1
|
Benjamin S, Vi L, Chatterjee D, Jaeggi ET, Ruffatti A, Hiraki LT, Sepiashvili L, Laskin CA, Fatah M, Tonello M, Dominguez D, Ng L, Lohbihler M, Luchessi AD, Hogarth K, Daoud A, Maynes JT, Protze S, Hamilton RM. Maternal autoantibodies to the sodium potassium pump α1 subunit AT1A1 and fetal autoimmune congenital heart block: a case-control study. THE LANCET. RHEUMATOLOGY 2025:S2665-9913(25)00092-X. [PMID: 40412415 DOI: 10.1016/s2665-9913(25)00092-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Fetal autoimmune congenital heart block is a rare but life-threatening condition that is difficult to predict. This study sought to identify a serological biomarker predictive of autoimmune congenital heart block in pregnancies at risk due to maternal systemic lupus erythematosus, Sjögren's disease, undifferentiated connective tissue disease, or a history of congenital heart block offspring. METHODS This case-control study analysed maternal blood samples from pregnancies affected and unaffected by autoimmune congenital heart block from two centres (The Hospital for Sick Children, Canada, and The University of Padua, Italy). Serum samples collected across varying gestational ages were used for biomarker discovery, verification, and validation. The key inclusion criterion was a positive clinical test for maternal anti-Sjögren's syndrome-related antigen A/Ro autoantibodies, and the key exclusion criterion was structural congenital heart disease associated with heart block. Cases were pregnancies that resulted in fetal or neonatal congenital heart block and controls were pregnancies that resulted in offspring with a normal heart rhythm. Two-dimensional western blotting was used to identify maternal autoantibodies targeting fetal cardiac proteins, using fetal heart tissue and stem-cell-derived cardiomyocytes. Findings were validated using commercial proteins. Sensitivity and specificity for predicting fetal heart block outcomes were assessed using receiver-operating characteristic curves. The primary study outcomes were the presence and specificity of anti-cardiac autoantibodies in autoimmune congenital heart block cases versus controls, the association between specific autoantibodies and congenital heart block development, and the predictive accuracy of identified autoantibodies. This study did not involve individuals with lived experience in the study design or implementation. FINDINGS Serum samples were collected between Jan 1, 2010, and Dec 31, 2020, in the discovery cohort (The Hospital for Sick Children), between Aug 1, 1999, and Dec 31, 2019 in the verification cohort (University Hospital of Padua), and between June 1, 2018, and Aug 31, 2023, in the validation cohort (The Hospital for Sick Children). Mean maternal age was 34·2 years (SD 5·2) in the discovery cohort, 33·5 years (4·6) in the verification cohort, and 32·8 years (4·3) in the validation cohort. Maternal serum samples from pregnancies affected by fetal autoimmune congenital heart block (cases; n=46) showed an expanded repertoire of anti-cardiac autoantibodies compared with unaffected pregnancies (controls; n=65). Mass spectrometry identified 11 potential cardiac protein targets for maternal autoantibodies and the presence of seven autoantibodies were confirmed in serum samples from affected pregnancies. Four targets were identified before the onset of congenital heart block (ANXA1, BIP, MYPC3, and AT1A1). Maternal autoantibodies against the Na+ and K+ ATPase α1 isoform (AT1A1) were detected as early as 7 weeks gestation and were present in all affected pregnancies of mothers with and without previous fetal heart block history (six [100%] of six in the discovery cohort, 22 [100%] of 22 in the verification cohort, and 16 [100%] of 16 in the validation cohort). Anti-AT1A1 autoantibodies were absent in all unaffected pregnancies in pregnant women with no fetal heart block history (54/65 [83%]). INTERPRETATION This study identifies a novel maternal autoantibody targeting the fetal AT1A1 cardiac protein as a potential biomarker for the early and accurate detection of fetal autoimmune congenital heart block in pregnant women who had not previously had an affected pregnancy. This advancement might improve the maternal-fetal management of at-risk pregnancies through enhanced surveillance and timely and informed therapeutic interventions. FUNDING Heart and Stroke Foundation of Canada and Canadian Institutes of Health Research.
Collapse
Affiliation(s)
- Stephanie Benjamin
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Lisa Vi
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | | | - Edgar T Jaeggi
- Department of Obstetrics & Gynaecology, Sinai Health, Toronto, ON, Canada
| | | | - Linda T Hiraki
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Lusia Sepiashvili
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, ON, Canada
| | - Carl A Laskin
- Department of Medicine, University of Toronto, Toronto, ON, Canada; Trio Fertility, Toronto, ON, Canada
| | - Meena Fatah
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Marta Tonello
- Department of Medicine, University of Padua, Padua, Italy
| | - Daniela Dominguez
- Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Lawrence Ng
- Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Michelle Lohbihler
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Andre D Luchessi
- Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Kaley Hogarth
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Abdelkader Daoud
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Jason T Maynes
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie Protze
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Robert M Hamilton
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
2
|
Allington G, Mehta NH, Dennis E, Mekbib KY, Reeves B, Kiziltug E, Chen S, Zhao S, Duy PQ, Saleh M, Ang LC, Fan B, Nelson-Williams C, Moreno-de-Luca A, Haider S, Lifton RP, Alper SL, McGee S, Jin SC, Kahle KT. De novo variants disrupt an LDB1-regulated transcriptional network in congenital ventriculomegaly. Brain 2025; 148:1817-1828. [PMID: 39680505 DOI: 10.1093/brain/awae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 12/18/2024] Open
Abstract
Congenital hydrocephalus, characterized by cerebral ventriculomegaly, is among the most common and least understood paediatric neurosurgical disorders. We have identified, in the largest assembled cerebral ventriculomegaly cohort (2697 parent-proband trios), an exome-wide significant enrichment of protein-altering de novo variants in LDB1 (P = 1.11 × 10-15). Eight unrelated patients with ventriculomegaly, developmental delay and dysmorphic features harboured loss-of-function de novo variants that truncate carboxy-terminal LIM interaction domain of LDB1, which regulates assembly of LIM homeodomain-containing transcriptional modulators. Integrative multiomic analyses suggest that LDB1 is a key transcriptional regulator in ventricular neuroprogenitors through its binding to LIM-homeodomain proteins, including SMARCC1 and ARID1B. Indeed, LIM-homeodomain-containing genes carry a disproportionate burden of protein-damaging de novo variants in our cohort, with SMARCC1 (P = 5.83 × 10-9) and ARID1B (P = 1.80 × 10-17) surpassing exome-wide significance thresholds. These data identify LBD1 as a novel neurodevelopmental disorder gene and suggest that an LDB1-regulated transcriptional programme is essential for human brain morphogenesis.
Collapse
Affiliation(s)
- Garrett Allington
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurology, New York Presbyterian Hospital & Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Benjamin Reeves
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Emre Kiziltug
- Department of Neurosurgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shuang Chen
- School of Pharmacy, University College London, London WC1E 6BT, UK
| | - Shujuan Zhao
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Maha Saleh
- Clinical Genetics, Department of Pediatrics, London Health Sciences Centre, London, Ontario N6A 5W9, Canada
| | - Lee C Ang
- Department of Pathology, London Health Sciences Centre and Western University, London, Ontario N6A 5C1, Canada
| | - Baojian Fan
- Department of Neurosurgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Carol Nelson-Williams
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrés Moreno-de-Luca
- Department of Radiology, Neuroradiology Section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario K7L 2V7, Canada
| | - Shozeb Haider
- School of Pharmacy, University College London, London WC1E 6BT, UK
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Sheng Chih Jin
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
3
|
Nano PR, Fazzari E, Azizad D, Martija A, Nguyen CV, Wang S, Giang V, Kan RL, Yoo J, Wick B, Haeussler M, Bhaduri A. Integrated analysis of molecular atlases unveils modules driving developmental cell subtype specification in the human cortex. Nat Neurosci 2025; 28:949-963. [PMID: 40259073 PMCID: PMC12081304 DOI: 10.1038/s41593-025-01933-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/27/2025] [Indexed: 04/23/2025]
Abstract
Human brain development requires generating diverse cell types, a process explored by single-cell transcriptomics. Through parallel meta-analyses of the human cortex in development (seven datasets) and adulthood (16 datasets), we generated over 500 gene co-expression networks that can describe mechanisms of cortical development, centering on peak stages of neurogenesis. These meta-modules show dynamic cell subtype specificities throughout cortical development, with several developmental meta-modules displaying spatiotemporal expression patterns that allude to potential roles in cell fate specification. We validated the expression of these modules in primary human cortical tissues. These include meta-module 20, a module elevated in FEZF2+ deep layer neurons that includes TSHZ3, a transcription factor associated with neurodevelopmental disorders. Human cortical chimeroid experiments validated that both FEZF2 and TSHZ3 are required to drive module 20 activity and deep layer neuron specification but through distinct modalities. These studies demonstrate how meta-atlases can engender further mechanistic analyses of cortical fate specification.
Collapse
Grants
- UM1 MH130991 NIMH NIH HHS
- T32 NS048004 NINDS NIH HHS
- R01MH132689 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- RF1 MH132662 NIMH NIH HHS
- T32 GM008243 NIGMS NIH HHS
- R00 NS111731 NINDS NIH HHS
- R00NS111731 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01 MH132689 NIMH NIH HHS
- T32 GM145388 NIGMS NIH HHS
- U24 HG002371 NHGRI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- We would like to thank the members of the Bhaduri Lab for their insightful advice and comments on the study. We would like to thank the Broad Stem Cell Research Center Flow Cytometry core for their help in isolating cells for this project, Charina Julian for help with running sequencing, and Dr. Laurent Fasano for generously sharing the antibody against TSHZ3. The work performed in the manuscript was generously funded by R00NS111731 from the NIH (NINDS), R01MH132689 from the NIH (NIMH), the Young Investigator Award from the Brain & Behavior Research Foundation, the Alfred P. Sloan Foundation, the Rose Hills Foundation, and the Klingenstein-Simons Fellowship from the Esther A. & Joseph Klingenstein Fund and the Simons Foundation (to A.B.). Additional funding was provided to P.R.N. (UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research Training Program, UCLA Intercampus Medical Genetics Training Program (USHHS Ruth L. Kirschstein Institutional National Research Service Award # T32GM008243)), C.V.N. (T32 NS048004, Predoctoral Fellowship in association with the Training Grant in Neurobehavioral Genetics), and R.K. (T32 GM145388, Cell and Molecular Biology Training Program), and M.H. (NIMH BRAIN NIMH RF1MH132662, NHGRI U24HG002371, CIRM DISC0-14514 (with A.B.)).
Collapse
Affiliation(s)
- Patricia R Nano
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elisa Fazzari
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daria Azizad
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Antoni Martija
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Claudia V Nguyen
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sean Wang
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vanna Giang
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ryan L Kan
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Juyoun Yoo
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Brittney Wick
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Tan S, Zhang Q, Zhan R, Luo S, Han Y, Yu B, Muss C, Pingault V, Marlin S, Delahaye A, Peters S, Perne C, Kreiß M, Spataro N, Trujillo-Quintero JP, Racine C, Tran-Mau-Them F, Phornphutkul C, Besterman AD, Martinez J, Wang X, Tian X, Srivastava S, Urion DK, Madden JA, Saif HA, Morrow MM, Begtrup A, Li X, Jurgensmeyer S, Leahy P, Zhou S, Li F, Hu Z, Tan J, Xia K, Guo H. Monoallelic loss-of-function variants in GSK3B lead to autism and developmental delay. Mol Psychiatry 2025; 30:1952-1965. [PMID: 39472663 DOI: 10.1038/s41380-024-02806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 04/24/2025]
Abstract
De novo variants adjacent to the canonical splicing sites or in the well-defined splicing-related regions are more likely to impair splicing but remain under-investigated in autism spectrum disorder (ASD). By analyzing large, recent ASD genome sequencing cohorts, we find a significant burden of de novo potential splicing-disrupting variants (PSDVs) in 5048 probands compared to 4090 unaffected siblings. We identified 55 genes with recurrent de novo PSDVs that were highly intolerant to variation. Forty-six of these genes have not been strongly implicated in ASD or other neurodevelopmental disorders previously, including GSK3B. Through international, multicenter collaborations, we assembled genotype and phenotype data for 15 individuals with GSK3B variants and identified common phenotypes including developmental delay, ASD, sleeping disturbance, and aggressive behavior. Using available single-cell transcriptomic data, we show that GSK3B is enriched in dorsal progenitors and intermediate forms of excitatory neurons in the developing brain. We showed that Gsk3b knockdown in mouse excitatory neurons interferes with dendrite arborization and spine maturation which could not be rescued by de novo missense variants identified from affected individuals. In summary, our findings suggest that PSDVs may play an important role in the genetic etiology of ASD and allow for the prioritization of new ASD candidate genes. Importantly, we show that genetic variation resulting in GSK3B loss-of-function can lead to a neurodevelopmental disorder with core features of ASD and developmental delay.
Collapse
Affiliation(s)
- Senwei Tan
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qiumeng Zhang
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Rui Zhan
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Si Luo
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yaoling Han
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bin Yu
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Candace Muss
- Department of Genetics, Nemours Children's Hospital, Wilmington, DE, USA
| | - Veronique Pingault
- Service de Médecine Génomique des maladies rares, AP-HP, Hôpital Necker; Université Paris Cité, Inserm, Institut Imagine; and Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
| | - Sandrine Marlin
- Centre de Référence «Surdités Génétiques», Fédération de Génétique; Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Laboratory of Embryology and Genetics of Malformations, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Andrée Delahaye
- Service de Médecine Génomique des maladies rares, AP-HP, Hôpital Necker; Université Paris Cité, Inserm, Institut Imagine; and Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
| | - Sophia Peters
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Claudia Perne
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Martina Kreiß
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Nino Spataro
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Juan Pablo Trujillo-Quintero
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Caroline Racine
- Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Frederic Tran-Mau-Them
- Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Chanika Phornphutkul
- Division of Human Genetics, Department of Pediatrics, Warren Alpert Medical School of Brown University, Hasbro Children's Hospital, Providence, RI, USA
| | - Aaron D Besterman
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA
- Rady Children's Hospital, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Julian Martinez
- Departments of Human Genetics, Pediatrics and Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Xiuxia Wang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyu Tian
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - David K Urion
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jill A Madden
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Hind Al Saif
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Virginia Commonwealth, Richmond, VA, USA
| | | | | | - Xing Li
- Departments of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Sarah Jurgensmeyer
- Division of Genetics, Genomics and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Peter Leahy
- Division of Genetics, Genomics and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Shimin Zhou
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Faxiang Li
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhengmao Hu
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Hui Guo
- Center for Medical Genetics & MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
5
|
Bai S, Wang Y, Zhou Y, Qiao L. Multi-omics pan-cancer analysis of monocyte to macrophage differentiation-associated (MMD) and its significance in hepatocellular carcinoma. Cancer Biomark 2025; 42:18758592251329280. [PMID: 40393675 DOI: 10.1177/18758592251329280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
BackgroundMalignant tumors are serious diseases that endanger human health. Therefore, it is crucial to identify markers that facilitate tumor diagnosis and prognostic assessment.ObjectiveThis study analyzed the significance of Monocyte to macrophage differentiation-associated (MMD) in various tumors from multiple perspectives, to explore the possibility of using MMD as a novel tumor marker.MethodsUsing the R software, an examination of MMD levels was conducted across diverse human cancers and their influence on cancer outcomes. MMD methylation, mutations, and immune infiltration analyses of various tumors were performed. A Cox regression model was used to predict the survival rates of patients with hepatocellular carcinoma (HCC). Finally, MMD expression and function were validated in Hep-3B cells.ResultsMMD was aberrantly expressed in diverse tumors and can predict patient outcomes. Methylation and functional enrichment studies indicated possible function of MMD in tumor progression, whereas immune infiltration data suggested its involvement in tumor immune evasion. Cox regression analysis revealed that elevated MMD levels were independent predictors of HCC patient outcomes. The quantitative real-time polymerase chain reaction (qPCR) data demonstrated high MMD levels in Hep-3B cells, and its suppression impeded Hep-3B cell growth.ConclusionsMMD was abnormally expressed in various tumors and was closely associated with tumor prognosis. Thus, it had the potential to be used as a novel tumor marker.
Collapse
Affiliation(s)
- Suyang Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Liang Qiao
- Storr Liver Centre, the Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| |
Collapse
|
6
|
Choe MS, Lo C, Park IH. Modeling forebrain regional development and connectivity by human brain organoids. Curr Opin Genet Dev 2025; 91:102324. [PMID: 39983347 DOI: 10.1016/j.gde.2025.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/23/2025]
Abstract
The forebrain is one of the most important brain structures for modern human existence, which houses the uniquely sophisticated social and cognitive functions that distinguish our species. Therefore, modeling the forebrain development by using human cells is especially critical for our understanding of the intricacies of human development and devising treatments for related diseases. Recent advancements in brain organoid fields have offered unprecedented tools to investigate forebrain development from studies on specific regions to exploring tract formation and connectivity between different regions of the forebrain. In this review, we discuss the developmental biology of the forebrain and diverse methods for modeling its development by using organoids.
Collapse
Affiliation(s)
- Mu Seog Choe
- Interdepartmental Neuroscience Program, Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Wu Tsai Institute, Yale School of Medicine, New Haven, CT, United States
| | - Cynthia Lo
- Interdepartmental Neuroscience Program, Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Wu Tsai Institute, Yale School of Medicine, New Haven, CT, United States
| | - In-Hyun Park
- Interdepartmental Neuroscience Program, Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Wu Tsai Institute, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
7
|
Spector BL, Koseva B, McLennan R, Banerjee D, Lankachandra K, Bradley T, Selvarangan R, Grundberg E. Methylation patterns of the nasal epigenome of hospitalized SARS-CoV-2 positive patients reveal insights into molecular mechanisms of COVID-19. BMC Med Genomics 2025; 18:62. [PMID: 40170038 PMCID: PMC11963311 DOI: 10.1186/s12920-025-02125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/12/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has varied presentations from asymptomatic to death. Efforts to identify factors responsible for differential COVID-19 severity include but are not limited to genome wide association studies (GWAS) and transcriptomic analysis. More recently, variability in host epigenomic profiles have garnered attention, providing links to disease severity. However, whole epigenome analysis of the respiratory tract, the target tissue of SARS-CoV-2, remains ill-defined. RESULTS We interrogated the nasal methylome to identify pathophysiologic drivers in COVID-19 severity through whole genome bisulfite sequencing (WGBS) of nasal samples from COVID-19 positive individuals with severe and mild presentation of disease. We noted differential DNA methylation in intergenic regions and low methylated regions (LMRs), demonstrating the importance of distal regulatory elements in gene regulation in COVID-19 illness. Additionally, we demonstrated differential methylation of pathways implicated in immune cell recruitment and function, and the inflammatory response. We found significant hypermethylation of the FUT4 promoter implicating impaired neutrophil adhesion in severe disease. We also identified hypermethylation of ELF5 binding sites suggesting downregulation of ELF5 targets in the nasal cavity as a factor in COVID-19 phenotypic variability. CONCLUSIONS This study demonstrated DNA methylation as a marker of the immune response to SARS-CoV-2 infection, with enhancer-like elements playing significant roles. It is difficult to discern whether this differential methylation is a predisposing factor to severe COVID-19, or if methylation differences occur in response to disease severity. These differences in the nasal methylome may contribute to disease severity, or conversely, the nasal immune system may respond to severe infection through differential immune cell recruitment and immune function, and through differential regulation of the inflammatory response.
Collapse
Affiliation(s)
- Benjamin L Spector
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA.
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, 2401 Gillham Rd, Kansas City, MO, 64108, USA.
| | - Boryana Koseva
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Rebecca McLennan
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Dithi Banerjee
- Department of Pathology and Laboratory Medicine, Children'S Mercy Kansas City, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Kamani Lankachandra
- Department of Pathology, University Health, University of Missouri- Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Todd Bradley
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Rangaraj Selvarangan
- Department of Pathology and Laboratory Medicine, Children'S Mercy Kansas City, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Elin Grundberg
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, 2401 Gillham Rd, Kansas City, MO, 64108, USA.
| |
Collapse
|
8
|
Montilla A, Zabala A, Calvo I, Bosch-Juan M, Tomé-Velasco I, Mata P, Koster M, Sierra A, Kooistra SM, Soria FN, Eggen BJL, Fresnedo O, Fernández JA, Tepavcevic V, Matute C, Domercq M. Microglia regulate myelin clearance and cholesterol metabolism after demyelination via interferon regulatory factor 5. Cell Mol Life Sci 2025; 82:131. [PMID: 40137979 PMCID: PMC11947375 DOI: 10.1007/s00018-025-05648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 03/29/2025]
Abstract
Interferon regulatory factor 5 (IRF5) is a transcription factor that plays a role in orchestrating innate immune responses, particularly in response to viral infections. Notably, IRF5 has been identified as a microglia risk gene linked to multiple sclerosis (MS), but its specific role in MS pathogenesis remains unclear. Through the use of Irf5-/- mice, our study uncovers a non-canonical function of IRF5 in MS recovery. Irf5-/- mice exhibited increased damage in an experimental autoimmune encephalomyelitis (EAE) model and demonstrated impaired oligodendrocyte recruitment into the lesion core following lysolecithin-induced demyelination. Transcriptomic and lipidomic analyses revealed that IRF5 has a role in microglia-mediated myelin phagocytosis, lipid metabolism, and cholesterol homeostasis. Indeed, Irf5-/- microglia phagocytose myelin, but myelin debris is not adequately degraded, leading to an accumulation of lipid droplets, cholesterol esters, and cholesterol crystals within demyelinating lesions. This abnormal buildup can hinder remyelination processes. Importantly, treatments that promote cholesterol transport were found to reduce lipid droplet accumulation and mitigate the exacerbated damage in Irf5-/- mice with EAE. Altogether, our study identified the antiviral transcription factor IRF5 as a key transcriptional regulator of lipid degradation and cholesterol homeostasis and suggest that loss of IRF5 function leads to pathogenic lipid accumulation in microglia, thereby obstructing remyelination. These data and the fact that Irf5 polymorphisms are significantly associated with MS, highlight IRF5 as a potential therapeutic target to promote regenerative responses.
Collapse
Affiliation(s)
- Alejandro Montilla
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain.
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| | - Alazne Zabala
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Ibai Calvo
- Department of Physical Chemistry, Faculty of Sciences, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Marina Bosch-Juan
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Irene Tomé-Velasco
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Paloma Mata
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Mirjam Koster
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Ikerbasque Foundation, E-48009, Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Susanne M Kooistra
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Federico N Soria
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Ikerbasque Foundation, E-48009, Bilbao, Spain
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Olatz Fresnedo
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - José Andrés Fernández
- Department of Physical Chemistry, Faculty of Sciences, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Vanja Tepavcevic
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain.
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| | - María Domercq
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain.
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
| |
Collapse
|
9
|
Andrade AX, Nguyen S, Montillo A. scMEDAL for the interpretable analysis of single-cell transcriptomics data with batch effect visualization using a deep mixed effects autoencoder. RESEARCH SQUARE 2025:rs.3.rs-6081478. [PMID: 40166015 PMCID: PMC11957221 DOI: 10.21203/rs.3.rs-6081478/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
scRNA-seq data has the potential to provide new insights into cellular heterogeneity and data acquisition; however, a major challenge is unraveling confounding from technical and biological batch effects. Existing batch correction algorithms suppress and discard these effects, rather than quantifying and modeling them. Here, we present scMEDAL, a framework for s ingle- c ell M ixed E ffects D eep A utoencoder L earning, which separately models batch-invariant and batch-specific effects using two complementary autoencoder networks. One network is trained through adversarial learning to capture a batch-invariant representation, while a Bayesian autoencoder learns a batch-specific representation. Comprehensive evaluations spanning conditions (e.g., autism, leukemia, and cardiovascular), cell types, and technical and biological effects demonstrate that scMEDAL suppresses batch effects while modeling batch-specific variation, enhancing accuracy and interpretability. Unlike prior approaches, the framework's fixed- and random-effects autoencoders enable retrospective analyses, including predicting a cell's expression as if it had been acquired in a different batch via genomap projections at the cellular level, revealing the impact of biological (e.g., diagnosis) and technical (e.g., acquisition) effects. By combining scMEDAL's batch-agnostic and batch-specific latent spaces, it enables more accurate predictions of disease status, donor group, and cell type, making scMEDAL a valuable framework for gaining deeper insight into data acquisition and cellular heterogeneity.
Collapse
Affiliation(s)
- Aixa X. Andrade
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Son Nguyen
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Albert Montillo
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Andrade AX, Nguyen S, Montillo A. scMEDAL for the interpretable analysis of single-cell transcriptomics data with batch effect visualization using a deep mixed effects autoencoder. ARXIV 2025:arXiv:2411.06635v3. [PMID: 39606715 PMCID: PMC11601787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
scRNA-seq data has the potential to provide new insights into cellular heterogeneity and data acquisition; however, a major challenge is unraveling confounding from technical and biological batch effects. Existing batch correction algorithms suppress and discard these effects, rather than quantifying and modeling them. Here, we present scMEDAL, a framework for single-cell Mixed Effects Deep Autoencoder Learning, which separately models batch-invariant and batch-specific effects using two complementary autoencoder networks. One network is trained through adversarial learning to capture a batch-invariant representation, while a Bayesian autoencoder learns a batch-specific representation. Comprehensive evaluations spanning conditions (e.g., autism, leukemia, and cardiovascular), cell types, and technical and biological effects demonstrate that scMEDAL suppresses batch effects while modeling batch-specific variation, enhancing accuracy and interpretability. Unlike prior approaches, the framework's fixed- and random-effects autoencoders enable retrospective analyses, including predicting a cell's expression as if it had been acquired in a different batch via genomap projections at the cellular level, revealing the impact of biological (e.g., diagnosis) and technical (e.g., acquisition) effects. By combining scMEDAL's batch-agnostic and batch-specific latent spaces, it enables more accurate predictions of disease status, donor group, and cell type, making scMEDAL a valuable framework for gaining deeper insight into data acquisition and cellular heterogeneity.
Collapse
|
11
|
Li X, Jakubzick CV. The Heterogeneity, Parallels, and Divergence of Alveolar Macrophages in Humans and Mice. Am J Respir Cell Mol Biol 2025; 72:335-337. [PMID: 39535274 PMCID: PMC11890074 DOI: 10.1165/rcmb.2024-0315le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Xin Li
- Dartmouth Geisel School of MedicineHanover, New Hampshire
| | | |
Collapse
|
12
|
Zelco A, Joshi A. Single-Cell Analysis of Sex and Gender Differences in the Human Brain During Development and Disease. Cell Mol Neurobiol 2025; 45:20. [PMID: 40016536 PMCID: PMC11868228 DOI: 10.1007/s10571-025-01536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
Sex and gender (SG) differences in the human brain are of interest to society and science as numerous processes are impacted by them, including brain development, behavior, and diseases. By collecting publicly available single-cell data from the in-utero to elderly age in healthy, Alzheimer's disease and multiple sclerosis samples, we identified and characterized SG-biased genes in ten brain cell types across 9 age and disease groups. Sex and gender differences in the transcriptome were present throughout the lifespan and across all cell types. Although there was limited overlap among SG-biased genes across different age and disease groups, we observed significant functional overlap. Female-biased genes are consistently enriched for brain-related processes, while male-biased genes are enriched for metabolic pathways. Additionally, mitochondrial genes showed a consistent female bias across cell types. We also found that androgen response elements (not estrogen) were significantly enriched in both male- and female-biased genes, and thymosin hormone targets being consistently enriched only in male-biased genes. We systematically characterised SG differences in brain development and brain-related disorders at a single-cell level, by analysing a total of publicly available 419,885 single nuclei from 161 human brain samples (72 females, 89 males). The significant enrichment of androgen (not estrogen) response elements in both male- and female-biased genes suggests that androgens are important regulators likely establishing these SG differences. Finally, we provide full characterization of SG-biased genes at different thresholds for the scientific community as a web resource.
Collapse
Affiliation(s)
- Aura Zelco
- Department of Clinical Science, Computational Biology Unit, University of Bergen, Bergen, Norway.
| | - Anagha Joshi
- Department of Clinical Science, Computational Biology Unit, University of Bergen, Bergen, Norway.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
| |
Collapse
|
13
|
Goldman OV, DeFoe AE, Qi Y, Jiao Y, Weng SC, Houri-Zeevi L, Lakhiani P, Morita T, Razzauti J, Rosas-Villegas A, Tsitohay YN, Walker MM, Hopkins BR, Mosquito Cell Atlas Consortium, Akbari OS, Duvall LB, White-Cooper H, Sorrells TR, Sharma R, Li H, Vosshall LB, Shai N. Mosquito Cell Atlas: A single-nucleus transcriptomic atlas of the adult Aedes aegypti mosquito. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.639765. [PMID: 40060408 PMCID: PMC11888250 DOI: 10.1101/2025.02.25.639765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The female mosquito's remarkable ability to hunt humans and transmit pathogens relies on her unique biology. Here, we present the Mosquito Cell Atlas (MCA), a comprehensive single-nucleus RNA sequencing dataset of more than 367,000 nuclei from 19 dissected tissues of adult female and male Aedes aegypti, providing cellular-level resolution of mosquito biology. We identify novel cell types and expand our understanding of sensory neuron organization of chemoreceptors to all sensory tissues. Our analysis uncovers male-specific cells and sexually dimorphic gene expression in the antenna and brain. In female mosquitoes, we find that glial cells in the brain, rather than neurons, undergo the most extensive transcriptional changes following blood feeding. Our findings provide insights into the cellular basis of mosquito behavior and sexual dimorphism. The MCA aims to serve as a resource for the vector biology community, enabling systematic investigation of cell-type specific expression across all mosquito tissues.
Collapse
Affiliation(s)
- Olivia V. Goldman
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Kavli Neural Systems Institute, New York, NY 10065, USA
| | - Alexandra E. DeFoe
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yaoyu Jiao
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shih-Che Weng
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Leah Houri-Zeevi
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Priyanka Lakhiani
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Takeshi Morita
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Jacopo Razzauti
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Price Family Center for the Social Brain, The Rockefeller University, New York, NY 10065, USA
| | - Adriana Rosas-Villegas
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Yael N. Tsitohay
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Madison M. Walker
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Ben R. Hopkins
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | | | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laura B. Duvall
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Helen White-Cooper
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Trevor R. Sorrells
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, New Haven, CT 06510, USA
| | - Roshan Sharma
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Single-cell Analytics Innovation Lab, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leslie B. Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Kavli Neural Systems Institute, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Nadav Shai
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| |
Collapse
|
14
|
Ammons DT, Harris RA, Chow L, Dow S. Characterization of canine tumor-infiltrating leukocyte transcriptomic signatures reveals conserved expression patterns with human osteosarcoma. Cancer Immunol Immunother 2025; 74:105. [PMID: 39932553 PMCID: PMC11813853 DOI: 10.1007/s00262-025-03950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Immune cells play key roles in host responses to malignant tumors. The selective pressure that immune cells elicit on tumors promotes immune escape, while tumor-associated modulation of immune cells creates an environment favorable to tumor growth and progression. In this study we used publicly available single-cell RNA sequencing (scRNA-seq) data from the translationally relevant canine osteosarcoma (OS) model to compare tumor-infiltrating immune cells to circulating leukocytes. Through computational analysis we investigated the differences in cell type proportions and how the OS TME impacted infiltrating immune cell transcriptomic profiles relative to circulating leukocytes. Differential abundance analysis revealed increased proportions of follicular helper T cells, regulatory T cells, and mature regulatory dendritic cells (mregDCs) in the OS TME. Differential gene expression analysis identified exhaustion markers (LAG3, HAVCR2, PDCD1) to be upregulated in CD4 and CD8 T cells within the OS TME. Comparisons of B cell gene expression profiles revealed an enrichment of protein processing and endoplasmic reticulum pathways, suggesting infiltrating B cells were activated following tumor infiltration. Gene expression changes within myeloid cells identified increased expression of immune suppressive molecules (CD274, OSM, MSR1) in the OS TME, indicating the TME skews myeloid cells toward an immunosuppressive phenotype. Comparisons to human literature and analysis of human scRNA-seq data revealed conserved transcriptomic responses to tumor infiltration, while also identifying species differences. Overall, the analysis presented here provides new insights into how the OS TME impacts the transcriptional programs of major immune cell populations in dogs and acts as a resource for comparative immuno-oncology research.
Collapse
Affiliation(s)
- Dylan T Ammons
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| | - R Adam Harris
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lyndah Chow
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Steven Dow
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
15
|
Agboraw E, Haese-Hill W, Hentzschel F, Briggs E, Aghabi D, Heawood A, Harding CR, Shiels B, Crouch K, Somma D, Otto TD. paraCell: a novel software tool for the interactive analysis and visualization of standard and dual host-parasite single-cell RNA-seq data. Nucleic Acids Res 2025; 53:gkaf091. [PMID: 39988320 PMCID: PMC11840555 DOI: 10.1093/nar/gkaf091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025] Open
Abstract
Advances in sequencing technology have led to a dramatic increase in the number of single-cell transcriptomic datasets. In the field of parasitology, these datasets typically describe the gene expression patterns of a given parasite species at the single-cell level under experimental conditions, in specific hosts or tissues, or at different life cycle stages. However, while this wealth of available data represents a significant resource, analysing these datasets often requires expert computational skills, preventing a considerable proportion of the parasitology community from meaningfully integrating existing single-cell data into their work. Here, we present paraCell, a novel software tool that allows the user to visualize and analyse pre-loaded single-cell data without requiring any programming ability. The source code is free to allow remote installation. On our web server, we demonstrated how to visualize and re-analyse published Plasmodium and Trypanosoma datasets. We have also generated Toxoplasma-mouse and Theileria-cow scRNA-seq datasets to highlight the functionality of paraCell for pathogen-host interaction. The analysis of the data highlights the impact of the host interferon-γ response and gene expression profiles associated with disease susceptibility by these intracellular parasites, respectively.
Collapse
Affiliation(s)
- Edward Agboraw
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - William Haese-Hill
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
- MVLS SRF, Research Software Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Franziska Hentzschel
- Centre for Infectious Diseases, Heidelberg University Medical Faculty, 69120 Heidelberg, Germany
| | - Emma Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH4 2JP Edinburgh, United Kingdom
| | - Dana Aghabi
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Anna Heawood
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Clare R Harding
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Brian Shiels
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, G61 1QH Glasgow, United Kingdom
| | - Kathryn Crouch
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Domenico Somma
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Thomas D Otto
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
- LPHI, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
16
|
Huang D, Liu X, Gao X, Choi CK, Giglio G, Farah L, Leung T, Wong KC, Kan LL, Chong JW, Meng Q, Liao J, Cheung PF, Wong C. Meteorin-like protein/METRNL/Interleukin-41 ameliorates atopic dermatitis-like inflammation. Allergy 2025; 80:474-488. [PMID: 38727640 PMCID: PMC11804313 DOI: 10.1111/all.16150] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 02/08/2025]
Abstract
BACKGROUND Meteorin-like protein (METRNL)/Interleukin-41 (IL-41) is a novel immune-secreted cytokine/myokine involved in several inflammatory diseases. However, how METRNL exerts its regulatory properties on skin inflammation remains elusive. This study aims to elucidate the functionality and regulatory mechanism of METRNL in atopic dermatitis (AD). METHODS METRNL levels were determined in skin and serum samples from patients with AD and subsequently verified in the vitamin D3 analogue MC903-induced AD-like mice model. The cellular target of METRNL activity was identified by multiplex immunostaining, single-cell RNA-seq and RNA-seq. RESULTS METRNL was significantly upregulated in lesions and serum of patients with dermatitis compared to healthy controls (p <.05). Following repeated MC903 exposure, AD model mice displayed elevated levels of METRNL in both ears and serum. Administration of recombinant murine METRNL protein (rmMETRNL) ameliorated allergic skin inflammation and hallmarks of AD in mice, whereas blocking of METRNL signaling led to the opposite. METRNL enhanced β-Catenin activation, limited the expression of Th2-related molecules that attract the accumulation of Arginase-1 (Arg1)hi macrophages, dendritic cells, and activated mast cells. CONCLUSIONS METRNL can bind to KIT receptor and subsequently alleviate the allergic inflammation of AD by inhibiting the expansion of immune cells, and downregulating inflammatory gene expression by regulating the level of active WNT pathway molecule β-Catenin.
Collapse
Affiliation(s)
- Danqi Huang
- Department of Chemical PathologyThe Chinese University of Hong KongHong KongChina
| | - Xiuting Liu
- Department of Dermatology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xun Gao
- Department of Chemical PathologyThe Chinese University of Hong KongHong KongChina
- Center of Clinical Laboratory Medicine, Zhongda HospitalSoutheast UniversityNanjingChina
| | - Chun Kit Choi
- Department of Chemical PathologyThe Chinese University of Hong KongHong KongChina
| | - Giovanni Giglio
- Bridge Institute of Experimental Tumor Therapy, West German Cancer CenterUniversity Hospital EssenEssenGermany
- Division of Solid Tumor Translational OncologyGerman Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZHeidelbergGermany
| | - Luay Farah
- Bridge Institute of Experimental Tumor Therapy, West German Cancer CenterUniversity Hospital EssenEssenGermany
- Division of Solid Tumor Translational OncologyGerman Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZHeidelbergGermany
| | - Ting‐Fan Leung
- Department of PaediatricsThe Chinese University of Hong KongHong KongChina
| | - Katie Ching‐Yau Wong
- Department of Chemical PathologyThe Chinese University of Hong KongHong KongChina
| | - Lea Ling‐Yu Kan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal PlantsThe Chinese University of Hong KongHong KongChina
| | | | - Qing‐Jun Meng
- Welcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Centre for Biological Timing, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Jinyue Liao
- Department of Chemical PathologyThe Chinese University of Hong KongHong KongChina
| | - Phyllis Fung‐Yi Cheung
- Bridge Institute of Experimental Tumor Therapy, West German Cancer CenterUniversity Hospital EssenEssenGermany
- Division of Solid Tumor Translational OncologyGerman Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZHeidelbergGermany
- Spatiotemporal tumor heterogeneity, German Cancer Consortium (DKTK)A Partnership Between German Cancer Research Center (DKFZ) and University HospitalEssenGermany
| | - Chun‐Kwok Wong
- Department of Chemical PathologyThe Chinese University of Hong KongHong KongChina
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal PlantsThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
17
|
Kim EN, Li FQ, Takemaru KI. ciBAR1 loss in mice causes laterality defects, pancreatic degeneration, and altered glucose tolerance. Life Sci Alliance 2025; 8:e202402916. [PMID: 39622622 PMCID: PMC11612972 DOI: 10.26508/lsa.202402916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Bin/Amphiphysin/Rvs (BAR) domains are highly conserved domains found in all eukaryotes. BAR domain proteins form crescent-shaped dimers that sense and sculpt curved lipid membranes and play key roles in various cellular processes. However, their functions in mammalian development are poorly understood. We previously demonstrated that Chibby1-interacting BAR domain-containing 1 (ciBAR1, formerly known as FAM92A) localizes to the ciliary base and plays a critical role in ciliogenesis. Here, we report ciliopathy phenotypes of ciBAR1-KO mice. We found that ∼28% of ciBAR1-KO mice show embryonic lethality because of randomized left-right asymmetry; the rest survive into adulthood with no gross morphological abnormalities. Histological assessments of ciliated tissues revealed exocrine pancreatic lesions. Although overall endocrine islet morphology appeared to be normal, ciBAR1-KO mice showed impaired glucose tolerance. Examination of ductal and islet cilia revealed that cilia number and length were significantly reduced in ciBAR1-KO pancreata. ciBAR1-KO MEFs also exhibited ciliary defects. Our findings indicate that ciBAR1 plays a critical role in ciliogenesis depending on the tissue and cell type in mice.
Collapse
Affiliation(s)
- Eunice N Kim
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
18
|
Abdelazeem KNM, Nguyen D, Corbo S, Darragh LB, Matsumoto MW, Van Court B, Neupert B, Yu J, Olimpo NA, Osborne DG, Gadwa J, Ross RB, Nguyen A, Bhatia S, Kapoor M, Friedman RS, Jacobelli J, Saviola AJ, Knitz MW, Pasquale EB, Karam SD. Manipulating the EphB4-ephrinB2 axis to reduce metastasis in HNSCC. Oncogene 2025; 44:130-146. [PMID: 39489818 PMCID: PMC11725500 DOI: 10.1038/s41388-024-03208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The EphB4-ephrinB2 signaling axis has been heavily implicated in metastasis across numerous cancer types. Our emerging understanding of the dichotomous roles that EphB4 and ephrinB2 play in head and neck squamous cell carcinoma (HNSCC) poses a significant challenge to rational drug design. We find that EphB4 knockdown in cancer cells enhances metastasis in preclinical HNSCC models by augmenting immunosuppressive cells like T regulatory cells (Tregs) within the tumor microenvironment. EphB4 inhibition in cancer cells also amplifies their ability to metastasize through increased expression of genes associated with hallmark pathways of metastasis along with classical and non-classical epithelial-mesenchymal transition. In contrast, vascular ephrinB2 knockout coupled with radiation therapy (RT) enhances anti-tumor immunity, reduces Treg accumulation into the tumor, and decreases metastasis. Notably, targeting the EphB4-ephrinB2 signaling axis with the engineered ligands ephrinB2-Fc-His and Fc-TNYL-RAW-GS reduces local tumor growth and distant metastasis in a preclinical model of HNSCC. Our data suggests that targeted inhibition of vascular ephrinB2 while avoiding inhibition of EphB4 in cancer cells could be a promising strategy to mitigate HNSCC metastasis.
Collapse
Affiliation(s)
- Khalid N M Abdelazeem
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mike W Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Justin Yu
- Department of Otolaryngology - Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas A Olimpo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Douglas Grant Osborne
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard B Ross
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network, and University of Toronto, Toronto, ON, Canada
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
Herrera Lopez M, Bertone Arolfo M, Remedi M, Gastaldi L, Wilson C, Guendulain GG, Ceschin D, Cardozo Gizzi A, Cáceres A, Moyano AL. Human neural rosettes secrete bioactive extracellular vesicles enriched in neuronal and glial cellular components. Sci Rep 2025; 15:1987. [PMID: 39814837 PMCID: PMC11736123 DOI: 10.1038/s41598-025-86094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Extracellular vesicles (EVs) play a critical role in the development of neural cells in the central nervous system (CNS). Human neural rosettes (hNRs) are radial cell structures that assemble from induced pluripotent stem cells (hiPSCs) and recapitulate some stages of neural tube morphogenesis. Here we show that hiPSCs and hNRs secrete EVs (hiPSC-EVs and hNR-EVs) with distinctive protein cargoes. Remarkably, hNR-EVs carry neuronal and glial cellular components involved in human CNS development. Importantly, hNR-EVs stimulate stem cells to change their cellular morphology and promote neurite growth in human and murine neurons with a significant dysregulation of SOX2 levels. This transcription factor modulates both neural differentiation and pluripotency. Interestingly, these effects were inhibited by antibodies against an unexpected neuroglial cargo of hNR-EVs: the major proteolipid protein (PLP). These findings show that hNRs secrete bioactive EVs containing neural components and might contribute as trophic factors during human neurodevelopment.
Collapse
Affiliation(s)
- Malena Herrera Lopez
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Matías Bertone Arolfo
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Mónica Remedi
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Laura Gastaldi
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Carlos Wilson
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Gonzalo G Guendulain
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Danilo Ceschin
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Andrés Cardozo Gizzi
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Alfredo Cáceres
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.
| | - Ana Lis Moyano
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.
| |
Collapse
|
20
|
Zhuo L, Wang M, Song T, Zhong S, Zeng B, Liu Z, Zhou X, Wang W, Wu Q, He S, Wang X. MAPbrain: a multi-omics atlas of the primate brain. Nucleic Acids Res 2025; 53:D1055-D1065. [PMID: 39420633 PMCID: PMC11701655 DOI: 10.1093/nar/gkae911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The brain is the central hub of the entire nervous system. Its development is a lifelong process guided by a genetic blueprint. Understanding how genes influence brain development is critical for deciphering the formation of human cognitive functions and the underlying mechanisms of neurological disorders. Recent advances in multi-omics techniques have now made it possible to explore these aspects comprehensively. However, integrating and analyzing extensive multi-omics data presents significant challenges. Here, we introduced MAPbrain (http://bigdata.ibp.ac.cn/mapBRAIN/), a multi-omics atlas of the primate brain. This repository integrates and normalizes both our own lab's published data and publicly available multi-omics data, encompassing 21 million brain cells from 38 key brain regions and 436 sub-regions across embryonic and adult stages, with 164 time points in humans and non-human primates. MAPbrain offers a unique, robust, and interactive platform that includes transcriptomics, epigenomics, and spatial transcriptomics data, facilitating a comprehensive exploration of brain development. The platform enables the exploration of cell type- and time point-specific markers, gene expression comparison between brain regions and species, joint analyses across transcriptome and epigenome, and navigation of cell types across species, brain regions, and development stages. Additionally, MAPbrain provides an online integration module for users to navigate and analyze their own data within the platform.
Collapse
Affiliation(s)
- Liangchen Zhuo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengdi Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingrui Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China
| | - Bo Zeng
- Changping Laboratory, Beijing 102206, China
| | - Zeyuan Liu
- Changping Laboratory, Beijing 102206, China
| | - Xin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China
| | - Wei Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China
| | - Shunmin He
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoqun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
21
|
Kotliar M, Kartashov A, Barski A. Accelerating Single-Cell Sequencing Data Analysis with SciDAP: A User-Friendly Approach. Methods Mol Biol 2025; 2880:255-292. [PMID: 39900764 DOI: 10.1007/978-1-0716-4276-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Single-cell (sc) RNA, ATAC, and Multiome sequencing became powerful tools for uncovering biological and disease mechanisms. Unfortunately, manual analysis of sc data presents multiple challenges due to large data volumes and complexity of configuration parameters. This complexity, as well as not being able to reproduce a computational environment, affects the reproducibility of analysis results. The Scientific Data Analysis Platform ( https://SciDAP.com ) allows biologists without computational expertise to analyze sequencing-based data using portable and reproducible pipelines written in Common Workflow Language (CWL). Our suite of computational pipelines addresses the most common needs in scRNA-Seq, scATAC-Seq and scMultiome data analysis. When executed on SciDAP, it offers a user-friendly alternative to manual data processing, eliminating the need for coding expertise. In this protocol, we describe the use of SciDAP to analyze scMultiome data. Similar approaches can be used for analysis of scRNA-Seq, scATAC-Seq and scVDJ-Seq datasets.
Collapse
Affiliation(s)
- Michael Kotliar
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Datirium, LLC, Cincinnati, OH, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
22
|
Hrovatin K, Sikkema L, Shitov VA, Heimberg G, Shulman M, Oliver AJ, Mueller MF, Ibarra IL, Wang H, Ramírez-Suástegui C, He P, Schaar AC, Teichmann SA, Theis FJ, Luecken MD. Considerations for building and using integrated single-cell atlases. Nat Methods 2025; 22:41-57. [PMID: 39672979 DOI: 10.1038/s41592-024-02532-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/22/2024] [Indexed: 12/15/2024]
Abstract
The rapid adoption of single-cell technologies has created an opportunity to build single-cell 'atlases' integrating diverse datasets across many laboratories. Such atlases can serve as a reference for analyzing and interpreting current and future data. However, it has become apparent that atlasing approaches differ, and the impact of these differences are often unclear. Here we review the current atlasing literature and present considerations for building and using atlases. Importantly, we find that no one-size-fits-all protocol for atlas building exists, but rather we discuss context-specific considerations and workflows, including atlas conceptualization, data collection, curation and integration, atlas evaluation and atlas sharing. We further highlight the benefits of integrated atlases for analyses of new datasets and deriving biological insights beyond what is possible from individual datasets. Our overview of current practices and associated recommendations will improve the quality of atlases to come, facilitating the shift to a unified, reference-based understanding of single-cell biology.
Collapse
Affiliation(s)
- Karin Hrovatin
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lisa Sikkema
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Vladimir A Shitov
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive / Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Graham Heimberg
- Department of OMNI Bioinformatics, Genentech, South San Francisco, CA, USA
- Department of Biological Research | AI Development, Genentech, South San Francisco, CA, USA
| | - Maiia Shulman
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Michaela F Mueller
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Ignacio L Ibarra
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Hanchen Wang
- Department of Biological Research | AI Development, Genentech, South San Francisco, CA, USA
- Department of Computer Science, Stanford University, Palo Alto, CA, USA
| | - Ciro Ramírez-Suástegui
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Peng He
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Anna C Schaar
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
- CIFAR MacMillan Multiscale Human Programme, Toronto, Ontario, Canada
| | - Fabian J Theis
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Department of Mathematics, Technical University of Munich, Garching, Germany.
| | - Malte D Luecken
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany.
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive / Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
23
|
Kakar N, Mascarenhas S, Ali A, Azmatullah, Ijlal Haider SM, Badiger VA, Ghofrani MS, Kruse N, Hashmi SN, Pozojevic J, Balachandran S, Toft M, Malik S, Händler K, Fatima A, Iqbal Z, Shukla A, Spielmann M, Radhakrishnan P. Further evidence of biallelic NAV3 variants associated with recessive neurodevelopmental disorder with dysmorphism, developmental delay, intellectual disability, and behavioral abnormalities. Hum Genet 2025; 144:55-65. [PMID: 39708122 PMCID: PMC11754320 DOI: 10.1007/s00439-024-02718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
Neuron navigators (NAVs) are cytoskeleton-associated proteins well known for their role in axonal guidance, neuronal migration, and neurite growth necessary for neurodevelopment. Neuron navigator 3 (NAV3) is one of the three NAV proteins highly expressed in the embryonic and adult brain. However, the role of the NAV3 gene in human disease is not well-studied. Recently, five bi-allelic and three mono-allelic variants in NAV3 were reported in 12 individuals from eight unrelated families with neurodevelopmental disorder (NDD). Here, we report five patients from three unrelated consanguineous families segregating autosomal recessive NDD. Patients have symptoms of dysmorphism, intellectual disability, developmental delay, and behavioral abnormalities. Exome sequencing (ES) was performed on two affected individuals from one large family, and one affected individual from each of the other two families. ES revealed two homozygous nonsense c.6325C > T; p.(Gln2109Ter) and c.6577C > T; p.(Arg2193Ter) and a homozygous splice site (c.243 + 1G > T) variants in the NAV3 (NM_001024383.2). Analysis of single-cell sequencing datasets from embryonic and young adult human brains revealed that NAV3 is highly expressed in the excitatory neurons, inhibitory neurons, and microglia, consistent with its role in neurodevelopment. In conclusion, in this study, we further validate biallelic protein truncating variants in NAV3 as a cause of NDD, expanding the spectrum of pathogenic variants in this newly discovered NDD gene.
Collapse
Affiliation(s)
- Naseebullah Kakar
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
- Department for Biotechnology, FLS&I, BUITEMS, Quetta, Pakistan
| | - Selinda Mascarenhas
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Asmat Ali
- Department of Biological and Biomedical Science, The Aga Khan University, Stadium Road, Karachi, 78400, Pakistan
| | - Azmatullah
- Department of Zoology, Human Genetics Program, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Vaishnavi Ashok Badiger
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mobina Shadman Ghofrani
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Nathalie Kruse
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Sohana Nadeem Hashmi
- Department of Biological and Biomedical Science, The Aga Khan University, Stadium Road, Karachi, 78400, Pakistan
| | - Jelena Pozojevic
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Saranya Balachandran
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Mathias Toft
- Institute of Clinical Medicine, University of Oslo, P.O Box 1171, 0318, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424, Oslo, Norway
| | - Sajid Malik
- Department of Zoology, Human Genetics Program, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kristian Händler
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Ambrin Fatima
- Department of Biological and Biomedical Science, The Aga Khan University, Stadium Road, Karachi, 78400, Pakistan
| | - Zafar Iqbal
- Department of Neurology, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424, Oslo, Norway
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Malte Spielmann
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany.
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
24
|
Feng S, Huang L, Pournara AV, Huang Z, Yang X, Zhang Y, Brazma A, Shi M, Papatheodorou I, Miao Z. Alleviating batch effects in cell type deconvolution with SCCAF-D. Nat Commun 2024; 15:10867. [PMID: 39738054 PMCID: PMC11686230 DOI: 10.1038/s41467-024-55213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Cell type deconvolution methods can impute cell proportions from bulk transcriptomics data, revealing changes in disease progression or organ development. But benchmarking studies often use simulated bulk data from the same source as the reference, which limits its application scenarios. This study examines batch effects in deconvolution and introduces SCCAF-D, a computational workflow that ensures a Pearson Correlation Coefficient above 0.75 across simulated and real bulk data for various tissue types. Applied to non-alcoholic fatty liver disease, SCCAF-D unveils meaningful insights into changes in cell proportions during disease progression.
Collapse
Grants
- This work was supported by the Natural Science Foundation of China (32270707), the National Key R&D Programs of China (2023YFF1204700, 2023YFF1204701, 2021YFF1200900, 2021YFF1200903), the R&D Programs of Guangzhou Laboratory, Grant No. GZNL2024A01002, GZNL2023A01006, SRPG22-003, SRPG22-006, SRPG22-007, HWYQ23-003, YW-YFYJ0102.
Collapse
Affiliation(s)
- Shuo Feng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Liangfeng Huang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Anna Vathrakokoili Pournara
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Ziliang Huang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Xinlu Yang
- Department of Obstetrics and Gynaecology, Harbin Red Cross Central Hospital, Harbin, 150001, China
| | - Yongjian Zhang
- Harbin Medical University the Sixth Affiliated Hospital, Harbin, 150023, China
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Irene Papatheodorou
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
- Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UA, UK.
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China.
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.
| |
Collapse
|
25
|
Gelashvili Z, Shen Z, Ma Y, Jelcic M, Niethammer P. Perivascular Macrophages Convert Physical Wound Signals Into Rapid Vascular Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627538. [PMID: 39713421 PMCID: PMC11661168 DOI: 10.1101/2024.12.09.627538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Leukocytes detect distant wounds within seconds to minutes, which is essential for effective pathogen defense, tissue healing, and regeneration. Blood vessels must detect distant wounds just as rapidly to initiate local leukocyte extravasation, but the mechanism behind this immediate vascular response remains unclear. Using high-speed imaging of live zebrafish larvae, we investigated how blood vessels achieve rapid wound detection. We monitored two hallmark vascular responses: vessel dilation and serum exudation. Our experiments-including genetic, pharmacologic, and osmotic perturbations, along with chemogenetic leukocyte depletion-revealed that the cPla2 nuclear shape sensing pathway in perivascular macrophages converts a fast (~50 μm/s) osmotic wound signal into a vessel-permeabilizing, 5-lipoxygenase (Alox5a) derived lipid within seconds of injury. These findings demonstrate that perivascular macrophages act as physicochemical relays, bridging osmotic wound signals and vascular responses. By uncovering this novel type of communication, we provide new insights into the coordination of immune and vascular responses to injury.
Collapse
Affiliation(s)
- Zaza Gelashvili
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhouyang Shen
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Oncology, The Bunting Blaustein Cancer Research Bldg, Johns Hopkins School of Medicine, 1650 Orleans Street, Baltimore, MD, 2128
| | - Yanan Ma
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark Jelcic
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Fate Therapeutics, Inc., San Diego, CA, 92131, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
26
|
Zou X, Wang K, Deng Y, Guan P, Pu Q, Wang Y, Mou J, Du Y, Lou X, Wang S, Jiang N, Zhou S, Wang H, Du D, Liu X, Hu H, Zhang H. Hypoxia-inducible factor 2α promotes pathogenic polarization of stem-like Th2 cells via modulation of phospholipid metabolism. Immunity 2024; 57:2808-2826.e8. [PMID: 39609127 DOI: 10.1016/j.immuni.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/10/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
T helper 2 (Th2) cells orchestrate immunity against parasite infection and promote tissue repair but promote pathology in asthma and tissue fibrosis. Here, we examined the mechanisms driving pathogenic differentiation of Th2 cells. Single-cell analyses of CD4+ T cells from asthma and chronic rhinosinusitis patients revealed high expression of the hypoxia-inducible factor (HIF)2α in Th2 cells. In mice, HIF2α deficiency impaired Th2 differentiation and alleviated asthmatic inflammation. Single-cell and lineage tracing approaches delineated a differentiation trajectory from TCF1+Ly108+ stem-like Th2 cells to the ST2+CD25+ pathogenic progeny, depending on a HIF2α-GATA3 circuit that modulated phospholipid metabolism and T cell receptor (TCR)-phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) activation via transcriptional regulation of the inositol polyphosphate multikinase (IPMK). Overexpression of IPMK in HIF2α-deficient cells promoted Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) synthesis and pathogenic Th2 cell differentiation, whereas pharmacological inhibition of HIF2α impaired pathogenic differentiation of Th2 cells and mitigated airway inflammation. Our findings provide insight into the contextual cues that promote Th2-mediated pathology and suggest HIF2α as a therapeutic target in asthma.
Collapse
Affiliation(s)
- Xinkai Zou
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Keyue Wang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Deng
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pengbo Guan
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianlun Pu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuemeng Wang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jun Mou
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Infectious Diseases and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yizhou Du
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoxian Lou
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sijiao Wang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Jiang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Jinfeng Laboratory, Chongqing 401329, China.
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Chongqing International Institute for Immunology, Chongqing, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610041, China.
| | - Huiyuan Zhang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
27
|
Lee JJY, Johnston MJ, Farooq H, Chen HM, Younes ST, Suarez R, Zwaig M, Juretic N, Weiss WA, Ragoussis J, Jabado N, Taylor MD, Gallo M. 3D genome topology distinguishes molecular subgroups of medulloblastoma. Am J Hum Genet 2024; 111:2720-2734. [PMID: 39481374 PMCID: PMC11639096 DOI: 10.1016/j.ajhg.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Four main medulloblastoma (MB) molecular subtypes have been identified based on transcriptional, DNA methylation, and genetic profiles. However, it is currently not known whether 3D genome architecture differs between MB subtypes. To address this question, we performed in situ Hi-C to reconstruct the 3D genome architecture of MB subtypes. In total, we generated Hi-C and matching transcriptome data for 28 surgical specimens and Hi-C data for one patient-derived xenograft. The average resolution of the Hi-C maps was 6,833 bp. Using these data, we found that insulation scores of topologically associating domains (TADs) were effective at distinguishing MB molecular subgroups. TAD insulation score differences between subtypes were globally not associated with differential gene expression, although we identified few exceptions near genes expressed in the lineages of origin of specific MB subtypes. Our study therefore supports the notion that TAD insulation scores can distinguish MB subtypes independently of their transcriptional differences.
Collapse
Affiliation(s)
- John J Y Lee
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michael J Johnston
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hamza Farooq
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Huey-Miin Chen
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Subhi Talal Younes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Raul Suarez
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Melissa Zwaig
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada
| | - Nikoleta Juretic
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; Department of Pediatrics, McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H3A 3J1, Canada
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA; Brain Tumor Research Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; Department of Pediatrics, McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H3A 3J1, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Marco Gallo
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Eto S, Kato D, Saeki K, Iguchi T, Shiyu Q, Kamoto S, Yoshitake R, Shinada M, Ikeda N, Tsuboi M, Chambers J, Uchida K, Nishimura R, Nakagawa T. Comprehensive Analysis of the Tumour Immune Microenvironment in Canine Urothelial Carcinoma Reveals Immunosuppressive Mechanisms Induced by the COX-Prostanoid Cascade. Vet Comp Oncol 2024; 22:500-512. [PMID: 39179510 DOI: 10.1111/vco.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 08/26/2024]
Abstract
A comprehensive understanding of the tumour immune microenvironment (TIME) is essential for advancing precision medicine and identifying potential therapeutic targets. This study focused on canine urothelial carcinoma (cUC) recognised for its high sensitivity to cyclooxygenase (COX) inhibitors. Using immunohistochemical techniques, we quantified the infiltration of seven immune cell populations within cUC tumour tissue to identify clinicopathological features that characterise the TIME in cUC. Our results revealed several notable factors, including the significantly higher levels of CD3+ T cells and CD8+ T cells within tumour cell nests in cases treated with preoperative COX inhibitors compared to untreated cases. Based on the immunohistochemistry data, we further performed a comparative analysis using publicly available RNA-seq data from untreated cUC tissues (n = 29) and normal bladder tissues (n = 4) to explore the link between COX-prostanoid pathways and the immune response to tumours. We observed increased expression of COX-2, microsomal prostaglandin E2 synthase-1 (mPGES-1) and mPGES-2 in cUC tissues. However, only mPGES-2 showed a negative correlation with the cytotoxic T-cell (CTL)-related genes CD8A and granzyme B (GZMB). In addition, a broader analysis of solid tumours using The Cancer Genome Atlas (TCGA) database revealed similar patterns in several human tumours, suggesting a common mechanism in dogs and humans. Our results suggest that the COX-2/mPGES-2 pathway may act as a cross-species tumour-intrinsic factor that weakens anti-tumour immunity, and that COX inhibitors may convert TIME from a 'cold tumour' to a 'hot tumour' state by counteracting COX/mPGES-2-mediated immunosuppression.
Collapse
Affiliation(s)
- Shotaro Eto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Takaaki Iguchi
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Qin Shiyu
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kamoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Namiko Ikeda
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaya Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Kapoor M, Ventura ES, Walsh A, Sokolov A, George N, Kumari S, Provart NJ, Cole B, Libault M, Tickle T, Warren WC, Koltes JE, Papatheodorou I, Ware D, Harrison PW, Elsik C, Yordanova G, Burdett T, Tuggle CK. Building a FAIR data ecosystem for incorporating single-cell transcriptomics data into agricultural genome to phenome research. Front Genet 2024; 15:1460351. [PMID: 39678381 PMCID: PMC11638175 DOI: 10.3389/fgene.2024.1460351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction The agriculture genomics community has numerous data submission standards available, but the standards for describing and storing single-cell (SC, e.g., scRNA- seq) data are comparatively underdeveloped. Methods To bridge this gap, we leveraged recent advancements in human genomics infrastructure, such as the integration of the Human Cell Atlas Data Portal with Terra, a secure, scalable, open-source platform for biomedical researchers to access data, run analysis tools, and collaborate. In parallel, the Single Cell Expression Atlas at EMBL-EBI offers a comprehensive data ingestion portal for high-throughput sequencing datasets, including plants, protists, and animals (including humans). Developing data tools connecting these resources would offer significant advantages to the agricultural genomics community. The FAANG data portal at EMBL-EBI emphasizes delivering rich metadata and highly accurate and reliable annotation of farmed animals but is not computationally linked to either of these resources. Results Herein, we describe a pilot-scale project that determines whether the current FAANG metadata standards for livestock can be used to ingest scRNA-seq datasets into Terra in a manner consistent with HCA Data Portal standards. Importantly, rich scRNA-seq metadata can now be brokered through the FAANG data portal using a semi-automated process, thereby avoiding the need for substantial expert curation. We have further extended the functionality of this tool so that validated and ingested SC files within the HCA Data Portal are transferred to Terra for further analysis. In addition, we verified data ingestion into Terra, hosted on Azure, and demonstrated the use of a workflow to analyze the first ingested porcine scRNA-seq dataset. Additionally, we have also developed prototype tools to visualize the output of scRNA-seq analyses on genome browsers to compare gene expression patterns across tissues and cell populations. This JBrowse tool now features distinct tracks, showcasing PBMC scRNA-seq alongside two bulk RNA-seq experiments. Discussion We intend to further build upon these existing tools to construct a scientist-friendly data resource and analytical ecosystem based on Findable, Accessible, Interoperable, and Reusable (FAIR) SC principles to facilitate SC-level genomic analysis through data ingestion, storage, retrieval, re-use, visualization, and comparative annotation across agricultural species.
Collapse
Affiliation(s)
- Muskan Kapoor
- Department of Animal Science, Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| | - Enrique Sapena Ventura
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Amy Walsh
- Animal Science Research Center, Division of Animal Science and Division of Plant Science and Technology, University of Missouri-Columbia, Columbia, MO, United States
| | - Alexey Sokolov
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Nancy George
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Nicholas J. Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Benjamin Cole
- Lawrence Berkeley National Laboratory, DOE-Joint Genome Institute, Berkeley, CA, United States
| | - Marc Libault
- Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Timothy Tickle
- The Broad Institute of MIT and Harvard, Data Sciences Platform, Cambridge, MA, United States
| | - Wesley C. Warren
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO, United States
| | - James E. Koltes
- Department of Animal Science, Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| | - Irene Papatheodorou
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- U.S. Department of Agriculture, Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
| | - Peter W. Harrison
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Christine Elsik
- Animal Science Research Center, Division of Animal Science and Division of Plant Science and Technology, University of Missouri-Columbia, Columbia, MO, United States
| | - Galabina Yordanova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Tony Burdett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Christopher K. Tuggle
- Department of Animal Science, Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
30
|
Clayton BLL, Barbar L, Sapar M, Kalpana K, Rao C, Migliori B, Rusielewicz T, Paull D, Brenner K, Moroziewicz D, Sand IK, Casaccia P, Tesar PJ, Fossati V. Patient iPSC models reveal glia-intrinsic phenotypes in multiple sclerosis. Cell Stem Cell 2024; 31:1701-1713.e8. [PMID: 39191254 PMCID: PMC11560525 DOI: 10.1016/j.stem.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS), resulting in neurological disability that worsens over time. While progress has been made in defining the immune system's role in MS pathophysiology, the contribution of intrinsic CNS cell dysfunction remains unclear. Here, we generated a collection of induced pluripotent stem cell (iPSC) lines from people with MS spanning diverse clinical subtypes and differentiated them into glia-enriched cultures. Using single-cell transcriptomic profiling and orthogonal analyses, we observed several distinguishing characteristics of MS cultures pointing to glia-intrinsic disease mechanisms. We found that primary progressive MS-derived cultures contained fewer oligodendrocytes. Moreover, MS-derived oligodendrocyte lineage cells and astrocytes showed increased expression of immune and inflammatory genes, matching those of glia from MS postmortem brains. Thus, iPSC-derived MS models provide a unique platform for dissecting glial contributions to disease phenotypes independent of the peripheral immune system and identify potential glia-specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Benjamin L L Clayton
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lilianne Barbar
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Maria Sapar
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Kriti Kalpana
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Chandrika Rao
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Bianca Migliori
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Tomasz Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Katie Brenner
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Dorota Moroziewicz
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Ilana Katz Sand
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center at CUNY, New York, NY 10031, USA
| | - Paul J Tesar
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA.
| |
Collapse
|
31
|
Vázquez-Mera S, Martelo-Vidal L, Miguéns-Suárez P, Bravo SB, Saavedra-Nieves P, Arias P, Ferreiro-Posse A, Vázquez-Lago J, Salgado FJ, González-Barcala FJ, Nieto-Fontarigo JJ. Exploring CD26 -/lo subpopulations of lymphocytes in asthma phenotype and severity: A novel CD4 + T cell subset expressing archetypical granulocyte proteins. Allergy 2024; 79:3005-3021. [PMID: 39319599 DOI: 10.1111/all.16327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Asthma pathology may induce changes in naïve/memory lymphocyte proportions assessable through the evaluation of surface CD26 (dipeptidyl peptidase 4/DPP4) levels. Our aim was to investigate the association of asthma phenotype/severity with the relative frequency of CD26-/lo, CD26int and CD26hi subsets within different lymphocyte populations. METHODS The proportion of CD26-/lo, CD26int and CD26hi subsets within CD4+ effector T cells (Teff), total CD4- lymphocytes, γδ-T cells, NK cells and NKT cells was measured in peripheral blood samples from healthy (N = 30) and asthma (N = 119) donors with different phenotypes/severities by flow cytometry. We performed K-means clustering analysis and further characterised the CD4+CD26-/lo Teff cell subset by LC-MS/MS and immunofluorescence. RESULTS Cluster analysis including clinical and flow cytometry data resulted in four groups, two of them with opposite inflammatory profiles (neutrophilic vs. eosinophilic). Neutrophilic asthma presented reduced CD4-CD26hi cells, which negatively correlated with systemic inflammation. Eosinophilic asthma displayed a general expansion of CD26-/lo subsets. Specifically, CD4+CD26-/lo Teff expansion was confirmed in asthma, especially in atopic patients. Proteomic characterisation of this subset with a TEM/TEMRA phenotype revealed upregulated levels of innate (e.g. MPO and RNASE2) and cytoskeleton/extracellular matrix (e.g. MMP9 and ACTN1) proteins. Immunofluorescence assays confirmed the presence of atypical proteins for CD4+ T cells, and an enrichment in 'flower-like' nuclei and MMP9/RNASE2 levels in CD4+CD26-/lo Teff compared to CD4+ T lymphocytes. CONCLUSION There is an association between CD26 levels in different lymphocyte subsets and asthma phenotype/severity. CD4+CD26-/loTEMRA cells expressing innate proteins specific to eosinophils/neutrophils could be determinant in sustaining long-term inflammation in adult allergic asthma.
Collapse
Affiliation(s)
- Sara Vázquez-Mera
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Laura Martelo-Vidal
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Miguéns-Suárez
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Paula Saavedra-Nieves
- Department of Statistics, Mathematical Analysis and Optimization, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Arias
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antía Ferreiro-Posse
- Department of Respiratory Medicine, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Vázquez-Lago
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Javier Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Javier González-Barcala
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Department of Respiratory Medicine, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Medicine, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan José Nieto-Fontarigo
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
32
|
Heumos L, Ehmele P, Treis T, Upmeier Zu Belzen J, Roellin E, May L, Namsaraeva A, Horlava N, Shitov VA, Zhang X, Zappia L, Knoll R, Lang NJ, Hetzel L, Virshup I, Sikkema L, Curion F, Eils R, Schiller HB, Hilgendorff A, Theis FJ. An open-source framework for end-to-end analysis of electronic health record data. Nat Med 2024; 30:3369-3380. [PMID: 39266748 PMCID: PMC11564094 DOI: 10.1038/s41591-024-03214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/25/2024] [Indexed: 09/14/2024]
Abstract
With progressive digitalization of healthcare systems worldwide, large-scale collection of electronic health records (EHRs) has become commonplace. However, an extensible framework for comprehensive exploratory analysis that accounts for data heterogeneity is missing. Here we introduce ehrapy, a modular open-source Python framework designed for exploratory analysis of heterogeneous epidemiology and EHR data. ehrapy incorporates a series of analytical steps, from data extraction and quality control to the generation of low-dimensional representations. Complemented by rich statistical modules, ehrapy facilitates associating patients with disease states, differential comparison between patient clusters, survival analysis, trajectory inference, causal inference and more. Leveraging ontologies, ehrapy further enables data sharing and training EHR deep learning models, paving the way for foundational models in biomedical research. We demonstrate ehrapy's features in six distinct examples. We applied ehrapy to stratify patients affected by unspecified pneumonia into finer-grained phenotypes. Furthermore, we reveal biomarkers for significant differences in survival among these groups. Additionally, we quantify medication-class effects of pneumonia medications on length of stay. We further leveraged ehrapy to analyze cardiovascular risks across different data modalities. We reconstructed disease state trajectories in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on imaging data. Finally, we conducted a case study to demonstrate how ehrapy can detect and mitigate biases in EHR data. ehrapy, thus, provides a framework that we envision will standardize analysis pipelines on EHR data and serve as a cornerstone for the community.
Collapse
Affiliation(s)
- Lukas Heumos
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive; Helmholtz Zentrum Munich; member of the German Center for Lung Research (DZL), Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Philipp Ehmele
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
| | - Tim Treis
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | | | - Eljas Roellin
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Lilly May
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Altana Namsaraeva
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- Konrad Zuse School of Excellence in Learning and Intelligent Systems (ELIZA), Darmstadt, Germany
| | - Nastassya Horlava
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Vladimir A Shitov
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Xinyue Zhang
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
| | - Luke Zappia
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Rainer Knoll
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Niklas J Lang
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive; Helmholtz Zentrum Munich; member of the German Center for Lung Research (DZL), Munich, Germany
| | - Leon Hetzel
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Isaac Virshup
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
| | - Lisa Sikkema
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Fabiola Curion
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Roland Eils
- Health Data Science Unit, Heidelberg University and BioQuant, Heidelberg, Germany
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Herbert B Schiller
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive; Helmholtz Zentrum Munich; member of the German Center for Lung Research (DZL), Munich, Germany
- Research Unit, Precision Regenerative Medicine (PRM), Helmholtz Munich, Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive; Helmholtz Zentrum Munich; member of the German Center for Lung Research (DZL), Munich, Germany
- Center for Comprehensive Developmental Care (CDeCLMU) at the Social Pediatric Center, Dr. von Hauner Children's Hospital, LMU Hospital, Ludwig Maximilian University, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
33
|
Bertacchi M, Maharaux G, Loubat A, Jung M, Studer M. FGF8-mediated gene regulation affects regional identity in human cerebral organoids. eLife 2024; 13:e98096. [PMID: 39485283 PMCID: PMC11581432 DOI: 10.7554/elife.98096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.
Collapse
Affiliation(s)
- Michele Bertacchi
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| | - Gwendoline Maharaux
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| | - Agnès Loubat
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| | - Matthieu Jung
- GenomEast platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
| | - Michèle Studer
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| |
Collapse
|
34
|
Choi EK, Aring L, Peng Y, Correia AB, Lieberman AP, Iwase S, Seo YA. Neuronal SLC39A8 deficiency impairs cerebellar development by altering manganese homeostasis. JCI Insight 2024; 9:e168440. [PMID: 39435657 PMCID: PMC11530126 DOI: 10.1172/jci.insight.168440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Solute carrier family 39, member 8 (SLC39A8), is a transmembrane transporter that mediates the cellular uptake of zinc, iron, and manganese (Mn). Human genetic studies document the involvement of SLC39A8 in Mn homeostasis, brain development, and function. However, the role and pathophysiological mechanisms of SLC39A8 in the central nervous system remain elusive. We generated Slc39a8 neuron-specific knockout (Slc39a8-NSKO) mice to study SLC39A8 function in neurons. The Slc39a8-NSKO mice displayed markedly decreased Mn levels in the whole brain and brain regions, especially the cerebellum. Radiotracer studies using 54Mn revealed that Slc39a8-NSKO mice had impaired brain uptake of Mn. Slc39a8-NSKO cerebellums exhibited morphological defects and abnormal dendritic arborization of Purkinje cells. Reduced neurogenesis and increased apoptotic cell death occurred in the cerebellar external granular layer of Slc39a8-NSKO mice. Brain Mn deficiency in Slc39a8-NSKO mice was associated with motor dysfunction. Unbiased RNA-Seq analysis revealed downregulation of key pathways relevant to neurodevelopment and synaptic plasticity, including cAMP signaling pathway genes. We further demonstrated that Slc39a8 was required for the optimal transcriptional response to the cAMP-mediated signaling pathway. In summary, our study highlighted the essential roles of SLC39A8 in brain Mn uptake and cerebellum development and functions.
Collapse
Affiliation(s)
- Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Luisa Aring
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Yujie Peng
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | | | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Techameena P, Feng X, Zhang K, Hadjab S. The single-cell transcriptomic atlas iPain identifies senescence of nociceptors as a therapeutical target for chronic pain treatment. Nat Commun 2024; 15:8585. [PMID: 39362841 PMCID: PMC11450014 DOI: 10.1038/s41467-024-52052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 10/05/2024] Open
Abstract
Chronic pain remains a significant medical challenge with complex underlying mechanisms, and an urgent need for new treatments. Our research built and utilized the iPain single-cell atlas to study chronic pain progression in dorsal root and trigeminal ganglia. We discovered that senescence of a small subset of pain-sensing neurons may be a driver of chronic pain. This mechanism was observed in animal models after nerve injury and in human patients diagnosed with chronic pain or diabetic painful neuropathy. Notably, treatment with senolytics, drugs that remove senescent cells, reversed pain symptoms in mice post-injury. These findings highlight the role of cellular senescence in chronic pain development, demonstrate the therapeutic potential of senolytic treatments, and underscore the value of the iPain atlas for future pain research.
Collapse
Affiliation(s)
- Prach Techameena
- Laboratory of Neurobiology of Pain & Therapeutics, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Xiaona Feng
- Laboratory of Neurobiology of Pain & Therapeutics, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kaiwen Zhang
- Laboratory of Neurobiology of Pain & Therapeutics, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Saida Hadjab
- Laboratory of Neurobiology of Pain & Therapeutics, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
36
|
Zhang K, Lin S, Luo YS, Cheng Z. Protocol to search for genetic factors related to severe COVID-19 by analyzing publicly available genome-wide association studies. STAR Protoc 2024; 5:103028. [PMID: 39088323 PMCID: PMC11342177 DOI: 10.1016/j.xpro.2024.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/31/2023] [Accepted: 04/05/2024] [Indexed: 08/03/2024] Open
Abstract
COVID-19 casualties vary among different ancestral groups due to a variety of factors. Here, we present a protocol for analyzing publicly available genome-wide association studies (GWASs) to search for ancestry-specific genetic factors related to severe COVID-19. We describe steps for downloading and comparing two COVID-19 GWASs, calculating expression quantitative trait loci, and single-cell gene expression analysis. We demonstrate this approach using GWASs from Host Genetics Initiative; however, it is applicable to other databases such as the UK Biobank. For complete details on the use and execution of this protocol, please refer to Cheng et al.1.
Collapse
Affiliation(s)
- Ke Zhang
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Siyu Lin
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yu-Si Luo
- Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Zhongshan Cheng
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA.
| |
Collapse
|
37
|
Thomas RA, Sirois J, Li S, Gestin A, Deyab G, Piscopo VE, Lépine P, Mathur M, Chen CXQ, Soubannier V, Goldsmith TM, Fawaz L, Durcan TM, Fon EA. CelltypeR: A flow cytometry pipeline to characterize single cells from brain organoids. iScience 2024; 27:110613. [PMID: 39224516 PMCID: PMC11367488 DOI: 10.1016/j.isci.2024.110613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/06/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Motivated by the cellular heterogeneity in complex tissues, particularly in brain and induced pluripotent stem cell (iPSC)-derived brain models, we developed a complete workflow to reproducibly characterize cell types in complex tissues. Our approach combines a flow cytometry (FC) antibody panel with our computational pipeline CelltypeR, enabling dataset aligning, unsupervised clustering optimization, cell type annotating, and statistical comparisons. Applied to human iPSC derived midbrain organoids, it successfully identified the major brain cell types. We performed fluorescence-activated cell sorting of CelltypeR-defined astrocytes, radial glia, and neurons, exploring transcriptional states by single-cell RNA sequencing. Among the sorted neurons, we identified subgroups of dopamine neurons: one reminiscent of substantia nigra cells most vulnerable in Parkinson's disease. Finally, we used our workflow to track cell types across a time course of organoid differentiation. Overall, our adaptable analysis framework provides a generalizable method for reproducibly identifying cell types across FC datasets in complex tissues.
Collapse
Affiliation(s)
- Rhalena A. Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Julien Sirois
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Shuming Li
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexandre Gestin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Ghislaine Deyab
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Valerio E.C. Piscopo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Paula Lépine
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Meghna Mathur
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Carol X.-Q. Chen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Taylor M. Goldsmith
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Lama Fawaz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Thomas M. Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| | - Edward A. Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
38
|
Gall A, Bosticardo M, Ma S, Chen K, Amini K, Pala F, Delmonte OM, Wenger T, Bamshad M, Sleasman J, Blessing M, van Oers NSC, Notarangelo LD, de la Morena MT. Case report: Artificial thymic organoids facilitate clinical decisions for a patient with a TP63 variant and severe persistent T cell lymphopenia. Front Immunol 2024; 15:1438383. [PMID: 39364398 PMCID: PMC11448704 DOI: 10.3389/fimmu.2024.1438383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Pathogenic variants in the transcription factor TP63 are associated with clinically overlapping syndromes including ectrodactyly-ectodermal dysplasia clefting (EEC) and ankyloblepharon-ectodermal defects-cleft lip/palate (AEC). T cell lymphopenia has rarely been described in individuals with TP63 variants and the cause of the T cell defect is unclear. Here, we present a case of a female infant born with TP63-related syndrome and profound T cell lymphopenia, first uncovered through newborn screening. Flow cytometry analysis revealed low CD4+ naïve T cells and nearly absent CD8+ T cells with intact B and NK cell compartments. A de novo heterozygous pathogenic variant c.1040 G>A (C347Y) in exon 8 of TP63 was identified. An artificial thymic organoid system, to assess the intrinsic ability of the patient's hematopoietic cells to develop into T cells, was performed twice using separate peripheral blood samples. Ex vivo T cell differentiation was evident with the artificial organoid system, suggesting that a thymic stromal cell defect may be the cause of the T cell lymphopenia. Consistent with this, interrogation of publicly available data indicated that TP63 expression in the human thymus is restricted to thymic epithelial cells. Based on these data, congenital athymia was suspected and the patient received an allogenic cultured thymus tissue implant (CTTI). This is the first report of suspected congenital athymia and attempted treatment with CTTI associated with TP63 variant. At 9 months post-implant, peripheral lymphocyte analysis revealed measurable T cell receptor excision circles and presence of CD4+ recent thymic emigrants suggestive of early thymopoiesis. She will continue regular monitoring to ensure restoration of T cell immunity.
Collapse
Affiliation(s)
- Alevtina Gall
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stacey Ma
- Division of Allergy and Infectious Diseases, Department of Internal Medicine, University of Washington, Seattle, WA, United States
| | - Karin Chen
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tara Wenger
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Michael Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, United States
| | - John Sleasman
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Matthew Blessing
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Nicolai S. C. van Oers
- Department of Immunology, Pediatrics and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - M. Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| |
Collapse
|
39
|
Chen X, Huang Y, Huang L, Huang Z, Hao ZZ, Xu L, Xu N, Li Z, Mou Y, Ye M, You R, Zhang X, Liu S, Miao Z. A brain cell atlas integrating single-cell transcriptomes across human brain regions. Nat Med 2024; 30:2679-2691. [PMID: 39095595 PMCID: PMC11405287 DOI: 10.1038/s41591-024-03150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 06/24/2024] [Indexed: 08/04/2024]
Abstract
While single-cell technologies have greatly advanced our comprehension of human brain cell types and functions, studies including large numbers of donors and multiple brain regions are needed to extend our understanding of brain cell heterogeneity. Integrating atlas-level single-cell data presents a chance to reveal rare cell types and cellular heterogeneity across brain regions. Here we present the Brain Cell Atlas, a comprehensive reference atlas of brain cells, by assembling single-cell data from 70 human and 103 mouse studies of the brain throughout major developmental stages across brain regions, covering over 26.3 million cells or nuclei from both healthy and diseased tissues. Using machine-learning based algorithms, the Brain Cell Atlas provides a consensus cell type annotation, and it showcases the identification of putative neural progenitor cells and a cell subpopulation of PCDH9high microglia in the human brain. We demonstrate the gene regulatory difference of PCDH9high microglia between hippocampus and prefrontal cortex and elucidate the cell-cell communication network. The Brain Cell Atlas presents an atlas-level integrative resource for comparing brain cells in different environments and conditions within the Human Cell Atlas.
Collapse
Affiliation(s)
- Xinyue Chen
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Yin Huang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Liangfeng Huang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Ziliang Huang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lahong Xu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhi Li
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mingli Ye
- Tsinghua Fuzhou Institute for Data Technology, Fuzhou, China
| | - Renke You
- Tsinghua Fuzhou Institute for Data Technology, Fuzhou, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
- School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China.
| | - Zhichao Miao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou International Bio Island, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou International Bio Island, Guangzhou, China.
| |
Collapse
|
40
|
Elkrewi M, Vicoso B. Single-nucleus atlas of the Artemia female reproductive system suggests germline repression of the Z chromosome. PLoS Genet 2024; 20:e1011376. [PMID: 39213449 PMCID: PMC11392275 DOI: 10.1371/journal.pgen.1011376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Our understanding of the molecular pathways that regulate oogenesis and define cellular identity in the Arthropod female reproductive system and the extent of their conservation is currently very limited. This is due to the focus on model systems, including Drosophila and Daphnia, which do not reflect the observed diversity of morphologies, reproductive modes, and sex chromosome systems. We use single-nucleus RNA and ATAC sequencing to produce a comprehensive single nucleus atlas of the adult Artemia franciscana female reproductive system. We map our data to the Fly Cell Atlas single-nucleus dataset of the Drosophila melanogaster ovary, shedding light on the conserved regulatory programs between the two distantly related Arthropod species. We identify the major cell types known to be present in the Artemia ovary, including germ cells, follicle cells, and ovarian muscle cells. Additionally, we use the germ cells to explore gene regulation and expression of the Z chromosome during meiosis, highlighting its unique regulatory dynamics and allowing us to explore the presence of meiotic sex chromosome silencing in this group.
Collapse
Affiliation(s)
- Marwan Elkrewi
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
41
|
Mathys H, Boix CA, Akay LA, Xia Z, Davila-Velderrain J, Ng AP, Jiang X, Abdelhady G, Galani K, Mantero J, Band N, James BT, Babu S, Galiana-Melendez F, Louderback K, Prokopenko D, Tanzi RE, Bennett DA, Tsai LH, Kellis M. Single-cell multiregion dissection of Alzheimer's disease. Nature 2024; 632:858-868. [PMID: 39048816 PMCID: PMC11338834 DOI: 10.1038/s41586-024-07606-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood1-3. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Hansruedi Mathys
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carles A Boix
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computational and Systems Biology Program, MIT, Cambridge, MA, USA
| | - Leyla Anne Akay
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Ziting Xia
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Harvard-MIT Health Sciences and Technology Program, MIT, Cambridge, MA, USA
| | | | - Ayesha P Ng
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Xueqiao Jiang
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Ghada Abdelhady
- University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyriaki Galani
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julio Mantero
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neil Band
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Benjamin T James
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sudhagar Babu
- University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabiola Galiana-Melendez
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Kate Louderback
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Dmitry Prokopenko
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Li-Huei Tsai
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
42
|
Abdelazeem KN, Nguyen D, Corbo S, Darragh LB, Matsumoto MW, Court BV, Neupert B, Yu J, Olimpo NA, Osborne DG, Gadwa J, Ross RB, Nguyen A, Bhatia S, Kapoor M, Friedman RS, Jacobelli J, Saviola AJ, Knitz MW, Pasquale EB, Karam SD. Manipulating the EphB4-ephrinB2 axis to reduce metastasis in HNSCC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604518. [PMID: 39091728 PMCID: PMC11291065 DOI: 10.1101/2024.07.21.604518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The EphB4-ephrinB2 signaling axis has been heavily implicated in metastasis across numerous cancer types. Our emerging understanding of the dichotomous roles that EphB4 and ephrinB2 play in head and neck squamous cell carcinoma (HNSCC) poses a significant challenge to rational drug design. We find that EphB4 knockdown in cancer cells enhances metastasis in preclinical HNSCC models by augmenting immunosuppressive cells like T regulatory cells (Tregs) within the tumor microenvironment. EphB4 inhibition in cancer cells also amplifies their ability to metastasize through increased expression of genes associated with epithelial mesenchymal transition and hallmark pathways of metastasis. In contrast, vascular ephrinB2 knockout coupled with radiation therapy (RT) enhances anti-tumor immunity, reduces Treg accumulation into the tumor, and decreases metastasis. Notably, targeting the EphB4-ephrinB2 signaling axis with the engineered EphB4 ligands EFNB2-Fc-His and Fc-TNYL-RAW-GS reduces local tumor growth and distant metastasis in a preclinical model of HNSCC. Our data suggest that targeted inhibition of vascular ephrinB2 while avoiding inhibition of EphB4 in cancer cells could be a promising strategy to mitigate HNSCC metastasis.
Collapse
Affiliation(s)
- Khalid N.M. Abdelazeem
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel B. Darragh
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mike W. Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Justin Yu
- Department of Otolaryngology - Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas A. Olimpo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Douglas Grant Osborne
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard B. Ross
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Rachel S. Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Michael W. Knitz
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Elena B. Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
43
|
Li H, Lin Y, He W, Han W, Xu X, Xu C, Gao E, Zhao H, Gao X. SANTO: a coarse-to-fine alignment and stitching method for spatial omics. Nat Commun 2024; 15:6048. [PMID: 39025895 PMCID: PMC11258319 DOI: 10.1038/s41467-024-50308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
With the flourishing of spatial omics technologies, alignment and stitching of slices becomes indispensable to decipher a holistic view of 3D molecular profile. However, existing alignment and stitching methods are unpractical to process large-scale and image-based spatial omics dataset due to extreme time consumption and unsatisfactory accuracy. Here we propose SANTO, a coarse-to-fine method targeting alignment and stitching tasks for spatial omics. SANTO firstly rapidly supplies reasonable spatial positions of two slices and identifies the overlap region. Then, SANTO refines the positions of two slices by considering spatial and omics patterns. Comprehensive experiments demonstrate the superior performance of SANTO over existing methods. Specifically, SANTO stitches cross-platform slices for breast cancer samples, enabling integration of complementary features to synergistically explore tumor microenvironment. SANTO is then applied to 3D-to-3D spatiotemporal alignment to study development of mouse embryo. Furthermore, SANTO enables cross-modality alignment of spatial transcriptomic and epigenomic data to understand complementary interactions.
Collapse
Affiliation(s)
- Haoyang Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yingxin Lin
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Wenjia He
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wenkai Han
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiaopeng Xu
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chencheng Xu
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elva Gao
- The KAUST school, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, USA.
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
44
|
Burak MF, Tuncman G, Ayci AN, Chetal K, Seropian GYL, Inouye K, Lai ZW, Dagtekin N, Sadreyev RI, Israel E, Hotamışlıgil GS. An Adipo-Pulmonary Axis Mediated by FABP4 Hormone Defines a Therapeutic Target Against Obesity-Induced Airway Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603433. [PMID: 39071372 PMCID: PMC11275790 DOI: 10.1101/2024.07.15.603433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Obesity-related airway disease is a clinical condition without a clear description and effective treatment. Here, we define this pathology and its unique properties, which differ from classic asthma phenotypes, and identify a novel adipo-pulmonary axis mediated by FABP4 hormone as a critical mediator of obesity-induced airway disease. Through detailed analysis of murine models and human samples, we elucidate the dysregulated lipid metabolism and immunometabolic responses within obese lungs, particularly highlighting the stress response activation and downregulation of surfactant-related genes, notably SftpC. We demonstrate that FABP4 deficiency mitigates these alterations, demonstrating a key role in obesity-induced airway disease pathogenesis. Importantly, we identify adipose tissue as the source of FABP4 hormone in the bronchoalveolar space and describe strong regulation in the context of human obesity, particularly among women. Finally, our exploration of antibody-mediated targeting of circulating FABP4 unveils a novel therapeutic avenue, addressing a pressing unmet need in managing obesity-related airway disease. These findings not only define the presence of a critical adipo-pulmonary endocrine link but also present FABP4 as a therapeutic target for managing this unique airway disease that we refer to as fatty lung disease associated with obesity. One Sentence Summary Investigating FABP4's pivotal role in obesity-driven airway disease, this study unveils an adipo-pulmonary axis with potential therapeutic implications.
Collapse
|
45
|
Saeki K, Ha D, Chang G, Mori H, Yoshitake R, Wu X, Wang J, Wang YZ, Wang X, Tzeng T, Shim HJ, Neuhausen SL, Chen S. Perimenopausal and Menopausal Mammary Glands In A 4-Vinylcyclohexene Diepoxide Mouse Model. J Mammary Gland Biol Neoplasia 2024; 29:15. [PMID: 39017946 PMCID: PMC11254995 DOI: 10.1007/s10911-024-09569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
As both perimenopausal and menopausal periods are recognized critical windows of susceptibility for breast carcinogenesis, development of a physiologically relevant model has been warranted. The traditional ovariectomy model causes instant removal of the entire hormonal repertoire produced by the ovary, which does not accurately approximate human natural menopause with gradual transition. Here, we characterized the mammary glands of 4-vinylcyclohexene diepoxide (VCD)-treated animals at different time points, revealing that the model can provide the mammary glands with both perimenopausal and menopausal states. The perimenopausal gland showed moderate regression in ductal structure with no responsiveness to external hormones, while the menopausal gland showed severe regression with hypersensitivity to hormones. Leveraging the findings on the VCD model, effects of a major endocrine disruptor (polybrominated diphenyl ethers, PBDEs) on the mammary gland were examined during and after menopausal transition, with the two exposure modes; low-dose, chronic (environmental) and high-dose, subacute (experimental). All conditions of PBDE exposure did not augment or compromise the macroscopic ductal reorganization resulting from menopausal transition and/or hormonal treatments. Single-cell RNA sequencing revealed that the experimental PBDE exposure during the post-menopausal period caused specific transcriptomic changes in the non-epithelial compartment such as Errfi1 upregulation in fibroblasts. The environmental PBDE exposure resulted in similar transcriptomic changes to a lesser extent. In summary, the VCD mouse model provides both perimenopausal and menopausal windows of susceptibility for the breast cancer research community. PBDEs, including all tested models, may affect the post-menopausal gland including impacts on the non-epithelial compartments.
Collapse
Affiliation(s)
- Kohei Saeki
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Desiree Ha
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Gregory Chang
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Hitomi Mori
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Ryohei Yoshitake
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yuan-Zhong Wang
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Xiaoqiang Wang
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Tony Tzeng
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Hyun Jeong Shim
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
46
|
Bérouti M, Lammens K, Heiss M, Hansbauer L, Bauernfried S, Stöckl J, Pinci F, Piseddu I, Greulich W, Wang M, Jung C, Fröhlich T, Carell T, Hopfner KP, Hornung V. Lysosomal endonuclease RNase T2 and PLD exonucleases cooperatively generate RNA ligands for TLR7 activation. Immunity 2024; 57:1482-1496.e8. [PMID: 38697119 PMCID: PMC11470960 DOI: 10.1016/j.immuni.2024.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024]
Abstract
Toll-like receptor 7 (TLR7) is essential for recognition of RNA viruses and initiation of antiviral immunity. TLR7 contains two ligand-binding pockets that recognize different RNA degradation products: pocket 1 recognizes guanosine, while pocket 2 coordinates pyrimidine-rich RNA fragments. We found that the endonuclease RNase T2, along with 5' exonucleases PLD3 and PLD4, collaboratively generate the ligands for TLR7. Specifically, RNase T2 generated guanosine 2',3'-cyclic monophosphate-terminated RNA fragments. PLD exonuclease activity further released the terminal 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) to engage pocket 1 and was also needed to generate RNA fragments for pocket 2. Loss-of-function studies in cell lines and primary cells confirmed the critical requirement for PLD activity. Biochemical and structural studies showed that PLD enzymes form homodimers with two ligand-binding sites important for activity. Previously identified disease-associated PLD mutants failed to form stable dimers. Together, our data provide a mechanistic basis for the detection of RNA fragments by TLR7.
Collapse
Affiliation(s)
- Marleen Bérouti
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Katja Lammens
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Matthias Heiss
- Department of Chemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Larissa Hansbauer
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefan Bauernfried
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jan Stöckl
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Francesca Pinci
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ignazio Piseddu
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany; Department of Medicine II, University Hospital Munich, Munich, Germany
| | - Wilhelm Greulich
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Meiyue Wang
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christophe Jung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Fröhlich
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
47
|
Ghaffar A, Akhter T, Strømme P, Misceo D, Khan A, Frengen E, Umair M, Isidor B, Cogné B, Khan AA, Bruel AL, Sorlin A, Kuentz P, Chiaverini C, Innes AM, Zech M, Baláž M, Havrankova P, Jech R, Ahmed ZM, Riazuddin S, Riazuddin S. Variants of NAV3, a neuronal morphogenesis protein, cause intellectual disability, developmental delay, and microcephaly. Commun Biol 2024; 7:831. [PMID: 38977784 PMCID: PMC11231287 DOI: 10.1038/s42003-024-06466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Microtubule associated proteins (MAPs) are widely expressed in the central nervous system, and have established roles in cell proliferation, myelination, neurite formation, axon specification, outgrowth, dendrite, and synapse formation. We report eleven individuals from seven families harboring predicted pathogenic biallelic, de novo, and heterozygous variants in the NAV3 gene, which encodes the microtubule positive tip protein neuron navigator 3 (NAV3). All affected individuals have intellectual disability (ID), microcephaly, skeletal deformities, ocular anomalies, and behavioral issues. In mouse brain, Nav3 is expressed throughout the nervous system, with more prominent signatures in postmitotic, excitatory, inhibiting, and sensory neurons. When overexpressed in HEK293T and COS7 cells, pathogenic variants impaired NAV3 ability to stabilize microtubules. Further, knocking-down nav3 in zebrafish led to severe morphological defects, microcephaly, impaired neuronal growth, and behavioral impairment, which were rescued with co-injection of WT NAV3 mRNA and not by transcripts encoding the pathogenic variants. Our findings establish the role of NAV3 in neurodevelopmental disorders, and reveal its involvement in neuronal morphogenesis, and neuromuscular responses.
Collapse
Affiliation(s)
- Amama Ghaffar
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, USA
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Tehmeena Akhter
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, USA
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Petter Strømme
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Amjad Khan
- Faculty of Biological Sciences, Department of Zoology, University of Lakki Marwat, 28420, Khyber, Pakhtunkhwa, Pakistan
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübinge, 72076, Germany
- Alexander von Humboldt Fellowship Foundation, Berlin, 10117, Germany
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Muhammad Umair
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France
| | - Benjamin Cogné
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France
| | - Asma A Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ange-Line Bruel
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Université de Bourgogne Franche-Comté, Dijon, France
| | - Arthur Sorlin
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Université de Bourgogne Franche-Comté, Dijon, France
- National Center of Genetics (NCG), Laboratoire national de santé (LNS), 1, rue Louis Rech, L-3555, Dudelange, Luxembourg
| | - Paul Kuentz
- INSERM UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - A Micheil Innes
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - Marek Baláž
- First Department of Neurology, Faculty of Medicine, St. Anne's University Hospital, and CEITEC, Masaryk University, Brno, Czech Republic
| | - Petra Havrankova
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Zubair M Ahmed
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, USA
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Centre, Allama Iqbal Medical Research, University of Health Sciences, Lahore, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
48
|
Williamson CR, Jones N. Reduced Nephrin Tyrosine Phosphorylation Enhances Insulin Secretion and Increases Glucose Tolerance With Age. Endocrinology 2024; 165:bqae078. [PMID: 38954536 PMCID: PMC11247170 DOI: 10.1210/endocr/bqae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Nephrin is a transmembrane protein with well-established signaling roles in kidney podocytes, and a smaller set of secretory functions in pancreatic β cells are implicated in diabetes. Nephrin signaling is mediated in part through its 3 cytoplasmic YDxV motifs, which can be tyrosine phosphorylated by high glucose and β cell injuries. Although in vitro studies demonstrate these phosphorylated motifs can regulate β cell vesicle trafficking and insulin release, in vivo evidence of their role in this cell type remains to be determined. METHODS To further explore the role of nephrin YDxV phosphorylation in β cells, we used a mouse line with tyrosine to phenylalanine substitutions at each YDxV motif (nephrin-Y3F) to inhibit phosphorylation. We assessed islet function via primary islet glucose-stimulated insulin secretion assays and oral glucose tolerance tests. RESULTS Nephrin-Y3F mice successfully developed pancreatic endocrine and exocrine tissues with minimal structural differences. Unexpectedly, male and female nephrin-Y3F mice showed elevated insulin secretion, with a stronger increase observed in male mice. At 8 months of age, no differences in glucose tolerance were observed between wild-type (WT) and nephrin-Y3F mice. However, aged nephrin-Y3F mice (16 months of age) demonstrated more rapid glucose clearance compared to WT controls. CONCLUSION Taken together, loss of nephrin YDxV phosphorylation does not alter baseline islet function. Instead, our data suggest a mechanism linking impaired nephrin YDxV phosphorylation to improved islet secretory ability with age. Targeting nephrin phosphorylation could provide novel therapeutic opportunities to improve β cell function.
Collapse
Affiliation(s)
- Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
49
|
Orlandi KN, Harms MJ. Zebrafish do not have calprotectin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600640. [PMID: 38979154 PMCID: PMC11230264 DOI: 10.1101/2024.06.25.600640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The protein heterodimer calprotectin and its component proteins, S100A8 and S100A9, play important antibacterial and proinflammatory roles in the mammalian innate immune response. Gaining mechanistic insights into the regulation and biological function of calprotectin will help facilitate patient diagnostics and therapy and further our understanding of the host-microbe interface. Recent literature has identified zebrafish s100a10b as zebrafish calprotectin based on sequence similarity, genomic context, and transcriptional upregulation during the immune response to bacterial infections. The field would benefit from expanding the breadth of calprotectin studies into a zebrafish innate immunity model. Here, we carefully evaluated the possibility that zebrafish possess a calprotectin. We found that zebrafish do not possess an ortholog of mammalian S100A8 or S100A9. We then identified four zebrafish s100 proteins- including s100a10b-that are expressed in immune cells and upregulated during the immune response. We recombinantly expressed and purified these proteins and measured the antimicrobial and proinflammatory characteristics. We found that none of the zebrafish proteins exhibited activity comparable to mammalian calprotectin. Our work demonstrates conclusively that zebrafish have no ortholog of calprotectin, and the most plausible candidate proteins have not convergently evolved similar functions.
Collapse
|
50
|
Feng C, Tie R, Xin S, Chen Y, Li S, Chen Y, Hu X, Zhou Y, Liu Y, Hu Y, Hu Y, Pan H, Wu Z, Chao H, Zhang S, Ni Q, Huang J, Luo W, Huang H, Chen M. Systematic single-cell analysis reveals dynamic control of transposable element activity orchestrating the endothelial-to-hematopoietic transition. BMC Biol 2024; 22:143. [PMID: 38937802 PMCID: PMC11209969 DOI: 10.1186/s12915-024-01939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The endothelial-to-hematopoietic transition (EHT) process during definitive hematopoiesis is highly conserved in vertebrates. Stage-specific expression of transposable elements (TEs) has been detected during zebrafish EHT and may promote hematopoietic stem cell (HSC) formation by activating inflammatory signaling. However, little is known about how TEs contribute to the EHT process in human and mouse. RESULTS We reconstructed the single-cell EHT trajectories of human and mouse and resolved the dynamic expression patterns of TEs during EHT. Most TEs presented a transient co-upregulation pattern along the conserved EHT trajectories, coinciding with the temporal relaxation of epigenetic silencing systems. TE products can be sensed by multiple pattern recognition receptors, triggering inflammatory signaling to facilitate HSC emergence. Interestingly, we observed that hypoxia-related signals were enriched in cells with higher TE expression. Furthermore, we constructed the hematopoietic cis-regulatory network of accessible TEs and identified potential TE-derived enhancers that may boost the expression of specific EHT marker genes. CONCLUSIONS Our study provides a systematic vision of how TEs are dynamically controlled to promote the hematopoietic fate decisions through transcriptional and cis-regulatory networks, and pre-train the immunity of nascent HSCs.
Collapse
Affiliation(s)
- Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
- Department of Hematology, The Second Clinical Medical College of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030000, China
- Department of Hematology-Oncology, Taizhou Hospital of Zhejiang Province, Linhai, 317000, China
| | - Saige Xin
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuhao Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sida Li
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaotian Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yincong Zhou
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongjing Liu
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yueming Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanshi Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hang Pan
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
| | - Zexu Wu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shilong Zhang
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingyang Ni
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinyan Huang
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenda Luo
- Department of Hematology-Oncology, Taizhou Hospital of Zhejiang Province, Linhai, 317000, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|