1
|
Ban SY, Yun DY, Yum SJ, Jeong HG, Park JT. Development of Saccharomyces cerevisiae accumulating excessive amount of glycogen and its effects on gut microbiota in a mouse model. Int J Biol Macromol 2024; 283:137589. [PMID: 39557260 DOI: 10.1016/j.ijbiomac.2024.137589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Saccharomyces cerevisiae accumulates glycogen, a hyperbranched glucose polymer with multiple bio-functionalities. In this study, mutants of S. cerevisiae that accumulate excessive amounts of glycogen were developed through UV mutagenesis. From over 30,000 mutants, the mutant strain CEY1, which exhibited the highest glycogen production, was selected using iodine vapor screening. The glycogen structures of wild type (WT) and CEY1 were analyzed and found to be relatively similar in molecular weight, hydrodynamic diameter, and side-chain distribution. The glycogen from CEY1 contained long branches (DP >12) 23.6 % greater than those in Escherichia coli TBP38. In addition, WT and CEY1 glycogen showed 32 %-34 % digestibility, which is significantly lower than E. coli glycogen. The glycogen content in dried CEY1 cells was increased to 21.7 % during laboratory-scale fed-batch fermentation. Glycogen with a homogeneous structure was accumulated to 17.5 % (w/w dried cell), and the total glucan content was increased by 33.2 % during large-scale fed-batch fermentation. In a mouse model, a diet containing 30 % CEY1 increased the production of butyrate and populations of beneficial bacteria, including Bacteroides and Parabacteroides. Therefore, glycogen from CEY1 exhibits a distinct structure from other polysaccharides, with notably slow and low digestibility, thereby indicating its potential application as a dietary supplement.
Collapse
Affiliation(s)
- So Young Ban
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea
| | - Da-Young Yun
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Su-Jin Yum
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hee-Gon Jeong
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
González-Velázquez G, Aguirre-Garrido JF, Oros-Pantoja R, Salinas-Velarde ID, Contreras I, Estrada JA, Soto-Piña AE. Supplementation with inulin reverses cognitive flexibility alterations and modulates the gut microbiota in high-fat-fed mice. Front Behav Neurosci 2024; 18:1445154. [PMID: 39568732 PMCID: PMC11577567 DOI: 10.3389/fnbeh.2024.1445154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Alterations in cognitive performance are associated with inadequate nutritional states and diet composition. Prebiotics, such as inulin, are substances that can modulate the gut microbiome and, consequently, brain function by producing metabolites such as short-chain fatty acids (SCFAs). This study aimed to evaluate the effect of supplementation with inulin on cognitive flexibility, body composition, and gut microbiota in a murine model exposed to a high-fat (HF) diet. Methods CD1 mice were divided into five groups: control fed a standard diet (C), high-fat diet (HF), inulin (I), high-fat diet with inulin (HFI), and manipulation control (M). Dietary supplementation was administered for 6 weeks. Cognitive flexibility was assessed using the Attentional Set-Shifting Test (AST). In addition, body composition was measured via electrical bioimpedance and adipose tissue compartments of each mouse were removed and weighed. Finally, gut microbiota metataxonomic was analyzed through metataxonomic bacterial 16S rRNA sequencing. Results We observed that HF group required more AST trials than the C, HFI, and I groups in the compound discrimination (CD) and extra-dimensional (ED) stages. Notably, the HFI group required fewer trials than the HF group in the ED stage (p = 0.0187). No significant differences in overall body composition were observed between the groups. However, the percentage of gonadal and peritoneal adipose tissue was significantly higher in the HF and I groups compared to the C group. Statistically significant differences in alpha diversity for gut microbiota were observed using the Shannon, Simpson, and Chao1 indices. The I group showed a decrease in bacterial diversity compared to the HF group. While no differences were observed between groups in the phyla Bacillota and Bacteroidotes, Clostridium bacteria represented a lower proportion of sequences in the I group compared to the C group. Additionally, Lactobacillus represented a lower proportion of sequences in the HF group compared to the C and I groups. Discussion These findings suggest that supplementation with inulin could be a useful approach to mitigate the negative effects of an HF diet on cognitive flexibility and modulate gut microbiota composition.
Collapse
Affiliation(s)
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma, Estado de México, Mexico
| | - Rigoberto Oros-Pantoja
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | | | - Irazú Contreras
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - José Antonio Estrada
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | | |
Collapse
|
3
|
Gan L, Zhao Y, Zhang Z, Zhao C, Li J, Jia Q, Shi Y, Wang P, Guo L, Qiao H, Cui Y, Wang J. The impact of high polymerization inulin on body weight reduction in high-fat diet-induced obese mice: correlation with cecal Akkermansia. Front Microbiol 2024; 15:1428308. [PMID: 39268531 PMCID: PMC11392436 DOI: 10.3389/fmicb.2024.1428308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity presents a significant public health challenge, demanding effective dietary interventions. This study employed a high-fat diet-induced obesity mouse model to explore the impacts of inulin with different polymerization degrees on obesity management. Our analysis reveals that high-degree polymerization inulin (HDI) exhibited a significantly higher oil binding capacity and smaller particle size compared to low-degree polymerization inulin (LDI) (p < 0.05). HDI was more effective than LDI in mitigating body weight gain in high-diet induced obese mice, although neither LDI nor HDI affected blood sugar levels when compared to the high-fat diet control group (p < 0.05). Both HDI and LDI administrations reduced liver weight and enhanced brown adipose tissue thermogenesis compared to the high-fat diet induced control group (p < 0.05). Additionally, HDI suppressed hepatic lipogenesis, resulting in a further reduction in liver triglycerides compared to the high-fat diet-induced obese mice (p < 0.05). Notably, HDI improved gut health by enhancing intestinal morphology and modulating gut microbiota structure. HDI administration notably increased the relative abundance of cecal Akkermansia, a gut microbe associated with improved metabolic health, while LDI showed limited efficacy (p < 0.05 and p > 0.05, respectively). These findings underscore the importance of the structural properties of inulin in its potential to combat obesity and highlight the strategic use of inulin with varying polymerization degrees as a promising dietary approach for obesity management, particularly in its influence on gut microbiota composition and hepatic lipid metabolism regulation.
Collapse
Affiliation(s)
- Liping Gan
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yifeng Zhao
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Zongbao Zhang
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Chenkai Zhao
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Jiake Li
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Qingyu Jia
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yusu Shi
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Peng Wang
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Linna Guo
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Hanzhen Qiao
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yaoming Cui
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Jinrong Wang
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Ye K, Zhao Y, Huang W, Zhu Y. Sodium butyrate improves renal injury in diabetic nephropathy through AMPK/SIRT1/PGC-1α signaling pathway. Sci Rep 2024; 14:17867. [PMID: 39090182 PMCID: PMC11294604 DOI: 10.1038/s41598-024-68227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Diabetic nephropathy (DN) is a prototypical chronic energy metabolism imbalance disease. The AMPK/Sirt1/PGC-1α signaling pathway plays a pivotal role in regulating energy metabolism throughout the body. Gut microbiota ferment indigestible carbohydrates to produce a variety of metabolites, particularly short-chain fatty acids (SCFAs), which exert positive effects on energy metabolism. However, the potential for SCFAs to ameliorate DN-associated renal injury via the AMPK/Sirt1/PGC-1α pathway remains a matter of debate. In this study, we investigated the effects of sodium butyrate (NaB), a SCFA, on energy metabolism in mice with spontaneous DN at two different doses. Body weight, blood glucose and lipid levels, urinary protein excretion, liver and kidney function, interleukin-6 (IL-6) levels, and the expressions of AMPK, phosphorylated AMPK (p-AMPK), mitofusin 2 (MFN2), optic atrophy 1 (OPA1), and glucagon-like peptide-1 receptor (GLP-1R) were monitored in mice. Additionally, butyrate levels, gut microbiota composition, and diversity in colonic stool were also assessed. Our findings demonstrate that exogenous NaB supplementation can improve hyperglycemia and albuminuria, reduce renal tissue inflammation, inhibit extracellular matrix accumulation and glomerular hypertrophy, and could alter the gut microbiota composition in DN. Furthermore, NaB was found to upregulate the expressions of MFN2, OPA1, p-AMPK, and GLP-1R in DN renal tissue. These results suggest that NaB could improve the composition of gut microbiota in DN, activate the AMPK/Sirt1/PGC-1α signaling pathway, and enhance mitochondrial function to regulate energy metabolism throughout the body. Collectively, our findings indicate that NaB may be a novel therapeutic agent for the treatment of DN.
Collapse
Affiliation(s)
- Kaili Ye
- Department of Hematology of Wenzhou People's Hospital, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, No. 299, Guan Road, Louqiao Street, Ouhai District, Wenzhou, 325000, China
| | - Yanling Zhao
- Department of Nephrology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wen Huang
- Department of Nephrology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yonglin Zhu
- Department of Hematology of Wenzhou People's Hospital, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, No. 299, Guan Road, Louqiao Street, Ouhai District, Wenzhou, 325000, China.
| |
Collapse
|
5
|
Zhang Y, Zhu L, Zhao M, Jia Y, Li K, Li C. The effects of inulin on solubilizing and improving anti-obesity activity of high polymerization persimmon tannin. Int J Biol Macromol 2024; 270:132232. [PMID: 38734349 DOI: 10.1016/j.ijbiomac.2024.132232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
High polymerization persimmon tannin has been reported to have lipid-lowering effects. Unfortunately, the poor solubility restricts its application. This research aimed to investigate the effect and mechanism of inulin on solubilizing of persimmon tannin. Furthermore, we examined whether the addition of inulin would affect the attenuated obesity effect of persimmon tannin. Transmission electron microscope (TEM), Isothermal titration calorimetry (ITC) and Fourier transform infrared spectroscopy (FT-IR) results demonstrated that inulin formed a gel-like network structure, which enabled the encapsulation of persimmon tannin through hydrophobic and hydrogen bond interactions, thereby inhibiting the self-aggregation of persimmon tannin. The turbidity of the persimmon tannin solution decreased by 56.2 %, while the polyphenol content in the supernatant increased by 60.0 %. Furthermore, biochemical analysis and 16s rRNA gene sequencing technology demonstrated that persimmon tannin had a significant anti-obesity effect and improved intestinal health in HFD-fed mice. Moreover, inulin was found to have a positive effect on enhancing the health benefits of persimmon tannin, including improving hepatic steatosis and gut microbiota dysbiosis. it enhanced the abundance of beneficial core microbes while decreasing the abundance of harmful bacteria. Our findings expand the applications of persimmon tannin in the food and medical sectors.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Lin Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Mengyao Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
6
|
Wang P, Cai Y, Zhong H, Chen R, Yi Y, Ye Y, Li L. Expression and Characterization of an Efficient Alginate Lyase from Psychromonas sp. SP041 through Metagenomics Analysis of Rotten Kelp. Genes (Basel) 2024; 15:598. [PMID: 38790228 PMCID: PMC11121350 DOI: 10.3390/genes15050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Alginate is derived from brown algae, which can be cultivated in large quantities. It can be broken down by alginate lyase into alginate oligosaccharides (AOSs), which exhibit a higher added value and better bioactivity than alginate. In this study, metagenomic technology was used to screen for genes that code for high-efficiency alginate lyases. The candidate alginate lyase gene alg169 was detected from Psychromonas sp. SP041, the most abundant species among alginate lyase bacteria on selected rotten kelps. The alginate lyase Alg169 was heterologously expressed in Escherichia coli BL21 (DE3), Ni-IDA-purified, and characterized. The optimum temperature and pH of Alg169 were 25 °C and 7.0, respectively. Metal ions including Mn2+, Co2+, Ca2+, Mg2+, Ni2+, and Ba2+ led to significantly increased enzyme activity. Alg169 exhibited a pronounced dependence on Na+, and upon treatment with Mn2+, its activity surged by 687.57%, resulting in the highest observed enzyme activity of 117,081 U/mg. Bioinformatic analysis predicted that Alg169 would be a double-domain lyase with a molecular weight of 65.58 kDa. It is a bifunctional enzyme with substrate specificity to polyguluronic acid (polyG) and polymannuronic acid (polyM). These results suggest that Alg169 is a promising candidate for the efficient manufacturing of AOSs from brown seaweed.
Collapse
Affiliation(s)
- Ping Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
| | - Yi Cai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.C.); (R.C.)
| | - Hua Zhong
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Ruiting Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.C.); (R.C.)
| | - Yuetao Yi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.C.); (R.C.)
| | - Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
| |
Collapse
|
7
|
Ariaee A, Wardill HR, Wignall A, Prestidge CA, Joyce P. The Degree of Inulin Polymerization Is Important for Short-Term Amelioration of High-Fat Diet (HFD)-Induced Metabolic Dysfunction and Gut Microbiota Dysbiosis in Rats. Foods 2024; 13:1039. [PMID: 38611345 PMCID: PMC11011263 DOI: 10.3390/foods13071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Inulin, a non-digestible polysaccharide, has gained attention for its prebiotic properties, particularly in the context of obesity, a condition increasingly understood as a systemic inflammatory state linked to gut microbiota composition. This study investigates the short-term protective effects of inulin with different degrees of polymerization (DPn) against metabolic health deterioration and gut microbiota alterations induced by a high-fat diet (HFD) in Sprague Dawley rats. Inulin treatments with an average DPn of 7, 14, and 27 were administered at 1 g/kg of bodyweight to HFD-fed rats over 21 days. Body weight, systemic glucose levels, and proinflammatory markers were measured to assess metabolic health. Gut microbiota composition was analyzed through 16S rRNA gene sequencing. The results showed that inulin27 significantly reduced total weight gain and systemic glucose levels, suggesting a DPn-specific effect on metabolic health. The study also observed shifts in gut microbial populations, with inulin7 promoting several beneficial taxa from the Bifidobacterium genera, whilst inducing a unique microbial composition compared to medium-chain (DPn 14) and long-chain inulin (DPn: 27). However, the impact of inulin on proinflammatory markers and lipid metabolism parameters was not statistically significant, possibly due to the short study duration. Inulin with a higher DPn has a more pronounced effect on mitigating HFD-induced metabolic health deterioration, whilst inulin7 is particularly effective at inducing healthy microbial shifts. These findings highlight the benefits of inulin as a dietary adjuvant in obesity management and the importance of DPn in optimizing performance.
Collapse
Affiliation(s)
- Amin Ariaee
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.A.); (A.W.); (C.A.P.)
| | - Hannah R. Wardill
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5000, Australia;
- Supportive Oncology Research Group, Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Anthony Wignall
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.A.); (A.W.); (C.A.P.)
| | - Clive A. Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.A.); (A.W.); (C.A.P.)
| | - Paul Joyce
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.A.); (A.W.); (C.A.P.)
| |
Collapse
|
8
|
Bekar C, Ozmen O, Ozkul C, Ayaz A. Inulin protects against the harmful effects of dietary emulsifiers on mice gut microbiome. PeerJ 2024; 12:e17110. [PMID: 38525281 PMCID: PMC10961058 DOI: 10.7717/peerj.17110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Background The prevalence of inflammatory bowel diseases is increasing, especially in developing countries, with adoption of Western-style diet. This study aimed to investigate the effects of two emulsifiers including lecithin and carboxymethyl cellulose (CMC) on the gut microbiota, intestinal inflammation and the potential of inulin as a means to protect against the harmful effects of emulsifiers. Methods In this study, male C57Bl/6 mice were divided into five groups (n:6/group) (control, CMC, lecithin, CMC+inulin, and lecithin+inulin). Lecithin and CMC were diluted in drinking water (1% w/v) and inulin was administered daily at 5 g/kg for 12 weeks. Histological examination of the ileum and colon, serum IL-10, IL-6, and fecal lipocalin-2 levels were analyzed. 16S rRNA gene V3-V4 region amplicon sequencing was performed on stool samples. Results In the CMC and lecithin groups, shortening of the villus and a decrease in goblet cells were observed in the ileum and colon, whereas inulin reversed this effect. The lipocalin level, which was 9.7 ± 3.29 ng in the CMC group, decreased to 4.1 ± 2.98 ng with the administration of inulin. Bifidobacteria and Akkermansia were lower in the CMC group than the control, while they were higher in the CMC+inulin group. In conclusion, emulsifiers affect intestinal health negatively by disrupting the epithelial integrity and altering the composition of the microbiota. Inulin is protective on their harmful effects. In addition, it was found that CMC was more detrimental to microbiota composition than lecithin.
Collapse
Affiliation(s)
- Cansu Bekar
- Department of Nutrition and Dietetics, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ceren Ozkul
- Department of Pharmaceutical Microbiology, Hacettepe University, Ankara, Turkey
| | - Aylin Ayaz
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Xie Z, He W, Gobbi A, Bertram HC, Nielsen DS. The effect of in vitro simulated colonic pH gradients on microbial activity and metabolite production using common prebiotics as substrates. BMC Microbiol 2024; 24:83. [PMID: 38468200 PMCID: PMC10926653 DOI: 10.1186/s12866-024-03235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND The interplay between gut microbiota (GM) and the metabolization of dietary components leading to the production of short-chain fatty acids (SCFAs) is affected by a range of factors including colonic pH and carbohydrate source. However, there is still only limited knowledge on how the GM activity and metabolite production in the gastrointestinal tract could be influenced by pH and the pH gradient increases along the colon. RESULTS Here we investigate the effect of pH gradients corresponding to levels typically found in the colon on GM composition and metabolite production using substrates inulin, lactose, galactooligosaccharides (GOS), and fructooligosaccharide (FOS) in an in vitro colon setup. We investigated 3 different pH regimes (low, 5.2 increasing to 6.4; medium, 5.6 increasing to 6.8 and high, 6.0 increasing to 7.2) for each fecal inoculum and found that colonic pH gradients significantly influenced in vitro simulated GM structure, but the influence of fecal donor and substrate was more pronounced. Low pH regimes strongly influenced GM with the decreased relative abundance of Bacteroides spp. and increased Bifidobacterium spp. Higher in vitro simulated colonic pH promoted the production of SCFAs in a donor- and substrate-dependent manner. The butyrate producer Butyricimonas was enriched at higher pH conditions, where also butyrate production was increased for inulin. The relative abundance of Phascolarctobacterium, Bacteroides, and Rikenellaceae also increased at higher colonic pH, which was accompanied by increased production of propionate with GOS and FOS as substrates. CONCLUSIONS Together, our results show that colonic substrates such as dietary fibres influence GM composition and metabolite production, not only by being selectively utilized by specific microbes, but also because of their SCFA production, which in turn also influences colonic pH and overall GM composition and activity. Our work provides details about the effect of the gradients of rising pH from the proximal to distal colon on fermenting dietary substrates in vitro and highlights the importance of considering pH in GM research.
Collapse
Affiliation(s)
- Zhuqing Xie
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark.
| | - Weiwei He
- Department of Food Science, Aarhus University, Aarhus N, Denmark
- Present Address: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Alex Gobbi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Present Address: European Food and Safety Authority, Parma, Italy
| | | | | |
Collapse
|
10
|
Ishnaiwer M, Le Bastard Q, Naour M, Zeman M, Dailly E, Montassier E, Batard E, Dion M. Efficacy of an inulin-based treatment on intestinal colonization by multidrug-resistant E. coli: insight into the mechanism of action. Gut Microbes 2024; 16:2347021. [PMID: 38685762 PMCID: PMC11062366 DOI: 10.1080/19490976.2024.2347021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Inulin, an increasingly studied dietary fiber, alters intestinal microbiota. The aim of this study was to assess whether inulin decreases intestinal colonization by multidrug resistant E. coli and to investigate its potential mechanisms of action. Mice with amoxicillin-induced intestinal dysbiosis mice were inoculated with extended spectrum beta-lactamase producing E. coli (ESBL-E. coli). The combination of inulin and pantoprazole (IP) significantly reduced ESBL-E. coli fecal titers, whereas pantoprazole alone did not and inulin had a delayed and limited effect. Fecal microbiome was assessed using shotgun metagenomic sequencing and qPCR. The efficacy of IP was predicted by increased abundance of 74 taxa, including two species of Adlercreutzia. Preventive treatments with A. caecimuris or A. muris also reduced ESBL-E. coli fecal titers. Fecal microbiota of mice effectively treated by IP was enriched in genes involved in inulin catabolism, production of propionate and expression of beta-lactamases. They also had increased beta-lactamase activity and decreased amoxicillin concentration. These results suggest that IP act through production of propionate and degradation of amoxicillin by the microbiota. The combination of pantoprazole and inulin is a potential treatment of intestinal colonization by multidrug-resistant E. coli. The ability of prebiotics to promote propionate and/or beta-lactamase producing bacteria may be used as a screening tool to identify potential treatments of intestinal colonization by multidrug resistant Enterobacterales.
Collapse
Affiliation(s)
- Murad Ishnaiwer
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et du cancer, IICiMed, Nantes, France
- College of Applied Sciences, Palestine Polytechnic University, Hebron, Palestine
| | - Quentin Le Bastard
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et du cancer, IICiMed, Nantes, France
- Emergency Department, CHU Nantes, Nantes, France
| | | | - Michal Zeman
- Veterinary Research Institute, Brno, Czech Republic
| | - Eric Dailly
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et du cancer, IICiMed, Nantes, France
- CHU Nantes, Clinical Pharmacology Department, Nantes, France
| | - Emmanuel Montassier
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et du cancer, IICiMed, Nantes, France
- Emergency Department, CHU Nantes, Nantes, France
- Center for Research in Transplantation and Translational Immunology, Nantes Université, Inserm, CHU Nantes, Nantes, France
| | - Eric Batard
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et du cancer, IICiMed, Nantes, France
- Emergency Department, CHU Nantes, Nantes, France
| | - Michel Dion
- Nantes Université, CHU Nantes, Cibles et médicaments des infections et du cancer, IICiMed, Nantes, France
| |
Collapse
|
11
|
Yin P, Du T, Yi S, Zhang C, Yu L, Tian F, Chen W, Zhai Q. Response differences of gut microbiota in oligofructose and inulin are determined by the initial gut Bacteroides/Bifidobacterium ratios. Food Res Int 2023; 174:113598. [PMID: 37986462 DOI: 10.1016/j.foodres.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Prebiotics are known to modulate the gut microbiota, but there is host variability, mainly due to differences in carbohydrate-utilisation by gut microbiota. Bifidobacterium and Bacteroides are powerful carbohydrate-utilising bacteria, and the ratio of both is closely related to the utilisation of prebiotics. However, the differential impact of prebiotics on the composition and function of the gut microbiota and its metabolites in participants with different Bacteroides/Bifidobacterium (Ba/Bi) ratios have not been studied. Here, we conducted a 4-week randomised double-blind, parallel four-arm trial using two prebiotics (oligofructose and inulin) in two populations with high Ba/Bi (H) and low Ba/Bi (L). The response to prebiotics in both populations was influenced by the baseline microbiota background specificity. Notably, at an overall level, FOS was slightly better than inulin in modulating the gut microbiota. Difference in gut microbiota regulation by FOS across microbiota contexts were significant between the two groups. Butyric acid-producing bacteria were significantly more abundant in H and further elevated butyric acid and related metabolite levels, with H more likely to benefit from the FOS intervention. The two groups showed only metabolic differences in their response to inulin, with L showing a significant increase in propionic acid and being enriched in glycolysis functions, whereas H was enriched in amino acids and aminoglycolysis functions. Overall, these results provide a basis for selecting appropriate prebiotics for participants with different gut backgrounds.
Collapse
Affiliation(s)
- Pingping Yin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ting Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shanrong Yi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
von Süßkind-Schwendi M, Dötsch A, Haberland V, Ferrario P, Krüger R, Louis S, Döring M, Graf D. Addition of soluble fiber to standard purified diets is important for gut morphology in mice. Sci Rep 2023; 13:19340. [PMID: 37935741 PMCID: PMC10630450 DOI: 10.1038/s41598-023-46331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Purified diets (PD) increase standardization and repeatability in rodent studies but lead to differences in the phenotype of animals compared to grain-based "chow" diets. PD contain less fiber and are often devoid of soluble fiber, which can impact gut health. Thus, the aim of the present study was to modify the PD AIN93G by addition of soluble fiber, to promote more natural gut development as seen with chow diets. One hundred twenty male C57BL/6J mice were fed over 12 weeks either a chow diet, AIN93G or one of three modified AIN93G with increased fiber content and different ratios of soluble fiber to cellulose. Gut health was assessed through histological and immunohistochemical parameters and gut barrier gene expression. Gut microbiota composition was analyzed and its activity characterized through short chain fatty acid (SCFA) quantification. Feeding AIN93G led to tissue atrophy, a less diverse microbiota and a lower production of SCFA compared to chow diet. The addition of soluble fiber mitigated these effects, leading to intermediate colon and caecum crypt lengths and microbiota composition compared to both control diets. In conclusion, the addition of soluble fibers in PDs seems essential for gut morphology as well as a diverse and functional gut microbiome.
Collapse
Affiliation(s)
- Marietta von Süßkind-Schwendi
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Andreas Dötsch
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Vivien Haberland
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Paola Ferrario
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Ralf Krüger
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Maik Döring
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
- National Reference Centre for Authentic Food, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, E.-C.-Baumann-Straße 20, 95326, Kulmbach, Germany
| | - Daniela Graf
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
13
|
Li L, Yan S, Liu S, Wang P, Li W, Yi Y, Qin S. In-depth insight into correlations between gut microbiota and dietary fiber elucidates a dietary causal relationship with host health. Food Res Int 2023; 172:113133. [PMID: 37689844 DOI: 10.1016/j.foodres.2023.113133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023]
Abstract
Dietary fiber exerts a wide range of biological benefits on host health, which not only provides a powerful source of nutrition for gut microbiota but also supplies key microbial metabolites that directly affect host health. This review mainly focuses on the decomposition and metabolism of dietary fiber and the essential genera Bacteroides and Bifidobacterium in dietary fiber fermentation. Dietary fiber plays an essential role in host health by impacting outcomes related to obesity, enteritis, immune health, cancer and neurodegenerative diseases. Additionally, the gut microbiota-independent pathway of dietary fiber affecting host health is also discussed. Personalized dietary fiber intake combined with microbiome, genetics, epigenetics, lifestyle and other factors has been highlighted for development in the future. A higher level of evidence is needed to demonstrate which microbial phenotype benefits from which kind of dietary fiber. In-depth insights into the correlation between gut microbiota and dietary fiber provide strong theoretical support for the precise application of dietary fiber, which elucidates a dietary causal relationship with host health.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Shuling Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangjiang Liu
- Shandong University, Qingdao 266237, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Yuetao Yi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
14
|
Vega-Sagardía M, Delgado J, Ruiz-Moyano S, Garrido D. Proteomic analyses of Bacteroides ovatus and Bifidobacterium longum in xylan bidirectional culture shows sugar cross-feeding interactions. Food Res Int 2023; 170:113025. [PMID: 37316088 DOI: 10.1016/j.foodres.2023.113025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
The intestinal microbiome is a community of anaerobic microorganisms whose activities significantly impact human health. Its composition can be modulated by consuming foods rich in dietary fiber, such as xylan, a complex polysaccharide that can be considered an emerging prebiotic. In this work, we evaluated how certain gut bacteria acted as primary degraders, fermenting dietary fibers, and releasing metabolites that other bacteria can further use. Different bacterial strains of Lactobacillus, Bifidobacterium, and Bacteroides were evaluated for their ability to consume xylan and interact with one another. Results from unidirectional assays gave indications of possible cross-feeding between bacteria using xylan as a carbon source. Bidirectional assays showed that Bifidobacterium longum PT4 increased its growth in the presence of Bacteroides ovatus HM222. Proteomic analyses indicated that B. ovatus HM222 synthesizes enzymes facilitating xylan degradation, such as β-xylanase, arabinosidase, L-arabinose isomerase, and xylosidase. Interestingly, the relative abundance of these proteins remains largely unaffected in the presence of Bifidobacterium longum PT4. In the presence of B. ovatus, B. longum PT4 increased the production of enzymes such as α-L-arabinosidase, L-arabinose isomerase, xylulose kinase, xylose isomerase, and sugar transporters. These results show an example of positive interaction between bacteria mediated by xylan consumption. Bacteroides degraded this substrate to release xylooligosaccharides, or monosaccharides (xylose, arabinose), which might support the growth of secondary degraders such as B. longum.
Collapse
Affiliation(s)
- Marco Vega-Sagardía
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Josué Delgado
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, Universidad de Extremadura, Avenida de las Ciencias s/n, 10003 Caceres, Spain.
| | - Santiago Ruiz-Moyano
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.
| |
Collapse
|
15
|
Chen X, de Vos P. Structure-function relationship and impact on the gut-immune barrier function of non-digestible carbohydrates and human milk oligosaccharides applicable for infant formula. Crit Rev Food Sci Nutr 2023; 64:8325-8345. [PMID: 37035930 DOI: 10.1080/10408398.2023.2199072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Human milk oligosaccharides (hMOs) in mothers' milk play a crucial role in guiding the colonization of microbiota and gut-immune barrier development in infants. Non-digestible carbohydrates (NDCs) such as synthetic single hMOs, galacto-oligosaccharides (GOS), inulin-type fructans and pectin oligomers have been added to infant formula to substitute some hMOs' functions. HMOs and NDCs can modulate the gut-immune barrier, which is a multiple-layered functional unit consisting of microbiota, a mucus layer, gut epithelium, and the immune system. There is increasing evidence that the structures of the complex polysaccharides may influence their efficacy in modulating the gut-immune barrier. This review focuses on the role of different structures of individual hMOs and commonly applied NDCs in infant formulas in (i) direct regulation of the gut-immune barrier in a microbiota-independent manner and in (ii) modulation of microbiota composition and microbial metabolites of these polysaccharides in a microbiota-dependent manner. Both have been shown to be essential for guiding the development of an adequate immune barrier, but the effects are very dependent on the structural features of hMO or NDC. This knowledge might lead to tailored infant formulas for specific target groups.
Collapse
Affiliation(s)
- Xiaochen Chen
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
16
|
Lee MH, Kim J, Kim GH, Kim MS, Yoon SS. Effects of Lactiplantibacillus plantarum FBT215 and prebiotics on the gut microbiota structure of mice. Food Sci Biotechnol 2023; 32:481-488. [PMID: 36911336 PMCID: PMC9992507 DOI: 10.1007/s10068-022-01185-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 12/11/2022] Open
Abstract
Imbalanced intestinal microbiota is associated with diseases, including inflammatory bowel disease and obesity, and diet can alter the structure of the gut microbiota. In this study, the effects of dietary treatments including the potential probiotic Lactiplantibacillus plantarum FBT215 with/without prebiotics on the intestinal microbiota composition of mice were investigated. Lactiplantibacillus plantarum FBT215 administration significantly decreased the Firmicutes/Bacteroidetes ratio and increased the abundance of Muribaculum and Duncaniella. The diversity within and between groups was measured according to α and β diversity metrics, respectively. The Shannon index of α diversity decreased significantly in all treatment groups except the probiotic group, although this group showed an increase in the Chao1 index. Principal coordinate analysis of β diversity showed that the groups had different species distributions. Finally, gamma-aminobutyric acid (GABA) concentration increased in groups fed L. plantarum FBT215. These findings improve our understanding of the association between the gut microbiota structure and specific probiotic/prebiotic-containing diets.
Collapse
Affiliation(s)
- Myung-Hyun Lee
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Jaegon Kim
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Gyeong-Hwuii Kim
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Min-Sun Kim
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Sung-Sik Yoon
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| |
Collapse
|
17
|
Tang J, Chen X, Shi H, Zhang M, Zhou Z, Zhang C, Ke T, Kong D, Li C. Prebiotic inulin nanocoating for pancreatic islet surface engineering. Biomater Sci 2023; 11:1470-1485. [PMID: 36602201 DOI: 10.1039/d2bm01009g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic islet surface engineering has been proposed as an "easy-to-adopt" approach to enhance post-transplantation islet engraftment for treatment against diabetes. Inulin is an FDA-approved dietary prebiotic with reported anti-diabetic, anti-inflammatory, anti-hypoxic and pro-angiogenic properties. We therefore assessed whether inulin would be a viable option for islet surface engineering. Inulin was oxidized to generate inulin-CHO, which would bind to the cell membrane via covalent bond formation between -CHO and -NH2 across the islet cell membrane. In vitro assessments demonstrated enhanced islet viability and better glucose-induced insulin secretion from inulin-coated (5 mg mL-1) islets, which was accompanied by enhanced revascularization, shown as significantly enhanced tube formation and branching of islet endothelial MS1 cells following co-culture with inulin-coated islets. Reduction of cytokine-induced cell death was also observed from inulin-coated islets following exposure to pro-inflammatory cytokine LPS. LPS-induced ROS production was significantly dampened by 44% in inulin-coated islets when compared to controls. RNA-seq analysis of inulin-coated and control islets identified expression alterations of genes involved in islet function, vascular formation and immune regulation, supporting the positive impact of inulin on islet preservation. In vivo examination using streptozotocin (STZ)-induced hyperglycemic mice further showed moderately better maintained plasma glucose levels in mice received transplantation of inulin-coated islets, attributable to ameliorated CD45+ immune cell infiltration and improved in vivo graft vascularization. We therefore propose islet surface engineering with inulin as safe and beneficial, and further assessment is required to verify its applicability in clinical islet transplantation.
Collapse
Affiliation(s)
- Jianghai Tang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Xuanjin Chen
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Hang Shi
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Zhimin Zhou
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Tingyu Ke
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Yunnan 650101, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Centre of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
18
|
Cross-linked enzyme aggregates (combi-CLEAs) derived from levansucrase and variant inulosucrase are highly efficient catalysts for the synthesis of levan-type fructooligosaccharides. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Yao M, Shao X, Wei Y, Zhang X, Wang H, Xu F. Dietary fiber ameliorates lead-induced gut microbiota disturbance and alleviates neuroinflammation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6795-6803. [PMID: 35704270 DOI: 10.1002/jsfa.12074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Dietary fiber (DF) is a carbohydrate from the edible part of plants and has the functions of promoting gastrointestinal motility, regulating gut microbiota (GM) and improving health. Lead is a non-essential toxic heavy metal that can accumulate in the environment over time and enter the body through the respiratory tract, skin and gastrointestinal tract. Lead not only causes disturbances in GM but also leads to loss of homeostasis of immune functions, causes neuronal damage and results in neuroinflammation. The scientific literature has reported that DF had anti-inflammatory activity as a natural product. This review highlights the role of DF and its metabolic products in alleviating lead-induced neuroinflammation by inducing changes in the species and quantity of GM and regulating the immune system, providing a potential dietary protective strategy for lead-induced disease. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Yao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Yingying Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Xin Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Hongfei Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Feng Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| |
Collapse
|
20
|
You S, Ma Y, Yan B, Pei W, Wu Q, Ding C, Huang C. The promotion mechanism of prebiotics for probiotics: A review. Front Nutr 2022; 9:1000517. [PMID: 36276830 PMCID: PMC9581195 DOI: 10.3389/fnut.2022.1000517] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Prebiotics and probiotics play a positive role in promoting human nutrition and health. Prebiotics are compounds that cannot be digested by the host, but can be used and fermented by probiotics, so as to promote the reproduction and metabolism of intestinal probiotics for the health of body. It has been confirmed that probiotics have clinical or health care functions in preventing or controlling intestinal, respiratory, and urogenital infections, allergic reaction, inflammatory bowel disease, irritable bowel syndrome and other aspects. However, there are few systematic summaries of these types, mechanisms of action and the promotion relationship between prebiotics and probiotic. Therefore, we summarized the various types of prebiotics and probiotics, their individual action mechanisms, and the mechanism of prebiotics promoting probiotics in the intestinal tract. It is hoped this review can provide new ideas for the application of prebiotics and probiotics in the future.
Collapse
Affiliation(s)
- Siyong You
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Yuchen Ma
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Qiming Wu
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Chao Ding
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Caoxing Huang
| |
Collapse
|
21
|
Gu J, Cui S, Tang X, Liu Z, Zhao J, Zhang H, Mao B, Chen W. Effects of fructooligosaccharides (FOS) on the composition of cecal and fecal microbiota and the quantitative detection of FOS-metabolizing bacteria using species-specific primers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5301-5311. [PMID: 35312198 DOI: 10.1002/jsfa.11884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fructooligosaccharides (FOS) are a kind of prebiotic. Previous studies concerning the effect of FOS on intestinal microbiota have focused on Bifidobacterium and Lactobacillus. However, the presence of other FOS-utilizing bacteria makes it necessary to investigate the quantitative changes in these bacterial species in the intestine after FOS intake. In this study, the composition of cecal and fecal microbiota was analyzed using MiSeq sequencing, and the abundance of FOS-utilizing bacteria was detected using quantitative polymerase chain reaction after the oral administration of FOS. RESULTS Species-specific primers for FOS-utilizing bacteria were designed with superior amplification efficiency for quantification. After FOS intervention, the relative abundance of Bifidobacterium pseudolongum in feces increased to 17.37% and the abundance reached 2.28 × 1010 CFU g-1 . The abundance of Bifidobacterium longum and Bifidobacterium breve did not change significantly. Whereas the abundance of Ligilactobacillus murinus decreased, that of Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, and Lacticaseibacillus rhamnosus remained at approximately 104 CFU g-1 . CONCLUSION Species-specific primers for FOS-utilizing bacteria were successfully developed, and we confirmed that FOS significantly increased the relative abundance and the abundance of B. pseudolongum in mice, while decreasing the proportion of Lactobacillus. The detection of these species using 16S ribosomal DNA sequencing and quantitative polymerase chain reaction showed the same results. Further investigations are needed to reveal the response of the intestinal microbiota to different FOS compositions. These techniques will contribute to future studies about the composition and dynamics of the intestinal microflora. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiayu Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Dietary Inulin Supplementation Affects Specific Plasmalogen Species in the Brain. Nutrients 2022; 14:nu14153097. [PMID: 35956273 PMCID: PMC9370380 DOI: 10.3390/nu14153097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022] Open
Abstract
Plasmalogens (Pls) are glycerophospholipids that play critical roles in the brain. Evidence supports the role of diet and that of the gut microbiota in regulating brain lipids. We investigated the impact of dietary intake of inulin—a soluble fiber used as prebiotic—on the Pl content of the cortex in mice. No global modification in the Pl amounts was observed when evaluated by gas chromatographic analysis of dimethyl acetals (DMAs). However, the analysis of individual molecular species of Pls by liquid chromatography revealed a reduced abundance of major species of ethanolamine Pls (PlsEtn)―PE(P-18:0/22:6) and PE(P-34:1)―in the cortex of mice fed a diet supplemented with inulin. DMA and expression levels of genes (Far-1, Gnpat, Agps, Pla2g6 and Tmem86b) encoding key enzymes of Pl biosynthesis or degradation were not altered in the liver and in the cortex of mice exposed to inulin. In addition, the fatty acid profile and the amount of lyso forms derived from PlsEtn were not modified in the cortex by inulin consumption. To conclude, inulin affects the brain levels of major PlsEtn and further investigation is needed to determine the exact molecular mechanisms involved.
Collapse
|
23
|
Zhang Y, Hu J, Tan H, Zhong Y, Nie S. Akkermansia muciniphila, an important link between dietary fiber and host health. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Yang Y, Jia H, Lyu W, Furukawa K, Li X, Hasebe Y, Kato H. Dietary Eggshell Membrane Powder Improves Survival Rate and Ameliorates Gut Dysbiosis in Interleukin-10 Knockout Mice. Front Nutr 2022; 9:895665. [PMID: 35662934 PMCID: PMC9162118 DOI: 10.3389/fnut.2022.895665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel disease (IBD) is known to be associated with compositional and metabolic changes in the gut microbiota. The aim of this study was to investigate whether dietary eggshell membrane (ESM) improves survival rate or ameliorates gut dysbiosis in a spontaneous IBD model of interleukin-10 knockout (IL10−/−) mice. Female C57BL/6J wild-type (WT) and IL10−/− mice (KO) were fed an AIN-93G basal diet or an ESM diet (KOE) for 19 weeks. Gut microbiota profiles were analyzed via 16S rRNA sequencing, and short-chain fatty acids in cecal content were analyzed with high-performance liquid chromatography. The results demonstrated that ESM supplementation significantly improved the survival rate and body composition in KO mice. Alpha diversity analysis of the microbiota revealed that ESM supplementation significantly increased gut microbial diversity, which was decreased in IL10−/− mice. The Firmicutes/Bacteroidetes ratio was recovered to a normal level by ESM supplementation, suggesting that ESM helps maintain the compositional balance of the gut microbiota. ESM increased relative abundance of commensal bacterial Ruminococcus and Bacteroidales S24-7 and reduced the abundance of the proinflammatory-related bacterium, Enterobacteriaceae. Additionally, ESM supplementation promoted the production of butyrate in cecal contents and downregulated the expression of proinflammatory genes, including interleukin-1β (Il-1β) and tumor necrosis factor-α (Tnf-α) in IL10−/− mice colon, indicating anti-inflammatory functions. These findings suggest that ESM may be used as a beneficial dietary intervention for IBD.
Collapse
Affiliation(s)
- Yongshou Yang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Huijuan Jia
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Huijuan Jia
| | - Weida Lyu
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyohei Furukawa
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Xuguang Li
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Hisanori Kato
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Hisanori Kato
| |
Collapse
|
25
|
Selle A, Brosseau C, Dijk W, Duval A, Bouchaud G, Rousseaux A, Bruneau A, Cherbuy C, Mariadassou M, Cariou V, Barbarot S, Bodinier M. Prebiotic Supplementation During Gestation Induces a Tolerogenic Environment and a Protective Microbiota in Offspring Mitigating Food Allergy. Front Immunol 2022; 12:745535. [PMID: 35069524 PMCID: PMC8769244 DOI: 10.3389/fimmu.2021.745535] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
Food allergy is associated with alterations in the gut microbiota, epithelial barrier, and immune tolerance. These dysfunctions are observed within the first months of life, indicating that early intervention is crucial for disease prevention. Preventive nutritional strategies with prebiotics are an attractive option, as prebiotics such as galacto-oligosaccharides and inulin can promote tolerance, epithelial barrier reinforcement, and gut microbiota modulation. Nonetheless, the ideal period for intervention remains unknown. Here, we investigated whether galacto-oligosaccharide/inulin supplementation during gestation could protect offspring from wheat allergy development in BALB/cJRj mice. We demonstrated that gestational prebiotic supplementation promoted the presence of beneficial strains in the fecal microbiota of dams during gestation and partially during mid-lactation. This specific microbiota was transferred to their offspring and maintained to adulthood. The presence of B and T regulatory immune cell subsets was also increased in the lymph nodes of offspring born from supplemented mothers, suggestive of a more tolerogenic immune environment. Indeed, antenatal prebiotic supplementation reduced the development of wheat allergy symptoms in offspring. Our study thus demonstrates that prebiotic supplementation during pregnancy induces, in the offspring, a tolerogenic environment and a microbial imprint that mitigates food allergy development.
Collapse
Affiliation(s)
- Amandine Selle
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
| | - Carole Brosseau
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
| | - Wieneke Dijk
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
| | - Angéline Duval
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
| | - Grégory Bouchaud
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
| | - Anais Rousseaux
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
| | - Aurélia Bruneau
- Micalis Institute, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claire Cherbuy
- Micalis Institute, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mahendra Mariadassou
- MaIAGE, UR1404, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Jouy-en-Josas, France
| | - Véronique Cariou
- StatSC, École nationale vétérinaire, agroalimentaire et de l'alimentation de Nantes-Atlantique (ONIRIS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Nantes, France
| | - Sebastien Barbarot
- Department of Dermatology, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France.,Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) Pays de la Loire, UMR1280 PhAN, Nantes, France
| | - Marie Bodinier
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
| |
Collapse
|
26
|
Chen J, Wang Y, Pan J, Lu LW, Yu J, Liu B, Chen F, Deng H. Prebiotic Oligosaccharides Enhance Iron Absorption Via Modulation of Protein Expression and Gut Microbiota in a Dose‐response Manner in Iron‐deficient Growing Rats. Mol Nutr Food Res 2022; 66:e2101064. [DOI: 10.1002/mnfr.202101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jie‐Hua Chen
- Institute for Innovat ive Development of Food Industry Shenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study Shenzhen University Shenzhen 518060 China
- Department of Nutrition and food Hygiene School of Public Health Southern Medical University Guangzhou 510515 China
| | - Yiyuan Wang
- Department of Nutrition and food Hygiene School of Public Health Southern Medical University Guangzhou 510515 China
- Department of Nutrition and food Hygiene School of Public Health Southern Medical University, Guangzhou, China Zhuhai Maternity and Child Health Hospital Zhuhai 519001 China
| | - Jialiang Pan
- Department of Inspection and Quarantine School of Public Health Southern Medical University Guangzhou 510515 China
| | - Louise Weiwei Lu
- Human Nutrition Unit School of Biological Sciences University of Auckland Auckland 1010 New Zealand
- High Value Nutrition National Science Challenge Auckland 1142 New Zealand
| | - Jianfeng Yu
- Institute for Innovat ive Development of Food Industry Shenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study Shenzhen University Shenzhen 518060 China
| | - Bin Liu
- Institute for Innovat ive Development of Food Industry Shenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study Shenzhen University Shenzhen 518060 China
| | - Feng Chen
- Institute for Innovat ive Development of Food Industry Shenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study Shenzhen University Shenzhen 518060 China
| | - Hong Deng
- Department of Nutrition and food Hygiene School of Public Health Southern Medical University Guangzhou 510515 China
| |
Collapse
|
27
|
Zou YF, Li CY, Fu YP, Feng X, Peng X, Feng B, Li LX, Jia RY, Huang C, Song X, Lv C, Ye G, Zhao L, Li YP, Zhao XH, Yin LZ, Yin ZQ. Restorative Effects of Inulin From Codonopsis pilosula on Intestinal Mucosal Immunity, Anti-Inflammatory Activity and Gut Microbiota of Immunosuppressed Mice. Front Pharmacol 2022; 13:786141. [PMID: 35237158 PMCID: PMC8882912 DOI: 10.3389/fphar.2022.786141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
An inulin (CPPF), isolated from a traditional Chinese herbal medicine Codonopsis pilosula, was characterized and demonstrated with potential prebiotic activity in vitro before. Based on its non-digested feature, the intestinal mucosa and microbiota modulatory effects in vivo on immunosuppressed mice were investigated after oral administration of 200, 100 and 50 mg/kg of CPPF for 7 days. It was demonstrated that the secretions of sIgA and mucin 2 (Muc2) in ileum were improved by CPPF, and the anti-inflammatory activities in different intestine parts were revealed. The intestine before colon could be the target active position of CPPF. As a potential prebiotic substance, a gut microbiota restorative effect was also presented by mainly modulating the relative abundance of Eubacteriales, including Oscillibacter, unidentified Ruminococcus and Lachnospiraceae after high-throughput pyrosequencing of V4 region of 16S rRNA analysis. All these results indicated that this main bioactive ingredient inulin from C. pilosula was a medicinal prebiotic with enhancing mucosal immune, anti-inflammatory and microbiota modulatory activities.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yuan-Feng Zou, ; Zhong-Qiong Yin,
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin Feng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang-Ping Li
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Zi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yuan-Feng Zou, ; Zhong-Qiong Yin,
| |
Collapse
|
28
|
Zhang YY, Zhuang D, Wang HY, Liu CY, Lv GP, Meng LJ. Preparation, characterization, and bioactivity evaluation of oligosaccharides from Atractylodes lancea (Thunb.) DC. Carbohydr Polym 2022; 277:118854. [PMID: 34893263 DOI: 10.1016/j.carbpol.2021.118854] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022]
Abstract
Sixteen oligosaccharide monomers with the degree of polymerization 3 to 18 (DP 3 to DP 18) and three active fractions (DP 3-9, DP 8-11, and DP 11-17) were separated from Atractylodes lancea (Thunb.) DC. by optimized fast protein liquid chromatography coupled with refractive index detector (FPLC-RID) and preparation hydrophilic interaction chromatography (Pre-HILIC). Gas chromatography-mass spectrometer (GC-MS), liquid chromatography tandem mass spectrometry (LC-MS/MS), nuclear magnetic resonance (NMR) spectroscopy, and methylation analysis showed that the oligosaccharide in A. lancea was 1-kestose [β-D-fructofuranosyl-(2 → 1)-β-D-fructofuranosyl-(2 → 1)-α-D-glucopyranoside] (inulin-type fructooligosaccharides, FOS). Particularly, DP 3-9 showed the best capacity in stimulating phagocytic, NO, and cytokines production on RAW264.7 cells than any other purified oligosaccharide monomers and active fractions. It could also activate T-cells in Peyer's patch cells and enhance the production of colony stimulation factors. Besides, FPLC-RID showed a good capacity for large-scale preparation of DP 3-9 with the recovery of more than 93%. The bioactivity of sixteen FOS monomers (DP 3 to DP 18) and three FOS fractions (DP 3-9, DP 8-11, and DP 11-17) investigated in this study are beneficial for the utilization of FOS as a functional ingredient in novel product development.
Collapse
Affiliation(s)
- Ying-Yue Zhang
- School of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Dan Zhuang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Hui-Yang Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Chun-Yao Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Guang-Ping Lv
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China; National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Li-Juan Meng
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
29
|
Pérez-Monter C, Álvarez-Arce A, Nuño-Lambarri N, Escalona-Nández I, Juárez-Hernández E, Chávez-Tapia NC, Uribe M, Barbero-Becerra VJ. Inulin Improves Diet-Induced Hepatic Steatosis and Increases Intestinal Akkermansia Genus Level. Int J Mol Sci 2022; 23:ijms23020991. [PMID: 35055177 PMCID: PMC8782000 DOI: 10.3390/ijms23020991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023] Open
Abstract
Hepatic steatosis is characterized by triglyceride accumulation within hepatocytes in response to a high calorie intake, and it may be related to intestinal microbiota disturbances. The prebiotic inulin is a naturally occurring polysaccharide with a high dietary fiber content. Here, we evaluate the effect of inulin on the intestinal microbiota in a non-alcoholic fatty liver disease model. Mice exposed to a standard rodent diet or a fat-enriched diet, were supplemented or not, with inulin. Liver histology was evaluated with oil red O and H&E staining and the intestinal microbiota was determined in mice fecal samples by 16S rRNA sequencing. Inulin treatment effectively prevents liver steatosis in the fat-enriched diet group. We also observed that inulin re-shaped the intestinal microbiota at the phylum level, were Verrucomicrobia genus significantly increased in the fat-diet group; specifically, we observed that Akkermansia muciniphila increased by 5-fold with inulin supplementation. The family Prevotellaceae was also significantly increased in the fat-diet group. Overall, we propose that inulin supplementation in liver steatosis-affected animals, promotes a remodeling in the intestinal microbiota composition, which might regulate lipid metabolism, thus contributing to tackling liver steatosis.
Collapse
Affiliation(s)
- Carlos Pérez-Monter
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
- Correspondence: (C.P.-M.); (V.J.B.-B.)
| | - Alejandro Álvarez-Arce
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, Mexico;
| | - Natalia Nuño-Lambarri
- Unidad de Investigación Traslacional, Fundación Clínica Médica Sur, Mexico City 14050, Mexico; (N.N.-L.); (E.J.-H.); (N.C.C.-T.); (M.U.)
| | - Ivonne Escalona-Nández
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Eva Juárez-Hernández
- Unidad de Investigación Traslacional, Fundación Clínica Médica Sur, Mexico City 14050, Mexico; (N.N.-L.); (E.J.-H.); (N.C.C.-T.); (M.U.)
| | - Norberto C. Chávez-Tapia
- Unidad de Investigación Traslacional, Fundación Clínica Médica Sur, Mexico City 14050, Mexico; (N.N.-L.); (E.J.-H.); (N.C.C.-T.); (M.U.)
| | - Misael Uribe
- Unidad de Investigación Traslacional, Fundación Clínica Médica Sur, Mexico City 14050, Mexico; (N.N.-L.); (E.J.-H.); (N.C.C.-T.); (M.U.)
| | - Varenka J. Barbero-Becerra
- Unidad de Investigación Traslacional, Fundación Clínica Médica Sur, Mexico City 14050, Mexico; (N.N.-L.); (E.J.-H.); (N.C.C.-T.); (M.U.)
- Correspondence: (C.P.-M.); (V.J.B.-B.)
| |
Collapse
|
30
|
Low molecular weight fucoidan fraction LF2 improves metabolic syndrome via up-regulating PI3K-AKT-mTOR axis and increasing the abundance of Akkermansia muciniphila in the gut microbiota. Int J Biol Macromol 2021; 193:789-798. [PMID: 34743939 DOI: 10.1016/j.ijbiomac.2021.10.188] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 12/20/2022]
Abstract
Metabolic syndrome (MetS) is a pathological condition of a variety of metabolic abnormalities, which requires more urgent treatment and intervention. Fucoidan has been recommended as a supplement for health enhancement and disease management. Here, we first propose that the beneficial effect of low molecular weight fucoidan fraction LF2 in regulating metabolic syndrome induced by high-fat diet is similar to that of metformin, in terms of molecular mechanism and gut microbiota. The study found that LF2 significantly reduces fasting blood glucose, enhances insulin sensitivity and restores insulin homeostasis and lipid homeostasis. Moreover, LF2 reduced liver oxidative stress and inflammation, and improved hepatocyte steatosis. To decipher the mechanism behind this therapeutic effect, both the molecular mechanisms and gut microbiota were further analyzed. LF2 inhibited the activation of PI3K-Akt-mTOR axis and decreased the expression of SREBP-1c and PPARγ in liver. Interestingly, we found that LF2 and metformin have similar effects on gut microbiota, increasing the proportion of Verrucomicrobia and enriching the abundance of Akkermansia muciniphila, which is beneficial to host health. Collectively, our research clarifies the new application of fucoidan as a functional food for anti-MetS, and provides a new insight for fucoidan to exert systemic therapeutic effects from the perspective of molecular mechanism and gut microbiota.
Collapse
|
31
|
Wangpaiboon K, Klaewkla M, Charoenwongpaiboon T, Vongkusolkit N, Panpetch P, Kuttiyawong K, Visessanguan W, Pichyangkura R. Synergistic enzyme cocktail between levansucrase and inulosucrase for superb levan-type fructooligosaccharide synthesis. Enzyme Microb Technol 2021; 154:109960. [PMID: 34923315 DOI: 10.1016/j.enzmictec.2021.109960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/17/2021] [Accepted: 12/04/2021] [Indexed: 11/24/2022]
Abstract
Inulosucrase (ISC) and levansucrase (LSC) utilise sucrose and produce inulin- and levan-type fructans, respectively. This study aims to propose a new strategy to improve levan-type fructooligosaccharide (L-FOS) production. The effect of ISC/ LSC -mixed reaction was elucidated on L-FOS production. The presence of ISC in the LSC reaction significantly leads to the higher production of L-FOSs as the main products. Furthermore, the different ratios between ISC and LSC affected the distribution of L-FOSs. A greater amount of ISC compared to LSC promoted the synthesis of short-chain L-FOSs. Conversely, when LSC was increased, the synthesis of longer-chain L-FOSs was enhanced. The addition of trisaccharide mixtures obtained from either a single ISC or LSC reaction could enhance L-FOSs synthesis in the LSC reaction. Analysis of these trisaccharides revealed that most species of the oligosaccharides were similar, with 1-kestose being the major one. The supplement of only 1-kestose in the LSC reaction showed similar results to those of the reaction in the presence of trisaccharide mixtures. Moreover, the results were supported by molecular dynamics simulations. This work not only provides an improvement in L-FOS production but also revealed and supported some insights into the mechanism of fructansucrases.
Collapse
Affiliation(s)
- Karan Wangpaiboon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Methus Klaewkla
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Napas Vongkusolkit
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA
| | - Pawinee Panpetch
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kamontip Kuttiyawong
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholayothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
32
|
Kumari M, Singh P, Nataraj BH, Kokkiligadda A, Naithani H, Azmal Ali S, Behare PV, Nagpal R. Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food Res Int 2021; 150:110716. [PMID: 34865747 DOI: 10.1016/j.foodres.2021.110716] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/07/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022]
Abstract
Emerging evidence and an in-depth understanding of the microbiome have helped in identifying beneficial commensals and their therapeutic potentials. Specific commensal taxa/ strains of the human gut microbiome have been positively associated with human health and recently termed as next-generation probiotics (NGPs). Of these, Akkermansia muciniphila, Ruminococcus bromii, Faecalibacterium prausnitzii, Anaerobutyricum hallii, and Roseburia intestinalis are the five most relevant gut-derived NGPs that have demonstrated therapeutic potential in managing metabolic diseases. Specific and natural dietary interventions can modulate the abundance and activity of these beneficial bacteria in the gut. Hence, the understanding of targeted stimulation of specific NGP by specific probiotic-targeted diets (PTD) is indispensable for the rational application of their combination. The supplementation of NGP with its specific PTD will help the strain(s) to compete with harmful microbes and acquire its niche. This combination would enhance the effectiveness of NGPs to be used as "live biotherapeutic products" or food nutraceuticals. Under the current milieu, we review various PTDs that influence the abundance of specific potential NGPs, and contemplates potential interactions between diet, microbes, and their effects on host health. Taking into account the study mentioned, we propose that combining NGPs will provide an alternate solution for developing the new diet in conjunction with PTD.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Basavaprabhu H Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Anusha Kokkiligadda
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Harshita Naithani
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India.
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
33
|
Li L, Zhang Y, Speakman JR, Hu S, Song Y, Qin S. The gut microbiota and its products: Establishing causal relationships with obesity related outcomes. Obes Rev 2021; 22:e13341. [PMID: 34490704 DOI: 10.1111/obr.13341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Gut microorganisms not only participate in the metabolism of carbohydrate, lipids, protein, and polypeptides in the intestine but also directly affect the metabolic phenotypes of the host. Although many studies have described the apparent effects of gut microbiota on human health, the development of metagenomics and culturomics in the past decade has generated a large amount of evidence suggesting a causal relationship between gut microbiota and obesity. The interaction between the gut microbiota and host is realized by microbial metabolites with multiple biological functions. We concentrated here on several representative beneficial species connected with obesity as well as the mechanisms, with particular emphasis on microbiota-dependent metabolites. Finally, we consider the potential clinical significance of these relationships to fuel the conception and realization of novel therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yubing Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Life Sciences, Yantai University, Yantai, China
| | - John Roger Speakman
- Shenzhen Key Laboratory for Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shanliang Hu
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Yipeng Song
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
34
|
Lee JG, Lee J, Lee AR, Jo SV, Park CH, Han DS, Eun CS. Impact of short-chain fatty acid supplementation on gut inflammation and microbiota composition in a murine colitis model. J Nutr Biochem 2021; 101:108926. [PMID: 34848335 DOI: 10.1016/j.jnutbio.2021.108926] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/15/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
Short-chain fatty acids (SCFAs) play a pivotal role in maintaining intestinal homeostasis. We aimed to investigate the effects of SCFA supplementation on gut inflammation and microbiota composition in a murine colitis model. Mice were fed with sodium butyrate or a mixture of SCFAs in the drinking water for 2 weeks, followed by 2% dextran sulfate sodium (DSS) for 7 d. After euthanasia, mouse colons were extracted to examine histological findings. Flow cytometry of the mouse colon tissues was performed to assess T cell differentiation. Changes in gut microbiota were assessed by high-throughput sequencing of the mouse feces. There were no significant differences in weight change, colonic length, or histologic inflammation score between the DSS, butyrate, and SCFA mix groups. However, flow cytometry revealed that both the expression of CD4+Foxp3+ regulatory T cells and of IL-17-producing T cells were increased in the butyrate and SCFA mix groups. Microbial compositions of the butyrate and SCFA mix groups were significantly different from those of the control and DSS groups in principal coordinate analysis. Relative abundances of the phyla Verrucomicrobia and Proteobacteria, species Akkermansia muciniphila and Escherichia fergusonii were increased in the butyrate and SCFA mix groups. Genera Roseburia and Lactobacillus showed a negative correlation with the degree of colitis, whereas genera Escherichia and Mucispirillum showed a positive correlation. SCFA supplementation did not result in a significant reduction in colon inflammation, but it promoted both regulatory T cell and IL-17-producing T cell expression, and increased both protective and aggressive gut microbiota.
Collapse
Affiliation(s)
- Jae Gon Lee
- Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Jiyoung Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - A-Reum Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Su Vin Jo
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Chang Soo Eun
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea.
| |
Collapse
|
35
|
Dietary Fibers: Effects, Underlying Mechanisms and Possible Role in Allergic Asthma Management. Nutrients 2021; 13:nu13114153. [PMID: 34836408 PMCID: PMC8621630 DOI: 10.3390/nu13114153] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The prevalence of asthma is increasing, but the cause remains under debate. Research currently focuses on environmental and dietary factors that may impact the gut-lung axis. Dietary fibers are considered to play a crucial role in supporting diversity and activity of the microbiome, as well as immune homeostasis in the gut and lung. This review discusses the current state of knowledge on how dietary fibers and their bacterial fermentation products may affect the pathophysiology of allergic asthma. Moreover, the impact of dietary fibers on early type 2 asthma management, as shown in both pre-clinical and clinical studies, is described. Short-chain fatty acids, fiber metabolites, modulate host immunity and might reduce the risk of allergic asthma development. Underlying mechanisms include G protein-coupled receptor activation and histone deacetylase inhibition. These results are supported by studies in mice, children and adults with allergic asthma. Fibers might also exert direct effects on the immune system via yet to be elucidated mechanisms. However, the effects of specific types of fiber, dosages, duration of treatment, and combination with probiotics, need to be explored. There is an urgent need to further valorize the potential of specific dietary fibers in prevention and treatment of allergic asthma by conducting more large-scale dietary intervention trials.
Collapse
|
36
|
Sauvaitre T, Etienne-Mesmin L, Sivignon A, Mosoni P, Courtin CM, Van de Wiele T, Blanquet-Diot S. Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: towards preventive strategies against enteric infections. FEMS Microbiol Rev 2021; 45:5918835. [PMID: 33026073 DOI: 10.1093/femsre/fuaa052] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The human gut is inhabited by a large variety of microorganims involved in many physiological processes and collectively referred as to gut microbiota. Disrupted microbiome has been associated with negative health outcomes and especially could promote the onset of enteric infections. To sustain their growth and persistence within the human digestive tract, gut microbes and enteric pathogens rely on two main polysaccharide compartments, namely dietary fibers and mucus carbohydrates. Several evidences suggest that the three-way relationship between gut microbiota, dietary fibers and mucus layer could unravel the capacity of enteric pathogens to colonise the human digestive tract and ultimately lead to infection. The review starts by shedding light on similarities and differences between dietary fibers and mucus carbohydrates structures and functions. Next, we provide an overview of the interactions of these two components with the third partner, namely, the gut microbiota, under health and disease situations. The review will then provide insights into the relevance of using dietary fibers interventions to prevent enteric infections with a focus on gut microbial imbalance and impaired-mucus integrity. Facing the numerous challenges in studying microbiota-pathogen-dietary fiber-mucus interactions, we lastly describe the characteristics and potentialities of currently available in vitro models of the human gut.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- Université Clermont Auvergne, UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Clermont-Ferrand, France.,Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Clermont-Ferrand, France
| | - Adeline Sivignon
- Université Clermont Auvergne, UMR 1071 Inserm, USC-INRAe 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Pascale Mosoni
- Université Clermont Auvergne, UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Clermont-Ferrand, France
| | - Christophe M Courtin
- KU Leuven, Faculty of Bioscience Engineering, Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, Belgium
| | - Tom Van de Wiele
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Clermont-Ferrand, France
| |
Collapse
|
37
|
Hu Y, He J, Zheng P, Mao X, Huang Z, Yan H, Luo Y, Yu J, Luo J, Yu B, Chen D. Prebiotic inulin as a treatment of obesity related nonalcoholic fatty liver disease through gut microbiota: a critical review. Crit Rev Food Sci Nutr 2021; 63:862-872. [PMID: 34292103 DOI: 10.1080/10408398.2021.1955654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The microbial-derived products, including short chain fatty acids, lipopolysaccharide and secondary bile acids, have been shown to participate in the regulation of hepatic lipid metabolism. Previous studies have demonstrated that prebiotics, such as oligosaccharide and inulin, have abilities to change the concentration of microbial-derived products through modulating the microbial community structure, thus controlling body weight and alleviating hepatic fat accumulation. However, recent evidence indicates that there are individual differences in host response upon inulin treatment due to the differences in host microbial composition before dietary intervention. Probably it is because of the multiple relationships among bacterial species (e.g., competition and mutualism), which play key roles in the degradation of inulin and the regulation of microbial structure. Thereby, analyzing the composition and function of initial gut microbiota is essential for improving the efficacy of prebiotics supplementation. Furthermore, considering that different structures of polysaccharides can be used by different microorganisms, the chemical structure of processed inulin should be tested before using prebiotic inulin to treat obesity related nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yaolian Hu
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Jun He
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Ping Zheng
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Xiangbing Mao
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Zhiqing Huang
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Hui Yan
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Yuheng Luo
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Jie Yu
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Junqiu Luo
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Bing Yu
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Daiwen Chen
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| |
Collapse
|
38
|
Brosseau C, Selle A, Duval A, Misme-Aucouturier B, Chesneau M, Brouard S, Cherbuy C, Cariou V, Bouchaud G, Mincham KT, Strickland DH, Barbarot S, Bodinier M. Prebiotic Supplementation During Pregnancy Modifies the Gut Microbiota and Increases Metabolites in Amniotic Fluid, Driving a Tolerogenic Environment In Utero. Front Immunol 2021; 12:712614. [PMID: 34335628 PMCID: PMC8317504 DOI: 10.3389/fimmu.2021.712614] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022] Open
Abstract
The gut microbiota is influenced by environmental factors such as food. Maternal diet during pregnancy modifies the gut microbiota composition and function, leading to the production of specific compounds that are transferred to the fetus and enhance the ontogeny and maturation of the immune system. Prebiotics are fermented by gut bacteria, leading to the release of short-chain fatty acids that can specifically interact with the immune system, inducing a switch toward tolerogenic populations and therefore conferring health benefits. In this study, pregnant BALB/cJRj mice were fed either a control diet or a diet enriched in prebiotics (Galacto-oligosaccharides/Inulin). We hypothesized that galacto-oligosaccharides/inulin supplementation during gestation could modify the maternal microbiota, favoring healthy immune imprinting in the fetus. Galacto-oligosaccharides/inulin supplementation during gestation increases the abundance of Bacteroidetes and decreases that of Firmicutes in the gut microbiota, leading to increased production of fecal acetate, which was found for the first time in amniotic fluid. Prebiotic supplementation increased the abundance of regulatory B and T cells in gestational tissues and in the fetus. Interestingly, these regulatory cells remained later in life. In conclusion, prebiotic supplementation during pregnancy leads to the transmission of specific microbial and immune factors from mother to child, allowing the establishment of tolerogenic immune imprinting in the fetus that may be beneficial for infant health outcomes.
Collapse
Affiliation(s)
- Carole Brosseau
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) Pays de la Loire, UR1268 BIA, Impasse Thérèse Bertrand-Fontaine, Nantes, France
| | - Amandine Selle
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) Pays de la Loire, UR1268 BIA, Impasse Thérèse Bertrand-Fontaine, Nantes, France
| | - Angeline Duval
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) Pays de la Loire, UR1268 BIA, Impasse Thérèse Bertrand-Fontaine, Nantes, France
| | - Barbara Misme-Aucouturier
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) Pays de la Loire, UR1268 BIA, Impasse Thérèse Bertrand-Fontaine, Nantes, France
| | - Melanie Chesneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Labex IGO, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Labex IGO, Nantes, France
| | - Claire Cherbuy
- INRAE Micalis, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Gregory Bouchaud
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) Pays de la Loire, UR1268 BIA, Impasse Thérèse Bertrand-Fontaine, Nantes, France
| | - Kyle T Mincham
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Deborah H Strickland
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Sebastien Barbarot
- Department of Dermatology, CHU Nantes, Nantes, France.,UMR PhAN, INRAE, Nantes, France
| | - Marie Bodinier
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) Pays de la Loire, UR1268 BIA, Impasse Thérèse Bertrand-Fontaine, Nantes, France
| |
Collapse
|
39
|
Soluble Fiber Inulin Consumption Limits Alterations of the Gut Microbiota and Hepatic Fatty Acid Metabolism Caused by High-Fat Diet. Nutrients 2021; 13:nu13031037. [PMID: 33806985 PMCID: PMC8005099 DOI: 10.3390/nu13031037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Diet shapes the gut microbiota which impacts hepatic lipid metabolism. Modifications in liver fat content are associated with metabolic disorders. We investigated the extent of dietary fat and fiber-induced alterations in the composition of gut microbiota and hepatic fatty acids (FAs). Mice were fed a purified low-fat diet (LFD) or high-fat diet (HFD) containing non-soluble fiber cellulose or soluble fiber inulin. HFD induced hepatic decreases in the amounts of C14:0, C16:1n-7, C18:1n-7 and increases in the amounts of C17:0, C20:0, C16:1n-9, C22:5n-3, C20:2n-6, C20:3n-6, and C22:4n-6. When incorporated in a LFD, inulin poorly affected the profile of FAs. However, when incorporated in a HFD, it (i) specifically led to an increase in the amounts of hepatic C18:0, C22:0, total polyunsaturated FAs (PUFAs), total n-6 PUFAs, C18:3n-3, and C18:2n-6, (ii) exacerbated the HFD-induced increase in the amount of C17:0, and (iii) prevented the HFD-induced increases in C16:1n-9 and C20:3n-6. Importantly, the expression/activity of some elongases and desaturases, as well as the gut microbiota composition, were impacted by the dietary fat and fiber content. To conclude, inulin modulated gut microbiota and hepatic fatty acid composition, and further investigations will determine whether a causal relationship exists between these two parameters.
Collapse
|
40
|
Dietary restrictions modulate the gut microbiota: Implications for health and disease. Nutr Res 2021; 89:10-22. [PMID: 33878569 DOI: 10.1016/j.nutres.2021.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
The health benefits of carefully restricting the energy intake in a strategic manner whilst avoiding malnutrition are widely discussed. In the recent years, the great impact of the gut microbiota on its host has been clarified more and more. Since the gut microbiota produces a number of metabolites and molecules that can affect host metabolism, modulating it with dietary restriction can influence the health and the progression of disease of its host on various levels. This review comprises 15 studies investigating the effect of different variants of fasting and caloric restriction on the gastrointestinal microbiome and its metabolites. The data suggest that changing the gut microbiota composition by dietary restriction has the potential to positively influence the progression of several diseases such as obesity, diabetes, neurological diseases or inflammatory bowel disease. Finally, the relevance of the findings for clinical practice is evaluated and approaches for future research are proposed.
Collapse
|
41
|
Khodakivskyi PV, Lauber CL, Yevtodiyenko A, Bazhin AA, Bruce S, Ringel-Kulka T, Ringel Y, Bétrisey B, Torres J, Hu J, Chou CJ, Goun EA. Noninvasive imaging and quantification of bile salt hydrolase activity: From bacteria to humans. SCIENCE ADVANCES 2021; 7:7/6/eaaz9857. [PMID: 33536224 PMCID: PMC7857686 DOI: 10.1126/sciadv.aaz9857] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/16/2020] [Indexed: 05/07/2023]
Abstract
The microbiome-produced enzyme bile salt hydrolase (BSH) plays a central role in human health, but its function remains unclear due to the lack of suitable methods for measuring its activity. Here, we have developed a novel optical tool based on ultrasensitive bioluminescent imaging and demonstrated that this assay can be used for quick and cost-effective quantification of BSH activity across a broad range of biological settings including pure enzymes and bacteria, intact fecal slurries, and noninvasive imaging in live animals, as well as for the assessment of BSH activity in the entire gastrointestinal tract of mice and humans. Using this assay, we showed that certain types of prebiotics are capable of increasing BSH activity of the gut microbiota in vivo and successfully demonstrated potential application of this assay as a noninvasive diagnostic test to predict the clinical status of inflammatory bowel disease (IBD) patients.
Collapse
Affiliation(s)
- Pavlo V Khodakivskyi
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Christian L Lauber
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Aleksey Yevtodiyenko
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Arkadiy A Bazhin
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Stephen Bruce
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Tamar Ringel-Kulka
- UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599, USA
| | - Yehuda Ringel
- Division of Gastroenterology and Hepatology, Meir Medical Center, affiliated with Tel Aviv University, Kfar-Saba, Israel
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Biomica Ltd. 13 Gad Feinstein St. POB 4173, Rehovot 7414002, Israel
| | - Bertrand Bétrisey
- Cellular Metabolism, Department of Cell Biology, Nestlé Institute of Health Sciences, Nestlé Research, 1000 Lausanne, Switzerland
| | - Joana Torres
- Gastroenterology Division, Hospital Beatriz Ângelo, Loures, Portugal
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chieh Jason Chou
- Department of Gastro-Intestinal Health and Microbiome, Nestlé Institute of Health Sciences, Nestlé Research, 1000 Lausanne, Switzerland
| | - Elena A Goun
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
42
|
Liu Y, Li Y, Ke Y, Li C, Zhang Z, Wu Y, Hu B, Liu A, Luo Q, Wu W. In vitro saliva-gastrointestinal digestion and fecal fermentation of Oudemansiella radicata polysaccharides reveal its digestion profile and effect on the modulation of the gut microbiota. Carbohydr Polym 2021; 251:117041. [DOI: 10.1016/j.carbpol.2020.117041] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
|
43
|
Bao T, He F, Zhang X, Zhu L, Wang Z, Lu H, Wang T, Li Y, Yang S, Wang H. Inulin Exerts Beneficial Effects on Non-Alcoholic Fatty Liver Disease via Modulating gut Microbiome and Suppressing the Lipopolysaccharide-Toll-Like Receptor 4-Mψ-Nuclear Factor-κB-Nod-Like Receptor Protein 3 Pathway via gut-Liver Axis in Mice. Front Pharmacol 2020; 11:558525. [PMID: 33390939 PMCID: PMC7774311 DOI: 10.3389/fphar.2020.558525] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease worldwide with chronic low-grade inflammation and alteration of gut microbiota. Inulin (INU) has been confirmed to exhibit benefit for metabolic diseases. The aim of this study was to clarify the effects and mechanism of INU on NAFLD inflammation via gut-liver axis. Methods: C57BL/6 mice were randomly divided into four groups: normal diet group (ND); high-fat diet group (HFD); ND with INU group (ND-INU); HFD with INU group (HFD-INU). After 14 weeks of feeding, mice were sacrificed and associated indications were investigated. Results: Significant increases of body weight, liver weight, liver biochemical aspartate aminotransferase, alanine aminotransferase, triglyceride, total cholesterol and pro-inflammatory indicators (Lipopolysaccharide, interleukin (IL)-18, IL-1β, TNF-α and IL-6), as well as a reduction of plasma IL-10 were observed in HFD group, while INU treatment restored these abnormal indicators. The ratio of hepatic macrophages (Mψs) and Toll-like receptor 4+ Mψs were both reduced with INU intervention. Nuclear factor-κB, nod-like receptor protein 3, apoptosis-associated speck-like protein and caspase-1 were decreased in HFD-INU group. Additionally, the results of 16S rRNA sequencing and analysis showed that INU administration modulated the composition of gut microbial community in NAFLD mice by up-regulating the abundances of Akkermansia and Bifidobacterium as well as down-regulating the abundances of Blautia and the ratio of Firmicutes/Bacteroidetes. Short-chain fatty acids including acetic acid, propionic acid and butyric acid, were increased with INU treatment. Correlation analysis revealed close relationships among inflammatory indicators, metabolic indicators as well as gut microbiota/its metabolite short-chain fatty acids. Conclusion: INU prevents NAFLD via modulating gut microbiota and suppressing Lipopolysaccharide-Toll-like receptor 4-Mψ-Nuclear factor-κB-nod-like receptor protein 3 inflammatory pathway via the gut-liver axis.
Collapse
Affiliation(s)
- Ting Bao
- Clinical Medical College, Ningxia Medical University, Yinchuan, China.,Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fang He
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Lili Zhu
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Zhen Wang
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Haixia Lu
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Ting Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yiwei Li
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shaoqi Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
44
|
Wan X, Guo H, Liang Y, Zhou C, Liu Z, Li K, Niu F, Zhai X, Wang L. The physiological functions and pharmaceutical applications of inulin: A review. Carbohydr Polym 2020; 246:116589. [PMID: 32747248 DOI: 10.1016/j.carbpol.2020.116589] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Inulin (IN), a fructan-type plant polysaccharide, is widely found in nature. The major plant sources of IN include chicory, Jerusalem artichoke, dahlia etc. Studies have found that IN possessed a wide array of biological activities, e.g. as a prebiotic to improve the intestinal microbe environment, regulating blood sugar, regulating blood lipids, antioxidant, anticancer, immune regulation and so on. Currently, IN is widely used in the food and pharmaceutical industries. IN can be used as thickener, fat replacer, sweetener and water retaining agent in the food industry. IN also can be applied in the pharmaceutics as stabilizer, drug carrier, and auxiliary therapeutic agent for certain diseases such as constipation and diabetes. This paper reviews the physiological functions of IN and its applications in the field of pharmaceutics, analyzes its present research status and future research direction. This review will serve as a one-in-all resource for the researchers who are interested to work on IN.
Collapse
Affiliation(s)
- Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiyu Liang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzheng Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zihao Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunwei Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengju Niu
- Shandong Institute of Traditional Chinese Medicine, Ji'nan, China
| | - Xin Zhai
- Department of Ecology and Evolution, University of Chicago, Chicago, USA
| | - Lizhu Wang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
45
|
Sasaki H, Lyu Y, Nakayama Y, Nakamura F, Watanabe A, Miyakawa H, Nakao Y, Shibata S. Combinatorial Effects of Soluble, Insoluble, and Organic Extracts from Jerusalem Artichokes on Gut Microbiota in Mice. Microorganisms 2020; 8:microorganisms8060954. [PMID: 32599833 PMCID: PMC7356569 DOI: 10.3390/microorganisms8060954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Jerusalem artichokes contain high amounts of inulin, which is a prebiotic that supports digestive health, as well as a variety of insoluble fibers and caffeoylquinic acid. The individual impact of these components on gut microbiota is well known; however, the combinatorial effects are less clear. In this investigation, we fractionated Jerusalem artichokes into three parts (water-soluble extract, insoluble extract, and organic extract) and powdered them. Mice were fed a high-fat diet that included one or more of these extracts for 10 days, and then their cecal pH, cecal short-chain fatty acids (SCFAs), and fecal microbiota were evaluated. The combination of the water-soluble and organic extract decreased cecal pH and increased the concentration of SCFAs and led to dynamic changes in the composition of the gut microbiota. These results demonstrate that both the water-soluble and organic extracts in Jerusalem artichokes are bioactive substances that are capable of changing SCFA production and the composition of gut microbiota. Powdered Jerusalem artichokes, rather than inulin supplements, may be superior for promoting a healthy gut.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (Y.L.); (Y.N.); (A.W.); (H.M.)
| | - Yijin Lyu
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (Y.L.); (Y.N.); (A.W.); (H.M.)
| | - Yuki Nakayama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (Y.L.); (Y.N.); (A.W.); (H.M.)
| | - Fumiaki Nakamura
- Laboratory of Chemical biology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (F.N.); (Y.N.)
| | - Aya Watanabe
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (Y.L.); (Y.N.); (A.W.); (H.M.)
| | - Hiroki Miyakawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (Y.L.); (Y.N.); (A.W.); (H.M.)
| | - Yoichi Nakao
- Laboratory of Chemical biology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (F.N.); (Y.N.)
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (Y.L.); (Y.N.); (A.W.); (H.M.)
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence: ; Tel.: +81-3-5369-7318
| |
Collapse
|
46
|
Thøgersen R, Castro-Mejía JL, Kræmer Sundekilde U, H Hansen L, Gray N, Kuhnle G, Rye Jørgensen N, Kornerup Hansen A, Sandris Nielsen D, Bertram HC. Inulin and milk mineral fortification of a pork sausage exhibits distinct effects on the microbiome and biochemical activity in the gut of healthy rats. Food Chem 2020; 331:127291. [PMID: 32559598 DOI: 10.1016/j.foodchem.2020.127291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/06/2020] [Accepted: 06/07/2020] [Indexed: 01/10/2023]
Abstract
This study investigated inulin and calcium-rich milk mineral incorporation into a pork sausage in order to examine the effects on microbiome and biochemical activity in the gastrointestinal tract upon ingestion. Rats (n = 48) were fed one of four sausages; a pork sausage enriched with 1) inulin (6.0%) and milk mineral (3%), 2) inulin (6.0%), 3) milk mineral (3%) or 4) control sausages without enrichment. NMR-based metabolomics revealed that inulin-enrichment increased the fecal concentration of short-chain fatty acids (SCFAs). Milk mineral-enrichment also increased SCFA concentrations, although less pronounced. In addition, milk mineral reduced the concentration of nitroso compounds in feces and small intestinal content. Combined enrichment with both inulin and milk mineral showed no cumulative effect on SCFA formation and seemed to oppose the milk mineral-induced reduction of nitroso compound formation. 16S rRNA gene amplicon sequencing indicated that alterations of the gut microbiome contributed to the observed effects.
Collapse
Affiliation(s)
- Rebekka Thøgersen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
| | - Josué L Castro-Mejía
- Department of Food Science, Faculty of Science, University of Copenhagen, Denmark
| | | | - Lars H Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Nicola Gray
- Department of Food & Nutritional Sciences, University of Reading, United Kingdom; Australian National Phenome Centre, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Gunter Kuhnle
- Department of Food & Nutritional Sciences, University of Reading, United Kingdom
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark; OPEN, Odense Patient Data Explorative Network, Odense University Hospital/Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Hanne Christine Bertram
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark.
| |
Collapse
|
47
|
Jung D, Tran PL, Yim CS, Park EJ, Yeom SJ, Jung HG, Nguyen TTH, Kim D, Park JT. Structural and functional characteristics of clustered amylopectin produced by glycogen branching enzymes having different branching properties. Food Chem 2020; 311:125972. [DOI: 10.1016/j.foodchem.2019.125972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/18/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
|
48
|
Phengnoi P, Charoenwongpaiboon T, Wangpaiboon K, Klaewkla M, Nakapong S, Visessanguan W, Ito K, Pichyangkura R, Kuttiyawong K. Levansucrase from Bacillus amyloliquefaciens KK9 and Its Y237S Variant Producing the High Bioactive Levan-Type Fructooligosaccharides. Biomolecules 2020; 10:E692. [PMID: 32365662 PMCID: PMC7277640 DOI: 10.3390/biom10050692] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/29/2022] Open
Abstract
Levan-typed fructooligosaccharide (LFOS), a β-2,6 linked oligofructose, displays the potential application as a prebiotic and therapeutic dietary supplement. In the present study, LFOS was synthesized using levansucrase from Bacillus amyloliquefaciens KK9 (LsKK9). The wild-type LsKK9 was cloned and expressed in E. coli, and purified by cation exchanger chromatography. Additionally, Y237S variant of LsKK9 was constructed based on sequence alignment and structural analysis to enhance the LFOS production. High-performance anion-exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD) analysis indicated that Y237S variant efficiently produced a higher amount of short-chain LFOS than wild type. Also, the concentration of enzyme and sucrose in the reactions was optimized. Finally, prebiotic activity assay demonstrated that LFOS produced by Y237S variant had higher prebiotic activity than that of the wild-type enzyme, making the variant enzyme attractive for food biotechnology.
Collapse
Affiliation(s)
- Pongsakorn Phengnoi
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | | | - Karan Wangpaiboon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.W.); (M.K.); (R.P.)
| | - Methus Klaewkla
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.W.); (M.K.); (R.P.)
| | - Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand;
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand;
| | - Kazuo Ito
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan;
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (K.W.); (M.K.); (R.P.)
| | - Kamontip Kuttiyawong
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| |
Collapse
|
49
|
Myhill LJ, Stolzenbach S, Mejer H, Jakobsen SR, Hansen TVA, Andersen D, Brix S, Hansen LH, Krych L, Nielsen DS, Nejsum P, Thamsborg SM, Williams AR. Fermentable Dietary Fiber Promotes Helminth Infection and Exacerbates Host Inflammatory Responses. THE JOURNAL OF IMMUNOLOGY 2020; 204:3042-3055. [PMID: 32284331 DOI: 10.4049/jimmunol.1901149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
Fermentable dietary fibers promote the growth of beneficial bacteria, can enhance mucosal barrier integrity, and reduce chronic inflammation. However, effects on intestinal type 2 immune function remain unclear. In this study, we used the murine whipworm Trichuris muris to investigate the effect of the fermentable fiber inulin on host responses to infection regimes that promote distinct Th1 and Th2 responses in C57BL/6 mice. In uninfected mice, dietary inulin stimulated the growth of beneficial bacteria, such as Bifidobacterium (Actinobacteria) and Akkermansia (Verrucomicrobia). Despite this, inulin prevented worm expulsion in normally resistant mice, instead resulting in chronic infection, whereas mice fed an equivalent amount of nonfermentable fiber (cellulose) expelled worms normally. Lack of expulsion in the mice fed inulin was accompanied by a significantly Th1-skewed immune profile characterized by increased T-bet+ T cells and IFN-γ production in mesenteric lymph nodes, increased expression of Ido1 in the cecum, and a complete absence of mast cell and IgE production. Furthermore, the combination of dietary inulin and high-dose T. muris infection caused marked dysbiosis, with expansion of the Firmicutes and Proteobacteria phyla, near elimination of Bacteroidetes, and marked reductions in cecal short-chain fatty acids. Neutralization of IFN-γ during infection abrogated Ido1 expression and was sufficient to restore IgE production and worm expulsion in inulin-fed mice. Our results indicate that, whereas inulin promoted gut health in otherwise healthy mice, during T. muris infection, it exacerbated inflammatory responses and dysbiosis. Thus, the positive effects of fermentable fiber on gut inflammation appear to be context dependent, revealing a novel interaction between diet and infection.
Collapse
Affiliation(s)
- Laura J Myhill
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark;
| | - Sophie Stolzenbach
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Simon R Jakobsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Tina V A Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Daniel Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Lars H Hansen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C DK-1871, Denmark
| | - Lukasz Krych
- Department of Food Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C DK-1958, Denmark; and
| | - Dennis S Nielsen
- Department of Food Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C DK-1958, Denmark; and
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus DK-8200, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark;
| |
Collapse
|
50
|
van der Merwe M, Sharma S, Caldwell JL, Smith NJ, Gomes CK, Bloomer RJ, Buddington RK, Pierre JF. Time of Feeding Alters Obesity-Associated Parameters and Gut Bacterial Communities, but Not Fungal Populations, in C57BL/6 Male Mice. Curr Dev Nutr 2020; 4:nzz145. [PMID: 32025616 PMCID: PMC6992463 DOI: 10.1093/cdn/nzz145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/02/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Fasting and timed feeding strategies normalize obesity parameters even under high-fat dietary intake. Although previous work demonstrated that these dietary strategies reduce adiposity and improve metabolic health, limited work has examined intestinal microbial communities. OBJECTIVES We determined whether timed feeding modifies the composition of the intestinal microbiome and mycobiome (yeast and fungi). METHODS Male C57BL/6 mice were fed a high-fat diet (HF) for 6 wk. Animals were then randomly assigned to the following groups (n = 8-10/group): 1) HF ad libitum; 2) purified high-fiber diet (Daniel Fast, DF); 3) HF-time-restricted feeding (TRF) (6 h); 4) HF-alternate-day fasting (ADF); or 5) HF at 80% total caloric restriction (CR). After 8 wk, obesity and gut parameters were characterized. We also examined changes to the gut microbiome and mycobiome before, during, and following dietary interventions. RESULTS Body mass gain was reduced with all restricted dietary groups. HF-fed microbiota displayed lower α-diversity along with reduced phylum levels of Bacteroidetes and increased Firmicutes. Animals switched from HF to DF demonstrated a rapid transition in bacterial taxonomic composition, α-, and β-diversity that initially resembled HF, but was distinct after 4 and 8 wk of DF feeding. Time-or calorie-restricted HF-fed groups did not show changes at the phylum level, but α-diversity was increased, with specific genera altered. Six weeks of HF feeding reduced various fungal populations, particularly Alternaria, Aspergillus, Cladosporium, and Talaromyces, and increased Candida, Hanseniaspora, and Kurtzmaniella. However, 8 wk of intervention did not change the fungal populations, with the most abundant genera being Candida, Penicillium, and Hanseniaspora. CONCLUSIONS These data suggest that timed-feeding protocols and diet composition do not significantly affect the gut fungal community, despite inducing measurable shifts in the bacterial population that coincide with improvements in metabolism.
Collapse
Affiliation(s)
| | - Sunita Sharma
- School of Health Studies, University of Memphis, Memphis, TN, USA
| | - Jade L Caldwell
- School of Health Studies, University of Memphis, Memphis, TN, USA
| | - Nicholas J Smith
- School of Health Studies, University of Memphis, Memphis, TN, USA
| | - Charles K Gomes
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|