1
|
Wang X, Zhang M, Ma J, Tie Y, Wang S. Biochemical Markers of Zinc Nutrition. Biol Trace Elem Res 2024; 202:5328-5338. [PMID: 38319550 DOI: 10.1007/s12011-024-04091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Zinc is an important trace element involved in the biochemical and physiological functions of the organism and is essential in the human body. It has been reported that 17.3% of people around the world are at risk of many diseases due to zinc deficiency, which has already affected people's healthy lives. Currently, mild zinc deficiency is difficult to diagnose early due to the lack of typical clinical manifestations, so finding zinc biomarkers is crucial for people's health. The present article reviews the main representative zinc biomarkers, such as body fluid zinc levels, zinc-dependent proteins, tissue zinc, and zinc-containing enzymes, to provide a reference for actively promoting the study of zinc nutritional status and early clinical diagnosis.
Collapse
Affiliation(s)
- Xinying Wang
- North China University of Science and Technology, Tangshan, Hebei Province, 063210, China
| | - Menghui Zhang
- North China University of Science and Technology, Tangshan, Hebei Province, 063210, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, Hebei Province, 050071, China
| | - Yanqing Tie
- Hebei General Hospital, Shijiazhuang, Hebei Province, 050051, China.
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, Hebei Province, 050071, China.
| |
Collapse
|
2
|
Sun S, Xie E, Xu S, Ji S, Wang S, Shen J, Wang R, Shen X, Su Y, Song Z, Wu X, Zhou J, Cai Z, Li X, Zhang Y, Min J, Wang F. The Intestinal Transporter SLC30A1 Plays a Critical Role in Regulating Systemic Zinc Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406421. [PMID: 39422023 PMCID: PMC11633486 DOI: 10.1002/advs.202406421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Indexed: 10/19/2024]
Abstract
The essential trace element, zinc, regulates virtually all aspects of cellular physiology, particularly cell proliferation and survival. Diverse families of metal transporters, metallothioneins, and metal-responsive transcriptional regulators are linked to zinc homeostasis. However, the mechanism underlying the regulation of systemic zinc homeostasis remains largely unknown. Here, it is reported that the intestinal transporter SLC30A1 plays an essential role in maintaining systemic zinc homeostasis. Using several lines of tissue-specific knockout mice, it is found that intestinal Slc30a1 plays a critical role in survival. Furthermore, lineage tracing reveals that Slc30a1 is localized to the basolateral membrane of intestinal epithelial cells (IECs). It is also found that Slc30a1 safeguards both intestinal barrier integrity and systemic zinc homeostasis. Finally, an integrative analysis of the cryo-EM structure and site-specific mutagenesis of human SLC30A1 are performed and a zinc transport mechanism of SLC30A1 unique within the SLC30A family, with His43 serving as a critical residue for zinc selectivity, is identified.
Collapse
Affiliation(s)
- Shumin Sun
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Enjun Xie
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Shan Xu
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Suyu Ji
- Department of Biophysics and Department of PathologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Shufen Wang
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Jie Shen
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Rong Wang
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Xinyi Shen
- The First Affiliated HospitalBasic Medical SciencesSchool of Public HealthHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Yunxing Su
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Zijun Song
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Xiaotian Wu
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Jiahui Zhou
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Zhaoxian Cai
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Xiaopeng Li
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Yan Zhang
- Department of Biophysics and Department of PathologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Junxia Min
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Fudi Wang
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
- The First Affiliated HospitalBasic Medical SciencesSchool of Public HealthHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| |
Collapse
|
3
|
Hajar A, Swathi NL, Ali A. Immunological Insights Into Nutritional Deficiency Disorders. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2024:60-83. [DOI: 10.4018/979-8-3693-2947-4.ch004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Essential nutrients play a vital role in influencing immune cell development. This chapter explores the crucial relationship between nutrition and the immune system, delving into the profound impact of dietary choices on overall health. Research highlights the benefits of nutrient-rich foods in supporting optimal immune function, while deficiencies in key nutrients (vitamins A, D, zinc, and iron) compromise immune responses, increasing susceptibility to infections. The bidirectional nature of the relationship is emphasized, underscoring the critical role of a balanced diet in supporting immune cell development, activation, and function. Case studies illustrate immunological vulnerabilities linked to inadequate nutritional status, stressing the importance of maintaining optimal nutrient levels for a robust immune system. In summary, an individual's nutritional status significantly influences immune response effectiveness. Addressing deficiencies through supplementation, dietary interventions, and public health initiatives is crucial for improving immune function.
Collapse
Affiliation(s)
- Azraida Hajar
- Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - N. L. Swathi
- Sri Venkateswara College of Pharmacy, Jawaharlal Nehru Technological University, India
| | - Awais Ali
- Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
4
|
Zhao YC, Wang TJ, Cui J, She LZ, Zhang RF, Zhang CH. The role of SLC39A4 in the prognosis, immune microenvironment, and contribution to malignant behavior in vivo and in vitro of cervical cancer. Transl Oncol 2024; 40:101839. [PMID: 38029507 PMCID: PMC10698533 DOI: 10.1016/j.tranon.2023.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are becoming more common in younger women. Solute carrier family 39 member 4 (SLC39A4) produces a zinc ion transporter involved in metastasis and invasion of tumors. METHODS The Cancer Genome Atlas RNA-seq data was used to investigate the expression of SLC39A4 and its prognostic potential. The assessment of the effect of SLC39A4 on cell growth and migration in CESC was conducted using MTT, colony formation, and Transwell assays. SLC39A4 was studied in vivo using a xenograft mouse model, and its functional involvement in oncogenesis was investigated by identifying the associated differentially expressed genes (DEGs). We evaluated the relationships among SLC39A4 levels, chemosensitivity, radiosensitivity and immune infiltration. RESULTS SLC39A4 was upregulated in CESC samples, and individuals with greater SLC39A4 mRNA expression had shorter overall survival. SLC39A4 has been identified to be a regulator of tumor cell metastasis and proliferation in vivo and in vitro, with an area under the curve of 0.874 for diagnosing CESC. In total, 948 DEGs were discovered to be enriched in key CESC progression-related signaling pathways. Additionally, intratumoral immune checkpoint and infiltration activity were associated with SLC39A4 expression. High SLC39A4 expression exhibited poor chemosensitivity and radiosensitivity profiles. CONCLUSION In conclusion, SLC39A4 is a key regulator of CESC development, prognosis, and the composition of the tumor immune microenvironment. SLC39A4 could be used as a prognostic or diagnostic screening tool and as a potential target for CESC treatment.
Collapse
Affiliation(s)
- Yue-Chen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Tie-Jun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Jie Cui
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Li-Zhen She
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Rui-Feng Zhang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China; Department of Internal Medicin-1, Jilin Cancer Hospital, Changchun, Jilin 130103, PR China
| | - Chao-He Zhang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China.
| |
Collapse
|
5
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Zhang X, Hou Y, Huang Y, Chen W, Zhang H. Interplay between zinc and cell proliferation and implications for the growth of livestock. J Anim Physiol Anim Nutr (Berl) 2023; 107:1402-1418. [PMID: 37391879 DOI: 10.1111/jpn.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
Zinc (Zn) plays a critical role in the growth of livestock, which depends on cell proliferation. In addition to modifying the growth associated with its effects on food intake, mitogenic hormones, signal transduction and gene transcription, Zn also regulates body weight gain through mediating cell proliferation. Zn deficiency in animals leads to growth inhibition, along with an arrest of cell cycle progression at G0/G1 and S phase due to depression in the expression of cyclin D/E and DNA synthesis. Therefore, in the present study, the interplay between Zn and cell proliferation and implications for the growth of livestock were reviewed, in which Zn regulates cell proliferation in several ways, especially cell cycle progression at the G0/G1 phase DNA synthesis and mitosis. During the cell cycle, the Zn transporters and major Zn binding proteins such as metallothioneins are altered with the requirements of cellular Zn level and nuclear translocation of Zn. In addition, calcium signaling, MAPK pathway and PI3K/Akt cascades are also involved in the process of Zn-interfering cell proliferation. The evidence collected over the last decade highlights the necessity of Zn for normal cell proliferation, which suggests Zn supplementation should be considered for the growth and health of poultry.
Collapse
Affiliation(s)
- Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yuhuang Hou
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Gupta N, Soriano-Úbeda C, Stein P, Savy V, Papas BN, Ardestani G, Carvacho I, Alfandari D, Williams CJ, Fissore RA. Essential role of Mg 2+ in mouse preimplantation embryo development revealed by TRPM7 chanzyme-deficient gametes. Cell Rep 2023; 42:113232. [PMID: 37824328 PMCID: PMC10842026 DOI: 10.1016/j.celrep.2023.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/17/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
TRPM7 (transient receptor potential cation channel subfamily M member 7) is a chanzyme with channel and kinase domains essential for embryo development. Using gamete-specific Trpm7-null lines, we report that TRPM7-mediated Mg2+ influx is indispensable for reaching the blastocyst stage. TRPM7 is expressed dynamically from gametes to blastocysts; displays stage-specific localization on the plasma membrane, cytoplasm, and nucleus; and undergoes cleavage that produces C-terminal kinase fragments. TRPM7 underpins Mg2+ homeostasis, and excess Mg2+ but not Zn2+ or Ca2+ overcomes the arrest of Trpm7-null embryos; expressing Trpm7 mRNA restores development, but mutant versions fail or are partially rescued. Transcriptomic analyses of Trpm7-null embryos reveal an abundance of oxidative stress-pathway genes, confirmed by mitochondrial dysfunction, and a reduction in transcription factor networks essential for proliferation; Mg2+ supplementation corrects these defects. Hence, TRPM7 underpins Mg2+ homeostasis in preimplantation embryos, prevents oxidative stress, and promotes gene expression patterns necessary for developmental progression and cell-lineage specification.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Cristina Soriano-Úbeda
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA; Department of Veterinary Medicine, Surgery, and Anatomy, Veterinary School, University of León, León, Spain
| | - Paula Stein
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Virginia Savy
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Brian N Papas
- Integrative Bioinformatics Support Group, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA; Clinical Research Embryologist, Boston IVF, Waltham, MA, USA
| | - Ingrid Carvacho
- Faculty of Medicine, Universidad Católica del Maule, Talca, Chile
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Carmen J Williams
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
8
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
9
|
Jackson TW, Baars O, Belcher SM. Gestational Cd Exposure in the CD-1 Mouse Sex-Specifically Disrupts Essential Metal Ion Homeostasis. Toxicol Sci 2022; 187:254-266. [PMID: 35212737 PMCID: PMC9154225 DOI: 10.1093/toxsci/kfac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In CD-1 mice, gestational-only exposure to cadmium (Cd) causes female-specific hepatic insulin resistance, metabolic disruption, and obesity. To evaluate whether sex differences in uptake and changes in essential metal concentrations contribute to metabolic outcomes, placental and liver Cd and essential metal concentrations were quantified in male and female offspring perinatally exposed to 500 ppb CdCl2. Exposure resulted in increased maternal liver Cd+2 concentrations (364 µg/kg) similar to concentrations found in non-occupationally exposed human liver. At gestational day (GD) 18, placental Cd and manganese concentrations were significantly increased in exposed males and females, and zinc was significantly decreased in females. Placental efficiency was significantly decreased in GD18-exposed males. Increases in hepatic Cd concentrations and a transient prenatal increase in zinc were observed in exposed female liver. Fetal and adult liver iron concentrations were decreased in both sexes, and decreases in hepatic zinc, iron, and manganese were observed in exposed females. Analysis of GD18 placental and liver metallothionein mRNA expression revealed significant Cd-induced upregulation of placental metallothionein in both sexes, and a significant decrease in fetal hepatic metallothionein in exposed females. In placenta, expression of metal ion transporters responsible for metal ion uptake was increased in exposed females. In liver of exposed adult female offspring, expression of the divalent cation importer (Slc39a14/Zip14) decreased, whereas expression of the primary exporter (Slc30a10/ZnT10) increased. These findings demonstrate that Cd can preferentially cross the female placenta, accumulate in the liver, and cause lifelong dysregulation of metal ion concentrations associated with metabolic disruption.
Collapse
Affiliation(s)
- Thomas W Jackson
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, North Carolina 27695, USA
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Scott M Belcher
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, North Carolina 27695, USA
| |
Collapse
|
10
|
Zinc transporters ZIPT-2.4 and ZIPT-15 are required for normal C. elegans fecundity. J Assist Reprod Genet 2022; 39:1261-1276. [PMID: 35501415 DOI: 10.1007/s10815-022-02495-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The requirement of zinc for the development and maturation of germ lines and reproductive systems is deeply conserved across evolution. The nematode Caenorhabditis elegans offers a tractable platform to study the complex system of distributing zinc to the germ line. We investigated several zinc importers to investigate how zinc transporters play a role in the reproductive system in nematodes, as well as establish a platform to study zinc transporter biology in germline and reproductive development. METHODS Previous high throughput transcriptional datasets as well as phylogenetic analysis identified several putative zinc transporters that have a function in reproduction in worms. Phenotypic analysis of CRISPR-generated knockouts and tags included characterization of offspring output, gonad development, and protein localization. Light and immunofluorescence microscopy allowed for visualization of physiological and molecular effects of zinc transporter mutations. RESULTS Disruption of two zinc transporters, ZIPT-2.4 and ZIPT-15, was shown to lead to defects in reproductive output. A mutation in zipt-2.4 has subtle effects on reproduction, while a mutation in zipt-15 has a clear impact on gonad and germline development that translates into a more pronounced defect in fecundity. Both transporters have germline expression, as well as additional expression in other cell types. CONCLUSIONS Two ZIP-family zinc transporter orthologs of human ZIP6/10 and ZIP1/2/3 proteins are important for full reproductive fecundity and participate in development of the gonad. Notably, these zinc transporters are present in gut and reproductive tissues in addition to the germ line, consistent with a complex zinc trafficking network important for reproductive success.
Collapse
|
11
|
Hara T, Yoshigai E, Ohashi T, Fukada T. Zinc transporters as potential therapeutic targets: An updated review. J Pharmacol Sci 2022; 148:221-228. [PMID: 35063137 DOI: 10.1016/j.jphs.2021.11.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Zinc is an essential trace element that plays important roles in the regulation of various physiological responses in the body. Zinc deficiency is known to cause various health problems, including dysgeusia, skin disorders, and immune disorders. Therefore, the maintenance of healthy zinc content in the body is critical to our healthy life. Zinc homeostasis is tightly controlled by two of the solute carrier protein families SLC30A and SLC39A, called zinc transporters. In the last decade, research on zinc biology has made dramatic progress based on the physiological and functional analysis of zinc transporters in the fields of molecular biology, human genetics, and drug discovery. In particular, since the association between zinc transporters and human diseases was recently reported using human genetics and gene knockout mouse studies, zinc and zinc signals controlled by zinc transporters have been considered useful therapeutic targets. In this review, we introduce the importance of zinc homeostasis based on the findings of zinc transporter functions and their signals in relation to human diseases.
Collapse
Affiliation(s)
- Takafumi Hara
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Emi Yoshigai
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takuto Ohashi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Toshiyuki Fukada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| |
Collapse
|
12
|
Xie D, Chen G, Meng X, Wang H, Bi X, Fang M, Yang C, Zhou Y, Long E, Feng S. Comparable Number of Genes Having Experienced Positive Selection among Great Ape Species. Animals (Basel) 2021; 11:ani11113264. [PMID: 34827995 PMCID: PMC8614513 DOI: 10.3390/ani11113264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary It is of great interest to quantify adaptive evolution in human lineage by studying genes under positive selection, since these genes could reveal insights into our own adaptive evolutionary history compared to our closely related species and often these genes are functionally important. We used the great apes as the subjects to detect gene-level adaptive evolution signals in all the great ape lineages and investigated the evolutionary patterns and functional relevance of these adaptive evolution signals. Even the differences in population size among these closely related great apes have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments, we found that they experienced comparable numbers of positive selection. Notably, we identified several genes that offer insights into great ape and human evolution. For example, SOD1, a gene associated with aging in humans, experienced positive selection in the common ancestor of the great ape and this positive selection may contribute to the aging evolution in great apes. Overall, an updated list of positively selected genes reported by this study not only informs us of adaptive evolution during great ape evolution, but is also helpful to the further study of non-human primate models for disease and other fields. Abstract Alleles that cause advantageous phenotypes with positive selection contribute to adaptive evolution. Investigations of positive selection in protein-coding genes rely on the accuracy of orthology, models, the quality of assemblies, and alignment. Here, based on the latest genome assemblies and gene annotations, we present a comparative analysis on positive selection in four great ape species and identify 211 high-confidence positively selected genes (PSGs). Even the differences in population size among these closely related great apes have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments, we found that they experienced comparable numbers of positive selection. We also uncovered that more than half of multigene families exhibited signals of positive selection, suggesting that imbalanced positive selection resulted in the functional divergence of duplicates. Moreover, at the expression level, although positive selection led to a more non-uniform pattern across tissues, the correlation between positive selection and expression patterns is diverse. Overall, this updated list of PSGs is of great significance for the further study of the phenotypic evolution in great apes.
Collapse
Affiliation(s)
- Duo Xie
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
- Correspondence: (D.X.); (S.F.)
| | - Guangji Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Xiaoyu Meng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (X.M.); (H.W.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Haotian Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (X.M.); (H.W.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Xupeng Bi
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Miaoquan Fang
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Chentao Yang
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Yang Zhou
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Erping Long
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA;
| | - Shaohong Feng
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
- Correspondence: (D.X.); (S.F.)
| |
Collapse
|
13
|
Zinc Signaling in the Mammary Gland: For Better and for Worse. Biomedicines 2021; 9:biomedicines9091204. [PMID: 34572390 PMCID: PMC8469023 DOI: 10.3390/biomedicines9091204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn2+) plays an essential role in epithelial physiology. Among its many effects, most prominent is its action to accelerate cell proliferation, thereby modulating wound healing. It also mediates affects in the gastrointestinal system, in the testes, and in secretory organs, including the pancreas, salivary, and prostate glands. On the cellular level, Zn2+ is involved in protein folding, DNA, and RNA synthesis, and in the function of numerous enzymes. In the mammary gland, Zn2+ accumulation in maternal milk is essential for supporting infant growth during the neonatal period. Importantly, Zn2+ signaling also has direct roles in controlling mammary gland development or, alternatively, involution. During breast cancer progression, accumulation or redistribution of Zn2+ occurs in the mammary gland, with aberrant Zn2+ signaling observed in the malignant cells. Here, we review the current understanding of the role of in Zn2+ the mammary gland, and the proteins controlling cellular Zn2+ homeostasis and signaling, including Zn2+ transporters and the Gq-coupled Zn2+ sensing receptor, ZnR/GPR39. Significant advances in our understanding of Zn2+ signaling in the normal mammary gland as well as in the context of breast cancer provides new avenues for identification of specific targets for breast cancer therapy.
Collapse
|
14
|
Zhang C, Sui D, Zhang T, Hu J. Molecular Basis of Zinc-Dependent Endocytosis of Human ZIP4 Transceptor. Cell Rep 2021; 31:107582. [PMID: 32348750 PMCID: PMC7661102 DOI: 10.1016/j.celrep.2020.107582] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/03/2020] [Accepted: 04/07/2020] [Indexed: 12/05/2022] Open
Abstract
Nutrient transporters can be rapidly removed from the cell surface via substrate-stimulated endocytosis as a way to control nutrient influx, but the molecular underpinnings are not well understood. In this work, we focus on zinc-dependent endocytosis of human ZIP4 (hZIP4), a zinc transporter that is essential for dietary zinc uptake. Structure-guided mutagenesis and internalization assay reveal that hZIP4 per se acts as the exclusive zinc sensor, with the transport site’s being responsible for zinc sensing. In an effort of seeking sorting signal, a scan of the longest cytosolic loop (L2) leads to identification of a conserved Leu-Gln-Leu motif that is essential for endocytosis. Partial proteolysis of purified hZIP4 demonstrates a structural coupling between the transport site and the L2 upon zinc binding, which supports a working model of how zinc ions at physiological concentration trigger a conformation-dependent endocytosis of the zinc transporter. This work provides a paradigm on post-translational regulation of nutrient transporters. Cell surface expression of ZIP4, a transporter for intestinal zinc uptake, is regulated by zinc availability. Zhang et al. report that human ZIP4 acts as the exclusive zinc sensor in initiating the zinc-dependent endocytosis, and a cytosolic motif is essential for sorting signal formation, indicating that ZIP4 is a transceptor.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Tuo Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
15
|
Garner TB, Hester JM, Carothers A, Diaz FJ. Role of zinc in female reproduction. Biol Reprod 2021; 104:976-994. [PMID: 33598687 PMCID: PMC8599883 DOI: 10.1093/biolre/ioab023] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 11/14/2022] Open
Abstract
Zinc is a critical component in a number of conserved processes that regulate female germ cell growth, fertility, and pregnancy. During follicle development, a sufficient intracellular concentration of zinc in the oocyte maintains meiotic arrest at prophase I until the germ cell is ready to undergo maturation. An adequate supply of zinc is necessary for the oocyte to form a fertilization-competent egg as dietary zinc deficiency or chelation of zinc disrupts maturation and reduces the oocyte quality. Following sperm fusion to the egg to initiate the acrosomal reaction, a quick release of zinc, known as the zinc spark, induces egg activation in addition to facilitating zona pellucida hardening and reducing sperm motility to prevent polyspermy. Symmetric division, proliferation, and differentiation of the preimplantation embryo rely on zinc availability, both during the oocyte development and post-fertilization. Further, the fetal contribution to the placenta, fetal limb growth, and neural tube development are hindered in females challenged with zinc deficiency during pregnancy. In this review, we discuss the role of zinc in germ cell development, fertilization, and pregnancy with a focus on recent studies in mammalian females. We further detail the fundamental zinc-mediated reproductive processes that have only been explored in non-mammalian species and speculate on the role of zinc in similar mechanisms of female mammals. The evidence collected over the last decade highlights the necessity of zinc for normal fertility and healthy pregnancy outcomes, which suggests zinc supplementation should be considered for reproductive age women at risk of zinc deficiency.
Collapse
Affiliation(s)
- Tyler Bruce Garner
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - James Malcolm Hester
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Allison Carothers
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Francisco J Diaz
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
16
|
Linn E, Ghanem L, Bhakta H, Greer C, Avella M. Genes Regulating Spermatogenesis and Sperm Function Associated With Rare Disorders. Front Cell Dev Biol 2021; 9:634536. [PMID: 33665191 PMCID: PMC7921155 DOI: 10.3389/fcell.2021.634536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022] Open
Abstract
Spermatogenesis is a cell differentiation process that ensures the production of fertilizing sperm, which ultimately fuse with an egg to form a zygote. Normal spermatogenesis relies on Sertoli cells, which preserve cell junctions while providing nutrients for mitosis and meiosis of male germ cells. Several genes regulate normal spermatogenesis, some of which are not exclusively expressed in the testis and control multiple physiological processes in an organism. Loss-of-function mutations in some of these genes result in spermatogenesis and sperm functionality defects, potentially leading to the insurgence of rare genetic disorders. To identify genetic intersections between spermatogenesis and rare diseases, we screened public archives of human genetic conditions available on the Genetic and Rare Diseases Information Center (GARD), the Online Mendelian Inheritance in Man (OMIM), and the Clinical Variant (ClinVar), and after an extensive literature search, we identified 22 distinct genes associated with 21 rare genetic conditions and defective spermatogenesis or sperm function. These protein-coding genes regulate Sertoli cell development and function during spermatogenesis, checkpoint signaling pathways at meiosis, cellular organization and shape definition during spermiogenesis, sperm motility, and capacitation at fertilization. A number of these genes regulate folliculogenesis and oogenesis as well. For each gene, we review the genotype–phenotype association together with associative or causative polymorphisms in humans, and provide a description of the shared molecular mechanisms that regulate gametogenesis and fertilization obtained in transgenic animal models.
Collapse
Affiliation(s)
- Emma Linn
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK, United States
| | - Lillian Ghanem
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK, United States
| | - Hanisha Bhakta
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK, United States
| | - Cory Greer
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK, United States
| | - Matteo Avella
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
17
|
Krall RF, Tzounopoulos T, Aizenman E. The Function and Regulation of Zinc in the Brain. Neuroscience 2021; 457:235-258. [PMID: 33460731 DOI: 10.1016/j.neuroscience.2021.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
Nearly sixty years ago Fredrich Timm developed a histochemical technique that revealed a rich reserve of free zinc in distinct regions of the brain. Subsequent electron microscopy studies in Timm- stained brain tissue found that this "labile" pool of cellular zinc was highly concentrated at synaptic boutons, hinting a possible role for the metal in synaptic transmission. Although evidence for activity-dependent synaptic release of zinc would not be reported for another twenty years, these initial findings spurred decades of research into zinc's role in neuronal function and revealed a diverse array of signaling cascades triggered or regulated by the metal. Here, we delve into our current understanding of the many roles zinc plays in the brain, from influencing neurotransmission and sensory processing, to activating both pro-survival and pro-death neuronal signaling pathways. Moreover, we detail the many mechanisms that tightly regulate cellular zinc levels, including metal binding proteins and a large array of zinc transporters.
Collapse
Affiliation(s)
- Rebecca F Krall
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA.
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
18
|
Kuliyev E, Zhang C, Sui D, Hu J. Zinc transporter mutations linked to acrodermatitis enteropathica disrupt function and cause mistrafficking. J Biol Chem 2021; 296:100269. [PMID: 33837739 PMCID: PMC7949036 DOI: 10.1016/j.jbc.2021.100269] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 01/14/2023] Open
Abstract
ZIP4 is a representative member of the Zrt-/Irt-like protein (ZIP) transporter family and responsible for zinc uptake from diet. Loss-of-function mutations of human ZIP4 (hZIP4) drastically reduce zinc absorption, causing a life-threatening autosomal recessive disorder, acrodermatitis enteropathica (AE). These mutations occur not only in the conserved transmembrane zinc transport machinery, but also in the extracellular domain (ECD) of hZIP4, which is only present in a fraction of mammalian ZIPs. How these AE-causing ECD mutations lead to ZIP4 malfunction has not be fully clarified. In this work, we characterized all seven confirmed AE-causing missense mutations in hZIP4-ECD and found that the variants exhibited completely abolished zinc transport activity in a cell-based transport assay. Although the variants were able to be expressed in HEK293T cells, they failed to traffic to the cell surface and were largely retained in the ER with immature glycosylation. When the corresponding mutations were introduced in the ECD of ZIP4 from Pteropus Alecto, a close homolog of hZIP4, the variants exhibited structural defects or reduced thermal stability, which likely accounts for intracellular mistrafficking of the AE-associated variants and as such a total loss of zinc uptake activity. This work provides a molecular pathogenic mechanism for AE.
Collapse
Affiliation(s)
- Eziz Kuliyev
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Chi Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jian Hu
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
19
|
The response of zinc transporter gene expression of selected tissues in a pig model of subclinical zinc deficiency. J Nutr Biochem 2021; 90:108576. [PMID: 33388346 DOI: 10.1016/j.jnutbio.2020.108576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/03/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022]
Abstract
This study compared the relative mRNA expression of all mammal zinc (Zn) transporter genes in selected tissues of weaned piglets challenged with short-term subclinical Zn deficiency (SZD). The dietary model involved restrictive feeding (450 g/animal*day-1) of a high-phytate diet (9 g/kg) supplemented with varying amounts of zinc from ZnSO4*7H2O ranging from deficient to sufficient supply levels (total diet Zn: 28.1, 33.6, 38.8, 42.7, 47.5, 58.2, 67.8, 88.0 mg Zn/kg). Total RNA preparations comprised jejunal and colonic mucosa as well as hepatic and nephric tissue. Statistical modelling involved broken-line regression (P≤.05). ZIP10 and ZIP12 mRNAs were not detected in any tissue and ZnT3 mRNA was only identified in the kidney. All other genes were expressed in all tissues but only a few gene expression patterns allowed a significant (P<.0001) fitting of broken-line regression models, indicating homeostatic regulation under the present experimental conditions. Interestingly, these genes could be subcategorized by showing significant turnarounds in their response patterns, either at ~40 or ~60 mg Zn/kg diet (P<.0001). In conclusion, the present study showed clear differences in Zn transporter gene expression in response to SZD compared to the present literature on clinical models. We recognized that certain Zn transporter genes were regulated under the present experimental conditions by two distinct homeostatic networks. For the best of our knowledge, this represents the first comprehensive screening of Zn transporter gene expression in a highly translational model to human physiology.
Collapse
|
20
|
Ohashi W, Hara T, Takagishi T, Hase K, Fukada T. Maintenance of Intestinal Epithelial Homeostasis by Zinc Transporters. Dig Dis Sci 2019; 64:2404-2415. [PMID: 30830525 DOI: 10.1007/s10620-019-05561-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Zinc is an essential micronutrient for normal organ function, and dysregulation of zinc metabolism has been implicated in a wide range of diseases. Emerging evidence has revealed that zinc transporters play diverse roles in cellular homeostasis and function by regulating zinc trafficking via organelles or the plasma membrane. In the gastrointestinal tract, zinc deficiency leads to diarrhea and dysfunction of intestinal epithelial cells. Studies also showed that zinc transporters are very important in intestinal epithelial homeostasis. In this review, we describe the physiological roles of zinc transporters in intestinal epithelial functions and relevance of zinc transporters in gastrointestinal diseases.
Collapse
Affiliation(s)
- Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takafumi Hara
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan
| | - Teruhisa Takagishi
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Toshiyuki Fukada
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan.
- Division of Pathology, Department of Oral Diagnostic Sciences, School of dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
- RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0042, Japan.
| |
Collapse
|
21
|
Brugger D, Windisch WM. Zn metabolism of monogastric species and consequences for the definition of feeding requirements and the estimation of feed Zn bioavailability. J Zhejiang Univ Sci B 2019; 20:617-627. [PMID: 31273959 PMCID: PMC6656563 DOI: 10.1631/jzus.b1900024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
A major goal of mineral nutrition research is to provide information of feed zinc (Zn) utilization efficiency and gross Zn requirements as affected by changing rearing conditions. This can be achieved only by applying precise experimental models that acknowledge the basic principles of Zn metabolism. This review article summarizes the most important aspects of Zn homeostasis in monogastric species, including molecular aspects of Zn acquisition and excretion. Special emphasis is given to the role of the skeleton as well as the exocrine pancreas for animal Zn metabolism. Finally, we discuss consequences arising from these physiological principles for the experimental design of trials which aim to address questions of Zn requirements and bioavailability.
Collapse
|
22
|
The histidine-rich loop in the extracellular domain of ZIP4 binds zinc and plays a role in zinc transport. Biochem J 2019; 476:1791-1803. [PMID: 31164399 DOI: 10.1042/bcj20190108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 02/04/2023]
Abstract
The Zrt-/Irt-like protein (ZIP) family mediates zinc influx from extracellular space or intracellular vesicles/organelles, playing a central role in systemic and cellular zinc homeostasis. Out of the 14 family members encoded in human genome, ZIP4 is exclusively responsible for zinc uptake from dietary food and dysfunctional mutations of ZIP4 cause a life-threatening genetic disorder, Acrodermatitis Enteropathica (AE). About half of the missense AE-causing mutations occur within the large N-terminal extracellular domain (ECD), and our previous study has shown that ZIP4-ECD is crucial for optimal zinc uptake but the underlying mechanism has not been clarified. In this work, we examined zinc binding to the isolated ZIP4-ECD from Pteropus Alecto (black fruit bat) and located zinc-binding sites with a low micromolar affinity within a histidine-rich loop ubiquitously present in ZIP4 proteins. Zinc binding to this protease-susceptible loop induces a small and highly localized structural perturbation. Mutagenesis and functional study on human ZIP4 by using an improved cell-based zinc uptake assay indicated that the histidine residues within this loop are not involved in preselection of metal substrate but play a role in promoting zinc transport. The possible function of the histidine-rich loop as a metal chaperone facilitating zinc binding to the transport site and/or a zinc sensor allosterically regulating the transport machinery was discussed. This work helps to establish the structure/function relationship of ZIP4 and also sheds light on other metal transporters and metalloproteins with clustered histidine residues.
Collapse
|
23
|
Gilbert R, Peto T, Lengyel I, Emri E. Zinc Nutrition and Inflammation in the Aging Retina. Mol Nutr Food Res 2019; 63:e1801049. [PMID: 31148351 DOI: 10.1002/mnfr.201801049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/18/2019] [Indexed: 12/16/2022]
Abstract
Zinc is an essential nutrient for human health. It plays key roles in maintaining protein structure and stability, serves as catalytic factor for many enzymes, and regulates diverse fundamental cellular processes. Zinc is important in affecting signal transduction and, in particular, in the development and integrity of the immune system, where it affects both innate and adaptive immune responses. The eye, especially the retina-choroid complex, has an unusually high concentration of zinc compared to other tissues. The highest amount of zinc is concentrated in the retinal pigment epithelium (RPE) (RPE-choroid, 292 ± 98.5 µg g-1 dry tissue), followed by the retina (123 ± 62.2 µg g-1 dry tissue). The interplay between zinc and inflammation has been explored in other parts of the body but, so far, has not been extensively researched in the eye. Several lines of evidence suggest that ocular zinc concentration decreases with age, especially in the context of age-related disease. Thus, a hypothesis that retinal function could be modulated by zinc nutrition is proposed, and subsequently trialled clinically. In this review, the distribution and the potential role of zinc in the retina-choroid complex is outlined, especially in relation to inflammation and immunity, and the clinical studies to date are summarized.
Collapse
Affiliation(s)
- Rosie Gilbert
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, EC1V 2PD, UK.,UCL Institute of Ophthalmology, Bath Street, London, EC1V 2EL, UK
| | - Tunde Peto
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Imre Lengyel
- UCL Institute of Ophthalmology, Bath Street, London, EC1V 2EL, UK.,School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Eszter Emri
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| |
Collapse
|
24
|
Gordon SJV, Fenker DE, Vest KE, Padilla-Benavides T. Manganese influx and expression of ZIP8 is essential in primary myoblasts and contributes to activation of SOD2. Metallomics 2019; 11:1140-1153. [PMID: 31086870 PMCID: PMC6584035 DOI: 10.1039/c8mt00348c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trace elements such as copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) function as enzyme cofactors and second messengers in cell signaling. Trace elements are emerging as key regulators of differentiation and development of mammalian tissues including blood, brain, and skeletal muscle. We previously reported an influx of Cu and dynamic expression of metal transporters during differentiation of skeletal muscle cells. Here, we demonstrate that during differentiation of skeletal myoblasts an increase of Mn, Fe and Zn also occurs. Interestingly the Mn increase is concomitant with increased Mn-dependent SOD2 levels. To better understand the Mn import pathway in skeletal muscle cells, we probed the functional relevance of the closely related proteins ZIP8 and ZIP14, which are implicated in Zn, Mn, and Fe transport. Partial depletion of ZIP8 severely impaired growth of myoblasts and led to cell death under differentiation conditions, indicating that ZIP8-mediated metal transport is essential in skeletal muscle cells. Moreover, knockdown of Zip8 impaired activity of the Mn-dependent SOD2. Growth defects were partially rescued only by Mn supplementation to the medium, suggesting additional functions for ZIP8 in the skeletal muscle lineage. Restoring wild type Zip8 into the knockdown cells rescued the proliferation and differentiation phenotypes. On the other hand, knockdown of Zip14, had only a mild effect on myotube size, consistent with a role for ZIP14 in muscle hypertrophy. Simultaneous knockdown of both Zip8 and Zip14 further impaired differentiation and led cell death. This is the first report on the functional relevance of two members of the ZIP family of metal transporters in the skeletal muscle lineage, and further supports the paradigm that trace metal transporters are important modulators of mammalian tissue development.
Collapse
Affiliation(s)
- Shellaina J. V. Gordon
- Department of Biochemistry and Molecular Pharmacology,
University of Massachusetts Medical School, 394 Plantation St., Worcester, MA,
01605, USA
| | - Daniel E. Fenker
- Department of Molecular Genetics, Biochemistry &
Microbiology, University of Cincinnati School of Medicine, 231 Albert Sabin Way,
Cincinnati, OH, 45267, USA
| | - Katherine E. Vest
- Department of Molecular Genetics, Biochemistry &
Microbiology, University of Cincinnati School of Medicine, 231 Albert Sabin Way,
Cincinnati, OH, 45267, USA
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology,
University of Massachusetts Medical School, 394 Plantation St., Worcester, MA,
01605, USA
| |
Collapse
|
25
|
Paskavitz AL, Quintana J, Cangussu D, Tavera-Montañez C, Xiao Y, Ortiz-Miranda S, Navea JG, Padilla-Benavides T. Differential expression of zinc transporters accompanies the differentiation of C2C12 myoblasts. J Trace Elem Med Biol 2018; 49:27-34. [PMID: 29895369 PMCID: PMC6082398 DOI: 10.1016/j.jtemb.2018.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
Abstract
Zinc transporters facilitate metal mobilization and compartmentalization, playing a key role in cellular development. Little is known about the mechanisms and pathways of Zn movement between Zn transporters and metalloproteins during myoblast differentiation. We analyzed the differential expression of ZIP and ZnT transporters during C2C12 myoblast differentiation. Zn transporters account for a transient decrease of intracellular Zn upon myogenesis induction followed by a gradual increase of Zn in myotubes. Considering the subcellular localization and function of each of the Zn transporters, our findings indicate that a fine regulation is necessary to maintain correct metal concentrations in the cytosol and subcellular compartments to avoid toxicity, maintain homeostasis, and for loading metalloproteins needed during myogenesis. This study advances our basic understanding of the complex Zn transport network during muscle differentiation.
Collapse
Affiliation(s)
- Amanda L Paskavitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA; Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Julia Quintana
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Daniella Cangussu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Cristina Tavera-Montañez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA; Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Yao Xiao
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Sonia Ortiz-Miranda
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Juan G Navea
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
26
|
How cellular Zn 2+ signaling drives physiological functions. Cell Calcium 2018; 75:53-63. [PMID: 30145429 DOI: 10.1016/j.ceca.2018.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Zinc is an essential micronutrient affecting many aspects of human health. Cellular Zn2+ homeostasis is critical for cell function and survival. Zn2+, acting as a first or second messenger, triggers signaling pathways that mediate the physiological roles of Zn2+. Transient changes in Zn2+ concentrations within the cell or in the extracellular region occur following its release from Zn2+ binding metallothioneins, its transport across membranes by the ZnT or ZIP transporters, or release of vesicular Zn2+. These transients activate a distinct Zn2+ sensing receptor, ZnR/GPR39, or modulate numerous proteins and signaling pathways. Importantly, Zn2+ signaling regulates cellular physiological functions such as: proliferation, differentiation, ion transport and secretion. Indeed, novel therapeutic approaches aimed to maintain Zn2+ homeostasis and signaling are evolving. This review focuses on recent findings describing roles of Zn2+ and its transporters in regulating physiological or pathological processes.
Collapse
|
27
|
The Role of the Slc39a Family of Zinc Transporters in Zinc Homeostasis in Skin. Nutrients 2018; 10:nu10020219. [PMID: 29462920 PMCID: PMC5852795 DOI: 10.3390/nu10020219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/27/2018] [Accepted: 02/11/2018] [Indexed: 12/20/2022] Open
Abstract
The first manifestations that appear under zinc deficiency are skin defects such as dermatitis, alopecia, acne, eczema, dry, and scaling skin. Several genetic disorders including acrodermatitis enteropathica (also known as Danbolt-Closs syndrome) and Brandt's syndrome are highly related to zinc deficiency. However, the zinc-related molecular mechanisms underlying normal skin development and homeostasis, as well as the mechanism by which disturbed zinc homeostasis causes such skin disorders, are unknown. Recent genomic approaches have revealed the physiological importance of zinc transporters in skin formation and clarified their functional impairment in cutaneous pathogenesis. In this review, we provide an overview of the relationships between zinc deficiency and skin disorders, focusing on the roles of zinc transporters in the skin. We also discuss therapeutic outlooks and advantages of controlling zinc levels via zinc transporters to prevent cutaneous disorganization.
Collapse
|
28
|
Recent Advances in the Role of SLC39A/ZIP Zinc Transporters In Vivo. Int J Mol Sci 2017; 18:ijms18122708. [PMID: 29236063 PMCID: PMC5751309 DOI: 10.3390/ijms18122708] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/27/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn), which is an essential trace element, is involved in numerous mammalian physiological events; therefore, either a deficiency or excess of Zn impairs cellular machineries and influences physiological events, such as systemic growth, bone homeostasis, skin formation, immune responses, endocrine function, and neuronal function. Zn transporters are thought to mainly contribute to Zn homeostasis within cells and in the whole body. Recent genetic, cellular, and molecular studies of Zn transporters highlight the dynamic role of Zn as a signaling mediator linking several cellular events and signaling pathways. Dysfunction in Zn transporters causes various diseases. This review aims to provide an update of Zn transporters and Zn signaling studies and discusses the remaining questions and future directions by focusing on recent progress in determining the roles of SLC39A/ZIP family members in vivo.
Collapse
|
29
|
Wessels I, Maywald M, Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017; 9:E1286. [PMID: 29186856 PMCID: PMC5748737 DOI: 10.3390/nu9121286] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Abstract
After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc "importers" (ZIP 1-14), zinc "exporters" (ZnT 1-10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate "zinc waves", and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Martina Maywald
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
30
|
Hojyo S, Bin BH, Fukada T. Dysregulated zinc homeostasis in rare skin disorders. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1394184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shintaro Hojyo
- Osteoimmunology, Deutsches Rheuma-Forschungszentrum, Berlin, Berlin, Germany
| | - Bum-Ho Bin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Toshiyuki Fukada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
31
|
Hara T, Takeda TA, Takagishi T, Fukue K, Kambe T, Fukada T. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci 2017; 67:283-301. [PMID: 28130681 PMCID: PMC10717645 DOI: 10.1007/s12576-017-0521-4] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023]
Abstract
Zinc (Zn) is an essential trace mineral that regulates the expression and activation of biological molecules such as transcription factors, enzymes, adapters, channels, and growth factors, along with their receptors. Zn deficiency or excessive Zn absorption disrupts Zn homeostasis and affects growth, morphogenesis, and immune response, as well as neurosensory and endocrine functions. Zn levels must be adjusted properly to maintain the cellular processes and biological responses necessary for life. Zn transporters regulate Zn levels by controlling Zn influx and efflux between extracellular and intracellular compartments, thus, modulating the Zn concentration and distribution. Although the physiological functions of the Zn transporters remain to be clarified, there is growing evidence that Zn transporters are related to human diseases, and that Zn transporter-mediated Zn ion acts as a signaling factor, called "Zinc signal". Here we describe critical roles of Zn transporters in the body and their contribution at the molecular, biochemical, and genetic levels, and review recently reported disease-related mutations in the Zn transporter genes.
Collapse
Affiliation(s)
- Takafumi Hara
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Taka-Aki Takeda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Teruhisa Takagishi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Kazuhisa Fukue
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Toshiyuki Fukada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan.
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
| |
Collapse
|
32
|
Pan Z, Choi S, Ouadid-Ahidouch H, Yang JM, Beattie JH, Korichneva I. Zinc transporters and dysregulated channels in cancers. Front Biosci (Landmark Ed) 2017; 22:623-643. [PMID: 27814637 DOI: 10.2741/4507] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a nutritionally essential metal ion, zinc (Zn) not only constitutes a structural element for more than 3000 proteins but also plays important regulatory functions in cellular signal transduction. Zn homeostasis is tightly controlled by regulating the flux of Zn across cell membranes through specific transporters, i.e. ZnT and ZIP family proteins. Zn deficiency and malfunction of Zn transporters have been associated with many chronic diseases including cancer. However, the mechanisms underlying Zn regulatory functions in cellular signaling and their impact on the pathogenesis and progression of cancers remain largely unknown. In addition to these acknowledged multifunctions, Zn modulates a wide range of ion channels that in turn may also play an important role in cancer biology. The goal of this review is to propose how zinc deficiency, through modified Zn homeostasis, transporter activity and the putative regulatory function of Zn can influence ion channel activity, and thereby contribute to carcinogenesis and tumorigenesis. This review intends to stimulate interest in, and support for research into the understanding of Zn-modulated channels in cancers, and to search for novel biomarkers facilitating effective clinical stratification of high risk cancer patients as well as improved prevention and therapy in this emerging field.
Collapse
Affiliation(s)
- Zui Pan
- The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA,
| | - Sangyong Choi
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Halima Ouadid-Ahidouch
- University of Picardie Jules Verne, UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Jin-Ming Yang
- Department of Pharmacology, College of Medicine, Penn State University, 500 University Drive Hershey, PA 17033, USA
| | - John H Beattie
- Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Bucksburn, Aberdeen AB25 2ZD, Scotland, UK
| | - Irina Korichneva
- University of Picardie Jules Verne, UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| |
Collapse
|
33
|
Bin BH, Bhin J, Kim NH, Lee SH, Jung HS, Seo J, Kim DK, Hwang D, Fukada T, Lee AY, Lee TR, Cho EG. An Acrodermatitis Enteropathica-Associated Zn Transporter, ZIP4, Regulates Human Epidermal Homeostasis. J Invest Dermatol 2016; 137:874-883. [PMID: 27940220 DOI: 10.1016/j.jid.2016.11.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 01/26/2023]
Abstract
Acrodermatitis enteropathica is an autosomal recessive disorder characterized by scaly eczematous dermatosis accompanied by alopecia and diarrhea. Various mutations in the SLC39A4 gene (ZIP4), which encodes a zinc transporter, are responsible for this disorder. However, the molecular mechanism underlying the involvement of ZIP4 in the pathogenesis of this condition has yet to be established. In this study, we report the role of ZIP4 in human epidermis. ZIP4 is predominantly expressed in human keratinocytes, and its expression is dramatically reduced on epidermal differentiation. ZIP4 knockdown in human keratinocytes down-regulates zinc (Zn) levels and the transcriptional activity of a key epidermal Zn-binding protein, ΔNp63, and dysregulates epidermal differentiation in a reconstituted human skin model, resulting in the appearance of proliferating keratinocytes even in the uppermost layers of the skin. We verified that, among the amino acid residues in its Zn-binding motif, Cys205 is critical for the processing and nuclear distribution of ΔNp63 and, therefore, Zn-dependent transcriptional activity. Our results suggest that ZIP4 is essential for maintaining human epidermal homeostasis through the regulation of Zn-dependent ΔNp63 activity and can provide insight into the molecular mechanisms responsible for the cutaneous symptoms observed in Acrodermatitis enteropathica patients.
Collapse
Affiliation(s)
- Bum-Ho Bin
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin, Republic of Korea
| | - Jinhyuk Bhin
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Nan-Hyung Kim
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Su-Hyon Lee
- Bio Solution Corporation, Seoul, Republic of Korea
| | | | - Juyeon Seo
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin, Republic of Korea
| | - Dae-Kyum Kim
- Donnelly Centre, Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Daehee Hwang
- Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu, Republic of Korea
| | - Toshiyuki Fukada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Tae Ryong Lee
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin, Republic of Korea.
| | - Eun-Gyung Cho
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin, Republic of Korea.
| |
Collapse
|
34
|
Hojyo S, Fukada T. Zinc transporters and signaling in physiology and pathogenesis. Arch Biochem Biophys 2016; 611:43-50. [DOI: 10.1016/j.abb.2016.06.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
|
35
|
Roles of Zinc Signaling in the Immune System. J Immunol Res 2016; 2016:6762343. [PMID: 27872866 PMCID: PMC5107842 DOI: 10.1155/2016/6762343] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn) is an essential micronutrient for basic cell activities such as cell growth, differentiation, and survival. Zn deficiency depresses both innate and adaptive immune responses. However, the precise physiological mechanisms of the Zn-mediated regulation of the immune system have been largely unclear. Zn homeostasis is tightly controlled by the coordinated activity of Zn transporters and metallothioneins, which regulate the transport, distribution, and storage of Zn. There is growing evidence that Zn behaves like a signaling molecule, facilitating the transduction of a variety of signaling cascades in response to extracellular stimuli. In this review, we highlight the emerging functional roles of Zn and Zn transporters in immunity, focusing on how crosstalk between Zn and immune-related signaling guides the normal development and function of immune cells.
Collapse
|
36
|
Kimura T, Kambe T. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int J Mol Sci 2016; 17:336. [PMID: 26959009 PMCID: PMC4813198 DOI: 10.3390/ijms17030336] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular signaling mediator. Thus, it is expected that zinc metabolism and homeostasis have sophisticated regulation, and elucidating the underlying molecular basis of this is essential to understanding zinc functions in cellular physiology and pathogenesis. In recent decades, an increasing amount of evidence has uncovered critical roles of a number of proteins in zinc metabolism and homeostasis through influxing, chelating, sequestrating, coordinating, releasing, and effluxing zinc. Metallothioneins (MT) and Zrt- and Irt-like proteins (ZIP) and Zn transporters (ZnT) are the proteins primarily involved in these processes, and their malfunction has been implicated in a number of inherited diseases such as acrodermatitis enteropathica. The present review updates our current understanding of the biological functions of MTs and ZIP and ZnT transporters from several new perspectives.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan.
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
37
|
Hashimoto A, Nakagawa M, Tsujimura N, Miyazaki S, Kizu K, Goto T, Komatsu Y, Matsunaga A, Shirakawa H, Narita H, Kambe T, Komai M. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation. Am J Physiol Regul Integr Comp Physiol 2016; 310:R459-68. [DOI: 10.1152/ajpregu.00439.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/18/2015] [Indexed: 11/22/2022]
Abstract
Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely.
Collapse
Affiliation(s)
- Ayako Hashimoto
- The Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Miki Nakagawa
- Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Natsuki Tsujimura
- Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shiho Miyazaki
- The Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kumiko Kizu
- Department of Life and Living, Osaka Seikei College, Osaka, Japan; and
| | - Tomoko Goto
- Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yusuke Komatsu
- Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ayu Matsunaga
- Department of Food Science, Kyoto Women's University, Kyoto, Japan
| | - Hitoshi Shirakawa
- Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hiroshi Narita
- Department of Food Science, Kyoto Women's University, Kyoto, Japan
| | - Taiho Kambe
- The Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michio Komai
- Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
38
|
Hashimoto A, Ohkura K, Takahashi M, Kizu K, Narita H, Enomoto S, Miyamae Y, Masuda S, Nagao M, Irie K, Ohigashi H, Andrews GK, Kambe T. Soybean extracts increase cell surface ZIP4 abundance and cellular zinc levels: a potential novel strategy to enhance zinc absorption by ZIP4 targeting. Biochem J 2015; 472:183-93. [PMID: 26385990 DOI: 10.1042/bj20150862] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2023]
Abstract
Dietary zinc deficiency puts human health at risk, so we explored strategies for enhancing zinc absorption. In the small intestine, the zinc transporter ZIP4 functions as an essential component of zinc absorption. Overexpression of ZIP4 protein increases zinc uptake and thereby cellular zinc levels, suggesting that food components with the ability to increase ZIP4 could potentially enhance zinc absorption via the intestine. In the present study, we used mouse Hepa cells, which regulate mouse Zip4 (mZip4) in a manner indistinguishable from that in intestinal enterocytes, to screen for suitable food components that can increase the abundance of ZIP4. Using this ZIP4-targeting strategy, two such soybean extracts were identified that were specifically able to decrease mZip4 endocytosis in response to zinc. These soybean extracts also effectively increased the abundance of apically localized mZip4 in transfected polarized Caco2 and Madin-Darby canine kidney cells and, moreover, two apically localized mZip4 acrodermatitis enteropathica mutants. Soybean components were purified from one extract and soyasaponin Bb was identified as an active component that increased both mZip4 protein abundance and zinc levels in Hepa cells. Finally, we confirmed that soyasaponin Bb is capable of enhancing cell surface endogenous human ZIP4 in human cells. Our results suggest that ZIP4 targeting may represent a new strategy to improve zinc absorption in humans.
Collapse
Affiliation(s)
- Ayako Hashimoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Katsuma Ohkura
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
| | | | - Kumiko Kizu
- Department of Life and Living, Osaka Seikei College, Osaka, Japan
| | - Hiroshi Narita
- Department of Food Science, Kyoto Women's University, Kyoto, Japan
| | - Shuichi Enomoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan Center for Molecular Imaging Science, RIKEN Kobe Institute, Kobe, Japan
| | - Yusaku Miyamae
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Seiji Masuda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masaya Nagao
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hajime Ohigashi
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
| | - Glen K Andrews
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, U.S.A
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Bennis A, Gorgels TGMF, ten Brink JB, van der Spek PJ, Bossers K, Heine VM, Bergen AA. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration. PLoS One 2015; 10:e0141597. [PMID: 26517551 PMCID: PMC4627757 DOI: 10.1371/journal.pone.0141597] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/09/2015] [Indexed: 11/26/2022] Open
Abstract
Background The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to develop new therapeutics. This requires further in-depth knowledge of the similarities and differences between mouse and human RPE. Methods We performed a microarray study to identify and functionally annotate RPE specific gene expression in mouse and human RPE. We used a meticulous method to determine C57BL/6J mouse RPE signature genes, correcting for possible RNA contamination from its adjacent layers: the choroid and the photoreceptors. We compared the signature genes, gene expression profiles and functional annotations of the mouse and human RPE. Results We defined sets of mouse (64), human (171) and mouse–human interspecies (22) RPE signature genes. Not unexpectedly, our gene expression analysis and comparative functional annotation suggested that, in general, the mouse and human RPE are very similar. For example, we found similarities for general features, like “organ development” and “disorders related to neurological tissue”. However, detailed analysis of the molecular pathways and networks associated with RPE functions, suggested also multiple species-specific differences, some of which may be relevant for the development of AMD. For example, CFHR1, most likely the main complement regulator in AMD pathogenesis was highly expressed in human RPE, but almost absent in mouse RPE. Furthermore, functions assigned to mouse and human RPE expression profiles indicate (patho-) biological differences related to AMD, such as oxidative stress, Bruch’s membrane, immune-regulation and outer blood retina barrier. Conclusion These differences may be important for the development of new therapeutic strategies and translational studies in age-related macular degeneration.
Collapse
Affiliation(s)
- Anna Bennis
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Theo G. M. F. Gorgels
- The Netherlands Institute for Neuroscience (NIN-KNAW), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- University Eye Clinic Maastricht, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jacoline B. ten Brink
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
| | - Peter J. van der Spek
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Koen Bossers
- Laboratory for Neuroregeneration, the Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Vivi M. Heine
- Department of Pediatrics / Child Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Arthur A. Bergen
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Ophthalmology, Academic Medical Centre, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
40
|
Shawki A, Anthony SR, Nose Y, Engevik MA, Niespodzany EJ, Barrientos T, Öhrvik H, Worrell RT, Thiele DJ, Mackenzie B. Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese. Am J Physiol Gastrointest Liver Physiol 2015; 309:G635-47. [PMID: 26294671 PMCID: PMC4609933 DOI: 10.1152/ajpgi.00160.2015] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/18/2015] [Indexed: 01/31/2023]
Abstract
Divalent metal-ion transporter-1 (DMT1) is a widely expressed iron-preferring membrane-transport protein that serves a critical role in erythroid iron utilization. We have investigated its role in intestinal metal absorption by studying a mouse model lacking intestinal DMT1 (i.e., DMT1(int/int)). DMT1(int/int) mice exhibited a profound hypochromic-microcytic anemia, splenomegaly, and cardiomegaly. That the anemia was due to iron deficiency was demonstrated by the following observations in DMT1(int/int) mice: 1) blood iron and tissue nonheme-iron stores were depleted; 2) mRNA expression of liver hepcidin (Hamp1) was depressed; and 3) intraperitoneal iron injection corrected the anemia, and reversed the changes in blood iron, nonheme-iron stores, and hepcidin expression levels. We observed decreased total iron content in multiple tissues from DMT1(int/int) mice compared with DMT1(+/+) mice but no meaningful change in copper, manganese, or zinc. DMT1(int/int) mice absorbed (64)Cu and (54)Mn from an intragastric dose to the same extent as did DMT1(+/+) mice but the absorption of (59)Fe was virtually abolished in DMT1(int/int) mice. This study reveals a critical function for DMT1 in intestinal nonheme-iron absorption for normal growth and development. Further, this work demonstrates that intestinal DMT1 is not required for the intestinal transport of copper, manganese, or zinc.
Collapse
Affiliation(s)
- Ali Shawki
- 1Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; ,2Systems Biology & Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Sarah R. Anthony
- 1Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Yasuhiro Nose
- 3Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina;
| | - Melinda A. Engevik
- 1Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; ,2Systems Biology & Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Eric J. Niespodzany
- 1Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Tomasa Barrientos
- 3Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina;
| | - Helena Öhrvik
- 3Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina; ,4Department of Medical Biochemistry & Microbiology, Uppsala University, Uppsala, Sweden; and
| | - Roger T. Worrell
- 1Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; ,2Systems Biology & Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Dennis J. Thiele
- 3Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina; ,5Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| | - Bryan Mackenzie
- Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Systems Biology & Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| |
Collapse
|
41
|
Clinical utility gene card for: acrodermatitis enteropathica - update 2015. Eur J Hum Genet 2015. [PMID: 26443269 DOI: 10.1038/ejhg.2015.203.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
42
|
Küry S, Kharfi M, Blouin E, Schmitt S, Bézieau S. Clinical utility gene card for: acrodermatitis enteropathica - update 2015. Eur J Hum Genet 2015; 24:ejhg2015203. [PMID: 26443269 DOI: 10.1038/ejhg.2015.203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/29/2015] [Accepted: 08/14/2015] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sébastien Küry
- CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Monia Kharfi
- Hôpital Charles Nicolle, Service de Dermatologie, Tunis, Tunisia
| | | | | | | |
Collapse
|
43
|
Richards CD, Burke R. Local and systemic effects of targeted zinc redistribution in Drosophila neuronal and gastrointestinal tissues. Biometals 2015; 28:967-74. [PMID: 26411574 DOI: 10.1007/s10534-015-9881-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/11/2022]
Abstract
While the effects of systemic zinc ion deficiency and toxicity on animal health are well documented, the impacts of localized, tissue-specific disturbances in zinc homeostasis are less well understood. Previously we have identified zinc dyshomeostasis scenarios caused by the targeted manipulation of zinc transport genes in the Drosophila eye. Over expression of the uptake transporter dZIP42C.1 (dZIP1) combined with knockdown of the efflux transporter dZNT63C (dZNT1) causes a zinc toxicity phenotype, as does over expression of dZIP71B or dZNT86D. However, all three genotypes result in different morphologies, responses to dietary zinc, and genetic interactions with the remaining zinc transport genes, indicating that each causes a different redistribution of zinc within affected cells. dZNT86D (eGFP) over expression generates a completely different phenotype, interpreted as a Golgi zinc deficiency. Here we assess the effect of each of these transgenes when targeted to a range of Drosophila tissues. We find that dZIP71B is a particularly potent zinc uptake gene, causing early developmental lethality when targeted to multiple different tissue types. dZNT86D over expression (Golgi-only zinc toxicity) is less deleterious, but causes highly penetrant adult cuticle, sensory bristle and wing expansion defects. The dZIP42C.1 over expression, dZNT63C knockdown combination causes only moderate adult cuticle defects and sensitivity to dietary zinc when expressed in the midgut. The Golgi-only zinc deficiency caused by dZNT86D (eGFP) expression results in mild cuticle defects, highly penetrant wing expansion defects and developmental lethality when targeted to the central nervous system and, uniquely, the fat bodies.
Collapse
Affiliation(s)
- Christopher D Richards
- School of Biological Sciences, Monash University, Wellington Rd., Clayton, VIC, 3800, Australia
| | - Richard Burke
- School of Biological Sciences, Monash University, Wellington Rd., Clayton, VIC, 3800, Australia.
| |
Collapse
|
44
|
Jones MWM, de Jonge MD, James SA, Burke R. Elemental mapping of the entire intact Drosophila gastrointestinal tract. J Biol Inorg Chem 2015; 20:979-87. [PMID: 26153547 DOI: 10.1007/s00775-015-1281-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023]
Abstract
The main role of the animal gastrointestinal (GI) tract is the selective absorption of dietary nutrients from ingested food sources. One class of vital micronutrients are the essential biometals such as copper, zinc and iron, which participate in a plethora of biological process, acting as enzymatic or structural co-factors for numerous proteins and also as important cellular signalling molecules. To help elucidate the mechanisms by which biometals are absorbed from the diet, we mapped elemental distribution in entire, intact Drosophila larval GI tracts using synchrotron X-ray fluorescence microscopy. Our results revealed distinct regions of the GI tract enriched for specific metals. Copper was found to be concentrated in the copper cell region but also in the region directly anterior to the copper cells and unexpectedly, in the middle midgut/iron cell region as well. Iron was observed exclusively in the iron cell region, confirming previous work with iron-specific histological stains. Zinc was observed throughout the GI tract with an increased accumulation in the posterior midgut region, while manganese was seen to co-localize with calcium specifically in clusters in the distal Malpighian tubules. This work simultaneously reveals distribution of a number of biologically important elements in entire, intact GI tracts. These distributions revealed not only a previously undescribed Ca/Mn co-localization, but also the unexpected presence of additional Cu accumulations in the iron cell region.
Collapse
Affiliation(s)
- Michael W M Jones
- Australian Synchrotron, 800 Blackburn Road, Clayton, 3168, Australia
| | | | | | | |
Collapse
|
45
|
Kambe T, Tsuji T, Hashimoto A, Itsumura N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev 2015; 95:749-84. [DOI: 10.1152/physrev.00035.2014] [Citation(s) in RCA: 556] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Zinc is involved in a variety of biological processes, as a structural, catalytic, and intracellular and intercellular signaling component. Thus zinc homeostasis is tightly controlled at the whole body, tissue, cellular, and subcellular levels by a number of proteins, with zinc transporters being particularly important. In metazoan, two zinc transporter families, Zn transporters (ZnT) and Zrt-, Irt-related proteins (ZIP) function in zinc mobilization of influx, efflux, and compartmentalization/sequestration across biological membranes. During the last two decades, significant progress has been made in understanding the molecular properties, expression, regulation, and cellular and physiological roles of ZnT and ZIP transporters, which underpin the multifarious functions of zinc. Moreover, growing evidence indicates that malfunctioning zinc homeostasis due to zinc transporter dysfunction results in the onset and progression of a variety of diseases. This review summarizes current progress in our understanding of each ZnT and ZIP transporter from the perspective of zinc physiology and pathogenesis, discussing challenging issues in their structure and zinc transport mechanisms.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tokuji Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ayako Hashimoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoya Itsumura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
46
|
Liu Y, Batchuluun B, Ho L, Zhu D, Prentice KJ, Bhattacharjee A, Zhang M, Pourasgari F, Hardy AB, Taylor KM, Gaisano H, Dai FF, Wheeler MB. Characterization of Zinc Influx Transporters (ZIPs) in Pancreatic β Cells: ROLES IN REGULATING CYTOSOLIC ZINC HOMEOSTASIS AND INSULIN SECRETION. J Biol Chem 2015; 290:18757-69. [PMID: 25969539 PMCID: PMC4513131 DOI: 10.1074/jbc.m115.640524] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/12/2022] Open
Abstract
Zinc plays an essential role in the regulation of pancreatic β cell function, affecting important processes including insulin biosynthesis, glucose-stimulated insulin secretion, and cell viability. Mutations in the zinc efflux transport protein ZnT8 have been linked with both type 1 and type 2 diabetes, further supporting an important role for zinc in glucose homeostasis. However, very little is known about how cytosolic zinc is controlled by zinc influx transporters (ZIPs). In this study, we examined the β cell and islet ZIP transcriptome and show consistent high expression of ZIP6 (Slc39a6) and ZIP7 (Slc39a7) genes across human and mouse islets and MIN6 β cells. Modulation of ZIP6 and ZIP7 expression significantly altered cytosolic zinc influx in pancreatic β cells, indicating an important role for ZIP6 and ZIP7 in regulating cellular zinc homeostasis. Functionally, this dysregulated cytosolic zinc homeostasis led to impaired insulin secretion. In parallel studies, we identified both ZIP6 and ZIP7 as potential interacting proteins with GLP-1R by a membrane yeast two-hybrid assay. Knock-down of ZIP6 but not ZIP7 in MIN6 β cells impaired the protective effects of GLP-1 on fatty acid-induced cell apoptosis, possibly via reduced activation of the p-ERK pathway. Therefore, our data suggest that ZIP6 and ZIP7 function as two important zinc influx transporters to regulate cytosolic zinc concentrations and insulin secretion in β cells. In particular, ZIP6 is also capable of directly interacting with GLP-1R to facilitate the protective effect of GLP-1 on β cell survival.
Collapse
Affiliation(s)
- Ying Liu
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Battsetseg Batchuluun
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Louisa Ho
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Dan Zhu
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Kacey J Prentice
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Alpana Bhattacharjee
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Ming Zhang
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Farzaneh Pourasgari
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Alexandre B Hardy
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Kathryn M Taylor
- the Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VIIth Avenue, Cardiff CF10 3NB United Kingdom
| | - Herbert Gaisano
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Feihan F Dai
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Michael B Wheeler
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| |
Collapse
|
47
|
Attenuation of progressive hearing loss in DBA/2J mice by reagents that affect epigenetic modifications is associated with up-regulation of the zinc importer Zip4. PLoS One 2015; 10:e0124301. [PMID: 25875282 PMCID: PMC4397065 DOI: 10.1371/journal.pone.0124301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 01/21/2023] Open
Abstract
Various factors that are important for proper hearing have been identified, including serum levels of zinc. Here we investigated whether epigenetic regulatory pathways, which can be modified by environmental factors, could modulate hearing. RT-PCR detected expression of genes encoding DNA methyltransferase and histone deacetylase (Hdac) in the postnatal as well as adult mouse auditory epithelium. DBA/2J mice, which are a model for progressive hearing loss, were injected subcutaneously with one or a combination of the following reagents: <smallcaps>L</smallcaps>-methionine as a methyl donor, valproic acid as a pan-Hdac inhibitor, and folic acid and vitamin B12 as putative factors involved in age-related hearing loss. The mice were treated from ages 4 to 12 weeks (N ≥ 5), and auditory brainstem response (ABR) thresholds were measured at 8, 16, and 32 kHz. Treatment of the mice with a combination of <smallcaps>L</smallcaps>-methionine and valproic acid (M+V) significantly reduced the increase in the ABR threshold at 32 kHz. Treatment with any of these reagents individually produced no such effect. Microarray analyses detected 299 gene probes that were significantly up- or down-regulated in the cochleae of mice treated with M+V compared with the control vehicle-treated mice. Quantitative RT-PCR confirmed significant up-regulation of a zinc importer gene, Zip4, in the cochleae of mice treated with M+V. Immunohistochemistry demonstrated an intense Zip4 signal in cochlear tissues such as the lateral wall, organ of Corti, and spiral ganglion. Finally, mice treated with the Zip4 inducer (–)-epigallocatechin-3-O-gallate showed a significant reduction in the increase of the ABR threshold at 32 kHz and up-regulation of Zip4 expression in the cochlea. This study suggests that epigenetic regulatory pathways can modify auditory function and that zinc intake in the cochlea via Zip4 mediates maintenance of mammalian hearing.
Collapse
|
48
|
Hagmeyer S, Haderspeck JC, Grabrucker AM. Behavioral impairments in animal models for zinc deficiency. Front Behav Neurosci 2015; 8:443. [PMID: 25610379 PMCID: PMC4285094 DOI: 10.3389/fnbeh.2014.00443] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/08/2014] [Indexed: 01/12/2023] Open
Abstract
Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies.
Collapse
Affiliation(s)
- Simone Hagmeyer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University Ulm, Germany
| | - Jasmin Carmen Haderspeck
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University Ulm, Germany
| | - Andreas Martin Grabrucker
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University Ulm, Germany ; Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| |
Collapse
|
49
|
Kasana S, Din J, Maret W. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples. J Trace Elem Med Biol 2015; 29:47-62. [PMID: 25468189 DOI: 10.1016/j.jtemb.2014.10.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 12/31/2022]
Abstract
Discovering genetic causes of zinc deficiency has been a remarkable scientific journey. It started with the description of a rare skin disease, its treatment with various agents, the successful therapy with zinc, and the identification of mutations in a zinc transporter causing the disease. The journey continues with defining the molecular and cellular pathways that lead to the symptoms caused by zinc deficiency. Remarkably, at least two zinc transporters from separate protein families are now known to be involved in the genetics of zinc deficiency. One is ZIP4, which is involved in intestinal zinc uptake. Its mutations can cause acrodermatitis enteropathica (AE) with autosomal recessive inheritance. The other one is ZnT2, the transporter responsible for supplying human milk with zinc. Mutations in this transporter cause transient neonatal zinc deficiency (TNZD) with symptoms similar to AE but with autosomal dominant inheritance. The two diseases can be distinguished in affected infants. AE is fatal if zinc is not supplied to the infant after weaning, whereas TNZD is a genetic defect of the mother limiting the supply of zinc in the milk, and therefore the infant usually will obtain enough zinc once weaned. Although these diseases are relatively rare, the full functional consequences of the numerous mutations in ZIP4 and ZnT2 and their interactions with dietary zinc are not known. In particular, it remains unexplored whether some mutations cause milder disease phenotypes or increase the risk for other diseases if dietary zinc requirements are not met or exceeded. Thus, it is not known whether widespread zinc deficiency in human populations is based primarily on a nutritional deficiency or determined by genetic factors as well. This consideration becomes even more significant with regard to mutations in the other 22 human zinc transporters, where associations with a range of diseases, including diabetes, heart disease, and mental illnesses have been observed. Therefore, clinical tests for genetic disorders of zinc metabolism need to be developed.
Collapse
|
50
|
Chowanadisai W. Comparative genomic analysis of slc39a12/ZIP12: insight into a zinc transporter required for vertebrate nervous system development. PLoS One 2014; 9:e111535. [PMID: 25375179 PMCID: PMC4222902 DOI: 10.1371/journal.pone.0111535] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 10/04/2014] [Indexed: 01/23/2023] Open
Abstract
The zinc transporter ZIP12, which is encoded by the gene slc39a12, has previously been shown to be important for neuronal differentiation in mouse Neuro-2a neuroblastoma cells and primary mouse neurons and necessary for neurulation during Xenopus tropicalis embryogenesis. However, relatively little is known about the biochemical properties, cellular regulation, or the physiological role of this gene. The hypothesis that ZIP12 is a zinc transporter important for nervous system function and development guided a comparative genetics approach to uncover the presence of ZIP12 in various genomes and identify conserved sequences and expression patterns associated with ZIP12. Ortholog detection of slc39a12 was conducted with reciprocal BLAST hits with the amino acid sequence of human ZIP12 in comparison to the human paralog ZIP4 and conserved local synteny between genomes. ZIP12 is present in the genomes of almost all vertebrates examined, from humans and other mammals to most teleost fish. However, ZIP12 appears to be absent from the zebrafish genome. The discrimination of ZIP12 compared to ZIP4 was unsuccessful or inconclusive in other invertebrate chordates and deuterostomes. Splice variation, due to the inclusion or exclusion of a conserved exon, is present in humans, rats, and cows and likely has biological significance. ZIP12 also possesses many putative di-leucine and tyrosine motifs often associated with intracellular trafficking, which may control cellular zinc uptake activity through the localization of ZIP12 within the cell. These findings highlight multiple aspects of ZIP12 at the biochemical, cellular, and physiological levels with likely biological significance. ZIP12 appears to have conserved function as a zinc uptake transporter in vertebrate nervous system development. Consequently, the role of ZIP12 may be an important link to reported congenital malformations in numerous animal models and humans that are caused by zinc deficiency.
Collapse
Affiliation(s)
- Winyoo Chowanadisai
- Department of Nutrition, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|