1
|
Castagna F, Liguori G, Lombardi R, Bava R, Costagliola A, Giordano A, Quintiliani M, Giacomini D, Albergo F, Gigliotti A, Lupia C, Ceniti C, Tilocca B, Palma E, Roncada P, Britti D. Hepatitis E and Potential Public Health Implications from a One-Health Perspective: Special Focus on the European Wild Boar ( Sus scrofa). Pathogens 2024; 13:840. [PMID: 39452712 PMCID: PMC11510200 DOI: 10.3390/pathogens13100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The hepatitis E virus (HEV) has become increasingly important in recent years in terms of risk for public health, as the main causative agent of acute viral hepatitis. It is a foodborne disease transmitted to humans through the consumption of contaminated water or contaminated food. Human-to-human transmission is sporadic and is linked to transfusions or transplants. The main reservoirs of the hepatitis E virus are domestic pigs and wild boars, although, compared to pigs, wild boars represent a lesser source of risk since their population is smaller and the consumption of derived products is more limited. These peculiarities often make the role of the wild boar reservoir in the spread of the disease underestimated. As a public health problem that involves several animal species and humans, the management of the disease requires an interdisciplinary approach, and the concept of "One Health" must be addressed. In this direction, the present review intends to analyze viral hepatitis E, with a particular focus on wild boar. For this purpose, literature data have been collected from different scientific search engines: PubMed, MEDLINE, and Google scholar, and several keywords such as "HEV epidemiology", "Extrahepatic manifestations of Hepatitis E", and "HEV infection control measures", among others, have been used. In the first part, the manuscript provides general information on the disease, such as epidemiology, transmission methods, clinical manifestations and implications on public health. In the second part, it addresses in more detail the role of wild boar as a reservoir and the implications related to the virus epidemiology. The document will be useful to all those who intend to analyze this infectious disease from a "One-Health" perspective.
Collapse
Affiliation(s)
- Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy;
| | - Giovanna Liguori
- Local Health Authority, ASL, 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Renato Lombardi
- Local Health Authority, ASL, 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, 80100 Naples, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, 1900 N 12th Street, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnology, University of Siena, 10100 Siena, Italy
| | | | | | - Francesco Albergo
- Department of Management, Finance and Technology, University LUM Giuseppe Degennaro, 70100 Casamassima, Italy;
| | - Andrea Gigliotti
- Interregional Park of Sasso Simone and Simoncello, 61021 Carpegna, Italy;
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy;
| | - Carlotta Ceniti
- ASL Napoli 3 SUD, Department of Prevention, 80053 Castellammare di Stabia, Italy;
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| |
Collapse
|
2
|
Abravanel F, Vignon C, Mercier A, Gaumery JB, Biron A, Filisetti C, Goujart MA, Colot J, Chamillard X, Demortier J, Raz M, Boutet C, Dupont L, Duval S, Castric C, Desoutter D, Desoutter A, Verge M, De Smet C, Demmou S, Lhomme S, Gourinat AC, Nicot F, Izopet J. Large-scale HEV genotype 3 outbreak on New Caledonia Island. Hepatology 2024:01515467-990000000-01013. [PMID: 39212522 DOI: 10.1097/hep.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Several symptomatic cases of HEV infections were reported to the New Caledonia Island Public Health Service between August and December 2023. This prompted epidemiological and virological investigations to identify the source of infection. APPROACH AND RESULTS HEV RNA was assessed in symptomatic patients, various food items, and pig farms on the Island. HEV strains were characterized by sequencing. A seroprevalence study was also conducted on asymptomatic blood donors before and after the outbreak. One hundred twenty-seven symptomatic cases were reported. Hospitalization was required for 29/127 patients (22.8%). Hospitalized patients presented more frequently with comorbidities, including liver and cardiovascular diseases (80.7% vs. 27%, p < 0.01), and 3 persons died (2.3%). Among the 100 HEV RNA-positive samples received at the French National Reference Centre for HEV, viral sequencing was possible for 76 samples. All strains were identified as HEV genotype 3, and 74/76 strains were grouped together (nucleotide identity: 98%-100%). Full-length sequencing indicated a new HEV-3 subtype within HEV-3 subclade abk. Only genotype 3f strains were detected on the Island's pig farms. No food items tested positive for HEV RNA. The seroprevalence of HEV IgG and IgM in blood donors was 9.2% (9/98) and 0%, respectively, in 2020, rising to 17.3% (17/98) and 2% (2/98) in 2024. CONCLUSIONS Although all previous large-scale epidemics in Asia and Africa were associated with HEV-1 or 2, the New Caledonia outbreak was linked to HEV-3. A high number of symptomatic cases were admitted to the hospital, with a case-fatality rate of 2.3%.
Collapse
Affiliation(s)
- Florence Abravanel
- Toulouse University Hospital, Hôpital Purpan, Place du Dr Baylac, Laboratoire de Virologie, National Reference Centre for Hepatitis E, Toulouse, France
- Inserm UMR 1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France Toulouse University Hospital, Hôpital Purpan, Place du Dr Baylac, Toulouse
| | - Clémence Vignon
- Toulouse University Hospital, Hopital Rangueil Service d'hépatologie - 1 Avenue du Pr J. Poulhes- Université Paul Sabatier III, Toulouse France, Nouvelle-Calédonie
| | - Ambroise Mercier
- Territorial Hospital Centre Gaston-Bourret, Service de Transfusion Sanguine 110, boulevard Joseph-Wamytan, Nouméa Cedex
| | - Jean-Baptiste Gaumery
- Direction des Affaires Sanitaire et Sociale, 7 avenue Paul DOUMER, BP M2, NOUMÉA Cedex, Nouvelle-Calédonie
| | - Antoine Biron
- Territorial Hospital Centre Gaston-Bourret, Service de Transfusion Sanguine 110, boulevard Joseph-Wamytan, Nouméa Cedex
| | - Clément Filisetti
- Direction des Affaires Sanitaire et Sociale, 7 avenue Paul DOUMER, BP M2, NOUMÉA Cedex, Nouvelle-Calédonie
| | - Marie-Amélie Goujart
- Territorial Hospital Centre Gaston-Bourret, Service de Transfusion Sanguine 110, boulevard Joseph-Wamytan, Nouméa Cedex
| | - Julien Colot
- Territorial Hospital Centre Gaston-Bourret, Service de Transfusion Sanguine 110, boulevard Joseph-Wamytan, Nouméa Cedex
| | - Xavier Chamillard
- Territorial Hospital Centre Gaston-Bourret, Service de Transfusion Sanguine 110, boulevard Joseph-Wamytan - BP J5, Nouméa Cedex
| | - Justine Demortier
- Territorial Hospital Centre Gaston-Bourret, Service de Transfusion Sanguine 110, boulevard Joseph-Wamytan - BP J5, Nouméa Cedex
| | - Maxime Raz
- Territorial Hospital Centre Gaston-Bourret, Service de Transfusion Sanguine 110, boulevard Joseph-Wamytan - BP J5, Nouméa Cedex
| | - Catherine Boutet
- Direction des Affaires Sanitaire et Sociale, 7 avenue Paul DOUMER, BP M2, NOUMÉA Cedex, Nouvelle-Calédonie
| | - Laura Dupont
- Direction des Affaires Sanitaire et Sociale, 7 avenue Paul DOUMER, BP M2, NOUMÉA Cedex, Nouvelle-Calédonie
| | - Sylvie Duval
- Direction des affaires vétérinaires, alimentaires et rurales 2 Rue Felix Russeil, Nouméa, Nouvelle-Calédonie
| | - Catherine Castric
- Direction des affaires vétérinaires, alimentaires et rurales 2 Rue Felix Russeil, Nouméa, Nouvelle-Calédonie
| | - Denise Desoutter
- Direction des affaires vétérinaires, alimentaires et rurales 2 Rue Felix Russeil, Nouméa, Nouvelle-Calédonie
| | - Anais Desoutter
- Direction des affaires vétérinaires, alimentaires et rurales 2 Rue Felix Russeil, Nouméa, Nouvelle-Calédonie
| | - Marjorie Verge
- Direction des affaires vétérinaires, alimentaires et rurales 2 Rue Felix Russeil, Nouméa, Nouvelle-Calédonie
| | - Clémentine De Smet
- Toulouse University Hospital, Hôpital Purpan, Place du Dr Baylac, Laboratoire de Virologie, National Reference Centre for Hepatitis E, Toulouse, France
| | - Sofia Demmou
- Toulouse University Hospital, Hôpital Purpan, Place du Dr Baylac, Laboratoire de Virologie, National Reference Centre for Hepatitis E, Toulouse, France
| | - Sébastien Lhomme
- Toulouse University Hospital, Hôpital Purpan, Place du Dr Baylac, Laboratoire de Virologie, National Reference Centre for Hepatitis E, Toulouse, France
- Inserm UMR 1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France Toulouse University Hospital, Hôpital Purpan, Place du Dr Baylac, Toulouse
| | - Ann-Claire Gourinat
- Direction des Affaires Sanitaire et Sociale, 7 avenue Paul DOUMER, BP M2, NOUMÉA Cedex, Nouvelle-Calédonie
| | - Florence Nicot
- Toulouse University Hospital, Hôpital Purpan, Place du Dr Baylac, Laboratoire de Virologie, National Reference Centre for Hepatitis E, Toulouse, France
| | - Jacques Izopet
- Toulouse University Hospital, Hôpital Purpan, Place du Dr Baylac, Laboratoire de Virologie, National Reference Centre for Hepatitis E, Toulouse, France
- Inserm UMR 1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France Toulouse University Hospital, Hôpital Purpan, Place du Dr Baylac, Toulouse
| |
Collapse
|
3
|
Deng H, Chen Y, Liang S, Liang X, Dang S, Liu H, Qiu J. Near full-length genome analysis of HEV 4b subtype in pigs showed a similarity up to 99.944% compared to a patient in Guangdong province, China. J Med Virol 2024; 96:e29777. [PMID: 38949212 DOI: 10.1002/jmv.29777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Hepatitis E virus (HEV) is a prevalent pathogen responsible for acute viral hepatitis, HEV genotypes 3 and 4 infections causing zoonotic infections. Currently, the nucleotide similarity analysis between humans and pigs for HEV genotype 4 is limited. In this study, stool samples from an HEV-infected patient who is a pig farmer and from pigs were collected to obtain the near full-length genome of HEV, phylogenetic trees were constructed for genotyping, and similarity of HEV sequences was analyzed. The results showed that HEV-RNA was detected in the stool samples from the patient and six pigs (6/30, 20.0%). Both HEV subtype in the patient and pigs was 4b. Additionally, similarity analysis showed that the range was 99.875%-99.944% between the patient and pigs at the nucleotide level. Four isolates of amino acid sequences (ORFs 1-3) from pigs were 100% identical to the patient. Phylogenetic tree and similarity analysis of an additional nine HEV sequences isolated from other patients in this region showed that the HEV sequence from the pig farmer had the closest relationship with the pigs from his farm rather than other sources of infection in this region. This study provides indirect evidences for HEV subtype 4b can be transmitted from pigs to humans at the nucleotide level. Further research is needed to explore the characteristics of different HEV subtypes.
Collapse
Affiliation(s)
- Haohui Deng
- Department of Infectious Disease, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan, Guangdong, China
| | - Yuanting Chen
- Department of Infectious Disease, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan, Guangdong, China
| | - Shuzhen Liang
- Department of Infectious Disease, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan, Guangdong, China
| | - Xiaoting Liang
- Department of Infectious Disease, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan, Guangdong, China
| | - Shuyuan Dang
- Department of Infectious Disease, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan, Guangdong, China
| | - Huiyuan Liu
- Department of Hepatology Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiuxiang Qiu
- Department of Clinical Laboratory, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
López-López P, Risalde MA, Casares-Jiménez M, Caballero-Gómez J, Martín-Gómez A, Martínez-Blasco J, Agulló-Ros I, Frías M, García-Bocanegra I, Gómez-Villamandos JC, Rivero A, Rivero-Juárez A. Prevalence of Paslahepevirus balayani in commercial swine food products from Spain. One Health 2024; 18:100690. [PMID: 39010960 PMCID: PMC11247292 DOI: 10.1016/j.onehlt.2024.100690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/29/2024] [Indexed: 07/17/2024] Open
Abstract
Paslahepevirus balayani (formerly known as hepatitis E virus) is an emerging cause of foodborne disease in Europe, transmitted mainly by the consumption of raw or undercooked pork. Since little is known about the presence of the virus in several pork products that are eaten uncooked, our aim was to evaluate the prevalence of Paslahepevirus balayani in groups of commercial pork products intended for human consumption subjected to different processing techniques. A total of 1265 samples of pork products from Spain were divided into four groups and tested for the presence of Paslahepevirus balayani RNA: unprocessed pig and wild boar meat frozen at -20 °C (n = 389), dry-cured pork products (n = 391), dry-cured and salted pork products (n = 219), and boiled products (n = 266) (none of these products contained pork liver). Five samples were positive for Paslahepevirus balayani RNA (overall prevalence: 0.4%; 95% CI: 0.17% - 0.92%). All positive samples were from unprocessed meat stored at -20 °C, with a prevalence in this group of 1.3% (95% CI: 0.42-3.44); two samples came from pigs (1.1%; 95% CI: 0.13-3.81) and three from wild boar (1.5%; 95% CI: 0.31-4.28). None of the pork samples in the other groups was positive. In conclusion, Paslahepevirus balayani was found in unprocessed swine products form Spain, but not in processed products intended to be consumed undercooked, demonstrating that transmission of this zoonotic virus by eating these pork products should be more seriously considered.
Collapse
Affiliation(s)
- Pedro López-López
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - María A. Risalde
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - María Casares-Jiménez
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Javier Caballero-Gómez
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Sanidad Animal, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Andrés Martín-Gómez
- Departamento de Innovación, Sociedad Cooperativa Andaluza Ganadera del Valle de los Pedroches (COVAP), Pozoblanco, Córdoba, Spain
| | - Javier Martínez-Blasco
- Departamento de Innovación, Sociedad Cooperativa Andaluza Ganadera del Valle de los Pedroches (COVAP), Pozoblanco, Córdoba, Spain
| | - Irene Agulló-Ros
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Mario Frías
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio García-Bocanegra
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Sanidad Animal, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - José C. Gómez-Villamandos
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Rivero
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Rivero-Juárez
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Treagus S, Lowther J, Longdon B, Gaze W, Baker-Austin C, Ryder D, Batista FM. Metabarcoding of Hepatitis E Virus Genotype 3 and Norovirus GII from Wastewater Samples in England Using Nanopore Sequencing. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:292-306. [PMID: 37910379 PMCID: PMC7615314 DOI: 10.1007/s12560-023-09569-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Norovirus is one of the largest causes of gastroenteritis worldwide, and Hepatitis E virus (HEV) is an emerging pathogen that has become the most dominant cause of acute viral hepatitis in recent years. The presence of norovirus and HEV has been reported within wastewater in many countries previously. Here we used amplicon deep sequencing (metabarcoding) to identify norovirus and HEV strains in wastewater samples from England collected in 2019 and 2020. For HEV, we sequenced a fragment of the RNA-dependent RNA polymerase (RdRp) gene targeting genotype three strains. For norovirus, we sequenced the 5' portion of the major capsid protein gene (VP1) of genogroup II strains. Sequencing of the wastewater samples revealed eight different genotypes of norovirus GII (GII.2, GII.3, GII.4, GII.6, GII.7, GII.9, GII.13 and GII.17). Genotypes GII.3 and GII.4 were the most commonly found. The HEV metabarcoding assay was able to identify HEV genotype 3 strains in some samples with a very low viral concentration determined by RT-qPCR. Analysis showed that most HEV strains found in influent wastewater were typed as G3c and G3e and were likely to have originated from humans or swine. However, the small size of the HEV nested PCR amplicon could cause issues with typing, and so this method is more appropriate for samples with high CTs where methods targeting longer genomic regions are unlikely to be successful. This is the first report of HEV RNA in wastewater in England. This study demonstrates the utility of wastewater sequencing and the need for wider surveillance of norovirus and HEV within host species and environments.
Collapse
Affiliation(s)
- Samantha Treagus
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK.
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK.
- UK Health Security Agency, Manor Farm Road, Porton Down, SP4 0JG, Wiltshire, UK.
| | - James Lowther
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Ben Longdon
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK
| | - William Gaze
- Faculty of Health and Life Sciences, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | | | - David Ryder
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | | |
Collapse
|
6
|
Zahmanova G, Takova K, Tonova V, Koynarski T, Lukov LL, Minkov I, Pishmisheva M, Kotsev S, Tsachev I, Baymakova M, Andonov AP. The Re-Emergence of Hepatitis E Virus in Europe and Vaccine Development. Viruses 2023; 15:1558. [PMID: 37515244 PMCID: PMC10383931 DOI: 10.3390/v15071558] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. Transmission of HEV mainly occurs via the fecal-oral route (ingesting contaminated water or food) or by contact with infected animals and their raw meat products. Some animals, such as pigs, wild boars, sheep, goats, rabbits, camels, rats, etc., are natural reservoirs of HEV, which places people in close contact with them at increased risk of HEV disease. Although hepatitis E is a self-limiting infection, it could also lead to severe illness, particularly among pregnant women, or chronic infection in immunocompromised people. A growing number of studies point out that HEV can be classified as a re-emerging virus in developed countries. Preventative efforts are needed to reduce the incidence of acute and chronic hepatitis E in non-endemic and endemic countries. There is a recombinant HEV vaccine, but it is approved for use and commercially available only in China and Pakistan. However, further studies are needed to demonstrate the necessity of applying a preventive vaccine and to create conditions for reducing the spread of HEV. This review emphasizes the hepatitis E virus and its importance for public health in Europe, the methods of virus transmission and treatment, and summarizes the latest studies on HEV vaccine development.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Valeria Tonova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Tsvetoslav Koynarski
- Department of Animal Genetics, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Laura L Lukov
- Faculty of Sciences, Brigham Young University-Hawaii, Laie, HI 96762, USA
| | - Ivan Minkov
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | - Maria Pishmisheva
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Stanislav Kotsev
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| | - Anton P Andonov
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Lhomme S, Magne S, Perelle S, Vaissière E, Abravanel F, Trelon L, Hennechart-Collette C, Fraisse A, Martin-Latil S, Izopet J, Figoni J, Spaccaferri G. Clustered Cases of Waterborne Hepatitis E Virus Infection, France. Viruses 2023; 15:v15051149. [PMID: 37243235 DOI: 10.3390/v15051149] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The identification of seven cases of hepatitis E virus infection in a French rural hamlet in April 2015 led to investigations confirming the clustering and identifying the source of the infection. Laboratories and general practitioners in the area actively searched for other cases based on RT-PCR and serological tests. The environment, including water sources, was also checked for HEV RNA. Phylogenetic analyses were performed to compare HEV sequences. No other cases were found. Six of the seven patients lived in the same hamlet, and the seventh used to visit his family who lived there. All HEV strains were very similar and belonged to the HEV3f subgenotype, confirming the clustering of these cases. All the patients drank water from the public network. A break in the water supply to the hamlet was identified at the time the infection probably occurred; HEV RNA was also detected in a private water source that was connected to the public water network. The water flowing from the taps was quite turbid during the break. The private water supply containing HEV RNA was the likely source of the contamination. Private water supplies not disconnected from the public network are still frequent in rural areas, where they may contribute to public water pollution.
Collapse
Affiliation(s)
- Sébastien Lhomme
- Centre National de Référence (CNR) des Virus des Hépatites à Transmission Entériques (Hépatite A et E), Laboratoire de Virologie, CHU Toulouse, 31300 Toulouse, France
- Infinity, Université Toulouse, CNRS, Inserm, UPS, 31024 Toulouse, France
| | - Sébastien Magne
- Regional Health Agency of Auvergne-Rhône-Alpes, 15000 Aurillac, France
| | - Sylvie Perelle
- Laboratory for Food Safety, Université Paris-Est, Anses, 94700 Maisons-Alfort, France
| | - Emmanuelle Vaissière
- Santé Publique France (French National Public Health Agency), 63000 Clermont-Ferrand, France
| | - Florence Abravanel
- Centre National de Référence (CNR) des Virus des Hépatites à Transmission Entériques (Hépatite A et E), Laboratoire de Virologie, CHU Toulouse, 31300 Toulouse, France
- Infinity, Université Toulouse, CNRS, Inserm, UPS, 31024 Toulouse, France
| | - Laetitia Trelon
- Regional Health Agency of Auvergne-Rhône-Alpes, 15000 Aurillac, France
| | | | - Audrey Fraisse
- Laboratory for Food Safety, Université Paris-Est, Anses, 94700 Maisons-Alfort, France
| | - Sandra Martin-Latil
- Laboratory for Food Safety, Université Paris-Est, Anses, 94700 Maisons-Alfort, France
| | - Jacques Izopet
- Centre National de Référence (CNR) des Virus des Hépatites à Transmission Entériques (Hépatite A et E), Laboratoire de Virologie, CHU Toulouse, 31300 Toulouse, France
- Infinity, Université Toulouse, CNRS, Inserm, UPS, 31024 Toulouse, France
| | - Julie Figoni
- Santé Publique France (French National Public Health Agency), 94410 Saint-Maurice, France
| | - Guillaume Spaccaferri
- Santé Publique France (French National Public Health Agency), 63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Warmate D, Onarinde BA. Food safety incidents in the red meat industry: A review of foodborne disease outbreaks linked to the consumption of red meat and its products, 1991 to 2021. Int J Food Microbiol 2023; 398:110240. [PMID: 37167789 DOI: 10.1016/j.ijfoodmicro.2023.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Red meat is a significant source of human nutrition, and the red meat industry contributes to the economy of nations. Nonetheless, there is a widespread global concern about public health issues posed by severe food safety incidents within the red meat industry. Most of these incidents are associated with foodborne disease outbreaks that impact individual consumers, food businesses and society. This study adopts a systematic search and review approach to identify three decades of published investigation reports of global foodborne disease outbreaks linked with the consumption of red meat and products made from them. The review aims to evaluate the critical features of these outbreak incidents to get insight into their contributing factors and root causes. In particular, this review discusses the transmission setting (origin of pathogenic agents), the food vehicles mostly incriminated, the causative pathogens (bacteria, viruses, and parasites) causing the most illnesses, and the most commonly reported contributing factors to the outbreaks. This information can help researchers and food business operators (FBOs) inform future risk assessment studies and support risk management activities in developing risk-mitigating strategies for the industry. Findings from this study suggest that implementing food safety management strategies which include adequate control measures at all stages of the food chain, from farm to fork, is imperative in preventing outbreak incidents. Of equal importance is the need for enhanced and sustained public education about the risk of foodborne illnesses associated with meat and its products whilst discouraging the consumption of raw meat products, especially by high-risk groups.
Collapse
Affiliation(s)
- Dein Warmate
- National Centre for Food Manufacturing, University of Lincoln, Holbeach PE12 7PT, UK.
| | - Bukola A Onarinde
- National Centre for Food Manufacturing, University of Lincoln, Holbeach PE12 7PT, UK
| |
Collapse
|
9
|
Schaeffer J, Desdouits M, Besnard A, Le Guyader FS. Looking into sewage: how far can metagenomics help to detect human enteric viruses? Front Microbiol 2023; 14:1161674. [PMID: 37180249 PMCID: PMC10166864 DOI: 10.3389/fmicb.2023.1161674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
The impact of human sewage on environmental and food contamination constitutes an important safety issue. Indeed, human sewage reflects the microbiome of the local population, and a variety of human viruses can be detected in wastewater samples. Being able to describe the diversity of viruses present in sewage will provide information on the health of the surrounding population health and will help to prevent further transmission. Metagenomic developments, allowing the description of all the different genomes present in a sample, are very promising tools for virome analysis. However, looking for human enteric viruses with short RNA genomes which are present at low concentrations is challenging. In this study we demonstrate the benefits of performing technical replicates to improve viral identification by increasing contig length, and the set-up of quality criteria to increase confidence in results. Our approach was able to effectively identify some virus sequences and successfully describe the viral diversity. The method yielded full genomes either for norovirus, enterovirus and rotavirus, even if, for these segmented genomes, combining genes remain a difficult issue. Developing reliable viromic methods is important as wastewater sample analysis provides an important tool to prevent further virus transmission by raising alerts in case of viral outbreaks or emergence.
Collapse
Affiliation(s)
| | | | | | - Françoise S. Le Guyader
- Ifremer, Laboratoire de Microbiologie, U. Microbiologie Aliment Santé et Environnement, Nantes, France
| |
Collapse
|
10
|
Yeom H, Seo S, Yoon Y, Lee J, Han MG, Lee DY, Park SW, Park SA, Jeong SH, Gwack J. The first reported hepatitis E outbreak in a food manufacturing factory: Korea, 2022. Osong Public Health Res Perspect 2023; 14:15-22. [PMID: 36944341 DOI: 10.24171/j.phrp.2022.0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVES On February 16, 2022, 12 cases of hepatitis E virus (HEV) infection were reported in a food manufacturing factory in Korea. The aim of this study was to identify additional cases and to determine the source of this HEV outbreak. METHODS This study was an in-depth investigation of 12 HEV immunoglobulin M (IgM)-positive cases and their demographic, clinical, and epidemiological characteristics. On-site specimens were collected from the environment and from humans, and a follow-up investigation was conducted 2 to 3 months after the outbreak. RESULTS Among 80 production workers in the factory, 12 (15.0%) had acute HEV infection, all of whom were asymptomatic. The follow-up investigation showed that 3 cases were HEV IgMpositive, while 6 were HEV IgG-positive. HEV genes were not detected in the HEV IgM-positive specimens. HEV genes were not detected in the food products or environmental specimens collected on-site. HEV was presumed to be the causative pathogen. However, it could not be confirmed that the source of infection was common consumption inside the factory. CONCLUSIONS This was the first domestic case of an HEV infection outbreak in a food manufacturing factory in Korea. Our results provide information for the future control of outbreaks and for the preparation of measures to prevent domestic outbreaks of HEV infection.
Collapse
Affiliation(s)
- Hansol Yeom
- Division of Infectious Disease Response, Capital Regional Center for Disease Control and Prevention, Seoul, Korea
| | - Soonryu Seo
- Division of Infectious Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Youngsil Yoon
- Division of Infectious Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Jaeeun Lee
- Division of Immunization, Bureau of Healthcare Safety and Immunization, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Myung-Guk Han
- Division of Viral Disease, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Deog-Yong Lee
- Division of Viral Disease, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Sun-Whan Park
- Division of Viral Disease, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Song A Park
- Division of Viral Disease, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Sook-Hyang Jeong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin Gwack
- Division of Infectious Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Cheongju, Korea
| |
Collapse
|
11
|
Si F, Widén F, Dong S, Li Z. Hepatitis E as a Zoonosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:49-58. [PMID: 37223858 DOI: 10.1007/978-981-99-1304-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E viruses in the family of Hepeviridae have been classified into 2 genus, 5 species, and 13 genotypes, involving different animal hosts of different habitats. Among all these genotypes, four (genotypes 3, 4, 7, and C1) of them are confirmed zoonotic causing sporadic human diseases, two (genotypes 5 and 8) were likely zoonotic showing experimental animal infections, and the other seven were not zoonotic or unconfirmed. These zoonotic HEV carrying hosts include pig, boar, deer, rabbit, camel, and rat. Taxonomically, all the zoonotic HEVs belong to the genus Orthohepevirus, which include genotypes 3, 4, 5, 7, 8 HEV in the species A and genotype C1 HEV in the species C. In the chapter, information of zoonotic HEV such as swine HEV (genotype 3 and 4), wild boar HEV (genotypes 3-6), rabbit HEV (genotype 3), camel HEV (genotype 7 and 8), and rat HEV (HEV-C1) was provided in detail. At the same time, their prevalence characteristics, transmission route, phylogenetic relationship, and detection technology were discussed. Other animal hosts of HEVs were introduced briefly in the chapter. All these information help peer researchers have basic understanding of zoonotic HEV and adopt reasonable strategy of surveillance and prevention.
Collapse
Affiliation(s)
- Fusheng Si
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Frederik Widén
- The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Shijuan Dong
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Zhen Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
12
|
Geng Y, Shi T, Wang Y. Epidemiology of Hepatitis E. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:33-48. [PMID: 37223857 DOI: 10.1007/978-981-99-1304-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) is globally prevalent with relatively high percentages of anti-HEV immunoglobulin G-positive individuals in the populations of developing and developed countries. There are two distinct epidemiological patterns of hepatitis E. In areas with high disease endemicity, primarily developing countries in Asia and Africa, this disease is caused mainly by genotypes HEV-1 or HEV-2; both genotypes transmit predominantly through contaminated water and occur as either outbreaks or sporadic cases of acute hepatitis. The acute hepatitis has the highest attack rate in young adults and is particularly severe among pregnant women. In developed countries, sporadic cases of locally acquired HEV-3 or HEV-4 infection are observed. The reservoir of HEV-3 and HEV-4 is believed to be animals, such as pigs, with zoonotic transmission to humans. The affected persons are often elderly, and persistent infection has been well documented among immunosuppressed persons. A subunit vaccine has been shown to be effective in preventing clinical disease and has been licensed in China.
Collapse
Affiliation(s)
- Yansheng Geng
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
| | - Tengfei Shi
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
| |
Collapse
|
13
|
Robins K, Leonard AFC, Farkas K, Graham DW, Jones DL, Kasprzyk-Hordern B, Bunce JT, Grimsley JMS, Wade MJ, Zealand AM, McIntyre-Nolan S. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. JOURNAL OF WATER AND HEALTH 2022; 20:1284-1313. [PMID: 36170187 DOI: 10.2166/wh.2022.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally, there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance (AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and identifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.
Collapse
Affiliation(s)
- Katie Robins
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Anne F C Leonard
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; University of Exeter Medical School, European Centre for Environment and Human Health, University of Exeter, Cornwall TR10 9FE, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David W Graham
- School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | | | - Joshua T Bunce
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Jasmine M S Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Matthew J Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Andrew M Zealand
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Shannon McIntyre-Nolan
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; Her Majesty's Prison and Probation Service, Ministry of Justice, London, SW1H 9AJ, UK
| |
Collapse
|
14
|
Repeated cross-sectional sampling of pigs at slaughter indicates varying age of hepatitis E virus infection within and between pig farms. Vet Res 2022; 53:50. [PMID: 35799280 PMCID: PMC9264715 DOI: 10.1186/s13567-022-01068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Humans can become infected with hepatitis E virus (HEV) by consumption of undercooked pork. To reduce the burden of HEV in humans, mitigation on pig farms is needed. HEV is found on most pig farms globally, yet within-farm seroprevalence estimates vary considerably. Understanding of the underlying variation in infection dynamics within and between farms currently lacks. Therefore, we investigated HEV infection dynamics by sampling 1711 batches of slaughter pigs from 208 Dutch farms over an 8-month period. Four farm types, conventional, organic, and two types with strict focus on biosecurity, were included. Sera were tested individually with an anti-HEV antibody ELISA and pooled per batch with PCR. All farms delivered seropositive pigs to slaughter, yet batches (resembling farm compartments) had varying results. By combining PCR and ELISA results, infection moment and extent per batch could be classified as low transmission, early, intermediate or late. Cluster analysis of batch infection moments per farm resulted in four clusters with distinct infection patterns. Cluster 1 farms delivered almost exclusively PCR negative, ELISA positive batches to slaughter (PCR−ELISA+), indicating relatively early age of HEV infection. Cluster 2 and 3 farms delivered 0.3 and 0.7 of batches with intermediate infection moment (PCR+ELISA+) respectively and only few batches with early infection. Cluster 4 farms delivered low transmission (PCR−ELISA−) and late infection (PCR+ELISA−) batches, demonstrating that those farms can prevent or delay HEV transmission to farm compartments. Farm type partly coincided with cluster assignment, indicating that biosecurity and management are related to age of HEV infection.
Collapse
|
15
|
Wang X, Wu T, Oliveira LFS, Zhang D. Sheet, Surveillance, Strategy, Salvage and Shield in global biodefense system to protect the public health and tackle the incoming pandemics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153469. [PMID: 35093353 PMCID: PMC8799268 DOI: 10.1016/j.scitotenv.2022.153469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
The pandemic of COVID-19 challenges the global health system and raises our concerns on the next waves of other emerging infectious diseases. Considering the lessons from the failure of world's pandemic warning system against COVID-19, many scientists and politicians have mentioned different strategies to improve global biodefense system, among which Sheet, Surveillance, Strategy, Salvage and Shield (5S) are frequently discussed. Nevertheless, the current focus is mainly on the optimization and management of individual strategy, and there are limited attempts to combine the five strategies as an integral global biodefense system. Sheet represents the biosafety datasheet for biohazards in natural environment and human society, which helps our deeper understanding on the geographical pattern, transmission routes and infection mechanism of pathogens. Online surveillance and prognostication network is an environmental Surveillance tool for monitoring the outbreak of pandemic diseases and alarming the risks to take emergency actions, targeting aerosols, waters, soils and animals. Strategy is policies and legislations for social distancing, lockdown and personal protective equipment to block the spread of infectious diseases in communities. Clinical measures are Salvage on patients by innovating appropriate medicines and therapies. The ultimate defensive Shield is vaccine development to protect healthy crowds from infection. Fighting against COVID-19 and other emerging infectious diseases is a long rocky journey, requiring the common endeavors of scientists and politicians from all countries around the world. 5S in global biodefense system bring a ray of light to the current darkest and future road from environmental and geographical perspectives.
Collapse
Affiliation(s)
- Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Tianyun Wu
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou 215163, PR China
| | - Luis F S Oliveira
- Departamento de Ingeniería Civil y Arquitectura, Universidad de Lima, Avenida Javier Prado Este 4600, Santiago de Surco 1503, Peru; Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
16
|
Caballero-Gómez J, García-Bocanegra I, Jiménez-Martín D, Cano-Terriza D, Risalde MA, López-López P, Jiménez-Ruiz S, Rivero A, Rivero-Juarez A. Epidemiological survey and risk factors associated with hepatitis E virus in small ruminants in southern Spain. Zoonoses Public Health 2022; 69:387-393. [PMID: 35244968 PMCID: PMC9311081 DOI: 10.1111/zph.12935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/21/2022]
Abstract
Autochthonous cases of hepatitis E (HE) associated with zoonotic genotypes HEV-3 and HEV-4 have significantly increased in industrialized countries over the last decade. Suidae are generally recognized as the main reservoirs of these genotypes. Susceptibility to HE virus (HEV) infection and zoonotic potential have also been confirmed in other species, including sheep and goat. However, the information about their role in the epidemiology of HEV remains very scarce. The objective of this study was to assess the prevalence, spatial distribution and risk factors associated with HEV exposure in sheep and goats in southern Spain, the country with the highest census of small domestic ruminants in the European Union. Blood samples from 240 sheep and 240 goats were collected between 2015 and 2017. Sera were analysed in parallel using a commercial double-antigen ELISA and real-time PCR. A total of 38 (7.9%; 95%CI: 5.5-10.3) out of 480 sampled animals showed anti-HEV antibodies. By species, the seroprevalences found in sheep and goats were 2.1% (5/240; 95%CI: 0.3-3.9) and 13.8% (33/240; 95%CI: 9.4-18.1) respectively. Anti-HEV antibodies were found on 19 (59.4%; 95%CI: 42.4-76.4) of the 32 sampled farms. The GEE model showed that species (goat) and number of small ruminants in the farm (≤348 animals and ≥538 animals) were risk factors potentially associated with HEV exposure in small ruminants in the study area. HEV RNA was not detected in any of the 480 (0.0%; 95%CI: 0.0-0.8) tested animals. Our results confirm that sheep and goats are naturally, but not equally exposed to HEV and indicate the widespread spatial distribution of HEV among small ruminant populations in southern Spain. Further studies are required to elucidate the role of sheep and goat in the epidemiology of HEV and their potential implications for public health.
Collapse
Affiliation(s)
- Javier Caballero-Gómez
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC
| | - Ignacio García-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC
| | - Débora Jiménez-Martín
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - David Cano-Terriza
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC
| | - María A Risalde
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC.,Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Pedro López-López
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC
| | - Saúl Jiménez-Ruiz
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,Health & Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Antonio Rivero
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC
| | - Antonio Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC
| |
Collapse
|
17
|
Moro O, Suffredini E, Isopi M, Tosti ME, Schembri P, Scavia G. Quantitative Methods for the Prioritization of Foods Implicated in the Transmission of Hepatititis E to Humans in Italy. Foods 2021; 11:foods11010087. [PMID: 35010213 PMCID: PMC8750432 DOI: 10.3390/foods11010087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 01/02/2023] Open
Abstract
Hepatitis E is considered an emerging foodborne disease in Europe. Several types of foods are implicated in the transmission of the hepatitis E virus (HEV) to humans, in particular, pork and wild boar products. We developed a parametric stochastic model to estimate the risk of foodborne exposure to HEV in the Italian population and to rank the relevance of pork products with and without liver (PL and PNL, respectively), leafy vegetables, shellfish and raw milk in HEV transmission. Original data on HEV prevalence in different foods were obtained from a recent sampling study conducted in Italy at the retail level. Other data were obtained by publicly available sources and published literature. The model output indicated that the consumption of PNL was associated with the highest number of HEV infections in the population. However, the sensitivity analysis showed that slight variations in the consumption of PL led to an increase in the number of HEV infections much higher than PNL, suggesting that PL at an individual level are the top risky food. Uncertainty analysis underlined that further characterization of the pork products preparation and better assessment of consumption data at a regional level is critical information for fine-tuning the most risky implicated food items in Italy.
Collapse
Affiliation(s)
- Ornella Moro
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy; (E.S.); (G.S.)
- Department of Mathematics, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
- Correspondence:
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy; (E.S.); (G.S.)
| | - Marco Isopi
- Department of Mathematics, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Maria Elena Tosti
- National Center for Global Health, National Institute of Health, 00161 Rome, Italy;
| | - Pietro Schembri
- Regional Department for Health Activities and Epidemiological Observatory of the Sicilian Region, 90145 Palermo, Italy;
| | - Gaia Scavia
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy; (E.S.); (G.S.)
| |
Collapse
|
18
|
Lhomme S, Abravanel F, Cintas P, Izopet J. Hepatitis E Virus Infection: Neurological Manifestations and Pathophysiology. Pathogens 2021; 10:pathogens10121582. [PMID: 34959537 PMCID: PMC8705630 DOI: 10.3390/pathogens10121582] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is the first cause of viral hepatitis in the world. While the water-borne HEV genotypes 1 and 2 are found in developing countries, HEV genotypes 3 and 4 are endemic in developed countries due to the existence of animal reservoirs, especially swine. An HEV infection produces many extra-hepatic manifestations in addition to liver symptoms, especially neurological disorders. The most common are neuralgic amyotrophy or Parsonage–Turner syndrome, Guillain–Barré syndrome, myelitis, and encephalitis. The pathophysiology of the neurological injuries due to HEV remains uncertain. The immune response to the virus probably plays a role, but direct virus neurotropism could also contribute to the pathophysiology. This review describes the main neurological manifestations and their possible pathogenic mechanisms.
Collapse
Affiliation(s)
- Sébastien Lhomme
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31300 Toulouse, France; (F.A.); (J.I.)
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, 31300 Toulouse, France
- Correspondence: ; Tel.: +33-(0)-5-67-69-04-24
| | - Florence Abravanel
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31300 Toulouse, France; (F.A.); (J.I.)
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, 31300 Toulouse, France
| | - Pascal Cintas
- Service de Neurologie, Hôpital Purpan, CHU Toulouse, 31300 Toulouse, France;
| | - Jacques Izopet
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31300 Toulouse, France; (F.A.); (J.I.)
- Laboratoire de Virologie, Hôpital Purpan, CHU Toulouse, 31300 Toulouse, France
| |
Collapse
|
19
|
Ji Y, Li P, Jia Y, Wang X, Zheng Q, Peppelenbosch MP, Ma Z, Pan Q. Estimating the burden and modeling mitigation strategies of pork-related hepatitis E virus foodborne transmission in representative European countries. One Health 2021; 13:100350. [PMID: 34841035 PMCID: PMC8606544 DOI: 10.1016/j.onehlt.2021.100350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen posing global health burden, and the concerns in Europe are tremendously growing. Pigs serve as a main reservoir, contributing to pork-related foodborne transmission. In this study, we aim to specifically simulate this foodborne transmission route and to assess potential interventions. We firstly established a dose-response relationship between the risk of transmission to human and the amount of ingested viruses. We further estimated the incidence of HEV infection specifically attributed to pork-related foodborne transmission in four representative European countries. Finally, we demonstrated a proof-of-concept of mitigating HEV transmission by implementing vaccination in human and pig populations. Our modeling approach bears essential implications for better understanding the transmission of pork-related foodborne HEV and for developing mitigation strategies.
Collapse
Affiliation(s)
- Yunpeng Ji
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.,Department of Genetics, Inner Mongolian Maternal and Child Care Hospital, Inner Mongolian, China
| | - Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Yueqi Jia
- Department of Genetics, Inner Mongolian Maternal and Child Care Hospital, Inner Mongolian, China
| | - Xiaohua Wang
- Department of Genetics, Inner Mongolian Maternal and Child Care Hospital, Inner Mongolian, China
| | - Qinyue Zheng
- School of Management, Shandong Key Laboratory of Social Supernetwork Computation and Decision Simulation, Shandong University, Jinan, China
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Qiuwei Pan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
20
|
Casares-Jimenez M, Lopez-Lopez P, Caballero-Gomez J, Frias M, Perez-Hernando B, Oluremi AS, Risalde MA, Ruiz-Caceres I, Opaleye OO, Garcia-Bocanegra I, Rivero-Juarez A, Rivero A. Global molecular diversity of Hepatitis E virus in wild boar and domestic pig. One Health 2021; 13:100304. [PMID: 34466650 PMCID: PMC8385159 DOI: 10.1016/j.onehlt.2021.100304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 01/05/2023] Open
Abstract
Our study aim was to describe and characterize the global Hepatitis E virus (HEV) molecular and genotype geographical distribution in domestic pig and wild boar, which could facilitate the traceability of human cases. We performed a systematic sequence search for HEVs identified in domestic pig and wild boar from the available data in GenBank. Only sequences with lengths greater than 300 nt were included. For all sequences, the sequence length, host (i.e., domestic pig or wild boar), country of origin, and HEV genotype/subtype were recorded. Genotypes were assigned by the HEVnet typing tool. The genotype distributions were described by country and host. In countries with sequences available for both species, the genotype coincidences between both animal populations were analyzed. A total of 1404 viral sequences were included: 32.6% from wild boar and 67.4% from domestic pig. Most sequences were consistent with HEV genotype 3 (n = 1165). Genotype 4 was represented by 193 sequences, while genotypes 5 and 6 were represented by only 6 sequences. Sequences were identified in 39 countries, which included all continents except Antarctica. The genotypes with a wide distribution were 3a and 3f. Twenty-five countries had sequences that were found only in domestic pig, three countries only in wild boar, and 11 countries had sequences in both populations. In all countries with available sequences in both populations, the same viral genotype was identified. Our study shows that the number of swine HEV sequences is small, which limits direct comparisons with the sequences identified in humans. The global distribution of genotype 3, together with the wide distribution of genotype 4 in Asia, strongly limits the interpretation of the molecular analysis in the absence of an epidemiological survey of the cases. Increased HEV sequencing in swine should be a priority. Our study shows that the number of swine HEV sequences is small. The global distribution of genotype 3 strongly limits the interpretation of the molecular analysis. Increased HEV sequencing in swine should be a priority.
Collapse
Affiliation(s)
- Maria Casares-Jimenez
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Pedro Lopez-Lopez
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Javier Caballero-Gomez
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Mario Frias
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Belen Perez-Hernando
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Adeolu Sunday Oluremi
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Maria A Risalde
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain.,Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Inmaculada Ruiz-Caceres
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Oluyinka Oladele Opaleye
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Ignacio Garcia-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Antonio Rivero-Juarez
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Antonio Rivero
- Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| |
Collapse
|
21
|
Bigoraj E, Paszkiewicz W, Rzeżutka A. Porcine Blood and Liver as Sporadic Sources of Hepatitis E Virus (HEV) in the Production Chain of Offal-Derived Foodstuffs in Poland. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:347-356. [PMID: 33891305 PMCID: PMC8379118 DOI: 10.1007/s12560-021-09475-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/09/2021] [Indexed: 05/11/2023]
Abstract
Pig's blood and liver are valuable edible slaughter by-products which are also the major ingredients of offal-derived foodstuffs. The aim of the study was an evaluation of the occurrence of hepatitis E virus (HEV) and porcine adenovirus (pAdV) as an index virus of faecal contamination in pig's blood and liver for human consumption. In total, 246 samples of retail liver (n = 100) and pooled pig's blood (n = 146) were analysed for the presence of HEV and pAdV. Blood samples were individually collected from 1432 pigs at slaughter age. Viral genomic material, including RNA of a sample process control virus was isolated from food samples using a QIAamp® Viral RNA Mini Kit. Virus-specific IAC-controlled real-time PCR methods were used for detection of target viruses. HEV RNA was found in 6 (2.4%; 95% CI: 0.9-5.2) out of 246 samples of tested foodstuffs. The virus was detected in pig's blood (3.4%; 95% CI: 1.1-7.8) and liver (1.0%; 95% CI: 0.0-5.0) with no significant differences observed in the frequency of its occurrence between the two by-products (t = 1.33; p = 0.182 > 0.05); however PAdV was detected more frequently in pig's blood than in liver (t = 4.65; p = 0.000 < 0.05). The HEV strains belonged to the 3f and 3e subtype groups and the pAdV strains were assigned to serotype 5. PAdV was detected in pigs regardless of the farm size from which they originated. The number of animals raised on the farm (the farm size) had no influence on the occurrence of HEV or pAdV infections in pigs (F = 0.81, p = 0.447 > 0.05 for HEV; F = 0.42, p = 0.655 > 0.05 for pAdV). Although HEV was detected in pig's offal only sporadically, consumers cannot treat its occurrence with disregard as it demonstrates that HEV-contaminated pig tissues can enter the food chain.
Collapse
Affiliation(s)
- E Bigoraj
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - W Paszkiewicz
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, ul. Akademicka 12, 20-950, Lublin, Poland
| | - A Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland.
| |
Collapse
|
22
|
Hepatitis E Outbreak in the Central Part of Italy Sustained by Multiple HEV Genotype 3 Strains, June-December 2019. Viruses 2021; 13:v13061159. [PMID: 34204376 PMCID: PMC8235070 DOI: 10.3390/v13061159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
In European countries, autochthonous acute hepatitis E cases are caused by Hepatitis E Virus (HEV) genotype 3 and are usually observed as sporadic cases. In mid/late September 2019, a hepatitis E outbreak caused by HEV genotype 3 was recognized by detection of identical/highly similar HEV sequences in some hepatitis E cases from two Italian regions, Abruzzo and Lazio, with most cases from this latter region showing a link with Abruzzo. Overall, 47 cases of HEV infection were finally observed with onsets from 8 June 2019 to 6 December 2019; they represent a marked increase as compared with just a few cases in the same period of time in the past years and in the same areas. HEV sequencing was successful in 35 cases. The phylogenetic analysis of the viral sequences showed 30 of them grouped in three distinct molecular clusters, termed A, B, and C: strains in cluster A and B were of subtype 3e and strains in cluster C were of subtype 3f. No strains detected in Abruzzo in the past years clustered with the strains involved in the present outbreak. The outbreak curve showed partially overlapped temporal distribution of the three clusters. Analysis of collected epidemiological data identified pork products as the most likely source of the outbreak. Overall, the findings suggest that the outbreak might have been caused by newly and almost simultaneously introduced strains not previously circulating in this area, which are possibly harbored by pork products or live animals imported from outside Abruzzo. This possibility deserves further studies in this area in order to monitor the circulation of HEV in human cases as well as in pigs and wild boars.
Collapse
|
23
|
Treagus S, Wright C, Baker-Austin C, Longdon B, Lowther J. The Foodborne Transmission of Hepatitis E Virus to Humans. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:127-145. [PMID: 33738770 PMCID: PMC8116281 DOI: 10.1007/s12560-021-09461-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Globally, Hepatitis E virus (HEV) causes over 20 million cases worldwide. HEV is an emerging and endemic pathogen within economically developed countries, chiefly resulting from infections with genotype 3 (G3) HEV. G3 HEV is known to be a zoonotic pathogen, with a broad host range. The primary source of HEV within more economically developed countries is considered to be pigs, and consumption of pork products is a significant risk factor and known transmission route for the virus to humans. However, other foods have also been implicated in the transmission of HEV to humans. This review consolidates the information available regarding transmission of HEV and looks to identify gaps where further research is required to better understand how HEV is transmitted to humans through food.
Collapse
Affiliation(s)
- Samantha Treagus
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset, DT4 8UB, UK.
| | | | - Craig Baker-Austin
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| | - Ben Longdon
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - James Lowther
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| |
Collapse
|
24
|
Mechanism of Cross-Species Transmission, Adaptive Evolution and Pathogenesis of Hepatitis E Virus. Viruses 2021; 13:v13050909. [PMID: 34069006 PMCID: PMC8157021 DOI: 10.3390/v13050909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis E virus (HEV) is the leading cause of acute hepatitis worldwide. While the transmission in developing countries is dominated by fecal-oral route via drinking contaminated water, the zoonotic transmission is the major route of HEV infection in industrialized countries. The discovery of new HEV strains in a growing number of animal species poses a risk to zoonotic infection. However, the exact mechanism and the determinant factors of zoonotic infection are not completely understood. This review will discuss the current knowledge on the mechanism of cross-species transmission of HEV infection, including viral determinants, such as the open reading frames (ORFs), codon usage and adaptive evolution, as well as host determinants, such as host cellular factors and the host immune status, which possibly play pivotal roles during this event. The pathogenesis of hepatitis E infection will be briefly discussed, including the special forms of this disease, including extrahepatic manifestations, chronic infection, and fulminant hepatitis in pregnant women.
Collapse
|
25
|
Lower Levels of Transaminases but Higher Levels of Serum Creatinine in Patients with Acute Hepatitis E in Comparison to Patients with Hepatitis A. Pathogens 2021; 10:pathogens10010060. [PMID: 33445435 PMCID: PMC7826713 DOI: 10.3390/pathogens10010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
In patients with hepatitis E virus (HEV) infections, extrahepatic, particularly renal and hematological manifestations, are increasingly reported in the medical literature but have never been studied compared to a control cohort. We retrospectively analyzed medical records of consecutive patients that were diagnosed with acute hepatitis E (AHE) (n = 69) or acute hepatitis A (AHA) (n = 46) at the University Medical Center Hamburg Eppendorf from January 2009 to August 2019 for demographical, clinical, and laboratory information. Patients with AHE had significantly lower median levels of ALAT (798 U/L) and total bilirubin (1.8 mg/dL) compared to patients with AHA (2326 U/L; p < 0.001 and 5.2 mg/dL; p < 0.001), suggesting a generally less severe hepatitis. In contrast, patients with AHE had significantly higher median serum creatinine levels (0.9 mg/dL vs. 0.8 mg/dL; p = 0.002) and lower median estimated glomerular filtration rate (eGFR) (91 mL/min/1.73 m2 vs. 109 mL/min/1.73 m2; p < 0.001) than patients with AHA. Leucocyte, neutrophil and lymphocyte count, hemoglobin, platelets, red cell distribution width (RDW), neutrophil to lymphocyte ratio (NLR), and RDW to lymphocyte ratio (RLR) did not differ between patients with AHE and those with AHA. Our observations indicate that renal but not hematological interference presents an underrecognized extrahepatic feature of AHE, while inflammation of the liver seems to be more severe in AHA.
Collapse
|
26
|
Presence of hepatitis E virus in commercially available pork products. Int J Food Microbiol 2020; 339:109033. [PMID: 33401188 DOI: 10.1016/j.ijfoodmicro.2020.109033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022]
Abstract
An increasing number of hepatitis E virus (HEV) infections in industrialized countries have been foodborne and linked to the consumption of undercooked pork products. To date, data on the prevalence of HEV in pork products sold in the United States is limited and no standard processing method exists for the detection of HEV in foods. In order to develop a processing method for the detection of HEV in pork products, ground pork and pork liver were selected for method development. Murine norovirus (MNV) was used as a process control. A filtration step prior to RNA detection was shown to reduce the level of PCR inhibitors in ground pork and an additional ultracentrifugation process was successful in removing PCR inhibitors in pork liver. MNV RNA was detected in ground pork and liver samples inoculated with 4.7 log10 PFU/g and 3.0 log10 PFU/g, respectively. Using the developed method for viral RNA detection in ground pork and pork liver, 20 packages of ground pork (six 1 g sub-samples per package) and 14 pork livers (four 1 g sub-samples per liver) were screened for the presence of HEV RNA. Fifteen out of 119 (12.6%) ground pork samples tested positive for HEV RNA and 13 out of 20 packages (65%) contained at least one positive sample. Twenty-five of 56 (45%) of pork liver samples were positive for HEV RNA and 6 of 14 livers (43%) had all sub-samples test positive for HEV RNA. Overall, the results indicate ground pork and pig liver as a potential source of HEV.
Collapse
|
27
|
Laugel E, Hartard C, Jeulin H, Berger S, Venard V, Bronowicki JP, Schvoerer E. Full-length genome sequencing of RNA viruses-How the approach can enlighten us on hepatitis C and hepatitis E viruses. Rev Med Virol 2020; 31:e2197. [PMID: 34260779 DOI: 10.1002/rmv.2197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/09/2022]
Abstract
Among the five main viruses responsible for human hepatitis, hepatitis C virus (HCV) and hepatitis E virus (HEV) are different while sharing similarities. Both viruses can be transmitted by blood or derivatives whereas HEV can also follow environmental or zoonotic routes. These highly variable RNA viruses can cause chronic hepatitis potentially leading to hepatocarcinoma. HCV and HEV can develop new structures and functions under selective pressure to adapt to host immunity, human tissues, treatments or even various animal reservoirs. Elsewhere, with directly acting antiviral treatments, HCV can be eradicated whereas HEV is an emerging pathogen against which specific treatments have to be improved. As a unique molecular tool able to explore viral genomic plasticity, full-length genome (FLG) sequencing has become easier, faster and cheaper. The present review will show how FLG sequencing can explore these RNA viruses with the aim to investigate key genomics data to improve basic knowledge, patients' healthcare and preventive tools.
Collapse
Affiliation(s)
- Elodie Laugel
- Université de Lorraine, Vandœuvre-lès-Nancy, France.,Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-UL, Vandœuvre-lès-Nancy, France
| | - Cédric Hartard
- Université de Lorraine, Vandœuvre-lès-Nancy, France.,Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-UL, Vandœuvre-lès-Nancy, France
| | - Hélène Jeulin
- Université de Lorraine, Vandœuvre-lès-Nancy, France.,Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-UL, Vandœuvre-lès-Nancy, France
| | - Sibel Berger
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France
| | - Véronique Venard
- Université de Lorraine, Vandœuvre-lès-Nancy, France.,Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Université de Lorraine, Vandœuvre-lès-Nancy, France.,Service d'hépato-gastroentérologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France
| | - Evelyne Schvoerer
- Université de Lorraine, Vandœuvre-lès-Nancy, France.,Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-UL, Vandœuvre-lès-Nancy, France
| |
Collapse
|
28
|
Capai L, Hozé N, Chiaroni J, Gross S, Djoudi R, Charrel R, Izopet J, Bosseur F, Priet S, Cauchemez S, de Lamballerie X, Falchi A, Gallian P. Seroprevalence of hepatitis E virus among blood donors on Corsica, France, 2017. ACTA ACUST UNITED AC 2020; 25. [PMID: 32046820 PMCID: PMC7014670 DOI: 10.2807/1560-7917.es.2020.25.5.1900336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Hepatitis E virus (HEV) is an emerging zoonotic pathogen and an important cause of acute viral hepatitis in European countries. Corsica Island has been previously identified as a hyperendemic area for HEV. Aim Our aim was to characterise the prevalence and titres of IgG antibodies to HEV among blood donors on Corsica and establish a model of the annual force of infection. Methods Between September 2017 and January 2018, 2,705 blood donations were tested for anti-HEV IgG using the Wantai HEV IgG enzyme immunoassay. Results The overall seroprevalence was 56.1%. In multivariate analysis, seroprevalence was higher in men than in women (60.0% vs 52.2%; p < 0.01), increased with age and was significantly higher among donors born on Corsica (60.6% vs 53.2%; p < 0.01). No significant difference was observed between the five districts of the island. IgG anti-HEV titres were mostly low (70% of positive donors had titres < 3 IU/mL). In Corsican natives, increasing seroprevalence by age could be explained by models capturing a loss of immunity (annual probability of infection: 4.5%; duration of immunity: 55 years) or by age-specific probabilities of infection (3.8% for children, 1.3% for adults). Conclusion We confirmed the high HEV seroprevalence on Corsica and identified three aspects that should be further explored: (i) the epidemiology in those younger than 18 years, (ii) common sources of contamination, in particular drinking water, that may explain the wide exposure of the population, and (iii) the actual protection afforded by the low IgG titres observed and the potential susceptibility to secondary HEV infection.
Collapse
Affiliation(s)
- Lisandru Capai
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Nathanaël Hozé
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Jacques Chiaroni
- Etablissement Français du Sang Provence alpes Côte d'Azur et Corse, Marseille, France
| | - Sylvie Gross
- Etablissement Français du Sang, 93210, La Plaine-Saint-Denis, France
| | - Rachid Djoudi
- Etablissement Français du Sang, 93210, La Plaine-Saint-Denis, France
| | - Rémi Charrel
- Unité des Virus Émergents (UVE): Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Jacques Izopet
- Institut National de la Santé et de la Recherche Médicale Unité 1043, Université Toulouse III, Toulouse, France.,Laboratoire de Virologie, Institut Fédératif de Biologie, Centre Hospitalier et Universitaire, Toulouse, France
| | - Frédéric Bosseur
- Sciences Pour l'Environnement - UMR CNRS 6134 Université de Corse, Corte, France
| | - Stéphane Priet
- Unité des Virus Émergents (UVE): Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE): Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Alessandra Falchi
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Pierre Gallian
- Unité des Virus Émergents (UVE): Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France.,Etablissement Français du Sang, 93210, La Plaine-Saint-Denis, France.,Etablissement Français du Sang Provence alpes Côte d'Azur et Corse, Marseille, France
| |
Collapse
|
29
|
Webb GW, Kelly S, Dalton HR. Hepatitis A and Hepatitis E: Clinical and Epidemiological Features, Diagnosis, Treatment, and Prevention. CLINICAL MICROBIOLOGY NEWSLETTER 2020; 42:171-179. [PMID: 33110280 PMCID: PMC7581387 DOI: 10.1016/j.clinmicnews.2020.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatitis A and E are both ancient diseases but have only been properly recognized as being caused by distinct pathogens in modern times. Despite significantly different genomic structures, both viruses employ remarkably similar strategies to avoid host detection and increase environmental transmission. There are millions of cases of acute viral hepatitis due to hepatitis A virus (HAV) and hepatitis E virus (HEV) each year, resulting in tens of thousands of deaths. The presentations can be clinically indistinguishable, but each virus also has a range of less common but more specific phenotypes. The epidemiology of HAV is complex, and is shifting in countries that are making improvements to public health and sanitation. HEV presents a significant public health challenge in resource-limited settings but has historically been incorrectly regarded as having little clinical relevance in industrialized countries.
Collapse
Affiliation(s)
- Glynn W Webb
- Royal Liverpool University Hospital, Liverpool, United Kingdom
- University of Liverpool, Liverpool, United Kingdom
- University of Manchester, Manchester, United Kingdom
| | - Sophie Kelly
- Royal Liverpool University Hospital, Liverpool, United Kingdom
- University of Liverpool, Liverpool, United Kingdom
| | - Harry R Dalton
- University of Manchester, Manchester, United Kingdom
- Retired Consultant, Department of Gastroenterology, Royal Cornwall Hospital, Truro, Cornwall, United Kingdom
| |
Collapse
|
30
|
Clinical Characteristics of Acute Hepatitis E and Their Correlation with HEV Genotype 3 Subtypes in Italy. Pathogens 2020; 9:pathogens9100832. [PMID: 33050666 PMCID: PMC7650787 DOI: 10.3390/pathogens9100832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023] Open
Abstract
Genotype 3 (GT3) is responsible for most European autochthonous hepatitis E virus (HEV) infections. This study analyzed circulating genotypes and GT3 subtypes in the Lazio region, Italy, between 2011 and 2019, as well as their pathogenic characteristics. Of the 64 evaluable HEV GT3 patient-derived sequences, identified subtypes included GT3f (n = 36), GT3e (n = 15), GT3c (n = 9), GT3a (n = 1) and three unsubtyped GT3 sequences. GT3c strains were similar to Dutch sequences (96.8–98.1% identity), GT3e strains showed high similarity (96.8%) with a United Kingdom sequence, while the most related sequences to GT3f Italian strains were isolated in France, Belgium and Japan. One sequence was closely related to another Italian strain isolated in raw sewage in 2016. The liver functioning test median values for 56 evaluable GT3 patients were: alanine aminotransferase (ALT), 461 (range 52–4835 U/L); aspartate aminotransferase (AST), 659 (range 64–6588 U/L); and total bilirubin, 3.49 (range 0.4–33 mg/dL). The median HEV RNA viral load for 26 evaluable GT3 patients was 42,240 IU/mL (range 5680–895,490 IU/mL). Of the 37 GT3 patients with available clinical information, no correlation was observed between HEV clinical manifestations and GT3 subtype. HEV symptoms were comparable among GT3c/e/f patients across most analyzed categories except for epigastric pain, which occurred more frequently in patients with HEV GT3e (75%) than in patients with GT3c (50%) or GT3f (19%) (p = 0.01). Additionally, patients with HEV GT3c exhibited significantly higher median international normalized ratio (INR) than patients with GT3e and GT3f (p = 0.033). The severity of GT3 acute hepatitis E was not linked to HEV RNA viral load or to the GT3 subtype.
Collapse
|
31
|
Salines M, Andraud M, Rose N, Widgren S. A between-herd data-driven stochastic model to explore the spatio-temporal spread of hepatitis E virus in the French pig production network. PLoS One 2020; 15:e0230257. [PMID: 32658910 PMCID: PMC7357762 DOI: 10.1371/journal.pone.0230257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
Hepatitis E virus is a zoonotic pathogen for which pigs are recognized as the major reservoir in industrialised countries. A multiscale model was developed to assess the HEV transmission and persistence pattern in the pig production sector through an integrative approach taking into account within-farm dynamics and animal movements based on actual data. Within-farm dynamics included both demographic and epidemiological processes. Direct contact and environmental transmission routes were considered along with the possible co-infection with immunomodulating viruses (IMVs) known to modify HEV infection dynamics. Movements were limited to 3,017 herds forming the largest community on the swine commercial network in France and data from the national pig movement database were used to build the contact matrix. Between-herd transmission was modelled by coupling within-herd and network dynamics using the SimInf package. Different introduction scenarios were tested as well as a decrease in the prevalence of IMV-infected farms. After introduction of a single infected gilt, the model showed that the transmission pathway as well as the prevalence of HEV-infected pigs at slaughter age were affected by the type of the index farm, the health status of the population and the type of the infected farms. These outcomes could help design HEV control strategies at a territorial scale based on the assessment of the farms' and network's risk.
Collapse
Affiliation(s)
- Morgane Salines
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare Research Unit, France
| | - Mathieu Andraud
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare Research Unit, France
| | - Nicolas Rose
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare Research Unit, France
| | - Stefan Widgren
- Department of Disease Control and Epidemiology, National Veterinary Institute, Sweden
- * E-mail:
| |
Collapse
|
32
|
Hennechart-Collette C, Martin-Latil S, Fraisse A, Niveau F, Perelle S. Virological analyses in collective catering outbreaks in France between 2012 and 2017. Food Microbiol 2020; 91:103546. [PMID: 32539952 DOI: 10.1016/j.fm.2020.103546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/17/2020] [Accepted: 05/03/2020] [Indexed: 10/24/2022]
Abstract
Enteric viruses cause the majority of foodborne illnesses and common symptoms of many foodborne illnesses include vomiting, diarrhea, abdominal pain, and fever. Among the enteric viruses, human Norovirus (NoV) and hepatitis virus (HAV and HEV) are the main viruses suspected to cause foodborne outbreaks and represent a serious public health. The study presents survey tools of viruses in a wide variety of foodstuffs and results obtained during 56 foodborne outbreaks investigation in France between 2012 and 2017. 246 suspected foods were examined for the presence of four human enteric viruses (NoV GI and NoV GII, HAV or HEV) either using methods described in the EN ISO 15216-1 or in house methods. All viral analysis of food samples were performed with the implementation of process control and an external amplification controls. Eighteen of 56 foodborne outbreaks investigated included at least one positive food sample (16/18 NoV, 1/18 HAV and 1/18 HEV). The genomic levels of four viruses detected ranged from < 102 to 107 genome copies per g or per L. This study showed the interest to develop methods for the extraction of viruses in different foodstuffs to increase the possibility to identify the association between viral illness and food consumption.
Collapse
Affiliation(s)
| | - Sandra Martin-Latil
- Université Paris-Est, ANSES, Laboratory for food Safety, F-94700, Maisons-Alfort, France
| | - Audrey Fraisse
- Université Paris-Est, ANSES, Laboratory for food Safety, F-94700, Maisons-Alfort, France
| | - Florian Niveau
- Université Paris-Est, ANSES, Laboratory for food Safety, F-94700, Maisons-Alfort, France
| | - Sylvie Perelle
- Université Paris-Est, ANSES, Laboratory for food Safety, F-94700, Maisons-Alfort, France.
| |
Collapse
|
33
|
Wallace SJ, Swann R, Donnelly M, Kemp L, Guaci J, Murray A, Spoor J, Lin N, Miller M, Dalton HR, Hussaini SH, Gunson R, Simpson K, Stanley A, Fraser A. Mortality and morbidity of locally acquired hepatitis E in the national Scottish cohort: a multicentre retrospective study. Aliment Pharmacol Ther 2020; 51:974-986. [PMID: 32285976 DOI: 10.1111/apt.15704] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 03/09/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is the most common acute viral hepatitis in Scotland. Little is known about the burden of morbidity and mortality, which can be high in chronic liver disease or immunocompromised states. AIMS To record the morbidity and mortality of HEV in Scotland. METHODS Demographic, clinical and laboratory data were collected retrospectively from all cases of HEV reported to virology departments across nine NHS health boards, between January 2013 and January 2018. RESULTS Five hundred and eleven cases were included (Mean age 62, 64% male). 58 (11%) cases had pre-existing cirrhosis and 110 (21%) had diabetes. Three hundred and three patients required admission (59%), totalling 2747 inpatient bed days. Seventeen (3.3%) HEV-related deaths were recorded. Factors that predicted mortality included haematological malignancy (OR 51.56, 95% CI 3.40-782.83, P = 0.005), cirrhosis (OR 41.85, 95% CI 2.85-594.16, P = 0.006), higher serum bilirubin (OR 1.01, 95% CI 1.01-1.02, P = 0.011) and chronic HEV infection (OR 0.02, 95% CI 0.02-0.28, P < 0.001). HEV infection affected 35 transplant patients of 106 total immunosuppressed patients (21%). Of these, 25 patients received Ribavirin therapy with a sustained virological remission of 76%. Thirty-five (6.7%) patients developed acute or acute-on-chronic liver failure with two requiring transplant. Thirty-seven (7.2%) patients reported neurological complications with 10 developing neuralgic amyotrophy, 6 Guillain-Barré and 2 encephalitis. Forty-four (8.6%) patients developed acute kidney injury. CONCLUSION In Scotland, HEV causes a significant burden of inpatient admissions, organ failure and death. Cirrhosis and haematological malignancy are significant predictors of mortality. Neurological and renal complications occur in a significant minority.
Collapse
Affiliation(s)
| | - Rachael Swann
- Department of Gastroenterology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Mhairi Donnelly
- Department of Gastroenterology, Royal Infirmary Edinburgh, Edinburgh, UK
| | - Linda Kemp
- Department of Gastroenterology, Ninewells Hospital, Dundee, UK
| | - Julia Guaci
- Department of Gastroenterology, Royal Infirmary Edinburgh, Edinburgh, UK
| | - Aimee Murray
- Department of Gastroenterology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Johannes Spoor
- Department of Gastroenterology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Nan Lin
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle, UK
| | - Michael Miller
- Department of Gastroenterology, Ninewells Hospital, Dundee, UK
| | - Harry R Dalton
- Department of Gastroenterology, Royal Cornwall Hospital Trust, Truro, Cornwall, UK
| | - S Hyder Hussaini
- Department of Gastroenterology, Royal Cornwall Hospital Trust, Truro, Cornwall, UK
| | - Rory Gunson
- Department of Virology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Kenneth Simpson
- Department of Gastroenterology, Royal Infirmary Edinburgh, Edinburgh, UK
| | - Adrian Stanley
- Department of Gastroenterology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Andrew Fraser
- Department of Gastroenterology, NHS Greater Glasgow and Clyde, Glasgow, UK.,Department of Gastroenterology, Royal Infirmary Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Sooryanarain H, Meng XJ. Swine hepatitis E virus: Cross-species infection, pork safety and chronic infection. Virus Res 2020; 284:197985. [PMID: 32333941 DOI: 10.1016/j.virusres.2020.197985] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Swine hepatitis E virus (swine HEV) belongs to the species Orthohepevirus A within the genus Orthohepevirus in the family Hepeviridae. Four different genotypes of swine HEV within the species Orthohepevirus A have been identified so far from domesticated and wild swine population: genotypes 3 (HEV-3) and 4 (HEV-4) swine HEVs are zoonotic and infect humans, whereas HEV-5 and HEV-6 are only identified from swine. As a zoonotic agent, swine HEV is an emerging public health concern in many industrialized countries. Pigs are natural reservoir for HEV, consumption of raw or undercooked pork is an important route of foodborne HEV transmission. Occupational risks such as direct contact with infected pigs also increase the risk of HEV transmission in humans. Cross-species infection of HEV-3 and HEV-4 have been documented under experimental and natural conditions. Both swine HEV-3 and swine HEV-4 infect non-human primates, the surrogates of man. Swine HEV, predominantly HEV-3, can establish chronic infection in immunocompromised patients especially in solid organ transplant recipients. The zoonotic HEV-3, and to lesser extent HEV-4, have also been shown to cause neurological diseases and kidney injury. In this review, we focus on the epidemiology of swine HEV, host and viral determinants influencing cross-species HEV infection, zoonotic infection and its associated pork safety concern, as well as swine HEV-associated chronic infection and neurological diseases.
Collapse
Affiliation(s)
- Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
35
|
Hepatitis E: an expanding epidemic with a range of complications. Clin Microbiol Infect 2020; 26:828-832. [PMID: 32251845 DOI: 10.1016/j.cmi.2020.03.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a common cause of viral hepatitis worldwide. Previously considered a disease of the developing world, it is increasingly recognized that locally acquired HEV infection is common in industrialized countries. OBJECTIVES The aim was to highlight the changing epidemiology of HEV infection, particularly in the developed world, and inform clinicians of the diverse clinical presentations and extra-hepatic complications associated with the virus. SOURCES References for this review were identified through searches of MEDLINE/PubMed, and Google Scholar, up to January 2020. Searches were restricted to articles published in English. CONTENT Hepatitis E virus is an under-recognized, emerging pathogen with important implications for public health in both the developing and developed world. The number of cases reported in resource-rich settings is increasing, in part due to improved case ascertainment but also as a result of increased incidence in some countries. The reasons behind these epidemiological shifts are not currently known. Chronic HEV infection has been reported in immunocompromised patients. A range of extra-hepatic manifestations have also been reported, most notably neurological and renal complications. There is evidence to suggest a causal link with Guillain-Barré syndrome, neuralgic amyotrophy and encephalitis/myelitis. Glomerular disease has been reported in the context of both acute and chronic infection. IMPLICATIONS HEV should be included in non-invasive liver screens and considered in the differentials for patients presenting with alanine aminotransferase elevation, suspected drug-induced liver injury or decompensated liver disease. Any patients with acute neurological injury and deranged liver function should be tested for hepatitis E, and all patients presenting with Guillain-Barré syndrome or neuralgic amyotrophy should be tested regardless of liver enzymes. Immunocompromised patients with persistently raised liver enzymes should be tested with molecular techniques and offered annual routine screening.
Collapse
|
36
|
Obaidat MM, Roess AA. Individual animal and herd level seroprevalence and risk factors of Hepatitis E in ruminants in Jordan. INFECTION GENETICS AND EVOLUTION 2020; 81:104276. [PMID: 32147473 DOI: 10.1016/j.meegid.2020.104276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Hepatitis E virus (HEV) is zoonotic and endemic in several countries. There are no data on the farm level-prevalence and risk factors of HEV in ruminant farms in Jordan or elsewhere. This study aimed to estimate the seroprevalence and risk factors of HEV in ruminant farms in all regions of Jordan. MATERIAL AND METHODS A total of 460 apparently healthy ruminants from 115 (31 cow, 51 sheep and 33 goat) farms were tested for HEV antibodies using a double antigen sandwich enzyme linked immunosorbent test. A validated questionnaire was used to collect data on animal health and husbandry practices. RESULTS The results showed that 37.4% of the dairy farms under study (51.6%, 37.2% and 24.2% of dairy cow, sheep and goat farms; respectively) had at least one HEV seropositive animal. At the individual animal level, 12.1% of the tested animals were HEV positive; 14.5% (n = 18), 12.7% (n = 26) and 8.3% (n = 11) of cows, sheep and goats; respectively. Infrequent cleaning of feeders was associated with a significantly greater odds of HEV seropositivity in both large and small dairy ruminant farms (AOR = 16.0, p-val = 0.03, AOR = 3.4, p-val = 0.02, respectively). Farms which reported that small ruminants (sheep and goats) were mixed together had a greater odds of farm-level HEV seroprevalence (AOR = 3.1, p-val = 0.04). CONCLUSIONS This study shows widespread and high farm-level HEV seroprevalence in dairy farms in Jordan. Husbandry practices and off-abattoir carcass processing in Jordan could amplify emergence and transmission of zoonotic HEV. Future studies should include HEV genotyping in ruminants, their products and humans to better understand HEV epidemiology in Jordan.
Collapse
Affiliation(s)
- Mohammad M Obaidat
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| | - Amira A Roess
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA; Department of Global and Community Health, College of Health and Human Services, George Mason University, Fairfax, VA, USA
| |
Collapse
|
37
|
Swartling L, Nordén R, Samuelsson E, Boriskina K, Valentini D, Westin J, Norder H, Sparrelid E, Ljungman P. Hepatitis E virus is an infrequent but potentially serious infection in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant 2020; 55:1255-1263. [PMID: 32071417 DOI: 10.1038/s41409-020-0823-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 01/05/2023]
Abstract
Hepatitis E virus (HEV) can cause chronic infection and liver cirrhosis in immunocompromised individuals. The frequency and clinical importance of HEV was studied retrospectively in a cohort of 236 Swedish allogeneic hematopoietic stem cell transplantation (HSCT) recipients. In blood samples collected at 6 months after HSCT, HEV RNA was identified in 8/236 (3.4%) patients, and 11/236 (4.7%) patients had detectable anti-HEV IgG and/or IgM, eight of whom were HEV RNA negative. Two of the patients with positive HEV RNA died with ongoing signs of hepatitis: one of acute liver and multiple organ failure, the other of unrelated causes. The remaining six patients with HEV RNA had cleared the infection at 7-24 (median 8.5) months after HSCT. HEV infection was associated with elevated alanine aminotransferase at 6 months after HSCT (OR 15, 1.3-174, p = 0.03). Active graft-versus-host disease of the liver at 6 months after HSCT was present in 3/8 (38%) patients with HEV RNA, but was not significantly associated with HEV infection. In conclusion, HEV infection is an important differential diagnosis in patients with elevated liver enzymes after HSCT. Although spontaneous clearance was common, the clinical course may be severe.
Collapse
Affiliation(s)
- Lisa Swartling
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden. .,Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Rickard Nordén
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ebba Samuelsson
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ksenia Boriskina
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Davide Valentini
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Johan Westin
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Heléne Norder
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elda Sparrelid
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden.,Division of Hematology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Wallace SJ, Crossan C, Hussaini SH, Dalton HR. Hepatitis E: a largely underestimated, emerging threat. Br J Hosp Med (Lond) 2020; 80:399-404. [PMID: 31283400 DOI: 10.12968/hmed.2019.80.7.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatitis E virus has two distinct clinical and epidemiological patterns based on the varying genotypes. Genotypes 3 and 4 cause widespread, sporadic infection in high-income countries and are emerging as the most common type of viral hepatitis in much of Europe. These infections carry significant morbidity and mortality in the growing numbers of immunosuppressed patients or in patients with established liver disease. Furthermore the growing extra-hepatic associations of the virus, including neurological and kidney injury, suggest that it may have been misnamed as a 'hepatitis' virus. This review explores current understanding of the epidemiology, virology and clinical presentations of hepatitis E infection and identifies vulnerable patient groups, who are at serious risk from infection. Guidance is offered regarding the diagnosis, treatment and prevention of this growing public health hazard.
Collapse
Affiliation(s)
- S J Wallace
- Speciality Registrar, Department of Gastroenterology, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN
| | - C Crossan
- Research Fellow, Department of Life Sciences, Glasgow Caledonian University, Glasgow
| | - S H Hussaini
- Consultant, Department of Gastroenterology, Royal Cornwall Hospital, Truro, Cornwall
| | - H R Dalton
- Retired Consultant, Department of Gastroenterology, Royal Cornwall Hospital, Truro, Cornwall
| |
Collapse
|
39
|
Lhomme S, Marion O, Abravanel F, Izopet J, Kamar N. Clinical Manifestations, Pathogenesis and Treatment of Hepatitis E Virus Infections. J Clin Med 2020; 9:E331. [PMID: 31991629 PMCID: PMC7073673 DOI: 10.3390/jcm9020331] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis throughout the world. Most infections are acute but they can become chronic in immunocompromised patients, such as solid organ transplant patients, patients with hematologic malignancy undergoing chemotherapy and those with a human immunodeficiency virus (HIV) infection. Extra-hepatic manifestations, especially neurological and renal diseases, have also been described. To date, four main genotypes of HEV (HEV1-4) were described. HEV1 and HEV2 only infect humans, while HEV3 and HEV4 can infect both humans and animals, like pigs, wild boar, deer and rabbits. The real epidemiology of HEV has been underestimated because most infections are asymptomatic. This review focuses on the recent advances in our understanding of the pathophysiology of acute HEV infections, including severe hepatitis in patients with pre-existing liver disease and pregnant women. It also examines the mechanisms leading to chronic infection in immunocompromised patients and extra-hepatic manifestations. Acute infections are usually self-limiting and do not require antiviral treatment. Conversely, a chronic HEV infection can be cleared by decreasing the dose of immunosuppressive drugs or by treating with ribavirin for 3 months. Nevertheless, new drugs are needed for those cases in which ribavirin treatment fails.
Collapse
Affiliation(s)
- Sébastien Lhomme
- Virology Laboratory, National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (F.A.); (J.I.)
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Olivier Marion
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
- Department of Nephrology and Organs Transplantation, Toulouse Rangueil University Hospital, 31400 Toulouse, France
| | - Florence Abravanel
- Virology Laboratory, National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (F.A.); (J.I.)
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Jacques Izopet
- Virology Laboratory, National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (F.A.); (J.I.)
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Nassim Kamar
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
- Department of Nephrology and Organs Transplantation, Toulouse Rangueil University Hospital, 31400 Toulouse, France
| |
Collapse
|
40
|
El-Duah P, Dei D, Binger T, Sylverken A, Wollny R, Tasiame W, Oppong S, Adu-Sarkodie Y, Emikpe B, Folitse R, Drexler JF, Phillips R, Drosten C, Corman VM. Detection and genomic characterization of hepatitis E virus genotype 3 from pigs in Ghana, Africa. ONE HEALTH OUTLOOK 2020; 2:10. [PMID: 33829131 PMCID: PMC7993477 DOI: 10.1186/s42522-020-00018-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/05/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a major cause of human hepatitis worldwide. Zoonotic genotypes of the virus have been found in diverse animal species with pigs playing a major role. Putative risk of zoonotic infection from livestock particularly swine in Sub-Saharan Africa including Ghana is poorly understood due to scarcity of available data, especially HEV sequence information. METHODS Serum samples were collected from cattle, sheep, goats and pigs from Kumasi in the Ashanti region of Ghana. Samples were subjected to nested RT-PCR screening and quantification of HEV RNA-positive samples using real-time RT-PCR and the World Health Organization International Standard for HEV. Testing of all pig samples for antibodies was done by ELISA. Sanger sequencing and genotyping was performed and one representative complete genome was generated to facilitate genome-wide comparison to other available African HEV sequences by phylogenetic analysis. RESULTS A total of 420 samples were available from cattle (n = 105), goats (n = 124), pigs (n = 89) and sheep (n = 102). HEV Viral RNA was detected only in pig samples (10.1%). The antibody detection rate in pigs was 77.5%, with positive samples from all sampling sites. Average viral load was 1 × 105 (range 1.02 × 103 to 3.17 × 105) International Units per mL of serum with no statistically significant differences between age groups (≤ 6 month, > 6 months) by a T-test comparison of means (t = 1.4272, df = 7, p = 0.1966). Sequences obtained in this study form a monophyletic group within HEV genotype 3. Sequences from Cameroon, Ghana, Burkina Faso and Madagascar were found to share a most recent common ancestor; however this was not the case for other African HEV sequences. CONCLUSION HEV genotype 3 is highly endemic in pigs in Ghana and likely poses a zoonotic risk to people exposed to pigs. HEV genotype 3 in Ghana shares a common origin with other virus strains from Sub-Saharan Africa.
Collapse
Affiliation(s)
- Philip El-Duah
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Virology, Berlin, Germany
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Dickson Dei
- Ghana Veterinary Service, Kumasi, Ghana
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tabea Binger
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Augustina Sylverken
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Robert Wollny
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - William Tasiame
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Virology, Berlin, Germany
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel Oppong
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaw Adu-Sarkodie
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Benjamin Emikpe
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Raphael Folitse
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Richard Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Christian Drosten
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Centre for Infection Research, Berlin, Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Centre for Infection Research, Berlin, Germany
| |
Collapse
|
41
|
Controlling hepatitis E virus in the pig production sector: Assessment of the technical and behavioural feasibility of on-farm risk mitigation strategies. Prev Vet Med 2019; 175:104866. [PMID: 31838401 DOI: 10.1016/j.prevetmed.2019.104866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022]
Abstract
Hepatitis E virus (HEV) is a zoonotic agent with pigs as the main reservoir in industrialised countries. Recent studies conducted on pig farms, in experimental conditions or through modelling approaches, have led to a better understanding of the spread of HEV on pig farms. The findings have also made it possible to define a set of measures to reduce HEV prevalence and the risk of marketing contaminated products. The objective of this study was to assess the feasibility of a set of HEV control strategies on pig farms. Individual semi-structured interviews were conducted with farmers, veterinarians and farming advisors to collect general data, their level of knowledge of HEV, their opinion on the technical feasibility of certain changes in practices, their perception of the respective responsibilities of the different stakeholders, and their feelings about the importance of the issue, following the framework of the Theory of Planned Behaviour. The interviews made it possible to highlight potential barriers and preferred motivators for the implementation of on-farm risk mitigation strategies. Barriers included lack of knowledge, scientific gaps, perceived inability to control HEV, and low perception of the importance of the issue. Motivators included professional satisfaction, family recognition, and the opportunity to achieve higher quality standards. Three clusters of stakeholders were also identified, with a group of leaders who could help unlock reluctance and disseminate innovations. This type of behavioural approach appeared useful to help risk managers facilitate zoonotic control on pig farms.
Collapse
|
42
|
Karlsson M, Norder H, Bergström M, Park PO, Karlsson M, Wejstål R, Alsiö Å, Rosemar A, Lagging M, Mellgren Å. Hepatitis E virus genotype 3 is associated with gallstone-related disease. Scand J Gastroenterol 2019; 54:1269-1273. [PMID: 31553628 DOI: 10.1080/00365521.2019.1666163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Hepatitis E virus (HEV) genotype 3 is endemic in Northern Europe and despite a high seroprevalence of anti-HEV IgG antibodies among blood donors (≈17%), few clinical cases are notified in Sweden. Low awareness of hepatitis E and its possible symptoms may contribute to this discrepancy. The aim of this study was to investigate the prevalence of acute HEV infection among hospital admitted patients with abdominal pain and elevated liver enzymes.Materials and methods: During 2016-2017, 148 adult patients with serum alanine aminotransferase (ALT) or aspartate aminotransferase (AST) > twice normal levels were prospectively enrolled at surgical wards at three Swedish hospitals. Serum samples were analyzed for HEV RNA as well as anti-HEV IgM and IgG, and medical records were reviewed.Results: Six (6/148, 4.1%) patients were HEV infected confirmed by detectable HEV RNA, but only one of these patients had detectable anti-HEV antibodies. Four of the HEV infected patients were diagnosed with gallstone-related disease: three with biliary pancreatitis and one with biliary colic. The remaining two were diagnosed with bowel obstruction and pancreatic malignancy. Four HEV strains were typed by sequencing to genotype 3.Conclusions: This study identified acute HEV3 infection in 4% of the patients with elevated liver enzymes admitted to a surgical ward. HEV infection was not the solitary disease leading to hospitalization, instead it was found to be associated with other surgical conditions such as gallstone-related disease including biliary pancreatitis. Additionally, HEV RNA might be the preferential diagnostic tool for detecting ongoing HEV infection.
Collapse
Affiliation(s)
- Miriam Karlsson
- Department of Infectious Diseases, Region Västra Götaland, South Älvsborg Hospital, Borås, Sweden.,Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heléne Norder
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Bergström
- Department of Surgery, Region Västra Götaland, South Älvsborg Hospital, Borås, Sweden.,Department of Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per-Ola Park
- Department of Surgery, Region Västra Götaland, South Älvsborg Hospital, Borås, Sweden.,Department of Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie Karlsson
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rune Wejstål
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åsa Alsiö
- Department of Infectious Diseases, Region Västra Götaland, Skaraborg Hospital, Skövde, Sweden
| | - Anders Rosemar
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Lagging
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åsa Mellgren
- Department of Infectious Diseases, Region Västra Götaland, South Älvsborg Hospital, Borås, Sweden.,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
43
|
Thom K, Gilhooly P, McGowan K, Malloy K, Jarvis LM, Crossan C, Scobie L, Blatchford O, Smith-Palmer A, Donnelly MC, Davidson JS, Johannessen I, Simpson KJ, Dalton HR, Petrik J. Hepatitis E virus (HEV) in Scotland: evidence of recent increase in viral circulation in humans. ACTA ACUST UNITED AC 2019; 23. [PMID: 29589577 PMCID: PMC6205259 DOI: 10.2807/1560-7917.es.2018.23.12.17-00174] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BackgroundPrevious studies showed low levels of circulating hepatitis E virus (HEV) in Scotland. We aimed to reassess current Scottish HEV epidemiology. Methods: Blood donor samples from five Scottish blood centres, the minipools for routine HEV screening and liver transplant recipients were tested for HEV antibodies and RNA to determine seroprevalence and viraemia. Blood donor data were compared with results from previous studies covering 2004-08. Notified laboratory-confirmed hepatitis E cases (2009-16) were extracted from national surveillance data. Viraemic samples from blood donors (2016) and chronic hepatitis E transplant patients (2014-16) were sequenced. Results: Anti-HEV IgG seroprevalence varied geographically and was highest in Edinburgh where it increased from 4.5% in 2004-08) to 9.3% in 2014-15 (p = 0.001). It was most marked in donors < 35 years. HEV RNA was found in 1:2,481 donors, compared with 1:14,520 in 2011. Notified laboratory-confirmed cases increased by a factor of 15 between 2011 and 2016, from 13 to 206. In 2011-13, 1 of 329 transplant recipients tested positive for acute HEV, compared with six cases of chronic infection during 2014-16. Of 10 sequenced viraemic donors eight and all six patients were infected with genotype 3 clade 1 virus, common in European pigs. Conclusions: The seroprevalence, number of viraemic donors and numbers of notified laboratory-confirmed cases of HEV in Scotland have all recently increased. The causes of this change are unknown, but need further investigation. Clinicians in Scotland, particularly those caring for immunocompromised patients, should have a low threshold for testing for HEV.
Collapse
Affiliation(s)
- Katrina Thom
- Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Pamela Gilhooly
- Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Karen McGowan
- Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Kristen Malloy
- Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Lisa M Jarvis
- Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Claire Crossan
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Linda Scobie
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Oliver Blatchford
- Department of Public Health, Glasgow University, Glasgow, United Kingdom
| | - Alison Smith-Palmer
- Health Protection Scotland, National Services Scotland, Glasgow, United Kingdom
| | - Mhairi C Donnelly
- Department of Hepatology, Division of Health Sciences, Edinburgh Medical School, Edinburgh, United Kingdom
| | - Janice S Davidson
- Scottish Liver Transplantation Unit, Royal Infirmary, Edinburgh, United Kingdom
| | | | - Kenneth J Simpson
- Department of Hepatology, Division of Health Sciences, Edinburgh Medical School, Edinburgh, United Kingdom
| | - Harry R Dalton
- Royal Cornwall Hospital and European Centre for Environment and Human Health, University of Exeter Medical School, Truro, United Kingdom
| | - Juraj Petrik
- Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| |
Collapse
|
44
|
Salines M, Rose N, Andraud M. Tackling hepatitis E virus spread and persistence on farrow-to-finish pig farms: Insights from a stochastic individual-based multi-pathogen model. Epidemics 2019; 30:100369. [PMID: 31526684 DOI: 10.1016/j.epidem.2019.100369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic agent of which domestic pigs have been recognised as the main reservoir in industrialised countries. The great variability in HEV infection dynamics described on different pig farms may be related to the influence of other pathogens, and in particular viruses affecting pigs' immune response. The objective of this study was to develop a multi-pathogen modelling approach to understand the conditions under which HEV spreads and persists on a farrow-to-finish pig farm taking into account the fact that pigs may be co-infected with an intercurrent pathogen. A stochastic individual-based model was therefore designed that combines a population dynamics model, which enables us to take different batch rearing systems into account, with a multi-pathogen model representing at the same time the dynamics of both HEV and the intercurrent pathogen. Based on experimental and field data, the epidemiological parameters of the HEV model varied according to the pig's immunomodulating virus status. HEV spread and persistence was found to be very difficult to control on a farm with a 20-batch rearing system. Housing sows in smaller groups and eradicating immunomodulating pathogens would dramatically reduce the prevalence of HEV-positive livers at slaughter, which would drop from 3.3% to 1% and 0.2% respectively (p-value < 0.01). It would also decrease the probability of HEV on-farm persistence from 0.6 to 0 and 0.34 respectively (p-value < 0.01) on farms with a 7 batch rearing system. A number of farming practices, such as limiting cross-fostering, reducing the size of weaning pens and vaccinating pigs against immunomodulating viruses, were also shown to be pivotal factors for decreasing HEV spread and persistence.
Collapse
Affiliation(s)
- Morgane Salines
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare research unit, Ploufragan, France; Bretagne-Loire University, Rennes, France.
| | - Nicolas Rose
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare research unit, Ploufragan, France; Bretagne-Loire University, Rennes, France.
| | - Mathieu Andraud
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare research unit, Ploufragan, France; Bretagne-Loire University, Rennes, France.
| |
Collapse
|
45
|
Hepatitis E Virus Infection in Blood Donors and Risk to Patients in the United States and Canada. Transfus Med Rev 2019; 33:139-145. [PMID: 31324552 DOI: 10.1016/j.tmrv.2019.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/16/2019] [Accepted: 05/26/2019] [Indexed: 12/20/2022]
Abstract
Hepatitis E virus (HEV) is the most common cause of acute hepatitis worldwide including large water-borne outbreaks, zoonotic infections and transfusion transmissions. Several countries have initiated or are considering blood donor screening in response to high HEV-RNA donation prevalence leading to transfusion-transmission risk. Because HEV transmission is more common through food sources, the efficacy of blood donor screening alone may be limited. HEV-nucleic acids in 101 489 blood donations in the United States and Canada were studied. A risk-based decision-making framework was used to evaluate the quantitative risks and cost-benefit of HEV-blood donation screening in Canada comparing three scenarios: no screening, screening blood for all transfused patients or screening blood for only those at greatest risk. HEV-RNA prevalence in the United States was one per 16 908 (95% confidence interval [CI], 1:5786-1:81987), whereas Canadian HEV-RNA prevalence was one per 4615 (95% CI, 1:2579-1:9244). Although 4-fold greater, Canadian HEV-RNA prevalence was not significantly higher than in the United States. Viral loads ranged from 20 to 3080 international units per mL; all successfully typed infections were genotype 3. No HEV-RNA false-positive donations were identified for 100 percent specificity. Without donation screening, heart and lung transplant recipients had the greatest HEV-infection risk (1:366962) versus kidney transplant recipients with the lowest (1:2.8 million) at costs of $225 546 to $561 810 per quality-adjusted life-year (QALY) gained for partial or universal screening, respectively. Higher cost per QALY would be expected in the United States. Thus, HEV prevalence in North America is lower than in countries performing blood donation screening, and if implemented, is projected to be costly under any scenario.
Collapse
|
46
|
Bura M, Łagiedo-Żelazowska M, Michalak M, Sikora J, Mozer-Lisewska I. Comparative Seroprevalence of Hepatitis A And E Viruses in Blood Donors from Wielkopolska Region, West-Central Poland. Pol J Microbiol 2019; 67:113-115. [PMID: 30015433 DOI: 10.5604/01.3001.0011.6151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
The objective of the present study was to investigate the seroprevalence of HAV and HEV in Polish blood donors (BDs). One hundred and ten randomly selected healthy BDs, living in Wielkopolska Region were tested for anti-HAV IgG and anti-HEV IgG with commercial assays. The seroprevalence of anti-HAV was 11.8%; anti-HEV were detected in 60.9% of BDs (p < 0.0001). Consumption of risky food was more common in anti-HEV-positive BDs (59.1% vs. 33.3%; p = 0.01). Twelve out of 20 BDs (60%) with no history of travel abroad were exposed to HEV. Wielkopolska Region, Poland should be regarded as a new HEV infection-hyperendemic area in Europe.
Collapse
Affiliation(s)
- Maciej Bura
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences,Poland
| | | | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences,Poland
| | - Jan Sikora
- Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences,Poland
| | - Iwona Mozer-Lisewska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences,Poland
| |
Collapse
|
47
|
Impact of porcine circovirus type 2 (PCV2) infection on hepatitis E virus (HEV) infection and transmission under experimental conditions. Vet Microbiol 2019; 234:1-7. [PMID: 31213264 DOI: 10.1016/j.vetmic.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 11/21/2022]
Abstract
Hepatitis E virus is a zoonotic pathogen for which pigs have been identified as the main reservoir in industrialised countries. HEV infection dynamics in pig herds and pigs are influenced by several factors, including herd practices and possibly co-infection with immunomodulating viruses. This study therefore investigates the impact of porcine circovirus type 2 (PCV2) on HEV infection and transmission through experimental HEV/PCV2 co-infection of specific-pathogen-free pigs. No statistical difference between HEV-only and HEV/PCV2-infected animals was found for either the infectious period or the quantity of HEV shed in faeces. The HEV latency period was shorter for HEV/PCV2 co-infected pigs than for HEV-only infected pigs (11.6 versus 12.3 days). Its direct transmission rate was three times higher in cases of HEV/PCV2 co-infection than in cases of HEV-only infection (0.12 versus 0.04). On the other hand, the HEV transmission rate through environmental accumulation was lower in cases of HEV/PCV2 co-infection (4.3·10-6 versus 1.5·10-5 g/RNA copies/day for HEV-only infected pigs). The time prior to HEV seroconversion was 1.9 times longer in HEV/PCV2 co-infected pigs (49.4 versus 25.6 days for HEV-only infected pigs). In conclusion, our study shows that PCV2 affects HEV infection and transmission in pigs under experimental conditions.
Collapse
|
48
|
Wang H, Karlsson M, Lindberg M, Nyström K, Norder H. Hepatitis E virus strains infecting Swedish domestic pigs are unique for each pig farm and remain in the farm for at least 2 years. Transbound Emerg Dis 2019; 66:1314-1323. [PMID: 30784199 PMCID: PMC6850098 DOI: 10.1111/tbed.13153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
Hepatitis E virus (HEV) genotype 3 (HEV3) is distributed globally and infects both humans and animals, mainly domestic pigs and wild boars, which are the major reservoirs. In this study, the prevalence of HEV among Swedish pigs was investigated by HEV RNA analysis in 363 faecal samples from 3-month-old piglets sampled twice (2013 and 2014) in 30 Swedish pig farms. Four different types of farms were investigated; organic, conventional closed (keeping the sow), satellites in a sow pool (conventional farms sharing sows) and conventional non-closed farms (purchasing gilts). More than two-thirds (77%) of the farms had HEV-infected pigs. HEV RNA was found in faeces from 79 pigs (22%). Partial ORF1 could be sequenced in 46 strains. Phylogenetic analysis revealed a unique HEV3 strain for each farm. Strains sampled more than a year apart from the same farm were closely related, indicating that the same HEV strain is present for several years on the farm. Despite that only 4% of the Swedish pig farms were investigated, two farms had strains similar to those from humans, another had strains similar to wild boar HEV. The uniqueness of strains from each farm indicates a possibility to identify a source of infection down to farm level. This knowledge may be used by the farms to investigate the effectiveness of good hygiene routines to reduce the amount of HEV and thus the infection risk in the farm, and for Swedish public health authorities to identify cases of HEV transmissions from consumption of uncooked pork.
Collapse
Affiliation(s)
- Hao Wang
- Department of Infectious DiseasesInstitute of BiomedicineSahlgrenska AcademyGothenburg UniversityGothenburgSweden
| | - Marie Karlsson
- Department of Infectious DiseasesInstitute of BiomedicineSahlgrenska AcademyGothenburg UniversityGothenburgSweden
| | | | - Kristina Nyström
- Department of Infectious DiseasesInstitute of BiomedicineSahlgrenska AcademyGothenburg UniversityGothenburgSweden
| | - Heléne Norder
- Department of Infectious DiseasesInstitute of BiomedicineSahlgrenska AcademyGothenburg UniversityGothenburgSweden
| |
Collapse
|
49
|
Abstract
Hepatitis (HEV) is widely distributed in pigs and is transmitted with increasing numbers to humans by contact with pigs, contaminated food and blood transfusion. The virus is mostly apathogenic in pigs but may enhance the pathogenicity of other pig viruses. In humans, infection can lead to acute and chronic hepatitis and extrahepatic manifestations. In order to stop the emerging infection, effective counter-measures are required. First of all, transmission by blood products can be prevented by screening all blood donations. Meat and sausages should be appropriately cooked. Elimination of the virus from the entire pork production can be achieved by sensitive testing and elimination programs including early weaning, colostrum deprivation, Caesarean delivery, embryo transfer, treatment with antivirals, protection from de novo infection, and possibly vaccination. In addition, contaminated water, shellfish, vegetables, and fruits by HEV-contaminated manure should be avoided. A special situation is given in xenotransplantation using pig cells, tissues or organs in order to alleviate the lack of human transplants. The elimination of HEV from pigs, other animals and humans is consistent with the One Health concept, preventing subclinical infections in the animals as well as preventing transmission to humans and disease.
Collapse
|
50
|
Wang H, Castillo-Contreras R, Saguti F, López-Olvera JR, Karlsson M, Mentaberre G, Lindh M, Serra-Cobo J, Norder H. Genetically similar hepatitis E virus strains infect both humans and wild boars in the Barcelona area, Spain, and Sweden. Transbound Emerg Dis 2019; 66:978-985. [PMID: 30597741 DOI: 10.1111/tbed.13115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis E virus (HEV) is a hepatotropic virus, endemic in Europe where it infects humans and animals, with domestic pigs and wild boars as main reservoirs. The number of HEV-infected cases with unknown source of infection increases in Europe. There are human HEV strains genetically similar to viruses from domestic pigs, and zoonotic transmission via consumption of uncooked pork meat has been shown. Due to continuous growth of the wild boar populations in Europe, another route may be through direct or indirect contacts with wild boars. In the Collserola Natural Park near Barcelona, Spain, the wild boars have spread into Barcelona city. In Sweden, they are entering into farmlands and villages. To investigate the prevalence of HEV and the risk for zoonotic transmissions, the presence of antibodies against HEV and HEV RNA were analysed in serum and faecal samples from 398 wild boars, 264 from Spain and 134 from Sweden and in sera from 48 Swedish patients with HEV infection without known source of infection. Anti-HEV was more commonly found in Spanish wild boars (59% vs. 8%; p < 0.0001) while HEV RNA had similar prevalence (20% in Spanish vs. 15% in Swedish wild boars). Seven Swedish and three Spanish wild boars were infected with subtype 3f, and nine Spanish with subtype 3c/i. There were three clades in the phylogenetic tree formed by strains from wild boars and domestic pigs; another four clades were formed by strains from humans and wild boars. One strain from a Spanish wild boar was similar to strains from chronically infected humans. The high prevalence of HEV infections among wild boars and the similarity between wild boar HEV strains and those from humans and domestic pigs indicate that zoonotic transmission from wild boar may be more common than previously anticipated, which may develop into public health concern.
Collapse
Affiliation(s)
- Hao Wang
- Department of Infectious Diseases, Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Raquel Castillo-Contreras
- Wildlife Ecology & Health Group and Servei d' Ecopatologia de Fauna Salvatge (SEFaS), Department de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Fredy Saguti
- Department of Infectious Diseases, Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jorge R López-Olvera
- Wildlife Ecology & Health Group and Servei d' Ecopatologia de Fauna Salvatge (SEFaS), Department de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Marie Karlsson
- Department of Infectious Diseases, Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gregorio Mentaberre
- Wildlife Ecology & Health Group and Servei d' Ecopatologia de Fauna Salvatge (SEFaS), Department de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jordi Serra-Cobo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Institut de Recerca de la Biodiversitat, Barcelona, Spain
| | - Heléne Norder
- Department of Infectious Diseases, Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|