1
|
Seo JH, Koh J, Cho HJ, Kim H, Lee Y, Kim SJ, Yoon PW, Kim W, Bae SJ, Kim H, Yoo HJ, Lee SH. Sphingolipid metabolites as potential circulating biomarkers for sarcopenia in men. J Cachexia Sarcopenia Muscle 2024; 15:2476-2486. [PMID: 39229927 PMCID: PMC11634516 DOI: 10.1002/jcsm.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/27/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Sarcopenia is an age-related progressive loss of muscle mass and function. Sarcopenia is a multifactorial disorder, including metabolic disturbance; therefore, metabolites may be used as circulating biomarkers for sarcopenia. We aimed to investigate potential biomarkers of sarcopenia using metabolomics. METHODS After non-targeted metabolome profiling of plasma from mice of an aging mouse model of sarcopenia, sphingolipid metabolites and muscle cells from the animal model were evaluated using targeted metabolome profiling. The associations between sphingolipid metabolites identified from mouse and cell studies and sarcopenia status were assessed in men in an age-matched discovery (72 cases and 72 controls) and validation (36 cases and 128 controls) cohort; women with sarcopenia (36 cases and 36 controls) were also included as a discovery cohort. RESULTS Both non-targeted and targeted metabolome profiling in the experimental studies showed an association between sphingolipid metabolites, including ceramides (CERs) and sphingomyelins (SMs), and sarcopenia. Plasma SM (16:0), CER (24:1), and SM (24:1) levels in men with sarcopenia were significantly higher in the discovery cohort than in the controls (all P < 0.05). There were no significant differences in plasma sphingolipid levels for women with or without sarcopenia. In men in the discovery cohort, an area under the receiver-operating characteristic curve (AUROC) of SM (16:0) for low muscle strength and low muscle mass was 0.600 (95% confidence interval [CI]: 0.501-0.699) and 0.647 (95% CI: 0.557-0.737). The AUROC (95% CI) of CER (24:1) and SM (24:1) for low muscle mass in men was 0.669 (95% CI: 0.581-0.757) and 0.670 (95% CI: 0.582-0.759), respectively. Using a regression equation combining CER (24:1) and SM (16:0) levels, a sphingolipid (SphL) score was calculated; an AUROC of the SphL score for sarcopenia was 0.712 (95% CI: 0.626-0.798). The addition of the SphL score to HGS significantly improved the AUC from 0.646 (95% CI: 0.575-0.717; HGS only) to 0.751 (95% CI: 0.671-0.831, P = 0.002; HGS + SphL) in the discovery cohort. The predictive ability of the SphL score for sarcopenia was confirmed in the validation cohort (AUROC = 0.695, 95% CI: 0.591-0.799). CONCLUSIONS SM (16:0), reflecting low muscle strength, and CER (24:1) and SM (16:0), reflecting low muscle mass, are potential circulating biomarkers for sarcopenia in men. Further research on sphingolipid metabolites is required to confirm these results and provide additional insights into the metabolomic changes relevant to the pathogenesis and diagnosis of sarcopenia.
Collapse
Affiliation(s)
- Je Hyun Seo
- Veterans Health Service Medical CenterVeterans Medical Research InstituteSeoulSouth Korea
| | - Jung‐Min Koh
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Han Jin Cho
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Hanjun Kim
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Young‐Sun Lee
- Biomedical Research CenterAsan Institute for Life Sciences, Asan Medical CenterSeoulSouth Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Pil Whan Yoon
- Department of Orthopedic SurgerySeoul Now HospitalAnyangSouth Korea
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Sung Jin Bae
- Health Screening and Promotion Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Hong‐Kyu Kim
- Health Screening and Promotion Center, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Seung Hun Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| |
Collapse
|
2
|
Ali SR, Nkembo AT, Tipparaju SM, Ashraf M, Xuan W. Sarcopenia: recent advances for detection, progression, and metabolic alterations along with therapeutic targets. Can J Physiol Pharmacol 2024; 102:697-708. [PMID: 39186818 PMCID: PMC11663012 DOI: 10.1139/cjpp-2024-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Sarcopenia, a disorder marked by muscle loss and dysfunction, is a global health concern, particularly in aging populations. Sarcopenia is intricately related to various health conditions, including obesity, dysphagia, and frailty, which underscores the complexity. Despite recent advances in metabolomics and other omics data for early detection and treatment, the precise characterization and diagnosis of sarcopenia remains challenging. In the present review we provide an overview of the complex metabolic mechanisms that underlie sarcopenia, with particular emphasis on protein, lipid, carbohydrate, and bone metabolism. The review highlights the importance of leucine and other amino acids in promoting muscle protein synthesis and clarifies the critical role played by amino acid metabolism in preserving muscular health. In addition, the review provides insights regarding lipid metabolism on sarcopenia, with an emphasis on the effects of inflammation and insulin resistance. The development of sarcopenia is largely influenced by insulin resistance, especially with regard to glucose metabolism. Overall, the review emphasizes the complex relationship between bone and muscle health by highlighting the interaction between sarcopenia and bone metabolism. Furthermore, the review outlines various therapeutic approaches and potential biomarkers for diagnosing sarcopenia. These include pharmacological strategies such as hormone replacement therapy and anabolic steroids as well as lifestyle modifications such as exercise, nutrition, and dietary changes.
Collapse
Affiliation(s)
- Syeda Roohina Ali
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Augustine T Nkembo
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Muhammad Ashraf
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Wanling Xuan
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| |
Collapse
|
3
|
Kouzu H, Yano T, Katano S, Kawaharata W, Ogura K, Numazawa R, Nagaoka R, Ohori K, Nishikawa R, Ohwada W, Fujito T, Nagano N, Furuhashi M. Adverse plasma branched-chain amino acid profile mirrors fatty muscle degeneration in diabetic heart failure patients. ESC Heart Fail 2024; 11:2941-2953. [PMID: 38812081 PMCID: PMC11424297 DOI: 10.1002/ehf2.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
AIMS Elevated plasma branched-chain amino acids (BCAAs) are tightly linked to incident diabetes and its complications, while lower BCAAs are associated with adverse outcomes in the elderly and heart failure (HF) patients. The interplay between body compositions and plasma BCAAs, especially under the influence of co-morbid diabetes in HF patients, is not well understood. Here, we examined the impact of diabetes on the prognostic value of plasma BCAA and its association with body compositions in HF patients. METHODS AND RESULTS We retrospectively examined 301 HF patients (70 ± 15 years old; 59% male), among which 36% had diabetes. Blood samples for plasma BCAA measurements were collected in a fasting state after stabilization of HF and analysed using ultraperformance liquid chromatography. A dual-energy X-ray absorptiometry scan assessed regional body compositions, and muscle wasting was defined as appendicular skeletal muscle mass index (ASMI) < 7.00 and <5.40 kg/m2 for males and females, respectively, according to the criteria of the Asian Working Group for Sarcopenia. Although analyses of covariance revealed that plasma BCAAs were significantly higher in diabetic patients, low valine (<222.1 nmol/mL) similarly predicted adverse events defined by HF hospitalization, lethal arrhythmia, or all-cause death in both diabetic and non-diabetic patients independently of age, sex, and NT-proBNP (adjusted hazard ratio [HR] 3.1, 95% confidence interval [CI] of 1.1-8.6 and adjusted HR 2.67, 95% CI 1.1-6.5, respectively; P for interaction 0.88). In multivariate linear regression analyses comprising age, sex, and regional body compositions as explanatory variables, plasma BCAAs were positively correlated with visceral adipose tissue area in non-diabetic patients (standardized β coefficients [β] = 0.44, P < 0.001). In contrast, in diabetic patients, plasma BCAAs were correlated positively with ASMI (β = 0.49, P = 0.001) and negatively with appendicular fat mass index (AFMI; β = -0.42, P = 0.004). Co-morbid diabetes was independently associated with muscle wasting (adjusted odds ratio 2.1, 95% CI 1.1-4.0) and significantly higher plasma 3-methylhistidine level, a marker of myofibrillar degradation. In diabetic patients, ASMI uniquely showed a J-shaped relationship with AFMI, and in a subgroup of HF patients with muscle wasting, diabetic patients showed 12% higher AFMI than non-diabetic patients despite comparable ASMI reductions. CONCLUSIONS Despite higher plasma BCAA levels in HF patients with diabetes, the prognostic value of low valine remained consistent regardless of diabetes status. However, low BCAAs were distinctly associated with fatty muscle degeneration in the extremities in diabetic patients, suggesting the importance of targeted interventions to prevent such tissue remodelling in this population.
Collapse
Affiliation(s)
- Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Katano
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo, Japan
| | - Wataru Kawaharata
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keishi Ogura
- Division of Radiology and Nuclear Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Ryo Numazawa
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo, Japan
| | - Ryohei Nagaoka
- Division of Rehabilitation, Sapporo Medical University Hospital, Sapporo, Japan
| | - Katsuhiko Ohori
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryo Nishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takefumi Fujito
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobutaka Nagano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
Goes‐Santos BR, Carson BP, da Fonseca GWP, von Haehling S. Nutritional strategies for improving sarcopenia outcomes in older adults: A narrative review. Pharmacol Res Perspect 2024; 12:e70019. [PMID: 39400516 PMCID: PMC11472304 DOI: 10.1002/prp2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/10/2024] [Accepted: 09/01/2024] [Indexed: 10/15/2024] Open
Abstract
Sarcopenia is characterized by a decline in muscle strength, generalized loss of skeletal muscle mass, and impaired physical performance, which are common outcomes used to screen, diagnose, and determine severity of sarcopenia in older adults. These outcomes are associated with poor quality of life, increased risk of falls, hospitalization, and mortality in this population. The development of sarcopenia is underpinned by aging, but other factors can lead to sarcopenia, such as chronic diseases, physical inactivity, inadequate dietary energy intake, and reduced protein intake (nutrition-related sarcopenia), leading to an imbalance between muscle protein synthesis and muscle protein breakdown. Protein digestion and absorption are also modified with age, as well as the reduced capacity of metabolizing protein, hindering older adults from achieving ideal protein consumption (i.e., 1-1.5 g/kg/day). Nutritional supplement strategies, like animal (i.e., whey protein) and plant-based protein, leucine, and creatine have been shown to play a significant role in improving outcomes related to sarcopenia. However, the impact of other supplements (e.g., branched-chain amino acids, isolated amino acids, and omega-3) on sarcopenia and related outcomes remain unclear. This narrative review will discuss the evidence of the impact of these nutritional strategies on sarcopenia outcomes in older adults.
Collapse
Affiliation(s)
- Beatriz R. Goes‐Santos
- School of Physical EducationState University of Campinas (FEF‐UNICAMP)CampinasSão PauloBrazil
| | - Brian P. Carson
- Department of Physical Education and Sport Sciences, Faculty of Education and Health SciencesUniversity of LimerickLimerickIreland
- Health Research InstituteUniversity of LimerickLimerickIreland
| | | | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- German Center for Cardiovascular Research (DZHK), partner site GöttingenGöttingenGermany
| |
Collapse
|
5
|
Liu H, Zhang Q, Hao Q, Li Q, Yang L, Yang X, Wang K, Teng J, Gong Z, Jia Y. Associations between sarcopenia and circulating branched-chain amino acids: a cross-sectional study over 100,000 participants. BMC Geriatr 2024; 24:541. [PMID: 38907227 PMCID: PMC11193178 DOI: 10.1186/s12877-024-05144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/13/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Emerging evidence suggests that alterations in BCAA metabolism may contribute to the pathogenesis of sarcopenia. However, the relationship between branched-chain amino acids (BCAAs) and sarcopenia is incompletely understood, and existing literature presents conflicting results. In this study, we conducted a community-based study involving > 100,000 United Kingdom adults to comprehensively explore the association between BCAAs and sarcopenia, and assess the potential role of muscle mass in mediating the relationship between BCAAs and muscle strength. METHODS Multivariable linear regression analysis examined the relationship between circulating BCAAs and muscle mass/strength. Logistic regression analysis assessed the impact of circulating BCAAs and quartiles of BCAAs on sarcopenia risk. Subgroup analyses explored the variations in associations across age, and gender. Mediation analysis investigated the potential mediating effect of muscle mass on the BCAA-muscle strength relationship. RESULTS Among 108,017 participants (mean age: 56.40 ± 8.09 years; 46.23% men), positive associations were observed between total BCAA, isoleucine, leucine, valine, and muscle mass (beta, 0.56-2.53; p < 0.05) and between total BCAA, leucine, valine, and muscle strength (beta, 0.91-3.44; p < 0.05). Logistic regression analysis revealed that increased circulating valine was associated with a 47% reduced sarcopenia risk (odds ratio = 0.53; 95% confidence interval = 0.3-0.94; p = 0.029). Subgroup analyses demonstrated strong associations between circulating BCAAs and muscle mass/strength in men and individuals aged ≥ 60 years. Mediation analysis suggested that muscle mass completely mediated the relationship between total BCAA, and valine levels and muscle strength, partially mediated the relationship between leucine levels and muscle strength, obscuring the true effect of isoleucine on muscle strength. CONCLUSION This study suggested the potential benefits of BCAAs in preserving muscle mass/strength and highlighted muscle mass might be mediator of BCAA-muscle strength association. Our findings contribute new evidence for the clinical prevention and treatment of sarcopenia and related conditions involving muscle mass/strength loss.
Collapse
Affiliation(s)
- HuiMin Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiang Zhang
- School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, 101 Kexue Road, Zhengzhou, NO, China
| | - QianMeng Hao
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - QingSheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - LingFei Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xuan Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - KaiXin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - JunFang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhe Gong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - YanJie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
6
|
Shekarchian A, Bandarian F, Hadizadeh A, Amirsardari Z, Sharifi Y, Ayati A, Varmaghani M, Shandiz AF, Sharifi F, Ghadery AH, Tayanloo A, Yavari T, Larijani B, Payab M, Ebrahimpur M. Exploring the metabolomics profile of frailty- a systematic review. J Diabetes Metab Disord 2024; 23:289-303. [PMID: 38932837 PMCID: PMC11196473 DOI: 10.1007/s40200-023-01379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/19/2023] [Indexed: 06/28/2024]
Abstract
Background Frailty is a multifaceted geriatric syndrome characterized by an increased vulnerability to stressful events. metabolomics studies are valuable tool for better understanding the underlying mechanisms of pathologic conditions. This review aimed to elucidate the metabolomics profile of frailty. Method This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) 2020 statement. A comprehensive search was conducted across multiple databases. Initially, 5027 results were retrieved, and after removing duplicates, 1838 unique studies were subjected to screening. Subsequently, 248 studies underwent full-text screening, with 21 studies ultimately included in the analysis. Data extraction was performed meticulously by two authors, and the quality of the selected studies was assessed using the Critical Appraisal Skills Program (CASP) checklist. Results The findings revealed that certain Branched-chain amino acids (BCAAs) levels were lower in frail subjects compared to robust subjects, while levels of glutamate and glutamine were higher in frail individuals. Moreover, sphingomyelins and phosphatidylcholines (PC) displayed a decreasing trend as frailty advanced. Additionally, other metabolic derivatives, such as carnitine, exhibited significant associations with frailty. These metabolites were primarily interconnected through biochemical pathways related to the tricarboxylic acid and urea cycles. Notably, frailty was associated with a decrease in metabolic derivatives, including carnitine. Conclusion This study underscores the intricate relationship between essential metabolites, including amino acids and lipids, and their varying levels in frail individuals compared to their robust counterparts. It provides a comprehensive panel of metabolites, shedding light on their potential associations with frailty and expanding our understanding of this complex syndrome.
Collapse
Affiliation(s)
- Ahmadreza Shekarchian
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Hadizadeh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Amirsardari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Sharifi
- Department of Radiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran university of medical sciences, Tehran, Iran
| | - Aryan Ayati
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Varmaghani
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolkarim Haji Ghadery
- Department of Radiology, Advanced Diagnostic, and Interventional Radiology Research Center (ADIR), Tehran, Iran
| | - Akram Tayanloo
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Yavari
- Department of Internal Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran university of medical sciences, Tehran, Iran
| | - Moloud Payab
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- EMRI (Endocrinology and Metabolism Research Institute), First Floor, No 10, Jalal-Al-Ahmad Street, North Kargar Avenue, Tehran, 14117-13137 Iran
| | - Mahbube Ebrahimpur
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Advanced Diagnostic, and Interventional Radiology Research Center (ADIR), Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- EMRI (Endocrinology and Metabolism Research Institute), First Floor, No 10, Jalal-Al-Ahmad Street, North Kargar Avenue, Tehran, 14117-13137 Iran
| |
Collapse
|
7
|
Zhao X, Meng L, Wang D, Shi J, Wu W, Fan G, Shi H, Dong J, Yu P, Yang R. Targeted metabolomic profiles of serum amino acids are independently correlated with malnutrition in older adults. BMC Geriatr 2024; 24:341. [PMID: 38622502 PMCID: PMC11020810 DOI: 10.1186/s12877-024-04937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Malnutrition is a common geriatric syndrome that is closely associated with adverse clinical outcomes and poses significant harm to older adults. Early assessment of nutritional status plays a crucial role in preventing and intervening in cases of malnutrition. However, there is currently a lack of measurable methods and biomarkers to evaluate malnutrition in older adults accurately. The aim of this study is to investigate the independent correlation between serum levels of amino acids and malnutrition in older adults, and to identify effective metabolomics biomarkers that can aid in the early detection of geriatric malnutrition. METHODS A total of 254 geriatric medical examination participants from Beijing Hospital were included in the study, consisting of 182 individuals with normal nutritional status (Normal group) and 72 patients at risk of malnutrition or already malnourished (MN group). Malnutrition was assessed using the Mini-Nutritional Assessment Short-Form (MNA-SF). Demographic data were collected, and muscle-related and lipid indexes were determined. Serum amino acid concentrations were measured using isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS). The correlation between serum amino acid levels and malnutrition was analyzed using non-parametric tests, partial correlation analysis, linear regression, and logistic regression. RESULTS The geriatric MN group exhibited significantly lower serum aromatic amino acid levels (P < 0.05) compared to the normal group. A positive correlation was observed between serum aromatic amino acid levels and the MNA-SF score (P = 0.002), as well as with known biomarkers of malnutrition such as body mass index (BMI) (P < 0.001) and hemoglobin (HGB) (P = 0.005). Multivariable logistic or linear regression analyses showed that aromatic amino acid levels were negatively correlated with MN and positively correlated with the MNA-SF score, after adjusting for some confounding factors, such as age, gender, BMI, smoking status, history of dyslipidemia, diabetes mellitus and frailty. Stratified analyses revealed that these trends were more pronounced in individuals without a history of frailty compared to those with a history of frailty, and there was an interaction between aromatic amino acid levels and frailty history (P = 0.004). CONCLUSION Our study suggests that serum aromatic amino acids are independently associated with malnutrition in older adults. These results have important implications for identifying potential biomarkers to predict geriatric malnutrition or monitor its progression and severity, as malnutrition can result in poor clinical outcomes.
Collapse
Affiliation(s)
- Xianghui Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, 100730, Beijing, China
| | - Li Meng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, 100730, Beijing, China
| | - Daguang Wang
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Jing Shi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, 100730, Beijing, China
| | - Wenbin Wu
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, National Clinical Research Center for Geriatrics, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Guoqing Fan
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, National Clinical Research Center for Geriatrics, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Hong Shi
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, National Clinical Research Center for Geriatrics, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Jun Dong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, 100730, Beijing, China
| | - Pulin Yu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, 100730, Beijing, China.
| | - Ruiyue Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, 100730, Beijing, China.
| |
Collapse
|
8
|
Moorthi RN, Moe SM, O'Connell T, Dickinson S, Kalim S, Thadhani R, Clish CB, Shafi T, Rhee EP, Avin KG. Plasma metabolites and physical function in patients undergoing hemodialysis. Sci Rep 2024; 14:8427. [PMID: 38600145 PMCID: PMC11006868 DOI: 10.1038/s41598-024-58522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
Impaired physical function contributes to falls, fractures, and mortality among patients undergoing dialysis. Using a metabolomic approach, we identified metabolite alterations and effect size-based composite scores for constructs of impaired gait speed and grip strength. 108 participants incident to dialysis had targeted plasma metabolomics via liquid chromatography-mass spectrometry and physical function assessed (i.e., 4 m walk, handgrip strength). Physical function measures were categorized as above/ below median, with grip utilizing sex-based medians. To develop composite scores, metabolites were identified via Wilcoxon uncorrected p < 0.05 and effect size > 0.40. Receiver operating characteristic analyses tested whether scores differentiated between above/below function groups. Participants were 54% male, 77% Black and 53 ± 14 y with dialysis vintage of 101 ± 50 days. Median (IQR) grip strength was 35.5 (11.1) kg (males) and 20 (8.4) kg (females); median gait speed was 0.82 (0.34) m/s. Of 246 measured metabolites, composite scores were composed of 22 and 12 metabolites for grip strength and gait speed, respectively. Area under the curve for metabolite composite was 0.88 (gait) and 0.911 (grip). Composite scores of physical function performed better than clinical parameters alone in patients on dialysis. These results provide potential pathways for interventions and needed validation in an independent cohort.
Collapse
Affiliation(s)
| | - Sharon M Moe
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Sahir Kalim
- Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ravi Thadhani
- Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Tariq Shafi
- Department of Medicine, University of Mississippi Medical Center, Jackson, MI, 39216, USA
| | - Eugene P Rhee
- Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Keith G Avin
- Indiana University School of Medicine, Indianapolis, IN, USA.
- School of Health and Human Sciences, IUPUI, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Wang Y, Lu Y, Fang Z, Yan H, Li J, Ye Z, Yu Y, Shan W. Brisk walking improves motor function and lower limb muscle strength in Chinese women aged 80 years and older. Sci Rep 2024; 14:7933. [PMID: 38575643 PMCID: PMC10995214 DOI: 10.1038/s41598-024-55925-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
This study investigates the effects of a 12-week brisk walking exercise regimen on motor function improvements in elderly women. Twenty-six elderly women, aged 84.2 ± 3.2 years, participated in a 12-week brisk walking exercise program. Fitness assessments and blood biomarker analyses (including CHO, HDLC, LDLC, TC) were conducted pre- and post-intervention. Additionally, targeted metabolomics was employed to measure short-chain fatty acids, amino acids, and vitamin metabolites. The intervention led to significant enhancements in participants' flexibility (p < 0.05), lower limb muscle strength (p < 0.01), and cardiorespiratory endurance (p < 0.01), while muscle mass showed no significant changes. Fifteen significant differential metabolites were identified (VIP > 1.0, FC > 1.2 or < 0.8, and p < 0.05), with arginine, ornithine, aspartic acid, glutamine, phenylalanine, tyrosine, and pantothenic acid playing key roles across seven metabolic pathways. A 12-week brisk walking exercise program significantly enhanced flexibility, lower limb muscle strength, and cardiorespiratory endurance among elderly women. These improvements did not extend to muscle mass or upper limb muscle strength. The observed enhancement in exercise capacity may be attributed to improved regulation of neurotransmitters.
Collapse
Affiliation(s)
- Yang Wang
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, 100084, China
| | - Yifan Lu
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China.
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, 100084, China.
| | - Zilong Fang
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, 100084, China
| | - Huiping Yan
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, 100084, China
| | - Jiahao Li
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, 100084, China
| | - Zhifan Ye
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, 100084, China
| | - Yichao Yu
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, 100084, China
- The School of Sports Coaching, Beijing Sport University, Beijing, 100084, China
| | - Wei Shan
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, 100084, China.
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
10
|
Ho HY, Chen YH, Lo CJ, Tang HY, Chang SW, Fan CM, Ho YH, Lin G, Chiu CY, Lin CM, Cheng ML. Combined Plasma DHA-Containing Phosphatidylcholine PCaa C38:6 and Tetradecanoyl-Carnitine as an Early Biomarker for Assessing the Mortality Risk among Sarcopenic Patients. Nutrients 2024; 16:611. [PMID: 38474739 DOI: 10.3390/nu16050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The coming of the hyper-aged society in Taiwan prompts us to investigate the relationship between the metabolic status of sarcopenic patients and their most adverse outcome-death. We studied the association between any plasma metabolites and the risk for mortality among older Taiwanese sarcopenic patients. We applied a targeted metabolomic approach to study the plasma metabolites of adults aged ≥65 years, and identified the metabolic signature predictive of the mortality of sarcopenic patients who died within a 5.5-year follow-up period. Thirty-five sarcopenic patients who died within the follow-up period (Dead cohort) had shown a specific plasma metabolic signature, as compared with 54 patients who were alive (Alive cohort). Only 10 of 116 non-sarcopenic individuals died during the same period. After multivariable adjustment, we found that sex, hypertension, tetradecanoyl-carnitine (C14-carnitine), and docosahexaenoic acid (DHA)-containing phosphatidylcholine diacyl (PCaa) C38:6 and C40:6 were important risk factors for the mortality of sarcopenic patients. Low PCaa C38:6 levels and high C14-carnitine levels correlated with an increased mortality risk; this was even the same for those patients with hypertension (HTN). Our findings suggest that plasma PCaa C38:6 and acylcarnitine C14-carnitine, when combined, can be a better early biomarker for evaluating the mortality risk of sarcopenia patients.
Collapse
Grants
- BMRP819, BMRP564, CMRPD1L0161, CMRPD1L0162, CMRPD1M0351, CMRPD1J0263, CMRPD1M0341 and CLRPG3K0023 Chang Gung Memorial Hospital
- 110-2320-B-182-017-MY3 and 111-2320-B-182-011 National Science and Technology Council (Taiwan region)
- EMRPD1K0441, EMRPD1K0481, and EMRPD1L0421 Ministry of Education (Taiwan region)
- MOST 111-2634-F-182-001 The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE)(Taiwan region) and the National Science and Technology Council (NSTC)(Taiwan region)
- CMRPD1M0352, CMRPD1N0151, CMRPD1M0342, CMRPD1N0071,112-2320-B-182-020-MY3 Chang Gung Memorial Hospital
Collapse
Affiliation(s)
- Hung-Yao Ho
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yuan-Ho Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Su-Wei Chang
- Department of Artificial Intelligence, College of Intelligent Computing, Chang Gung University, Taoyuan 333, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chun-Ming Fan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Hsuan Ho
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Gigin Lin
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Yung Chiu
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung and Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Ming Lin
- Division of Internal Medicine, Chang Gung Memorial Hospital at Taipei, Taipei 105, Taiwan
- Department of Health Management, Chang Gung Health and Culture Village, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
11
|
Hetherington-Rauth M, Johnson E, Migliavacca E, Parimi N, Langsetmo L, Hepple RT, Grzywinski Y, Corthesy J, Ryan TE, Ferrucci L, Feige JN, Orwoll ES, Cawthon PM. Nutrient Metabolites Associated With Low D3Cr Muscle Mass, Strength, and Physical Performance in Older Men. J Gerontol A Biol Sci Med Sci 2024; 79:glad217. [PMID: 37694554 PMCID: PMC10809040 DOI: 10.1093/gerona/glad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND The relationship between amino acids, B vitamins, and their metabolites with D3-creatine (D3Cr) dilution muscle mass, a more direct measure of skeletal muscle mass, has not been investigated. We aimed to assess associations of plasma metabolites with D3Cr muscle mass, as well as muscle strength and physical performance in older men from the Osteoporotic Fractures in Men cohort study. METHODS Out of 1 425 men (84.2 ± 4.1 years), men with the lowest D3Cr muscle mass (n = 100), slowest walking speed (n = 100), lowest grip strength (n = 100), and a random sample (n = 200) serving as a comparison group to the low groups were included. Metabolites were analyzed using liquid chromatography-tandem mass spectrometry. Metabolite differences between the low groups and random sample and their relationships with the muscle outcomes adjusted for confounders and multiple comparisons were assessed using t-test/Mann-Whitney-Wilcoxon and partial correlations, respectively. RESULTS For D3Cr muscle mass, significant biomarkers (p < .001) with ≥10% fold difference and largest partial correlations were tryptophan (Trp; r = 0.31), kynurenine (Kyn)/Trp; r = -0.27), nicotinamide (Nam)/quinolinic acid (Quin; r = 0.21), and alpha-hydroxy-5-methyl-tetrahydrofolate (hm-THF; r = -0.25). For walking speed, hm-THF, Nam/Quin, and Quin had the largest significance and fold difference, whereas valine (r = 0.17), Trp (r = 0.17), HKyn/Xant (r = -0.20), neopterin (r = -0.17), 5-methyl-THF (r = -0.20), methylated folate (r = -0.21), and thiamine (r = -0.18) had the strongest correlations. Only hm-THF was correlated with grip strength (r = -0.21) and differed between the low group and the random sample. CONCLUSIONS Future interventions focusing on how the Trp metabolic pathway or hm-THF influences D3Cr muscle mass and physical performance declines in older adults are warranted.
Collapse
Affiliation(s)
| | - Eileen Johnson
- California Pacific Medical Center, Research Institute, San Francisco, California, USA
| | | | - Neeta Parimi
- California Pacific Medical Center, Research Institute, San Francisco, California, USA
| | - Lisa Langsetmo
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell T Hepple
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Yohan Grzywinski
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - John Corthesy
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Terence E Ryan
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Gaithersburg, Maryland, USA
| | - Jérôme N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eric S Orwoll
- Oregon Health and Science University, Portland, Oregon, USA
| | - Peggy M Cawthon
- California Pacific Medical Center, Research Institute, San Francisco, California, USA
- University of California, Department of Epidemiology and Biostatistics, San Francisco, California, USA
| |
Collapse
|
12
|
Demicheva E, Dordiuk V, Polanco Espino F, Ushenin K, Aboushanab S, Shevyrin V, Buhler A, Mukhlynina E, Solovyova O, Danilova I, Kovaleva E. Advances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Review. Metabolites 2024; 14:54. [PMID: 38248857 PMCID: PMC10820779 DOI: 10.3390/metabo14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Blood metabolomics profiling using mass spectrometry has emerged as a powerful approach for investigating non-cancer diseases and understanding their underlying metabolic alterations. Blood, as a readily accessible physiological fluid, contains a diverse repertoire of metabolites derived from various physiological systems. Mass spectrometry offers a universal and precise analytical platform for the comprehensive analysis of blood metabolites, encompassing proteins, lipids, peptides, glycans, and immunoglobulins. In this comprehensive review, we present an overview of the research landscape in mass spectrometry-based blood metabolomics profiling. While the field of metabolomics research is primarily focused on cancer, this review specifically highlights studies related to non-cancer diseases, aiming to bring attention to valuable research that often remains overshadowed. Employing natural language processing methods, we processed 507 articles to provide insights into the application of metabolomic studies for specific diseases and physiological systems. The review encompasses a wide range of non-cancer diseases, with emphasis on cardiovascular disease, reproductive disease, diabetes, inflammation, and immunodeficiency states. By analyzing blood samples, researchers gain valuable insights into the metabolic perturbations associated with these diseases, potentially leading to the identification of novel biomarkers and the development of personalized therapeutic approaches. Furthermore, we provide a comprehensive overview of various mass spectrometry approaches utilized in blood metabolomics research, including GC-MS, LC-MS, and others discussing their advantages and limitations. To enhance the scope, we propose including recent review articles supporting the applicability of GC×GC-MS for metabolomics-based studies. This addition will contribute to a more exhaustive understanding of the available analytical techniques. The Integration of mass spectrometry-based blood profiling into clinical practice holds promise for improving disease diagnosis, treatment monitoring, and patient outcomes. By unraveling the complex metabolic alterations associated with non-cancer diseases, researchers and healthcare professionals can pave the way for precision medicine and personalized therapeutic interventions. Continuous advancements in mass spectrometry technology and data analysis methods will further enhance the potential of blood metabolomics profiling in non-cancer diseases, facilitating its translation from the laboratory to routine clinical application.
Collapse
Affiliation(s)
- Ekaterina Demicheva
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Vladislav Dordiuk
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Fernando Polanco Espino
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Konstantin Ushenin
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Autonomous Non-Profit Organization Artificial Intelligence Research Institute (AIRI), Moscow 105064, Russia
| | - Saied Aboushanab
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Vadim Shevyrin
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Aleksey Buhler
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Elena Mukhlynina
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Olga Solovyova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Irina Danilova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Elena Kovaleva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| |
Collapse
|
13
|
Lo CJ, Lin CM, Fan CM, Tang HY, Liu HF, Ho HY, Cheng ML. Plasma acylcarnitine in elderly Taiwanese: as biomarkers of possible sarcopenia and sarcopenia. BMC Geriatr 2023; 23:769. [PMID: 37993772 PMCID: PMC10666394 DOI: 10.1186/s12877-023-04485-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Sarcopenia is defined as the disease of muscle loss and dysfunction. The prevalence of sarcopenia is strongly age-dependent. It could bring about disability, hospitalization, and mortality. The purpose of this study was to identify plasma metabolites associated with possible sarcopenia and muscle function to improve disease monitoring and understand the mechanism of muscle strength and function decline. METHODS The participants were a group of healthy older adult who live in retirement homes in Asia (Taiwan) and can manage their daily lives without assistance. The participants were enrolled and divided into four groups: control (Con, n = 57); low physical function (LPF, n = 104); sarcopenia (S, n = 63); and severe sarcopenia (SS, n = 65) according to Asian countries that used Asian Working Group for Sarcopenia (AWGS) criteria. The plasma metabolites were used and the results were calculated as the difference between the control and other groups. RESULTS Clinical parameters, age, gender, body mass index (BMI), hand grip strength (HGS), gait speed (GS), blood urea nitrogen (BUN), hemoglobin, and hematocrit were significantly different between the control and LPF groups. Metabolite patterns of LPF, S, and SS were explored in our study. Plasma kynurenine (KYN) and acylcarnitines (C0, C4, C6, and C18:1-OH) were identified with higher concentrations in older Taiwanese adults with possible sarcopenia and S compared to the Con group. After multivariable adjustment, the data indicate that age, BMI, and butyrylcarnitine (C4) are more important factors to identify individuals with low physical function and sarcopenia. CONCLUSION This metabolomic study raises the importance of acylcarnitines on muscle mass and function. It suggests that age, BMI, BUN, KYN, and C4/Cr can be important evaluation markers for LPF (AUC: 0.766), S (AUC: 0.787), and SS (AUC: 0.919).
Collapse
Grants
- BMRP819, BMRP564, CMRPD1H0201, CMRPD1H0202, CMRPD1J0341, CMRPD1H0511, CMRPD1J0261, CMRPD1M0341 Chang Gung Memorial Hospital
- 111-2320-B-182-011 Ministry of Science and Technology in Taiwan
- EMRPD1G0251, EMRPD1H0401, EMRPD1I0501, EMRPD1I0461, EMRPD1M0421 Ministry of Education in Taiwan
Collapse
Affiliation(s)
- Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Chih-Ming Lin
- Division of Internal Medicine, Chang Gung Memorial Hospital, Taipei, 105, Taiwan
- Department of Health Management, Chang Gung Health and Culture Village, Taoyuan City, 333, Taiwan
| | - Chun-Ming Fan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Han-Fang Liu
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Hung-Yao Ho
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City, 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan.
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City, 33302, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan.
| |
Collapse
|
14
|
Grahnemo L, Eriksson AL, Nethander M, Johansson R, Lorentzon M, Mellström D, Pettersson-Kymmer U, Ohlsson C. Low Circulating Valine Associate With High Risk of Hip Fractures. J Clin Endocrinol Metab 2023; 108:e1384-e1393. [PMID: 37178220 PMCID: PMC10583993 DOI: 10.1210/clinem/dgad268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
CONTEXT Hip fractures constitute a major health concern. An adequate supply of amino acids is crucial to ensure optimal acquisition and remodeling of bone. Circulating amino acid levels have been proposed as markers of bone mineral density, but data on their ability to predict incident fractures are scarce. OBJECTIVES To investigate the associations between circulating amino acids and incident fractures. METHODS We used UK Biobank (n = 111 257; 901 hip fracture cases) as a discovery cohort and the Umeå Fracture and Osteoporosis (UFO) hip fracture study (hip fracture cases n = 2225; controls n = 2225) for replication. Associations with bone microstructure parameters were tested in a subsample of Osteoporotic Fractures in Men Sweden (n = 449). RESULTS Circulating valine was robustly associated with hip fractures in the UK Biobank (HR per SD increase 0.79, 95% CI 0.73-0.84), and this finding was replicated in the UFO study (combined meta-analysis including 3126 incident hip fracture cases, odds ratio per SD increase 0.84, 95% CI 0.80-0.88). Detailed bone microstructure analyses showed that high circulating valine was associated with high cortical bone area and trabecular thickness. CONCLUSION Low circulating valine is a robust predictor of incident hip fractures. We propose that circulating valine may add information for hip fracture prediction. Future studies are warranted to determine whether low valine is causally associated with hip fractures.
Collapse
Affiliation(s)
- Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Anna L Eriksson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Drug Treatment, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Maria Nethander
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Sahlgrenska Academy, Bioinformatics and Data Centre, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Robert Johansson
- The Biobank Research Unit, Umeå University, SE-90187 Umeå, Sweden
| | - Mattias Lorentzon
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg and Geriatric Medicine, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
- Mary McKillop Institute for Health Research, Australian Catholic University, 3000 VIC, Melbourne, Australia
| | - Dan Mellström
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg and Geriatric Medicine, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
| | - Ulrika Pettersson-Kymmer
- Clinical Pharmacology, Department of Integrative Medical Biology, Umeå University, SE-90197 Umeå, Sweden
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Drug Treatment, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
15
|
Li Z, Qian L, Chu J, Liu Y, Maitiniyazi G, Chen Y, Cheng X, He J, Cheng L, Ou M, Wang J, Xia S. Diet Is Associated with Frailty in Lung Cancer: A Possible Role of Gut Microbiota. Nutrients 2023; 15:4298. [PMID: 37836582 PMCID: PMC10574134 DOI: 10.3390/nu15194298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
This study investigated the associations between diet and frailty in lung cancer patients and the potential role of the gut microbiota involved. We assessed dietary intake and frailty status in 231 lung cancer patients by 3-day, 24-h dietary recalls and Fried frailty criteria, respectively, and collected 50 fecal samples for next-generation sequencing. A total of 75 (32.5%) patients were frail, which might be related to significantly lower intake of energy, protein, carbohydrate, dietary fiber, niacin, leucine, some minerals, and a poorer dietary quality as indicated by the Chinese Healthy Eating Index (p < 0.05). Among these, carbohydrate (OR = 0.98; 95% CI 0.96-0.99; p = 0.010), calcium (OR = 0.99; 95% CI 0.99-1.00; p = 0.025), and selenium (OR = 1.03; 95% CI 1.00-1.06; p = 0.022) were all significantly associated with frailty. A multivariate logistic regression analysis showed that the mean risk of frailty was 0.94 times lower (95% CI 0.90-0.99; p = 0.009) among participants with higher CHEI scores. Additionally, the frail patients demonstrated significantly lower gut microbiota β diversity (p = 0.001) and higher relative abundance of Actinobacteriota (p = 0.033). Frailty in lung cancer patients might be associated with insufficient nutrients intake and a poor dietary quality through gut microbiota regulation.
Collapse
Affiliation(s)
- Ziyuan Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Z.L.); (Y.L.); (Y.C.); (X.C.); (J.H.); (L.C.); (M.O.)
| | - Lei Qian
- Department of Rehabilitation, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi 214063, China;
| | - Jianghui Chu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214125, China;
| | - Yuan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Z.L.); (Y.L.); (Y.C.); (X.C.); (J.H.); (L.C.); (M.O.)
| | | | - Yue Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Z.L.); (Y.L.); (Y.C.); (X.C.); (J.H.); (L.C.); (M.O.)
| | - Xinxin Cheng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Z.L.); (Y.L.); (Y.C.); (X.C.); (J.H.); (L.C.); (M.O.)
| | - Jianyun He
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Z.L.); (Y.L.); (Y.C.); (X.C.); (J.H.); (L.C.); (M.O.)
| | - Lan Cheng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Z.L.); (Y.L.); (Y.C.); (X.C.); (J.H.); (L.C.); (M.O.)
| | - Minmin Ou
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Z.L.); (Y.L.); (Y.C.); (X.C.); (J.H.); (L.C.); (M.O.)
| | - Jun Wang
- Department of Rehabilitation, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi 214063, China;
| | - Shufang Xia
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Z.L.); (Y.L.); (Y.C.); (X.C.); (J.H.); (L.C.); (M.O.)
| |
Collapse
|
16
|
Osawa Y, Candia J, Abe Y, Tajima T, Oguma Y, Arai Y. Plasma amino acid signature for sarcopenic phenotypes in community-dwelling octogenarians: Results from the Kawasaki Aging Wellbeing Project. Exp Gerontol 2023; 178:112230. [PMID: 37286061 DOI: 10.1016/j.exger.2023.112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/29/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Sarcopenia is one of the primary risk factors for various adverse health events in later life. However, its pathophysiology in the very old population remains unclear. Hence, this study aimed to examine whether plasma free amino acids (PFAAs) correlate with major sarcopenic phenotypes (i.e., muscle mass, muscle strength, and physical performance) in community-dwelling adults aged 85-89 years living in Japan. Cross-sectional data from the Kawasaki Aging Well-being Project were used. We included 133 adults aged 85-89 years. In this study, fasting blood was collected to measure 20 plasma PFAAs. Measures for the three major sarcopenic phenotypes included appendicular lean mass assessed by multifrequency bioimpedance, isometric handgrip strength, and gait speed from a 5 m walk at a usual pace. Furthermore, we used phenotype-specific elastic net regression models adjusted for age centered at 85 years, sex, body mass index, education level, smoking status, and drinking habit to identify significant PFAAs for each sarcopenic phenotype. Higher histidine and lower alanine levels were associated with poor gait speed, but no PFAAs correlated with muscle strength or mass. In conclusion, PFAAs such as plasma histidine and alanine are novel blood biomarkers associated with physical performance in community-dwelling adults aged 85 years or older.
Collapse
Affiliation(s)
- Yusuke Osawa
- Graduate School of Health Management, Keio University, Kanagawa, Japan; Sports Medicine Research Center, Keio University, Kanagawa, Japan; Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, United States.
| | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, United States
| | - Yukiko Abe
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Takayuki Tajima
- Sports Medicine Research Center, Keio University, Kanagawa, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuko Oguma
- Graduate School of Health Management, Keio University, Kanagawa, Japan; Sports Medicine Research Center, Keio University, Kanagawa, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan; Faculty of Nursing and Medical Care, Keio University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
17
|
Yao H, Li K, Wei J, Lin Y, Liu Y. The contradictory role of branched-chain amino acids in lifespan and insulin resistance. Front Nutr 2023; 10:1189982. [PMID: 37408986 PMCID: PMC10318341 DOI: 10.3389/fnut.2023.1189982] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Branched-chain amino acids (BCAAs; a mixture of leucine, valine and isoleucine) have important regulatory effects on glucose and lipid metabolism, protein synthesis and longevity. Many studies have reported that circulating BCAA levels or dietary intake of BCAAs is associated with longevity, sarcopenia, obesity, and diabetes. Among them, the influence of BCAAs on aging and insulin resistance often present different benefits or harmful effects in the elderly and in animals. Considering the nonobvious correlation between circulating BCAA levels and BCAA uptake, as well as the influence of diseases, diet and aging on the body, some of the contradictory conclusions have been drawn. The regulatory mechanism of the remaining contradictory role may be related to endogenous branched-chain amino acid levels, branched-chain amino acid metabolism and mTOR-related autophagy. Furthermore, the recent discovery that insulin resistance may be independent of longevity has expanded the research thinking related to the regulatory mechanism among the three. However, the negative effects of BCAAs on longevity and insulin resistance were mostly observed in high-fat diet-fed subjects or obese individuals, while the effects in other diseases still need to be studied further. In conclusion, there is still no definite conclusion on the specific conditions under which BCAAs and insulin resistance extend life, shorten life, or do not change lifespan, and there is still no credible and comprehensive explanation for the different effects of BCAAs and insulin resistance on lifespan.
Collapse
Affiliation(s)
- He Yao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Li
- Department of General Surgery, The First People’s Hospital of Taian, Taian, Shandong, China
| | - Jie Wei
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yinghua Liu
- Department of Nutrition, National Clinical Research Center for Geriatric Diseases, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Calabrese FM, Celano G, Bonfiglio C, Campanella A, Franco I, Annunziato A, Giannelli G, Osella AR, De Angelis M. Synergistic Effect of Diet and Physical Activity on a NAFLD Cohort: Metabolomics Profile and Clinical Variable Evaluation. Nutrients 2023; 15:nu15112457. [PMID: 37299420 DOI: 10.3390/nu15112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Together with its comorbidities, nonalcoholic fatty liver disease (NAFLD) is likely to rise further with the obesity epidemic. However, the literature's evidence shows how its progression can be reduced by the administration of calorie-restrictive dietary interventions and physical activity regimens. The liver function and the gut microbiota have been demonstrated to be closely related. With the aim of ascertaining the impact of a treatment based on the combination of diet and physical activity (versus physical activity alone), we recruited 46 NAFLD patients who were divided into two groups. As a result, we traced the connection between volatile organic compounds (VOCs) from fecal metabolomics and a set of statistically filtered clinical variables. Additionally, we identified the relative abundances of gut microbiota taxa obtained from 16S rRNA gene sequencing. Statistically significant correlations emerged between VOCs and clinical parameters, as well as between VOCs and gut microbiota taxa. In comparison with a physical activity regimen alone, we disclose how ethyl valerate and pentanoic acid butyl ester, methyl valerate, and 5-hepten-2-one, 6-methyl changed because of the positive synergistic effect exerted by the combination of the Mediterranean diet and physical activity regimens. Moreover, 5-hepten-2-one, 6-methyl positively correlated with Sanguinobacteroides, as well as the two genera Oscillospiraceae-UCG002 and Ruminococcaceae UCG010 genera.
Collapse
Affiliation(s)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Caterina Bonfiglio
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Angelo Campanella
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Isabella Franco
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Alessandro Annunziato
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Alberto Ruben Osella
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
19
|
Kaplan RC, Williams-Nguyen JS, Huang Y, Mossavar-Rahmani Y, Yu B, Boerwinkle E, Gellman MD, Daviglus M, Chilcoat A, Van Horn L, Faurot K, Qi Q, Greenlee H. Identification of Dietary Supplements Associated with Blood Metabolites in the Hispanic Community Health Study/Study of Latinos Cohort Study. J Nutr 2023; 153:1483-1492. [PMID: 36822396 PMCID: PMC10356961 DOI: 10.1016/j.tjnut.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/09/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Metabolomics approaches have been widely used to define the consumption of foods but have less often been used to study exposure to dietary supplements. OBJECTIVES This study aimed to identify dietary supplements associated with metabolite levels and to examine whether these metabolites predicted incident diabetes risk. METHODS We studied 3972 participants from a prospective cohort study of 18-74-y-old Hispanic/Latino adults. At a baseline examination, we ascertained use of dietary supplements using recall methods and concurrently, a serum metabolomic panel. After adjustment for potential confounders, we identified dietary supplements associated with metabolites. We then examined the association of these metabolites with incident diabetes at the 6-y study examination. RESULTS We observed a total of 110 dietary supplement-metabolite associations that met the criteria for statistical significance adjusted for age, sex, field center, Hispanic/Latino background, body mass index, diet, smoking, physical activity, and number of medications (adjusted P < 0.05). This included 13 metabolites uniquely associated with only one dietary supplement ingredient. Vitamin C had the most associated metabolites (n = 15), including positive associations with oxalate, tartronate, threonate, and isocitrate, which were each in turn protective for the risk of incident diabetes. Vitamin C was also associated with higher N-acetylvaline level, which was an unfavorable diabetes risk factor. Other findings related to branched chain amino acid related compounds including α-hydroxyisovalerate and 2-hydroxy-3-methylvalerate, which were inversely associated with thiamine or riboflavin intake and also predicted higher diabetes risk. Vitamin B12 had an inverse association with γ-glutamylvaline, levels of which were positively associated with the risk of diabetes. CONCLUSIONS Our data point to potential metabolite changes associated with vitamin C and B vitamins, which may have favorable metabolic effects. Knowledge of blood metabolites that can be modified by dietary supplement intake may aid understanding the health effects of dietary supplements and identify potential biological mediators.
Collapse
Affiliation(s)
- Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | - Yuhan Huang
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Marc D Gellman
- Department of Psychology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois-Chicago, Chicago, IL, USA
| | - Aisha Chilcoat
- Program on Integrative Medicine, Department of Physical Medicine & Rehabilitation, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University School of Medicine, Chicago, IL, USA
| | - Kim Faurot
- Program on Integrative Medicine, Department of Physical Medicine & Rehabilitation, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Heather Greenlee
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
20
|
Jaber MA, Ghanim BY, Al-Natour M, Arqoub DA, Abdallah Q, Abdelrazig S, Alkrad JA, Kim DH, Qinna NA. Potential biomarkers and metabolomics of acetaminophen-induced liver injury during alcohol consumption: A preclinical investigation on C57/BL6 mice. Toxicol Appl Pharmacol 2023; 465:116451. [PMID: 36894070 DOI: 10.1016/j.taap.2023.116451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
The toxic effects of alcohol consumption on population health are significant worldwide and the synergistic toxic effects of concurrent intake of Acetaminophen and alcohol is of clinical concern. The understanding of molecular mechanisms beneath such synergism and acute toxicity may be enhanced through assessing underlying metabolomics changes. The molecular toxic activities of the model hereby, is assessed though metabolomics profile with a view to identifying metabolomics targets which could aid in the management of drug-alcohol interactions. In vivo exposure of C57/BL6 mice to APAP (70 mg/kg), single dose of ethanol (6 g/kg of 40%) and APAP after alcohol consumption was employed. Plasma samples were prepared and subjected to biphasic extraction for complete LC-MS profiling, and tandem mass MS2 analysis. Among the detected ions, 174 ions had significant (VIP scores >1 and FDR <0.05) changes between groups and were selected as potential biomarkers and significant variables. The presented metabolomics approach highlighted several affected metabolic pathways, including nucleotide and amino acid metabolism; aminoacyl-tRNA biosynthesis as well as bioenergetics of TCA and Krebs cycle. The impact of APAP on the concurrent administration of alcohol showed great biological interactions in the vital ATP and amino acid producing processes. The metabolomics changes show distinct metabolites which are altered to alcohol-APAP consumption while presenting several unneglectable risks on the vitality of metabolites and cellular molecules which shall be concerned.
Collapse
Affiliation(s)
- Malak A Jaber
- Department of Medicinal Chemistry and Analysis, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Mohammad Al-Natour
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Duaa Abu Arqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Qasem Abdallah
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Salah Abdelrazig
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | | | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Material and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan; Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| |
Collapse
|
21
|
Calvani R, Picca A, Rodriguez-Mañas L, Tosato M, Coelho-Júnior HJ, Biancolillo A, Laosa O, Gervasoni J, Primiano A, Santucci L, Giampaoli O, Bourdel-Marchasson I, Regueme SC, Sinclair AJ, Urbani A, Landi F, Gambassi G, Marini F, Marzetti E. Amino Acid Profiles in Older Adults with Frailty: Secondary Analysis from MetaboFrail and BIOSPHERE Studies. Metabolites 2023; 13:metabo13040542. [PMID: 37110200 PMCID: PMC10147014 DOI: 10.3390/metabo13040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
An altered amino acid metabolism has been described in frail older adults which may contribute to muscle loss and functional decline associated with frailty. In the present investigation, we compared circulating amino acid profiles of older adults with physical frailty and sarcopenia (PF&S, n = 94), frail/pre-frail older adults with type 2 diabetes mellitus (F-T2DM, n = 66), and robust non-diabetic controls (n = 40). Partial least squares discriminant analysis (PLS-DA) models were built to define the amino acid signatures associated with the different frailty phenotypes. PLS-DA allowed correct classification of participants with 78.2 ± 1.9% accuracy. Older adults with F-T2DM showed an amino acid profile characterized by higher levels of 3-methylhistidine, alanine, arginine, ethanolamine, and glutamic acid. PF&S and control participants were discriminated based on serum concentrations of aminoadipic acid, aspartate, citrulline, cystine, taurine, and tryptophan. These findings suggest that different types of frailty may be characterized by distinct metabolic perturbations. Amino acid profiling may therefore serve as a valuable tool for frailty biomarker discovery.
Collapse
Affiliation(s)
- Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Leocadio Rodriguez-Mañas
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
- Centro de Investigación Biomédica en Red "Fragilidad y Envejecimiento Saludable" (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - Olga Laosa
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
- Geriatric Research Group, Biomedical Research Foundation at Getafe University Hospital, 28905 Getafe, Spain
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Aniello Primiano
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Lavinia Santucci
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Ottavia Giampaoli
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Isabelle Bourdel-Marchasson
- Clinical Gerontology Department, Bordeaux University Hospital, 33000 Bordeaux, France
- CRMSB, CNRS UMR 5536, Université de Bordeaux, 33000 Bordeaux, France
| | - Sophie C Regueme
- CHU Bordeaux, Pole Gérontologie Clinique, 33000 Bordeaux, France
| | - Alan J Sinclair
- Foundation for Diabetes Research in Older People (fDROP), King's College, London WC2R 2LS, UK
| | - Andrea Urbani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Gambassi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
22
|
Indolepropionic Acid, a Gut Bacteria-Produced Tryptophan Metabolite and the Risk of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease. Nutrients 2022; 14:nu14214695. [PMID: 36364957 PMCID: PMC9653718 DOI: 10.3390/nu14214695] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
An intricate relationship between gut microbiota, diet, and the human body has recently been extensively investigated. Gut microbiota and gut-derived metabolites, especially, tryptophan derivatives, modulate metabolic and immune functions in health and disease. One of the tryptophan derivatives, indolepropionic acid (IPA), is increasingly being studied as a marker for the onset and development of metabolic disorders, including type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). The IPA levels heavily depend on the diet, particularly dietary fiber, and show huge variations among individuals. We suggest that these variations could partially be explained using genetic variants known to be associated with specific diseases such as T2D. In this narrative review, we elaborate on the beneficial effects of IPA in the mitigation of T2D and NAFLD, and further study the putative interactions between IPA and well-known genetic variants (TCF7L2, FTO, and PPARG), known to be associated with the risk of T2D. We have investigated the long-term preventive value of IPA in the development of T2D in the Finnish prediabetic population and the correlation of IPA with phytosterols in obese individuals from an ongoing Kuopio obesity surgery study. The diversity in IPA-linked mechanisms affecting glucose metabolism and liver fibrosis makes it a unique small metabolite and a promising candidate for the reversal or management of metabolic disorders, mainly T2D and NAFLD.
Collapse
|
23
|
Hiraiwa H, Okumura T, Murohara T. Amino acid profiling to predict prognosis in patients with heart failure: an expert review. ESC Heart Fail 2022; 10:32-43. [PMID: 36300549 PMCID: PMC9871678 DOI: 10.1002/ehf2.14222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 01/27/2023] Open
Abstract
Heart failure is a complex disease with a poor prognosis. A number of widely used prognostic tools have limitations, so efforts to identify novel predictive markers and measures are important. As a metabolomics tool, amino acid profiling has shown promise in predicting heart failure prognosis; however, the evidence has not yet been sufficiently evaluated. We describe the utilization of amino acids in the healthy heart and in heart failure before reviewing the literature on amino acid profiling for prognostic prediction. We expertly interpret the findings and provide suggestions for future research to advance the understanding of the prognostic potential of amino acid profiling in heart failure. Our analysis revealed correlations between amino acid biomarkers and traditional prognostic factors, the additional prognostic value of amino acid biomarkers over traditional prognostic factors, and the successful use of amino acid biomarkers to distinguish heart failure aetiology. Although certain amino acid biomarkers have demonstrated additional prognostic value over traditional measures, such as New York Heart Association functional class, these measures are deeply rooted in clinical practice; thus, amino acid biomarkers may be best placed as additional prognostic tools to improve current risk stratification rather than as surrogate tools. Once the metabolic profiles of different heart failure aetiologies have been clearly delineated, the amino acid biomarkers with the most value in prognostic prediction should be determined. Amino acid profiling could be useful to evaluate the pathophysiology and metabolic status of different heart failure cohorts, distinguish heart failure aetiologies, and improve risk stratification and prognostic prediction.
Collapse
Affiliation(s)
- Hiroaki Hiraiwa
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Takahiro Okumura
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
24
|
Gu X, Wang W, Yang Y, Lei Y, Liu D, Wang X, Wu T. The Effect of Metabolites on Mitochondrial Functions in the Pathogenesis of Skeletal Muscle Aging. Clin Interv Aging 2022; 17:1275-1295. [PMID: 36033236 PMCID: PMC9416380 DOI: 10.2147/cia.s376668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is an age-related systemic disease characterized by skeletal muscle aging that generally severely affects the quality of life of elderly patients. Metabolomics analysis is a powerful tool for qualitatively and quantitatively characterizing the small molecule metabolomics of various biological matrices in order to clarify all key scientific problems concerning cell metabolism. The discovery of optimal therapy requires a thorough understanding of the cellular metabolic mechanism of skeletal muscle aging. In this review, the relationship between skeletal muscle mitochondria, amino acid, vitamin, lipid, adipokines, intestinal microbiota and vascular microenvironment has been separately reviewed from the perspective of metabolomics, and a new therapeutic direction has been suggested.
Collapse
Affiliation(s)
- Xuchao Gu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Wenhao Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yijing Yang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yiming Lei
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Dehua Liu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Xiaojun Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
25
|
Shin HE, Won CW, Kim M. Metabolomic profiles to explore biomarkers of severe sarcopenia in older men: A pilot study. Exp Gerontol 2022; 167:111924. [PMID: 35963453 DOI: 10.1016/j.exger.2022.111924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The pathophysiology of sarcopenia is complex and multifactorial; however, it has not yet been fully elucidated. Identifying metabolomic profiles may help clarify the mechanisms underlying sarcopenia. OBJECTIVE This pilot study explored potential noninvasive biomarkers of severe sarcopenia through metabolomic analysis in community-dwelling older men. METHODS Twenty older men (mean age: 81.9 ± 2.8 years) were selected from the Korean Frailty and Aging Cohort Study. Participants with severe sarcopenia (n = 10) were compared with non-sarcopenic, age- and body mass index-matched controls (n = 10). Severe sarcopenia was defined as low muscle mass, low muscle strength, and low physical performance using the Asian Working Group for Sarcopenia 2019 criteria. Non-targeted metabolomic profiling of plasma metabolites was performed using capillary electrophoresis time-of-flight mass spectrometry and absolute quantification was performed in target metabolites. RESULTS Among 191 plasma metabolic peaks, the concentrations of 10 metabolites significantly differed between severe sarcopenia group and non-sarcopenic controls. The plasma concentrations of L-alanine, homocitrulline, N-acetylserine, gluconic acid, N-acetylalanine, proline, and sulfotyrosine were higher, while those of 4-methyl-2-oxovaleric acid, 3-methyl-2-oxovaleric acid, and tryptophan were lower in participants with severe sarcopenia than in non-sarcopenic controls (all, p < 0.05). Among the 53 metabolites quantified as target metabolites, L-alanine (area under the receiver operating characteristic curve [AUC] = 0.760; p = 0.049), gluconic acid (AUC = 0.800; p = 0.023), proline (AUC = 0.785; p = 0.031), and tryptophan (AUC = 0.800; p = 0.023) determined the presence of severe sarcopenia. CONCLUSIONS Plasma metabolomic analysis demonstrated that L-alanine, gluconic acid, proline, and tryptophan may be potential biomarkers of severe sarcopenia. The identified metabolites can provide new insights into the underlying pathophysiology of severe sarcopenia and serve as the basis for preventive interventions.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul 02447, South Korea.
| | - Miji Kim
- Department of Biomedical Science and Technology, College of Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
26
|
Gwin JA, Hatch-McChesney A, Pitts KP, O'Brien RP, Karis AJ, Carrigan CT, McClung JP, Karl JP, Margolis LM. Initial military training modulates serum fatty acid and amino acid metabolites. Physiol Rep 2022; 10:e15385. [PMID: 35818300 PMCID: PMC9273871 DOI: 10.14814/phy2.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/24/2022] Open
Abstract
Initial military training (IMT) results in increased fat-free mass (FFM) and decreased fat mass (FM). The underlying metabolic adaptations facilitating changes in body composition during IMT are unknown. The objective of this study was to assess changes in body composition and the serum metabolome during 22-week US Army IMT. Fifty-four volunteers (mean ± SD; 22 ± 3 year; 24.6 ± 3.7 kg/m2 ) completed this longitudinal study. Body composition measurements (InBody 770) and blood samples were collected under fasting, rested conditions PRE and POST IMT. Global metabolite profiling was performed to identify metabolites involved in energy, carbohydrate, lipid, and protein metabolism (Metabolon, Inc.). There was no change in body mass (POST-PRE; 0.4 ± 5.1 kg, p = 0.59), while FM decreased (-1.7 ± 3.5 kg, p < 0.01), and FFM increased (2.1 ± 2.8 kg, p < 0.01) POST compared to PRE IMT. Of 677 identified metabolites, 340 differed at POST compared to PRE (p < 0.05, Q < 0.10). The majority of these metabolites were related to fatty acid (73%) and amino acid (26%) metabolism. Increases were detected in 41% of branched-chain amino acid metabolites, 53% of histidine metabolites, and 35% of urea cycle metabolites. Decreases were detected in 93% of long-chain fatty acid metabolites, while 58% of primary bile acid metabolites increased. Increases in amino acid metabolites suggest higher rates of protein turnover, while changes in fatty acid metabolites indicate increased fat oxidation, which likely contribute changes in body composition during IMT. Overall, changes in metabolomics profiles provide insight into metabolic adaptions underlying changes in body composition during IMT.
Collapse
Affiliation(s)
- Jess A Gwin
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | | | - Kenneth P Pitts
- U.S. Army Research Institute for the Behavioral and Social Sciences, Fort Benning, Georgia, USA
| | - Rory P O'Brien
- U.S. Army Maneuver Center of Excellence, Fort Benning, Georgia, USA
| | - Anthony J Karis
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | | | - James P McClung
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - J Philip Karl
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Lee M Margolis
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| |
Collapse
|
27
|
Su Y, Elshorbagy A, Turner C, Refsum H, Kwok T. The Association of Circulating Amino Acids and Dietary Inflammatory Potential with Muscle Health in Chinese Community-Dwelling Older People. Nutrients 2022; 14:nu14122471. [PMID: 35745201 PMCID: PMC9229609 DOI: 10.3390/nu14122471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Amino acids (AAs) and dietary inflammatory potential play essential roles in muscle health. We examined the associations of dietary inflammatory index (DII) of habitual diet with serum AA profile, and ascertained if the associations between DII and muscle outcomes were mediated by serum AAs, in 2994 older Chinese community-dwelling men and women (mean age 72 years) in Hong Kong. Higher serum branched chain AAs (BCAAs), aromatic AAs and total glutathione (tGSH) were generally associated with better muscle status at baseline. A more pro-inflammatory diet, correlating with higher serum total homocysteine and cystathionine, was directly (90.2%) and indirectly (9.8%) through lower tGSH associated with 4-year decline in hand grip strength in men. Higher tGSH was associated with favorable 4-year changes in hand grip strength, gait speed and time needed for 5-time chair stands in men and 4-year change in muscle mass in women. Higher leucine and isoleucine were associated with decreased risk of sarcopenia in men; the associations were abolished after adjustment for BMI. In older men, perturbations in serum sulfur AAs metabolism may be biomarkers of DII related adverse muscle status, while the lower risk of sarcopenia with higher BCAAs may partly be due to preserved BMI.
Collapse
Affiliation(s)
- Yi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China;
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria 21526, Egypt;
- Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Helga Refsum
- Institute of Basic Medical Sciences, Department of Nutrition, University of Oslo, 0316 Oslo, Norway;
| | - Timothy Kwok
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
- Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-2632-3128; Fax: +852-2637-3852
| |
Collapse
|
28
|
Fang S, Wade KH, Hughes DA, Fitzgibbon S, Yip V, Timpson NJ, Corbin LJ. A multivariant recall-by-genotype study of the metabolomic signature of BMI. Obesity (Silver Spring) 2022; 30:1298-1310. [PMID: 35598895 PMCID: PMC9324973 DOI: 10.1002/oby.23441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study estimated the effect of BMI on circulating metabolites in young adults using a recall-by-genotype study design. METHODS A recall-by-genotype study was implemented in the Avon Longitudinal Study of Parents and Children. Samples from 756 participants were selected for untargeted metabolomics analysis based on low versus high genetic liability for higher BMI defined by a genetic risk score (GRS). Regression analyses were performed to investigate associations between BMI GRS group and relative abundance of 973 metabolites. RESULTS After correction for multiple testing, 29 metabolites were associated with BMI GRS group. Bilirubin was among the most strongly associated metabolites, with reduced levels measured in individuals in the high-BMI GRS group (β = -0.32, 95% CI: -0.46 to -0.18, Benjamini-Hochberg adjusted p = 0.005). This study observed associations between BMI GRS group and the levels of several potentially diet-related metabolites, including hippurate, which had lower mean abundance in individuals in the high-BMI GRS group (β = -0.29, 95% CI: -0.44 to -0.15, Benjamini-Hochberg adjusted p = 0.008). CONCLUSIONS Together with existing literature, these results suggest that a genetic predisposition to higher BMI captures differences in metabolism leading to adiposity gain. In the absence of prospective data, separating these effects from the downstream consequences of weight gain is challenging.
Collapse
Affiliation(s)
- Si Fang
- MRC Integrative Epidemiology Unit at the University of BristolBristolUK
- Population Health ScienceBristol Medical SchoolUniversity of BristolBristolUK
| | - Kaitlin H. Wade
- MRC Integrative Epidemiology Unit at the University of BristolBristolUK
- Population Health ScienceBristol Medical SchoolUniversity of BristolBristolUK
| | - David A. Hughes
- MRC Integrative Epidemiology Unit at the University of BristolBristolUK
- Population Health ScienceBristol Medical SchoolUniversity of BristolBristolUK
| | - Sophie Fitzgibbon
- Bristol Bioresource LaboratoriesPopulation Health ScienceBristol Medical SchoolUniversity of BristolBristolUK
| | - Vikki Yip
- Bristol Bioresource LaboratoriesPopulation Health ScienceBristol Medical SchoolUniversity of BristolBristolUK
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit at the University of BristolBristolUK
- Population Health ScienceBristol Medical SchoolUniversity of BristolBristolUK
| | - Laura J. Corbin
- MRC Integrative Epidemiology Unit at the University of BristolBristolUK
- Population Health ScienceBristol Medical SchoolUniversity of BristolBristolUK
| |
Collapse
|
29
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Low S, Wang J, Moh A, Ang SF, Ang K, Shao YM, Ching J, Wee HN, Lee LS, Kovalik JP, Tang WE, Lim Z, Subramaniam T, Sum CF, Lim SC. Amino acid profile of skeletal muscle loss in type 2 diabetes: Results from a 7-year longitudinal study in asians. Diabetes Res Clin Pract 2022; 186:109803. [PMID: 35218850 DOI: 10.1016/j.diabres.2022.109803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/19/2022] [Accepted: 02/19/2022] [Indexed: 12/20/2022]
Abstract
AIMS Little is known about pathophysiology of sarcopenia in diabetes. We aimed to study amino acid profile associated with skeletal muscle mass loss longitudinally in Type 2 Diabetes Mellitus (T2DM). METHODS This is a prospective study of 1140 patients aged 56.6 ± 10.6 years from the SMART2D cohort. Skeletal muscle mass was measured using bio-impedance analysis at baseline and follow-up. Amino acids were measured by mass spectrometry. RESULTS Over a period of up to 7.9 years, 43.9% experienced skeletal muscle mass loss. Lower baseline valine, leucine and isoleucine levels were associated with decreased skeletal muscle mass index (SMI) with corresponding coefficient 0.251(95 %CI 0.009 to 0.493), 0.298(95 %CI 0.051 to 0.544)) and 0.366(95 %CI 0.131 to 0.600). Higher baseline valine, leucine, isoleucine, alanine and tryptophan levels were associated with reduced odds of muscle mass loss with corresponding odds ratio (OR)0.797 (95 %CI 0.690 to 0.921), 0.825 (95 %CI 0.713 to 0.955), 0.826 (95 %CI 0.718-0.950), 0.847 (95 %CI 0.739-0.969) and 0.835 (95 %CI 0.720-0.979). CONCLUSION The branched-chain amino acids valine, leucine and isoleucine were positively associated with change in SMI and reduced odds of muscle mass loss longitudinally. Further studies should be conducted to elucidate the pathophysiological mechanisms underlying the relationship between these amino acids and muscle mass loss in T2DM.
Collapse
Affiliation(s)
- Serena Low
- Diabetes Centre, Admiralty Medical Centre, Singapore; Clinical Research Unit, Khoo Teck Puat Hospital, Singapore; Lee Kong Chian School of Medicine, Singapore
| | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Angela Moh
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Su Fen Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yi-Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Singapore; KK Research Centre, KK Women's and Children's Hospital, Singapore
| | | | | | | | - Wern Ee Tang
- National Healthcare Group Polyclinics, Singapore
| | - Ziliang Lim
- National Healthcare Group Polyclinics, Singapore
| | | | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Su Chi Lim
- Diabetes Centre, Admiralty Medical Centre, Singapore; Clinical Research Unit, Khoo Teck Puat Hospital, Singapore; Lee Kong Chian School of Medicine, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore.
| |
Collapse
|
31
|
Multi-omics research in sarcopenia: Current progress and future prospects. Ageing Res Rev 2022; 76:101576. [PMID: 35104630 DOI: 10.1016/j.arr.2022.101576] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/13/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Sarcopenia is a systemic disease with progressive and generalized skeletal muscle dysfunction defined by age-related low muscle mass, high content of muscle slow fibers, and low muscle function. Muscle phenotypes and sarcopenia risk are heritable; however, the genetic architecture and molecular mechanisms underlying sarcopenia remain largely unclear. In recent years, significant progress has been made in determining susceptibility loci using genome-wide association studies. In addition, recent advances in omics techniques, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, offer new opportunities to identify novel targets to help us understand the pathophysiology of sarcopenia. However, each individual technology cannot capture the entire view of the biological complexity of this disorder, while integrative multi-omics analyses may be able to reveal new insights. Here, we review the latest findings of multi-omics studies for sarcopenia and provide an in-depth summary of our current understanding of sarcopenia pathogenesis. Leveraging multi-omics data could give us a holistic understanding of sarcopenia etiology that may lead to new clinical applications. This review offers guidance and recommendations for fundamental research, innovative perspectives, and preventative and therapeutic interventions for sarcopenia.
Collapse
|
32
|
Meng L, Yang R, Wang D, Wu W, Shi J, Shen J, Dang Y, Fan G, Shi H, Dong J, Xi H, Yu P. Specific lysophosphatidylcholine and acylcarnitine related to sarcopenia and its components in older men. BMC Geriatr 2022; 22:249. [PMID: 35337292 PMCID: PMC8957177 DOI: 10.1186/s12877-022-02953-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Metabolic profiling may provide insights into the pathogenesis and identification of sarcopenia; however, data on the metabolic basis of sarcopenia and muscle-related parameters among older adults remain incompletely understood. This study aimed to identify the associations of metabolites with sarcopenia and its components, and to explore metabolic perturbations in older men, who have a higher prevalence of sarcopenia than women. METHODS We simultaneously measured the concentrations of amino acids, carnitine, acylcarnitines, and lysophosphatidylcholines (LPCs) in serum samples from a cross-sectional study of 246 Chinese older men, using targeted metabolomics. Sarcopenia and its components, including skeletal muscle index (SMI), 6-m gait speed, and handgrip strength were assessed according to the algorithm of the Asian Working Group for Sarcopenia criteria. Associations were determined by univariate and multivariate analyses. RESULTS Sixty-five (26.4%) older men with sarcopenia and 181 (73.6%) without sarcopenia were included in the study. The level of isovalerylcarnitine (C5) was associated with the presence of sarcopenia and SMI. Regarding the overlapped metabolites for muscle parameters, among ten metabolites associated with muscle mass, six metabolites including leucine, octanoyl-L-carnitine (C8), decanoyl-L-carnitine (C10), dodecanoyl-L-carnitine (C12) and tetradecanoyl-L-carnitine (C14), and LPC18:2 were associated with handgrip strength, and three of which (C12, C14, and LPC18:2) were also associated with gait speed. Specifically, tryptophan was positively associated and glycine was negatively associated with handgrip strength, while glutamate was positively correlated with gait speed. Isoleucine, branched chain amino acids, and LPC16:0 were positively associated with SMI. Moreover, the levels of LPC 16:0,18:2 and 18:0 contributed significantly to the model discriminating between older men with and without sarcopenia, whereas there were no significant associations for other amino acids, acylcarnitines, and LPC lipids. CONCLUSIONS These results showed that specific and overlapped metabolites are associated with sarcopenic parameters in older men. This study highlights the potential roles of acylcarnitines and LPCs in sarcopenia and its components, which may provide valuable information regarding the pathogenesis and management of sarcopenia.
Collapse
Affiliation(s)
- Li Meng
- Department of Geriatrics, National Clinical Research Center for Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, People's Republic of China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, 100730, Beijing, People's Republic of China
| | - Ruiyue Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, 100730, Beijing, People's Republic of China
| | - Daguang Wang
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, People's Republic of China
| | - Wenbin Wu
- Department of Geriatrics, National Clinical Research Center for Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, People's Republic of China
| | - Jing Shi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, 100730, Beijing, People's Republic of China
| | - Ji Shen
- Department of Geriatrics, National Clinical Research Center for Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, People's Republic of China
| | - Yamin Dang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, 100730, Beijing, People's Republic of China
| | - Guoqing Fan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, 100730, Beijing, People's Republic of China
| | - Hong Shi
- Department of Geriatrics, National Clinical Research Center for Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, People's Republic of China
| | - Jun Dong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, 100730, Beijing, People's Republic of China
| | - Huan Xi
- Department of Geriatrics, National Clinical Research Center for Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, People's Republic of China
| | - Pulin Yu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, 100730, Beijing, People's Republic of China.
| |
Collapse
|
33
|
Hall ECR, Semenova EA, Bondareva EA, Andryushchenko LB, Larin AK, Cięszczyk P, Generozov EV, Ahmetov II. Association of Genetically Predicted BCAA Levels with Muscle Fiber Size in Athletes Consuming Protein. Genes (Basel) 2022; 13:genes13030397. [PMID: 35327951 PMCID: PMC8955300 DOI: 10.3390/genes13030397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Branched-chain amino acid (BCAA) levels are associated with skeletal muscle cross-sectional area (CSA). Serum BCAA levels are enhanced by whey protein supplementation (WPS), and evidence in clinical populations suggests an association of single nucleotide polymorphisms (SNPs) with BCAA metabolite levels. It is not known whether the same SNPs are associated with the ability to catabolise BCAAs from exogenous sources, such as WPS. The present study investigated whether possessing a higher number of alleles associated with increased BCAA metabolites correlates with muscle fiber CSA of m. vastus lateralis in physically active participants, and whether any relationship is enhanced by WPS. Endurance-trained participants (n = 75) were grouped by self-reported habitual WPS consumption and genotyped for five SNPs (PPM1K rs1440580, APOA5 rs2072560, CBLN1 rs1420601, DDX19B rs12325419, and TRMT61A rs58101275). Body mass, BMI, and fat percentage were significantly lower and muscle mass higher in the WPS group compared to Non-WPS. The number of BCAA-increasing alleles was correlated with fiber CSA in the WPS group (r = 0.75, p < 0.0001) and was stronger for fast-twitch fibers (p = 0.001) than slow-twitch fibers (p = 0.048). Similar results remained when corrected for multiple covariates (age, physical activity, and meat and dairy intake). No correlation was found in the Non-WPS group. This study presents novel evidence of a positive relationship between BCAA-increasing alleles and muscle fiber CSA in athletes habitually consuming WPS. We suggest that a high number of BCAA-increasing alleles improves the efficiency of WPS by stimulation of muscle protein synthesis, and contributes to greater fiber CSA.
Collapse
Affiliation(s)
- Elliott C. R. Hall
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK;
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (E.A.B.); (A.K.L.); (E.V.G.)
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420010 Kazan, Russia
| | - Elvira A. Bondareva
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (E.A.B.); (A.K.L.); (E.V.G.)
| | - Liliya B. Andryushchenko
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia;
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (E.A.B.); (A.K.L.); (E.V.G.)
| | - Pawel Cięszczyk
- Faculty of Physical Education, Gdańsk University of Physical Education and Sport, 80-854 Gdańsk, Poland;
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (E.A.B.); (A.K.L.); (E.V.G.)
| | - Ildus I. Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK;
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (E.A.B.); (A.K.L.); (E.V.G.)
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia;
- Laboratory of Molecular Genetics, Kazan State Medical University, 420012 Kazan, Russia
- Correspondence:
| |
Collapse
|
34
|
Cai S, Duo T, Wang X, Tong X, Luo C, Chen Y, Li J, Mo D. A Comparative Analysis of Metabolic Profiles of Embryonic Skeletal Muscle from Lantang and Landrace Pigs. Animals (Basel) 2022; 12:ani12040420. [PMID: 35203128 PMCID: PMC8868109 DOI: 10.3390/ani12040420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The pig is one of the most important domesticated meat animals. Some studies have revealed that pigs with low meat production show more intense myogenesis at the early stage of embryonic muscle development than pigs with high meat production. Here, by gas chromatography–mass spectrometry GC–MS based metabolomics, we concluded that the nucleotide metabolism and energy metabolism of the longissimuslumborum (LL) were increased in Lantang pigs compared with Landrace pigs, indicating rapid synthesis of nucleic acids and ATP to meet the material and energy requirements of rapid cell proliferation and differentiation in Lantang pigs. Abstract Elucidation of the complex regulation of porcine muscle development is key to increasing pork output and improving pork quality. However, the molecular mechanisms involved in early porcine embryonic muscle development in different pig breeds remain largely unknown. Here, GC–MS based metabolomics and metabolomic profiling was used to examine the longissimus lumborum (LL) of the Lantang (LT) and the Landrace (LR) pig at embryonic day 35 (E35). Metabolites showed clear separation between LT and LR, with 40 metabolites having higher abundances in LT and 14 metabolites having lower abundances in LT compared with LR. In addition, these metabolic changes were mainly associated with nucleotide metabolism and energy metabolism, such as purine metabolism, pyrimidine metabolism, the pentose phosphate pathway, and the TCA cycle. More interestingly, the contents of DNA, RNA, and ATP per unit mass of LL tissues were higher in LT, indicating rapid synthesis of nucleic acids and ATP, to meet both the material and energy requirements of rapid cell proliferation and differentiation. Furthermore, enzyme activity associated with the TCA cycle and pentose phosphate pathway, including α-ketoglutaric dehydrogenase (KGDH), malate dehydrogenase (MDH), pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), and glucose-6-phosphate dehydrogenase (G6PDH), were higher in LT. Based on these results, we conclude that there are significant differences in nucleotide metabolism and energy metabolism of LL between LT and LR, and we speculate that the enhanced nucleic acid metabolism and energy metabolism in LT can meet the material and energy requirements of rapid cell proliferation and differentiation, making myogenesis more intense in LT compared to LR which might be the metabolic mechanism underlying the distinct skeletal muscle development in the two breeds.
Collapse
Affiliation(s)
- Shufang Cai
- State Key Laboratory of Livestock and Poultry Breeding & Guangdong Public Laboratory of Animal Breeding and Nutrition & Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (C.L.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Xiaoyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Chenglong Luo
- State Key Laboratory of Livestock and Poultry Breeding & Guangdong Public Laboratory of Animal Breeding and Nutrition & Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (C.L.)
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding & Guangdong Public Laboratory of Animal Breeding and Nutrition & Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (C.L.)
- Correspondence: (J.L.); (D.M.); Tel.: +86-020-38765361 (J.L.); +86-020-39332991 (D.M.)
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (T.D.); (X.W.); (X.T.); (Y.C.)
- Correspondence: (J.L.); (D.M.); Tel.: +86-020-38765361 (J.L.); +86-020-39332991 (D.M.)
| |
Collapse
|
35
|
Yousri NA, Suhre K, Yassin E, Al-Shakaki A, Robay A, Elshafei M, Chidiac O, Hunt SC, Crystal RG, Fakhro KA. Metabolic and Metabo-Clinical Signatures of Type 2 Diabetes, Obesity, Retinopathy, and Dyslipidemia. Diabetes 2022; 71:184-205. [PMID: 34732537 PMCID: PMC8914294 DOI: 10.2337/db21-0490] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022]
Abstract
Macro- and microvascular complications of type 2 diabetes (T2D), obesity, and dyslipidemia share common metabolic pathways. In this study, using a total of 1,300 metabolites from 996 Qatari adults (57% with T2D) and 1,159 metabolites from an independent cohort of 2,618 individuals from the Qatar BioBank (11% with T2D), we identified 373 metabolites associated with T2D, obesity, retinopathy, dyslipidemia, and lipoprotein levels, 161 of which were novel. Novel metabolites included phospholipids, sphingolipids, lysolipids, fatty acids, dipeptides, and metabolites of the urea cycle and xanthine, steroid, and glutathione metabolism. The identified metabolites enrich pathways of oxidative stress, lipotoxicity, glucotoxicity, and proteolysis. Second, we identified 15 patterns we defined as "metabo-clinical signatures." These are clusters of patients with T2D who group together based on metabolite levels and reveal the same clustering in two or more clinical variables (obesity, LDL, HDL, triglycerides, and retinopathy). These signatures revealed metabolic pathways associated with different clinical patterns and identified patients with extreme (very high/low) clinical variables associated with extreme metabolite levels in specific pathways. Among our novel findings are the role of N-acetylmethionine in retinopathy in conjunction with dyslipidemia and the possible roles of N-acetylvaline and pyroglutamine in association with high cholesterol levels and kidney function.
Collapse
Affiliation(s)
- Noha A. Yousri
- Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Computer and Systems Engineering, Alexandria University, Alexandria, Egypt
- Corresponding author: Noha A. Yousri,
| | - Karsten Suhre
- Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Esraa Yassin
- Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Amal Robay
- Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Omar Chidiac
- Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Steven C. Hunt
- Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Khalid A. Fakhro
- Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Translational Research, Sidra Medical and Research Center, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
36
|
Meng L, Shi H, Wang DG, Shi J, Wu WB, Dang YM, Fan GQ, Shen J, Yu PL, Dong J, Yang RY, Xi H. Specific Metabolites Involved in Antioxidation and Mitochondrial Function Are Correlated With Frailty in Elderly Men. Front Med (Lausanne) 2022; 9:816045. [PMID: 35155500 PMCID: PMC8833032 DOI: 10.3389/fmed.2022.816045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 01/14/2023] Open
Abstract
BackgroundAs an age-related syndrome, frailty may play a central role in poor health among older adults. Sarcopenia overlaps with the physical domain of frailty, and most existing studies have analyzed the associated factors of frailty and sarcopenia as an isolated state. Perturbations in metabolism may play an important role in the presence of frailty or sarcopenia; however, the metabolites associated with frailty, especially overlapping with sarcopenia remain unclear. In this study, we aimed to explore whether amino acids, carnitines, acylcarnitines and lysophosphatidylcholines, as specific panels, are significantly correlated with frailty, especially overlapping with sarcopenia, to gain insight into potential biomarkers and possible biological mechanisms and to facilitate their management.MethodsWe applied a targeted high-performance liquid chromatography-tandem mass spectrometry approach in serum samples from 246 Chinese older men (age 79.2 ± 7.8 years) with frailty (n = 150), non-frailty (n = 96), frailty and sarcopenia (n = 52), non-frail and non-sarcopenic control (n = 85). Frailty was evaluated using Freid phenotype criteria, sarcopenia was defined by diagnostic algorithm of Asian Working Group on Sarcopenia, and the participants were diagnosed as frailty and sarcopenia when they met the evaluation criteria of both frailty and sarcopenia. A panel of 29 metabolomic profiles was assayed and included different classes of amino acids, carnitines, acylcarnitines, and lysophosphatidylcholines (LPCs). Multivariate logistic regression was used to screen the metabolic factors contributing to frailty status, and orthogonal partial least squares discriminant analysis was used to explore important factors and distinguish different groups.ResultsIn older men demonstrating the frail phenotype, amino acid perturbations included lower tryptophan and higher glycine levels. With regard to lipid metabolism, the frailty phenotype was characterized by lower concentrations of isovalerylcarnitine (C5), LPC16:0 and LPC18:2, while higher levels of octanoyl-L-carnitine (C8), decanoyl-L-carnitine (C10), dodecanoyl-L-carnitine (C12) and tetradecanoyl-L-carnitine (C14). After adjusting for several clinical confounders, tryptophan, LPC18:2, LPC 16:0 and C5 were negatively correlated with frailty, and C8 and C12 were positively related to frailty. We preliminarily identified metabolic profiles (LPC16:0, LPC18:2, glycine and tryptophan) that may distinguish older men with frailty from those without frailty. Importantly, a set of serum amino acids and LPCs (LPC16:0, LPC18:2, and tryptophan) was characterized in the metabotype of older adults with an overlap of frailty and sarcopenia. The metabolites that were most discriminating of frailty status implied that the underlying mechanism might be involved in antioxidation and mitochondrial dysfunction.ConclusionsThese present metabolic analyses may provide valuable information on the potential biomarkers and possible biological mechanisms of frailty, and overlapping sarcopenia. The findings obtained may offer insight into their management in older adults.
Collapse
Affiliation(s)
- Li Meng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Shi
- Department of Geriatrics, National Clinical Research Center for Geriatrics, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Da-guang Wang
- Department of Laboratory Medicine, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Shi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen-bin Wu
- Department of Geriatrics, National Clinical Research Center for Geriatrics, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ya-min Dang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Chinese Academy of Medical Sciences, Beijing, China
| | - Guo-qing Fan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Shen
- Department of Geriatrics, National Clinical Research Center for Geriatrics, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Pu-lin Yu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Dong
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui-yue Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Rui-yue Yang
| | - Huan Xi
- Department of Geriatrics, National Clinical Research Center for Geriatrics, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Huan Xi
| |
Collapse
|
37
|
Metabolomics as an Important Tool for Determining the Mechanisms of Human Skeletal Muscle Deconditioning. Int J Mol Sci 2021; 22:ijms222413575. [PMID: 34948370 PMCID: PMC8706620 DOI: 10.3390/ijms222413575] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Muscle deconditioning impairs both locomotor function and metabolic health, and is associated with reduced quality life and increased mortality rates. Despite an appreciation of the existence of phenomena such as muscle anabolic resistance, mitophagy, and insulin resistance with age and disease in humans, little is known about the mechanisms responsible for these negative traits. With the complexities surrounding these unknowns and the lack of progress to date in development of effective interventions, there is a need for alternative approaches. Metabolomics is the study of the full array of metabolites within cells or tissues, which collectively constitute the metabolome. As metabolomics allows for the assessment of the cellular metabolic state in response to physiological stimuli, any chronic change in the metabolome is likely to reflect adaptation in the physiological phenotype of an organism. This, therefore, provides a holistic and unbiased approach that could be applied to potentially uncover important novel facets in the pathophysiology of muscle decline in ageing and disease, as well as identifying prognostic markers of those at risk of decline. This review will aim to highlight the current knowledge and potential impact of metabolomics in the study of muscle mass loss and deconditioning in humans and will highlight key areas for future research.
Collapse
|
38
|
McClain KM, Friedenreich CM, Matthews CE, Sampson JN, Check DP, Brenner DR, Courneya KS, Murphy RA, Moore SC. Body Composition and Metabolomics in the Alberta Physical Activity and Breast Cancer Prevention Trial. J Nutr 2021; 152:419-428. [PMID: 34791348 PMCID: PMC8826845 DOI: 10.1093/jn/nxab388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Obesity is correlated with many biomarkers, but the extent to which these correlate with underlying body composition is poorly understood. OBJECTIVES Our objectives were to 1) describe/compare distinct contributions of fat/lean mass with BMI-metabolite correlations and 2) identify novel metabolite biomarkers of fat/lean mass. METHODS The Alberta Physical Activity and Breast Cancer Prevention Trial was a 2-center randomized trial of healthy, inactive, postmenopausal women (n = 304). BMI (in kg/m2) was calculated using weight and height, whereas DXA estimated fat/lean mass. Ultra-performance liquid chromatography and mass spectrometry measured relative concentrations of serum metabolite concentrations. We estimated partial Pearson correlations between 1052 metabolites and BMI, adjusting for age, smoking, and site. Fat mass index (FMI; kg/m2) and lean mass index (LMI; kg/m2) correlations were estimated similarly, with mutual adjustment to evaluate independent effects. RESULTS Using a Bonferroni-corrected α level <4.75 × 10-5, we observed 53 BMI-correlated metabolites (|r| = 0.24-0.42). Of those, 21 were robustly correlated with FMI (|r| > 0.20), 25 modestly (0.10 ≤ |r| ≤ 0.20), and 7 virtually null (|r| < 0.10). Ten of 53 were more strongly correlated with LMI than with FMI. Examining non-BMI-correlated metabolites, 6 robustly correlated with FMI (|r| = 0.24-0.31) and 2 with LMI (r = 0.25-0.26). For these, correlations for fat and lean mass were in opposing directions compared with BMI-correlated metabolites, in which correlations were mostly in the same direction. CONCLUSIONS Our results demonstrate how a thorough evaluation of the components of fat and lean mass, along with BMI, provides a more accurate assessment of the associations between body composition and metabolites than BMI alone. Such an assessment makes evident that some metabolites correlated with BMI predominantly reflect lean mass rather than fat, and some metabolites related to body composition are not correlated with BMI. Correctly characterizing these relations is important for an accurate understanding of how and why obesity is associated with disease.
Collapse
Affiliation(s)
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Edmonton, AB, Canada,Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Charles E Matthews
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - David P Check
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Darren R Brenner
- Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kerry S Courneya
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Rachel A Murphy
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada,Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
39
|
Reduced uremic metabolites are prominent feature of sarcopenia, distinct from antioxidative markers for frailty. Aging (Albany NY) 2021; 13:20915-20934. [PMID: 34492634 PMCID: PMC8457568 DOI: 10.18632/aging.203498] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Due to global aging, frailty and sarcopenia are increasing. Sarcopenia is defined as loss of volume and strength of skeletal muscle in elderlies, while frailty involves multiple domains of aging-related dysfunction, impaired cognition, hypomobility, and decreased social activity. However, little is known about the metabolic basis of sarcopenia, either shared with or discrete from frailty. Here we analyzed comprehensive metabolomic data of human blood in relation to sarcopenia, previously collected from 19 elderly participants in our frailty study. Among 131 metabolites, we identified 22 sarcopenia markers, distinct from 15 frailty markers, mainly including antioxidants, although sarcopenia overlaps clinically with physical frailty. Notably, 21 metabolites that decline in sarcopenia or low SMI are uremic compounds that increase in kidney dysfunction. These comprise TCA cycle, urea cycle, nitrogen, and methylated metabolites. Sarcopenia markers imply a close link between muscle and kidney function, while frailty markers define a state vulnerable to oxidative stress.
Collapse
|
40
|
Bellissimo MP, Jones DP, Martin GS, Alvarez JA, Ziegler TR. Plasma high-resolution metabolomic phenotyping of lean mass in a United States adult cohort. JPEN J Parenter Enteral Nutr 2021; 45:1635-1644. [PMID: 34111906 DOI: 10.1002/jpen.2201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Rapid loss of lean mass during catabolic states is associated with impaired convalescence and increased mortality rates. An understanding of metabolic pathways related to lean mass is needed to enable future interventions designed to combat malnutrition. This study assessed the plasma metabolome in relation to lean mass in clinically stable working adults in a US cohort. METHODS This cross-sectional study included 180 adults (mean ± SD, aged 49.7 ± 10.0 years; body mass index, 27.3 ± 5.5 kg/m2 ; 64% female [n=116]). Fasting plasma was analyzed using high-resolution metabolomics (HRM) via liquid chromatography/mass spectrometry. Lean mass was assessed by dual-energy x-ray absorptiometry and expressed as lean mass index (LMI, lean mass kg/height m2 ). Multiple linear regression, metabolic pathway enrichment, and module analyses were used to characterize systemic metabolism associated with LMI. RESULTS Of 5360 metabolites used in analyses, 593 were related to LMI, either upregulated or downregulated (P < .05). These were enriched within 11 metabolic pathways, including branched-chain amino acid degradation, metabolism of alanine and aspartate and other amino acids, butyrate, purines, and niacin metabolism. Module analysis revealed central associations between LMI and L-glutamate, L-leucine/L-isoleucine, L-valine, L-phenylalanine, L-methionine, and L-aspartate, among other validated metabolites. CONCLUSION These novel plasma HRM data demonstrate the wide-reaching associations of lean mass with systemic metabolism in a single snapshot. Such data may inform targeted nutrition support interventions designed to mitigate loss of lean mass and promote regaining skeletal muscle mass and function after illness or injury.
Collapse
Affiliation(s)
- Moriah P Bellissimo
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia, USA
| | - Greg S Martin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia, USA
| | - Jessica A Alvarez
- Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia, USA.,Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Thomas R Ziegler
- Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia, USA.,Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Department of Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
41
|
Circulating Metabolites Associated with Body Fat and Lean Mass in Adults with Overweight/Obesity. Metabolites 2021; 11:metabo11050317. [PMID: 34068443 PMCID: PMC8153621 DOI: 10.3390/metabo11050317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
The interplay between fat mass and lean mass within human metabolism is not completely understood. We aimed to identify specific circulating metabolomic profiles associated with these body composition compartments. Cross-sectional analyses were conducted over 236 adults with overweight/obesity from the Satiety Innovation (SATIN) study. Body composition was assessed by dual-energy X-ray absorptiometry. A targeted multiplatform metabolite profiling approach was applied. Associations between 168 circulating metabolites and the body composition measures were assessed using elastic net regression analyses. The accuracy of the multimetabolite weighted models was evaluated using a 10-fold cross-validation approach and the Pearson's correlation coefficients between metabolomic profiles and body compartments were estimated. Two different profiles including 86 and 65 metabolites were selected for % body fat and lean mass. These metabolites mainly consisted of lipids (sphingomyelins, phosphatidylcholines, lysophosphatidylcholines), acylcarnitines, and amino acids. Several metabolites overlapped between these body composition measures but none of them towards the same direction. The Pearson correlation coefficients between the metabolomic profiles and % body fat or lean mass were 0.80 and 0.79, respectively. Our findings suggest alterations in lipid metabolism, fatty acid oxidation, and protein degradation with increased adiposity and decreased lean body mass. These findings could help us to better understand the interplay between body composition compartments with human metabolic processes.
Collapse
|
42
|
Metabolomic Biomarkers of Healthy Dietary Patterns and Cardiovascular Outcomes. Curr Atheroscler Rep 2021; 23:26. [PMID: 33782776 DOI: 10.1007/s11883-021-00921-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Healthy dietary patterns are recommended for prevention of CVD. Recently, metabolomics has been used to identify biomarkers of healthy dietary patterns and elucidate mechanisms underlying diet-disease associations. This review provides an overview of approaches to define healthy dietary patterns, discusses important issues related to using metabolomics to describe healthy dietary patterns, and summarizes studies identifying blood metabolites associated with hypothesis-driven healthy dietary patterns and cardiovascular risk factors and incident CVD. RECENT FINDINGS We identified 17 studies which reported on blood metabolomic signatures of 5 healthy dietary patterns (Healthy Eating Index, Alternative Healthy Eating Index, the Dietary Approaches to Stop Hypertension diet, Mediterranean diet, vegetarian diet). Four of these studies evaluated associations between diet-related metabolites and cardiovascular outcomes. Many metabolites replicated across different healthy dietary patterns, which suggest that they may represent biomarkers of generally healthy diets. Unsaturated lipids positively associated with healthy dietary patterns were inversely associated with incident CVD, suggesting that they may be a pathway through which diet is associated with a lower risk of CVD. Although many metabolites replicated across cross-sectional studies, few metabolites identified as candidate biomarkers of healthy diets in feeding studies replicated in observational studies. Additionally, limited evidence exists on the ability of diet-related metabolites to predict cardiovascular outcomes. Replication of candidate biomarkers of dietary patterns in different study designs and more studies evaluating the associations between diet-related metabolites and cardiovascular outcomes are needed.
Collapse
|
43
|
Picca A, Calvani R, Sirago G, Coelho-Junior HJ, Marzetti E. Molecular routes to sarcopenia and biomarker development: per aspera ad astra. Curr Opin Pharmacol 2021; 57:140-147. [PMID: 33721617 DOI: 10.1016/j.coph.2021.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
Sarcopenia, the age-related decline in muscle mass and strength/function, is a prototypical geroscience condition. The dissection of muscle-specific molecular pathways through analyses of tissue biopsies has provided valuable insights into the pathophysiology of sarcopenia. However, such an approach is unsuitable for capturing the dynamic nature of the condition. Furthermore, the muscle sampling procedure may be perceived as burdensome especially by multimorbid, frail older adults. To overcome these limitations, sophisticated statistical methods have been devised for the simultaneous analysis of circulating factors related to the multiple domains of sarcopenia. This approach has shown potential for achieving a more comprehensive appraisal of the condition, unveiling new therapeutic targets, and identifying meaningful biomarkers. Here, we discuss the main pathogenetic pathways of sarcopenia, with a focus on mediators that are currently in the spotlight as biomarkers and potential treatment targets.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Giuseppe Sirago
- Department of Biomedical Sciences DBS, Università degli Studi di Padova, Padua, Italy
| | - Hélio José Coelho-Junior
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy.
| |
Collapse
|
44
|
Mikkola TM, Salonen MK, Kajantie E, Kautiainen H, Eriksson JG. Associations of Fat and Lean Body Mass with Circulating Amino Acids in Older Men and Women. J Gerontol A Biol Sci Med Sci 2021; 75:885-891. [PMID: 31095700 DOI: 10.1093/gerona/glz126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Circulating amino acids are potential markers of body composition. Previous studies are mainly limited to middle age and focus on either fat or lean mass, thereby ignoring overall body composition. We investigated the associations of fat and lean body mass with circulating amino acids in older men and women. We studied 594 women and 476 men from the Helsinki Birth Cohort Study (age 62-74 years). Bioelectrical impedance analysis was used to indicate two main body compartments by fat (fat mass/height2) and lean mass indices (lean mass/height2), dichotomized based on sex-specific medians. Eight serum amino acids were quantified using nuclear magnetic resonance spectroscopy. General linear models were adjusted for age, smoking, and fasting glucose. Higher lean mass index (LMI) was associated with higher concentrations of branched-chain amino acids in both sexes (p ≤ .001). In men, LMI was also positively associated with tyrosine (p = .006) and inversely with glycine (p < .001). Higher fat mass index was associated with higher concentrations of all branched-chain amino acids, aromatic amino acids (phenylalanine and tyrosine), and alanine in both sexes (p ≤ .008). Associations between body composition and amino acids are largely similar in older men and women. The associations are largely similar to those previously observed in younger adults.
Collapse
Affiliation(s)
| | - Minna K Salonen
- Folkhälsan Research Center, Helsinki, Finland.,Public Health Promotion Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Eero Kajantie
- Public Health Promotion Unit, National Institute for Health and Welfare, Helsinki, Finland.,PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Finland.,Department of Clinical and Molecular Medicine, Norwegian University for Science and Technology, Trondheim, Norway.,Children's Hospital, Helsinki University Hospital and University of Helsinki, Finland
| | - Hannu Kautiainen
- Folkhälsan Research Center, Helsinki, Finland.,Primary Health Care Unit, Kuopio University Hospital, Finland
| | - Johan G Eriksson
- Folkhälsan Research Center, Helsinki, Finland.,Public Health Promotion Unit, National Institute for Health and Welfare, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Finland.,Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research.,Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore
| |
Collapse
|
45
|
Dai M, Lin T, Yue J, Dai L. Signatures and Clinical Significance of Amino Acid Flux in Sarcopenia: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2021; 12:725518. [PMID: 34589057 PMCID: PMC8473793 DOI: 10.3389/fendo.2021.725518] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Dysregulation of amino acids is closely linked to the initiation and progression of sarcopenia. We summarized recent advancements in the studies of amino acid profiles in sarcopenia and systematically presented the clinical significance of amino acid flux in sarcopenia. METHODS We systematically searched in MEDLINE, EMBASE, and Cochrane library from inception to June 1, 2021 to capture all studies examining metabolomics of sarcopenia. We used the following keywords: sarcopenia, metabonomics, metabolomics, amino acid profile, and mass spectrometry. Original articles comparing amino acid patterns between persons with and without sarcopenia were included. Two independent investigators independently completed title and abstract screening, data extraction, and quality evaluation. We used a random effects model to examine the association between amino acids levels and sarcopenia. Sensitivity analyses restricted the analyses to studies in which muscle mass was measured by bioelectrical impedance analysis. Study quality was evaluated according to the Agency for Healthcare Research and Quality (AHRQ) checklist. RESULTS The systematic research yielded six eligible articles, comprising 1,120 participants. Five studies used muscle mass in combination with physical performance and/or muscle strength as the criteria to diagnose sarcopenia, while one study used muscle mass as a diagnostic criterion alone. We found that the concentrations of branched-chain amino acids leucine (standardized mean difference [SMD] -1.249; 95% confidence interval [CI]: -2.275, -0.223, P = 0.02, I2 = 97.7%), isoleucine (SMD -1.077; 95% CI: -2.106, -0.049, P = 0.04, I2 = 97.8%), and aromatic amino acid tryptophan (SMD -0.923; 95% CI: -1.580, -0.265, P = 0.01, I2 = 89.9%) were significantly reduced in individuals with sarcopenia. Study results were robust in sensitivity analysis. CONCLUSIONS The homeostasis of amino acids is critical to maintaining muscle health. The profiles of amino acids might be useful biomarkers for the characterization of sarcopenia. Future studies are warranted to study the clinical significance of amino acids in the diagnosis and treatment of sarcopenia.
Collapse
Affiliation(s)
- Miao Dai
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Taiping Lin
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jirong Yue
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Jirong Yue, ; Lunzhi Dai,
| | - Lunzhi Dai
- Department of State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Jirong Yue, ; Lunzhi Dai,
| |
Collapse
|
46
|
Lo CJ, Ko YS, Chang SW, Tang HY, Huang CY, Huang YC, Ho HY, Lin CM, Cheng ML. Metabolic signatures of muscle mass loss in an elderly Taiwanese population. Aging (Albany NY) 2020; 13:944-956. [PMID: 33410783 PMCID: PMC7834982 DOI: 10.18632/aging.202209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
To identify the association between metabolites and muscle mass in 305 elderly Taiwanese subjects, we conducted a multivariate analysis of 153 plasma samples. Based on appendicular skeletal muscle mass index (ASMI) quartiles, female and male participants were divided into four groups. Quartile 4 (Men: 5.67±0.35, Women: 4.70±0.32 Kg/m2) and quartile 1 (Men: 7.60±0.29, Women: 6.56±0.53 Kg/m2) represented low muscle mass and control groups, respectively. After multivariable adjustment, except for physical function, we found that blood urea nitrogen, creatinine, and age were associated with ASMI in men. However, only triglyceride level was related to ASMI in women. The multiple logistic regression models were used to analyze in each baseline characteristic and metabolite concentration. After the adjustment, we identify amino acid-related metabolites and show that glutamate levels in women and alpha-aminoadipate, Dopa, and citrulline/ornithine levels in men are gender-specific metabolic signatures of muscle mass loss.
Collapse
Affiliation(s)
- Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Shien Ko
- Division of Cardiology, Chang Gung Memorial Hospital, Taipei 105, Taiwan.,College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Su-Wei Chang
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Yu Huang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Chen Huang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Hung-Yao Ho
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chih-Ming Lin
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Division of Internal Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan.,Department of Health Management, Chang Gung Health and Culture Village, Taoyuan 333, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.,Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
47
|
Le Couteur DG, Solon-Biet SM, Cogger VC, Ribeiro R, de Cabo R, Raubenheimer D, Cooney GJ, Simpson SJ. Branched chain amino acids, aging and age-related health. Ageing Res Rev 2020; 64:101198. [PMID: 33132154 DOI: 10.1016/j.arr.2020.101198] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023]
Abstract
Branched chain amino acids (BCAA: leucine, valine, isoleucine) have key physiological roles in the regulation of protein synthesis, metabolism, food intake and aging. Many studies report apparently inconsistent conclusions about the relationships between blood levels of BCAAs or dietary manipulation of BCAAs with age-related changes in body composition, sarcopenia, obesity, insulin and glucose metabolism, and aging biology itself. These divergent results can be resolved by consideration of the role of BCAAs as signalling molecules and the bidirectional mechanistic relationship between BCAAs and some aging phenotypes. The effects of BCAAs are also influenced by the background nutritional composition such as macronutrient ratios and imbalance with other amino acids. Understanding the interaction between BCAAs and other components of the diet may provide new opportunities for influencing age-related outcomes through manipulation of dietary BCAAs together with titration of macronutrient ratios and other amino acids.
Collapse
|
48
|
Nagao K, Kimura T. Use of plasma-free amino acids as biomarkers for detecting and predicting disease risk. Nutr Rev 2020; 78:79-85. [DOI: 10.1093/nutrit/nuaa086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/14/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
Abstract
This paper reviews developments regarding the use of plasma-free amino acid (PFAA) profiles as biomarkers for detecting and predicting disease risk. This work was initiated and first published in 2006 and was subsequently developed by Ajinomoto Co., Inc. After commercialization in 2011, PFAA-based tests were adopted in over 1500 clinics and hospitals in Japan, and numerous clinician-led studies have been performed to validate these tests. Evidence is accumulating that PFAA profiles can be used for diabetes prediction and evaluation of frailty; in particular, decreased plasma essential amino acids could contribute to the pathophysiology of severe frailty. Integration of PFAA evaluation as a biomarker and effective essential amino acid supplementation, which improves physical and mental functions in the elderly, could facilitate the development of precision nutrition, including personalized solutions. This present review provides the background for the technology as well as more recent clinical findings, and offers future possibilities regarding the implementation of precision nutrition.
Collapse
Affiliation(s)
- Kenji Nagao
- the Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | | |
Collapse
|
49
|
Picca A, Calvani R, Cesari M, Landi F, Bernabei R, Coelho-Júnior HJ, Marzetti E. Biomarkers of Physical Frailty and Sarcopenia: Coming up to the Place? Int J Mol Sci 2020; 21:E5635. [PMID: 32781619 PMCID: PMC7460617 DOI: 10.3390/ijms21165635] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Physical frailty and sarcopenia (PF&S) recapitulates all the hallmarks of aging and has become a focus in geroscience. Factors spanning muscle-specific processes (e.g., mitochondrial dysfunction in skeletal myocytes) to systemic changes (e.g., inflammation and amino acid dysmetabolism) have been pinpointed as possible contributors to PF&S pathophysiology. However, the search for PF&S biomarkers allowing the early identification and tracking of the condition over time is ongoing. This is mainly due to the phenotypic heterogeneity of PF&S, its unclear pathophysiology, and the frequent superimposition of other age-related conditions. Hence, presently, the identification of PF&S relies upon clinical, functional, and imaging parameters. The adoption of multi-marker approaches (combined with multivariate modeling) has shown great potential for addressing the complexity of PF&S pathophysiology and identifying candidate biological markers. Well-designed longitudinal studies are necessary for the incorporation of reliable biomarkers into clinical practice and for unveiling novel targets that are amenable to interventions.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, Università di Milano, 20122 Milan, Italy;
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Department of Geriatric and Orthopedic Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Roberto Bernabei
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Department of Geriatric and Orthopedic Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Hélio José Coelho-Júnior
- Department of Geriatric and Orthopedic Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Department of Geriatric and Orthopedic Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
50
|
Frailty markers comprise blood metabolites involved in antioxidation, cognition, and mobility. Proc Natl Acad Sci U S A 2020; 117:9483-9489. [PMID: 32295884 PMCID: PMC7196897 DOI: 10.1073/pnas.1920795117] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Frailty resulting from age-related deterioration of multiple organ systems displays complex features, including cognitive dysfunction, hypomobility, and impaired daily activity. However, metabolic aspects of frailty remain unclear. We performed untargeted, comprehensive metabolomics of whole blood from 19 frail and nonfrail elderly patients. We identified 22 markers, including 15 for frailty, 6 for cognition, and 12 for hypomobility, most of which are abundant in blood. Frailty markers include 5 of 6 for cognition and 6 of 12 for hypomobility. These overlapping markers include decreased levels of metabolites related to antioxidation, nitrogen, and amino acid metabolism. Ergothioneine, an antioxidant involved in neuronal diseases, declines in frailty. Thus, we reveal essential metabolites linked to the pathogenesis of frailty, including vulnerability to oxidative stress. As human society ages globally, age-related disorders are becoming increasingly common. Due to decreasing physiological reserves and increasing organ system dysfunction associated with age, frailty affects many elderly people, compromising their ability to cope with acute stressors. Frail elderly people commonly manifest complex clinical symptoms, including cognitive dysfunction, hypomobility, and impaired daily activity, the metabolic basis of which remains poorly understood. We applied untargeted, comprehensive LC-MS metabolomic analysis to human blood from 19 frail and nonfrail elderly patients who were clinically evaluated using the Edmonton Frail Scale, the MoCA-J for cognition, and the TUG for mobility. Among 131 metabolites assayed, we identified 22 markers for frailty, cognition, and hypomobility, most of which were abundant in blood. Frailty markers included 5 of 6 markers specifically related to cognition and 6 of 12 markers associated with hypomobility. These overlapping sets of markers included metabolites related to antioxidation, muscle or nitrogen metabolism, and amino acids, most of which are decreased in frail elderly people. Five frailty-related metabolites that decreased—1,5-anhydroglucitol, acetyl-carnosine, ophthalmic acid, leucine, and isoleucine—have been previously reported as markers of aging, providing a metabolic link between human aging and frailty. Our findings clearly indicate that metabolite profiles efficiently distinguish frailty from nonfrailty. Importantly, the antioxidant ergothioneine, which decreases in frailty, is neuroprotective. Oxidative stress resulting from diminished antioxidant levels could be a key vulnerability for the pathogenesis of frailty, exacerbating illnesses related to human aging.
Collapse
|