1
|
Ueda M, Ueno K, Yuri T, Aoki Y, Hata M, Inoue T, Ishii R, Naito Y. EEG Oscillatory Activity and Resting-State Networks Associated with Neurocognitive Function in Mild Traumatic Brain Injury. Clin EEG Neurosci 2024:15500594241290858. [PMID: 39420809 DOI: 10.1177/15500594241290858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This study aimed to investigate the characteristics of resting-state electroencephalography (EEG) activity and brain networks in patients with mild traumatic brain injury (mTBI) and their association with neurocognitive function (NCF). We analyzed 26 patients with subacute mTBI and 21 healthy controls. The subacute mTBI group (9 females, 17 males) had a mean age of 29.9 ± 9.9 years, and the healthy controls (11 females, 10 males) had a mean age of 29.7 ± 11.5 years. Current source density, lagged phase synchronization, and resting-state network activity were analyzed using exact low-resolution electromagnetic tomography (eLORETA) with 60 s resting-state EEG data. In addition, a correlation analysis was performed between these EEG parameters and NCF in patients with mTBI. We used the statistical nonparametric mapping method in eLORETA to correct for multiple comparisons. There were no significant differences in EEG parameters between the patients with mTBI and healthy controls. However, in patients with mTBI, correlation analysis revealed negative correlations between theta activity in the anterior cingulate cortex and verbal short-term memory and between activity in the memory perception network and verbal memory. Our findings suggest that resting-state EEG may be clinically useful in investigating the mechanism of NCF decline in patients with mTBI.
Collapse
Affiliation(s)
- Masaya Ueda
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Keita Ueno
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Takuma Yuri
- Department of Occupational Therapy, Kyoto Tachibana University, Kyoto, Japan
| | - Yasunori Aoki
- Department of Psychiatry, Nippon Life Hospital, Osaka, Japan
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahiro Hata
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takao Inoue
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Ryouhei Ishii
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuo Naito
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
2
|
Girn M, Setton R, Turner GR, Spreng RN. The "limbic network," comprising orbitofrontal and anterior temporal cortex, is part of an extended default network: Evidence from multi-echo fMRI. Netw Neurosci 2024; 8:860-882. [PMID: 39355434 PMCID: PMC11398723 DOI: 10.1162/netn_a_00385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/23/2024] [Indexed: 10/03/2024] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) investigations have provided a view of the default network (DN) as composed of a specific set of frontal, parietal, and temporal cortical regions. This spatial topography is typically defined with reference to an influential network parcellation scheme that designated the DN as one of seven large-scale networks (Yeo et al., 2011). However, the precise functional organization of the DN is still under debate, with studies arguing for varying subnetwork configurations and the inclusion of subcortical regions. In this vein, the so-called limbic network-defined as a distinct large-scale network comprising the bilateral temporal poles, ventral anterior temporal lobes, and orbitofrontal cortex-is of particular interest. A large multi-modal and multi-species literature on the anatomical, functional, and cognitive properties of these regions suggests a close relationship to the DN. Notably, these regions have poor signal quality with conventional fMRI acquisition, likely obscuring their network affiliation in most studies. Here, we leverage a multi-echo fMRI dataset with high temporal signal-to-noise and whole-brain coverage, including orbitofrontal and anterior temporal regions, to examine the large-scale network resting-state functional connectivity of these regions and assess their associations with the DN. Consistent with our hypotheses, our results support the inclusion of the majority of the orbitofrontal and anterior temporal cortex as part of the DN and reveal significant heterogeneity in their functional connectivity. We observed that left-lateralized regions within the temporal poles and ventral anterior temporal lobes, as well as medial orbitofrontal regions, exhibited the greatest resting-state functional connectivity with the DN, with heterogeneity across DN subnetworks. Overall, our findings suggest that, rather than being a functionally distinct network, the orbitofrontal and anterior temporal regions comprise part of a larger, extended default network.
Collapse
Affiliation(s)
- Manesh Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | | | - R. Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Li B, Xu XM, Wu YQ, Miao XQ, Feng Y, Chen YC, Salvi R, Xu JJ, Qi JW. The relationship between changes in functional connectivity gradients and cognitive-emotional disorders in sudden sensorineural hearing loss. Brain Commun 2024; 6:fcae317. [PMID: 39318785 PMCID: PMC11420982 DOI: 10.1093/braincomms/fcae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/02/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
Sudden sensorineural hearing loss, a prevalent emergency in otolaryngology, is known to potentially precipitate cognitive and emotional disorders in affected individuals. Extensive research has documented the phenomenon of cortical functional reorganization in patients with sudden sensorineural hearing loss. However, the potential link between this neural functional remodelling and cognitive-emotional disorders remains unclear. To investigate this issue, 30 bilateral sudden sensorineural hearing loss patients and 30 healthy adults were recruited for this study. We collected clinical data and resting-state functional magnetic resonance imaging data from the participants. Gradient mapping analysis was employed to calculate the first three gradients for each subject. Subsequently, gradient changes in sudden sensorineural hearing loss patients were compared with healthy controls at global, regional and network levels. Finally, we explored the relationship between gradient values and clinical variables. The results revealed that at the global level, sudden sensorineural hearing loss did not exhibit significant differences in the primary gradient but showed a state of compression in the second and third gradients. At the regional level, sudden sensorineural hearing loss patients exhibited a significant reduction in the primary gradient values in the temporal pole and ventral prefrontal cortex, which were closely related to neuro-scale scores. Regarding the network level, sudden sensorineural hearing loss did not show significant differences in the primary gradient but instead displayed significant changes in the control network and default mode network in the second and third gradients. This study revealed disruptions in the functional hierarchy of sudden sensorineural hearing loss, and the alterations in functional connectivity gradients were closely associated with cognitive and emotional disturbances in patients. These findings provide new evidence for understanding the functional remodelling that occurs in sudden sensorineural hearing loss.
Collapse
Affiliation(s)
- Biao Li
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiao-Min Xu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yuan-Qing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiu-Qian Miao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yuan Feng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jian-Wei Qi
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
4
|
Huang L, Hu W, Cui L, Zhang Z, Lu Y, Li Q, Huang Q, Wang L, Jiang J, Guo Q. Temporo-frontoparietal hypoconnectivity as a biomarker for isolated language impairment in mild cognitive impairment: A cross-cohort comparison. Alzheimers Dement 2024; 20:6566-6578. [PMID: 39115942 PMCID: PMC11497662 DOI: 10.1002/alz.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION Whether brain functional connectivity (FC) is consistently disrupted in individuals with mild cognitive impairment (MCI) with isolated language impairment (ilMCI), and its potential to differentiate between MCI subtypes remains uncertain. METHODS Cross-sectional data from 404 participants in two cohorts (the Chinese Preclinical Alzheimer's Disease Study and the Alzheimer's Disease Neuroimaging Initiative) were analyzed, including neuropsychological tests, resting-state functional magnetic resonance imaging (fMRI), cerebral amyloid positivity, and apolipoprotein E (APOE) status. RESULTS Temporo-frontoparietal FC, particularly between the bilateral superior temporal pole and the left inferior frontal/supramarginal gyri, was consistently decreased in ilMCI compared to amnestic MCI (aMCI) and normal controls, which was correlated with semantic impairment. Using mean temporo-frontoparietal FC as a classifier could improve accuracy in identifying ilMCI subgroups with positive cerebral amyloid deposition and APOE risk alleles. DISCUSSION Temporal-frontoparietal hypoconnectivity was observed in individuals with ilMCI, which may reflect semantic impairment and serve as a valuable biomarker to indicate potential mechanisms of underlying neuropathology. HIGHLIGHTS Temporo-frontoparietal hypoconnectivity was observed in impaired language mild cognitive impairment (ilMCI). Temporo-frontoparietal hypoconnectivity may reflect semantic impairment. Temporo-frontoparietal functional connectivity can classify ilMCI subtypes.
Collapse
Affiliation(s)
- Lin Huang
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenjing Hu
- Institute of Biomedical EngineeringSchool of Life SciencesShanghai UniversityShanghaiChina
| | - Liang Cui
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhen Zhang
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yao Lu
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qinjie Li
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine and PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Luyao Wang
- Institute of Biomedical EngineeringSchool of Life SciencesShanghai UniversityShanghaiChina
| | - Jiehui Jiang
- Institute of Biomedical EngineeringSchool of Life SciencesShanghai UniversityShanghaiChina
| | - Qihao Guo
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | | |
Collapse
|
5
|
Antoniou R, Callahan P, Kramer JH, Miller BL, Chiong W, Rankin KP. Socioemotional dysfunction and the greater good: a case study. Neurocase 2024; 30:125-134. [PMID: 39305192 PMCID: PMC11604522 DOI: 10.1080/13554794.2024.2404682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/10/2024] [Indexed: 11/29/2024]
Abstract
Moral cognition has largely been studied via dilemmas in which making a utilitarian choice causes instrumental harm (negative dimension). Studies of utilitarianism link this behavior with socioemotional unresponsiveness. However, there is a positive dimension of utilitarianism in which one sacrifices the good of oneself or close others for the overall welfare. We measured utilitarian choices multidimensionally in a patient with behavioral variant frontotemporal dementia (bvFTD), incorporating dilemmas accounting for negative and positive dimensions. Despite socioemotional deficits our patient was highly utilitarian in the positive, dimension of utilitarianism. This case study challenges the tendency to automatically associate bvFTD with antisocial tendencies.
Collapse
Affiliation(s)
- Rea Antoniou
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Patrick Callahan
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Winston Chiong
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Singh-Reilly N, Botha H, Duffy JR, Clark HM, Utianski RL, Machulda MM, Graff-Radford J, Schwarz CG, Petersen RC, Lowe VJ, Jack CR, Josephs KA, Whitwell JL. Speech-language within and between network disruptions in primary progressive aphasia variants. Neuroimage Clin 2024; 43:103639. [PMID: 38991435 PMCID: PMC11296005 DOI: 10.1016/j.nicl.2024.103639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/20/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Primary progressive aphasia (PPA) variants present with distinct disruptions in speech-language functions with little known about the interplay between affected and spared regions within the speech-language network and their interaction with other functional networks. The Neurodegenerative Research Group, Mayo Clinic, recruited 123 patients with PPA (55 logopenic (lvPPA), 44 non-fluent (nfvPPA) and 24 semantic (svPPA)) who were matched to 60 healthy controls. We investigated functional connectivity disruptions between regions within the left-speech-language network (Broca, Wernicke, anterior middle temporal gyrus (aMTG), supplementary motor area (SMA), planum temporale (PT) and parietal operculum (PO)), and disruptions to other networks (visual association, dorsal-attention, frontoparietal and default mode networks (DMN)). Within the speech-language network, multivariate linear regression models showed reduced aMTG-Broca connectivity in all variants, with lvPPA and nfvPPA findings remaining significant after Bonferroni correction. Additional loss in Wernicke-Broca connectivity in nfvPPA, Wernicke-PT connectivity in lvPPA and greater aMTG-PT connectivity in svPPA were also noted. Between-network connectivity findings in all variants showed reduced aMTG-DMN and increased aMTG-dorsal-attention connectivity, with additional disruptions between aMTG-visual association in both lvPPA and svPPA, aMTG-frontoparietal in lvPPA, and Wernicke-DMN breakdown in svPPA. These findings suggest that aMTG connectivity breakdown is a shared feature in all PPA variants, with lvPPA showing more extensive connectivity disruptions with other networks.
Collapse
Affiliation(s)
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Mary M Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
7
|
Skandalakis GP, Linn W, Yeh F, Kazim SF, Komaitis S, Neromyliotis E, Dimopoulos D, Drosos E, Hadjipanayis CG, Kongkham PN, Zadeh G, Stranjalis G, Koutsarnakis C, Kogan M, Evans LT, Kalyvas A. Unveiling the axonal connectivity between the precuneus and temporal pole: Structural evidence from the cingulum pathways. Hum Brain Mapp 2024; 45:e26771. [PMID: 38925589 PMCID: PMC11199201 DOI: 10.1002/hbm.26771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/17/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroimaging studies have consistently demonstrated concurrent activation of the human precuneus and temporal pole (TP), both during resting-state conditions and various higher-order cognitive functions. However, the precise underlying structural connectivity between these brain regions remains uncertain despite significant advancements in neuroscience research. In this study, we investigated the connectivity of the precuneus and TP by employing parcellation-based fiber micro-dissections in human brains and fiber tractography techniques in a sample of 1065 human subjects and a sample of 41 rhesus macaques. Our results demonstrate the connectivity between the posterior precuneus area POS2 and the areas 35, 36, and TG of the TP via the fifth subcomponent of the cingulum (CB-V) also known as parahippocampal cingulum. This finding contributes to our understanding of the connections within the posteromedial cortices, facilitating a more comprehensive integration of anatomy and function in both normal and pathological brain processes. PRACTITIONER POINTS: Our investigation delves into the intricate architecture and connectivity patterns of subregions within the precuneus and temporal pole, filling a crucial gap in our knowledge. We revealed a direct axonal connection between the posterior precuneus (POS2) and specific areas (35, 35, and TG) of the temporal pole. The direct connections are part of the CB-V pathway and exhibit a significant association with the cingulum, SRF, forceps major, and ILF. Population-based human tractography and rhesus macaque fiber tractography showed consistent results that support micro-dissection outcomes.
Collapse
Affiliation(s)
- Georgios P. Skandalakis
- Section of NeurosurgeryDartmouth Hitchcock Medical CenterLebanonNew HampshireUSA
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Wen‐Jieh Linn
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Fang‐Cheng Yeh
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Syed Faraz Kazim
- Department of NeurosurgeryUniversity of New Mexico HospitalAlbuquerqueNew MexicoUSA
| | - Spyridon Komaitis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Eleftherios Neromyliotis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Dimitrios Dimopoulos
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Evangelos Drosos
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | | | - Paul N. Kongkham
- Department of NeurosurgeryToronto Western Hospital, University Health NetworkTorontoOntarioCanada
| | - Gelareh Zadeh
- Department of NeurosurgeryToronto Western Hospital, University Health NetworkTorontoOntarioCanada
| | - George Stranjalis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Christos Koutsarnakis
- Department of NeurosurgeryNational and Kapodistrian University of Athens School of MedicineAthensGreece
| | - Michael Kogan
- Department of NeurosurgeryUniversity of New Mexico HospitalAlbuquerqueNew MexicoUSA
| | - Linton T. Evans
- Section of NeurosurgeryDartmouth Hitchcock Medical CenterLebanonNew HampshireUSA
| | - Aristotelis Kalyvas
- Department of NeurosurgeryToronto Western Hospital, University Health NetworkTorontoOntarioCanada
| |
Collapse
|
8
|
Landin-Romero R, Kumfor F, Ys Lee A, Leyton C, Piguet O. Clinical and cortical trajectories in non-fluent primary progressive aphasia and Alzheimer's disease: A role for emotion processing. Brain Res 2024; 1829:148777. [PMID: 38286395 DOI: 10.1016/j.brainres.2024.148777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
OBJECTIVES To examine the clinical trajectories and neural correlates of cognitive and emotion processing changes in the non-fluent/agrammatic (nfvPPA) and the logopenic (lvPPA) variants of primary progressive aphasia (PPA). DESIGN Observational case-control longitudinal cohort study. SETTING Research clinic of frontotemporal dementia. PARTICIPANTS This study recruited 29 non-semantic PPA patients (15 nfvPPA and 14 lvPPA) and compared them with 15 Alzheimer's disease (AD) patients and 14 healthy controls. MEASUREMENTS Participants completed an annual assessment (median = 2 years; range = 1-5 years) of general cognition, emotion processing and structural MRI. Linear mixed effects models investigated clinical and imaging trajectories between groups. RESULTS Over time, lvPPA showed the greatest cognitive deterioration. In contrast, nfvPPA showed significant decline in emotion recognition, whereas AD showed preserved emotion recognition, even with disease progression. Importantly, lvPPA also developed emotion processing impairments, with disease progression. Both nfvPPA and lvPPA showed continuing cortical atrophy in hallmark language-processing regions associated with these syndromes, together with progressive involvement of the right hemisphere regions, mirroring left hemisphere atrophy patterns at presentation. Decline in emotion processing was associated with bilateral frontal atrophy in nfvPPA and right temporal atrophy in lvPPA. CONCLUSIONS Our results show divergent clinical courses in nfvPPA and lvPPA, with rapid cognitive and neural deterioration in lvPPA and emotion processing decline in both groups and support the concurrent assessment of cognition and emotion processing in the clinic to inform diagnosis and monitoring in the non-semantic variants of PPA.
Collapse
Affiliation(s)
- Ramon Landin-Romero
- Sydney School of Health Sciences & Brain and Mind Centre, The University of Sydney, Australia; ARC Centre of Excellence in Cognition and its Disorders, Australia.
| | - Fiona Kumfor
- School of Psychology & Brain and Mind Centre, The University of Sydney, Australia; ARC Centre of Excellence in Cognition and its Disorders, Australia
| | - Austin Ys Lee
- ARC Centre of Excellence in Cognition and its Disorders, Australia
| | - Cristian Leyton
- School of Psychology & Brain and Mind Centre, The University of Sydney, Australia; ARC Centre of Excellence in Cognition and its Disorders, Australia
| | - Olivier Piguet
- School of Psychology & Brain and Mind Centre, The University of Sydney, Australia; ARC Centre of Excellence in Cognition and its Disorders, Australia
| |
Collapse
|
9
|
Liu X, Shi L, Li E, Jia S. Associations of hearing loss and structural changes in specific cortical regions: a Mendelian randomization study. Cereb Cortex 2024; 34:bhae084. [PMID: 38494888 DOI: 10.1093/cercor/bhae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
INTRODUCTION Previous studies have suggested a correlation between hearing loss (HL) and cortical alterations, but the specific brain regions that may be affected are unknown. METHODS Genome-wide association study (GWAS) data for 3 subtypes of HL phenotypes, sensorineural hearing loss (SNHL), conductive hearing loss, and mixed hearing loss, were selected as exposures, and GWAS data for brain structure-related traits were selected as outcomes. The inverse variance weighted method was used as the main estimation method. RESULTS Negative associations were identified between genetically predicted SNHL and brain morphometric indicators (cortical surface area, cortical thickness, or volume of subcortical structures) in specific brain regions, including the bankssts (β = -0.006 mm, P = 0.016), entorhinal cortex (β = -4.856 mm2, P = 0.029), and hippocampus (β = -24.819 cm3, P = 0.045), as well as in brain regions functionally associated with visual perception, including the pericalcarine (β = -10.009 cm3, P = 0.013). CONCLUSION Adaptive changes and functional remodeling of brain structures occur in patients with genetically predicted HL. Brain regions functionally associated with auditory perception, visual perception, and memory function are the main brain regions vulnerable in HL.
Collapse
Affiliation(s)
- Xiaoduo Liu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Lubo Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Enze Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Shuo Jia
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
10
|
Antal DC, Altenmüller DM, Dümpelmann M, Scheiwe C, Reinacher PC, Crihan ET, Ignat BE, Cuciureanu ID, Demerath T, Urbach H, Schulze-Bonhage A, Heers M. Semiautomated electric source imaging determines epileptogenicity of encephaloceles in temporal lobe epilepsy. Epilepsia 2024; 65:651-663. [PMID: 38258618 DOI: 10.1111/epi.17879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
OBJECTIVE We aimed to assess the ability of semiautomated electric source imaging (ESI) from long-term video-electroencephalographic (EEG) monitoring (LTM) to determine the epileptogenicity of temporopolar encephaloceles (TEs) in patients with temporal lobe epilepsy. METHODS We conducted a retrospective study involving 32 temporal lobe epilepsy patients with TEs as potentially epileptogenic lesions in structural magnetic resonance imaging scans. Findings were validated through invasive intracerebral stereo-EEG in six of 32 patients and postsurgical outcome after tailored resection of the TE in 17 of 32 patients. LTM (mean duration = 6 days) was performed using the 10/20 system with additional T1/T2 for all patients and sphenoidal electrodes in 23 of 32 patients. Semiautomated detection and clustering of interictal epileptiform discharges (IEDs) were carried out to create IED types. ESI was performed on the averages of the two most frequent IED types per patient, utilizing individual head models, and two independent inverse methods (sLORETA [standardized low-resolution brain electromagnetic tomography], MUSIC [multiple signal classification]). ESI maxima concordance and propagation in spatial relation to TEs were quantified for sources with good signal quality (signal-to-noise ratio > 2, explained signal > 60%). RESULTS ESI maxima correctly colocalized with a TE in 20 of 32 patients (62.5%) either at the onset or half-rising flank of at least one IED type per patient. ESI maxima showed propagation from the temporal pole to other temporal or extratemporal regions in 14 of 32 patients (44%), confirming propagation originating in the area of the TE. The findings from both inverse methods validated each other in 14 of 20 patients (70%), and sphenoidal electrodes exhibited the highest signal amplitudes in 17 of 23 patients (74%). The concordance of ESI with the TE predicted a seizure-free postsurgical outcome (Engel I vs. >I) with a diagnostic odds ratio of 2.1. SIGNIFICANCE Semiautomated ESI from LTM often successfully identifies the epileptogenicity of TEs and the IED onset zone within the area of the TEs. Additionally, it shows potential predictive power for postsurgical outcomes in these patients.
Collapse
Affiliation(s)
- Dorin-Cristian Antal
- Faculty of Medicine, Epilepsy Center, Medical Center-University of Freiburg, Freiburg, Germany
- Neurology Clinic, Rehabilitation Clinical Hospital, Iași, Romania
- I Neurology Clinic, "Prof. Dr. N. Oblu" Emergency Clinical Hospital, Iasi, Romania
- University of Medicine and Pharmacy "Grigore T. Popa", Iasi, Romania
| | | | - Matthias Dümpelmann
- Faculty of Medicine, Epilepsy Center, Medical Center-University of Freiburg, Freiburg, Germany
| | - Christian Scheiwe
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | | | - Bogdan-Emilian Ignat
- Neurology Clinic, Rehabilitation Clinical Hospital, Iași, Romania
- University of Medicine and Pharmacy "Grigore T. Popa", Iasi, Romania
| | - Iulian-Dan Cuciureanu
- I Neurology Clinic, "Prof. Dr. N. Oblu" Emergency Clinical Hospital, Iasi, Romania
- University of Medicine and Pharmacy "Grigore T. Popa", Iasi, Romania
| | - Theo Demerath
- Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Faculty of Medicine, Epilepsy Center, Medical Center-University of Freiburg, Freiburg, Germany
| | - Marcel Heers
- Faculty of Medicine, Epilepsy Center, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Krämer C, Stumme J, da Costa Campos L, Dellani P, Rubbert C, Caspers J, Caspers S, Jockwitz C. Prediction of cognitive performance differences in older age from multimodal neuroimaging data. GeroScience 2024; 46:283-308. [PMID: 37308769 PMCID: PMC10828156 DOI: 10.1007/s11357-023-00831-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/17/2023] [Indexed: 06/14/2023] Open
Abstract
Differences in brain structure and functional and structural network architecture have been found to partly explain cognitive performance differences in older ages. Thus, they may serve as potential markers for these differences. Initial unimodal studies, however, have reported mixed prediction results of selective cognitive variables based on these brain features using machine learning (ML). Thus, the aim of the current study was to investigate the general validity of cognitive performance prediction from imaging data in healthy older adults. In particular, the focus was with examining whether (1) multimodal information, i.e., region-wise grey matter volume (GMV), resting-state functional connectivity (RSFC), and structural connectivity (SC) estimates, may improve predictability of cognitive targets, (2) predictability differences arise for global cognition and distinct cognitive profiles, and (3) results generalize across different ML approaches in 594 healthy older adults (age range: 55-85 years) from the 1000BRAINS study. Prediction potential was examined for each modality and all multimodal combinations, with and without confound (i.e., age, education, and sex) regression across different analytic options, i.e., variations in algorithms, feature sets, and multimodal approaches (i.e., concatenation vs. stacking). Results showed that prediction performance differed considerably between deconfounding strategies. In the absence of demographic confounder control, successful prediction of cognitive performance could be observed across analytic choices. Combination of different modalities tended to marginally improve predictability of cognitive performance compared to single modalities. Importantly, all previously described effects vanished in the strict confounder control condition. Despite a small trend for a multimodal benefit, developing a biomarker for cognitive aging remains challenging.
Collapse
Affiliation(s)
- Camilla Krämer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johanna Stumme
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lucas da Costa Campos
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Paulo Dellani
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
12
|
Devitt AL, Roberts R, Metson A, Tippett LJ, Addis DR. Neural substrates of specific and general autobiographical memory retrieval in younger and older adults. Neuropsychologia 2024; 193:108754. [PMID: 38092333 DOI: 10.1016/j.neuropsychologia.2023.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/16/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Healthy aging is associated with a shift away from the retrieval of specific episodic autobiographical memories (AMs), towards more general and semanticized memories. Younger adults modulate activity in the default mode network according to the episodic specificity of AM retrieval. However, little is known about whether aging disrupts this neural modulation. In the current study we examine age-related changes in the modulation of whole-brain networks in response to three tasks falling along a gradient of episodic specificity. Younger and older adults retrieved specific (unique) AMs, general (routine) AMs, and semantic (general knowledge) memories. We found that both younger and older adults modulated default mode regions in response to varying episodic specificity. In addition, younger adults upregulated activity in several default mode regions with increasing episodic specificity, while older adults either did not modulate these regions, or downregulated activity in these regions. In contrast, older adults upregulated activity in the left temporal pole for tasks with higher episodic specificity. These brain activation patterns converge with prior findings that specific AMs are diminished in episodic richness with age, but are supplemented with conceptual and general information. Age-related reductions in the modulation of default mode regions might contribute to the shift away from episodic retrieval and towards semantic retrieval, resulting in reduced episodic specificity of personal memories.
Collapse
Affiliation(s)
- Aleea L Devitt
- School of Psychology, The University of Waikato, New Zealand.
| | - Reece Roberts
- School of Psychology, The University of Auckland, New Zealand; Centre for Brain Research, The University of Auckland, New Zealand; Brain Research New Zealand, New Zealand
| | - Abby Metson
- School of Psychology, The University of Auckland, New Zealand
| | - Lynette J Tippett
- School of Psychology, The University of Auckland, New Zealand; Centre for Brain Research, The University of Auckland, New Zealand; Brain Research New Zealand, New Zealand
| | - Donna Rose Addis
- School of Psychology, The University of Auckland, New Zealand; Rotman Research Institute, Baycrest Health Sciences, Canada; Department of Psychology, University of Toronto, Canada
| |
Collapse
|
13
|
Xu H, Li J, Huang H, Yin B, Li DD. Abnormal developmental of structural covariance networks in young adults with heavy cannabis use: a 3-year follow-up study. Transl Psychiatry 2024; 14:45. [PMID: 38245512 PMCID: PMC10799944 DOI: 10.1038/s41398-024-02764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Heavy cannabis use (HCU) exerts adverse effects on the brain. Structural covariance networks (SCNs) that illustrate coordinated regional maturation patterns are extensively employed to examine abnormalities in brain structure. Nevertheless, the unexplored aspect remains the developmental alterations of SCNs in young adults with HCU for three years, from the baseline (BL) to the 3-year follow-up (FU). These changes demonstrate dynamic development and hold potential as biomarkers. A total of 20 young adults with HCU and 22 matched controls were recruited. All participants underwent magnetic resonance imaging (MRI) scans at both the BL and FU and were evaluated using clinical measures. Both groups used cortical thickness (CT) and cortical surface area (CSA) to construct structural covariance matrices. Subsequently, global and nodal network measures of SCNs were computed based on these matrices. Regarding global network measures, the BL assessment revealed significant deviations in small-worldness and local efficiency of CT and CSA in young adults with HCU compared to controls. However, no significant differences between the two groups were observed at the FU evaluation. Young adults with HCU displayed changes in nodal network measures across various brain regions during the transition from BL to FU. These alterations included abnormal nodal degree, nodal efficiency, and nodal betweenness in widespread areas such as the entorhinal cortex, superior frontal gyrus, and parahippocampal cortex. These findings suggest that the topography of CT and CSA plays a role in the typical structural covariance topology of the brain. Furthermore, these results indicate the effect of HCU on the developmental changes of SCNs in young adults.
Collapse
Affiliation(s)
- Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, 325007, China.
| | - Jiahao Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Dan-Dong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
14
|
Sasaki T, Makris N, Shenton ME, Savadjiev P, Rathi Y, Eckbo R, Bouix S, Yeterian E, Dickerson BC, Kubicki M. Structural connectivity of cytoarchitectonically distinct human left temporal pole subregions: a diffusion MRI tractography study. Front Neuroanat 2023; 17:1240545. [PMID: 38090110 PMCID: PMC10713846 DOI: 10.3389/fnana.2023.1240545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/09/2023] [Indexed: 02/01/2024] Open
Abstract
The temporal pole (TP) is considered one of the major paralimbic cortical regions, and is involved in a variety of functions such as sensory perception, emotion, semantic processing, and social cognition. Based on differences in cytoarchitecture, the TP can be further subdivided into smaller regions (dorsal, ventrolateral and ventromedial), each forming key nodes of distinct functional networks. However, the brain structural connectivity profile of TP subregions is not fully clarified. Using diffusion MRI data in a set of 31 healthy subjects, we aimed to elucidate the comprehensive structural connectivity of three cytoarchitectonically distinct TP subregions. Diffusion tensor imaging (DTI) analysis suggested that major association fiber pathways such as the inferior longitudinal, middle longitudinal, arcuate, and uncinate fasciculi provide structural connectivity to the TP. Further analysis suggested partially overlapping yet still distinct structural connectivity patterns across the TP subregions. Specifically, the dorsal subregion is strongly connected with wide areas in the parietal lobe, the ventrolateral subregion with areas including constituents of the default-semantic network, and the ventromedial subregion with limbic and paralimbic areas. Our results suggest the involvement of the TP in a set of extensive but distinct networks of cortical regions, consistent with its functional roles.
Collapse
Affiliation(s)
- Takeshi Sasaki
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Morphometric Analysis, Department of Psychiatry, Neurology, and Radiology Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Morphometric Analysis, Department of Psychiatry, Neurology, and Radiology Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Peter Savadjiev
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Software Engineering and Information Technology, École de Technologie Supérieure, Montréal, QC, Canada
| | - Edward Yeterian
- Department of Psychology, Colby College, Waterville, ME, United States
| | - Bradford C. Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Morphometric Analysis, Department of Psychiatry, Neurology, and Radiology Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
15
|
Reznik D, Trampel R, Weiskopf N, Witter MP, Doeller CF. Dissociating distinct cortical networks associated with subregions of the human medial temporal lobe using precision neuroimaging. Neuron 2023; 111:2756-2772.e7. [PMID: 37390820 DOI: 10.1016/j.neuron.2023.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 07/02/2023]
Abstract
Tract-tracing studies in primates indicate that different subregions of the medial temporal lobe (MTL) are connected with multiple brain regions. However, no clear framework defining the distributed anatomy associated with the human MTL exists. This gap in knowledge originates in notoriously low MRI data quality in the anterior human MTL and in group-level blurring of idiosyncratic anatomy between adjacent brain regions, such as entorhinal and perirhinal cortices, and parahippocampal areas TH/TF. Using MRI, we intensively scanned four human individuals and collected whole-brain data with unprecedented MTL signal quality. Following detailed exploration of cortical networks associated with MTL subregions within each individual, we discovered three biologically meaningful networks associated with the entorhinal cortex, perirhinal cortex, and parahippocampal area TH, respectively. Our findings define the anatomical constraints within which human mnemonic functions must operate and are insightful for examining the evolutionary trajectory of the MTL connectivity across species.
Collapse
Affiliation(s)
- Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway; Wilhelm Wundt Institute of Psychology, Leipzig University, Leipzig, Germany; Department of Psychology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
16
|
Cano-Astorga N, Plaza-Alonso S, DeFelipe J, Alonso-Nanclares L. 3D synaptic organization of layer III of the human anterior cingulate and temporopolar cortex. Cereb Cortex 2023; 33:9691-9708. [PMID: 37455478 PMCID: PMC10472499 DOI: 10.1093/cercor/bhad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
The human anterior cingulate and temporopolar cortices have been proposed as highly connected nodes involved in high-order cognitive functions, but their synaptic organization is still basically unknown due to the difficulties involved in studying the human brain. Using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) to study the synaptic organization of the human brain obtained with a short post-mortem delay allows excellent results to be obtained. We have used this technology to analyze layer III of the anterior cingulate cortex (Brodmann area 24) and the temporopolar cortex, including the temporal pole (Brodmann area 38 ventral and dorsal) and anterior middle temporal gyrus (Brodmann area 21). Our results, based on 6695 synaptic junctions fully reconstructed in 3D, revealed that Brodmann areas 24, 21 and ventral area 38 showed similar synaptic density and synaptic size, whereas dorsal area 38 displayed the highest synaptic density and the smallest synaptic size. However, the proportion of the different types of synapses (excitatory and inhibitory), the postsynaptic targets, and the shapes of excitatory and inhibitory synapses were similar, regardless of the region examined. These observations indicate that certain aspects of the synaptic organization are rather homogeneous, whereas others show specific variations across cortical regions.
Collapse
Affiliation(s)
- Nicolás Cano-Astorga
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University - Cajal Institute, 28029 Madrid, Spain
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, 28031 Madrid, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, 28031 Madrid, Spain
| |
Collapse
|
17
|
Mesulam MM, Gefen T, Flanagan M, Castellani R, Jamshidi P, Barbieri E, Sridhar J, Kawles A, Weintraub S, Geula C, Rogalski E. Frontotemporal Degeneration with Transactive Response DNA-Binding Protein Type C at the Anterior Temporal Lobe. Ann Neurol 2023; 94:1-12. [PMID: 37183762 PMCID: PMC10330481 DOI: 10.1002/ana.26677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
The anatomical distribution of most neurodegenerative diseases shows considerable interindividual variations. In contrast, frontotemporal lobar degeneration with transactive response DNA-binding protein type C (TDP-C) shows a consistent predilection for the anterior temporal lobe (ATL). The relatively selective atrophy of ATL in TDP-C patients has highlighted the importance of this region for complex cognitive and behavioral functions. This review includes observations on 28 TDP-C patients, 18 with semantic primary progressive aphasia and 10 with other syndromes. Longitudinal imaging allowed the delineation of progression trajectories. At post-mortem examination, the pathognomonic feature of TDP-C consisted of long, thick neurites found predominantly in superficial cortical layers. These neurites may represent dystrophic apical dendrites of layer III and V pyramidal neurons that are known to play pivotal roles in complex cortical computations. Other types of frontotemporal lobar degeneration TDP, such as TDP-A and TDP-B, are not associated with long dystrophic neurites in the cerebral cortex, and do not show similar predilection patterns for ATL. Research is beginning to identify molecular, structural, and immunological differences between pathological TDP-43 in TDP-C versus TDP-A and B. Parallel investigations based on proteomics, somatic mutations, and genome-wide association studies are detecting molecular features that could conceivably mediate the selective vulnerability of ATL to TDP-C. Future work will focus on characterizing the distinctive features of the abnormal TDP-C neurites, the mechanisms of neurotoxicity, initial cellular targets within the ATL, trajectory of spread, and the nature of ATL-specific markers that modulate vulnerability to TDP-C. ANN NEUROL 2023;94:1-12.
Collapse
Affiliation(s)
- Marek-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Margaret Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rudolph Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pouya Jamshidi
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elena Barbieri
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaiashre Sridhar
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Allegra Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
18
|
Murray SB, Alba C, Duval CJ, Nagata JM, Cabeen RP, Lee DJ, Toga AW, Siegel SJ, Jann K. Aberrant functional connectivity between reward and inhibitory control networks in pre-adolescent binge eating disorder. Psychol Med 2023; 53:3869-3878. [PMID: 35301976 DOI: 10.1017/s0033291722000514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Behavioral features of binge eating disorder (BED) suggest abnormalities in reward and inhibitory control. Studies of adult populations suggest functional abnormalities in reward and inhibitory control networks. Despite behavioral markers often developing in children, the neurobiology of pediatric BED remains unstudied. METHODS 58 pre-adolescent children (aged 9-10-years) with BED (mBMI = 25.05; s.d. = 5.40) and 66 age, BMI and developmentally matched control children (mBMI = 25.78; s.d. = 0.33) were extracted from the 3.0 baseline (Year 0) release of the Adolescent Brain Cognitive Development (ABCD) Study. We investigated group differences in resting-state functional MRI functional connectivity (FC) within and between reward and inhibitory control networks. A seed-based approach was employed to assess nodes in the reward [orbitofrontal cortex (OFC), nucleus accumbens, amygdala] and inhibitory control [dorsolateral prefrontal cortex, anterior cingulate cortex (ACC)] networks via hypothesis-driven seed-to-seed analyses, and secondary seed-to-voxel analyses. RESULTS Findings revealed reduced FC between the dlPFC and amygdala, and between the ACC and OFC in pre-adolescent children with BED, relative to controls. These findings indicating aberrant connectivity between nodes of inhibitory control and reward networks were corroborated by the whole-brain FC analyses. CONCLUSIONS Early-onset BED may be characterized by diffuse abnormalities in the functional synergy between reward and cognitive control networks, without perturbations within reward and inhibitory control networks, respectively. The decreased capacity to regulate a reward-driven pursuit of hedonic foods, which is characteristic of BED, may in part, rest on this dysconnectivity between reward and inhibitory control networks.
Collapse
Affiliation(s)
- Stuart B Murray
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Celina Alba
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Christina J Duval
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jason M Nagata
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan P Cabeen
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Darrin J Lee
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, USA
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Arthur W Toga
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Steven J Siegel
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Kay Jann
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Tiesinga P, Platonov A, Pelliccia V, LoRusso G, Sartori I, Orban GA. Uncovering the fast, directional signal flow through the human temporal pole during semantic processing. Sci Rep 2023; 13:6831. [PMID: 37100843 PMCID: PMC10133264 DOI: 10.1038/s41598-023-33318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
The temporal pole (TP) plays a central role in semantic memory, yet its neural machinery is unknown. Intracerebral recordings in patients discriminating visually the gender or actions of an actor, yielded gender discrimination responses in the ventrolateral (VL) and tip (T) regions of right TP. Granger causality revealed task-specific signals travelling first forward from VL to T, under control of orbitofrontal cortex (OFC) and neighboring prefrontal cortex, and then, strongly, backwards from T to VL. Many other cortical regions provided inputs to or received outputs from both TP regions, often with longer delays, with ventral temporal afferents to VL signaling the actor's physical appearance. The TP response timing reflected more that of the connections to VL, controlled by OFC, than that of the input leads themselves. Thus, visual evidence for gender categories, collected by VL, activates category labels in T, and consequently, category features in VL, indicating a two-stage representation of semantic categories in TP.
Collapse
Affiliation(s)
- P Tiesinga
- Neuroinformatics Department, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| | - A Platonov
- Department of Medicine and Surgery, University of Parma, Via Volturno 39/E, 43125, Parma, Italy
| | - V Pelliccia
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca' Granda, 20162, Milan, Italy
| | - G LoRusso
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca' Granda, 20162, Milan, Italy
| | - I Sartori
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca' Granda, 20162, Milan, Italy
| | - G A Orban
- Department of Medicine and Surgery, University of Parma, Via Volturno 39/E, 43125, Parma, Italy.
| |
Collapse
|
20
|
Axelrod V, Rozier C, Sohier E, Lehongre K, Adam C, Lambrecq V, Navarro V, Naccache L. Intracranial study in humans: Neural spectral changes during watching comedy movie of Charlie Chaplin. Neuropsychologia 2023; 185:108558. [PMID: 37061128 DOI: 10.1016/j.neuropsychologia.2023.108558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
Humor plays a prominent role in our lives. Thus, understanding the cognitive and neural mechanisms of humor is particularly important. Previous studies that investigated neural substrates of humor used functional MRI and to a lesser extent EEG. In the present study, we conducted intracranial recording in human patients, enabling us to obtain the signal with high temporal precision from within specific brain locations. Our analysis focused on the temporal lobe and the surrounding areas, the temporal lobe was most densely covered in our recording. Thirteen patients watched a fragment of a Charlie Chaplin movie. An independent group of healthy participants rated the same movie fragment, helping us to identify the most funny and the least funny frames of the movie. We compared neural activity occurring during the most funny and least funny frames across frequencies in the range of 1-170 Hz. The most funny compared to least funny parts of the movie were associated with activity modulation in the broadband high-gamma (70-170 Hz; mostly activation) and to a lesser extent gamma band (40-69Hz; activation) and low frequencies (1-12 Hz, delta, theta, alpha bands; mostly deactivation). With regard to regional specificity, we found three types of brain areas: (I) temporal pole, middle and inferior temporal gyrus (both anterior and posterior) in which there was both activation in the high-gamma/gamma bands and deactivation in low frequencies; (II) ventral part of the temporal lobe such as the fusiform gyrus, in which there was mostly deactivation the low frequencies; (III) posterior temporal cortex and its environment, such as the middle occipital and the temporo-parietal junction, in which there was activation in the high-gamma/gamma band. Overall, our results suggest that humor appreciation might be achieved by neural activity across the frequency spectrum.
Collapse
Affiliation(s)
- Vadim Axelrod
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Camille Rozier
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Elisa Sohier
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Katia Lehongre
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Claude Adam
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Virginie Lambrecq
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France; AP-HP, EEG Unit, Neurophysiology Department, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France; AP-HP, EEG Unit, Neurophysiology Department, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France; AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France
| | - Lionel Naccache
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurophysiology, 47-83 boulevard de l'Hôpital, Paris 75013, France
| |
Collapse
|
21
|
Cherry J, Kamel S, Elfil M, Aravala SS, Bayoumi A, Patel A, Sinha R, Tinaz S. Mental imagery content is associated with disease severity and specific brain functional connectivity changes in patients with Parkinson's disease. Brain Imaging Behav 2023; 17:161-171. [PMID: 36434490 PMCID: PMC10050121 DOI: 10.1007/s11682-022-00749-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
Mental imagery is the mental re-creation of perceptual experiences, events and scenarios, and motor acts. In our previous study, we assessed whether motor imagery (MI) training combined with functional magnetic resonance imaging-based neurofeedback could improve the motor function of nondemented subjects with mild Parkinson's disease (PD) (N = 22). We used visual imagery (VI) (e.g., of scenes or events, but not of self-movements) training without neurofeedback for the control group (N = 22). Notably, both groups showed significant and comparable improvement in motor function after four weeks of daily imagery practice. In this study, we further examined the neural correlates of the motor enhancement as a result of the VI training by analyzing the self-reported VI content during daily practice and relating its quality to the functional connectivity characteristics of the same subjects. We demonstrated that the VI practice encompassed multisensory, spatial, affective, and executive processes all of which are also important for motor function in real life. Subjects with worse global disease severity also showed poorer quality of the VI content. Finally, the quality of the VI content showed significant positive correlations with the functional connectivity changes during the VI tasks in brain areas supporting visuospatial and sensorimotor processes. Our findings suggest that mental imagery training combining VI and MI may enhance motor function in patients with mild PD, and more broadly, underline the importance of incorporating self-reports of thoughts and experiences in neuroimaging studies that examine the brain mechanisms of complex cognitive processes especially in neuropsychiatric patient populations.
Collapse
Affiliation(s)
- Jared Cherry
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA
| | - Serageldin Kamel
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA
| | - Mohamed Elfil
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA
| | - Sai S Aravala
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA
| | - Ahmed Bayoumi
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA
| | - Amar Patel
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, New Haven, CT, USA
| | - Rajita Sinha
- Yale Stress Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Sule Tinaz
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, New Haven, CT, USA.
- Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
Rijpma MG, Montembeault M, Shdo S, Kramer JH, Miller BL, Rankin KP. Semantic knowledge of social interactions is mediated by the hedonic evaluation system in the brain. Cortex 2023; 161:26-37. [PMID: 36878098 PMCID: PMC10365613 DOI: 10.1016/j.cortex.2022.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/20/2022] [Accepted: 12/14/2022] [Indexed: 02/10/2023]
Abstract
Attaching semantic meaning to sensory information received from both inside and outside our bodies is a fundamental function of the human brain. The theory of Controlled Semantic Cognition (CSC) proposes that the formation of semantic knowledge relies on connections between spatially distributed modality-specific spoke-nodes, and a modality-general hub in the anterior temporal lobes (ATLs). This theory can also be applied to social semantic knowledge, though certain domain-specific spoke-nodes may make a disproportionate contribution to the understanding of social concepts. The ATLs have strong connections with spoke-node structures such as the subgenual ACC (sgACC) and the orbitofrontal cortex (OFC) that play an important role in predicting the hedonic value of stimuli. We hypothesized that in addition to the ATL semantic hub, a social semantic task would also require input from hedonic evaluation structures. We used voxel based morphometry (VBM) to examine structural brain-behavior relationships in 152 patients with neurodegeneration (Alzheimer's disease [N = 12], corticobasal syndrome (N = 18], progressive supranuclear palsy [N = 13], behavioral variant frontotemporal dementia [N = 56], and primary progressive aphasia (PPA) [N = 53]) using the Social Interaction Vocabulary Task (SIVT). This task measures the ability to correctly match a social term (e.g. "gossiping") with a visual depiction of that social interaction. As predicted, VBM showed that worse SIVT scores corresponded with volume loss in bilateral ATL semantic hub regions, but also in the sgACC, OFC, caudate and putamen (pFWE <0.05). These results support the CSC model of a hub-and-spoke organization of social semantic knowledge with the ATL as a domain-general semantic hub, and ventromedial and striatal structures as domain specific spoke-nodes. Importantly, these results suggest that correct comprehension of social semantic concepts requires emotional 'tagging' of a concept by the evaluation system, and that the social deficits observed in some neurodegenerative disease syndromes may be caused by the break-down of this mechanism.
Collapse
Affiliation(s)
- Myrthe G Rijpma
- Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Ln, Suite 190, USA.
| | - Maxime Montembeault
- Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Ln, Suite 190, USA
| | - Suzanne Shdo
- Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Ln, Suite 190, USA
| | - Joel H Kramer
- Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Ln, Suite 190, USA
| | - Bruce L Miller
- Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Ln, Suite 190, USA
| | - Katherine P Rankin
- Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Ln, Suite 190, USA
| |
Collapse
|
23
|
González-García I, Visser M. A Semantic Cognition Contribution to Mood and Anxiety Disorder Pathophysiology. Healthcare (Basel) 2023; 11:healthcare11060821. [PMID: 36981478 PMCID: PMC10047953 DOI: 10.3390/healthcare11060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Over the last two decades, the functional role of the bilateral anterior temporal lobes (bATLs) has been receiving more attention. They have been associated with semantics and social concept processing, and are regarded as a core region for depression. In the past, the role of the ATL has often been overlooked in semantic models based on functional magnetic resonance imaging (fMRI) due to geometric distortions in the BOLD signal. However, previous work has unequivocally associated the bATLs with these higher-order cognitive functions following advances in neuroimaging techniques to overcome the geometric distortions. At the same time, the importance of the neural basis of conceptual knowledge in understanding mood disorders became apparent. Theoretical models of the neural basis of mood and anxiety disorders have been classically studied from the emotion perspective, without concentrating on conceptual processing. However, recent work suggests that the ATL, a brain region underlying conceptual knowledge, plays an essential role in mood and anxiety disorders. Patients with anxiety and depression often cope with self-blaming biases and guilt. The theory is that in order to experience guilt, the brain needs to access the related conceptual information via the ATL. This narrative review describes how aberrant interactions of the ATL with the fronto–limbic emotional system could underlie mood and anxiety disorders.
Collapse
|
24
|
Hadidane S, Lagarde S, Medina-Villalon S, McGonigal A, Laguitton V, Carron R, Scavarda D, Bartolomei F, Trebuchon A. Basal temporal lobe epilepsy: SEEG electroclinical characteristics. Epilepsy Res 2023; 191:107090. [PMID: 36774667 DOI: 10.1016/j.eplepsyres.2023.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 12/16/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy is the most common type of focal drug-resistant epilepsy. Seizures with predominant involvement of basal temporal regions (BTR) are not well characterized. In this stereo electroencephalography (SEEG) study, we aimed at describing the ictal networks involving BTR and the associated clinical features. METHODS We studied 24 patients explored with SEEG in our center with BTR sampling. We analyzed their seizures using a quantitative method: the "epileptogenicity index". Then we reported the features of the patients with maximal epileptogenicity within BTR, especially ictal network involved, ictal semiology and post-surgical outcome. RESULTS We found that rhinal cortex, parahippocampal cortex and posterior fusiform gyrus were the most epileptogenic structures within the BTR (mean EI: 0.57, 0.55, 0.54 respectively). Three main groups of epileptogenic zone organization were found: anterior (23% of total seizures) posterior (30%) and global (47%, both anterior and posterior). Contralateral spread was found in 35% of left seizures and 20% of right seizures. Naming deficit was more prevalent in left BTR (71% vs 29% in right seizures; p = 0.01) whereas automatic speech production was preferentially represented in right seizures (11% vs 54%; p = 0.001). Surgery was proposed for 11 patients (45.8%), leading to seizure freedom in 72% (Engel Class I). One patient presented post-operative permanent functional deficit. CONCLUSION Basal-temporal lobe epilepsy seems to be a specific entity among the temporal epilepsy spectrum with specific clinical characteristics. Resective surgery can be proposed with good outcomes in a significant proportion of patients and is safe provided that adequate language assessment has been preoperatively made.
Collapse
Affiliation(s)
- S Hadidane
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology Department, Clinical Neurophysiology, Marseille, France
| | - S Lagarde
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology Department, Clinical Neurophysiology, Marseille, France
| | - S Medina-Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - A McGonigal
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - V Laguitton
- APHM, Timone Hospital, Epileptology Department, Clinical Neurophysiology, Marseille, France
| | - R Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Stereotactic and Functional Neurosurgery, Marseille, France
| | - D Scavarda
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Pediatric, Neurosurgery Department, Marseille, France
| | - F Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology Department, Clinical Neurophysiology, Marseille, France
| | - A Trebuchon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology Department, Clinical Neurophysiology, Marseille, France; INSERM UMR1106, Institut des Neurosciences des Systèmes, Aix-Marseille Université, Faculté de Médecine Timone, 27, Bd Jean-Moulin, 13385 Marseille Cedex 05, France; Service de Neurophysiologie Clinique, Hôpital de la Timone, 13005 Marseille, France.
| |
Collapse
|
25
|
Mesulam MM. Temporopolar regions of the human brain. Brain 2023; 146:20-41. [PMID: 36331542 DOI: 10.1093/brain/awac339] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
Following prolonged neglect during the formative decades of behavioural neurology, the temporopolar region has become a site of vibrant research on the neurobiology of cognition and conduct. This turnaround can be attributed to increasing recognition of neurodegenerative diseases that target temporopolar regions for peak destruction. The resultant syndromes include behavioural dementia, associative agnosia, semantic forms of primary progressive aphasia and semantic dementia. Clinicopathological correlations show that object naming and word comprehension are critically dependent on the language-dominant (usually left) temporopolar region, whereas behavioural control and non-verbal object recognition display a more bilateral representation with a rightward bias. Neuroanatomical experiments in macaques and neuroimaging in humans show that the temporoparietal region sits at the confluence of auditory, visual and limbic streams of processing at the downstream (deep) pole of the 'what' pathway. The functional neuroanatomy of this region revolves around three axes, an anterograde horizontal axis from unimodal to heteromodal and paralimbic cortex; a radial axis where visual (ventral), auditory (dorsal) and paralimbic (medial) territories encircle temporopolar cortex and display hemispheric asymmetry; and a vertical depth-of-processing axis for the associative elaboration of words, objects and interoceptive states. One function of this neural matrix is to support the transformation of object and word representations from unimodal percepts to multimodal concepts. The underlying process is likely to start at canonical gateways that successively lead to generic (superordinate), specific (basic) and unique levels of recognition. A first sign of left temporopolar dysfunction takes the form of taxonomic blurring where boundaries among categories are preserved but not boundaries among exemplars of a category. Semantic paraphasias and coordinate errors in word-picture verification tests are consequences of this phenomenon. Eventually, boundaries among categories are also blurred and comprehension impairments become more profound. The medial temporopolar region belongs to the amygdalocentric component of the limbic system and stands to integrate exteroceptive information with interoceptive states underlying social interactions. Review of the pertinent literature shows that word comprehension and conduct impairments caused by temporopolar strokes and temporal lobectomy are far less severe than those seen in temporopolar atrophies. One explanation for this unexpected discrepancy invokes the miswiring of residual temporopolar neurons during the many years of indolently progressive neurodegeneration. According to this hypothesis, the temporopolar regions become not only dysfunctional but also sources of aberrant outputs that interfere with the function of areas elsewhere in the language and paralimbic networks, a juxtaposition not seen in lobectomy or stroke.
Collapse
Affiliation(s)
- M Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
26
|
Droby A, Nosatzki S, Edry Y, Thaler A, Giladi N, Mirelman A, Maidan I. The interplay between structural and functional connectivity in early stage Parkinson's disease patients. J Neurol Sci 2022; 442:120452. [PMID: 36265263 DOI: 10.1016/j.jns.2022.120452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/21/2022] [Accepted: 10/04/2022] [Indexed: 10/31/2022]
Abstract
The mechanisms underlying cognitive disturbances in Parkinson's disease (PD) are poorly understood but likely to depend on the ongoing degenerative processes affecting structural and functional connectivity (FC). This pilot study examined patterns of FC alterations during a cognitive task using EEG and structural characteristics of white matter (WM) pathways connecting these activated regions in early-stage PD. Eleven PD patients and nine healthy controls (HCs) underwent EEG recording during an auditory oddball task and MRI scans. Source localization was performed and Gaussian mixture model was fitted to identify brain regions with high power during task performance. These areas served as seed regions for connectivity analysis. FC among these regions was assessed by measures of magnitude squared coherence (MSC), and phase-locking value (PLV), while structural connectivity was evaluated using fiber tracking based on diffusion tensor imaging (DTI). The paracentral lobule (PL), superior parietal lobule (SPL), superior and middle frontal gyrus (SMFG), parahippocampal gyrus, superior and middle temporal gyri (STG, MTG) demonstrated increased activation during task performance. Compared to HCs, PD showed lower FC between SMFG and PL and between SMFG and SPL in MSC (p = 0.012 and p = 0.036 respectively). No significant differences between the groups were observed in PLV and the measured DTI metrics along WM tracts. These findings demonstrate that in early PD, cognitive performance changes might be attributed to FC alterations, suggesting that FC is affected early on in the degenerative process, whereas structural damage is more prominent in advanced stages as a result of the disease burden accumulation.
Collapse
Affiliation(s)
- Amgad Droby
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Shai Nosatzki
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Israel
| | - Yariv Edry
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Israel
| | - Avner Thaler
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Ueda M, Usami K, Yamao Y, Yamawaki R, Umaba C, Liang N, Nankaku M, Mineharu Y, Honda M, Hitomi T, Ikeguchi R, Ikeda A, Miyamoto S, Matsuda S, Arakawa Y. Correlation between brain functional connectivity and neurocognitive function in patients with left frontal glioma. Sci Rep 2022; 12:18302. [PMID: 36347905 PMCID: PMC9643499 DOI: 10.1038/s41598-022-22493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
The association between neurocognitive function (NCF) impairment and brain cortical functional connectivity in glioma patients remains unclear. The correlations between brain oscillatory activity or functional connectivity and NCF measured by the Wechsler Adult Intelligence Scale full-scale intelligence quotient scores (WAIS FSIQ), the Wechsler Memory Scale-revised general memory scores (WMS-R GM), and the Western aphasia battery aphasia quotient scores (WAB AQ) were evaluated in 18 patients with left frontal glioma using resting-state electroencephalography (EEG). Current source density (CSD) and lagged phase synchronization (LPS) were analyzed using exact low-resolution electromagnetic tomography (eLORETA). Although 2 and 2 patients scored in the borderline range of WAIS FSIQ and WMS-R GM, respectively, the mean WAIS FSIQ, WMS-R GM, and WAB AQ values of all patients were within normal limits, and none had aphasia. In the correlation analysis, lower WMS-R GM was associated with a higher LPS value between the right anterior prefrontal cortex and the left superior parietal lobule in the beta1 band (13-20 Hz, R = - 0.802, P = 0.012). These findings suggest that LPS evaluated by scalp EEG is associated with memory function in patients with left frontal glioma and mild NCF disorders.
Collapse
Affiliation(s)
- Masaya Ueda
- grid.411217.00000 0004 0531 2775Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan
| | - Kiyohide Usami
- grid.258799.80000 0004 0372 2033Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukihiro Yamao
- grid.258799.80000 0004 0372 2033Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rie Yamawaki
- grid.411217.00000 0004 0531 2775Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan
| | - Chinatsu Umaba
- grid.411217.00000 0004 0531 2775Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nan Liang
- grid.258799.80000 0004 0372 2033Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Manabu Nankaku
- grid.411217.00000 0004 0531 2775Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan
| | - Yohei Mineharu
- grid.258799.80000 0004 0372 2033Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayuki Honda
- grid.258799.80000 0004 0372 2033Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takefumi Hitomi
- grid.258799.80000 0004 0372 2033Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Ikeguchi
- grid.411217.00000 0004 0531 2775Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Department of Orthopedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Ikeda
- grid.258799.80000 0004 0372 2033Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- grid.258799.80000 0004 0372 2033Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichi Matsuda
- grid.411217.00000 0004 0531 2775Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Department of Orthopedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Arakawa
- grid.258799.80000 0004 0372 2033Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
28
|
Lin WY, Hsieh JC, Lu CC, Ono Y. Altered metabolic connectivity between the amygdala and default mode network is related to pain perception in patients with cancer. Sci Rep 2022; 12:14105. [PMID: 35982228 PMCID: PMC9388574 DOI: 10.1038/s41598-022-18430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
We investigated the neural correlates for chronic cancer pain conditions by retrospectively analyzing whole brain regions on 18F-fluoro-2-deoxyglucose-positron emission tomography images acquired from 80 patients with head and neck squamous cell carcinoma and esophageal cancer. The patients were divided into three groups according to perceived pain severity and type of analgesic treatment, namely patients not under analgesic treatment because of no or minor pain, patients with good pain control under analgesic treatment, and patients with poor pain control despite analgesic treatment. Uncontrollable cancer pain enhanced the activity of the hippocampus, amygdala, inferior temporal gyrus, and temporal pole. Metabolic connectivity analysis further showed that amygdala co-activation with the hippocampus was reduced in the group with poor pain control and preserved in the groups with no or minor pain and good pain control. The increased although imbalanced activity of the medial temporal regions may represent poor pain control in patients with cancer. The number of patients who used anxiolytics was higher in the group with poor pain control, whereas the usage rates were comparable between the other two groups. Therefore, further studies should investigate the relationship between psychological conditions and pain in patients with cancer and analyze the resultant brain activity.Trial registration: This study was registered at clinicaltrials.gov on 9/3/20 (NCT04537845).
Collapse
Affiliation(s)
- Wen-Ying Lin
- grid.19188.390000 0004 0546 0241Department of Anesthesiology, National Taiwan University Cancer Center, Taipei, Taiwan ,grid.412094.a0000 0004 0572 7815Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Chu Lu
- grid.412094.a0000 0004 0572 7815Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yumie Ono
- grid.411764.10000 0001 2106 7990School of Science and Technology, Meiji University, Kawasaki, Japan
| |
Collapse
|
29
|
Seidensaal K, Sailer J, Harrabi SB, von Gehlen J, Seidensaal I, Weykamp F, Bernhardt D, Debus J, Herfarth K. The Patient’s Perspective on Proton Radiotherapy of Skull Base Meningioma: A Retrospective Cross-Sectional Survey. Front Oncol 2022; 12:677181. [PMID: 35992835 PMCID: PMC9390067 DOI: 10.3389/fonc.2022.677181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Radiotherapy plays an important role in the management of skull base meningioma. The aim of the study was to investigate patient-reported outcomes. Methods A questionnaire of 20 items was sent to 192 patients with meningioma of the skull base who have been treated with proton therapy at a single institution. The survey included dichotomous, scaling, and open questions about symptoms, social distancing, rehabilitation, work, reintegration, limitations in recreational activities, as well as daily life activities and correlating diagnoses. Additionally, symptoms were reported retrospectively by the patients at different time points. In total, 128 patients (66.7%) responded. The median age at the time of RT was 55 years (range: 28-91); the majority were female (79%). The median time between the treatment of meningioma and the survey was 38.5 months (range: 7-100). Results The most common initial symptoms were visual impairment (N=54, 42.2%), dizziness (N=38, 29.7%), and double vision (N=32, 25%). The most limiting symptom in daily life at the time of the survey was fatigue (N=31, 24.2%); a significant proportion of patients reported depression as associated with diagnosis (31.3%). Only 53% of patients reported occupational activity before treatment, this number did not increase with time. Only N= 40 (31.3%) and N=35 (27.3%) patients reported no limitations in daily household chores or recreational activities by the disease and treatment. The course of cognitive function after treatment showed a temporary deterioration with subsequent improvement. Except for the improvement in emotional functioning, most domains showed a temporary deterioration during radiotherapy, still, the values reached after 6 months differed weekly or moderately from the initial values. Conclusion Besides neurological deficits, patients with skull base meningioma experience a variety of unspecific symptoms, which can be most limiting in daily life. Even successful treatment does not necessarily translate into the alleviation of those symptoms. A greater focus on the characterization of those symptom complexes is necessary. Greater focus on functional structures such as the hippocampus might improve the results. Due to the retrospective character, this study is hypothesis-generating.
Collapse
Affiliation(s)
- Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Katharina Seidensaal,
| | - Jonas Sailer
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes von Gehlen
- Department of Business Psychology, Fachhochschule für Ökonomie und Management (FOM), Munich, Germany
| | - Irina Seidensaal
- Rehabilitation facility for mentally ill and disabled (ERPEKA), Nuremberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Balgova E, Diveica V, Walbrin J, Binney RJ. The role of the ventrolateral anterior temporal lobes in social cognition. Hum Brain Mapp 2022; 43:4589-4608. [PMID: 35716023 PMCID: PMC9491293 DOI: 10.1002/hbm.25976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022] Open
Abstract
A key challenge for neurobiological models of social cognition is to elucidate whether brain regions are specialised for that domain. In recent years, discussion surrounding the role of anterior temporal regions epitomises such debates; some argue the anterior temporal lobe (ATL) is part of a domain‐specific network for social processing, while others claim it comprises a domain‐general hub for semantic representation. In the present study, we used ATL‐optimised fMRI to map the contribution of different ATL structures to a variety of paradigms frequently used to probe a crucial social ability, namely ‘theory of mind’ (ToM). Using multiple tasks enables a clearer attribution of activation to ToM as opposed to idiosyncratic features of stimuli. Further, we directly explored whether these same structures are also activated by a non‐social task probing semantic representations. We revealed that common to all of the tasks was activation of a key ventrolateral ATL region that is often invisible to standard fMRI. This constitutes novel evidence in support of the view that the ventrolateral ATL contributes to social cognition via a domain‐general role in semantic processing and against claims of a specialised social function.
Collapse
Affiliation(s)
- Eva Balgova
- School of Human and Behavioural Sciences, Bangor University, Gwynedd, Wales, UK
| | - Veronica Diveica
- School of Human and Behavioural Sciences, Bangor University, Gwynedd, Wales, UK
| | - Jon Walbrin
- Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Portugal
| | - Richard J Binney
- School of Human and Behavioural Sciences, Bangor University, Gwynedd, Wales, UK
| |
Collapse
|
31
|
Boccalini C, Carli G, Tondo G, Polito C, Catricalà E, Berti V, Bessi V, Sorbi S, Iannaccone S, Esposito V, Cappa SF, Perani D. Brain metabolic connectivity reconfiguration in the semantic variant of primary progressive aphasia. Cortex 2022; 154:1-14. [PMID: 35717768 DOI: 10.1016/j.cortex.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Functional network-level alterations in the semantic variant of Primary Progressive Aphasia (sv-PPA) are relevant to understanding the clinical features and the neural spreading of the pathology. We assessed the effect of neurodegeneration on brain systems reorganization in early sv-PPA, using advanced brain metabolic connectivity approaches. Forty-four subjects with sv-PPA and forty-four age-matched healthy controls (HC) were included. We applied two multivariate approaches to [18F]FDG-PET data - i.e., sparse inverse covariance estimation and seed-based interregional correlation analysis - to assess the integrity of (i) the whole-brain metabolic connectivity and (ii) the connectivity of brain regions relevant for cognitive and behavioral functions. Whole-brain analysis revealed a global-scale connectivity reconfiguration in sv-PPA, with widespread changes in metabolic connections of frontal, temporal, and parietal regions. In comparison to HC, the seed-based analysis revealed a) functional isolation of the left anterior temporal lobe (ATL), b) decreases in temporo-occipital connections and contralateral homologous regions, c) connectivity increases to the dorsal parietal cortex from the spared posterior temporal cortex, d) a disruption of the large-scale limbic brain networks. In sv-PPA, the severe functional derangement of the left ATL may lead to an extensive connectivity reconfiguration, encompassing several brain regions, including those not yet affected by neurodegeneration. These findings support the hypothesis that in sv-PPA the focal vulnerability of the core region (i.e., ATL) can potentially drive the widespread cerebral connectivity changes, already present in the early phase.
Collapse
Affiliation(s)
- Cecilia Boccalini
- Vita-Salute San Raffaele University, Milan, Italy; In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Carli
- Vita-Salute San Raffaele University, Milan, Italy; In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Tondo
- Vita-Salute San Raffaele University, Milan, Italy; In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Polito
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | | - Valentina Berti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Sandro Iannaccone
- Department of Rehabilitation and Functional Recovery, San Raffaele Hospital, Milan, Italy
| | | | - Stefano F Cappa
- University School for Advanced Studies (IUSS), Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy; In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
32
|
Shao X, Luo D, Zhou Y, Xiao Z, Wu J, Tan LH, Qiu S, Yuan D. Myeloarchitectonic plasticity in elite golf players' brains. Hum Brain Mapp 2022; 43:3461-3468. [PMID: 35420729 PMCID: PMC9248307 DOI: 10.1002/hbm.25860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/27/2022] [Indexed: 11/14/2022] Open
Abstract
Human neuroimaging studies have demonstrated that exercise influences the cortical structural plasticity as indexed by gray or white matter volume. It remains elusive, however, whether exercise affects cortical changes at the finer‐grained myelination structure level. To answer this question, we scanned 28 elite golf players in comparison with control participants, using a novel neuroimaging technique—quantitative magnetic resonance imaging (qMRI). The data showed myeloarchitectonic plasticity in the left temporal pole of the golf players: the microstructure of this brain region of the golf players was better proliferated than that of control participants. In addition, this myeloarchitectonic plasticity was positively related to golfing proficiency. Our study has manifested that myeloarchitectonic plasticity could be induced by exercise, and thus, shed light on the potential benefits of exercise on brain health and cognitive enhancement.
Collapse
Affiliation(s)
- Xueyun Shao
- School of Sports, Shenzhen University, Shenzhen, China.,Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Daiyi Luo
- Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Yulong Zhou
- Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Zhuoni Xiao
- Shenzhen Institute of Neuroscience, Shenzhen, China.,Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Jinjian Wu
- Department of Radiology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Hai Tan
- Shenzhen Institute of Neuroscience, Shenzhen, China.,Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Shenzhen, China.,Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Shijun Qiu
- Department of Radiology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Yuan
- Shenzhen Institute of Neuroscience, Shenzhen, China.,Department of Psychology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
33
|
Rolls ET, Deco G, Huang CC, Feng J. The Effective Connectivity of the Human Hippocampal Memory System. Cereb Cortex 2022; 32:3706-3725. [PMID: 35034120 DOI: 10.1093/cercor/bhab442] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 02/04/2023] Open
Abstract
Effective connectivity measurements in the human hippocampal memory system based on the resting-state blood oxygenation-level dependent signal were made in 172 participants in the Human Connectome Project to reveal the directionality and strength of the connectivity. A ventral "what" hippocampal stream involves the temporal lobe cortex, perirhinal and parahippocampal TF cortex, and entorhinal cortex. A dorsal "where" hippocampal stream connects parietal cortex with posterior and retrosplenial cingulate cortex, and with parahippocampal TH cortex, which, in turn, project to the presubiculum, which connects to the hippocampus. A third stream involves the orbitofrontal and ventromedial-prefrontal cortex with effective connectivity with the hippocampal, entorhinal, and perirhinal cortex. There is generally stronger forward connectivity to the hippocampus than backward. Thus separate "what," "where," and "reward" streams can converge in the hippocampus, from which back projections return to the sources. However, unlike the simple dual stream hippocampal model, there is a third stream related to reward value; there is some cross-connectivity between these systems before the hippocampus is reached; and the hippocampus has some effective connectivity with earlier stages of processing than the entorhinal cortex and presubiculum. These findings complement diffusion tractography and provide a foundation for new concepts on the operation of the human hippocampal memory system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Gustavo Deco
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08018, Spain
- Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
| |
Collapse
|
34
|
Li T, Niu S, Qiu X, Zhai Z, Yang L, Chen L, Zhang XM. Altered Cerebral Blood Flow is Linked to Disease Duration in Patients with Generalized tonic‒clonic Seizures. Neuropsychiatr Dis Treat 2022; 18:2649-2659. [PMID: 36387946 PMCID: PMC9662018 DOI: 10.2147/ndt.s386509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To investigate cerebral blood flow (CBF) characteristics in individuals with generalized tonic‒clonic seizures (GTCS) during the interictal phase using voxel-based analysis of 3D pseudocontinuous arterial spin labeling (PCASL). PATIENTS AND METHODS Patients with GTCS (GTCS group) (during the interictal period) and healthy volunteers (control group) underwent head MR imaging with a 3.0T MR scanner with a 3D PCASL sequence. CBF was compared between the two groups. Spearman correlations of CBF in regions of interest (ROIs) in GTCS patients with the duration of disease and age of onset were analyzed and corrected using the false discovery rate (FDR). RESULTS Twenty patients with GTCS (GTCS group) and twenty healthy volunteers (control group) were recruited for this study. On 3D PCASL, (1) GTCS patients had lower CBF in the brainstem, right cerebellum, right inferior temporal gyrus, parahippocampal gyrus, superior frontal gyrus, middle frontal gyrus, triangular part of inferior frontal gyrus, left temporal pole of superior temporal gyrus and thalamus and had higher CBF in the bilateral superior parietal gyri, precuneus, precentral gyri, postcentral gyri, and left dorsolateral superior frontal gyrus than controls. (2) The CBF of the right temporal pole of the middle temporal gyrus was negatively correlated with the duration of disease (PFDRcorrected<0.05), with a correlation coefficient r of -0.7333 and a PFDRcorrected value of 0.04. CONCLUSION Voxel-based analysis of 3D PCASL imaging can be used to sensitively detect brain perfusion differences in GTCS patients. The decrease in CBF in the right temporal pole of the middle temporal gyrus may be associated with disease onset. These findings may offer new perspectives on the pathogenesis of GTCS and the underlying pathophysiological changes associated with perfusion.
Collapse
Affiliation(s)
- Ting Li
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China.,Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Shaowei Niu
- Department of Infection, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Xiang Qiu
- Department of Radiology, Integrated TCM & Western Medicine Hospital Affiliated to Chengdu University of TCM, Chengdu First People's Hospital, Chengdu, People's Republic of China
| | - Zhaohua Zhai
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Li Chen
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Xiao Ming Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China.,Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| |
Collapse
|
35
|
Wei J, Lin JH, Cai LM, Shi JY, Zhang XH, Zou ZY, Chen HJ. Abnormal Stability of Dynamic Functional Architecture in Amyotrophic Lateral Sclerosis: A Preliminary Resting-State fMRI Study. Front Neurol 2021; 12:744688. [PMID: 34721270 PMCID: PMC8548741 DOI: 10.3389/fneur.2021.744688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose: Static and dynamic analyses for identifying functional connectivity (FC) have demonstrated brain dysfunctions in amyotrophic lateral sclerosis (ALS). However, few studies on the stability of dynamic FC have been conducted among ALS patients. This study explored the change of functional stability in ALS and how it correlates with disease severity. Methods: We gathered resting-state functional magnetic resonance data from 20 patients with ALS and 22 healthy controls (HCs). The disease severity was assessed with the Revised ALS Functional Rating Scale (ALSFRS-R). We used a sliding window correlation approach to identify dynamic FC and measured the concordance of dynamic FC over time to obtain the functional stability of each voxel. We assessed the between-group difference in functional stability by voxel-wise two-sample t-test. The correlation between the functional stability index and ALSFRS-R in ALS patients was evaluated using Spearman's correlation analysis. Results: Compared with the HC group, the ALS group had significantly increased functional stability in the left pre-central and post-central gyrus and right temporal pole while decreased functional stability in the right middle and inferior frontal gyrus. The results revealed a significant correlation between ALSFRS-R and the mean functional stability in the right temporal pole (r = −0.452 and P = 0.046) in the ALS patients. Conclusions: ALS patients have abnormal stability of brain functional architecture, which is associated with the severity of the disease.
Collapse
Affiliation(s)
- Jin Wei
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jia-Hui Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Li-Min Cai
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jia-Yan Shi
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiao-Hong Zhang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
36
|
Shikimoto R, Noda Y, Kida H, Nakajima S, Tsugawa S, Mimura Y, Ochi R, Takayama M, Niimura H, Mimura M. Association between resilience and cortical thickness in the posterior cingulate cortex and the temporal pole in Japanese older people: A population-based cross-sectional study. J Psychiatr Res 2021; 142:89-100. [PMID: 34330025 DOI: 10.1016/j.jpsychires.2021.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/06/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Resilience is a crucial factor preventing the onset of mental illness and contributing to the well-being and healthy longevity, whose neural bases are not fully elucidated in older people. The present study aimed to identify the cortical thickness associating with resilience in older adults. METHODS This is a part of the cross-sectional Arakawa geriatric cohort study for people aged 65 years or older, consisting of 1001 individuals. A Self-Reported Resilience Scale (RS), neuropsychological batteries, face-to-face interviews for diagnosis, and a three-dimensional T1-weighted magnetic resonance imaging were conducted. Cortical thickness was computed by the FreeSurfer. The relationships among cortical thickness, total RS score, and clinico-demographic data were investigated using univariate and multivariable regression analyses. RESULTS The total RS score was correlated with age, education, and scores of the Mini-Mental State Examination (MMSE) and Geriatric Depression Scale (GDS) in univariate analyses. The total RS score was associated with cortical thicknesses in the left posterior cingulate (β [95 % CI of B] = 0.07 [0.16-14.84]) and the left temporal pole (β [95 % CI of B] = 0.08 [0.63-9.93]) after adjusting sex, age, imaging acquisition site, education, MMSE and GDS scores, hypertension, hyperlipidemia, diabetes mellitus, Barthel index, BMI, and living situation in multivariable regression analyses. CONCLUSION The present analyses suggest that the resilience capacity may be related to the cortical thickness in the posterior cingulate and temporal cortices in older adults. Our findings warrant further longitudinal studies to confirm the causal relationship between stress events, resilience, and brain structures.
Collapse
Affiliation(s)
- Ryo Shikimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Sakuragaoka Memorial Hospital, Tokyo, Japan.
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Hisashi Kida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Ryo Ochi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Midori Takayama
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, Japan.
| | - Hidehito Niimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
37
|
Henderson SK, Dev SI, Ezzo R, Quimby M, Wong B, Brickhouse M, Hochberg D, Touroutoglou A, Dickerson BC, Cordella C, Collins JA. A category-selective semantic memory deficit for animate objects in semantic variant primary progressive aphasia. Brain Commun 2021; 3:fcab210. [PMID: 34622208 PMCID: PMC8493104 DOI: 10.1093/braincomms/fcab210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Data are mixed on whether patients with semantic variant primary progressive aphasia exhibit a category-selective semantic deficit for animate objects. Moreover, there is little consensus regarding the neural substrates of this category-selective semantic deficit, though prior literature has suggested that the perirhinal cortex and the lateral posterior fusiform gyrus may support semantic memory functions important for processing animate objects. In this study, we investigated whether patients with semantic variant primary progressive aphasia exhibited a category-selective semantic deficit for animate objects in a word-picture matching task, controlling for psycholinguistic features of the stimuli, including frequency, familiarity, typicality and age of acquisition. We investigated the neural bases of this category selectivity by examining its relationship with cortical atrophy in two primary regions of interest: bilateral perirhinal cortex and lateral posterior fusiform gyri. We analysed data from 20 patients with semantic variant primary progressive aphasia (mean age = 64 years, S.D. = 6.94). For each participant, we calculated an animacy index score to denote the magnitude of the category-selective semantic deficit for animate objects. Multivariate regression analysis revealed a main effect of animacy (β = 0.52, t = 4.03, P < 0.001) even after including all psycholinguistic variables in the model, such that animate objects were less likely to be identified correctly relative to inanimate objects. Inspection of each individual patient's data indicated the presence of a disproportionate impairment in animate objects in most patients. A linear regression analysis revealed a relationship between the right perirhinal cortex thickness and animacy index scores (β = -0.57, t = -2.74, P = 0.015) such that patients who were more disproportionally impaired for animate relative to inanimate objects exhibited thinner right perirhinal cortex. A vertex-wise general linear model analysis restricted to the temporal lobes revealed additional associations between positive animacy index scores (i.e. a disproportionately poorer performance on animate objects) and cortical atrophy in the right perirhinal and entorhinal cortex, superior, middle, and inferior temporal gyri, and the anterior fusiform gyrus, as well as the left anterior fusiform gyrus. Taken together, our results indicate that a category-selective semantic deficit for animate objects is a characteristic feature of semantic variant primary progressive aphasia that is detectable in most individuals. Our imaging findings provide further support for the role of the right perirhinal cortex and other temporal lobe regions in the semantic processing of animate objects.
Collapse
Affiliation(s)
- Shalom K Henderson
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sheena I Dev
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rania Ezzo
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Brickhouse
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daisy Hochberg
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Claire Cordella
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica A Collins
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Dual coding of knowledge in the human brain. Trends Cogn Sci 2021; 25:883-895. [PMID: 34509366 DOI: 10.1016/j.tics.2021.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022]
Abstract
How does the human brain code knowledge about the world? While disciplines such as artificial intelligence represent world knowledge based on human language, neurocognitive models of knowledge have been dominated by sensory embodiment, in which knowledge is derived from sensory/motor experience and supported by high-level sensory/motor and association cortices. The neural correlates of an alternative disembodied symbolic system had previously been difficult to establish. A recent line of studies exploring knowledge about visual properties, such as color, in visually deprived individuals converge to provide positive, compelling evidence for non-sensory, language-derived, knowledge representation in dorsal anterior temporal lobe and extended language network, in addition to the sensory-derived representations, leading to a sketch of a dual-coding knowledge neural framework.
Collapse
|
39
|
Wang Y, Metoki A, Xia Y, Zang Y, He Y, Olson IR. A large-scale structural and functional connectome of social mentalizing. Neuroimage 2021; 236:118115. [PMID: 33933599 DOI: 10.1016/j.neuroimage.2021.118115] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Humans have a remarkable ability to infer the mind of others. This mentalizing skill relies on a distributed network of brain regions but how these regions connect and interact is not well understood. Here we leveraged large-scale multimodal neuroimaging data to elucidate the brain-wide organization and mechanisms of mentalizing processing. Key connectomic features of the mentalizing network (MTN) have been delineated in exquisite detail. We found the structural architecture of MTN is organized by two parallel subsystems and constructed redundantly by local and long-range white matter fibers. We uncovered an intrinsic functional architecture that is synchronized according to the degree of mentalizing, and its hierarchy reflects the inherent information integration order. We also examined the correspondence between the structural and functional connectivity in the network and revealed their differences in network topology, individual variance, spatial specificity, and functional specificity. Finally, we scrutinized the connectome resemblance between the default mode network and MTN and elaborated their inherent differences in dynamic patterns, laterality, and homogeneity. Overall, our study demonstrates that mentalizing processing unfolds across functionally heterogeneous regions with highly structured fiber tracts and unique hierarchical functional architecture, which make it distinguishable from the default mode network and other vicinity brain networks supporting autobiographical memory, semantic memory, self-referential, moral reasoning, and mental time travel.
Collapse
Affiliation(s)
- Yin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Athanasia Metoki
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yunman Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yinyin Zang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Rijpma MG, Shdo SM, Shany-Ur T, Toller G, Kramer JH, Miller BL, Rankin KP. Salience driven attention is pivotal to understanding others' intentions. Cogn Neuropsychol 2021; 38:88-106. [PMID: 33522407 DOI: 10.1080/02643294.2020.1868984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Interpreting others' beliefs, desires and intentions is known as "theory of mind" (ToM), and is often evaluated using simplified measurement tools, which may not correctly reflect the brain circuits that are required for real-life ToM functioning. We aimed to identify the brain structures necessary to correctly infer intentions from realistic scenarios by administering The Awareness of Social Inference Test, Enriched subtest to 47 patients with behavioural variant frontotemporal dementia, 24 patients with progressive supranuclear palsy syndrome, 31 patients with Alzheimer's syndrome, and 77 older healthy controls. Neuroimaging data was analyzed using voxel based morphometry, and participants' understanding of intentions was correlated with voxel-wise and region-of interest data. We found that structural integrity of the cinguloinsular cortex in the salience network (SN) was more pivotal for accurate ToM than previously described, emphasizing the importance of the SN for selectively recognizing and attending to social cues during ToM inferences.
Collapse
Affiliation(s)
- Myrthe G Rijpma
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Suzanne M Shdo
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Tal Shany-Ur
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Gianina Toller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
41
|
Persichetti AS, Denning JM, Gotts SJ, Martin A. A Data-Driven Functional Mapping of the Anterior Temporal Lobes. J Neurosci 2021; 41:6038-6049. [PMID: 34083253 PMCID: PMC8276737 DOI: 10.1523/jneurosci.0456-21.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Although the anterior temporal lobe (ATL) comprises several anatomic and functional subdivisions, it is often reduced to a homogeneous theoretical entity, such as a domain-general convergence zone, or "hub," for semantic information. Methodological limitations are largely to blame for the imprecise mapping of function to structure in the ATL. There are two major obstacles to using fMRI to identify the precise functional organization of the ATL: the difficult choice of stimuli and tasks to activate, and dissociate, specific regions within the ATL; and poor signal quality because of magnetic field distortions near the sinuses. To circumvent these difficulties, we developed a data-driven parcellation routine using resting-state fMRI data (24 females, 64 males) acquired using a sequence that was optimized to enhance signal in the ATL. Focusing on patterns of functional connectivity between each ATL voxel and the rest of the brain, we found that the ATL comprises at least 34 distinct functional parcels that are arranged into bands along the lateral and ventral cortical surfaces, extending from the posterior temporal lobes into the temporal poles. In addition, the anterior region of the fusiform gyrus, most often cited as the location of the semantic hub, was found to be part of a domain-specific network associated with face and social processing, rather than a domain-general semantic hub. These findings offer a fine-grained functional map of the ATL and offer an initial step toward using more precise language to describe the locations of functional responses in this heterogeneous region of human cortex.SIGNIFICANCE STATEMENT The functional role of the anterior aspects of the temporal lobes (ATL) is a contentious issue. While it is likely that different regions within the ATL subserve unique cognitive functions, most studies revert to vaguely referring to particular functional regions as "the ATL," and, thus, the mapping of function to anatomy remains unclear. We used resting-state fMRI connectivity patterns between the ATL and the rest of the brain to reveal that the ATL comprises at least 34 distinct functional parcels that are organized into a three-level functional hierarchy. These results provide a detailed functional map of the anterior temporal lobes that can guide future research on how distinct regions within the ATL support diverse cognitive functions.
Collapse
Affiliation(s)
- Andrew S Persichetti
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Joseph M Denning
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen J Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
42
|
Hebling Vieira B, Garrido Salmon CE. Sublinear association between cortical thickness at the onset of the adult lifespan and age-related annual atrophy parallels spatial patterns of laminar organization in the adult cerebral cortex. NEUROIMAGE: REPORTS 2021; 1:100011. [DOI: 10.1016/j.ynirp.2021.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Conca F, Borsa VM, Cappa SF, Catricalà E. The multidimensionality of abstract concepts: A systematic review. Neurosci Biobehav Rev 2021; 127:474-491. [PMID: 33979574 DOI: 10.1016/j.neubiorev.2021.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
The neuroscientific study of conceptual representation has largely focused on categories of concrete entities (biological entities, tools…), while abstract knowledge has been less extensively investigated. The possible presence of a categorical organization of abstract knowledge is a debated issue. An embodied cognition framework predicts an organization of the abstract domain into different dimensions, grounded in the brain regions engaged by the corresponding experience. Here we review the types of experience that have been proposed to characterize different categories of abstract concepts, and the evidence supporting a corresponding organization derived from behavioural, neuroimaging (i.e., fMRI, MRI, PET, SPECT), EEG, and neurostimulation (i.e., TMS) studies in healthy and clinical populations. The available data provide substantial converging evidence in favour of the presence of distinct neural representations of social and emotional knowledge, mental states and magnitude concepts, engaging brain systems involved in the corresponding experiences. This evidence is supporting an extension of embodied models of semantic memory organization to several types of abstract knowledge.
Collapse
Affiliation(s)
- F Conca
- Institute for Advanced Studies, IUSS, Pavia, Italy; IRCCS Fondazione Istituto Neurologico Casimiro Mondino, Pavia, Italy
| | - V M Borsa
- Università degli Studi di Bergamo, Bergamo, Italy
| | - S F Cappa
- Institute for Advanced Studies, IUSS, Pavia, Italy; IRCCS Fondazione Istituto Neurologico Casimiro Mondino, Pavia, Italy.
| | - E Catricalà
- Institute for Advanced Studies, IUSS, Pavia, Italy
| |
Collapse
|
44
|
Finotelli P, Piccardi C, Miglio E, Dulio P. A Graphlet-Based Topological Characterization of the Resting-State Network in Healthy People. Front Neurosci 2021; 15:665544. [PMID: 33994939 PMCID: PMC8113409 DOI: 10.3389/fnins.2021.665544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
In this paper, we propose a graphlet-based topological algorithm for the investigation of the brain network at resting state (RS). To this aim, we model the brain as a graph, where (labeled) nodes correspond to specific cerebral areas and links are weighted connections determined by the intensity of the functional magnetic resonance imaging (fMRI). Then, we select a number of working graphlets, namely, connected and non-isomorphic induced subgraphs. We compute, for each labeled node, its Graphlet Degree Vector (GDV), which allows us to associate a GDV matrix to each one of the 133 subjects of the considered sample, reporting how many times each node of the atlas "touches" the independent orbits defined by the graphlet set. We focus on the 56 independent columns (i.e., non-redundant orbits) of the GDV matrices. By aggregating their count all over the 133 subjects and then by sorting each column independently, we obtain a sorted node table, whose top-level entries highlight the nodes (i.e., brain regions) most frequently touching each of the 56 independent graphlet orbits. Then, by pairwise comparing the columns of the sorted node table in the top-k entries for various values of k, we identify sets of nodes that are consistently involved with high frequency in the 56 independent graphlet orbits all over the 133 subjects. It turns out that these sets consist of labeled nodes directly belonging to the default mode network (DMN) or strongly interacting with it at the RS, indicating that graphlet analysis provides a viable tool for the topological characterization of such brain regions. We finally provide a validation of the graphlet approach by testing its power in catching network differences. To this aim, we encode in a Graphlet Correlation Matrix (GCM) the network information associated with each subject then construct a subject-to-subject Graphlet Correlation Distance (GCD) matrix based on the Euclidean distances between all possible pairs of GCM. The analysis of the clusters induced by the GCD matrix shows a clear separation of the subjects in two groups, whose relationship with the subject characteristics is investigated.
Collapse
Affiliation(s)
- Paolo Finotelli
- Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Carlo Piccardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Edie Miglio
- Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Paolo Dulio
- Department of Mathematics, Politecnico di Milano, Milan, Italy
| |
Collapse
|
45
|
McGonigal A, El Youssef N, Bartolomei F, Giusiano B, Guedj E. Interictal 18F-FDG brain PET metabolism in patients with postictal EEG suppression. Epilepsy Behav 2021; 116:107742. [PMID: 33493809 DOI: 10.1016/j.yebeh.2020.107742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Postictal generalized suppression (PGES) may be associated with SUDEP risk. We aimed to study metabolic changes on 18Fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in patients with focal to bilateral (generalized) seizures (GTCS) and PGES on stereoelectroencephalography (SEEG). METHODS We analyzed interictal brain metabolism in a group of 19 patients with widespread postictal suppression (PGES+) associated with SEEG-recorded GTCS. This group was compared to 25 patients without widespread suppression (PGES-) as defined by SEEG, matched for epilepsy localization and lateralization. Frequency of GTCS was observed to be higher in the PGES+ group (high risk group for SUDEP). Analysis of metabolic data was performed by statistical parametric mapping (SPM) on the whole-brain, and principal component analysis (PCA) on AAL (automated anatomical labeling) atlas. RESULTS Statistical parametric mapping showed right temporal pole hypometabolism in the PGES+ group (T-score = 3.90; p < 0.001; k = 185), in comparison to the PGES- group. Principal component analysis showed association between the metabolic values of certain regions of interest and PGES+/PGES- groups, confirmed by a significant difference (p < 0.05) in the values of the right dorsal temporal pole and of the left temporal pole between the two groups. Principal component analysis showed two dimensions significantly related to the PGES+/PGES- partition, involving the following regions: right temporal pole, right parahippocampal gyrus, right Rolandic operculum, bilateral paracentral lobule, right precuneus, right thalamus, right caudate and pallidum, bilateral cerebellum, left temporal pole, left Heschl's gyrus, left calcarine region, and left caudate, with loss of connection in PGES+ patients. Metabolic differences were independent of epilepsy localization and lateralization and persisted after correction for GTCS frequency. SIGNIFICANCE Interictal metabolic changes within a predominantly right-sided network involving temporal lobe and connected cortical and subcortical structures were seen in patients with frequent GTCS presenting widespread postictal suppression.
Collapse
Affiliation(s)
- Aileen McGonigal
- Clinical Neurophysiology and Epileptology Department, Timone Hospital, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| | - Nada El Youssef
- Clinical Neurophysiology and Epileptology Department, Timone Hospital, Marseille, France
| | - Fabrice Bartolomei
- Clinical Neurophysiology and Epileptology Department, Timone Hospital, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Bernard Giusiano
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Public Health Department, Marseille, France
| | - Eric Guedj
- APHM, Timone Hospital, Nuclear Medicine Department, Marseille, France; Aix Marseille Univ, CNRS, Ecole Centrale Marseille, UMR 7249, Institut Fresnel, Marseille, France; Aix Marseille Univ, CERIMED, Marseille, France
| |
Collapse
|
46
|
Tinaz S, Kamel S, Aravala SS, Sezgin M, Elfil M, Sinha R. Distinct neural circuits are associated with subclinical neuropsychiatric symptoms in Parkinson's disease. J Neurol Sci 2021; 423:117365. [PMID: 33636663 DOI: 10.1016/j.jns.2021.117365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/24/2021] [Accepted: 02/18/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Parkinson's disease (PD) can present with neuropsychiatric symptoms (here, anxiety, depression, and apathy) at any stage of the disease. We investigated the neural correlates of subclinical neuropsychiatric symptoms in relation to motor and cognitive symptoms in a high-functioning PD cohort. METHODS Brain morphometry of the cognitively intact, early-stage (Hoehn & Yahr 2) PD group (n = 48) was compared to matched controls (n = 37). Whole-brain, pairwise, resting-state functional connectivity measures were correlated with neuropsychiatric symptom, motor exam, and global cognitive scores of the PD group. RESULTS Factor analysis of highly collinear anxiety, depression, and apathy scores revealed a single principal component (i.e., composite neuropsychiatric symptom score) explaining 71.6% of variance. There was no collinearity between the neuropsychiatric, motor, and cognitive scores. Compared to controls, PD group showed only subcortical changes including amygdala and nucleus accumbens atrophy, and greater pallidal volume. Reduced functional connectivity in the limbic cortical-striatal circuits and increased functional connectivity between the cerebellum and occipito-temporal regions were associated with a more impaired neuropsychiatric profile. This functional connectivity pattern was distinct from those associated with motor deficits and global cognitive functioning. The individual components of the neuropsychiatric symptoms also exhibited unique connectivity patterns. LIMITATIONS Patients were scanned in "on-medication" state only and a control group with similar neuropsychiatric symptoms was not included. CONCLUSION Abnormal functional connectivity of distinct neural circuits is present even at the subclinical stage of neuropsychiatric symptoms in PD. Neuropsychiatric phenotyping is important and may facilitate early interventions to "reorganize" these circuits and delay/prevent clinical symptom onset.
Collapse
Affiliation(s)
- Sule Tinaz
- Yale University School of Medicine, Department of Neurology, Division of Movement Disorders, 15 York St, LCI 710, New Haven, CT 06510, USA; Yale University School of Medicine, Clinical Neurosciences Imaging Center, 789 Howard Ave, New Haven, CT 06519, USA.
| | - Serageldin Kamel
- Yale University School of Medicine, Department of Neurology, Division of Movement Disorders, 15 York St, LCI 710, New Haven, CT 06510, USA
| | - Sai S Aravala
- Yale University School of Medicine, Department of Neurology, Division of Movement Disorders, 15 York St, LCI 710, New Haven, CT 06510, USA
| | - Mine Sezgin
- Yale University School of Medicine, Department of Neurology, Division of Movement Disorders, 15 York St, LCI 710, New Haven, CT 06510, USA; Istanbul University Faculty of Medicine, Department of Neurology, Millet Street, Fatih, Istanbul 34093, Turkey
| | - Mohamed Elfil
- Yale University School of Medicine, Department of Neurology, Division of Movement Disorders, 15 York St, LCI 710, New Haven, CT 06510, USA
| | - Rajita Sinha
- Yale School of Medicine, Yale Stress Center, 2 Church St South, Suite 209, New Haven, CT 06519, USA; Yale School of Medicine, Department of Psychiatry, 300 George St, New Haven, CT 06511, USA; Yale School of Medicine, Department of Neuroscience, 333 Cedar St, SHM-L-200, New Haven, CT 06510, USA
| |
Collapse
|
47
|
Herlin B, Navarro V, Dupont S. The temporal pole: From anatomy to function-A literature appraisal. J Chem Neuroanat 2021; 113:101925. [PMID: 33582250 DOI: 10.1016/j.jchemneu.2021.101925] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022]
Abstract
Historically, the anterior part of the temporal lobe was labelled as a unique structure named Brain Area 38 by Brodmann or Temporopolar Area TG by Von Economo, but its functions were unknown at that time. Later on, a few studies proposed to divide the temporal pole in several different subparts, based on distinct cytoarchitectural structure or connectivity patterns, while a still growing number of studies have associated the temporal pole with many cognitive functions. In this review, we provide an overview of the temporal pole anatomical and histological structure and its various functions. We performed a literature review of articles published prior to September 30, 2020 that included 112 articles. The temporal pole has thereby been associated with several high-level cognitive processes: visual processing for complex objects and face recognition, autobiographic memory, naming and word-object labelling, semantic processing in all modalities, and socio-emotional processing, as demonstrated in healthy subjects and in patients with neurological or psychiatric diseases, especially in the field of neurodegenerative disorders. A good knowledge of those functions and the symptoms associated with temporal pole lesions or dysfunctions is helpful to identify these diseases, whose diagnosis may otherwise be difficult.
Collapse
Affiliation(s)
- Bastien Herlin
- APHP Pitie-Salpêtrière-Charles-Foix, Epileptology Unit, Paris, France.
| | - Vincent Navarro
- APHP Pitie-Salpêtrière-Charles-Foix, Epileptology Unit, Paris, France; Sorbonne University, UPMC, Paris, France; APHP Pitie-Salpêtrière-Charles-Foix, Neurophysiology Unit, Paris, France; Brain and Spine Institute (INSERM UMRS1127, CNRS UMR7225, UPMC), Paris, France
| | - Sophie Dupont
- APHP Pitie-Salpêtrière-Charles-Foix, Epileptology Unit, Paris, France; Sorbonne University, UPMC, Paris, France; Brain and Spine Institute (INSERM UMRS1127, CNRS UMR7225, UPMC), Paris, France; APHP Pitie-Salpêtrière-Charles-Foix, Rehabilitation Unit, Paris, France
| |
Collapse
|
48
|
Abnormal semantic processing of threat words associated with excitement and hostility symptoms in schizophrenia. Schizophr Res 2021; 228:394-402. [PMID: 33549981 PMCID: PMC7988509 DOI: 10.1016/j.schres.2020.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 12/14/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Schizophrenia (SZ) is associated with devastating emotional, cognitive and language impairments. Understanding the deficits in each domain and their interactions is important for developing novel, targeted psychotherapies. This study tested whether negative-threat word processing is altered in individuals with SZ compared to healthy controls (HC), in relation to SZ symptom severity across domains. METHODS Thirty-one SZ and seventeen HC subjects were scanned with functional magnetic resonance imaging while silently reading negative-threat and neutral words. Post-scan, subjects rated the valence of each word. The effects of group (SZ, HC), word type (negative, neutral), task period (early, late), and severity of clinical symptoms (positive, negative, excitement/hostility, cognitive, depression/anxiety), on word valence ratings and brain activation, were analyzed. RESULTS SZ and HC subjects rated negative versus neutral words as more negative. The SZ subgroup with severe versus mild excitement/hostility symptoms rated the negative words as more negative. SZ versus HC subjects hyperactivated left language areas (angular gyrus, middle/inferior temporal gyrus (early period)) and the amygdala (early period) to negative words, and the amygdala (late period) to neutral words. In SZ, activation to negative versus neutral words in left dorsal temporal pole and dorsal anterior cingulate was positively correlated with excitement/hostility scores. CONCLUSIONS A negatively-biased behavioral response to negative-threat words was seen in SZ with severe versus mild excitement/hostility symptoms. The biased behavioral response was mediated by hyperactivation of brain networks associated with semantic processing of emotion concepts. Thus, word-level semantic processing may be a relevant psychotherapeutic target in SZ.
Collapse
|
49
|
Effects of Rivastigmine on Brain Functional Networks in Patients With Alzheimer Disease Based on the Graph Theory. Clin Neuropharmacol 2020; 44:9-16. [PMID: 33337622 PMCID: PMC7813447 DOI: 10.1097/wnf.0000000000000427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to explore the effect of rivastigmine on brain function in Alzheimer disease (AD) by analyzing brain functional network based on the graph theory. METHODS We enrolled 9 patients with mild to moderate AD who received rivastigmine treatment and 9 healthy controls (HC). Subsequently, we used resting-state functional magnetic resonance imaging data to establish the whole-brain functional network using a graph theory-based analysis. Furthermore, we compared systemic and local network indicators between pre- and posttreatment. RESULTS Patients with AD exhibited a posttreatment increase in the Mini-Mental State Examination scores and a decrease in the Alzheimer's Disease Assessment Scale cognitive subscale scores and activities of daily living. The systemic network for HC and patients with AD had good pre- and posttreatment clustering coefficients. There was no change in the Cp, Lp, Gamma, Lambda, and Sigma in patients with AD. There were no significant between-group differences in the pre- and posttreatment systemic network measures. Regarding the regional network, patients with AD showed increased betweenness centrality in the bilateral caudate nucleus and right superior temporal pole after treatment with rivastigmine. However, there was no between-group difference in the pre- and posttreatment betweenness centrality of these regions. There were no significant correlations between regional network measure changes and clinical score alterations in patients with AD. CONCLUSIONS There are similar systemic network properties between patients with AD and HC. Rivastigmine cannot alter systemic network attributes in patients with AD. However, it improves the topological properties of regional networks and between-node information transmission in patients with AD.
Collapse
|
50
|
Gatti D, Vecchi T, Mazzoni G. Cerebellum and semantic memory: A TMS study using the DRM paradigm. Cortex 2020; 135:78-91. [PMID: 33360762 DOI: 10.1016/j.cortex.2020.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Traditionally, the cerebellum has been linked to motor functions, but recent evidence suggest that it is also involved in a wide range of cognitive processes. Given the uniformity of cerebellar cortex microstructure, it has been proposed that the same computational process might underlie cerebellar involvement in both motor and cognitive functions. Within motor functions, the cerebellum it is involved in procedural memory and associative learning. Here, we hypothesized that the cerebellum may participate to semantic memory as well. To test whether the cerebellum is causally involved in semantic memory, we carried out two experiments in which participants performed the Deese-Roediger-McDermott paradigm (DRM) while online transcranial magnetic stimulation (TMS) was administered over the right cerebellum or over a control site. In Experiment 1, cerebellar TMS selectively affected participants' discriminability for critical lures without affecting participants' discriminability for unrelated words and in Experiment 2 we found that the higher was the semantic association between new and studied words, the higher was the memory impairment caused by the TMS. These results indicate that the right cerebellum is causally involved in semantic memory and provide evidence consistent with theories that proposed the existence of a unified cerebellar function within motor and cognitive domains, as well with recent perspectives about cerebellar involvement in semantic memory and predictive functions.
Collapse
Affiliation(s)
- Daniele Gatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giuliana Mazzoni
- Faculty of Medicine and Psychology, University La Sapienza, Rome, Italy; School of Life Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|