1
|
Fang Q, Pan X, Wu Z, Yu J, Li T, Xu S, He M, Teng N. The LoMYB26/LoJAZ4-LoCOMT module regulates anther dehiscence via Jasmonic acid-mediated endothecium lignification in lily. J Adv Res 2025:S2090-1232(25)00224-3. [PMID: 40194697 DOI: 10.1016/j.jare.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
INTRODUCTION Timely anther dehiscence is a key step for successful sexual reproduction in plants. Secondary cell wall thickening of anther endothecium is a vital process during anther dehiscence that provides an indispensable mechanical force for successful dehiscence. Anther dehiscence depends on anther lignification, and it is a timely and sophisticated process regulated by phytohormones and transcription factors. However, whether endothecium lignification occurs during anther dehiscence in lily and underlying mechanisms are still largely unclear. OBJECTIVES Our work focuses on identifying the course of endothecium lignification during anther dehiscence and elucidating the molecular mechanisms underlying endothecium lignification-dependent anther dehiscence in lily. METHODS Lignin fluorescence analysis and ultraviolet spectrophotometry were employed to elucidate the endothecium lignification process. Target genes were isolated from the transcriptomic data of anther dehiscence and lignification process. Virus-induced gene silencing (VIGS) and transient overexpression in lily anthers were used to analyze the LoMYB26 function. Yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), and dual-luciferase (LUC) assay analyzed the regulatory mechanisms. Yeast two-hybrid (Y2H), luciferase complementation imaging (LCI), and bimolecular fluorescence complementation (BiFC) assays illustrated the interaction between LoMYB26 and LoJAZ4. RESULTS Our results showed that endothecium lignification occurred in S6-S7 stages when anther dehiscence had not yet occurred. The R2R3-type MYB transcription factor, LoMYB26, was found to promote endothecium lignification. LoMYB26 directly bound to the Caffeic Acid O-methyltransferase (LoCOMT) promoter and activated its transcription. Meanwhile, LoMYB26 interacted with jasmonate-ZIM domain protein 4 (LoJAZ4), which repressed the LoMYB26-mediated activation of LoCOMT transcription. Additionally, the exogenous application of methyl-jasmonate (Me-JA) induced LoMYB26 transcription and promoted endothecium lignification. CONCLUSION Our findings demonstrate that LoMYB26 promotes endothecium lignification and anther dehiscence. LoMYB26 interacted with LoJAZ4, forming a heterodimer that participates in JA-mediated endothecium lignification and anther dehiscence. This study offers valuable insights and a theoretical foundation for the breeding of anther-indehiscent lily.
Collapse
Affiliation(s)
- Qianqian Fang
- College of Horticulture/Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing 210043, China.
| | - Xue Pan
- College of Horticulture/Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing 210043, China.
| | - Ze Wu
- College of Horticulture/Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing 210043, China.
| | - Junpeng Yu
- College of Horticulture/Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing 210043, China.
| | - Ting Li
- College of Horticulture/Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing 210043, China.
| | - Sujuan Xu
- College of Horticulture/Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing 210043, China.
| | - Man He
- College of Horticulture/Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing 210043, China.
| | - Nianjun Teng
- College of Horticulture/Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Lily Science and Technology Backyard Qixia of Jiangsu/Jiangsu Graduate Workstation, Nanjing 210043, China.
| |
Collapse
|
2
|
Blervacq AS, Galinousky D, Simon C, Moreau M, Duputié A, Baldacci-Cresp F, Lion C, Biot C, Hawkins S, Neutelings G. Tracking ectopic lignification in flax stems following scarification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109806. [PMID: 40179634 DOI: 10.1016/j.plaphy.2025.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/30/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
When flax (Linum usitatissimum L.) stems are scarified, major changes occur in the organization of cell walls within the tissues that border the wound. We sought to characterize the plant's response using a variety of approaches, with a particular focus on lignin deposition within the peripheral fiber cell walls of the stem. Raman spectroscopy and imaging first showed that changes occurred in the polysaccharide matrix of the parenchyma and fiber cell walls. These changes were accompanied by rapid deposition of lignin which initially diffuses centripetally and then, once the vascular cambium was reached, propagates in a periclinal manner until 150 μm from the edges of the wounded zone. Lignin biosynthesis appears to be the result of a de novo activity, as demonstrated by the concomitant accumulation of transcripts corresponding to lignin biosynthesis genes. In addition, using bioorthogonal chemistry approaches, we showed that wounding had enhanced the capacity of fiber cell walls to incorporate modified lignin precursors, in parallel with an increase in transcripts corresponding to peroxidases in the cortical tissues. This incorporation potential was identical for the 3 different types of reporters tested. Our findings demonstrated that mechanical stress can trigger lignification, in a polarized manner within the bast fibers, providing insights into the plasticity of cell wall composition and the potential for modulating fiber properties in flax.
Collapse
Affiliation(s)
- Anne-Sophie Blervacq
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| | - Dmitry Galinousky
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Clémence Simon
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Myriam Moreau
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000, Lille, France
| | - Anne Duputié
- Univ. Lille, CNRS, UMR 8198 - EEP - Evolution Ecologie et Paléontologie, F-59000, Lille, France
| | - Fabien Baldacci-Cresp
- Manager Analytical Sciences, Exothera, Allée Centrale - Zoning de Jumet 52, B-6040, Jumet, Belgium
| | - Cedric Lion
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Christophe Biot
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Simon Hawkins
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Godfrey Neutelings
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| |
Collapse
|
3
|
Zhang S, Li C, Cui B, Kou W, Feng P, Wang X. TCP23-WRKY15 module negatively regulates lignin deposition and xylem development of wood formation in Populus. Int J Biol Macromol 2025; 306:141656. [PMID: 40032095 DOI: 10.1016/j.ijbiomac.2025.141656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Secondary wall, a critical component of wood, is influenced by multiple factors during its formation. The TCP family encodes plant-specific transcription factors (TFs) that play key roles in multiple aspects of plant development. In this study, we identified all TCP TFs in five poplar species and analyzed their evolutionary relationships, gene structures, tissue-specific expression patterns, and potential interactions with microRNAs. Additionally, we screened for TCP proteins associated with secondary wall development that are independent of miRNA regulation. Three candidate TFs were identified, with TCP23 showing high conservation across poplar species and the highest expression levels in the xylem of Populus trichocarpa and Populus wilsonii. The overexpression of TCP23 in poplar inhibited the expression of MYB TFs and structural genes involved in xylem biosynthesis, thereby reducing the lignin content within the stems. By contrast, CRISPR/Cas9-mediated knockout of TCP23 resulted in the opposite effect. Furthermore, we successfully identified WRKY15 as an interaction partner of TCP23 via a yeast two-hybrid library and demonstrated that TCP23 negatively regulates lignin synthesis and xylem development by enhancing the inhibitory function of WRKY15. Our study provides new insights into the transcriptional regulatory mechanisms underlying secondary wall formation.
Collapse
Affiliation(s)
- Shengkui Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Can Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Baihui Cui
- School of Architecture and Design, Chongqing College of Humanities, Science and Technology, Chongqing 401524, China
| | - Wenhua Kou
- School of Architecture and Design, Chongqing College of Humanities, Science and Technology, Chongqing 401524, China
| | - Ping Feng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xia Wang
- School of Architecture and Design, Chongqing College of Humanities, Science and Technology, Chongqing 401524, China.
| |
Collapse
|
4
|
Rai A, Skårn MN, Elameen A, Tengs T, Amundsen MR, Bjorå OS, Haugland LK, Yakovlev IA, Brurberg MB, Thorstensen T. CRISPR-Cas9-mediated deletions of FvMYB46 in Fragaria vesca reveal its role in regulation of fruit set and phenylpropanoid biosynthesis. BMC PLANT BIOLOGY 2025; 25:256. [PMID: 40000946 PMCID: PMC11853751 DOI: 10.1186/s12870-024-06041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/31/2024] [Indexed: 02/27/2025]
Abstract
The phenylpropanoid pathway, regulated by transcription factors of the MYB family, produces secondary metabolites that play important roles in fertilization and early phase of fruit development. The MYB46 transcription factor is a key regulator of secondary cell wall structure, lignin and flavonoid biosynthesis in many plants, but little is known about its activity in flowers and berries in F. vesca. For functional analysis of FvMYB46, we designed a CRISPR-Cas9 construct with an endogenous F. vesca-specific U6 promoter for efficient and specific expression of two gRNAs targeting the first exon of FvMYB46. This generated mutants with an in-frame 81-bp deletion of the first conserved MYB domain or an out-of-frame 82-bp deletion potentially knocking out gene function. In both types of mutant plants, pollen germination and fruit set were significantly reduced compared to wild type. Transcriptomic analysis of flowers revealed that FvMYB46 positively regulates the expression of genes involved in processes like xylan biosynthesis and metabolism, homeostasis of reactive oxygen species (ROS) and the phenylpropanoid pathway, including secondary cell wall biosynthesis and flavonoid biosynthesis. Genes regulating carbohydrate metabolism and signalling were also deregulated, suggesting that FvMYB46 might regulate the crosstalk between carbohydrate metabolism and phenylpropanoid biosynthesis. In the FvMYB46-mutant flowers, the flavanol and flavan-3-ol contents, especially epicatechin, quercetin-glucoside and kaempferol-3-coumaroylhexoside, were reduced, and we observed a local reduction in the lignin content in the anthers. Together, these results suggest that FvMYB46 controls fertility and efficient fruit set by regulating the cell wall structure, flavonoid biosynthesis, carbohydrate metabolism, and sugar and ROS signalling in flowers and early fruit development in F. vesca.
Collapse
Affiliation(s)
- Arti Rai
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Magne Nordang Skårn
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Abdelhameed Elameen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Torstein Tengs
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Mathias Rudolf Amundsen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Oskar S Bjorå
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Lisa K Haugland
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Igor A Yakovlev
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - May Bente Brurberg
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Tage Thorstensen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway.
| |
Collapse
|
5
|
Du K, Xu Y, Wang N, Qin L, Tao J. Transcriptomic Remodeling Occurs During Cambium Activation and Xylem Cell Development in Taxodium ascendens. Curr Issues Mol Biol 2024; 46:11927-11941. [PMID: 39590302 PMCID: PMC11592639 DOI: 10.3390/cimb46110708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Taxodium ascendens has been extensively cultivated in the wetlands of the Yangtze River in south China and has significantly contributed to ecology and timber production. Until now, research on T. ascendens genomics has yet to be conducted due to its large and complex genome, which hinders the development of T. ascendens genomic resources. Combined with the microstructural changes during cambium cell differentiation across various growth periods, we investigate the transcriptome expression and regulatory mechanisms governing cambium activity in T. ascendens. Using RNA sequencing (RNA-Seq) technology, we identified the genes involved in the cambium development of cells at three stages (dormancy, reactivation, and activity). These genes encode the regulatory and control factors associated with the cambial activity, cell division, cell expansion, and biosynthesis of cell wall components. Blast comparison revealed that three genes (TR_DN69961_c0_g1, TRINITY_DN17100_c1_g1, TRINITY_DN111727_c0_g1) from the MYB and NAC families might regulate transcription during lignin formation in wood thickening. These results illustrate the dynamic changes in the transcriptional network during vascular cambium development. Additionally, they shed light on the genetic regulation mechanism of secondary growth in T. ascendens and guide further elucidation of the candidate genes involved in regulating cambium differentiation and wood formation.
Collapse
Affiliation(s)
| | - Youming Xu
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (K.D.); (N.W.); (L.Q.); (J.T.)
| | | | | | | |
Collapse
|
6
|
Qi BJ, Ji MX, He ZQ. Using transcriptome sequencing (RNA-Seq) to screen genes involved in β-glucan biosynthesis and accumulation during oat seed development. PeerJ 2024; 12:e17804. [PMID: 39346057 PMCID: PMC11438436 DOI: 10.7717/peerj.17804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/03/2024] [Indexed: 10/01/2024] Open
Abstract
Oat (Avena sativa L.) is an annual grass that has a high nutritional value and therapeutic benefits. β-glucan is one of the most important nutrients in oats. In this study, we investigated two oat varieties with significant differences in β-glucan content (high β-glucan oat varieties BY and low β-glucan content oat variety DY) during different filling stages. We also studied the transcriptome sequencing of seeds at different filling stages. β-glucan accumulation was highest at days 6-16 in the filling stage. Differentially expressed genes (DEGs) were selected from the dataset of transcriptome sequencing. Among them, three metabolic pathways were closely related to the biosynthesis of β-glucan by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, including xyloglucan:xyloglucosyl transferase activity, starch and sucrose metabolism, and photosynthesis. By analyzing the expression patterns of DEGs, we identified one CslF2 gene and 32 transcription factors. Five modules were thought to be positively correlated with β-glucan accumulation by weighted gene co-expression network analysis (WGCNA). Moreover, the expression levels of candidate genes obtained from the transcriptome sequencing were further validated by quantitative real-time PCR (RT-qPCR) analysis. Our study provides a novel way to identify the regulatory mechanism of β-glucan synthesis and accumulation in oat seeds and offers a possible pathway for the genetic engineering of oat breeding for higher-quality seeds.
Collapse
Affiliation(s)
- Bing jie Qi
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ming xue Ji
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhu qing He
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
7
|
Ranade SS, García-Gil MR. Lignin biosynthesis pathway repressors in gymnosperms: differential repressor domains as compared to angiosperms. FORESTRY RESEARCH 2024; 4:e031. [PMID: 39524426 PMCID: PMC11524278 DOI: 10.48130/forres-0024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
Lignin is a polyphenolic polymer present in the cell walls of specialized plant cell types in vascular plants that provides structural support and plays a major role in plant protection. The lignin biosynthesis pathway is regulated by transcription factors from the MYB (myeloblastosis) family. While several MYB members positively regulate lignin synthesis, only a few negatively regulate lignin synthesis. These lignin suppressors are well characterized in model plant species; however, their role has not been fully explored in gymnosperms. Lignin forms one of the major hurdles for the forest-based industry e.g. paper, pulp, and biofuel production. Therefore, the detailed mechanisms involved in the regulation of lignin synthesis are valuable, especially in conifers that form the major source of softwood for timber and paper production. In this review, the potential and differential domains present in the MYB suppressors in gymnosperms are discussed, along with their phylogenetic analysis. Sequence analysis revealed that the N-terminal regions of the MYB suppressor members were found to be conserved among the gymnosperms and angiosperms containing the R2, R3, and bHLH domains, while the C-terminal regions were found to be highly variable. The typical repressor motifs like the LxLxL-type EAR motif and the TLLLFR motif were absent from the C-terminal regions of MYB suppressors from most gymnosperms. However, although the gymnosperms lacked the characteristic repressor domains, a R2R3-type MYB member from Ginkgo was reported to repress the lignin biosynthetic pathway. It is proposed that gymnosperms possess unique kinds of repressors that need further functional validation.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - María Rosario García-Gil
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
8
|
Pang H, Dai X, Yan X, Liu Y, Li Q. C2H2 zinc finger protein PagIDD15A regulates secondary wall thickening and lignin biosynthesis in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112159. [PMID: 38901779 DOI: 10.1016/j.plantsci.2024.112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Wood production is largely determined by the activity of cambial cell proliferation, and the secondary cell wall (SCW) thickening of xylem cells determines the wood property. In this study, we identified an INDETERMINATE DOMAIN (IDD) type C2H2 zinc finger transcription factor PagIDD15A as a regulator of wood formation in Populus alba × Populus glandulosa. Downregulation of PagIDD15A expression by RNA interference (RNAi) inhibited xylem development and xylem cell secondary wall thickening. RNA-seq analysis showed that PagPAL1, PagCCR2 and PagCCoAOMT1 were downregulated in the differentiating xylem of the PagIDD15A-RNAi transgenic plants, showing that PagIDD15A may regulate SCW biosynthesis through inhibiting lignin biosynthesis. The downregulation of PagVND6-B2, PagMYB10 and PagMYC4 and upregulation of PagWRKY12 in the differentiating xylem of RNAi transgenic plants suggest that PagIDD15A may also regulate these transcription factor (TF) genes to affect SCW thickening. RT-qPCR analysis in the phloem-cambium of RNAi transgenic demonstrates that PagIDD15A may regulate the expression of the genes associated with cell proliferation, including, PagSHR (SHORTROOT), PagSCR (SCARECROW), PagCYCD3;1 (CYCLIN D3;1) and PagSMR4 (SIAMESE-RELATED4), to affect the cambial activity. This study provides the knowledge of the IDD-type C2H2 zinc finger protein in regulating wood formation.
Collapse
Affiliation(s)
- Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Yingli Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
9
|
Marchetti F, Distéfano AM, Cainzos M, Setzes N, Cascallares M, López GA, Zabaleta E, Carolina Pagnussat G. Cell death in bryophytes: emerging models to study core regulatory modules and conserved pathways. ANNALS OF BOTANY 2024; 134:367-384. [PMID: 38953500 PMCID: PMC11341678 DOI: 10.1093/aob/mcae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
This review summarizes recent progress in our current understanding of the mechanisms underlying the cell death pathways in bryophytes, focusing on conserved pathways and particularities in comparison to angiosperms. Regulated cell death (RCD) plays key roles during essential processes along the plant life cycle. It is part of specific developmental programmes and maintains homeostasis of the organism in response to unfavourable environments. Bryophytes could provide valuable models to study developmental RCD processes as well as those triggered by biotic and abiotic stresses. Some pathways analogous to those present in angiosperms occur in the gametophytic haploid generation of bryophytes, allowing direct genetic studies. In this review, we focus on such RCD programmes, identifying core conserved mechanisms and raising new key questions to analyse RCD from an evolutionary perspective.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
10
|
Hao Y, Lu F, Pyo SW, Kim MH, Ko JH, Yan X, Ralph J, Li Q. PagMYB128 regulates secondary cell wall formation by direct activation of cell wall biosynthetic genes during wood formation in poplar. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1658-1674. [PMID: 39031878 DOI: 10.1111/jipb.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 07/22/2024]
Abstract
The biosynthesis of cellulose, lignin, and hemicelluloses in plant secondary cell walls (SCWs) is regulated by a hierarchical transcriptional regulatory network. This network features orthologous transcription factors shared between poplar and Arabidopsis, highlighting a foundational similarity in their genetic regulation. However, knowledge on the discrepant behavior of the transcriptional-level molecular regulatory mechanisms between poplar and Arabidopsis remains limited. In this study, we investigated the function of PagMYB128 during wood formation and found it had broader impacts on SCW formation compared to its Arabidopsis ortholog, AtMYB103. Transgenic poplar trees overexpressing PagMYB128 exhibited significantly enhanced xylem development, with fiber cells and vessels displaying thicker walls, and an increase in the levels of cellulose, lignin, and hemicelluloses in the wood. In contrast, plants with dominant repression of PagMYB128 demonstrated the opposite phenotypes. RNA sequencing and reverse transcription - quantitative polymerase chain reaction showed that PagMYB128 could activate SCW biosynthetic gene expression, and chromatin immunoprecipitation along with yeast one-hybrid, and effector-reporter assays showed this regulation was direct. Further analysis revealed that PagSND1 (SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN1) directly regulates PagMYB128 but not cell wall metabolic genes, highlighting the pivotal role of PagMYB128 in the SND1-driven regulatory network for wood development, thereby creating a feedforward loop in SCW biosynthesis.
Collapse
Affiliation(s)
- Yuanyuan Hao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Fachuang Lu
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Wisconsin, 53726, USA
| | - Seung-Won Pyo
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, 17104, Korea
| | - Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, 17104, Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, 17104, Korea
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - John Ralph
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Wisconsin, 53726, USA
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
11
|
Li Q, Chen S, Chen L, Zhuang L, Wei H, Jiang S, Wang C, Qi J, Fang P, Xu J, Tao A, Zhang L. Cloning and functional mechanism of the dwarf gene gba affecting stem elongation and cellulose biosynthesis in jute (Corchorus olitorius). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2003-2019. [PMID: 38536089 DOI: 10.1111/tpj.16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 06/14/2024]
Abstract
Plant height (PH) is an important factor affecting bast fiber yield in jute. Here, we report the mechanism of dwarfism in the 'Guangbaai' (gba) of jute. The mutant gba had shorter internode length and cell length compared to the standard cultivar 'TaiZi 4' (TZ4). Exogenous GA3 treatment indicated that gba is a GA-insensitive dwarf mutant. Quantitative trait locus (QTL) analysis of three PH-related traits via a high-density genetic linkage map according to re-seq showed that a total of 25 QTLs were identified, including 13 QTLs for PH, with phenotypic variation explained ranging from 2.42 to 74.16%. Notably, the functional mechanism of the candidate gene CoGID1a, the gibberellic acid receptor, of the major locus qPHIL5 was evaluated by transgenic analysis and virus-induced gene silencing. A dwarf phenotype-related single nucleotide mutation in CoGID1a was identified in gba, which was also unique to the dwarf phenotype of gba among 57 cultivars. Cogid1a was unable to interact with the growth-repressor DELLA even in the presence of highly accumulated gibberellins in gba. Differentially expressed genes between transcriptomes of gba and TZ4 after GA3 treatment indicated up-regulation of genes involved in gibberellin and cellulose synthesis in gba. Interestingly, it was found that up-regulation of CoMYB46, a key transcription factor in the secondary cell wall, by the highly accumulated gibberellins in gba promoted the expression of cellulose synthase genes CoCesA4 and CoCesA7. These findings provide valuable insights into fiber development affected by endogenous gibberellin accumulation in plants.
Collapse
Affiliation(s)
- Qin Li
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Siyuan Chen
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu Chen
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lingling Zhuang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huawei Wei
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaolian Jiang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chuanyu Wang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianmin Qi
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pingping Fang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiantang Xu
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Aifen Tao
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwu Zhang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Public Platform for Germplasm Resources of Bast Fiber Crops/Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
12
|
Chaudhari AA, Sharma AM, Rastogi L, Dewangan BP, Sharma R, Singh D, Sah RK, Das S, Bhattacharjee S, Mellerowicz EJ, Pawar PAM. Modifying lignin composition and xylan O-acetylation induces changes in cell wall composition, extractability, and digestibility. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:73. [PMID: 38822388 PMCID: PMC11141020 DOI: 10.1186/s13068-024-02513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Lignin and xylan are important determinants of cell wall structure and lignocellulosic biomass digestibility. Genetic manipulations that individually modify either lignin or xylan structure improve polysaccharide digestibility. However, the effects of their simultaneous modifications have not been explored in a similar context. Here, both individual and combinatorial modification in xylan and lignin was studied by analysing the effect on plant cell wall properties, biotic stress responses and integrity sensing. RESULTS Arabidopsis plant co-harbouring mutation in FERULATE 5-HYDROXYLASE (F5H) and overexpressing Aspergillus niger acetyl xylan esterase (35S:AnAXE1) were generated and displayed normal growth attributes with intact xylem architecture. This fah1-2/35S:AnAXE1 cross was named as hyper G lignin and hypoacetylated (HrGHypAc) line. The HrGHypAc plants showed increased crystalline cellulose content with enhanced digestibility after chemical and enzymatic pre-treatment. Moreover, both parents and HrGHypAc without and after pre-treating with glucuronyl esterase and alpha glucuronidase exhibited an increase in xylose release after xylanase digestion as compared to wild type. The de-pectinated fraction in HrGHypAc displayed elevated levels of xylan and cellulose. Furthermore, the transcriptomic analysis revealed differential expression in cell wall biosynthetic, transcription factors and wall-associated kinases genes implying the role of lignin and xylan modification on cellular regulatory processes. CONCLUSIONS Simultaneous modification in xylan and lignin enhances cellulose content with improved saccharification efficiency. These modifications loosen cell wall complexity and hence resulted in enhanced xylose and xylobiose release with or without pretreatment after xylanase digestion in both parent and HrGHypAc. This study also revealed that the disruption of xylan and lignin structure is possible without compromising either growth and development or defense responses against Pseudomonas syringae infection.
Collapse
Affiliation(s)
- Aniket Anant Chaudhari
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Anant Mohan Sharma
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Lavi Rastogi
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Bhagwat Prasad Dewangan
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Raunak Sharma
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Deepika Singh
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Rajan Kumar Sah
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Shouvik Das
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Saikat Bhattacharjee
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre, Swedish University of Agricultural Sciences, Umea, Sweden
| | - Prashant Anupama-Mohan Pawar
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|
13
|
Yang Y, Zhou X, Zhu X, Ding B, Jiang L, Zhang H, Li S, Cao S, Zhang M, Pei Y, Hou L. GhMYB52 Like: A Key Factor That Enhances Lint Yield by Negatively Regulating the Lignin Biosynthesis Pathway in Fibers of Upland Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2024; 25:4921. [PMID: 38732136 PMCID: PMC11084151 DOI: 10.3390/ijms25094921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
In the context of sustainable agriculture and biomaterial development, understanding and enhancing plant secondary cell wall formation are crucial for improving crop fiber quality and biomass conversion efficiency. This is especially critical for economically important crops like upland cotton (Gossypium hirsutum L.), for which fiber quality and its processing properties are essential. Through comprehensive genome-wide screening and analysis of expression patterns, we identified a particularly high expression of an R2R3 MYB transcription factor, GhMYB52 Like, in the development of the secondary cell wall in cotton fiber cells. Utilizing gene-editing technology to generate a loss-of-function mutant to clarify the role of GhMYB52 Like, we revealed that GhMYB52 Like does not directly contribute to cellulose synthesis in cotton fibers but instead represses a subset of lignin biosynthesis genes, establishing it as a lignin biosynthesis inhibitor. Concurrently, a substantial decrease in the lint index, a critical measure of cotton yield, was noted in parallel with an elevation in lignin levels. This study not only deepens our understanding of the molecular mechanisms underlying cotton fiber development but also offers new perspectives for the molecular improvement of other economically important crops and the enhancement of biomass energy utilization.
Collapse
Affiliation(s)
- Yang Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Xue Zhou
- Laboratory Animal Center, Southwest University, Chongqing 400715, China;
| | - Xi Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Bo Ding
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Linzhu Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Huiming Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Silu Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Shuyan Cao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Mi Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Yan Pei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| | - Lei Hou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.Y.); (X.Z.); (B.D.); (L.J.); (H.Z.); (S.L.); (S.C.); (M.Z.); (Y.P.)
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Hao Y, Yan X, Li Q. Genome-Wide Identification and Expression Profiling of Velvet Complex Transcription Factors in Populus alba × Populus glandulosa. Int J Mol Sci 2024; 25:3926. [PMID: 38612736 PMCID: PMC11011700 DOI: 10.3390/ijms25073926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The discovery of new genes with novel functions is a major driver of adaptive evolutionary innovation in plants. Especially in woody plants, due to genome expansion, new genes evolve to regulate the processes of growth and development. In this study, we characterized the unique VeA transcription factor family in Populus alba × Populus glandulosa, which is associated with secondary metabolism. Twenty VeA genes were characterized systematically on their phylogeny, genomic distribution, gene structure and conserved motif, promoter binding site, and expression profiling. Furthermore, through ChIP-qPCR, Y1H, and effector-reporter assays, it was demonstrated that PagMYB128 directly regulated PagVeA3 to influence the biosynthesis of secondary metabolites. These results provide a basis for further elucidating the function of VeAs gene in poplar and its genetic regulation mechanism.
Collapse
Affiliation(s)
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (Y.H.); (Q.L.)
| | | |
Collapse
|
15
|
Im JH, Son S, Kim WC, Kim K, Mitsuda N, Ko JH, Han KH. Jasmonate activates secondary cell wall biosynthesis through MYC2-MYB46 module. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1099-1114. [PMID: 37983636 DOI: 10.1111/tpj.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Formation of secondary cell wall (SCW) is tightly regulated spatiotemporally by various developmental and environmental signals. Successful fine-tuning of the trade-off between SCW biosynthesis and stress responses requires a better understanding of how plant growth is regulated under environmental stress conditions. However, the current understanding of the interplay between environmental signaling and SCW formation is limited. The lipid-derived plant hormone jasmonate (JA) and its derivatives are important signaling components involved in various physiological processes including plant growth, development, and abiotic/biotic stress responses. Recent studies suggest that JA is involved in SCW formation but the signaling pathway has not been studied for how JA regulates SCW formation. We tested this hypothesis using the transcription factor MYB46, a master switch for SCW biosynthesis, and JA treatments. Both the transcript and protein levels of MYB46, a master switch for SCW formation, were significantly increased by JA treatment, resulting in the upregulation of SCW biosynthesis. We then show that this JA-induced upregulation of MYB46 is mediated by MYC2, a central regulator of JA signaling, which binds to the promoter of MYB46. We conclude that this MYC2-MYB46 module is a key component of the plant response to JA in SCW formation.
Collapse
Affiliation(s)
- Jong Hee Im
- Department of Horticulture, Michigan State University, East Lansing, Michigan, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Science Education, Jeju National University, Jeju, Republic of Korea
| | - Seungmin Son
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Won-Chan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kihwan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Kyung-Hwan Han
- Department of Horticulture, Michigan State University, East Lansing, Michigan, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Forestry, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
16
|
Jin X, Chai Q, Liu C, Niu X, Li W, Shang X, Gu A, Zhang D, Guo W. Cotton GhNAC4 promotes drought tolerance by regulating secondary cell wall biosynthesis and ribosomal protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1052-1068. [PMID: 37934782 DOI: 10.1111/tpj.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Drought has a severe impact on the quality and yield of cotton. Deciphering the key genes related to drought tolerance is important for understanding the regulation mechanism of drought stress and breeding drought-tolerant cotton cultivars. Several studies have demonstrated that NAC transcription factors are crucial in the regulation of drought stress, however, the related functional mechanisms are still largely unexplored. Here, we identified that NAC transcription factor GhNAC4 positively regulated drought stress tolerance in cotton. The expression of GhNAC4 was significantly induced by abiotic stress and plant hormones. Silencing of GhNAC4 distinctly impaired the resistance to drought stress and overexpressing GhNAC4 in cotton significantly enhanced the stress tolerance. RNA-seq analysis revealed that overexpression of GhNAC4 enriched the expression of genes associated with the biosynthesis of secondary cell walls and ribosomal proteins. We confirmed that GhNAC4 positively activated the expressions of GhNST1, a master regulator reported previously in secondary cell wall formation, and two ribosomal protein-encoding genes GhRPL12 and GhRPL18p, by directly binding to their promoter regions. Overexpression of GhNAC4 promoted the expression of downstream genes associated with the secondary wall biosynthesis, resulting in enhancing secondary wall deposition in the roots, and silencing of GhRPL12 and GhRPL18p significantly impaired the resistance to drought stress. Taken together, our study reveals a novel pathway mediated by GhNAC4 that promotes secondary cell wall biosynthesis to strengthen secondary wall development and regulates the expression of ribosomal protein-encoding genes to maintain translation stability, which ultimately enhances drought tolerance in cotton.
Collapse
Affiliation(s)
- Xuanxiang Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qichao Chai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuchu Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Niu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aixing Gu
- Engineering Research Center of Ministry of Education for Cotton, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
17
|
Li W, Lin YCJ, Chen YL, Zhou C, Li S, De Ridder N, Oliveira DM, Zhang L, Zhang B, Wang JP, Xu C, Fu X, Luo K, Wu AM, Demura T, Lu MZ, Zhou Y, Li L, Umezawa T, Boerjan W, Chiang VL. Woody plant cell walls: Fundamentals and utilization. MOLECULAR PLANT 2024; 17:112-140. [PMID: 38102833 DOI: 10.1016/j.molp.2023.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Nette De Ridder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laigeng Li
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Toshiaki Umezawa
- Laboratory of Metabolic Science of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
18
|
Wang Q, Lei S, Yan J, Song Y, Qian J, Zheng M, Hsu YF. UBC6, a ubiquitin-conjugating enzyme, participates in secondary cell wall thickening in the inflorescence stem of Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108152. [PMID: 37944242 DOI: 10.1016/j.plaphy.2023.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Secondary cell wall (SCW) thickening in plant inflorescence stems is a complicated cellular process that is essential for stem strength and biomass. Although Arabidopsis NAC transcription factor (TF) 1 (NST1) regulates the SCW thickening in anther walls, the single T-DNA-insertion mutant (nst1) does not show disrupted SCW thickening in anther endothecium, interfascicular fibers or xylem. To better understand the regulatory mechanism of this process, we generated an ethyl methanesulfonate (EMS)-mutagenized Arabidopsis population with the nst1 background. scd5 (SCW-defective mutant 5) was isolated in a forward genetic screen from the EMS mutant library, which displayed not only less lignin deposition in the interfascicular fiber and xylem than the wild type but also a pendent inflorescence stem. The EMS-induced mutation associated with the scd5 phenotype was found in the 5th exon of At2G46030 that encodes a ubiquitin-conjugating enzyme (UBC6), we thereby renamed the allele nst1 ubc6. Overexpressing UBC6 in nst1 ubc6 rescued the defective SCW, whereas disrupting UBC6 in nst1 by the CRISPR/Cas9 system caused a phenotype similar to that observed in nst1 ubc6. UBC6 was localized to the nucleus and plasma membrane, and possessed E2 ubiquitin-conjugating activity in vitro. MYB7 and MYB32 are considered as transcription repressors in the phenylpropanoid pathway and are involved in NAC TF-related transcriptional regulation in SCW thickening. UBC6 can interact with MYB7 and MYB32 and positively mediate the degradation of MYB7 and MYB32 by the 26S proteasome. Overall, these results indicated the contribution of UBC6 to SCW thickening in Arabidopsis inflorescence stems.
Collapse
Affiliation(s)
- Qingzhu Wang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shikang Lei
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiawen Yan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Song
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jie Qian
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Min Zheng
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Yi-Feng Hsu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
19
|
Liu G, Wu Z, Luo J, Wang C, Shang X, Zhang G. Genes expression profiles in vascular cambium of Eucalyptus urophylla × Eucalyptus grandis at different ages. BMC PLANT BIOLOGY 2023; 23:500. [PMID: 37848837 PMCID: PMC10583469 DOI: 10.1186/s12870-023-04500-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/30/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Wood is a secondary xylem generated by vascular cambium. Vascular cambium activities mainly include cambium proliferation and vascular tissue formation through secondary growth, thereby producing new secondary phloem inward and secondary xylem outward and leading to continuous tree thickening and wood formation. Wood formation is a complex biological process, which is strictly regulated by multiple genes. Therefore, molecular level research on the vascular cambium of different tree ages can lead to the identification of both key and related genes involved in wood formation and further explain the molecular regulation mechanism of wood formation. RESULTS In the present study, RNA-Seq and Pac-Bio Iso-Seq were used for profiling gene expression changes in Eucalyptus urophylla × Eucalyptus grandis (E. urograndis) vascular cambium at four different ages. A total of 59,770 non-redundant transcripts and 1892 differentially expressed genes (DEGs) were identified. The expression trends of the DEGs related to cell division and differentiation, cell wall biosynthesis, phytohormone, and transcription factors were analyzed. The DEGs encoding expansin, kinesin, cycline, PAL, GRP9, KNOX, C2C2-dof, REV, etc., were highly expressed in E. urograndis at three years old, leading to positive effects on growth and development. Moreover, some gene family members, such as NAC, MYB, HD-ZIP III, RPK, and RAP, play different regulatory roles in wood formation because of their sophisticated transcriptional network and function redundantly. CONCLUSIONS These candidate genes are a potential resource to further study wood formation, especially in fast-growing and adaptable eucalyptus. The results may also serve as a basis for further research to unravel the molecular mechanism underlying wood formation.
Collapse
Affiliation(s)
- Guo Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Zhihua Wu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Jianzhong Luo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Chubiao Wang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Xiuhua Shang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China
| | - Guowu Zhang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang, China.
| |
Collapse
|
20
|
Takawira LT, Hadj Bachir I, Ployet R, Tulloch J, San Clemente H, Christie N, Ladouce N, Dupas A, Rai A, Grima-Pettenati J, Myburg AA, Mizrachi E, Mounet F, Hussey SG. Functional investigation of five R2R3-MYB transcription factors associated with wood development in Eucalyptus using DAP-seq-ML. PLANT MOLECULAR BIOLOGY 2023; 113:33-57. [PMID: 37661236 DOI: 10.1007/s11103-023-01376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
A multi-tiered transcriptional network regulates xylem differentiation and secondary cell wall (SCW) formation in plants, with evidence of both conserved and lineage-specific SCW network architecture. We aimed to elucidate the roles of selected R2R3-MYB transcription factors (TFs) linked to Eucalyptus wood formation by identifying genome-wide TF binding sites and direct target genes through an improved DAP-seq protocol combined with machine learning for target gene assignment (DAP-seq-ML). We applied this to five TFs including a well-studied SCW master regulator (EgrMYB2; homolog of AtMYB83), a repressor of lignification (EgrMYB1; homolog of AtMYB4), a TF affecting SCW thickness and vessel density (EgrMYB137; homolog of PtrMYB074) and two TFs with unclear roles in SCW regulation (EgrMYB135 and EgrMYB122). Each DAP-seq TF peak set (average 12,613 peaks) was enriched for canonical R2R3-MYB binding motifs. To improve the reliability of target gene assignment to peaks, a random forest classifier was developed from Arabidopsis DAP-seq, RNA-seq, chromatin, and conserved noncoding sequence data which demonstrated significantly higher precision and recall to the baseline method of assigning genes to proximal peaks. EgrMYB1, EgrMYB2 and EgrMYB137 predicted targets showed clear enrichment for SCW-related biological processes. As validation, EgrMYB137 overexpression in transgenic Eucalyptus hairy roots increased xylem lignification, while its dominant repression in transgenic Arabidopsis and Populus reduced xylem lignification, stunted growth, and caused downregulation of SCW genes. EgrMYB137 targets overlapped significantly with those of EgrMYB2, suggesting partial functional redundancy. Our results show that DAP-seq-ML identified biologically relevant R2R3-MYB targets supported by the finding that EgrMYB137 promotes SCW lignification in planta.
Collapse
Affiliation(s)
- Lazarus T Takawira
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Ines Hadj Bachir
- Laboratoire de Recherche en Sciences Végétales, Université Toulouse, CNRS, INP, Castanet-Tolosan, France
| | - Raphael Ployet
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Jade Tulloch
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Helene San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université Toulouse, CNRS, INP, Castanet-Tolosan, France
| | - Nanette Christie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Nathalie Ladouce
- Laboratoire de Recherche en Sciences Végétales, Université Toulouse, CNRS, INP, Castanet-Tolosan, France
| | - Annabelle Dupas
- Laboratoire de Recherche en Sciences Végétales, Université Toulouse, CNRS, INP, Castanet-Tolosan, France
| | - Avanish Rai
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Université Toulouse, CNRS, INP, Castanet-Tolosan, France
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université Toulouse, CNRS, INP, Castanet-Tolosan, France.
| | - Steven G Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
21
|
Duan R, Zhang X, Liu Y, Wang L, Yang J, Wang L, Wang S, Su Y, Xue H. Transcriptome and Physiological Analysis Highlight Lignin Metabolism of the Fruit Dots Disordering during Postharvest Cold Storage in 'Danxiahong' Pear. Genes (Basel) 2023; 14:1785. [PMID: 37761925 PMCID: PMC10531081 DOI: 10.3390/genes14091785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Pear (Pyrus L.) is one of the most important fruits in the world. Fruit dots are an important trait that affects pear quality. Abnormal fruit dots usually reduce the merchantability of pears. In this research, during cold storage, 'Danxiahong' pear fruit exhibited protrudent fruit dots on the peels. Microscopy system measurement showed that fruit dots size and height on the abnormal fruit peel were bigger and higher than the normal ones. Likewise, scanning electron microscopy observations indicated that the abnormal fruit peel, in contrast to the normal pear peel, exhibited an abnormal cell structure and fruit dots. Physiological analysis showed that the lignin content in abnormal fruit peel was significantly higher than in normal fruit peel. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the top-enriched pathways were mainly associated with lignin synthesis and metabolism. The transcripts of lignin biosynthesis-associated genes were analyzed, and the results showed that the expression of a cascade of structural genes, including PpyPAL, PpyCCR, PpyC3H, PpyC4H, PpyHCT, PpyCAD, PpyLAC, and PpyPOD, was significantly induced in the protrudent peels. Furthermore, the expression of regulatory genes involved in lignin biosynthesis, especially the NAC-MYB-based gene regulatory network, was significantly upregulated in the abnormal peels. Real-time quantitative PCR (RT-qPCR) analysis confirmed the induction of lignin biosynthesis genes. Overall, this research revealed that the abnormal fruit surface was caused by fruit dots disorder during cold storage. This research provides insights into the fine regulation pathways in the prevention of fruit dots protrusion, especially in modulating lignin synthesis and metabolism during postharvest storage.
Collapse
Affiliation(s)
- Ruiwei Duan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou 450009, China; (R.D.); (X.Z.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xiangzhan Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou 450009, China; (R.D.); (X.Z.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yudong Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Lei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou 450009, China; (R.D.); (X.Z.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jian Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou 450009, China; (R.D.); (X.Z.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Long Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou 450009, China; (R.D.); (X.Z.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Suke Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou 450009, China; (R.D.); (X.Z.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yanli Su
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou 450009, China; (R.D.); (X.Z.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Huabai Xue
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou 450009, China; (R.D.); (X.Z.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
22
|
Nguyen TTT, Kim MH, Park EJ, Lee H, Ko JH. Seasonal Developing Xylem Transcriptome Analysis of Pinus densiflora Unveils Novel Insights for Compression Wood Formation. Genes (Basel) 2023; 14:1698. [PMID: 37761838 PMCID: PMC10531420 DOI: 10.3390/genes14091698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Wood is the most important renewable resource not only for numerous practical utilizations but also for mitigating the global climate crisis by sequestering atmospheric carbon dioxide. The compressed wood (CW) of gymnosperms, such as conifers, plays a pivotal role in determining the structure of the tree through the reorientation of stems displaced by environmental forces and is characterized by a high content of lignin. Despite extensive studies on many genes involved in wood formation, the molecular mechanisms underlying seasonal and, particularly, CW formation remain unclear. This study examined the seasonal dynamics of two wood tissue types in Pinus densiflora: CW and opposite wood (OW). RNA sequencing of developing xylem for two consecutive years revealed comprehensive transcriptome changes and unique differences in CW and OW across seasons. During growth periods, such as spring and summer, we identified 2255 transcripts with differential expression in CW, with an upregulation in lignin biosynthesis genes and significant downregulation in stress response genes. Notably, among the laccases critical for monolignol polymerization, PdeLAC17 was found to be specifically expressed in CW, suggesting its vital role in CW formation. PdeERF4, an ERF transcription factor preferentially expressed in CW, seems to regulate PdeLAC17 activity. This research provides an initial insight into the transcriptional regulation of seasonal CW development in P. densiflora, forming a foundation for future studies to enhance our comprehension of wood formation in gymnosperms.
Collapse
Affiliation(s)
- Thi Thu Tram Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (T.T.T.N.); (M.-H.K.)
| | - Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (T.T.T.N.); (M.-H.K.)
| | - Eung-Jun Park
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea; (E.-J.P.); (H.L.)
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea; (E.-J.P.); (H.L.)
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (T.T.T.N.); (M.-H.K.)
| |
Collapse
|
23
|
Xue Y, Shan Y, Yao JL, Wang R, Xu S, Liu D, Ye Z, Lin J, Li X, Xue C, Wu J. The transcription factor PbrMYB24 regulates lignin and cellulose biosynthesis in stone cells of pear fruits. PLANT PHYSIOLOGY 2023; 192:1997-2014. [PMID: 37011145 PMCID: PMC10315299 DOI: 10.1093/plphys/kiad200] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Lignified stone cell content is a key factor used to evaluate fruit quality, influencing the economic value of pear (Pyrus pyrifolia) fruits. However, our understanding of the regulatory networks of stone cell formation is limited due to the complex secondary metabolic pathway. In this study, we used a combination of co-expression network analysis, gene expression profiles, and transcriptome analysis in different pear cultivars with varied stone cell content to identify a hub MYB gene, PbrMYB24. The relative expression of PbrMYB24 in fruit flesh was significantly correlated with the contents of stone cells, lignin, and cellulose. We then verified the function of PbrMYB24 in regulating lignin and cellulose formation via genetic transformation in homologous and heterologous systems. We constructed a high-efficiency verification system for lignin and cellulose biosynthesis genes in pear callus. PbrMYB24 transcriptionally activated multiple target genes involved in stone cell formation. On the one hand, PbrMYB24 activated the transcription of lignin and cellulose biosynthesis genes by binding to different cis-elements [AC-I (ACCTACC) element, AC-II (ACCAACC) element and MYB-binding sites (MBS)]. On the other hand, PbrMYB24 bound directly to the promoters of PbrMYB169 and NAC STONE CELL PROMOTING FACTOR (PbrNSC), activating the gene expression. Moreover, both PbrMYB169 and PbrNSC activated the promoter of PbrMYB24, enhancing gene expression. This study improves our understanding of lignin and cellulose synthesis regulation in pear fruits through identifying a regulator and establishing a regulatory network. This knowledge will be useful for reducing the stone cell content in pears via molecular breeding.
Collapse
Affiliation(s)
- Yongsong Xue
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yanfei Shan
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Auckland 1025, New Zealand
| | - Runze Wang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shaozhuo Xu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dongliang Liu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhicheng Ye
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Lin
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xiaogang Li
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| |
Collapse
|
24
|
Xu W, Zhao Y, Liu Q, Diao Y, Wang Q, Yu J, Jiang E, Zhang Y, Liu B. Identification of ZmBK2 Gene Variation Involved in Regulating Maize Brittleness. Genes (Basel) 2023; 14:1126. [PMID: 37372306 DOI: 10.3390/genes14061126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Maize stalk strength is a crucial agronomic trait that affects lodging resistance. We used map-based cloning and allelic tests to identify a maize mutant associated with decreased stalk strength and confirmed that the mutated gene, ZmBK2, is a homolog of Arabidopsis AtCOBL4, which encodes a COBRA-like glycosylphosphatidylinositol (GPI)-anchored protein. The bk2 mutant exhibited lower cellulose content and whole-plant brittleness. Microscopic observations showed that sclerenchymatous cells were reduced in number and had thinner cell walls, suggesting that ZmBK2 affects the development of cell walls. Transcriptome sequencing of differentially expressed genes in the leaves and stalks revealed substantial changes in the genes associated with cell wall development. We constructed a cell wall regulatory network using these differentially expressed genes, which revealed that abnormal cellulose synthesis may be a reason for brittleness. These results reinforce our understanding of cell wall development and provide a foundation for studying the mechanisms underlying maize lodging resistance.
Collapse
Affiliation(s)
- Wei Xu
- Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271000, China
| | - Yan Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Qingzhi Liu
- Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271000, China
| | - Yuqiang Diao
- Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271000, China
| | - Qingkang Wang
- Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271000, China
| | - Jiamin Yu
- Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271000, China
| | - Enjun Jiang
- Taian Denghai Wuyue Taishan Seed Industry Co., Ltd., Tai'an 271000, China
| | - Yongzhong Zhang
- Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271000, China
| | - Baoshen Liu
- Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
25
|
Nguyen TTT, Bae EK, Tran TNA, Lee H, Ko JH. Exploring the Seasonal Dynamics and Molecular Mechanism of Wood Formation in Gymnosperm Trees. Int J Mol Sci 2023; 24:ijms24108624. [PMID: 37239969 DOI: 10.3390/ijms24108624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Forests, comprising 31% of the Earth's surface, play pivotal roles in regulating the carbon, water, and energy cycles. Despite being far less diverse than angiosperms, gymnosperms account for over 50% of the global woody biomass production. To sustain growth and development, gymnosperms have evolved the capacity to sense and respond to cyclical environmental signals, such as changes in photoperiod and seasonal temperature, which initiate growth (spring and summer) and dormancy (fall and winter). Cambium, the lateral meristem responsible for wood formation, is reactivated through a complex interplay among hormonal, genetic, and epigenetic factors. Temperature signals perceived in early spring induce the synthesis of several phytohormones, including auxins, cytokinins, and gibberellins, which in turn reactivate cambium cells. Additionally, microRNA-mediated genetic and epigenetic pathways modulate cambial function. As a result, the cambium becomes active during the summer, resulting in active secondary xylem (i.e., wood) production, and starts to become inactive in autumn. This review summarizes and discusses recent findings regarding the climatic, hormonal, genetic, and epigenetic regulation of wood formation in gymnosperm trees (i.e., conifers) in response to seasonal changes.
Collapse
Affiliation(s)
- Thi Thu Tram Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun-Kyung Bae
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Thi Ngoc Anh Tran
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
26
|
Kim MH, Cho JS, Tran TNA, Nguyen TTT, Park EJ, Im JH, Han KH, Lee H, Ko JH. Comparative functional analysis of PdeNAC2 and AtVND6 in the tracheary element formation. TREE PHYSIOLOGY 2023:tpad042. [PMID: 37014763 DOI: 10.1093/treephys/tpad042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Tracheary elements (i.e., vessel elements and tracheids) are highly specialized, non-living cells present in the water-conducting xylem tissue. In angiosperms, proteins in the VASCULAR-RELATED NAC-DOMAIN (VND) subgroup of the NAC transcription factor family (e.g., AtVND6) are required for the differentiation of vessel elements through transcriptional regulation of genes responsible for secondary cell wall (SCW) formation and programmed cell death (PCD). Gymnosperms, however, produce only tracheids, the mechanism of which remains elusive. Here, we report functional characteristics of PdeNAC2, a VND homolog in Pinus densiflora, as a key regulator of tracheid formation. Interestingly, our molecular genetic analyses show that PdeNAC2 can induce the formation of vessel element-like cells in angiosperm plants, demonstrated by transgenic overexpression of either native or NAC domain-swapped synthetic genes of PdeNAC2 and AtVND6 in both Arabidopsis and hybrid poplar. Subsequently, genome-wide identification of direct target genes of PdeNAC2 and AtVND6 revealed 138 and 174 genes as putative direct targets, respectively, but only 17 genes were identified as common direct targets. Further analyses have found that PdeNAC2 does not control some AtVND6-dependent vessel differentiation genes in angiosperm plants, such as AtVRLK1, LBD15/30, and pit-forming ROP signaling genes. Collectively, our results suggest that different target gene repertoires of PdeNAC2 and AtVND6 may contribute to the evolution of tracheary elements.
Collapse
Affiliation(s)
- Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Thi Ngoc Anh Tran
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Thi Thu Tram Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eung-Jun Park
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jong-Hee Im
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Kyung-Hwan Han
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
27
|
Kong Y, Wang G, Tang H, Yang J, Yang Y, Wang J, Li G, Li Y, Yuan J. Multi-omics analysis provides insight into the phytotoxicity of chicken manure and cornstalk on seed germination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160611. [PMID: 36460104 DOI: 10.1016/j.scitotenv.2022.160611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
To minimize environmental risks and the phytotoxic influence of organic materials on crop growth, it is necessary to test their phytotoxicity and maturity when they were used in farmland. However, the stress response of seed germination to chicken manure and cornstalks is not clear. This study used multi-omics analysis to investigate the inhibition mechanism of seed germination by chicken manure and cornstalk. Chicken manure caused destructive inhibition of seed germination with higher phytotoxicity (GI = 0). Cornstalk also had a low GI (8.81 %), while it mainly inhibited radicle growth (RL = 9.39 %) rather than seed germination (GR = 93.33 %). The response of radish seed germination to chicken manure and cornstalk phytotoxic stresses was accompanied by metabolic adjustments of storage substance accumulation, antioxidant enzyme activity change, phytohormone induction, and expression of specific proteins and gene regulation. Combined transcriptomic and proteomic analysis revealed that differential expression of 13,090 (5944 upregulated/7146 downregulated) and 3850 (2389 upregulated/1461 downregulated) genes (DEGs), and 1041 (82 upregulated/932 downregulated) and 575 (111 upregulated/464 downregulated) proteins (DEPs) at chicken manure and cornstalk treatment, respectively. Most down-regulated genes and proteins were involved in phenylpropanoid biosynthesis under chicken manure stress, which caused irreversible inhibition of seed germination. Down-regulation of phytohormone signal transduction-related genes under cornstalk stress resulted in inhibition of radicle growth, but the inhibitory stress was restorable. These findings provide new insight into the phytotoxicity of livestock manure and cornstalk on seed germination.
Collapse
Affiliation(s)
- Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Huan Tang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yun Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
28
|
Li M, Dong H, Li J, Dai X, Lin J, Li S, Zhou C, Chiang VL, Li W. PtrVCS2 Regulates Drought Resistance by Changing Vessel Morphology and Stomatal Closure in Populus trichocarpa. Int J Mol Sci 2023; 24:ijms24054458. [PMID: 36901889 PMCID: PMC10003473 DOI: 10.3390/ijms24054458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Drought has severe effects on plant growth, forest productivity, and survival throughout the world. Understanding the molecular regulation of drought resistance in forest trees can enable effective strategic engineering of novel drought-resistant genotypes of tree species. In this study, we identified a gene, PtrVCS2, encoding a zinc finger (ZF) protein of the ZF-homeodomain transcription factor in Populus trichocarpa (Black Cottonwood) Torr. & A. Gray. ex Hook. Overexpression of PtrVCS2 (OE-PtrVCS2) in P. trichocarpa resulted in reduced growth, a higher proportion of smaller stem vessels, and strong drought-resistance phenotypes. Stomatal movement experiments revealed that the OE-PtrVCS2 transgenics showed lower stomata apertures than wild-type plants under drought conditions. RNA-seq analysis of the OE-PtrVCS2 transgenics showed that PtrVCS2 regulates the expression of multiple genes involved in regulation of stomatal opening and closing, particularly the PtrSULTR3;1-1 gene, and several genes related to cell wall biosynthesis, such as PtrFLA11-12 and PtrPR3-3. Moreover, we found that the water use efficiency of the OE-PtrVCS2 transgenic plants was consistently higher than that of wild type plants when subjected to chronic drought stress. Taken together, our results suggest that PtrVCS2 plays a positive role in improving drought adaptability and resistance in P. trichocarpa.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hao Dong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiufang Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiaojiao Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Correspondence:
| |
Collapse
|
29
|
Luo D, Mei D, Wei W, Liu J. Identification and Phylogenetic Analysis of the R2R3-MYB Subfamily in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040886. [PMID: 36840234 PMCID: PMC9962269 DOI: 10.3390/plants12040886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 05/22/2023]
Abstract
The R2R3-MYB sub-family proteins are composed of most members of MYB (v-Myb avian myeloblastosis viral oncogene homolog) protein, a plant-specific transcription factor (TF) that is classified into four classes depending on the number of MYB repeats. R2R3-MYB TFs are involved in physiological and biochemical processes. However, the functions of the Brassica napus R2R3-MYB genes are still mainly unknown. In this study, 35 Brassica napus MYB (BnaMYB) genes were screened in the genome of Brassica napus, and details about their physical and chemical characteristics, evolutionary relationships, chromosome locations, gene structures, three-dimensional protein structures, cis-acting promoter elements, and gene duplications were uncovered. The BnaMYB genes have undergone segmental duplications and positive selection pressure, according to evolutionary studies. The same subfamilies have similar intron-exon patterns and motifs, according to the genes' structure and conserved motifs. Additionally, through cis-element analysis, many drought-responsive and other stress-responsive cis-elements have been found in the promoter regions of the BnaMYB genes. The expression of the BnaMYB gene displays a variety of tissue-specific patterns. Ten lignin-related genes were chosen for drought treatment. Our research screened four genes that showed significant upregulation under drought stress, and thus may be important drought-responsive genes. The findings lay a new foundation for understanding the complex mechanisms of BnaMYB in multiple developmental stages and pathways related to drought stress in rapeseed.
Collapse
Affiliation(s)
- Dingfan Luo
- College of Agriculture, Yangtze University, Jingzhou 434023, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Rd., Wuhan 430062, China
| | - Desheng Mei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Rd., Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Wenliang Wei
- College of Agriculture, Yangtze University, Jingzhou 434023, China
- Correspondence: (W.W.); (J.L.)
| | - Jia Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Rd., Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Correspondence: (W.W.); (J.L.)
| |
Collapse
|
30
|
Chen X, Li N, Liu C, Wang H, Li Y, Xie Y, Ma F, Liang J, Li C. Exogenous GABA improves the resistance of apple seedlings to long-term drought stress by enhancing GABA shunt and secondary cell wall biosynthesis. TREE PHYSIOLOGY 2022; 42:2563-2577. [PMID: 35972819 DOI: 10.1093/treephys/tpac096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Drought stress is an important factor limiting apple production. γ-Aminobutyric acid (GABA) exists widely in plants and participates in the response to abiotic stress as a metabolite or signaling molecule. The role of exogenous GABA in apple plants, response to long-term drought stress remains unclear. Our study confirmed that exogenous GABA affects the drought resistance of apple plants under long-term drought stress. We found that 1 mM exogenous GABA improved the resistance of apple seedlings to long-term drought stress. The plants showed better growth, less reactive oxygen radical accumulation, less damage to cell membranes and greater active photosynthetic capacity. Under long-term drought stress, exogenous GABA facilitated GABA shunt, resulting in more accumulation of organic acids, namely citric acid, succinic acid and malic acid, in roots and stems of apple seedlings. In addition, exogenous GABA upregulated the expression of cellulose-related genes and lignin-related genes, and activated secondary cell wall-related transcription factors to synthesize more cellulose and lignin. A multiple factorial analysis confirmed that the GABA shunt and the biosynthesis of cellulose and lignin substantially contributed to the growth of apple seedlings with the application of exogenous GABA under long-term drought stress. Our results suggested that exogenous GABA improved the resistance of apple seedlings to long-term drought stress by enhancing GABA shunt and secondary cell wall biosynthesis.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenlu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongtao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanmei Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiakai Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
31
|
Chen B, Guo Y, Zhang X, Wang L, Cao L, Zhang T, Zhang Z, Zhou W, Xie L, Wang J, Sun S, Yang C, Zhang Q. Climate-responsive DNA methylation is involved in the biosynthesis of lignin in birch. FRONTIERS IN PLANT SCIENCE 2022; 13:1090967. [PMID: 36531363 PMCID: PMC9757698 DOI: 10.3389/fpls.2022.1090967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Lignin is one of the most important secondary metabolites and essential to the formation of cell walls. Changes in lignin biosynthesis have been reported to be associated with environmental variations and can influence plant fitness and their adaptation to abiotic stresses. However, the molecular mechanisms underlying this association remain unclear. In this study, we evaluated the relations between the lignin biosynthesis and environmental factors and explored the role of epigenetic modification (DNA methylation) in contributing to these relations if any in natural birch. Significantly negative correlations were observed between the lignin content and temperature ranges. Analyzing the transcriptomes of birches in two habitats with different temperature ranges showed that the expressions of genes and transcription factors (TFs) involving lignin biosynthesis were significantly reduced at higher temperature ranges. Whole-genome bisulfite sequencing revealed that promoter DNA methylation of two NAC-domain TFs, BpNST1/2 and BpSND1, may be involved in the inhibition of these gene expressions, and thereby reduced the content of lignin. Based on these results we proposed a DNA methylation-mediated lignin biosynthesis model which responds to environmental factors. Overall, this study suggests the possibility of environmental signals to induce epigenetic variations that result in changes in lignin content, which can aid to develop resilient plants to combat ongoing climate changes or to manipulate secondary metabolite biosynthesis for agricultural, medicinal, or industrial values.
Collapse
Affiliation(s)
- Bowei Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yile Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lishan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lesheng Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zihui Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Wei Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Linan Xie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shanwen Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
32
|
Li Y, Wu Q, Men X, Wu F, Zhang Q, Li W, Sun L, Xing S. Transcriptome and metabolome analyses of lignin biosynthesis mechanism of Platycladus orientalis. PeerJ 2022; 10:e14172. [PMID: 36345485 PMCID: PMC9636869 DOI: 10.7717/peerj.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/12/2022] [Indexed: 01/20/2023] Open
Abstract
Background Platycladus orientalis, as an important plant for ecological protection, is a pioneer tree species for afforestation in arid and barren mountainous areas. Lignin has the functions of water and soil conservation, strengthening plant mechanical strength and resisting adverse environmental effects and plays an important role in the ecological protection benefits of P. orientalis. Methods In this study, annual dynamic observations of the lignin content in roots, stems and leaves of one-year-old seedlings of a P. orientalis half-sib family were carried out, and combined transcriptome and metabolome analyses were carried out during three key stages of P. orientalis stem development. Results The lignin contents in roots, stems and leaves of P. orientalis showed extremely significant spatiotemporal differences. In the stems, lignin was mainly distributed in the cell walls of the pith, xylem, phloem, pericyte, and epidermis, with differences in different periods. A total of 226 metabolites were detected in the stem of P. orientalis, which were divided into seven categories, including 10 synthetic precursor compounds containing lignin. Among them, the content of coniferyl alcohol was the highest, accounting for 12.27% of the total content, and caffeyl alcohol was the lowest, accounting for 7.05% only. By annotating the KEGG functions, a large number of differentially expressed genes and differential metabolites were obtained for the comparison combinations, and seven key enzymes and 24 related genes involved in the process of lignin synthesis in P. orientalis were selected. Conclusions Based on the results of the metabolic mechanism of lignin in P. orientalis by biochemical, anatomical and molecular biological analyzes, the key regulatory pathways of lignin in P. orientalis were identified, which will be of great significance for regulating the lignin content of P. orientalis and improving the adaptability and resistance of this plant.
Collapse
Affiliation(s)
- Ying Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Taian, Shandong, China
| | - Qikui Wu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Taian, Shandong, China
| | - Xiaoyan Men
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Taian, Shandong, China
| | - Fusheng Wu
- Shandong Forest and Grass Germplasm Resources Center, Jinan, Shandong, China
| | - Qian Zhang
- Shandong Academy of Forestry Sciences, Jinan, Shandong, China
| | - Weinan Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Taian, Shandong, China
| | - Limin Sun
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Taian, Shandong, China
| | - Shiyan Xing
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
33
|
Li Q, Fang X, Zhao Y, Cao R, Dong J, Ma P. The SmMYB36-SmERF6/SmERF115 module regulates the biosynthesis of tanshinones and phenolic acids in salvia miltiorrhiza hairy roots. HORTICULTURE RESEARCH 2022; 10:uhac238. [PMID: 36643739 PMCID: PMC9832864 DOI: 10.1093/hr/uhac238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/16/2022] [Indexed: 06/17/2023]
Abstract
Tanshinone and phenolic acids are the most important active substances of Salvia miltiorrhiza, and the insight into their transcriptional regulatory mechanisms is an essential process to increase their content in vivo. SmMYB36 has been found to have important regulatory functions in the synthesis of tanshinone and phenolic acid; paradoxically, its mechanism of action in S. miltiorrhiza is not clear. Here, we demonstrated that SmMYB36 functions as a promoter of tanshinones accumulation and a suppressor of phenolic acids through the generation of SmMYB36 overexpressed and chimeric SmMYB36-SRDX (EAR repressive domain) repressor hairy roots in combination with transcriptomic-metabolomic analysis. SmMYB36 directly down-regulate the key enzyme gene of primary metabolism, SmGAPC, up-regulate the tanshinones biosynthesis branch genes SmDXS2, SmGGPPS1, SmCPS1 and down-regulate the phenolic acids biosynthesis branch enzyme gene, SmRAS. Meanwhile, SmERF6, a positive regulator of tanshinone synthesis activating SmCPS1, was up-regulated and SmERF115, a positive regulator of phenolic acid biosynthesis activating SmRAS, was down-regulated. Furthermore, the seven acidic amino acids at the C-terminus of SmMYB36 are required for both self-activating domain and activation of target gene expression. As a consequence, this study contributes to reveal the potential relevance of transcription factors synergistically regulating the biosynthesis of tanshinone and phenolic acid.
Collapse
Affiliation(s)
| | | | | | - Ruizhi Cao
- College of Life Sciences, Northwest A&F University, Yangling 71210, China
| | | | | |
Collapse
|
34
|
Zhao X, Li P, Liu X, Xu T, Zhang Y, Meng H, Xia T. High temperature increased lignin contents of poplar (Populus spp) stem via inducing the synthesis caffeate and coniferaldehyde. Front Genet 2022; 13:1007513. [PMID: 36160001 PMCID: PMC9500204 DOI: 10.3389/fgene.2022.1007513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Lignin contributes to plant resistance to biotic and abiotic stresses and is dominantly regulated by enzymes which catalyze the generation of metabolites intermediates in lignin synthesis. However, the response of lignin and its key regulatory factors to high temperature stress are poorly understood. Here, this finding revealed that the content of lignin in poplar (Populus spp) stem increased after 3 days of high temperature stress treatment. In fourteen metabolic intermediates of lignin biosynthetic pathway with targeted metabolomics analysis, caffeate and coniferaldehyde increased evidently upon heat stress. C3’H (p-Coumaroylshikimate 3-hydroxylase) and CCR (Cinnamoyl-CoA reductase) are recognized to catalyze the formation of caffeate and coniferaldehyde, respectively. Transcriptome data and RT-qPCR (reverse transcription-quantitative real-time polymerase chain reaction) analysis uncovered the high transcriptional level of PtrMYBs (PtrMYB021, PtrMYB074, PtrMYB85, PtrMYB46), PtrC3’H1 (Potri.006G033300) and PtrCCR2 (Potri.003G181400), suggesting that they played the vital role in the increase of lignin and its metabolic intermediates were induced by high temperature. The discovery of key regulators and metabolic intermediates in lignin pathway that respond to high temperature provides a theoretical basis for quality improvement of lignin and the application of forest resources.
Collapse
Affiliation(s)
- Xianyan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Panpan Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Xingwang Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Tianyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Yuqing Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Haifeng Meng
- Tai’an Forestry Protection and Development Center, Tai’an, China
| | - Tao Xia
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, China
- *Correspondence: Tao Xia,
| |
Collapse
|
35
|
The Regulation of Xylem Development by Transcription Factors and Their Upstream MicroRNAs. Int J Mol Sci 2022; 23:ijms231710134. [PMID: 36077531 PMCID: PMC9456210 DOI: 10.3390/ijms231710134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Xylem, as a unique organizational structure of vascular plants, bears water transport and supports functions necessary for plant survival. Notably, secondary xylem in the stem (i.e., wood) also has important economic and ecological value. In view of this, the regulation of xylem development has been widely concerned. In recent years, studies on model plants Arabidopsis and poplar have shown that transcription factors play important regulatory roles in various processes of xylem development, including the directional differentiation of procambium and cambium into xylem, xylem arrangement patterns, secondary cell wall formation and programmed cell death. This review focuses on the regulatory roles of widely and thoroughly studied HD-ZIP, MYB and NAC transcription factor gene families in xylem development, and it also pays attention to the regulation of their upstream microRNAs. In addition, the existing questions in the research and future research directions are prospected.
Collapse
|
36
|
Guo L, Wang C, Chen J, Ju Y, Yu F, Jiao C, Fei Z, Ding Y, Wei Q. Cellular differentiation, hormonal gradient, and molecular alternation between the division zone and the elongation zone of bamboo internodes. PHYSIOLOGIA PLANTARUM 2022; 174:e13774. [PMID: 36050899 DOI: 10.1111/ppl.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Bamboo differentiates a cell division zone (DZ) and a cell elongation zone (EZ) to promote internode elongation during rapid growth. However, the biological mechanisms underlying this sectioned growth behavior are still unknown. Using histological, physiological, and genomic data, we found that the cell wall and other subcellular organelles such as chloroplasts are more developed in the EZ. Abundant hydrogen peroxide accumulated in the pith cells of the EZ, and stomata formed completely in the EZ. In contrast, most cells in the DZ were in an undifferentiated state with wrinkled cell walls and dense cytoplasm. Hormone detection revealed that the levels of gibberellin, auxin, cytokinin, and brassinosteroid were higher in the DZ than in the EZ. However, the levels of salicylic acid and jasmonic acid were higher in the EZ than in the DZ. Transcriptome analysis with qRT-PCR quantification revealed that the transcripts for cell division and primary metabolism had higher expression in the DZ, whereas the genes for photosynthesis, cell wall growth, and secondary metabolism were dramatically upregulated in the EZ. Overexpression of a MYB transcription factor, BmMYB83, promotes cell wall lignification in transgenic plants. BmMYB83 is specifically expressed in cells that may have lignin deposits, such as protoxylem vessels and fiber cells. Our results indicate that hormone gradient and transcriptome reprogramming, as well as specific expression of key genes such as BmMYB83, may lead to differentiation of cell growth in the bamboo internode.
Collapse
Affiliation(s)
- Lin Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chunyue Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jin Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ye Ju
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, Jiangxi, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, Jiangxi, China
| |
Collapse
|
37
|
Xiao Y, Sha G, Wang D, Gao R, Qie B, Cong L, Zhai R, Yang C, Wang Z, Xu L. PbXND1 Results in a Xylem-Deficient Dwarf Phenotype through Interaction with PbTCP4 in Pear (Pyrus bretschneideri Rehd.). Int J Mol Sci 2022; 23:ijms23158699. [PMID: 35955831 PMCID: PMC9369282 DOI: 10.3390/ijms23158699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dwarfing is an important agronomic characteristic in fruit breeding. However, due to the lack of dwarf cultivars and dwarf stocks, the dwarfing mechanism is poorly understood in pears. In this research, we discovered that the dwarf hybrid seedlings of pear (Pyrus bretschneideri Rehd.), ‘Red Zaosu,’ exhibited a xylem-deficient dwarf phenotype. The expression level of PbXND1, a suppressor of xylem development, was markedly enhanced in dwarf hybrid seedlings and its overexpression in pear results in a xylem-deficient dwarf phenotype. To further dissect the mechanism of PbXND1, PbTCP4 was isolated as a PbXND1 interaction protein through the pear yeast library. Root transformation experiments showed that PbTCP4 promotes root xylem development. Dual-luciferase assays showed that PbXND1 interactions with PbTCP4 suppressed the function of PbTCP4. PbXND1 expression resulted in a small amount of PbTCP4 sequestration in the cytoplasm and thereby prevented it from activating the gene expression, as assessed by bimolecular fluorescence complementation and co-location analyses. Additionally, PbXND1 affected the DNA-binding ability of PbTCP4, as determined by utilizing an electrophoretic mobility shift assay. These results suggest that PbXND1 regulates the function of PbTCP4 principally by affecting the DNA-binding ability of PbTCP4, whereas the cytoplasmic sequestration of PbTCP4 is only a minor factor. Taken together, this study provides new theoretical support for the extreme dwarfism associated with the absence of xylem caused by PbXND1, and it has significant reference value for the breeding of dwarf varieties and dwarf rootstocks of the pear.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lingfei Xu
- Correspondence: ; Tel.: +86-029-87081023
| |
Collapse
|
38
|
Current Understanding of the Genetics and Molecular Mechanisms Regulating Wood Formation in Plants. Genes (Basel) 2022; 13:genes13071181. [PMID: 35885964 PMCID: PMC9319765 DOI: 10.3390/genes13071181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Unlike herbaceous plants, woody plants undergo volumetric growth (a.k.a. secondary growth) through wood formation, during which the secondary xylem (i.e., wood) differentiates from the vascular cambium. Wood is the most abundant biomass on Earth and, by absorbing atmospheric carbon dioxide, functions as one of the largest carbon sinks. As a sustainable and eco-friendly energy source, lignocellulosic biomass can help address environmental pollution and the global climate crisis. Studies of Arabidopsis and poplar as model plants using various emerging research tools show that the formation and proliferation of the vascular cambium and the differentiation of xylem cells require the modulation of multiple signals, including plant hormones, transcription factors, and signaling peptides. In this review, we summarize the latest knowledge on the molecular mechanism of wood formation, one of the most important biological processes on Earth.
Collapse
|
39
|
Nookaraju A, Pandey SK, Ahlawat YK, Joshi CP. Understanding the Modus Operandi of Class II KNOX Transcription Factors in Secondary Cell Wall Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2022; 11:493. [PMID: 35214825 PMCID: PMC8880547 DOI: 10.3390/plants11040493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass from the secondary cell walls of plants has a veritable potential to provide some of the most appropriate raw materials for producing second-generation biofuels. Therefore, we must first understand how plants synthesize these complex secondary cell walls that consist of cellulose, hemicellulose, and lignin in order to deconstruct them later on into simple sugars to produce bioethanol via fermentation. Knotted-like homeobox (KNOX) genes encode homeodomain-containing transcription factors (TFs) that modulate various important developmental processes in plants. While Class I KNOX TF genes are mainly expressed in the shoot apical meristems of both monocot and eudicot plants and are involved in meristem maintenance and/or formation, Class II KNOXTF genes exhibit diverse expression patterns and their precise functions have mostly remained unknown, until recently. The expression patterns of Class II KNOX TF genes in Arabidopsis, namely KNAT3, KNAT4, KNAT5, and KNAT7, suggest that TFs encoded by at least some of these genes, such as KNAT7 and KNAT3, may play a significant role in secondary cell wall formation. Specifically, the expression of the KNAT7 gene is regulated by upstream TFs, such as SND1 and MYB46, while KNAT7 interacts with other cell wall proteins, such as KNAT3, MYB75, OFPs, and BLHs, to regulate secondary cell wall formation. Moreover, KNAT7 directly regulates the expression of some xylan synthesis genes. In this review, we summarize the current mechanistic understanding of the roles of Class II KNOX TFs in secondary cell wall formation. Recent success with the genetic manipulation of Class II KNOX TFs suggests that this may be one of the biotechnological strategies to improve plant feedstocks for bioethanol production.
Collapse
Affiliation(s)
- Akula Nookaraju
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (A.N.); (S.K.P.); (Y.K.A.)
- Kaveri Seed Company Limited, Secunderabad 500003, Telangana, India
| | - Shashank K. Pandey
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (A.N.); (S.K.P.); (Y.K.A.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Yogesh K. Ahlawat
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (A.N.); (S.K.P.); (Y.K.A.)
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Chandrashekhar P. Joshi
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (A.N.); (S.K.P.); (Y.K.A.)
| |
Collapse
|
40
|
Shi J, Yan X, Sun T, Shen Y, Shi Q, Wang W, Bao M, Luo H, Nian F, Ning G. Homeostatic regulation of flavonoid and lignin biosynthesis in phenylpropanoid pathway of transgenic tobacco. Gene 2022; 809:146017. [PMID: 34655725 DOI: 10.1016/j.gene.2021.146017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/16/2021] [Accepted: 10/11/2021] [Indexed: 11/04/2022]
Abstract
Flavonoids and lignin consist of a large number of secondarymetabolites which are derived from the phenylpropanoid pathway, and they act as a significant role in plant growth, development, and stress response. However, few reports have documented that how different subbranches of phenylpropanoid metablolic pathway mutually interact. In Arabidopsis, AtCPC (AtCAPRICE) is known to play a negative role in anthocyanin accumulation. Nonetheless, whether AtCPC could control the biosynthesis of lignin is largely unknown. Additionally, whether the RrFLS and RrANR, flavonol synthase and anthocyanidin reductase, from Rosa rugosa regulate different branches of phenylpropanoid pathway is unclear. Here, we performed a series of transgenic experiments with short life cycle tobacco and RNA-Seq analysis. Finally, a series of assays related to biological, physiological, and phenotypic characteristics were undertaken. Our results indicated that ectopic expression of AtCPC in tobacco not only decreased the flavonoid compound accumulation, but also up-regulated several lignin biosynthetic genes, and significantly increased the accumulation of lignin. Our results also revealed that although they respectively improved the flavonol and proanthocyanidin contents, the overexpression of RrFLS and RrANR plays positive roles in lignin biosynthesis in transgenic tobacco plants. Our findings provide a novel insight into the mechanism underlying homeostatic regulation of flavonoid and lignin biosynthesis in phenylpropanoid pathway of plants.
Collapse
Affiliation(s)
- Jiewei Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Yan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxiao Shen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenen Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318, USA
| | - Fuzhao Nian
- College of Tobacco Science, Yunnan Agricultural University, No.452, Fengyuan Road, Kunming, China.
| | - Guogui Ning
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
41
|
Garcia-Gimenez G, Schreiber M, Dimitroff G, Little A, Singh R, Fincher GB, Burton RA, Waugh R, Tucker MR, Houston K. Identification of candidate MYB transcription factors that influence CslF6 expression in barley grain. FRONTIERS IN PLANT SCIENCE 2022; 13:883139. [PMID: 36160970 PMCID: PMC9493323 DOI: 10.3389/fpls.2022.883139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/17/2022] [Indexed: 05/13/2023]
Abstract
(1,3;1,4)-β-Glucan is a non-cellulosic polysaccharide required for correct barley grain fill and plant development, with industrial relevance in the brewing and the functional food sector. Barley grains contain higher levels of (1,3;1,4)-β-glucan compared to other small grain cereals and this influences their end use, having undesirable effects on brewing and distilling and beneficial effects linked to human health. HvCslF6 is the main gene contributing to (1,3;1,4)-β-glucan biosynthesis in the grain. Here, the transcriptional regulation of HvCslF6 was investigated using an in-silico analysis of transcription factor binding sites (TFBS) in its putative promoter, and functional characterization in a barley protoplast transient expression system. Based on TFBS predictions, TF classes AP2/ERF, MYB, and basic helix-loop-helix (bHLH) were over-represented within a 1,000 bp proximal HvCslF6 promoter region. Dual luciferase assays based on multiple HvCslF6 deletion constructs revealed the promoter fragment driving HvCslF6 expression. Highest HvCslF6 promoter activity was narrowed down to a 51 bp region located -331 bp to -382 bp upstream of the start codon. We combined this with TFBS predictions to identify two MYB TFs: HvMYB61 and HvMYB46/83 as putative activators of HvCslF6 expression. Gene network analyses assigned HvMYB61 to the same co-expression module as HvCslF6 and other primary cellulose synthases (HvCesA1, HvCesA2, and HvCesA6), whereas HvMYB46/83 was assigned to a different module. Based on RNA-seq expression during grain development, HvMYB61 was cloned and tested in the protoplast system. The transient over-expression of HvMYB61 in barley protoplasts suggested a positive regulatory effect on HvCslF6 expression.
Collapse
Affiliation(s)
| | - Miriam Schreiber
- Plant Sciences Division, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - George Dimitroff
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Alan Little
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Rohan Singh
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey B. Fincher
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Rachel A. Burton
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Robbie Waugh
- The James Hutton Institute, Dundee, United Kingdom
- Plant Sciences Division, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthew R. Tucker
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Kelly Houston
- The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Kelly Houston,
| |
Collapse
|
42
|
Nakano Y, Endo H, Gerber L, Hori C, Ihara A, Sekimoto M, Matsumoto T, Kikuchi J, Ohtani M, Demura T. Enhancement of Secondary Cell Wall Formation in Poplar Xylem Using a Self-Reinforced System of Secondary Cell Wall-Related Transcription Factors. FRONTIERS IN PLANT SCIENCE 2022; 13:819360. [PMID: 35371169 PMCID: PMC8967175 DOI: 10.3389/fpls.2022.819360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/17/2022] [Indexed: 05/06/2023]
Abstract
The secondary cell wall (SCW) in the xylem is one of the largest sink organs of carbon in woody plants, and is considered a promising sustainable bioresource for biofuels and biomaterials. To enhance SCW formation in poplar (Populus sp.) xylem, we developed a self-reinforced system of SCW-related transcription factors from Arabidopsis thaliana, involving VASCULAR-RELATED NAC-DOMAIN7 (VND7), SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN 1/NAC SECONDARY WALL THICKENING-PROMOTING FACTOR3 (SND1/NST3), and MYB46. In this system, these transcription factors were fused with the transactivation domain VP16 and expressed under the control of the Populus trichocarpa CesA18 (PtCesA18) gene promoter, creating the chimeric genes PtCesA18pro::AtVND7:VP16, PtCesA18pro::AtSND1:VP16, and PtCesA18pro::AtMYB46:VP16. The PtCesA18 promoter is active in tissues generating SCWs, and can be regulated by AtVND7, AtSND1, and AtMYB46; thus, the expression levels of PtCesA18pro::AtVND7:VP16, PtCesA18pro::AtSND1:VP16, and PtCesA18pro::AtMYB46:VP16 are expected to be boosted in SCW-generating tissues. In the transgenic hybrid aspens (Populus tremula × tremuloides T89) expressing PtCesA18pro::AtSND1:VP16 or PtCesA18pro::AtMYB46:VP16 grown in sterile half-strength Murashige and Skoog growth medium, SCW thickening was significantly enhanced in the secondary xylem cells, while the PtCesA18pro::AtVND7:VP16 plants showed stunted xylem formation, possibly because of the enhanced programmed cell death (PCD) in the xylem regions. After acclimation, the transgenic plants were transferred from the sterile growth medium to pots of soil in the greenhouse, where only the PtCesA18pro::AtMYB46:VP16 aspens survived. A nuclear magnetic resonance footprinting cell wall analysis and enzymatic saccharification analysis demonstrated that PtCesA18pro::AtMYB46:VP16 influences cell wall properties such as the ratio of syringyl (S) and guaiacyl (G) units of lignin, the abundance of the lignin β-aryl ether and resinol bonds, and hemicellulose acetylation levels. Together, these data indicate that we have created a self-reinforced system using SCW-related transcription factors to enhance SCW accumulation.
Collapse
Affiliation(s)
- Yoshimi Nakano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hitoshi Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Lorenz Gerber
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Chiaki Hori
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ayumi Ihara
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Masayo Sekimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Misato Ohtani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- *Correspondence: Misato Ohtani,
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Taku Demura,
| |
Collapse
|
43
|
Ailizati A, Nagahage ISP, Miyagi A, Ishikawa T, Kawai-Yamada M, Demura T, Yamaguchi M. An Arabidopsis NAC domain transcriptional activator VND7 negatively regulates VNI2 expression. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:415-420. [PMID: 35087306 PMCID: PMC8761584 DOI: 10.5511/plantbiotechnology.21.1013a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/13/2021] [Indexed: 05/12/2023]
Abstract
A NAC domain transcription factor, VND-INTERACTING2 (VNI2) is originally isolated as an interacting protein with another NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), a master regulator of xylem vessel element differentiation. VND7 directly or indirectly induces expression of a number of genes associated with xylem vessel element differentiation, while VNI2 inhibits the transcriptional activation activities of VND7 by forming a protein complex. VNI2 is expressed at an earlier stage of xylem vessel element differentiation than VND7. Here, to investigate whether VND7 also affects VNI2, a transient expression assay was performed. We demonstrated that VND7 downregulated VNI2 expression. Other transcription factors involved in xylem vessel formation did not show the negative regulation of VNI2 expression. Rather, MYB83, a downstream target of VND7, upregulated VNI2 expression. By using the deletion series of the VNI2 promoter, a 400 bp region was identified as being responsible for downregulation by VND7. These data suggested that VND7 and VNI2 mutually regulate each other, and VNI2 expression is both positively and negatively regulated in the transcriptional cascade.
Collapse
Affiliation(s)
- Aili Ailizati
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | | | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
- E-mail: Tel: +81-48-858-3109 Fax: +81-48-858-3107
| |
Collapse
|
44
|
Zhuang H, Chong SL, Priyanka B, Han X, Lin E, Tong Z, Huang H. Full-length transcriptomic identification of R2R3-MYB family genes related to secondary cell wall development in Cunninghamia lanceolata (Chinese fir). BMC PLANT BIOLOGY 2021; 21:581. [PMID: 34879821 PMCID: PMC8653563 DOI: 10.1186/s12870-021-03322-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND R2R3-MYB is a class of transcription factor crucial in regulating secondary cell wall development during wood formation. The regulation of wood formation in gymnosperm has been understudied due to its large genome size. Using Single-Molecule Real-Time sequencing, we obtained full-length transcriptomic libraries from the developmental stem of Cunninghamia lanceolata, a perennial conifer known as Chinese fir. The R2R3-MYB of C. lanceolata (hereafter named as ClMYB) associated with secondary wall development were identified based on phylogenetic analysis, expression studies and functional study on transgenic line. RESULTS The evolutionary relationship of 52 ClMYBs with those from Arabidopsis thaliana, Eucalyptus grandis, Populus trichocarpa, Oryza sativa, two gymnosperm species, Pinus taeda, and Picea glauca were established by neighbour-joining phylogenetic analysis. A large number of ClMYBs resided in the woody-expanded subgroups that predominated with the members from woody dicots. In contrast, the woody-preferential subgroup strictly carrying the members of woody dicots contained only one candidate. The results suggest that the woody-expanded subgroup emerges before the gymnosperm/angiosperm split, while most of the woody-preferential subgroups are likely lineage-specific to woody dicots. Nine candidates shared the same subgroups with the A. thaliana orthologs, with known function in regulating secondary wall development. Gene expression analysis inferred that ClMYB1/2/3/4/5/26/27/49/51 might participate in secondary wall development, among which ClMYB1/2/5/26/27/49 were significantly upregulated in the highly lignified compression wood region, reinforcing their regulatory role associated with secondary wall development. ClMYB1 was experimentally proven a transcriptional activator that localised in the nucleus. The overexpression of ClMYB1 in Nicotiana benthamiana resulted in an increased lignin deposition in the stems. The members of subgroup S4, ClMYB3/4/5 shared the ERF-associated amphiphilic repression motif with AtMYB4, which is known to repress the metabolism of phenylpropanoid derived compounds. They also carried a core motif specific to gymnosperm lineage, suggesting divergence of the regulatory process compared to the angiosperms. CONCLUSIONS This work will enrich the collection of full-length gymnosperm-specific R2R3-MYBs related to stem development and contribute to understanding their evolutionary relationship with angiosperm species.
Collapse
Affiliation(s)
- Hebi Zhuang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Sun-Li Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Borah Priyanka
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Erpei Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Huahong Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| |
Collapse
|
45
|
Kim MH, Cho JS, Bae EK, Choi YI, Eom SH, Lim YJ, Lee H, Park EJ, Ko JH. PtrMYB120 functions as a positive regulator of both anthocyanin and lignin biosynthetic pathway in a hybrid poplar. TREE PHYSIOLOGY 2021; 41:2409-2423. [PMID: 34100089 DOI: 10.1093/treephys/tpab082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Both anthocyanins and lignins are essential secondary metabolites in plant growth and development. Their biosynthesis is metabolically interconnected and diverges in the central metabolite 4-coumaroyl CoA of the phenylpropanoid pathway. Considerable progress has been made in understanding transcriptional regulation of genes involved in lignin and anthocyanin synthesis pathways, but the concerted regulation of these pathways is not yet fully understood. Here, we functionally characterized PtrMYB120, a R2R3-MYB transcription factor from Populus trichocarpa. Overexpression of PtrMYB120 in a hybrid poplar (i.e., 35S::PtrMYB120) was associated with increased anthocyanin (i.e., cyanidin 3-O-glucoside) accumulation and upregulation of anthocyanin biosynthetic genes. However, transgenic poplars with dominant suppression of PtrMYB120 function achieved by fusing the ERF-associated amphiphilic repression motif to PtrMYB120 (i.e., 35S::PtrMYB120-SRDX) had a dramatic decrease in not only anthocyanin but also Klason lignin content with downregulation of both anthocyanin and lignin biosynthetic genes. Indeed, 35S::PtrMYB120-SRDX poplars had irregularly shaped xylem vessels with reduced S-lignin content in stems, which was proportionally related to the level of the introduced PtrMYB120-SRDX gene. Furthermore, protoplast-based transcriptional activation assay using the PtrMYB120-GR system suggested that PtrMYB120 directly regulates genes involved in both anthocyanin and lignin biosynthesis, including chalcone synthase and ferulate-5 hydroxylase. Interestingly, the saccharification efficiency of line #6 of 35S::PtrMYB120-SRDX poplars, which had slightly reduced lignin content with a normal growth phenotype, was dramatically enhanced (>45%) by NaOH treatment. Taken together, our results suggest that PtrMYB120 functions as a positive regulator of both anthocyanin and lignin biosynthetic pathways and can be targeted to enhance saccharification efficiency in woody perennials.
Collapse
Affiliation(s)
- Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
- Abio materials Co., Ltd., 7-44 Jamsil-gil, Cheonan 31005, Republic of Korea
| | - Eun-Kyung Bae
- Division of Forest Biotechnology, National Institute of Forest Science, 39 Onjeong-ro, Suwon 16631, Republic of Korea
| | - Young-Im Choi
- Division of Forest Biotechnology, National Institute of Forest Science, 39 Onjeong-ro, Suwon 16631, Republic of Korea
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - You Jin Lim
- Department of Horticultural Biotechnology, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Hyoshin Lee
- Department of Horticultural Biotechnology, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Eung-Jun Park
- Division of Forest Biotechnology, National Institute of Forest Science, 39 Onjeong-ro, Suwon 16631, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| |
Collapse
|
46
|
Zhang C, Zhang J, Liu Y, Liu X, Guo X, Li H, Liu D, Lu H. Integrated Transcriptomic and Proteomic Analysis in the Roadmap of the Xylem Development Stage in Populus tomentosa. FRONTIERS IN PLANT SCIENCE 2021; 12:724559. [PMID: 34804081 PMCID: PMC8600231 DOI: 10.3389/fpls.2021.724559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Xylem development plays an important role in the wood formation of plants. In this study, we found that xylem development was a rapid thickening process characterized by initially rapid increases in the number of tracheary elements and fiber cells and the thickness of the secondary walls that later plateaued. Transcriptome analysis showed that the xylan and lignin biosynthetic pathways, which are involved in the early rapid thickening of the xylem, were mainly upregulated in the second month. The expression of a total of 124 transcription factors (TFs), including 28 NAC TFs and 31 MYB TFs, peaked in 2- and 3-month-old plants compared with 1-month-old plants. Based on previous studies and the key cis-acting elements secondary wall NAC-binding elements, secondary wall MYB-responsive elements, W-box and TGTG[T/G/C], 10 TFs related to xylem development, 50 TFs with unknown function, 98 cell wall biosynthetic genes, and 47 programmed cell death (PCD) genes were used to construct a four-layer transcriptional regulatory network (TRN) with poplar NAC domain TFs to characterize the transcriptional regulation of cell wall biosynthesis and PCD in Populus tomentosa. The proteome revealed that post-transcriptional modification may be widely involved in lignification development. Overall, our results revealed that xylem development is a rapid thickening process in P. tomentosa, and expression patterns varied temporally from cell division to cell death.
Collapse
Affiliation(s)
- Chong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jiaxue Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yadi Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiatong Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaorui Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Di Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
47
|
Huang J, Chen F, Guo Y, Gan X, Yang M, Zeng W, Persson S, Li J, Xu W. GhMYB7 promotes secondary wall cellulose deposition in cotton fibres by regulating GhCesA gene expression through three distinct cis-elements. THE NEW PHYTOLOGIST 2021; 232:1718-1737. [PMID: 34245570 DOI: 10.1111/nph.17612] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Cotton fibre is the most important source for natural textiles. The secondary cell walls (SCWs) of mature cotton fibres contain the highest proportion of cellulose content (> 90%) in any plant. The onset and progression of SCW cellulose synthesis need to be tightly controlled to balance fibre elongation and cell wall deposition. However, regulatory mechanisms that control cellulose synthesis during cotton fibre growth remain elusive. Here, we conducted genetic and functional analyses demonstrating that the R2R3-MYB GhMYB7 controls cotton fibre cellulose synthesis. Overexpression of GhMYB7 in cotton sped up SCW cellulose biosynthesis in fibre cells, and led to shorter fibres with thicker walls. By contrast, RNA interference (RNAi) silencing of GhMYB7 delayed fibre SCW cellulose synthesis and resulted in elongated fibres with thinner walls. Furthermore, we demonstrated that GhMYB7 regulated cotton fibre SCW cellulose synthases by directly binding to three distinct cis-elements in the respective GhCesA4, GhCesA7 and GhCesA8 promoters. We found that this regulatory mechanism of cellulose synthesis was 'hi-jacked' also by other GhMYBs. Together, our findings uncover a hitherto-unknown mechanism that cotton fibre employs to regulate SCW cellulose synthesis. Our results also provide a strategy for genetic improvement of SCW thickness of cotton fibre.
Collapse
Affiliation(s)
- Junfeng Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Feng Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yanjun Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xinli Gan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Mingming Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wei Zeng
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Juan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wenliang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
48
|
Uncovering miRNA-mRNA Regulatory Modules in Developing Xylem of Pinus massoniana via Small RNA and Degradome Sequencing. Int J Mol Sci 2021; 22:ijms221810154. [PMID: 34576316 PMCID: PMC8472836 DOI: 10.3390/ijms221810154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
Xylem is required for the growth and development of higher plants to provide water and mineral elements. The thickening of the xylem secondary cell wall (SCW) not only improves plant survival, but also provides raw materials for industrial production. Numerous studies have found that transcription factors and non-coding RNAs regulate the process of SCW thickening. Pinus massoniana is an important woody tree species in China and is widely used to produce materials for construction, furniture, and packaging. However, the target genes of microRNAs (miRNAs) in the developing xylem of P. massoniana are not known. In this study, a total of 25 conserved miRNAs and 173 novel miRNAs were identified via small RNA sequencing, and 58 differentially expressed miRNAs were identified between the developing xylem (PM_X) and protoplasts isolated from the developing xylem (PM_XP); 26 of these miRNAs were significantly up-regulated in PM_XP compared with PM_X, and 32 were significantly down-regulated. A total of 153 target genes of 20 conserved miRNAs and 712 target genes of 113 novel miRNAs were verified by degradome sequencing. There may be conserved miRNA-mRNA modules (miRNA-MYB, miRNA-ARF, and miRNA-LAC) involved in softwood and hardwood formation. The results of qRT-PCR-based parallel validation were in relatively high agreement. This study explored the potential regulatory network of miRNAs in the developing xylem of P. massoniana and provides new insights into wood formation in coniferous species.
Collapse
|
49
|
Yu D, Janz D, Zienkiewicz K, Herrfurth C, Feussner I, Chen S, Polle A. Wood Formation under Severe Drought Invokes Adjustment of the Hormonal and Transcriptional Landscape in Poplar. Int J Mol Sci 2021; 22:9899. [PMID: 34576062 PMCID: PMC8493802 DOI: 10.3390/ijms22189899] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Drought is a severe environmental stress that exerts negative effects on plant growth. In trees, drought leads to reduced secondary growth and altered wood anatomy. The mechanisms underlying wood stress adaptation are not well understood. Here, we investigated the physiological, anatomical, hormonal, and transcriptional responses of poplar to strong drought. Drought-stressed xylem was characterized by higher vessel frequencies, smaller vessel lumina, and thicker secondary fiber cell walls. These changes were accompanied by strong increases in abscisic acid (ABA) and antagonistic changes in salicylic acid in wood. Transcriptional evidence supported ABA biosynthesis and signaling in wood. Since ABA signaling activates the fiber-thickening factor NST1, we expected upregulation of the secondary cell wall (SCW) cascade under stress. By contrast, transcription factors and biosynthesis genes for SCW formation were down-regulated, whereas a small set of cellulose synthase-like genes and a huge array of genes involved in cell wall modification were up-regulated in drought-stressed wood. Therefore, we suggest that ABA signaling monitors normal SCW biosynthesis and that drought causes a switch from normal to "stress wood" formation recruiting a dedicated set of genes for cell wall biosynthesis and remodeling. This proposition implies that drought-induced changes in cell wall properties underlie regulatory mechanisms distinct from those of normal wood.
Collapse
Affiliation(s)
- Dade Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
- Service Unit for Metabolomics and Lipidomics, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-Von-Haller Institute, University of Goettingen, 37077 Göttingen, Germany; (K.Z.); (C.H.); (I.F.)
- Service Unit for Metabolomics and Lipidomics, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
- Department of Plant Biochemistry, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
- Forest Botany and Tree Physiology, Büsgen-Institute, University of Goettingen, 37077 Göttingen, Germany;
- Department of Plant Biochemistry, Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077 Göttingen, Germany
| |
Collapse
|
50
|
Cho JS, Kim MH, Bae EK, Choi YI, Jeon HW, Han KH, Ko JH. Field evaluation of transgenic hybrid poplars with desirable wood properties and enhanced growth for biofuel production by bicistronic expression of PdGA20ox1 and PtrMYB3 in wood-forming tissue. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:177. [PMID: 34493336 PMCID: PMC8425128 DOI: 10.1186/s13068-021-02029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND To create an ideotype woody bioenergy crop with desirable growth and biomass properties, we utilized the viral 2A-meidated bicistronic expression strategy to express both PtrMYB3 (MYB46 ortholog of Populus trichocarpa, a master regulator of secondary wall biosynthesis) and PdGA20ox1 (a GA20-oxidase from Pinus densiflora that produces gibberellins) in wood-forming tissue (i.e., developing xylem). RESULTS Transgenic Arabidopsis plants expressing the gene construct DX15::PdGA20ox1-2A-PtrMYB3 showed a significant increase in both stem fresh weight (threefold) and secondary wall thickening (1.27-fold) relative to wild-type (WT) plants. Transgenic poplars harboring the same gene construct grown in a greenhouse for 60 days had a stem fresh weight up to 2.6-fold greater than that of WT plants. In a living modified organism (LMO) field test conducted for 3 months of active growing season, the stem height and diameter growth of the transgenic poplars were 1.7- and 1.6-fold higher than those of WT plants, respectively, with minimal adverse growth defects. Although no significant changes in secondary wall thickening of the stem tissue of the transgenic poplars were observed, cellulose content was increased up to 14.4 wt% compared to WT, resulting in improved saccharification efficiency of the transgenic poplars. Moreover, enhanced woody biomass production by the transgenic poplars was further validated by re-planting in the same LMO field for additional two growing seasons. CONCLUSIONS Taken together, these results show considerably enhanced wood formation of our transgenic poplars, with improved wood quality for biofuel production.
Collapse
Affiliation(s)
- Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, 446-701, Yongin, Republic of Korea
- Abio Materials Co., Ltd, Cheonan, 31005, Republic of Korea
| | - Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, 446-701, Yongin, Republic of Korea
| | - Eun-Kyung Bae
- Division of Forest Biotechnology, National Institute of Forest Science, 441-847, Suwon, Republic of Korea
| | - Young-Im Choi
- Division of Forest Biotechnology, National Institute of Forest Science, 441-847, Suwon, Republic of Korea
| | - Hyung-Woo Jeon
- Department of Plant & Environmental New Resources, Kyung Hee University, 446-701, Yongin, Republic of Korea
| | - Kyung-Hwan Han
- Department of Horticulture and Department of Forestry, Michigan State University, East Lansing, MI, 48824-1222, USA.
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 446-701, Yongin, Republic of Korea.
| |
Collapse
|