LWPs, and investigated whether ALWPs can affect neuroinflammatory responses. We found that ALWPs (500 mg/ml) inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine IL-1β mRNA levels in BV2 microglial cells but not primary astrocytes. ALWPs significantly reduced LPS-induced cell-surface levels of TLR4 to alter neuroinflammation. An examination of the molecular mechanisms by which ALWPs regulate the LPS-induced proinflammatory response revealed that ALWPs significantly downregulated LPS-induced levels of FAK phosphorylation, suggesting that ALWPs modulate FAK signaling to alter LPS-induced IL-1β levels. In addition, treatment with ALWPs followed by LPS resulted in decreased levels of the transcription factor NF-κB in the nucleus compared with LPS alone. Moreover, ALWPs significantly suppressed LPS-induced BV2 microglial cell migration. To examine whether ALWPs modulate learning and memory in vivo, wild-type C57BL/6J mice were orally administered ALWPs (200 mg/kg) or PBS daily for 3 days, intraperitoneally injected (i.p.) with LPS (250 μg/kg) or PBS, and assessed in Y maze and NOR tests. We observed that oral administration of ALWPs to LPS-injected wild-type C57BL/6J mice significantly rescued short- and long-term memory. More importantly, oral administration of ALWPs to LPS-injected wild-type C57BL/6J mice significantly reduced microglial activation in the hippocampus and cortex. Taken together, our results suggest that ALWPs can suppress neuroinflammation-associated cognitive deficits and that ALWPs have potential as a drug for neuroinflammation/neurodegeneration-related diseases, including Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Ju-Young Lee
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Bitna Joo
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, South Korea
| | - Jin Han Nam
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Hye Yeon Nam
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Wonil Lee
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Youngpyo Nam
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Yongtaek Seo
- Division of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Hye-Jin Kang
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Hyun-Ji Cho
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Young Pyo Jang
- Division of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Jeongyeon Kim
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| | - Young-Man We
- College of Korean Medicine, Wonkwang University, Iksan, South Korea
- Oriental Medical Clinic Center, Hyoo Medical Clinic, Seoul, South Korea
| | - Ja Wook Koo
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, South Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
19
|
Czerwińska ME, Melzig MF. Cornus mas and Cornus Officinalis-Analogies and Differences of Two Medicinal Plants Traditionally Used. Front Pharmacol 2018; 9:894. [PMID: 30210335 PMCID: PMC6121078 DOI: 10.3389/fphar.2018.00894] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023] Open
Abstract
Among 65 species belonging to the genus Cornus only two, Cornus mas L. and Cornus officinalis Sieb. et Zucc. (Cornaceae), have been traditionally used since ancient times. Cornus mas (cornelian cherry) is native to southern Europe and southwest Asia, whereas C. officinalis (Asiatic dogwood, cornel dogwood) is a deciduous tree distributed in eastern Asia, mainly in China, as well as Korea and Japan. Based on the different geographic distribution of the closely related species but clearly distinct taxa, the ethnopharmacological use of C. mas and C. officinalis seems to be independently originated. Many reports on the quality of C. mas fruits were performed due to their value as edible fruits, and few reports compared their physicochemical properties with other edible fruits. However, the detailed phytochemical profiles of C. mas and C. officinalis, in particular fruits, have never been compared. The aim of this review was highlighting the similarities and differences of phytochemicals found in fruits of C. mas and C. officinalis in relation to their biological effects as well as compare the therapeutic use of fruits from both traditional species. The fruits of C. mas and C. officinalis are characterized by the presence of secondary metabolites, in particular iridoids, anthocyanins, phenolic acids and flavonoids. However, much more not widely known iridoids, such as morroniside, as well as tannins were detected particularly in fruits of C. officinalis. The referred studies of biological activity of both species indicate their antidiabetic and hepatoprotective properties. Based on the available reports antihyperlipidemic and anticoagulant activity seems to be unique for extracts of C. mas fruits, whereas antiosteoporotic and immunomodulatory activities were assigned to preparations of C. officinalis fruits. In conclusion, the comparison of phytochemical composition of fruits from both species revealed a wide range of similarities as well as some constituents unique for cornelian cherry or Asiatic dogwood. Thus, these phytochemicals are considered the important factor determining the biological activity and justifying the use of C. mas and C. officinalis in the traditional European and Asiatic medicine.
Collapse
Affiliation(s)
- Monika E Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
20
|
Kang J, Guo C, Thome R, Yang N, Zhang Y, Li X, Cao X. Hypoglycemic, hypolipidemic and antioxidant effects of iridoid glycosides extracted from Corni fructus: possible involvement of the PI3K-Akt/PKB signaling pathway. RSC Adv 2018; 8:30539-30549. [PMID: 35546813 PMCID: PMC9085420 DOI: 10.1039/c8ra06045b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2018] [Accepted: 08/22/2018] [Indexed: 11/26/2022] Open
Abstract
Iridoid glycosides (CIG) are the major component of Corni fructus. In this work, we researched the antioxidative, hypoglycemic and lowering blood lipids effects of CIG on diabetic mice induced by a high-fat diet (HFD) and streptozotocin (STZ). Furthermore, to investigate the molecular mechanism of action, the phosphorylation and protein expression of phosphoinositide 3-kinase (PI3K) and its downstream proteins, such as insulin receptor (INSR), protein kinase B (Akt/PKB) and glucose transporter 4 (GLUT4) have been detected. The results showed that CIG significantly improved oral glucose tolerance in diabetic mice. Biochemical indices also revealed that CIG had a positive effect on lipid metabolism and oxidative stress. In addition, CIG can significantly enhance the expression level of the PI3K-Akt/PKB pathway related proteins in skeletal muscle, which is the key pathway of insulin metabolism. These findings show that CIG can improve the hyperglycemia and hyperlipidemia of HFD-STZ-induced diabetic mice through the PI3K-Akt/PKB signaling pathway, and CIG might be a potential medicine or functional food for type 2 diabetes mellitus remedies.
Collapse
Affiliation(s)
- Jiefang Kang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi China
| | - Chen Guo
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi China
| | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University Philadelphia PA 19107 USA
| | - Ning Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi China
| | - Yuan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi China
| | - Xing Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi China
| |
Collapse
|
21
|
Huang J, Zhang Y, Dong L, Gao Q, Yin L, Quan H, Chen R, Fu X, Lin D. Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:280-301. [PMID: 29155174 DOI: 10.1016/j.jep.2017.11.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/28/2016] [Revised: 11/04/2017] [Accepted: 11/09/2017] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis (Cornaceae), known in Chinese as "Shanzhuyu," is a frequently used traditional Chinese medicine. It tastes sour and is astringent and slightly warm in nature. Its fruits have long been used to treat kidney deficiency, high blood pressure, waist and knee pain, dizziness, tinnitus, impotence, spermatorrhea, menorrhagia, and other diseases in China. The main distribution areas are Shanxi and Gansu. AIM OF THE STUDY This review focused on the ethnopharmacological uses of the herb. We also focus on the phytochemical, pharmacological, and toxicological studies on C. officinalis. The recent analytical methods developed for the quality control of the herb's constituents are also reviewed. Additionally, future trends and prospects in the study of this herb are proposed. MATERIALS AND METHODS Information on C. officinalis was gathered by searching the internet (PubMed, ScienceDirect, Wiley, ACS, CNKI, Scifinder, Web of Science, Google Scholar, and Baidu Scholar) and libraries. RESULTS This review compiled the ethnopharmacological uses, including the classic prescriptions and historical applications. Approximately 300 chemical compounds have been isolated and identified from C. officinalis. The major active components of the plant are organic acids and iridoids, among which morroniside and loganin have been extensively investigated. The fruit of the plant has been used in treating many diseases in traditional medicine. Scientific studies indicated the herb's wide range of pharmacological activities, such as hepatic and renal protection, antidiabetes activity, cardioprotection, antioxidation, neuroprotection, antitumor activity, anti-inflammation, analgesic effects, antiaging activity, antiamnesia, antiosteoporosis, and immunoregulation. The analytical methods developed for the quantitative and qualitative determination of various compounds in the herb were further reviewed. CONCLUSIONS In this paper, we reviewed various studies conducted on C. officinalis, especially in areas of its ethnopharmacological use, as well as on its phytochemistry, pharmacology, and modern analytical methods used. Some of the herb's ethnomedical indications have been confirmed by the herb's pharmacological effects, such as its hepatic and renal protection and the antidiabetic effects. In particular, the crude extract and its chemical composition have exerted good therapeutic effect in diabetic treatment. C. officinalis entails additional attention on its pharmacological effects and drug development to expand its effective use clinically. Many advanced technologies are used for quality testing, but the detection component is exceedingly scarce for synthetically evaluating the quality of C. officinalis herbs. Thus, further research is necessary to investigate the quality control and toxicology of the plant, to further elucidate its clinical use, and to control herbal quality.
Collapse
Affiliation(s)
- Jun Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yiwei Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Lin Dong
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Qinghan Gao
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
| | - Lei Yin
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongfeng Quan
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
| | - Rong Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Yinchuan 750004, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan 750004, China.
| | - Dingbo Lin
- Oklahoma State University, United States.
| |
Collapse
|
22
|
Ye XS, He J, Cheng YC, Zhang L, Qiao HY, Pan XG, Zhang J, Liu SN, Zhang WK, Xu JK. Cornusides A-O, Bioactive Iridoid Glucoside Dimers from the Fruit of Cornus officinalis. JOURNAL OF NATURAL PRODUCTS 2017; 80:3103-3111. [PMID: 29140705 DOI: 10.1021/acs.jnatprod.6b01127] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/07/2023]
Abstract
Fifteen new and rare iridoid glucoside dimers, cornusides A-O (1-15), and 10 known iridoid glucosides (16-25) were isolated from the fruit of Cornus officinalis. These new chemical structures were established through spectroscopic analysis (UV, IR, HRESIMS, 1D and 2D NMR). Compounds 1-25 were tested for their inhibitory activities by measuring IL-6-induced STAT3 promoter activity in HepG2 cells, and 3, 12, 17, 22, and 23 showed inhibitory effects, with IC50 values of 11.9, 12.2, 14.0, 7.0, and 6.9 μM, respectively.
Collapse
Affiliation(s)
- Xian-Sheng Ye
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital , Beijing 100029, People's Republic of China
| | - Jun He
- Department of Pharmacy, China-Japan Friendship Hospital , Beijing 100029, People's Republic of China
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Lei Zhang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University , Beijing 100038, People's Republic of China
| | - Hao-Yi Qiao
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Shu-Na Liu
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital , Beijing 100029, People's Republic of China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| |
Collapse
|
23
|
Ahn JH, Mo EJ, Jo YH, Kim SB, Hwang BY, Lee MK. Variation of loganin content in Cornus officinalis fruits at different extraction conditions and maturation stages. Biosci Biotechnol Biochem 2017; 81:1973-1977. [PMID: 28828930 DOI: 10.1080/09168451.2017.1361807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
Abstract
Efficient preparation of loganin from Cornus officinalis fruits was investigated. First, effect of extraction conditions on loganin yield was measured. The loganin content in C. officinalis extract was greatly affected by ethanol concentration and extraction time whereas extraction temperature exerted relatively little effect. Response surface methodology with Box-Behnken design suggested optimized extraction condition for maximum loganin yield as ethanol concentration, 32.0%; temperature 46.2 °C and extraction time, 46.7 min, which yielded 10.4 μg loganin/mg dried fruit. Next, the effect of maturation stage of C. officinalis fruits on loganin content was investigated. The loganin content in the extract of C. officinalis fruits was decreased as the maturation process. The loganin content in the unripe fruits was 18.0 μg/mg extract whereas reduced to 13.3 μg/mg extract for ripe fruits. Taken together, our present study suggested the importance of extraction condition and maturation stages for efficient preparation of loganin from C. officinalis fruits.
Collapse
Affiliation(s)
- Jong Hoon Ahn
- a College of Pharmacy , Chungbuk National University , Cheongju , Korea
| | - Eun Jin Mo
- a College of Pharmacy , Chungbuk National University , Cheongju , Korea
| | - Yang Hee Jo
- a College of Pharmacy , Chungbuk National University , Cheongju , Korea
| | - Seon Beom Kim
- a College of Pharmacy , Chungbuk National University , Cheongju , Korea
| | - Bang Yeon Hwang
- a College of Pharmacy , Chungbuk National University , Cheongju , Korea
| | - Mi Kyeong Lee
- a College of Pharmacy , Chungbuk National University , Cheongju , Korea
| |
Collapse
|
24
|
Guo Y, Gu Z, Liu X, Liu J, Ma M, Chen B, Wang L. Rapid Analysis of Corni fructus Using Paper Spray-Mass Spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:344-350. [PMID: 28239915 DOI: 10.1002/pca.2681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/09/2016] [Revised: 01/18/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Paper spray-mass spectrometry (PS-MS) is a kind of ambient MS technique for the rapid analysis of samples. Corni fructus has been widely used in traditional Chinese compound preparations and healthy food. However, a number of counterfeits of Corni fructus, such as Crataegi fructus, Lycii fructus, and grape skin are illegally sold in crude herb markets. Therefore, the development of a rapid and high-throughput quality evaluation method is important for ensuring the effectiveness and safety of the crude materials of Corni fructus. OBJECTIVE To develop PS-MS chemical profiles and a semi-quantitative method of Corni fructus for quality assessment and control, and species distinction of Corni fructus. METHODOLOGY Both positive and negative ion PS-MS chemical profiles were constructed for species distinction. The statistical analysis of the chemical profiles was accomplished by principal component analysis (PCA). Rapid semi-quantitative analysis of loganin and morroniside in the extracts of Corni fructus were accomplished by PS-MS. RESULTS The profiles of the Corni fructus and Crataegi fructus samples were clearly clustered into two categories. The limit of quantification (LOQ) in the semi-quantitative analysis was 6 μg/mL and 5.6 μg/mL for loganin and morroniside, respectively. CONCLUSION PS-MS is a simple, rapid, and high-throughput method for the quality control and species distinction of Corni fructus. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuan Guo
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, 410081, P. R. China
| | - Zhixin Gu
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xuemei Liu
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jingjing Liu
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, 410081, P. R. China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, 410081, P. R. China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, 410081, P. R. China
| | - Liping Wang
- Hunan Analysis and Testing Centre, Changsha, 410004, P. R. China
| |
Collapse
|
25
|
Park JW, Jeong HC, Moon HW, Cho SJ, Yang JH, Kim WH, Bae WJ, Choi JB, Cho HJ, Ha US, Hong SH, Lee JY, Kim SW. Anti-Inflammatory and Antimicrobial Effects of a Novel Herbal Formulation (WSY-1075) in a Chronic Bacterial Prostatitis Rat Model. World J Mens Health 2016; 34:179-185. [PMID: 28053947 PMCID: PMC5209558 DOI: 10.5534/wjmh.2016.34.3.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 11/15/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the anti-inflammatory and anti-oxidative effects of a multi-herbal formula known as WSY-1075 in the treatment of chronic bacterial prostatitis in a rat model. MATERIALS AND METHODS Experimental chronic bacterial prostatitis was induced in 32 Wistar rats by instillation of a bacterial suspension (Escherichia coli, 108 colony-forming units [CFU]/mL) into the prostatic urethra. After the induction of prostatitis, the rats were randomly divided into one of 4 treatment groups: control (n=8), ciprofloxacin (n=8), WSY-1075 (400 mg/kg) (n=8), and WSY-1075 (400 mg/kg)+ciprofloxacin (n=8). After 4 weeks of treatment, microbiological data from prostate tissue cultures, level of prostatic pro-inflammatory cytokines (tumor necrosis factor-α [TNF-α], interleukin [IL]-6, and IL-8), anti-oxidant effects (superoxide dismutase [SOD]), and histological findings were noted. RESULTS The WSY-1075, ciprofloxacin, and WSY-1075+ciprofloxacin groups showed fewer CFUs in prostate tissue cultures than the control group. The WSY-1075, ciprofloxacin and WSY-1075+ciprofloxacin groups showed statistically significantly lower levels of the pro-inflammatory cytokines TNF-α, IL-6, and IL-8 than the control group. SOD levels in the WSY-1075, ciprofloxacin and WSY-1075+ciprofloxacin groups were significantly higher than in the control group. CONCLUSIONS This study found that WSY-1075 had anti-microbial effects, anti-inflammatory effects, and anti-oxidative effects in a chronic bacterial prostatitis rat model. We expect the WSY-1075 may be useful for the clinical treatment of chronic bacterial prostatitis.
Collapse
Affiliation(s)
- Jung Woo Park
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Cheol Jeong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyong Woo Moon
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Shin Jay Cho
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Hyup Yang
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo Hyun Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.; Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Jin Bong Choi
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyuk Jin Cho
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - U-Syn Ha
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Hoo Hong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.; Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
26
|
Li L, Jin G, Jiang J, Zheng M, Jin Y, Lin Z, Li G, Choi Y, Yan G. Cornuside inhibits mast cell-mediated allergic response by down-regulating MAPK and NF-κB signaling pathways. Biochem Biophys Res Commun 2016; 473:408-14. [PMID: 26972254 DOI: 10.1016/j.bbrc.2016.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
Abstract
AIMS The present study is to investigate the effect of cornuside on mast cell-mediated allergic response, as well as its possible mechanisms of action. METHODS To test the anti-allergic effects of cornuside in vivo, local extravasation was induced by local injection of anti-dinitrophenyl immunoglobulin E (IgE) followed by intravenous antigenic challenge in passive cutaneous anaphylaxis model rats. Mast cell viability was determined using MTT assay. Histamine content from rat peritoneal mast cells was measured by the radioenzymatic method. To investigate the mechanisms by which cornuside affects the reduction of histamine release, the levels of calcium uptake were measured. To examine whether cornuside affects the expression of pro-inflammatory cytokines, Western blotting and ELISA were carried out. RESULTS Oral administration of cornuside inhibited passive cutaneous anaphylaxis in rats. Presence of cornuside attenuated IgE-induced histamine release from rat peritoneal mast cells. The inhibitory effect of cornuside on histamine release was mediated by the modulation of intracellular calcium. In addition, cornuside decreased phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated production and secretion of pro-inflammatory cytokines such as TNF-α and IL-6 in human mast cells. The inhibitory effect of cornuside on pro-inflammatory cytokines was dependent on nuclear factor-κB and p38 mitogen-activated protein kinase. CONCLUSIONS The present study provides evidence that cornuside inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. Furthermore, in vivo and in vitro anti-allergic effects of cornuside suggest a possible therapeutic application of this agent in inflammatory allergic diseases.
Collapse
Affiliation(s)
- Liangchang Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Yanbian University, Yanji, 133002, PR China
| | - Guangyu Jin
- Yanbian University Hospital, Medicine College, Yanbian University, Yanji, 133000, PR China
| | - Jingzhi Jiang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Yanbian University, Yanji, 133002, PR China
| | - Mingyu Zheng
- College of Pharmacy, Yanbian University, Yanji, 133002, PR China
| | - Yan Jin
- College of Pharmacy, Yanbian University, Yanji, 133002, PR China
| | - Zhenhua Lin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, PR China
| | - Guangzhao Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Yanbian University, Yanji, 133002, PR China
| | - Yunho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Guanghai Yan
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Yanbian University, Yanji, 133002, PR China.
| |
Collapse
|
27
|
Kwak CS, Son D, Chung YS, Kwon YH. Antioxidant activity and anti-inflammatory activity of ethanol extract and fractions of Doenjang in LPS-stimulated RAW 264.7 macrophages. Nutr Res Pract 2015; 9:569-78. [PMID: 26634044 PMCID: PMC4667196 DOI: 10.4162/nrp.2015.9.6.569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2015] [Revised: 04/08/2015] [Accepted: 05/14/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND/OBJECTIVES Fermentation can increase functional compounds in fermented soybean products, thereby improving antioxidant and/or anti-inflammatory activities. We investigated the changes in the contents of phenolics and isoflavones, antioxidant activity and anti-inflammatory activity of Doenjang during fermentation and aging. MATERIALS/METHODS Doenjang was made by inoculating Aspergillus oryzae and Bacillus licheniformis in soybeans, fermenting and aging for 1, 3, 6, 8, and 12 months (D1, D3, D6, D8, and D12). Doenjang was extracted using ethanol, and sequentially fractioned by hexane, dichloromethane (DM), ethylacetate (EA), n-butanol, and water. The contents of total phenolics, flavonoids and isoflavones, 2,2-diphenyl-1 picryl hydrazyl (DPPH) radical scavenging activity, and ferric reducing antioxidant power (FRAP) were measured. Anti-inflammatory effects in terms of nitric oxide (NO), prostaglandin (PG) E2 and pro-inflammatory cytokine production and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expressions were also measured using LPS-treated RAW 264.7 macrophages. RESULTS Total phenolic and flavonoid contents showed a gradual increase during fermentation and 6 months of aging and were sustained thereafter. DPPH radical scavenging activity and FRAP were increased by fermentation. FRAP was further increased by aging, but DPPH radical scavenging activity was not. Total isoflavone and glycoside contents decreased during fermentation and the aging process, while aglycone content and its proportion increased up to 3 or 6 months of aging and then showed a slow decrease. DM and EA fractions of Doenjang showed much higher total phenolic and flavonoid contents, and DPPH radical scavenging activity than the others. At 100 µg/mL, DM and EA fractions of D12 showed strongly suppressed NO production to 55.6% and 52.5% of control, respectively, and PGE2 production to 25.0% and 28.3% of control with inhibition of iNOS or COX-2 protein expression in macrophages. CONCLUSIONS Twelve month-aged Doenjang has potent antioxidant and anti-inflammatory activities with high levels of phenolics and isoflavone aglycones, and can be used as a beneficial food for human health.
Collapse
Affiliation(s)
- Chung Shil Kwak
- Institute on Aging, Seoul National University, #304 Biomedical Science building, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Korea
| | - Dahee Son
- Institute on Aging, Seoul National University, #304 Biomedical Science building, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Korea
| | - Young-Shin Chung
- Department of Biotechnology, Hoseo University, Chungnam 336-795, Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
28
|
Zhao M, Du L, Tao J, Qian D, Guo J, Jiang S, Shang EX, Duan JA, Wu C. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry for rapid analysis of the metabolites of morroniside produced by human intestinal bacteria. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 976-977:61-7. [DOI: 10.1016/j.jchromb.2014.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2014] [Revised: 11/06/2014] [Accepted: 11/18/2014] [Indexed: 12/20/2022]
|
29
|
Protective Effect of Cornuside against Carbon Tetrachloride-Induced Acute Hepatic Injury. Biosci Biotechnol Biochem 2014; 75:656-61. [DOI: 10.1271/bbb.100739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
|
30
|
Bae WJ, Ha US, Kim S, Kim SJ, Hong SH, Lee JY, Hwang TK, Hwang SY, Kim HJ, Kim SW. Reduction of oxidative stress may play a role in the anti-inflammatory effect of the novel herbal formulation in a rat model of hydrochloric acid-induced cystitis. Neurourol Urodyn 2013; 34:86-91. [DOI: 10.1002/nau.22507] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2013] [Accepted: 09/04/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Woong-Jin Bae
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - U-Syn Ha
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Seol Kim
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Su-Jin Kim
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Sung-Hoo Hong
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Ji-Youl Lee
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | - Tae-Kon Hwang
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| | | | - Hong-Jun Kim
- College of Oriental Medicine; Woosuk University; Wanju Korea
| | - Sae-Woong Kim
- Department of Urology; The Catholic University of Korea; College of Medicine; Seoul Korea
| |
Collapse
|
31
|
Zhang QC, Zhao Y, Bian HM. Anti-Thrombotic Effect of a Novel Formula from Corni Fructus with Malic Acid, Succinic Acid and Citric Acid. Phytother Res 2013; 28:722-7. [DOI: 10.1002/ptr.5052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2013] [Revised: 06/14/2013] [Accepted: 07/08/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Qi-Chun Zhang
- Department of Clinic Pharmacology, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing 210029 P.R. China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica; Nanjing University of Chinese Medicine; Nanjing 210029 P.R. China
| | - Yue Zhao
- Department of Clinic Pharmacology, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing 210029 P.R. China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica; Nanjing University of Chinese Medicine; Nanjing 210029 P.R. China
| | - Hui-Min Bian
- Department of Clinic Pharmacology, School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing 210029 P.R. China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica; Nanjing University of Chinese Medicine; Nanjing 210029 P.R. China
| |
Collapse
|
32
|
Yoon BI, Bae WJ, Kim SJ, Kim HS, Ha US, Sohn DW, Hwang SY, Kim SW. The Anti-Inflammatory Effects of a New Herbal Formula (WSY-1075) in a Nonbacterial Prostatitis Rat Model. World J Mens Health 2013; 31:150-6. [PMID: 24044110 PMCID: PMC3770850 DOI: 10.5534/wjmh.2013.31.2.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 11/16/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the anti-inflammatory effects of a new herbal formula (WSY-1075) in a nonbacterial prostatitis rat model. MATERIALS AND METHODS Prostatitis was induced in male Wistar rats (n=32) by treatment with 17 beta-estradiol and dihydrotestosterone for 4 weeks. After the induction of prostatitis, the rats were randomly divided into one of four treatment groups: control (n=8), ciprofloxacin (n=8), WSY-1075 (100 mg/kg) (n=8), and WSY-1075 (400 mg/kg) (n=8). After 4 weeks of treatment, the prostatic proinflammatory cytokine (tumor necrosis factor-α, interleukin [IL]-6, and IL-8) levels and histological findings were noted. RESULTS The ciprofloxacin and WSY-1075 treatment groups showed significantly decreased proinflammatory cytokine levels compared with the control group. Histologically, treatment with ciprofloxacin and WSY-1075 significantly suppressed the severity of prostatitis lesions compared with those in the control group. No differences in the proinflammatory cytokine levels or histologic findings were observed with the dose dependent treatment of WSY-1075. CONCLUSIONS The new herbal formula, WSY-1075, showed effective anti-inflammatory activities in the prostate and may be useful for the clinical treatment of nonbacterial prostatitis. Our findings suggest that WSY-1075 has a beneficial effect on the prevention and treatment of nonbacterial prostatitis.
Collapse
Affiliation(s)
- Byung Il Yoon
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su Jin Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyo Sin Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - U Syn Ha
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Wan Sohn
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
33
|
Hong SY, Jeong WS, Jun M. Protective effects of the key compounds isolated from Corni fructus against β-amyloid-induced neurotoxicity in PC12 cells. Molecules 2012; 17:10831-45. [PMID: 22964500 PMCID: PMC6268534 DOI: 10.3390/molecules170910831] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2012] [Revised: 09/01/2012] [Accepted: 09/05/2012] [Indexed: 01/03/2023] Open
Abstract
β-Amyloid (Aβ) peptide is the major component of senile plaques and is considered to have a causal role in the development and progression of Alzheimer’s disease (AD). There is compelling evidence supporting the notion that Aβ-induced cytotoxicity is mediated though the generation of ROS. In the present study, we investigated the neuroprotective effects of ursolic acid (UA), p-coumaric acid (p-CA), and gallic acid (GA) isolated from Corni fructus (CF) against Aβ(25-35)-induced toxicity in PC12 cell. Exposure of PC12 cells to 50 μM Aβ(25-35) increased cellular oxidative stress, the number of apoptotic cells and caspase-3 activity and finally caused significant cell death. However, UA, p-CA, and GA not only suppressed the generation of ROS but also attenuated DNA fragmentation and eventually attenuated Aβ-induced apoptosis in a dose-dependent manner. In protecting cells against Aβ neurotoxicity, UA and GA possessed stronger ability against ROS generation than p-CA, while p-CA showed the strongest anti-apoptotic activity. Particularly, p-CA protected cells at the concentration range from 0.5 up to 125 μM without any adverse effect. Taken together, these effects of UA, p-CA, and GA may be partly associated with the neuroprotective effect of CF. Furthermore, our findings might raise a possibility of therapeutic applications of CF for preventing and/or treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Seung-Young Hong
- Department of Food Science and Nutrition, Dong-A University, Busan 604-714, Korea;
| | - Woo-Sik Jeong
- Department of Food & Life Sciences, Inje University, Gimhae, Gyeongnam 621-749, Korea;
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan 604-714, Korea;
| |
Collapse
|
34
|
Kim SH, Kim BK, Lee YC. Effects of Corni fructus on ovalbumin-induced airway inflammation and airway hyper-responsiveness in a mouse model of allergic asthma. J Inflamm (Lond) 2012; 9:9. [PMID: 22439901 PMCID: PMC3328291 DOI: 10.1186/1476-9255-9-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2011] [Accepted: 03/23/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Allergic asthma is a chronic inflammatory lung disease that is characterized by airway hyperresponsiveness (AHR) to allergens, airway oedema, increased mucus secretion, excess production of T helper-2 (Th2) cytokines, and eosinophil accumulation in the lungs. Corni fructus (CF) is a fruit of Cornus officinalis Sieb. Et. Zucc. (Cornaceae) and has been used in traditional Korean medicine as an anti-inflammatory, analgesic, and diuretic agent. To investigate the anti-asthmatic effects of CF and their underlying mechanism, we examined the influence of CF on the development of pulmonary eosinophilic inflammation and airway hyperresponsiveness in a mouse model of allergic asthma. METHODS In this study, BALB/c mice were systemically sensitized to ovalbumin (OVA) by intraperitoneal (i.p.), intratracheal (i.t.) injections and intranasal (i.n.) inhalation of OVA. We investigated the effect of CF on airway hyperresponsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production, and OVA-specific immunoglobulin E (IgE) production. RESULTS The CF-treated groups showed suppressed eosinophil infiltration, allergic airway inflammation, and AHR via reduced production of interleuin (IL) -5, IL-13, and OVA-specific IgE. CONCLUSIONS Our data suggest that the therapeutic effects of CF in asthma are mediated by reduced production of Th2 cytokines (IL-5), eotaxin, and OVA-specific IgE and reduced eosinophil infiltration.
Collapse
Affiliation(s)
- Seung-Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Bok-Kyu Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Young-Cheol Lee
- Department of Herbology, College of Oriental Medicine, Sangji University, Wonju 220-702, Republic of Korea
| |
Collapse
|
35
|
Viljoen A, Mncwangi N, Vermaak I. Anti-inflammatory iridoids of botanical origin. Curr Med Chem 2012; 19:2104-27. [PMID: 22414102 PMCID: PMC3873812 DOI: 10.2174/092986712800229005] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2011] [Revised: 01/07/2012] [Accepted: 01/08/2012] [Indexed: 11/22/2022]
Abstract
Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer's disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective antiinflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo.
Collapse
Affiliation(s)
- A Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa.
| | | | | |
Collapse
|
36
|
Choi YH, Jin GY, Li GZ, Yan GH. Cornuside suppresses lipopolysaccharide-induced inflammatory mediators by inhibiting nuclear factor-kappa B activation in RAW 264.7 macrophages. Biol Pharm Bull 2011; 34:959-66. [PMID: 21719998 DOI: 10.1248/bpb.34.959] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Cornuside, a secoiridoid glucoside compound, was isolated from the fruit of Cornus officinalis SIEB. et ZUCC. Cornuside has been reported to possess immunomodulatory and anti-inflammatory activities. However, the effects and mechanism of action of cornuside in inflammation have not been fully characterized. The present study was therefore designed to examine whether cornuside suppresses inflammatory response in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Cornuside significantly inhibited the LPS-induced production of nitric oxide, prostaglandin E(2), tumor necrosis factor-alpha, interleukin-6 (IL-6), and IL-1beta. The mRNA and protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were also decreased by cornuside. Furthermore, cornuside significantly attenuated the LPS-stimulated phosphorylation and degradation of inhibitory kappa B-alpha and the subsequent translocation of the p65 subunit of nuclear factor-kappa B (NF-κB) to the nucleus. Cornuside also reduced the phosphorylations of extracellular-signal-related kinase (ERK1/2), p38, and c-Jun N-terminal kinase (JNK1/2). These results suggest that the anti-inflammatory property of cornuside is related to the downregulations of iNOS and COX-2 due to NF-κB inhibition as well as the negative regulation of ERK1/2, p38, and JNK1/2 phosphorylations in RAW 264.7 cells.
Collapse
Affiliation(s)
- Yun Ho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk 561–756, Republic of Korea
| | | | | | | |
Collapse
|
37
|
Ya BL, Li CY, Zhang L, Wang W, Li L. Cornel iridoid glycoside inhibits inflammation and apoptosis in brains of rats with focal cerebral ischemia. Neurochem Res 2010; 35:773-81. [PMID: 20155318 DOI: 10.1007/s11064-010-0134-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 02/03/2010] [Indexed: 12/22/2022]
Abstract
The capacity of cornel iridoid glycoside (CIG) to suppress the manifestations of ischemic stroke was investigated. CIG was administered to rats by the intragastric route once daily for 7 days. Focal cerebral ischemia was induced by 2 h of middle cerebral artery occlusion followed by 24 h of reperfusion. In non-treated rats large infarct areas were observed within 24 h of reperfusion. Examination of the ischemic cerebral cortex revealed microglia and astrocyte activation, increased interleukin-1beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) concentrations, increased DNA fragmentation in the ischemia penumbra, elevated Bax expression, increased caspase-3 cleavage, and decreased Bcl-2 expression. Pretreatment with CIG decreased the infarct area, DNA fragmentation, IL-1beta and TNF-alpha concentrations, microglia and astrocyte activation, Bax expression, and caspase-3 cleavage while increasing Bcl-2 expression. CIG exerts anti-neuroinflammatory and anti-apoptotic effects which should prove beneficial for prevention or treatment of stroke.
Collapse
Affiliation(s)
- Bai-liu Ya
- Department of Pharmacology, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, 100053, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|