1
|
Brunet J, Inouye DW, Wilson Rankin EE, Giannini TC. Global change aggravates drought, with consequences for plant reproduction. ANNALS OF BOTANY 2025; 135:89-104. [PMID: 39692585 PMCID: PMC11805947 DOI: 10.1093/aob/mcae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND The frequency and intensity of droughts are expected to increase under global change, driven by anthropogenic climate change and water diversion. Precipitation is expected to become more episodic under climate change, with longer and warmer dry spells, although some areas might become wetter. Diversion of freshwater from lakes and rivers and groundwater pumping for irrigation of agricultural fields are lowering water availability to wild plant populations, increasing the frequency and intensity of drought. Given the importance of seasonal changes and extremes in soil moisture to influence plant reproduction, and because the majority of plants are flowering plants and most of them depend on pollinators for seed production, this review focuses on the consequences of drought on different aspects of reproduction in animal-pollinated angiosperms, emphasizing interactions among drought, flowering and pollination. SCOPE Visual and olfactory traits play crucial roles in attracting pollinators. Drought-induced floral changes can influence pollinator attraction and visitation, together with pollinator networks and flowering phenology, with subsequent effects on plant reproduction. Here, we review how drought influences these different aspects of plant reproduction. We identify knowledge gaps and highlight areas that would benefit from additional research. CONCLUSIONS Visual and olfactory traits are affected by drought, but their phenotypic responses can vary with floral sex, plant sex, population and species. Ample phenotypic plasticity to drought exists for these traits, providing an ability for a rapid response to a change in drought frequency and intensity engendered by global change. The impact of these drought-induced changes in floral traits on pollinator attraction, pollen deposition and plant reproductive success does not show a clear pattern. Drought affects the structure of plant-pollinator networks and can modify plant phenology. The impact of drought on plant reproduction is not always negative, and we need to identify plant characteristics associated with these more positive responses.
Collapse
Affiliation(s)
- Johanne Brunet
- Brunet Research, Madison, WI 53593, USA
- Vegetable Crops Research Unit, United States Department of Agriculture-Agricultural Research Service, Madison, WI 53706, USA
| | - David W Inouye
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Erin E Wilson Rankin
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Tereza C Giannini
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Belém, PA 66055-090,Brazil
| |
Collapse
|
2
|
Rose-Person A, Santiago LS, Rafferty NE. Drought stress influences foraging preference of a solitary bee on two wildflowers. ANNALS OF BOTANY 2025; 135:153-164. [PMID: 38535525 PMCID: PMC11805950 DOI: 10.1093/aob/mcae048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/25/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND AND AIMS Pollinators provide critical ecosystem services, maintaining biodiversity and benefitting global food production. However, plants, pollinators and their mutualistic interactions can be affected by drought, which has increased in severity and frequency under climate change. Using two annual, insect-pollinated wildflowers (Phacelia campanularia and Nemophila menziesii), we asked how drought impacts floral traits and foraging preferences of a solitary bee (Osmia lignaria) and explored potential implications for plant reproduction. METHODS In greenhouses, we subjected plants experimentally to drought to induce water stress, as verified by leaf water potential. To assess the impact of drought on floral traits, we measured flower size, floral display size, nectar volume and nectar sugar concentration. To explore how drought-induced effects on floral traits affected bee foraging preferences, we performed choice trials. Individual female bees were placed into foraging arenas with two conspecific plants, one droughted and one non-droughted, and were allowed to forage freely. KEY RESULTS We determined that P. campanularia is more drought tolerant than N. menziesii, based on measures of turgor loss point, and confirmed that droughted plants were more drought stressed than non-droughted plants. For droughted plants of both species, the floral display size was reduced and the flowers were smaller and produced less, more-concentrated nectar. We found that bees preferred non-droughted flowers of N. menziesii. However, bee preference for non-droughted P. campanularia flowers depended on the time of day and was detected only in the afternoon. CONCLUSIONS Our findings indicate that bees prefer to visit non-droughted flowers, probably reducing pollination success for drought-stressed plants. Lack of preference for non-droughted P. campanularia flowers in the morning might reflect the higher drought tolerance of this species. This work highlights the potentially intersecting, short-term physiological and pollinator behavioural responses to drought and suggests that such responses might reshape plant-pollinator interactions, ultimately reducing reproductive output for less drought-tolerant wildflowers.
Collapse
Affiliation(s)
- Annika Rose-Person
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Louis S Santiago
- Department of Botany & Plant Sciences, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama, Republic of Panama
| | - Nicole E Rafferty
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Day Briggs S, Anderson JT. The effect of global change on the expression and evolution of floral traits. ANNALS OF BOTANY 2025; 135:9-24. [PMID: 38606950 PMCID: PMC11805946 DOI: 10.1093/aob/mcae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Pollinators impose strong selection on floral traits, but other abiotic and biotic agents also drive the evolution of floral traits and influence plant reproduction. Global change is expected to have widespread effects on biotic and abiotic systems, resulting in novel selection on floral traits in future conditions. SCOPE Global change has depressed pollinator abundance and altered abiotic conditions, thereby exposing flowering plant species to novel suites of selective pressures. Here, we consider how biotic and abiotic factors interact to shape the expression and evolution of floral characteristics (the targets of selection), including floral size, colour, physiology, reward quantity and quality, and longevity, amongst other traits. We examine cases in which selection imposed by climatic factors conflicts with pollinator-mediated selection. Additionally, we explore how floral traits respond to environmental changes through phenotypic plasticity and how that can alter plant fecundity. Throughout this review, we evaluate how global change might shift the expression and evolution of floral phenotypes. CONCLUSIONS Floral traits evolve in response to multiple interacting agents of selection. Different agents can sometimes exert conflicting selection. For example, pollinators often prefer large flowers, but drought stress can favour the evolution of smaller flowers, and the size of floral organs can evolve as a trade-off between selection mediated by these opposing actors. Nevertheless, few studies have manipulated abiotic and biotic agents of selection factorially to disentangle their relative strengths and directions of selection. The literature has more often evaluated plastic responses of floral traits to stressors than it has considered how abiotic factors alter selection on these traits. Global change will likely alter the selective landscape through changes in the abundance and community composition of mutualists and antagonists and novel abiotic conditions. We encourage future work to consider the effects of abiotic and biotic agents of selection on floral evolution, which will enable more robust predictions about floral evolution and plant reproduction as global change progresses.
Collapse
Affiliation(s)
| | - Jill T Anderson
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Wu C, Powers JM, Hopp DZ, Campbell DR. Effects of experimental warming on floral scent, display and rewards in two subalpine herbs. ANNALS OF BOTANY 2025; 135:165-180. [PMID: 38141245 PMCID: PMC11805933 DOI: 10.1093/aob/mcad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AND AIMS Floral volatiles, visual traits and rewards mediate attraction and defence in plant-pollinator and plant-herbivore interactions, but these floral traits might be altered by global warming through direct effects of temperature or longer-term impacts on plant resources. We examined the effect of warming on floral and leaf volatile emissions, floral morphology, plant height, nectar production, and oviposition by seed predators. METHODS We used open-top chambers that warmed plants in the field by +2-3 °C on average (+6-11 °C increase in daily maxima) for 2-4 weeks across 1-3 years at three sites in Colorado, USA. Volatiles were sampled from two closely related species of subalpine Ipomopsis with different pollinators: Ipomopsis aggregata ssp. aggregata, visited mainly by hummingbirds, and Ipomopsis tenuituba ssp. tenuituba, often visited by hawkmoths. KEY RESULTS Although warming had no detected effects on leaf volatiles, the daytime floral volatiles of both I. aggregata and I. tenuituba responded in subtle ways to warming, with impacts that depended on the species, site and year. In addition to the long-term effect of warming, temperature at the time of sampling independently affected the floral volatile emissions of I. aggregata during the day and I. tenuituba at night. Warming had little effect on floral morphology for either species and it had no effect on nectar concentration, maximum inflorescence height or flower redness in I. aggregata. However, warming increased nectar production in I. aggregata by 41 %, a response that would attract more hummingbird visits, and it reduced oviposition by fly seed predators by ≥72 %. CONCLUSIONS Our results suggest that floral traits can show different levels of plasticity to temperature changes in subalpine environments, with potential effects on animal behaviours that help or hinder plant reproduction. They also illustrate the need for more long-term field warming studies, as shown by responses of floral volatiles in different ways to weeks of warming vs. temperature at the time of sampling.
Collapse
Affiliation(s)
- Carrie Wu
- Department of Biology, University of Richmond, Richmond, VA, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - John M Powers
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - David Z Hopp
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- Department of Natural and Environmental Sciences, Western Colorado University, Gunnison, CO, USA
| | - Diane R Campbell
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|
5
|
Powers JM, Briggs HM, Campbell DR. Natural selection on floral volatiles and other traits can change with snowmelt timing and summer precipitation. THE NEW PHYTOLOGIST 2025; 245:332-346. [PMID: 39329349 PMCID: PMC11617657 DOI: 10.1111/nph.20157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Climate change is disrupting floral traits that mediate mutualistic and antagonistic species interactions. Plastic responses of these traits to multiple shifting conditions may be adaptive, depending on natural selection in new environments. We manipulated snowmelt date over three seasons (3-11 d earlier) in factorial combination with growing-season precipitation (normal, halved, or doubled) to measure plastic responses of volatile emissions and other floral traits in Ipomopsis aggregata. We quantified how precipitation and early snowmelt affected selection on traits by seed predators and pollinators. Within years, floral emissions did not respond to precipitation treatments but shifted with snowmelt treatment depending on the year. Across 3 yr, emissions correlated with both precipitation and snowmelt date. These effects were driven by changes in soil moisture. Selection on several traits changed with earlier snowmelt or reduced precipitation, in some cases driven by predispersal seed predation. Floral trait plasticity was not generally adaptive. Floral volatile emissions shifted in the face of two effects of climate change, and the new environments modulated selection imposed by interacting species. The complexity of the responses underscores the need for more studies of how climate change will affect floral volatiles and other floral traits.
Collapse
Affiliation(s)
- John M. Powers
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
- Rocky Mountain Biological LaboratoryCrested ButteCO81224USA
| | - Heather M. Briggs
- Rocky Mountain Biological LaboratoryCrested ButteCO81224USA
- College of ScienceUniversity of UtahSalt Lake CityUT84102USA
| | - Diane R. Campbell
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
- Rocky Mountain Biological LaboratoryCrested ButteCO81224USA
| |
Collapse
|
6
|
Blanco-Moreno C, Wayman KA, Tomescu AMF. Exploring geography and evolutionary history as drivers of variation in floral scent chemistry in western sessile-flowered Trillium using parsimony-constrained phylogenetics. ANNALS OF BOTANY 2024; 134:843-862. [PMID: 39078941 PMCID: PMC11560366 DOI: 10.1093/aob/mcae120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/26/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND AND AIMS The sessile-flowered Trillium species from western North America have been challenging to distinguish morphologically owing to overlapping characters and intraspecific variation. Molecular phylogenetic analyses, currently inconclusive for this group, have not sampled multiple populations of the different species to account for this. Here, we query the diversity of floral volatile composition to understand its bearings on the taxonomy, distribution and evolution of this group. METHODS We explored taxonomic and geographical patterns in average floral volatile composition (105 different compounds) among 42 wild populations of four sessile-flowered Trillium species and the outgroup, Pseudotrillium, in California, Oregon and Washington, by means of parsimony-constrained phylogenetic analyses. To assess the influence of character construction, we coded compound abundance in three different ways for the phylogenetic analyses and compared the results with those of statistical analyses using the same dataset and previously published statistical analyses. KEY RESULTS Different codings of floral volatile composition generated different phylogenetic topologies with different levels of resolution. The different phylogenies provide similar answers to taxonomic questions but support different evolutionary histories. Monophyly of most populations of each taxon suggests that floral scent composition bears phylogenetic signal in the western sessile-flowered Trillium. Lack of correlation between the distribution of populations and their position in scent-based phylogenies does not support a geographical signal in floral scent composition. CONCLUSIONS Floral scent composition is a valuable data source for generating phylogenetic hypotheses. The way in which scent composition is coded into characters is important. The phylogenetic patterns supported by floral volatile compounds are incongruent with previously reported phylogenies of the western sessile-flowered Trillium obtained using molecular or morphological data. Combination of floral scent data with gene sequence data and detailed morphological data from multiple populations of each species in future studies is needed for understanding the evolutionary history of western sessile-flowered Trillium.
Collapse
Affiliation(s)
- Candela Blanco-Moreno
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA 95521, USA
| | - Kjirsten A Wayman
- Department of Chemistry, California State Polytechnic University, Humboldt, Arcata, CA 95521, USA
| | - Alexandru M F Tomescu
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA 95521, USA
| |
Collapse
|
7
|
Barman M, Tenhaken R, Dötterl S. Negative and sex-specific effects of drought on flower production, resources and pollinator visitation, but not on floral scent in monoecious Cucurbita pepo. THE NEW PHYTOLOGIST 2024; 244:1013-1023. [PMID: 39117354 DOI: 10.1111/nph.20016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 08/10/2024]
Abstract
The globally changing climatic condition is increasing the incidences of drought in several parts of the world. This is predicted and already shown to not only impact plant growth and flower development, but also plant-pollinator interactions and the pollination success of entomophilous plants. However, there is a large gap in our understanding of how drought affects the different flowers and pollen transfer among flowers in sexually polymorphic species. Here, we evaluated in monoecious Styrian oil pumpkin, and separately for female and male flowers, the responses of drought stress on flower production, petal size, nectar, floral scent and visitation by bumblebee pollinators. Drought stress adversely affected all floral traits studied, except floral scent. Although both flower sexes were adversely affected by drought stress, the effects were more severe on female flowers, with most of the female flowers even aborted before opening. The drought had negative effects on floral visitation by the pollinators, which generally preferred female flowers. Overall, our study highlights that the two flower sexes of a monoecious plant species are differently affected by drought stress and calls for further investigations to better understand the cues used by the pollinators to discriminate against male flowers and against flowers of drought-stressed plants.
Collapse
Affiliation(s)
- Monica Barman
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany
| | - Raimund Tenhaken
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
| | - Stefan Dötterl
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
| |
Collapse
|
8
|
Buchmann SL, Papaj DR. Hung out to dry: diminished flowers offer less to pollinators and us. THE NEW PHYTOLOGIST 2024; 244:746-748. [PMID: 39117350 DOI: 10.1111/nph.19975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This article is a Commentary on Barman et al. (2024), 244: 1013–1023.
Collapse
Affiliation(s)
- Stephen L Buchmann
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Daniel R Papaj
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
9
|
Reinecke A, Flaig IC, Lozano YM, Rillig MC, Hilker M. Drought induces moderate, diverse changes in the odour of grassland species. PHYTOCHEMISTRY 2024; 221:114040. [PMID: 38428627 DOI: 10.1016/j.phytochem.2024.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Plants react to drought stress with numerous changes including altered emissions of volatile organic compounds (VOC) from leaves, which provide protection against oxidative tissue damage and mediate numerous biotic interactions. Despite the share of grasslands in the terrestrial biosphere, their importance as carbon sinks and their contribution to global biodiversity, little is known about the influence of drought on VOC profiles of grassland species. Using coupled gas chromatography-mass spectrometry, we analysed the odorants emitted by 22 European grassland species exposed to an eight-week-lasting drought treatment (DT; 30% water holding capacity, WHC). We focused on the odorants emitted during the light phase from whole plant shoots in their vegetative stage. Emission rates were standardised to the dry weight of each shoot. Well-watered (WW) plants (70% WHC) served as control. Drought-induced significant changes included an increase in total emission rates of plant VOC in six and a decrease in three species. Diverging effects on the number of emitted VOC (chemical richness) or on the Shannon diversity of the VOC profiles were detected in 13 species. Biosynthetic pathways-targeted analyses revealed 13 species showing drought-induced higher emission rates of VOC from one, two, three, or four major biosynthetic pathways (lipoxygenase, shikimate, mevalonate and methylerythritol phosphate pathway), while six species exhibited reduced emission rates from one or two of these pathways. Similarity trees of odorant profiles and their drought-induced changes based on a biosynthetically informed distance metric did not match species phylogeny. However, a phylogenetic signal was detected for the amount of terpenoids released by the studied species under WW and DT conditions. A comparative analysis of emission rates of single compounds released by WW and DT plants revealed significant VOC profile dissimilarities in four species only. The moderate drought-induced changes in the odorant emissions of grassland species are discussed with respect to their impact on trophic interactions across the food web. (294 words).
Collapse
Affiliation(s)
- Andreas Reinecke
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany.
| | - Isabelle C Flaig
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Yudi M Lozano
- Freie Universität Berlin, Inst. of Biology, Plant Ecology, Altensteinstr. 6, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Inst. of Biology, Plant Ecology, Altensteinstr. 6, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Monika Hilker
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| |
Collapse
|
10
|
Lo MM, Benfodda Z, Molinié R, Meffre P. Volatile Organic Compounds Emitted by Flowers: Ecological Roles, Production by Plants, Extraction, and Identification. PLANTS (BASEL, SWITZERLAND) 2024; 13:417. [PMID: 38337950 PMCID: PMC10857460 DOI: 10.3390/plants13030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Volatile organic compounds (VOCs) with a large chemical diversity are emitted by plant flowers. These compounds play an important role in the ecology of plants. This review presents the different ecological roles of VOCs present in the odor plumes of plant flowers, such as pollination, defense, adaptation to their environment, and communication with other organisms. The production and accumulation sites of VOCs in plants with their spatial and temporal variations, including environmental issues, are also summarized. To evaluate the qualitative and quantitative chemical composition of VOCs, several methods of extraction and analysis were used. Headspace (HS) sampling coupled with solid phase microextraction (SPME) is now well-developed for the extraction process. Parameters are known, and several fibers are now available to optimize this extraction. Most of the time, SPME is coupled with gas chromatography-mass spectrometry (GC-MS) to determine the structural identification of the VOCs, paying attention to the use of several complementary methods for identification like the use of databases, retention indices, and, when available, comparison with authentic standards analyses. The development of the knowledge on VOCs emitted by flowers is of great importance for plant ecology in the context of environmental and climate changes.
Collapse
Affiliation(s)
- Mame-Marietou Lo
- UPR Détection, Évaluation, Gestion des Risques CHROniques et éMErgents (CHROME), UNIV. NIMES, CEDEX 1, F-30021 Nîmes, France; (M.-M.L.); (Z.B.)
| | - Zohra Benfodda
- UPR Détection, Évaluation, Gestion des Risques CHROniques et éMErgents (CHROME), UNIV. NIMES, CEDEX 1, F-30021 Nîmes, France; (M.-M.L.); (Z.B.)
| | - Roland Molinié
- UMR INRAE 1158 Transfrontaliére BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UPJV, UFR de Pharmacie, F-80037 Amiens, France;
| | - Patrick Meffre
- UPR Détection, Évaluation, Gestion des Risques CHROniques et éMErgents (CHROME), UNIV. NIMES, CEDEX 1, F-30021 Nîmes, France; (M.-M.L.); (Z.B.)
| |
Collapse
|
11
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
12
|
Wayman KA, Reilly MJ, Petlewski AR. Taxonomic insights from floral scents of western North American sessile-flowered Trillium. AMERICAN JOURNAL OF BOTANY 2023; 110:e16255. [PMID: 37938811 DOI: 10.1002/ajb2.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
PREMISE Chemical composition of floral volatiles can be an important complement to morphological characters in describing and identifying species. Four of the five species of western sessile-flowered Trillium are challenging to distinguish morphologically due to wide intraspecific variation and overlapping characters among taxa. Characterizing their floral volatile compositions could aid future taxonomic, ecological, and evolutionary studies of Trillium and related taxa. We addressed two major questions: How do western sessile Trillium taxa vary in floral chemistry? Can floral scent be used to distinguish species? METHODS We collected petals from 600 individuals at 42 wild populations of four sessile Trillium species across California, Oregon, and Washington. Volatile organic compounds from the petals were extracted using solid-phase microextraction, and the volatiles were identified and quantified by gas chromatography-mass spectrometry. The utility of floral scent composition in distinguishing species was tested using nonmetric multidimensional scaling and random forest analysis. RESULTS Floral volatiles of the white-petaled T. albidum were dominated by oxygenated monoterpenes and showed considerable geographic variation that paralleled morphological variation. The maroon-petaled T. angustipetalum and T. kurabayashii produced floral scents characterized by aliphatic esters, but each had a distinct chemical composition. Petal color of Trillium chloropetalum is highly variable, as were its scent compositions, which were blends of volatiles from both white-petaled and maroon-petaled congeneric taxa. CONCLUSIONS Differences in floral scent compositions are consistent with current taxonomy of the western sessile Trillium group. In cases where species delimitations are difficult based on morphology, floral scent composition provides taxonomic insight and suggests a potential hybrid origin for T. chloropetalum.
Collapse
Affiliation(s)
- Kjirsten A Wayman
- Department of Chemistry, California State Polytechnic University, Humboldt, Arcata, CA, 95521, USA
| | - Matthew J Reilly
- USDA Forest Service, Western Wildland Environmental Threat Assessment Center, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
| | - Alaina R Petlewski
- Department of Chemistry, California State Polytechnic University, Humboldt, Arcata, CA, 95521, USA
| |
Collapse
|
13
|
Jiao R, Wu B, Liang Z, Gao P, Gao X. GLV reveal species differences and responses to environment in alpine shrub Rosa sericea complex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166146. [PMID: 37595914 DOI: 10.1016/j.scitotenv.2023.166146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 08/06/2023] [Indexed: 08/20/2023]
Abstract
Plant Volatile components are an ecological adaptation mechanism of plants that can reflect species differences and environment information where it is located. The alpine shrub Rosa sericea complex consists of several allied species, which are morphologically similar and difficult to distinguish, they are typical distribution along the elevation in the Himalayas and the Transverse Ranges. We selected two typical areas to find that the different species could be distinguished by their "green leaf volatile components" (GLV) composition as well as their geographical location, and it was evident that species with glands had higher sesquiterpene content. Correlation analysis revealed the relation between volatile components and ecology factors (climate factors, soil factors, phyllospheric microorganisms). Our study adds a new perspective and basis for the environmental adaptations of different species in the alpine shrub Rosa sericea complex from a chemical ecology perspective.
Collapse
Affiliation(s)
- Ruifang Jiao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Bohan Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlong Liang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Gao
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Xinfen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
14
|
Kitavi M, Gemenet DC, Wood JC, Hamilton JP, Wu S, Fei Z, Khan A, Buell CR. Identification of genes associated with abiotic stress tolerance in sweetpotato using weighted gene co-expression network analysis. PLANT DIRECT 2023; 7:e532. [PMID: 37794882 PMCID: PMC10546384 DOI: 10.1002/pld3.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/22/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Sweetpotato, Ipomoea batatas (L.), a key food security crop, is negatively impacted by heat, drought, and salinity stress. The orange-fleshed sweetpotato cultivar "Beauregard" was exposed to heat, salt, and drought treatments for 24 and 48 h to identify genes responding to each stress condition in leaves. Analysis revealed both common (35 up regulated, 259 down regulated genes in the three stress conditions) and unique sets of up regulated (1337 genes by drought, 516 genes by heat, and 97 genes by salt stress) and down regulated (2445 genes by drought, 678 genes by heat, and 204 genes by salt stress) differentially expressed genes (DEGs) suggesting common, yet stress-specific transcriptional responses to these three abiotic stressors. Gene Ontology analysis of down regulated DEGs common to both heat and salt stress revealed enrichment of terms associated with "cell population proliferation" suggestive of an impact on the cell cycle by the two stress conditions. To identify shared and unique gene co-expression networks under multiple abiotic stress conditions, weighted gene co-expression network analysis was performed using gene expression profiles from heat, salt, and drought stress treated 'Beauregard' leaves yielding 18 co-expression modules. One module was enriched for "response to water deprivation," "response to abscisic acid," and "nitrate transport" indicating synergetic crosstalk between nitrogen, water, and phytohormones with genes encoding osmotin, cell expansion, and cell wall modification proteins present as key hub genes in this drought-associated module. This research lays the groundwork for exploring to a further degree, mechanisms for abiotic stress tolerance in sweetpotato.
Collapse
Affiliation(s)
- Mercy Kitavi
- Research Technology Support Facility (RTSF)Michigan State UniversityEast LansingMichiganUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - Dorcus C. Gemenet
- International Potato CenterLimaPeru
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF HouseNairobiKenya
| | - Joshua C. Wood
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - John P. Hamilton
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop & Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Shan Wu
- Boyce Thompson InstituteCornell UniversityIthacaNew YorkUSA
| | - Zhangjun Fei
- Boyce Thompson InstituteCornell UniversityIthacaNew YorkUSA
| | - Awais Khan
- International Potato CenterLimaPeru
- Present address:
Plant Pathology and Plant‐Microbe Biology Section, School of Integrative Plant ScienceCornell UniversityGenevaNew YorkUSA
| | - C. Robin Buell
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop & Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Institute of Plant Breeding, Genetics, & GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
15
|
Claude SJ, Raman G, Park SJ. Comparative Analysis and Identification of Terpene Synthase Genes in Convallaria keiskei Leaf, Flower and Root Using RNA-Sequencing Profiling. PLANTS (BASEL, SWITZERLAND) 2023; 12:2797. [PMID: 37570951 PMCID: PMC10421360 DOI: 10.3390/plants12152797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
The 'Lilly of the Valley' species, Convallaria, is renowned for its fragrant white flowers and distinctive fresh and green floral scent, attributed to a rich composition of volatile organic compounds (VOCs). However, the molecular mechanisms underlying the biosynthesis of this floral scent remain poorly understood due to a lack of transcriptomic data. In this study, we conducted the first comparative transcriptome analysis of C. keiskei, encompassing the leaf, flower, and root tissues. Our aim was to investigate the terpene synthase (TPS) genes and differential gene expression (DEG) patterns associated with essential oil biosynthesis. Through de novo assembly, we generated a substantial number of unigenes, with the highest count in the root (146,550), followed by the flower (116,434) and the leaf (72,044). Among the identified unigenes, we focused on fifteen putative ckTPS genes, which are involved in the synthesis of mono- and sesquiterpenes, the key aromatic compounds responsible for the essential oil biosynthesis in C. keiskei. The expression of these genes was validated using quantitative PCR analysis. Both DEG and qPCR analyses revealed the presence of ckTPS genes in the flower transcriptome, responsible for the synthesis of various compounds such as geraniol, germacrene, kaurene, linalool, nerolidol, trans-ocimene and valencene. The leaf transcriptome exhibited genes related to the biosynthesis of kaurene and trans-ocimene. In the root, the identified unigenes were associated with synthesizing kaurene, trans-ocimene and valencene. Both analyses indicated that the genes involved in mono- and sesquiterpene biosynthesis are more highly expressed in the flower compared to the leaf and root. This comprehensive study provides valuable resources for future investigations aiming to unravel the essential oil-biosynthesis-related genes in the Convallaria genus.
Collapse
Affiliation(s)
| | | | - Seon-Joo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
16
|
LI L, JIA X, QIN L. Advances in the study of key genes and transcription factors regulating the mevalonate synthesis pathway in Edible and medicinal plants. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.127922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Lei LI
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, China; Key Laboratory of Basic Pharmacology of Ministry of Education, China; Zunyi Medical University, China
| | - Xiaohuan JIA
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, China; Key Laboratory of Basic Pharmacology of Ministry of Education, China; Zunyi Medical University, China
| | - Lin QIN
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, China; Key Laboratory of Basic Pharmacology of Ministry of Education, China; Zunyi Medical University, China
| |
Collapse
|
17
|
In Silico Genome-Wide Mining and Analysis of Terpene Synthase Gene Family in Hevea Brasiliensis. Biochem Genet 2022; 61:1185-1209. [DOI: 10.1007/s10528-022-10311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
|
18
|
Eisen KE, Ma R, Raguso RA. Among- and within-population variation in morphology, rewards, and scent in a hawkmoth-pollinated plant. AMERICAN JOURNAL OF BOTANY 2022; 109:1794-1810. [PMID: 35762273 DOI: 10.1002/ajb2.16030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Floral scent is a complex trait that mediates many plant-insect interactions, but our understanding of how floral scent variation evolves, either independently or in concert with other traits, remains limited. Assessing variation in floral scent at multiple levels of biological organization and comparing patterns of variation in scent to variation in other floral traits can contribute to our understanding of how scent variation evolves in nature. METHODS We used a greenhouse common garden experiment to investigate variation in floral scent at three scales-within plants, among plants, and among populations-and to determine whether scent, alone or in combination with morphology and rewards, contributes to population differentiation in Oenothera cespitosa subsp. marginata. Its range spans most of the biomes in the western United States, such that variation in both the abiotic and biotic environment could contribute to trait variation. RESULTS Multiple analytical approaches demonstrated substantial variation among and within populations in compound-specific and total floral scent measures. Overall, populations were differentiated in morphology and reward traits and in scent. Across populations, coupled patterns of variation in linalool, leucine-derived compounds, and hypanthium length are consistent with a long-tongued moth pollination syndrome. CONCLUSIONS The considerable variation in floral scent detected within populations suggests that, similar to other floral traits, variation in floral scent may have a heritable genetic component. Differences in patterns of population differentiation in floral scent and in morphology and rewards indicate that these traits may be shaped by different selective pressures.
Collapse
Affiliation(s)
- Katherine E Eisen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Biology, Lund University, Lund, Sweden
| | - Rong Ma
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
19
|
Campbell DR, Raguso RA, Midzik M, Bischoff M, Broadhead GT. Genetic and spatial variation in vegetative and floral traits across a hybrid zone. AMERICAN JOURNAL OF BOTANY 2022; 109:1780-1793. [PMID: 36193908 PMCID: PMC9828138 DOI: 10.1002/ajb2.16067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Genetic variation influences the potential for evolution to rescue populations from impacts of environmental change. Most studies of genetic variation in fitness-related traits focus on either vegetative or floral traits, with few on floral scent. How vegetative and floral traits compare in potential for adaptive evolution is poorly understood. METHODS We measured variation across source populations, planting sites, and genetic families for vegetative and floral traits in a hybrid zone. Seeds from families of Ipomopsis aggregata, I. tenuituba, and F1 and F2 hybrids of the two species were planted into three common gardens. Measured traits included specific leaf area (SLA), trichomes, water-use efficiency (WUE), floral morphology, petal color, nectar, and floral volatiles. RESULTS Vegetative traits SLA and WUE varied greatly among planting sites, while showing weak or no genetic variation among source populations. Specific leaf area and trichomes responded plastically to snowmelt date, and SLA exhibited within-population genetic variation. All aspects of floral morphology varied genetically among source populations, and corolla length, corolla width, and sepal width varied genetically within populations. Heritability was not detected for volatiles due to high environmental variation, although one terpene had high evolvability, and high emission of two terpenes, a class of compounds emitted more strongly from the calyx than the corolla, correlated genetically with sepal width. Environmental variation across sites was weak for floral morphology and stronger for volatiles and vegetative traits. The inheritance of three of four volatiles departed from additive. CONCLUSIONS Results indicate stronger genetic potential for evolutionary responses to selection in floral morphology compared with scent and vegetative traits and suggest potentially adaptive plasticity in some vegetative traits.
Collapse
Affiliation(s)
- Diane R. Campbell
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
- Rocky Mountain Biological LaboratoryCrested ButteCO81224USA
| | - Robert A. Raguso
- Department of Neurobiology and BehaviorCornell UniversityIthacaNY14853USA
| | - Maya Midzik
- Rocky Mountain Biological LaboratoryCrested ButteCO81224USA
| | - Mascha Bischoff
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCA92697USA
- Rocky Mountain Biological LaboratoryCrested ButteCO81224USA
- Department of Neurobiology and BehaviorCornell UniversityIthacaNY14853USA
- Environmental Research Institute, North Highland CollegeCastle StreetThursoKW14 7JDUK
| | | |
Collapse
|
20
|
Eisen KE, Powers JM, Raguso RA, Campbell DR. An analytical pipeline to support robust research on the ecology, evolution, and function of floral volatiles. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1006416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research on floral volatiles has grown substantially in the last 20 years, which has generated insights into their diversity and prevalence. These studies have paved the way for new research that explores the evolutionary origins and ecological consequences of different types of variation in floral scent, including community-level, functional, and environmentally induced variation. However, to address these types of questions, novel approaches are needed that can handle large sample sizes, provide quality control measures, and make volatile research more transparent and accessible, particularly for scientists without prior experience in this field. Drawing upon a literature review and our own experiences, we present a set of best practices for next-generation research in floral scent. We outline methods for data collection (experimental designs, methods for conducting field collections, analytical chemistry, compound identification) and data analysis (statistical analysis, database integration) that will facilitate the generation and interpretation of quality data. For the intermediate step of data processing, we created the R package bouquet, which provides a data analysis pipeline. The package contains functions that enable users to convert chromatographic peak integrations to a filtered data table that can be used in subsequent statistical analyses. This package includes default settings for filtering out non-floral compounds, including background contamination, based on our best-practice guidelines, but functions and workflows can be easily customized as necessary. Next-generation research into the ecology and evolution of floral scent has the potential to generate broadly relevant insights into how complex traits evolve, their genomic architecture, and their consequences for ecological interactions. In order to fulfill this potential, the methodology of floral scent studies needs to become more transparent and reproducible. By outlining best practices throughout the lifecycle of a project, from experimental design to statistical analysis, and providing an R package that standardizes the data processing pipeline, we provide a resource for new and seasoned researchers in this field and in adjacent fields, where high-throughput and multi-dimensional datasets are common.
Collapse
|
21
|
Skogen KA, Jogesh T, Hilpman ET, Todd SL, Raguso RA. Extensive population-level sampling reveals clinal variation in (R)-(-)-linalool produced by the flowers of an endemic evening primrose, Oenothera harringtonii. PHYTOCHEMISTRY 2022; 200:113185. [PMID: 35436476 DOI: 10.1016/j.phytochem.2022.113185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The study of floral trait diversity has a long history due to its role in angiosperm diversification. While many studies have focused on visual traits including morphology and color, few have included floral scent despite its importance in pollination. Of the studies that have included floral scent, sampling has been limited and rarely explores variation at the population level. We studied geographic variation in the flowers of Oenothera harringtonii, a rare plant endemic to a vulnerable shortgrass prairie habitat, whose population structure and conservation status are well studied. The self-incompatible flowers of O. harringtonii open at dusk, produce nectar and a strong fragrance, and are pollinated by hawkmoths. We collected floral trait (morphology, scent chemistry and emission rates) data from 650 individuals from 19 wild populations to survey floral variation across the entire range of this species. Similarly, we collected floral data from 49 individuals grown in a greenhouse common garden, to assess whether variation observed in the field is consistent when environment factors (temperature, watering regime, soil) are standardized. We identified 35 floral volatiles representing 5 biosynthetic classes. Population differentiation was stronger for floral scent chemistry than floral morphology. (R)-(-)-linalool was the most important floral trait differentiating populations, exhibiting clinal variation across the distribution of O. harringtonii without any correlated shifts in floral morphology. Populations in the north and west produced (R)-(-)-linalool consistently, those in the east and south largely lacked it, and populations at the center of the distribution were polymorphic. Floral scent emissions in wild populations varied across four years but chemical composition was largely consistent over time. Similarly, volatile emission rates and chemical composition in greenhouse-grown plants were consistent with those of wild populations of origin. Our data set, which represents the most extensive population-level survey of floral scent to date, indicates that such sampling may be needed to capture potentially adaptive geographic variation in wild populations.
Collapse
Affiliation(s)
- Krissa A Skogen
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA.
| | - Tania Jogesh
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA
| | - Evan T Hilpman
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA; School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Sadie L Todd
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA; Iowa Department of Agriculture and Land Stewardship, Ankeny, IA, 50023, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
22
|
Keefover-Ring K, Hetherington MC, Brunet J. Population-specific responses of floral volatiles to abiotic factors in changing environments. AMERICAN JOURNAL OF BOTANY 2022; 109:676-688. [PMID: 35435247 DOI: 10.1002/ajb2.1846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Shifts in abiotic factors can affect many plant traits, including floral volatiles. This study examined the response of floral volatiles to water availability and whether phenotypic plasticity to water availability differs among populations. It also investigated genetic differentiation in floral volatiles, determined the effect of temperature on phenotypic plasticity to water availability, and assessed temporal variation in floral scent emission between day and evening, since pollinator visitation differs at those times. METHODS Rocky Mountain columbine plants (Aquilegia coerulea), started from seeds collected in three wild populations in Colorado, Utah, and Arizona, were grown under two water treatments in a greenhouse in Madison, Wisconsin, United States. One population was also grown under the two water treatments, at two temperatures. Air samples were collected from enclosed flowers using dynamic headspace methods and floral volatiles were identified and quantified by gas chromatography (GC) with mass spectrometry (MS). RESULTS Emission of three floral volatiles increased in the wetter environment, indicating phenotypic plasticity. The response of six floral volatiles to water availability differed among populations, suggesting genetic differentiation in phenotypic plasticity. Five floral volatiles varied among populations, and emission of most floral volatiles was greater during the day. CONCLUSIONS Phenotypic plasticity to water availability permits a quick response of floral volatiles in changing environments. The genetic differentiation in phenotypic plasticity suggests that phenotypic plasticity can evolve but complicates predictions of the effects of environmental changes on a plant and its pollinators.
Collapse
Affiliation(s)
- Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | | | - Johanne Brunet
- Vegetable Crops Research Unit, United States Department of Agriculture, Agricultural Research Service, Madison, 53706, WI, USA
| |
Collapse
|
23
|
Campbell DR, Bischoff M, Raguso RA, Briggs HM, Sosenski P. Selection of Floral Traits by Pollinators and Seed Predators during Sequential Life History Stages. Am Nat 2022; 199:808-823. [DOI: 10.1086/716740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Diane R. Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
| | - Mascha Bischoff
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
- Environmental Research Institute, North Highland College, Castle Street, Thurso KW14 7JD, United Kingdom
| | - Robert A. Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - Heather M. Briggs
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
| | - Paula Sosenski
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92617
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224
- Consejo Nacional de Ciencia y Tecnología (CONACYT)–Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
24
|
Yan Y, Li M, Zhang X, Kong W, Bendahmane M, Bao M, Fu X. Tissue-Specific Expression of the Terpene Synthase Family Genes in Rosa chinensis and Effect of Abiotic Stress Conditions. Genes (Basel) 2022; 13:genes13030547. [PMID: 35328100 PMCID: PMC8950262 DOI: 10.3390/genes13030547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 01/22/2023] Open
Abstract
Rose (Rosa chinensis) is one of the most famous ornamental plants worldwide, with a variety of colors and fragrances. Terpene synthases (TPSs) play critical roles in the biosynthesis of terpenes. In this work, we report a comprehensive study on the genome-wide identification and characterization of the TPS family in R. chinensis. We identified 49 TPS genes in the R. chinensis genome, and they were grouped into five subfamilies (TPS-a, TPS-b, TPS-c, TPS-g and TPS-e/f). Phylogenetics, gene structure and conserved motif analyses indicated that the RcTPS genes possessed relatively conserved gene structures and the RcTPS proteins contained relatively conserved motifs. Multiple putative cis-acting elements involved in the stress response were identified in the promoter region of RcTPS genes, suggesting that some could be regulated by stress. The expression profile of RcTPS genes showed that they were predominantly expressed in the petals of open flowers, pistils, leaves and roots. Under osmotic and heat stresses, the expression of most RcTPS genes was upregulated. These data provide a useful foundation for deciphering the functional roles of RcTPS genes during plant growth as well as addressing the link between terpene biosynthesis and abiotic stress responses in roses.
Collapse
Affiliation(s)
- Yuhang Yan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (M.L.); (M.B.)
| | - Mouliang Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (M.L.); (M.B.)
| | - Xiaoni Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (W.K.)
| | - Weilong Kong
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.Z.); (W.K.)
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Development des Plantes, Ecole Normale Supérieure Lyon, 520074 Lyon, France;
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (M.L.); (M.B.)
| | - Xiaopeng Fu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (M.L.); (M.B.)
- Correspondence: ; Tel.: +86-159-2625-8658; Fax: +86-027-8728-2010
| |
Collapse
|
25
|
Hart EH, Christofides SR, Davies TE, Rees Stevens P, Creevey CJ, Müller CT, Rogers HJ, Kingston-Smith AH. Forage grass growth under future climate change scenarios affects fermentation and ruminant efficiency. Sci Rep 2022; 12:4454. [PMID: 35292703 PMCID: PMC8924208 DOI: 10.1038/s41598-022-08309-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
With an increasing human population access to ruminant products is an important factor in global food supply. While ruminants contribute to climate change, climate change could also affect ruminant production. Here we investigated how the plant response to climate change affects forage quality and subsequent rumen fermentation. Models of near future climate change (2050) predict increases in temperature, CO2, precipitation and altered weather systems which will produce stress responses in field crops. We hypothesised that pre-exposure to altered climate conditions causes compositional changes and also primes plant cells such that their post-ingestion metabolic response to the rumen is altered. This “stress memory” effect was investigated by screening ten forage grass varieties in five differing climate scenarios, including current climate (2020), future climate (2050), or future climate plus flooding, drought or heat shock. While varietal differences in fermentation were detected in terms of gas production, there was little effect of elevated temperature or CO2 compared with controls (2020). All varieties consistently showed decreased digestibility linked to decreased methane production as a result of drought or an acute flood treatment. These results indicate that efforts to breed future forage varieties should target tolerance of acute stress rather than long term climate.
Collapse
Affiliation(s)
- Elizabeth H Hart
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3FG, UK
| | - Sarah R Christofides
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Teri E Davies
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3FG, UK
| | - Pauline Rees Stevens
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3FG, UK
| | | | - Carsten T Müller
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3FG, UK.
| |
Collapse
|
26
|
Mostafa S, Wang Y, Zeng W, Jin B. Floral Scents and Fruit Aromas: Functions, Compositions, Biosynthesis, and Regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:860157. [PMID: 35360336 PMCID: PMC8961363 DOI: 10.3389/fpls.2022.860157] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/09/2022] [Indexed: 05/27/2023]
Abstract
Floral scents and fruit aromas are crucial volatile organic compounds (VOCs) in plants. They are used in defense mechanisms, along with mechanisms to attract pollinators and seed dispersers. In addition, they are economically important for the quality of crops, as well as quality in the perfume, cosmetics, food, drink, and pharmaceutical industries. Floral scents and fruit aromas share many volatile organic compounds in flowers and fruits. Volatile compounds are classified as terpenoids, phenylpropanoids/benzenoids, fatty acid derivatives, and amino acid derivatives. Many genes and transcription factors regulating the synthesis of volatiles have been discovered. In this review, we summarize recent progress in volatile function, composition, biosynthetic pathway, and metabolism regulation. We also discuss unresolved issues and research perspectives, providing insight into improvements and applications of plant VOCs.
Collapse
Affiliation(s)
- Salma Mostafa
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Department of Floriculture, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Yun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wen Zeng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Wu Y, Duan X, Tong Z, Li Q. Pollinator-Mediated Selection on Floral Traits of Primula tibetica Differs Between Sites With Different Soil Water Contents and Among Different Levels of Nutrient Availability. FRONTIERS IN PLANT SCIENCE 2022; 13:807689. [PMID: 35300008 PMCID: PMC8921772 DOI: 10.3389/fpls.2022.807689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Abiotic environmental factors are predicted to affect plant traits and the intensity of plant-pollinator interactions. However, knowledge of their potential effects on pollinator-mediated selection on floral traits is still limited. We separately estimated the effects of soil water (two sites with different soil water contents) and N-P-K nutrient availability (different levels of nutrient addition) on pollinator-mediated selection on floral traits of Primula tibetica (an insect-pollinated perennial herbaceous species). Our results demonstrated that floral traits, plant reproductive success and pollinator-mediated selection on floral traits varied between sites with different soil water contents and among different levels of nutrient addition. The strength of pollinator-mediated selection was stronger at the site with low soil water content than at the site with high soil water content, and first decreased and then increased with increasing N-P-K nutrient addition. Our results support the hypothesis that abiotic environmental factors influence the importance of pollinators in shaping floral evolution.
Collapse
Affiliation(s)
- Yun Wu
- School of Architecture and Civil Engineering, Xihua University, Chengdu, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Xuyu Duan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zhaoli Tong
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Qingjun Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
28
|
Powers JM, Sakai AK, Weller SG, Campbell DR. Variation in floral volatiles across time, sexes, and populations of wind-pollinated Schiedea globosa. AMERICAN JOURNAL OF BOTANY 2022; 109:345-360. [PMID: 35192727 DOI: 10.1002/ajb2.1820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Floral scent is a key aspect of plant reproduction, but its intraspecific variation at multiple scales is poorly understood. Sexual dimorphism and temporal regulation of scent can be shaped by evolution, and interpopulation variation may be a bridge to species differences. We tested whether intraspecific chemical diversity in a wind-pollinated species where selection from biotic pollination is absent is associated with genetic divergence across the Hawaiian archipelago. METHODS Floral volatiles from females, males, and hermaphrodites of subdioecious Schiedea globosa grown in a common environment from 12 populations were sampled day and night and analyzed by gas chromatography-mass spectrometry. Variation among groups was analyzed by constrained ordination. We also examined the relationships of scent dissimilarity to geographic and genetic distance between populations. RESULTS Flowers increased total emissions at night through higher emissions of several ketones, oximes, and phenylacetaldehyde. Females emitted less total scent per flower at night but more of some aliphatic compounds than males, and males emitted more ketones and aldoximes. Scent differed among populations during day and night. Divergence in scent produced at night increased with geographic distance within 70-100 km and increased with genetic distance for males during the day and night, but not for females. CONCLUSIONS Schiedea globosa exhibits diel and sex-based variation in floral scent despite wind pollination and presumed loss of biotic pollination. In males, interpopulation scent differences are correlated with genetic differences, suggesting that scent evolved with dispersal within and across islands.
Collapse
Affiliation(s)
- John M Powers
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Ann K Sakai
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Stephen G Weller
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, California, 92697, USA
| | - Diane R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, California, 92697, USA
| |
Collapse
|
29
|
Gómez JM, González-Megías A, Narbona E, Navarro L, Perfectti F, Armas C. Phenotypic plasticity guides Moricandia arvensis divergence and convergence across the Brassicaceae floral morphospace. THE NEW PHYTOLOGIST 2022; 233:1479-1493. [PMID: 34657297 DOI: 10.1111/nph.17807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Many flowers exhibit phenotypic plasticity. By inducing the production of several phenotypes, plasticity may favour the rapid exploration of different regions of the floral morphospace. We investigated how plasticity drives Moricandia arvensis, a species displaying within-individual floral polyphenism, across the floral morphospace of the entire Brassicaceae family. We compiled the multidimensional floral phenotype, the phylogenetic relationships, and the pollination niche of over 3000 species to construct a family-wide floral morphospace. We assessed the disparity between the two M. arvensis floral morphs (as the distance between the phenotypic spaces occupied by each morph) and compared it with the family-wide disparity. We measured floral divergence by comparing disparity with the most common ancestor, and estimated the convergence of each floral morph with other species belonging to the same pollination niches. Moricandia arvensis exhibits a plasticity-mediated floral disparity greater than that found between species, genera and tribes. The novel phenotype of M. arvensis moves outside the region occupied by its ancestors and relatives, crosses into a new region where it encounters a different pollination niche, and converges with distant Brassicaceae lineages. Our study suggests that phenotypic plasticity favours floral divergence and rapid appearance of convergent flowers, a process which facilitates the evolution of generalist pollination systems.
Collapse
Affiliation(s)
- José M Gómez
- Estación Experimental de Zonas Áridas (EEZA-CSIC), E-04120, Almería, Spain
- Research Unit Modeling Nature, Universidad de Granada, E-18071, Granada, Spain
| | - Adela González-Megías
- Research Unit Modeling Nature, Universidad de Granada, E-18071, Granada, Spain
- Departamento de Zoología, Universidad de Granada, E-18071, Granada, Spain
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, E-41013, Sevilla, Spain
| | - Luis Navarro
- Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, E-36310, Vigo, Spain
| | - Francisco Perfectti
- Research Unit Modeling Nature, Universidad de Granada, E-18071, Granada, Spain
- Departamento de Genética, Universidad de Granada, E-18071, Granada, Spain
| | - Cristina Armas
- Estación Experimental de Zonas Áridas (EEZA-CSIC), E-04120, Almería, Spain
| |
Collapse
|
30
|
Koski MH, Finnell LM, Leonard E, Tharayil N. Elevational divergence in pigmentation plasticity is associated with selection and pigment biochemistry. Evolution 2022; 76:512-527. [PMID: 35038345 DOI: 10.1111/evo.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
Phenotypic plasticity is predicted to evolve in environmentally variable habitats, or those experiencing a high frequency of strong selection. However, the evolution of plasticity may be constrained by costs or physiological constraints. In flowers, UV-absorbing pigmentation ameliorates UV damage to pollen, and is linked with elevated UV exposure. Whether plasticity contributes to this pattern remains unclear. Petals of Argentina anserina have larger UV-absorbing petal areas at high elevations where they experience higher and more variable UV exposure compared to low elevations. We measured UV-induced pigmentation plasticity in high- and low-elevation populations (hereafter, 'high, 'low'), and selection on pigmentation via male fitness. We dissected UV pigment biochemistry using metabolomics to explore biochemical mechanisms underlying plasticity. High displayed positive UV-induced pigmentation plasticity but low lacked plasticity. Selection favored elevated pigmentation under UV in high, supporting adaptive plasticity. In high, UV-absorption was conferred by flavonoids produced in one flavonoid pathway branch. However, in low, UV-absorption was associated with many compounds spanning many branches. Elevated plasticity was thus associated with reduced pigment diversity. The results are consistent with adaptive floral pigmentation plasticity in more extreme and variable environments. We discuss how biochemical underpinnings of pigmentation may permit or constrain the evolution of pigmentation plasticity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Matthew H Koski
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634
| | - Lindsay M Finnell
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634
| | - Elizabeth Leonard
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634
| | - Nishanth Tharayil
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634
| |
Collapse
|
31
|
Höfer RJ, Ayasse M, Kuppler J. Water Deficit, Nitrogen Availability, and Their Combination Differently Affect Floral Scent Emission in Three Brassicaceae Species. J Chem Ecol 2022; 48:882-899. [PMID: 36525146 PMCID: PMC9840598 DOI: 10.1007/s10886-022-01393-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022]
Abstract
Floral scent plays a central role in plant-pollinator interactions, as flower visitors can discriminate between scent differences to recognize and forage on rewarding flowers. Changes in scent compositions might therefore lead to recognition mismatches between host plants and flower visitors. An understanding of the phenotypic plasticity of floral scent, especially in crop species, is becoming important because of climate change, e.g., increasing drought periods, and other anthropogenic influences, e.g., nitrogen (N) deposition. We have investigated the effects of the combination of progressive water deficits (dry-down) and N supplementation on floral scent emission in three Brassicaceae species (cultivated vs. wild). Individuals were randomly assigned to one of four treatments: (1) well-watered without N supplementation; (2) well-watered with N supplementation; (3) dry-down without N supplementation; (4) dry-down with N supplementation. We collected scent on day 0, 2, 7, and 14 after the commencement of the watering treatment. All samples were analyzed using gas chromatography coupled with mass spectrometry. We found that the highly cultivated Brassica napus had the lowest overall emission rate; its scent composition was affected by the interaction of watering treatment and N supplementation. Scent bouquets of the cultivated Sinapis alba also changed under these treatments. Scent bouquets of the common weed Sinapis arvensis were affected by watering treatment, but not by time and N supplementation. Furthermore, the influence of treatments on the emission rate of single compounds was highly compound-specific. Nonetheless, our study revealed that especially terpenes were negatively affected by drought-stress.
Collapse
Affiliation(s)
- Rebecca J. Höfer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
32
|
Powers JM, Briggs HM, Dickson RG, Li X, Campbell DR. Earlier snow melt and reduced summer precipitation alter floral traits important to pollination. GLOBAL CHANGE BIOLOGY 2022; 28:323-339. [PMID: 34582609 DOI: 10.1111/gcb.15908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Climate change can cause changes in expression of organismal traits that influence fitness. In flowering plants, floral traits can respond to drought, and that phenotypic plasticity has the potential to affect pollination and plant reproductive success. Global climate change is leading to earlier snow melt in snow-dominated ecosystems as well as affecting precipitation during the growing season, but the effects of snow melt timing on floral morphology and rewards remain unknown. We conducted crossed manipulations of spring snow melt timing (early vs. control) and summer monsoon precipitation (addition, control, and reduction) that mimicked recent natural variation, and examined plastic responses in floral traits of Ipomopsis aggregata over 3 years in the Rocky Mountains. We tested whether increased summer precipitation compensated for earlier snow melt, and if plasticity was associated with changes in soil moisture and/or leaf gas exchange. Lower summer precipitation decreased corolla length, style length, corolla width, sepal width, and nectar production, and increased nectar concentration. Earlier snow melt (taking into account natural and experimental variation) had the same effects on those traits and decreased inflorescence height. The effect of reduced summer precipitation was stronger in earlier snow melt years for corolla length and sepal width. Trait reductions were explained by drier soil during the flowering period, but this effect was only partially explained by how drier soils affected plant water stress, as measured by leaf gas exchange. We predicted the effects of plastic trait changes on pollinator visitation rates, pollination success, and seed production using prior studies on I. aggregata. The largest predicted effect of drier soil on relative fitness components via plasticity was a decrease in male fitness caused by reduced pollinator rewards (nectar production). Early snow melt and reduced precipitation are strong drivers of phenotypic plasticity, and both should be considered when predicting effects of climate change on plant traits in snow-dominated ecosystems.
Collapse
Affiliation(s)
- John M Powers
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Heather M Briggs
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Rachel G Dickson
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Xinyu Li
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Diane R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| |
Collapse
|
33
|
Manincor N, Andreu B, Buatois B, Lou Chao H, Hautekèete N, Massol F, Piquot Y, Schatz B, Schmitt E, Dufay M. Geographical variation of floral scents in generalist entomophilous species with variable pollinator communities. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Benjamin Andreu
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| | - Bruno Buatois
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| | | | | | - François Massol
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
- Univ. Lille CNRS Inserm CHU Lille Institut Pasteur de Lille U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille Lille France
| | - Yves Piquot
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
| | - Bertrand Schatz
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| | - Eric Schmitt
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
| | - Mathilde Dufay
- Univ. Lille CNRS UMR 8198—Evo‐Eco‐Paleo Lille France
- CEFE Univ. Montpellier CNRS EPHE IRD Univ. Paul Valéry Montpellier 3 Montpellier France
| |
Collapse
|
34
|
Effah E, Barrett DP, Peterson PG, Potter MA, Holopainen JK, Clavijo McCormick A. Seasonal Volatile Emission Patterns of the Endemic New Zealand Shrub Dracophyllum subulatum on the North Island Central Plateau. FRONTIERS IN PLANT SCIENCE 2021; 12:734531. [PMID: 34721463 PMCID: PMC8553956 DOI: 10.3389/fpls.2021.734531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Volatile organic compounds (VOCs) produced by plants are essential indicators of their physiological response to environmental conditions. But evidence of natural variation in VOC emissions and their contributing factors is still limited, especially for non-cultivated species. Here we explored the natural volatile emissions of Dracophyllum subulatum Hook.f., an endemic shrub to the North Island Central Plateau of New Zealand, and determined some environmental factors driving the plant's emissions. Volatile emissions of D. subulatum were measured on four separate occasions from December 2017 to September 2018 using the "push-pull" headspace sampling technique and analyzed using gas chromatography-mass spectrometry (GC-MS). D. subulatum was classified based on the volatiles measured on each sampling occasion using linear discriminant analysis (LDA). On each sampling occasion, we also recorded and compared ambient air temperature, herbivory damage, total soil nitrogen (N), available phosphorus (P), potassium (K), and soil moisture content. The relationship between environmental variables that differed significantly between sampling occasions and volatile emissions were estimated using generalized linear models (GLMs). Based on VOCs measured on each sampling occasion, we were able to distinguish different chemical profiles. Overall, we found that total emission and the relative proportions of all major chemical classes released by D. subulatum were significantly higher during summer. The GLMs reveal that differences in environmental factors between the four sampling occasions are highly associated with changing emissions. Higher temperatures in summer had a consistently strong positive relationship with emissions, while the impacts of soil moisture content, P and K were variable and depended on the chemical class. These results are discussed, particularly how high temperature (warming) may shape volatile emissions and plants' ecology.
Collapse
Affiliation(s)
- Evans Effah
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - D. Paul Barrett
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Paul G. Peterson
- Manaaki Whenua - Landcare Research, Massey University, Palmerston North, New Zealand
| | - Murray A. Potter
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Jarmo K. Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
35
|
Lv Z, Zhang C, Shao C, Liu B, Liu E, Yuan D, Zhou Y, Shen C. Research progress on the response of tea catechins to drought stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5305-5313. [PMID: 34031895 DOI: 10.1002/jsfa.11330] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Drought stress (DS) is the most important abiotic stress affecting yield and quality of tea worldwide. DS causes oxidative stress to cells due to the accumulation of reactive oxygen species (ROS). As non-enzymatic antioxidants, tea catechins can scavenge excess ROS in response to DS. Further, catechin accumulation contributes to the formation of oxidative polymerization products (e.g. theaflavins and thearubigins) that improve the quality of black tea. However, there are no systematic reports on the response of tea catechins to DS. First, we reviewed the available literature on the response of tea plants to DS. Second, we summarized the current knowledge of ROS production in tea leaves under DS and typical antioxidant response mechanisms. Third, we conducted a detailed review of the changes in catechin levels in tea under different drought conditions. We found that the total amounts of catechin and o-quinone increased under DS conditions. We propose that the possible mechanisms underlying tea catechin accumulation under DS conditions include (i) autotrophic formation of o-quinone, (ii) polymerization of proanthocyanidins that directly scavenge excess ROS, and (iii) formation of metal ion complexes and by influencing the antioxidant systems that indirectly eliminate excess ROS. Finally, we discuss ways of potentially improving black tea quality using drought before picking in the summer/fall dry season. In summary, we mainly discuss the antioxidant mechanisms of tea catechins under DS and the possibility of using drought to improve black tea quality. Our review provides a theoretical basis for the production of high-quality black tea under DS conditions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhidong Lv
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chenyu Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Baogui Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Enshuo Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Danni Yuan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Yuebing Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- Department of Horticulture, National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| |
Collapse
|
36
|
Yang W, Cao J, Wu Y, Kong F, Li L. Review on plant terpenoid emissions worldwide and in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147454. [PMID: 34000546 DOI: 10.1016/j.scitotenv.2021.147454] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 05/21/2023]
Abstract
Biogenic volatile organic compounds (BVOCs), particularly terpenoids, can significantly drive the formation of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere, as well as directly or indirectly affect global climate change. Understanding their emission mechanisms and the current progress in emission measurements and estimations are essential for the accurate determination of emission characteristics, as well as for evaluating their roles in atmospheric chemistry and climate change. This review summarizes the mechanisms of terpenoid synthesis and release, biotic and abiotic factors affecting their emissions, development of emission observation techniques, and emission estimations from hundreds of published papers. We provide a review of the main observations and estimations in China, which contributes a significant proportion to the total global BVOC emissions. The review suggests the need for further research on the comprehensive effects of environmental factors on terpenoid emissions, especially soil moisture and nitrogen content, which should be quantified in emission models to improve the accuracy of estimation. In China, it is necessary to conduct more accurate measurements for local plants in different regions using the dynamic enclosure technique to establish an accurate local emission rate database for dominant tree species. This will help improve the accuracy of both national and global emission inventories. This review provides a comprehensive understanding of terpenoid emissions as well as prospects for detailed research to accurately describe terpenoid emission characteristics worldwide and in China.
Collapse
Affiliation(s)
- Weizhen Yang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Cao
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
37
|
Cna'ani A, Dener E, Ben-Zeev E, Günther J, Köllner TG, Tzin V, Seifan M. Phylogeny and abiotic conditions shape the diel floral emission patterns of desert Brassicaceae species. PLANT, CELL & ENVIRONMENT 2021; 44:2656-2671. [PMID: 33715174 DOI: 10.1111/pce.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
A key facet of floral scent is diel fluctuations in emission, often studied in the context of plant-pollinator interactions, while contributions of environment and phylogeny remain overlooked. Here, we ask if these factors are involved in shaping temporal variations in scent emission. To that end, we coupled light/dark floral emission measurements of 17 desert Brassicaceae species with environmental and phylogenetic data to explore the individual/combined impacts of these predictors on diel emission patterns. We further investigated these patterns by conducting high-resolution emission measurements in a subset of genetically distant species with contrasting temporal dynamics. While diel shifts in magnitude and richness of emission were strongly affected by genetic relatedness, they also reflect the environmental conditions under which the species grow. Specifically, light/dark emission ratios were negatively affected by an increase in winter temperatures, known to impact both plant physiology and insect locomotion, and sandy soil fractions, previously shown to exert stress that tempers with diel metabolic rhythms. Additionally, the biosynthetic origins of the compounds were associated with their corresponding production patterns, possibly to maximize emission efficacy. Using a multidisciplinary chemical/ecological approach, we uncover and differentiate the main factors shaping floral scent diel fluctuations, highlighting their consequences under changing global climate.
Collapse
Affiliation(s)
- Alon Cna'ani
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Efrat Dener
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Efrat Ben-Zeev
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jan Günther
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Section of Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark
| | - Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Merav Seifan
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| |
Collapse
|
38
|
Moré M, Soteras F, Ibañez AC, Dötterl S, Cocucci AA, Raguso RA. Floral Scent Evolution in the Genus Jaborosa (Solanaceae): Influence of Ecological and Environmental Factors. PLANTS (BASEL, SWITZERLAND) 2021; 10:1512. [PMID: 34451557 PMCID: PMC8398055 DOI: 10.3390/plants10081512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Floral scent is a key communication channel between plants and pollinators. However, the contributions of environment and phylogeny to floral scent composition remain poorly understood. In this study, we characterized interspecific variation of floral scent composition in the genus Jaborosa Juss. (Solanaceae) and, using an ecological niche modelling approach (ENM), we assessed the environmental variables that exerted the strongest influence on floral scent variation, taking into account pollination mode and phylogenetic relationships. Our results indicate that two major evolutionary themes have emerged: (i) a 'warm Lowland Subtropical nectar-rewarding clade' with large white hawkmoth pollinated flowers that emit fragrances dominated by oxygenated aromatic or sesquiterpenoid volatiles, and (ii) a 'cool-temperate brood-deceptive clade' of largely fly-pollinated species found at high altitudes (Andes) or latitudes (Patagonian Steppe) that emit foul odors including cresol, indole and sulfuric volatiles. The joint consideration of floral scent profiles, pollination mode, and geoclimatic context helped us to disentangle the factors that shaped floral scent evolution across "pollinator climates" (geographic differences in pollinator abundance or preference). Our findings suggest that the ability of plants in the genus Jaborosa to colonize newly formed habitats during Andean orogeny was associated with striking transitions in flower scent composition that trigger specific odor-driven behaviors in nocturnal hawkmoths and saprophilous fly pollinators.
Collapse
Affiliation(s)
- Marcela Moré
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Florencia Soteras
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Ana C. Ibañez
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Stefan Dötterl
- Department of Biosciences, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria;
| | - Andrea A. Cocucci
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba CP 5000, Argentina; (F.S.); (A.C.I.); (A.A.C.)
| | - Robert A. Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
39
|
Ghisbain G, Gérard M, Wood TJ, Hines HM, Michez D. Expanding insect pollinators in the Anthropocene. Biol Rev Camb Philos Soc 2021; 96:2755-2770. [PMID: 34288353 PMCID: PMC9292488 DOI: 10.1111/brv.12777] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023]
Abstract
Global changes are severely affecting pollinator insect communities worldwide, resulting in repeated patterns of species extirpations and extinctions. Whilst negative population trends within this functional group have understandably received much attention in recent decades, another facet of global changes has been overshadowed: species undergoing expansion. Here, we review the factors and traits that have allowed a fraction of the pollinating entomofauna to take advantage of global environmental change. Sufficient mobility, high resistance to acute heat stress, and inherent adaptation to warmer climates appear to be key traits that allow pollinators to persist and even expand in the face of climate change. An overall flexibility in dietary and nesting requirements is common in expanding species, although niche specialization can also drive expansion under specific contexts. The numerous consequences of wild and domesticated pollinator expansions, including competition for resources, pathogen spread, and hybridization with native wildlife, are also discussed. Overall, we show that the traits and factors involved in the success stories of expanding pollinators are mostly species specific and context dependent, rendering generalizations of 'winning traits' complicated. This work illustrates the increasing need to consider expansion and its numerous consequences as significant facets of global changes and encourages efforts to monitor the impacts of expanding insect pollinators, particularly exotic species, on natural ecosystems.
Collapse
Affiliation(s)
- Guillaume Ghisbain
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 20, Mons, 7000, Belgium
| | - Maxence Gérard
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 20, Mons, 7000, Belgium.,Department of Zoology, Division of Functional Morphology, INSECT Lab, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 11418, Sweden
| | - Thomas J Wood
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 20, Mons, 7000, Belgium
| | - Heather M Hines
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, U.S.A.,Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, U.S.A
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 20, Mons, 7000, Belgium
| |
Collapse
|
40
|
Luizzi VJ, Friberg M, Petrén H. Phenotypic plasticity in floral scent in response to nutrient, but not water, availability in the perennial plant
Arabis alpina. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Victoria J. Luizzi
- Department of Ecology & Evolutionary Biology University of Arizona Tucson AZ USA
- Department of Biology Lund University Lund Sweden
| | | | | |
Collapse
|
41
|
Kuppler J, Kotowska MM. A meta-analysis of responses in floral traits and flower-visitor interactions to water deficit. GLOBAL CHANGE BIOLOGY 2021; 27:3095-3108. [PMID: 33774883 DOI: 10.1111/gcb.15621] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Alterations in water availability and drought events as predicted by climate change scenarios will increasingly impact natural communities with effects already emerging at present. Water deficit leads to increasing physiological stress in plants, likely affecting floral development and causing changes in floral morphology, nectar and pollen production or scent. Understanding how these floral traits are altered by water deficit is necessary to predict changes in plant-pollinator interactions and how communities are impacted in the future. Here we employ a meta-analysis approach to synthesize the current evidence of experimental water deficit on floral traits and plant-pollinator interactions. Furthermore, we explore experimental factors potentially increasing heterogeneity between studies and provide ideas how to enhance comparability between studies. In the end, we highlight future directions and knowledge gaps for floral traits and plant-pollinator interactions under water deficit. Our analysis showed consistent decreases in floral size, number of flowers and nectar volume to reduced water availability. Other floral traits such as the start of flowering or herkogamy showed no consistent pattern. This indicates that effects of reduced water availability differ between specific traits that are potentially involved in different functions such as pollinator attraction or efficiency. We found no general decreasing visitation rates with water deficit for flower-visitor interactions. Furthermore, the comparison of available studies suggests that increased reporting of plant stress severity and including more hydraulic and physiological measurements will improve the comparability across experiments and aid a more mechanistic understanding of plant-pollinator interactions under altered environmental conditions. Overall, our results show that water deficit has the potential to strongly affect plant-pollinator interactions via changes in specific floral traits. Linking these changes to pollination services and pollinator performance is one crucial step for understanding how changing water availability and drought events under climate change will alter plant and pollinator communities.
Collapse
Affiliation(s)
- Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Martyna M Kotowska
- Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
| |
Collapse
|
42
|
Szenteczki MA, Godschalx AL, Galmán A, Espíndola A, Gibernau M, Alvarez N, Rasmann S. Spatial and temporal heterogeneity in pollinator communities maintains within‐species floral odour variation. OIKOS 2021. [DOI: 10.1111/oik.08445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Andrea Galmán
- Misión Biológica de Galicia (MBG‐CSIC), Pontevedra Galicia Spain
| | | | - Marc Gibernau
- CNRS – Univ. of Corsica, Laboratory Sciences for the Environment (SPE – UMR 6134), Natural Resources Project Ajaccio France
| | - Nadir Alvarez
- Geneva Natural History Museum Genève Switzerland
- Dept of Genetics and Evolution, Univ. of Geneva Geneva Switzerland
| | - Sergio Rasmann
- Inst. de Biologie, Univ. de Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
43
|
Kliszcz A, Danel A, Puła J, Barabasz-Krasny B, Możdżeń K. Fleeting Beauty-The World of Plant Fragrances and Their Application. Molecules 2021; 26:molecules26092473. [PMID: 33922689 PMCID: PMC8122868 DOI: 10.3390/molecules26092473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
This article is devoted to some aspects of the fragrant substances of plant origin applied in the food industry and perfumery as well. Since antiquity many extractive techniques have been developed to obtain essential oils. Some of them are still applied, but new ones, like microwave or ultrasound-assisted extractions, are more and more popular and they save time and cost. Independently of the procedure, the resulting essential oils are the source of many so-called isolates. These can be applied as food additives, medicines, or can be used as starting materials for organic synthesis. Some substances exist in very small amounts in plant material so the extraction is not economically profitable but, after their chemical structures were established and synthetic procedures were developed, in some cases they are prepared on an industrial scale. The substances described below are only a small fraction of the 2000–3000 fragrant molecules used to make our life more enjoyable, either in food or perfumes. Additionally, a few examples of allelopathic fragrant compounds, present in their natural state, will be denoted and some of their biocidal features will be mentioned as an arising “green” knowledge in agriculture.
Collapse
Affiliation(s)
- Angelika Kliszcz
- Department of Agroecology and Crop Production, Faculty of Agriculture and Economics, University of Agriculture, Mickiewicza 21 Ave, 31-120 Krakow, Poland;
- Correspondence:
| | - Andrzej Danel
- Faculty of Materials Engineering and Physics, Krakow University of Technology, Podchorążych St. 1, 30-084 Krakow, Poland;
| | - Joanna Puła
- Department of Agroecology and Crop Production, Faculty of Agriculture and Economics, University of Agriculture, Mickiewicza 21 Ave, 31-120 Krakow, Poland;
| | - Beata Barabasz-Krasny
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Kraków, Poland; (B.B.-K.); (K.M.)
| | - Katarzyna Możdżeń
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Kraków, Poland; (B.B.-K.); (K.M.)
| |
Collapse
|
44
|
Kuppler J, Wieland J, Junker RR, Ayasse M. Drought-induced reduction in flower size and abundance correlates with reduced flower visits by bumble bees. AOB PLANTS 2021; 13:plab001. [PMID: 33628409 PMCID: PMC7891244 DOI: 10.1093/aobpla/plab001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 05/04/2023]
Abstract
Reduced water availability can cause physiological stress in plants that affects floral development leading to changes in floral morphology and traits that mediate interactions with pollinators. As pollinators can detect small changes in trait expressions, drought-induced changes in floral traits could affect pollinator visitations. However, the linkage between changes in floral traits and pollinator visitations under drought conditions is not well explored. We, therefore, tested whether drought-induced changes in floral morphology and abundance of flowers are linked to changes in pollinator visitations. We conducted flight cage experiments with a radio frequency identification system for automated visitation recordings with bumble bees (Bombus terrestris) and common charlock (Sinapis arvensis) as the model system. In total, we recorded interactions for 31 foraging bumble bees and 6569 flower visitations. We found that decreasing soil moisture content correlated with decreasing size of all measured morphological traits except stamen length and nectar tube width. The reductions in floral size, petal width and length, nectar tube depth and number of flowers resulted in decreasing visitation rates by bumble bees. These decreasing visitations under lower soil moisture availability might be explained by lower numbers of flowers and thus a reduced attractiveness and/or by increased difficulties experienced by bumble bees in handling smaller flowers. Whether these effects act additively or synergistically on pollinator behaviour and whether this leads to changes in pollen transfer and to different selectionp ressures require further investigation.
Collapse
Affiliation(s)
- J Kuppler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- Corresponding author’s e-mail address:
| | - J Wieland
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - R R Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - M Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
45
|
Höfer RJ, Ayasse M, Kuppler J. Bumblebee Behavior on Flowers, but Not Initial Attraction, Is Altered by Short-Term Drought Stress. FRONTIERS IN PLANT SCIENCE 2021; 11:564802. [PMID: 33519833 PMCID: PMC7838097 DOI: 10.3389/fpls.2020.564802] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Climate change is leading to increasing drought and higher temperatures, both of which reduce soil water levels and consequently water availability for plants. This reduction often induces physiological stress in plants, which in turn can affect floral development and production inducing phenotypic alterations in flowers. Because flower visitors notice and respond to small differences in floral phenotypes, changes in trait expression can alter trait-mediated flower visitor behavior. Temperature is also known to affect floral scent emission and foraging behavior and, therefore, might modulate trait-mediated flower visitor behavior. However, the link between changes in flower visitor behavior and floral traits in the context of increasing drought and temperature is still not fully understood. In a wind-tunnel experiment, we tested the behavior of 66 Bombus terrestris individuals in response to watered and drought-stressed Sinapis arvensis plants and determined whether these responses were modulated by air temperature. Further, we explored whether floral traits and drought treatment were correlated with bumblebee behavior. The initial attractiveness of drought and watered plants did not differ, as the time to first visit was similar. However, bumblebees visited watered plants more often, their visitation rate to flowers was higher on watered plants, and bumblebees stayed for longer, indicating that watered plants were more attractive for foraging. Bumblebee behavior differed between floral trait expressions, mostly independently of treatment, with larger inflorescences and flowers leading to a decrease in the time until the first flower visit and an increase in the number of visits and the flower visitation rate. Temperature modulated bumblebee activity, which was highest at 25°C; the interaction of drought/water treatment and temperature led to higher visitation rate on watered plants at 20°C, possibly as a result of higher nectar production. Thus, bumblebee behavior is influenced by the watered status of plants, and bumblebees can recognize differences in intraspecific phenotypes involving morphological traits and scent emission, despite overall morphological traits and scent emission not being clearly separated between treatments. Our results indicate that plants are able to buffer floral trait expressions against short-term drought events, potentially to maintain pollinator attraction.
Collapse
|
46
|
Riffell JA. The neuroecology of insect-plant interactions: the importance of physiological state and sensory integration. CURRENT OPINION IN INSECT SCIENCE 2020; 42:118-124. [PMID: 33127509 PMCID: PMC7749044 DOI: 10.1016/j.cois.2020.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Natural behaviorally important stimuli are combinations of cues that are integrated by the nervous system to elicit behavior. Nonetheless, these cues dynamically change in time and space. In turn, the animal's internal state can cause changes in the encoding and representation of these stimuli. Despite abundant behavioral examples, links between the neural bases of sensory integration and the internal state-dependency of these responses remains an active study area. Recent studies in different insect models have provided new insights into how plasticity and the insect's internal state may influence odor representation. These studies show that complex stimuli are represented in unique percepts that are different from their sensory channels and that the representations may be modulated by physiological state.
Collapse
Affiliation(s)
- Jeffrey A Riffell
- University of Washington, Department of Biology, Seattle, WA 98195-1800, United States.
| |
Collapse
|
47
|
Rering CC, Franco JG, Yeater KM, Mallinger RE. Drought stress alters floral volatiles and reduces floral rewards, pollinator activity, and seed set in a global plant. Ecosphere 2020. [DOI: 10.1002/ecs2.3254] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Caitlin C. Rering
- Center for Medical, Agricultural and Veterinary Entomology USDA‐Agricultural Research Service 1700 SW 23rd Drive Gainesville Florida32608USA
| | - Jose G. Franco
- Northern Great Plains Research Laboratory USDA‐Agricultural Research Service 1701 10th Avenue SW Mandan North Dakota58554USA
- Dale Bumpers Small Farms Research Center USDA‐Agricultural Research Service 6883 South State Highway 23 Booneville Arkansas72927USA
| | - Kathleen M. Yeater
- Plains Area, Office of the Director USDA‐Agricultural Research Service 2150 Centre Avenue, Building D, Suite 300 Fort Collins Colorado80526USA
| | - Rachel E. Mallinger
- Department of Entomology and Nematology University of Florida 1881 Natural Areas Drive Gainesville Florida32611USA
| |
Collapse
|
48
|
Gómez JM, Perfectti F, Armas C, Narbona E, González-Megías A, Navarro L, DeSoto L, Torices R. Within-individual phenotypic plasticity in flowers fosters pollination niche shift. Nat Commun 2020; 11:4019. [PMID: 32782255 PMCID: PMC7419554 DOI: 10.1038/s41467-020-17875-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 11/08/2022] Open
Abstract
Phenotypic plasticity, the ability of a genotype of producing different phenotypes when exposed to different environments, may impact ecological interactions. We study here how within-individual plasticity in Moricandia arvensis flowers modifies its pollination niche. During spring, this plant produces large, cross-shaped, UV-reflecting lilac flowers attracting mostly long-tongued large bees. However, unlike most co-occurring species, M. arvensis keeps flowering during the hot, dry summer due to its plasticity in key vegetative traits. Changes in temperature and photoperiod in summer trigger changes in gene expression and the production of small, rounded, UV-absorbing white flowers that attract a different assemblage of generalist pollinators. This shift in pollination niche potentially allows successful reproduction in harsh conditions, facilitating M. arvensis to face anthropogenic perturbations and climate change.
Collapse
Affiliation(s)
- José M Gómez
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain.
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain.
| | - Francisco Perfectti
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain.
- Departamento de Genética, Universidad de Granada, Granada, Spain.
| | - Cristina Armas
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain.
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Adela González-Megías
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Zoología, Universidad de Granada, Granada, Spain
| | - Luis Navarro
- Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, Vigo, Spain
| | - Lucía DeSoto
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| | - Rubén Torices
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
49
|
Joffard N, Le Roncé I, Langlois A, Renoult J, Buatois B, Dormont L, Schatz B. Floral trait differentiation in Anacamptis coriophora: Phenotypic selection on scents, but not on colour. J Evol Biol 2020; 33:1028-1038. [PMID: 32500947 DOI: 10.1111/jeb.13657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 05/14/2020] [Accepted: 05/23/2020] [Indexed: 01/26/2023]
Abstract
Current divergent selection may promote floral trait differentiation among conspecific populations in flowering plants. However, whether this applies to complex traits such as colour or scents has been little studied, even though these traits often vary within species. In this study, we compared floral colour and odour as well as selective pressures imposed upon these traits among seven populations belonging to three subspecies of the widespread, generalist orchid Anacamptis coriophora. Colour was characterized using calibrated photographs, and scents were sampled using dynamic headspace extraction and analysed using gas chromatography-mass spectrometry. We then quantified phenotypic selection exerted on these traits by regressing fruit set values on floral trait values. We showed that the three studied subspecies were characterized by different floral colour and odour, with one of the two predominant floral volatiles emitted by each subspecies being taxon-specific. Plant size was positively correlated with fruit set in most populations, whereas we found no apparent link between floral colour and female reproductive success. We detected positive selection on several taxon-specific compounds in A. coriophora subsp. fragrans, whereas no selection was found on floral volatiles of A. coriophora subsp. coriophora and A. coriophora subsp. martrinii. This study is one of the first to document variation in phenotypic selection exerted on floral scents among conspecific populations. Our results suggest that selection could contribute to ongoing chemical divergence among A. coriophora subspecies.
Collapse
Affiliation(s)
- Nina Joffard
- Centre d'Ecologie Fonctionnelle et Evolutive, EPHE-PSL, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, IRD, Montpellier, France
- Evolutionsbiologiskt Centrum (EBC), Uppsala, Sweden
| | - Iris Le Roncé
- Centre d'Ecologie Fonctionnelle et Evolutive, EPHE-PSL, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, IRD, Montpellier, France
- Département de biologie, École Normale Supérieure de Lyon, Lyon, France
| | - Alban Langlois
- Centre d'Ecologie Fonctionnelle et Evolutive, EPHE-PSL, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, IRD, Montpellier, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Julien Renoult
- Centre d'Ecologie Fonctionnelle et Evolutive, EPHE-PSL, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Bruno Buatois
- Centre d'Ecologie Fonctionnelle et Evolutive, EPHE-PSL, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Laurent Dormont
- Centre d'Ecologie Fonctionnelle et Evolutive, EPHE-PSL, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Bertrand Schatz
- Centre d'Ecologie Fonctionnelle et Evolutive, EPHE-PSL, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, IRD, Montpellier, France
| |
Collapse
|
50
|
Sadgrove NJ. Comparing essential oils from Australia's 'Victorian Christmas Bush' (Prostanthera lasianthos Labill., Lamiaceae) to closely allied new species: Phenotypic plasticity and taxonomic variability. PHYTOCHEMISTRY 2020; 176:112403. [PMID: 32422392 DOI: 10.1016/j.phytochem.2020.112403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 05/04/2023]
Abstract
Prostanthera lasianthos (Lamiaceae) is commonly referred to as the 'Victorian Christmas Bush', a name that derives from the floral display it gives in the Christmas period. However, botanists recognise P. lasianthos as a heterogeneous species aggregate that includes several putative new species that are confined to disjunct locations. Recently one taxon was revised to P. eungella B.J.Conn & K.M.Proft. In the current study the chemistry of essential oils was determined for 25 specimens, representative of 8 taxa (including P. eungella). Chemical relationships were investigated using two types of multivariate analysis and several distinct chemical profiles were identified. One taxon (P. sp. Wollomombi Gorge) was sampled nine times from three different locations during the year to determine the effects of seasonal variation and subjectively-assessed soil moisture content. It was demonstrated that the chemistry of this taxon is strongly influenced by soil moisture independently of growth stage, but possibly influenced by periods of dry or wet weather. Two distinct chemotypes and one intermediate type were identified. These chemotypes differed by mediated expression of linalool and hence linalyl acetate. These metabolites were also present in specimens of P. sp. Bald Mountain, but as minor components. This latter taxon could be reliably distinguished by higher relative abundance of butanoic acid, 1-methylbutyl ester. As judged by a smaller sampling size for the other taxa, evidence that this pattern of mediated expression between terpene species was found. However, the identity of terpenes that demonstrated this mediated expression were different for each taxon; for example, volatiles from P. eungella demonstrated mediation between α-pinene and caryophyllene. Nevertheless, it is possible that chemical expression of all taxa in the heterogeneous species aggregate is strongly mediated by the moisture or nutrient content of soils. Thus, the dataset produced during this study can be used as a reference against other chemical data to investigate taxonomic placement in members of this group.
Collapse
Affiliation(s)
- Nicholas John Sadgrove
- University of New England, Armidale, NSW, 2351, Australia; Jodrell Science Laboratory, Royal Botanic Gardens Kew, Richmond, TW9 3DS, United Kingdom.
| |
Collapse
|