1
|
Modesti A, Militello R, Tanturli A, Santi A, Gulisano M, Petri C, Pengue L, Pellegrino A, Modesti PA, Luti S. Molecular, Physical, and Technical Performance Response After a Competitive Match in Male Professional Soccer Players. Antioxidants (Basel) 2025; 14:73. [PMID: 39857407 PMCID: PMC11763290 DOI: 10.3390/antiox14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Male professional soccer players frequently compete in multiple matches weekly, and each match significantly impacts their homeostasis, health, and performance. This study evaluates players response at 48 h post-match by combining biological and GPS data. Investigating biochemical and performance metrics offers insights into the physical demands of high-intensity exercise, essential for optimizing performance, recovery, and overall athlete health. METHODS The study involved an Italian "Serie A" team, and we assessed players' effort during a single match using GPS data and compared it to "Serie A" averages. Additionally, we evaluated oxidative stress and metabolism 48 h after the match. RESULTS At 48 h post-match, there were no signs of oxidative stress and changes in salivary IgA levels, but total antioxidant potential was significantly low. Moreover, increased plasma metabolites linked to energy production were also observed. CONCLUSIONS The results indicate that 48 h after a match in "Serie A", well-trained athletes showed no oxidative stress, to the detriment of the antioxidant potential, along with increased metabolites crucial for energy production. Combining GPS and metabolic analysis enhances player performance, informs tactical decisions, and supports team success, fostering data-driven approaches in soccer.
Collapse
Affiliation(s)
- Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (A.M.); (R.M.); (A.S.)
| | - Rosamaria Militello
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (A.M.); (R.M.); (A.S.)
| | - Alice Tanturli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (A.T.); (M.G.); (A.P.); (P.A.M.)
- A.C.F. Fiorentina S.r.l., 50137 Florence, Italy
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (A.M.); (R.M.); (A.S.)
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (A.T.); (M.G.); (A.P.); (P.A.M.)
| | | | - Luca Pengue
- A.C.F. Fiorentina S.r.l., 50137 Florence, Italy
| | - Alessio Pellegrino
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (A.T.); (M.G.); (A.P.); (P.A.M.)
| | - Pietro Amedeo Modesti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (A.T.); (M.G.); (A.P.); (P.A.M.)
| | - Simone Luti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (A.M.); (R.M.); (A.S.)
| |
Collapse
|
2
|
Smith DM, Choi J, Wolfgang MJ. Tissue specific roles of fatty acid oxidation. Adv Biol Regul 2025; 95:101070. [PMID: 39672726 PMCID: PMC11832339 DOI: 10.1016/j.jbior.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Mitochondrial long chain fatty acid β-oxidation is a critical central carbon catabolic process. The importance of fatty acid oxidation is made evident by the life-threatening disease associated with diverse inborn errors in the pathway. While inborn errors show multisystemic requirements for fatty acid oxidation, it is not clear from the clinical presentation of these enzyme deficiencies what the tissue specific roles of the pathway are compared to secondary systemic effects. To understand the cell or tissue specific contributions of fatty acid oxidation to systemic physiology, conditional knockouts in mice have been employed to determine the requirements of fatty acid oxidation in disparate cell types. This has produced a host of surprising results that sometimes run counter to the canonical view of this metabolic pathway. The rigor of conditional knockouts has also provided clarity over previous research utilizing cell lines in vitro or small molecule inhibitors with dubious specificity. Here we will summarize current research using mouse models of Carnitine Palmitoyltransferases to determine the tissue specific roles and requirements of long chain mitochondrial fatty acid β-oxidation.
Collapse
Affiliation(s)
- Danielle M Smith
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph Choi
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J Wolfgang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Narayanan B, Xia C, McAndrew R, Shen AL, Kim JJP. Structural basis for expanded substrate specificities of human long chain acyl-CoA dehydrogenase and related acyl-CoA dehydrogenases. Sci Rep 2024; 14:12976. [PMID: 38839792 PMCID: PMC11153573 DOI: 10.1038/s41598-024-63027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Crystal structures of human long-chain acyl-CoA dehydrogenase (LCAD) and the catalytically inactive Glu291Gln mutant, have been determined. These structures suggest that LCAD harbors functions beyond its historically defined role in mitochondrial β-oxidation of long and medium-chain fatty acids. LCAD is a homotetramer containing one FAD per 43 kDa subunit with Glu291 as the catalytic base. The substrate binding cavity of LCAD reveals key differences which makes it specific for longer and branched chain substrates. The presence of Pro132 near the start of the E helix leads to helix unwinding that, together with adjacent smaller residues, permits binding of bulky substrates such as 3α, 7α, l2α-trihydroxy-5β-cholestan-26-oyl-CoA. This structural element is also utilized by ACAD11, a eucaryotic ACAD of unknown function, as well as bacterial ACADs known to metabolize sterol substrates. Sequence comparison suggests that ACAD10, another ACAD of unknown function, may also share this substrate specificity. These results suggest that LCAD, ACAD10, ACAD11 constitute a distinct class of eucaryotic acyl CoA dehydrogenases.
Collapse
Affiliation(s)
- Beena Narayanan
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Chuanwu Xia
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of North Florida, Jacksonville, FL, 32224, USA
| | - Ryan McAndrew
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94740, USA
| | - Anna L Shen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jung-Ja P Kim
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
4
|
Vieira-Lara MA, Bakker BM. The paradox of fatty-acid β-oxidation in muscle insulin resistance: Metabolic control and muscle heterogeneity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167172. [PMID: 38631409 DOI: 10.1016/j.bbadis.2024.167172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
The skeletal muscle is a metabolically heterogeneous tissue that plays a key role in maintaining whole-body glucose homeostasis. It is well known that muscle insulin resistance (IR) precedes the development of type 2 diabetes. There is a consensus that the accumulation of specific lipid species in the tissue can drive IR. However, the role of the mitochondrial fatty-acid β-oxidation in IR and, consequently, in the control of glucose uptake remains paradoxical: interventions that either inhibit or activate fatty-acid β-oxidation have been shown to prevent IR. We here discuss the current theories and evidence for the interplay between β-oxidation and glucose uptake in IR. To address the underlying intricacies, we (1) dive into the control of glucose uptake fluxes into muscle tissues using the framework of Metabolic Control Analysis, and (2) disentangle concepts of flux and catalytic capacities taking into account skeletal muscle heterogeneity. Finally, we speculate about hitherto unexplored mechanisms that could bring contrasting evidence together. Elucidating how β-oxidation is connected to muscle IR and the underlying role of muscle heterogeneity enhances disease understanding and paves the way for new treatments for type 2 diabetes.
Collapse
Affiliation(s)
- Marcel A Vieira-Lara
- Laboratory of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Barbara M Bakker
- Laboratory of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
5
|
Babcock SJ, Houten SM, Gillingham MB. A review of fatty acid oxidation disorder mouse models. Mol Genet Metab 2024; 142:108351. [PMID: 38430613 PMCID: PMC11073919 DOI: 10.1016/j.ymgme.2024.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Fatty acid oxidation disorders (FAODs) are a family of rare, genetic disorders that affect any part of the fatty acid oxidation pathway. Patients present with severe phenotypes, such as hypoketotic hypoglycemia, cardiomyopathy, and rhabdomyolysis, and currently manage these symptoms by the avoidance of fasting and maintaining a low-fat, high-carbohydrate diet. Because knowledge about FAODs is limited due to the small number of patients, rodent models have been crucial in learning more about these disorders, particularly in studying the molecular mechanisms involved in different phenotypes and in evaluating treatments for patients. The purpose of this review is to present the different FAOD mouse models and highlight the benefits and limitations of using these models. Specifically, we discuss the phenotypes of the available FAOD mouse models, the potential molecular causes of prominent FAOD phenotypes that have been studied using FAOD mouse models, and how FAOD mouse models have been used to evaluate treatments for patients.
Collapse
Affiliation(s)
- Shannon J Babcock
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
| | - Sander M Houten
- Deparment of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melanie B Gillingham
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
6
|
Narayanan B, Xia C, McAndrew R, Shen AL, Kim JJP. Structural Basis for Expanded Substrate Speci ficities of Human Long Chain Acyl-CoA Dehydrogenase and Related Acyl- CoA Dehydrogenases. RESEARCH SQUARE 2024:rs.3.rs-3980524. [PMID: 38464032 PMCID: PMC10925408 DOI: 10.21203/rs.3.rs-3980524/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Crystal structures of human long-chain acyl-CoA dehydrogenase (LCAD) and the E291Q mutant, have been determined. These structures suggest that LCAD harbors functions beyond its historically defined role in mitochondrial β-oxidation of long and medium-chain fatty acids. LCAD is a homotetramer containing one FAD per 43kDa subunit with Glu291 as the catalytic base. The substrate binding cavity of LCAD reveals key differences which makes it specific for longer and branched chain substrates. The presence of Pro132 near the start of the E helix leads to helix unwinding that, together with adjacent smaller residues, permits binding of bulky substrates such as 3α, 7α, l2α-trihydroxy-5β-cholestan-26-oyl-CoA. This structural element is also utilized by ACAD11, a eucaryotic ACAD of unknown function, as well as bacterial ACADs known to metabolize sterol substrates. Sequence comparison suggests that ACAD10, another ACAD of unknown function, may also share this substrate specificity. These results suggest that LCAD, ACAD10, ACAD11 constitute a distinct class of eucaryotic acyl CoA dehydrogenases.
Collapse
|
7
|
Nurjanah S, Gerding A, Vieira-Lara MA, Evers B, Langelaar-Makkinje M, Spiekerkoetter U, Bakker BM, Tucci S. Heptanoate Improves Compensatory Mechanism of Glucose Homeostasis in Mitochondrial Long-Chain Fatty Acid Oxidation Defect. Nutrients 2023; 15:4689. [PMID: 37960342 PMCID: PMC10649308 DOI: 10.3390/nu15214689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Defects in mitochondrial fatty acid β-oxidation (FAO) impair metabolic flexibility, which is an essential process for energy homeostasis. Very-long-chain acyl-CoA dehydrogenase (VLCADD; OMIM 609575) deficiency is the most common long-chain mitochondrial FAO disorder presenting with hypoglycemia as a common clinical manifestation. To prevent hypoglycemia, triheptanoin-a triglyceride composed of three heptanoates (C7) esterified with a glycerol backbone-can be used as a dietary treatment, since it is metabolized into precursors for gluconeogenesis. However, studies investigating the effect of triheptanoin on glucose homeostasis are limited. To understand the role of gluconeogenesis in the pathophysiology of long-chain mitochondrial FAO defects, we injected VLCAD-deficient (VLCAD-/-) mice with 13C3-glycerol in the presence and absence of heptanoate (C7). The incorporation of 13C3-glycerol into blood glucose was higher in VLCAD-/- mice than in WT mice, whereas the difference disappeared in the presence of C7. The result correlates with 13C enrichment of liver metabolites in VLCAD-/- mice. In contrast, the C7 bolus significantly decreased the 13C enrichment. These data suggest that the increased contribution of gluconeogenesis to the overall glucose production in VLCAD-/- mice increases the need for gluconeogenesis substrate, thereby avoiding hypoglycemia. Heptanoate is a suitable substrate to induce glucose production in mitochondrial FAO defect.
Collapse
Affiliation(s)
- Siti Nurjanah
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (U.S.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Albert Gerding
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
- Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Marcel A. Vieira-Lara
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
| | - Bernard Evers
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
| | - Miriam Langelaar-Makkinje
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (U.S.)
| | - Barbara M. Bakker
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands (M.L.-M.)
| | - Sara Tucci
- Pharmacy, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
8
|
Odendaal C, Jager EA, Martines ACMF, Vieira-Lara MA, Huijkman NCA, Kiyuna LA, Gerding A, Wolters JC, Heiner-Fokkema R, van Eunen K, Derks TGJ, Bakker BM. Personalised modelling of clinical heterogeneity between medium-chain acyl-CoA dehydrogenase patients. BMC Biol 2023; 21:184. [PMID: 37667308 PMCID: PMC10478272 DOI: 10.1186/s12915-023-01652-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/21/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Monogenetic inborn errors of metabolism cause a wide phenotypic heterogeneity that may even differ between family members carrying the same genetic variant. Computational modelling of metabolic networks may identify putative sources of this inter-patient heterogeneity. Here, we mainly focus on medium-chain acyl-CoA dehydrogenase deficiency (MCADD), the most common inborn error of the mitochondrial fatty acid oxidation (mFAO). It is an enigma why some MCADD patients-if untreated-are at risk to develop severe metabolic decompensations, whereas others remain asymptomatic throughout life. We hypothesised that an ability to maintain an increased free mitochondrial CoA (CoASH) and pathway flux might distinguish asymptomatic from symptomatic patients. RESULTS We built and experimentally validated, for the first time, a kinetic model of the human liver mFAO. Metabolites were partitioned according to their water solubility between the bulk aqueous matrix and the inner membrane. Enzymes are also either membrane-bound or in the matrix. This metabolite partitioning is a novel model attribute and improved predictions. MCADD substantially reduced pathway flux and CoASH, the latter due to the sequestration of CoA as medium-chain acyl-CoA esters. Analysis of urine from MCADD patients obtained during a metabolic decompensation showed an accumulation of medium- and short-chain acylcarnitines, just like the acyl-CoA pool in the MCADD model. The model suggested some rescues that increased flux and CoASH, notably increasing short-chain acyl-CoA dehydrogenase (SCAD) levels. Proteome analysis of MCADD patient-derived fibroblasts indeed revealed elevated levels of SCAD in a patient with a clinically asymptomatic state. This is a rescue for MCADD that has not been explored before. Personalised models based on these proteomics data confirmed an increased pathway flux and CoASH in the model of an asymptomatic patient compared to those of symptomatic MCADD patients. CONCLUSIONS We present a detailed, validated kinetic model of mFAO in human liver, with solubility-dependent metabolite partitioning. Personalised modelling of individual patients provides a novel explanation for phenotypic heterogeneity among MCADD patients. Further development of personalised metabolic models is a promising direction to improve individualised risk assessment, management and monitoring for inborn errors of metabolism.
Collapse
Affiliation(s)
- Christoff Odendaal
- Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Emmalie A Jager
- Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Anne-Claire M F Martines
- Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Marcel A Vieira-Lara
- Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Nicolette C A Huijkman
- Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Ligia A Kiyuna
- Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Albert Gerding
- Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Justina C Wolters
- Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Karen van Eunen
- Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.
| | - Barbara M Bakker
- Laboratory of Paediatrics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.
| |
Collapse
|
9
|
Gaston G, Babcock S, Ryals R, Elizondo G, DeVine T, Wafai D, Packwood W, Holden S, Raber J, Lindner JR, Pennesi ME, Harding CO, Gillingham MB. A G1528C Hadha knock-in mouse model recapitulates aspects of human clinical phenotypes for long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Commun Biol 2023; 6:890. [PMID: 37644104 PMCID: PMC10465608 DOI: 10.1038/s42003-023-05268-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is a fatty acid oxidation disorder (FAOD) caused by a pathogenic variant, c.1528 G > C, in HADHA encoding the alpha subunit of trifunctional protein (TFPα). Individuals with LCHADD develop chorioretinopathy and peripheral neuropathy not observed in other FAODs in addition to the more ubiquitous symptoms of hypoketotic hypoglycemia, rhabdomyolysis and cardiomyopathy. We report a CRISPR/Cas9 generated knock-in murine model of G1528C in Hadha that recapitulates aspects of the human LCHADD phenotype. Homozygous pups are less numerous than expected from Mendelian probability, but survivors exhibit similar viability with wildtype (WT) littermates. Tissues of LCHADD homozygotes express TFPα protein, but LCHADD mice oxidize less fat and accumulate plasma 3-hydroxyacylcarnitines compared to WT mice. LCHADD mice exhibit lower ketones with fasting, exhaust earlier during treadmill exercise and develop a dilated cardiomyopathy compared to WT mice. In addition, LCHADD mice exhibit decreased visual performance, decreased cone function, and disruption of retinal pigment epithelium. Neurological function is affected, with impaired motor function during wire hang test and reduced open field activity. The G1528C knock-in mouse exhibits a phenotype similar to that observed in human patients; this model will be useful to explore pathophysiology and treatments for LCHADD in the future.
Collapse
Affiliation(s)
- Garen Gaston
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Shannon Babcock
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Renee Ryals
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Gabriela Elizondo
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Tiffany DeVine
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Dahlia Wafai
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Jacob Raber
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- Departments of Neurology and Radiation Medicine, Oregon Health and Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Oregon Health and Science University, Portland, OR, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Cardiovascular Division, University of Virginia Medical Center, Charlottesville, VA, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Cary O Harding
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Melanie B Gillingham
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
10
|
Xu X, Arunagiri A, Alam M, Haataja L, Evans CR, Zhao I, Castro-Gutierrez R, Russ HA, Demangel C, Qi L, Tsai B, Liu M, Arvan P. Nutrient-dependent regulation of β-cell proinsulin content. J Biol Chem 2023; 299:104836. [PMID: 37209827 PMCID: PMC10302188 DOI: 10.1016/j.jbc.2023.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/22/2023] Open
Abstract
Insulin is made from proinsulin, but the extent to which fasting/feeding controls the homeostatically regulated proinsulin pool in pancreatic β-cells remains largely unknown. Here, we first examined β-cell lines (INS1E and Min6, which proliferate slowly and are routinely fed fresh medium every 2-3 days) and found that the proinsulin pool size responds to each feeding within 1 to 2 h, affected both by the quantity of fresh nutrients and the frequency with which they are provided. We observed no effect of nutrient feeding on the overall rate of proinsulin turnover as quantified from cycloheximide-chase experiments. We show that nutrient feeding is primarily linked to rapid dephosphorylation of translation initiation factor eIF2α, presaging increased proinsulin levels (and thereafter, insulin levels), followed by its rephosphorylation during the ensuing hours that correspond to a fall in proinsulin levels. The decline of proinsulin levels is blunted by the integrated stress response inhibitor, ISRIB, or by inhibition of eIF2α rephosphorylation with a general control nonderepressible 2 (not PERK) kinase inhibitor. In addition, we demonstrate that amino acids contribute importantly to the proinsulin pool; mass spectrometry shows that β-cells avidly consume extracellular glutamine, serine, and cysteine. Finally, we show that in both rodent and human pancreatic islets, fresh nutrient availability dynamically increases preproinsulin, which can be quantified without pulse-labeling. Thus, the proinsulin available for insulin biosynthesis is rhythmically controlled by fasting/feeding cycles.
Collapse
Affiliation(s)
- Xiaoxi Xu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Maroof Alam
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Charles R Evans
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ivy Zhao
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Roberto Castro-Gutierrez
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA; Diabetes Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Holger A Russ
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA; Diabetes Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Inserm U1224, Université Paris Cité, Paris, France
| | - Ling Qi
- Departments of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Billy Tsai
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China.
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA; Departments of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
11
|
Stenlid R, Manell H, Seth R, Cerenius SY, Chowdhury A, Roa Cortés C, Nyqvist I, Lundqvist T, Halldin M, Bergsten P. Low Fasting Concentrations of Glucagon in Patients with Very Long-Chain Acyl-CoA Dehydrogenase Deficiency. Metabolites 2023; 13:780. [PMID: 37512487 PMCID: PMC10386500 DOI: 10.3390/metabo13070780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Deficiencies of mitochondrial fatty acid oxidation (FAO) define a subgroup of inborn errors of metabolism, with medium-chain acyl-CoA dehydrogenase deficiency (MCAD) and very long-chain acyl-CoA dehydrogenase deficiency (VLCAD) being two of the most common. Hypoketotic hypoglycemia is a feared clinical complication and the treatment focuses on avoiding hypoglycemia. In contrast, carnitine uptake deficiency (CUD) is treated as a mild disease without significant effects on FAO. Impaired FAO has experimentally been shown to impair glucagon secretion. Glucagon is an important glucose-mobilizing hormone. If and how glucagon is affected in patients with VLCAD or MCAD remains unknown. (2) Methods: A cross-sectional study was performed with plasma hormone concentrations quantified after four hours of fasting. Patients with VLCAD (n = 10), MCAD (n = 7) and CUD (n = 6) were included. (3) Results: The groups were similar in age, sex, weight, and height. The glucagon and insulin levels were significantly lower in the VLCAD group compared to the CUD group (p < 0.05, respectively). The patients with CUD had glucagon concentrations similar to the normative data. No significant differences were seen in GLP-1, glicentin, glucose, amino acids, or NEFAs. (4) Conclusions: Low fasting concentrations of glucagon are present in patients with VLCAD and cannot be explained by altered stimuli in plasma.
Collapse
Affiliation(s)
- Rasmus Stenlid
- Department of Medical Cell Biology, Uppsala University, SE75123 Uppsala, Sweden
| | - Hannes Manell
- Department of Women's and Children's Health, Uppsala University, SE75185 Uppsala, Sweden
| | - Rikard Seth
- Department of Medical Cell Biology, Uppsala University, SE75123 Uppsala, Sweden
| | - Sara Y Cerenius
- Department of Medical Cell Biology, Uppsala University, SE75123 Uppsala, Sweden
| | - Azazul Chowdhury
- Department of Medical Cell Biology, Uppsala University, SE75123 Uppsala, Sweden
| | - Camilla Roa Cortés
- Department of Medical Cell Biology, Uppsala University, SE75123 Uppsala, Sweden
| | - Isabelle Nyqvist
- Department of Medical Cell Biology, Uppsala University, SE75123 Uppsala, Sweden
| | - Thomas Lundqvist
- Department of Women's and Children's Health, Karolinska Institute, SE17177 Stockholm, Sweden
| | - Maria Halldin
- Department of Women's and Children's Health, Karolinska Institute, SE17177 Stockholm, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, SE75123 Uppsala, Sweden
| |
Collapse
|
12
|
Ranea-Robles P, Houten SM. The biochemistry and physiology of long-chain dicarboxylic acid metabolism. Biochem J 2023; 480:607-627. [PMID: 37140888 PMCID: PMC10214252 DOI: 10.1042/bcj20230041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Mitochondrial β-oxidation is the most prominent pathway for fatty acid oxidation but alternative oxidative metabolism exists. Fatty acid ω-oxidation is one of these pathways and forms dicarboxylic acids as products. These dicarboxylic acids are metabolized through peroxisomal β-oxidation representing an alternative pathway, which could potentially limit the toxic effects of fatty acid accumulation. Although dicarboxylic acid metabolism is highly active in liver and kidney, its role in physiology has not been explored in depth. In this review, we summarize the biochemical mechanism of the formation and degradation of dicarboxylic acids through ω- and β-oxidation, respectively. We will discuss the role of dicarboxylic acids in different (patho)physiological states with a particular focus on the role of the intermediates and products generated through peroxisomal β-oxidation. This review is expected to increase the understanding of dicarboxylic acid metabolism and spark future research.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| |
Collapse
|
13
|
Lund M, Heaton R, Hargreaves IP, Gregersen N, Olsen RKJ. Odd- and even-numbered medium-chained fatty acids protect against glutathione depletion in very long-chain acyl-CoA dehydrogenase deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159248. [PMID: 36356723 DOI: 10.1016/j.bbalip.2022.159248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
Recent trials have reported the ability of triheptanoin to improve clinical outcomes for the severe symptoms associated with long-chain fatty acid oxidation disorders, including very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. However, the milder myopathic symptoms are still challenging to treat satisfactorily. Myopathic pathogenesis is multifactorial, but oxidative stress is an important component. We have previously shown that metabolic stress increases the oxidative burden in VLCAD-deficient cell lines and can deplete the antioxidant glutathione (GSH). We investigated whether medium-chain fatty acids provide protection against GSH depletion during metabolic stress in VLCAD-deficient fibroblasts. To investigate the effect of differences in anaplerotic capacity, we included both even-(octanoate) and odd-numbered (heptanoate) medium-chain fatty acids. Overall, we show that modulation of the concentration of medium-chain fatty acids in culture media affects levels of GSH retained during metabolic stress in VLCAD-deficient cell lines but not in controls. Lowered glutamine concentration in the culture media during metabolic stress led to GSH depletion and decreased viability in VLCAD deficient cells, which could be rescued by both heptanoate and octanoate in a dose-dependent manner. Unlike GSH levels, the levels of total thiols increased after metabolic stress exposure, the size of this increase was not affected by differences in cell culture medium concentrations of glutamine, heptanoate or octanoate. Addition of a PPAR agonist further exacerbated stress-related GSH-depletion and viability loss, requiring higher concentrations of fatty acids to restore GSH levels and cell viability. Both odd- and even-numbered medium-chain fatty acids efficiently protect VLCADdeficient cells against metabolic stress-induced antioxidant depletion.
Collapse
Affiliation(s)
- Martin Lund
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark.
| | - Robert Heaton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Iain P Hargreaves
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark.
| |
Collapse
|
14
|
Ranea-Robles P, Pavlova NN, Bender A, Pereyra AS, Ellis JM, Stauffer B, Yu C, Thompson CB, Argmann C, Puchowicz M, Houten SM. A mitochondrial long-chain fatty acid oxidation defect leads to transfer RNA uncharging and activation of the integrated stress response in the mouse heart. Cardiovasc Res 2022; 118:3198-3210. [PMID: 35388887 PMCID: PMC9799058 DOI: 10.1093/cvr/cvac050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Cardiomyopathy and arrhythmias can be severe presentations in patients with inherited defects of mitochondrial long-chain fatty acid β-oxidation (FAO). The pathophysiological mechanisms that underlie these cardiac abnormalities remain largely unknown. We investigated the molecular adaptations to a FAO deficiency in the heart using the long-chain acyl-CoA dehydrogenase (LCAD) knockout (KO) mouse model. METHODS AND RESULTS We observed enrichment of amino acid metabolic pathways and of ATF4 target genes among the upregulated genes in the LCAD KO heart transcriptome. We also found a prominent activation of the eIF2α/ATF4 axis at the protein level that was independent of the feeding status, in addition to a reduction of cardiac protein synthesis during a short period of food withdrawal. These findings are consistent with an activation of the integrated stress response (ISR) in the LCAD KO mouse heart. Notably, charging of several transfer RNAs (tRNAs), such as tRNAGln was decreased in LCAD KO hearts, reflecting a reduced availability of cardiac amino acids, in particular, glutamine. We replicated the activation of the ISR in the hearts of mice with muscle-specific deletion of carnitine palmitoyltransferase 2. CONCLUSIONS Our results show that perturbations in amino acid metabolism caused by long-chain FAO deficiency impact cardiac metabolic signalling, in particular the ISR. These results may serve as a foundation for investigating the role of the ISR in the cardiac pathology associated with long-chain FAO defects.Translational Perspective: The heart relies mainly on mitochondrial fatty acid β-oxidation (FAO) for its high energy requirements. The heart disease observed in patients with a genetic defect in this pathway highlights the importance of FAO for cardiac health. We show that the consequences of a FAO defect extend beyond cardiac energy homeostasis and include amino acid metabolism and associated signalling pathways such as the integrated stress response.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Natalya N Pavlova
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aaron Bender
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Andrea S Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC 27858, USA
| | - Jessica M Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC 27858, USA
| | - Brandon Stauffer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
- Mount Sinai Genomics, Inc, Stamford, CT 06902, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
- Mount Sinai Genomics, Inc, Stamford, CT 06902, USA
| | - Craig B Thompson
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| |
Collapse
|
15
|
Dudek J, Bertero E, Maack C. The integrated stress response to the rescue of the starved heart. Cardiovasc Res 2022; 118:3166-3168. [PMID: 35994244 DOI: 10.1093/cvr/cvac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023] Open
Affiliation(s)
- Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078 Würzburg, Germany
| | - Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078 Würzburg, Germany.,Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties (Di.M.I.), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078 Würzburg, Germany
| |
Collapse
|
16
|
Xu H, Wang Y, Kwon H, Shah A, Kalemba K, Su X, He L, Wondisford FE. Glucagon changes substrate preference in gluconeogenesis. J Biol Chem 2022; 298:102708. [PMID: 36402444 PMCID: PMC9747632 DOI: 10.1016/j.jbc.2022.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Fasting hyperglycemia in diabetes mellitus is caused by unregulated glucagon secretion that activates gluconeogenesis (GNG) and increases the use of pyruvate, lactate, amino acids, and glycerol. Studies of GNG in hepatocytes, however, tend to test a limited number of substrates at nonphysiologic concentrations. Therefore, we treated cultured primary hepatocytes with three identical substrate mixtures of pyruvate/lactate, glutamine, and glycerol at serum fasting concentrations, where a different U-13C- or 2-13C-labeled substrate was substituted in each mix. In the absence of glucagon stimulation, 80% of the glucose produced in primary hepatocytes incorporated either one or two 13C-labeled glycerol molecules in a 1:1 ratio, reflecting the high overall activity of this pathway. In contrast, glucose produced from 13C-labeled pyruvate/lactate or glutamine rarely incorporated two labeled molecules. While glucagon increased the glycerol and pyruvate/lactate contributions to glucose carbon by 1.6- and 1.8-fold, respectively, the glutamine contribution to glucose carbon was increased 6.4-fold in primary hepatocytes. To account for substrate 13C carbon loss during metabolism, we also performed a metabolic flux analysis, which confirmed that the majority of glucose carbon produced by primary hepatocytes was from glycerol. In vivo studies using a PKA-activation mouse model that represents elevated glucagon activity confirmed that most circulating lactate carbons originated from glycerol, but very little glycerol was derived from lactate carbons, reflecting glycerol's importance as a carbon donor to GNG. Given the diverse entry points for GNG substrates, hepatic glucagon action is unlikely to be due to a single mechanism.
Collapse
Affiliation(s)
- Huiting Xu
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Hyokjoon Kwon
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Ankit Shah
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Katarzyna Kalemba
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Ling He
- Departments of Pediatrics and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
17
|
Leandro J, Khamrui S, Suebsuwong C, Chen PJ, Secor C, Dodatko T, Yu C, Sanchez R, DeVita RJ, Houten SM, Lazarus MB. Characterization and structure of the human lysine-2-oxoglutarate reductase domain, a novel therapeutic target for treatment of glutaric aciduria type 1. Open Biol 2022; 12:220179. [PMID: 36128717 PMCID: PMC9490328 DOI: 10.1098/rsob.220179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 12/26/2022] Open
Abstract
In humans, a single enzyme 2-aminoadipic semialdehyde synthase (AASS) catalyses the initial two critical reactions in the lysine degradation pathway. This enzyme evolved to be a bifunctional enzyme with both lysine-2-oxoglutarate reductase (LOR) and saccharopine dehydrogenase domains (SDH). Moreover, AASS is a unique drug target for inborn errors of metabolism such as glutaric aciduria type 1 that arise from deficiencies downstream in the lysine degradation pathway. While work has been done to elucidate the SDH domain structurally and to develop inhibitors, neither has been done for the LOR domain. Here, we purify and characterize LOR and show that it is activated by alkylation of cysteine 414 by N-ethylmaleimide. We also provide evidence that AASS is rate-limiting upon high lysine exposure of mice. Finally, we present the crystal structure of the human LOR domain. Our combined work should enable future efforts to identify inhibitors of this novel drug target.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chalada Suebsuwong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng-Jen Chen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Genomics, Inc, Stamford, CT 06902, USA
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B. Lazarus
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
18
|
Rossi A, Rutten MGS, van Dijk TH, Bakker BM, Reijngoud DJ, Oosterveer MH, Derks TGJ. Dynamic Methods for Childhood Hypoglycemia Phenotyping: A Narrative Review. Front Endocrinol (Lausanne) 2022; 13:858832. [PMID: 35789807 PMCID: PMC9249565 DOI: 10.3389/fendo.2022.858832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Hypoglycemia results from an imbalance between glucose entering the blood compartment and glucose demand, caused by a defect in the mechanisms regulating postprandial glucose homeostasis. Hypoglycemia represents one of the most common metabolic emergencies in childhood, potentially leading to serious neurologic sequelae, including death. Therefore, appropriate investigation of its specific etiology is paramount to provide adequate diagnosis, specific therapy and prevent its recurrence. In the absence of critical samples for biochemical studies, etiological assessment of children with hypoglycemia may include dynamic methods, such as in vivo functional tests, and continuous glucose monitoring. By providing detailed information on actual glucose fluxes in vivo, proof-of-concept studies have illustrated the potential (clinical) application of dynamic stable isotope techniques to define biochemical and clinical phenotypes of inherited metabolic diseases associated with hypoglycemia. According to the textbooks, individuals with glycogen storage disease type I (GSD I) display the most severe hypoglycemia/fasting intolerance. In this review, three dynamic methods are discussed which may be considered during both diagnostic work-up and monitoring of children with hypoglycemia: 1) functional in vivo tests; 2) in vivo metabolic profiling by continuous glucose monitoring (CGM); 3) stable isotope techniques. Future applications and benefits of dynamic methods in children with hypoglycemia are also discussed.
Collapse
Affiliation(s)
- Alessandro Rossi
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Martijn G S Rutten
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maaike H Oosterveer
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Metabolic Outcomes of Anaplerotic Dodecanedioic Acid Supplementation in Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficient Fibroblasts. Metabolites 2021; 11:metabo11080538. [PMID: 34436479 PMCID: PMC8412092 DOI: 10.3390/metabo11080538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD, OMIM 609575) is associated with energy deficiency and mitochondrial dysfunction and may lead to rhabdomyolysis and cardiomyopathy. Under physiological conditions, there is a fine balance between the utilization of different carbon nutrients to maintain the Krebs cycle. The maintenance of steady pools of Krebs cycle intermediates is critical formitochondrial energy homeostasis especially in high-energy demanding organs such as muscle and heart. Even-chain dicarboxylic acids are established as alternative energy carbon sources that replenish the Krebs cycle by bypassing a defective β-oxidation pathway. Despite this, even-chain dicarboxylic acids are eliminated in the urine of VLCAD-affected individuals. In this study, we explore dodecanedioic acid (C12; DODA) supplementation and investigate its metabolic effect on Krebs cycle intermediates, glucose uptake, and acylcarnitine profiles in VLCAD-deficient fibroblasts. Our findings indicate that DODA supplementation replenishes the Krebs cycle by increasing the succinate pool, attenuates glycolytic flux, and reduces levels of toxic very long-chain acylcarnitines.
Collapse
|
20
|
Ranea-Robles P, Violante S, Argmann C, Dodatko T, Bhattacharya D, Chen H, Yu C, Friedman SL, Puchowicz M, Houten SM. Murine deficiency of peroxisomal L-bifunctional protein (EHHADH) causes medium-chain 3-hydroxydicarboxylic aciduria and perturbs hepatic cholesterol homeostasis. Cell Mol Life Sci 2021; 78:5631-5646. [PMID: 34110423 PMCID: PMC8263512 DOI: 10.1007/s00018-021-03869-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/29/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
Peroxisomes play an essential role in the β-oxidation of dicarboxylic acids (DCAs), which are metabolites formed upon ω-oxidation of fatty acids. Genetic evidence linking transporters and enzymes to specific DCA β-oxidation steps is generally lacking. Moreover, the physiological functions of DCA metabolism remain largely unknown. In this study, we aimed to characterize the DCA β-oxidation pathway in human cells, and to evaluate the biological role of DCA metabolism using mice deficient in the peroxisomal L-bifunctional protein (Ehhadh KO mice). In vitro experiments using HEK-293 KO cell lines demonstrate that ABCD3 and ACOX1 are essential in DCA β-oxidation, whereas both the bifunctional proteins (EHHADH and HSD17B4) and the thiolases (ACAA1 and SCPx) have overlapping functions and their contribution may depend on expression level. We also show that medium-chain 3-hydroxydicarboxylic aciduria is a prominent feature of EHHADH deficiency in mice most notably upon inhibition of mitochondrial fatty acid oxidation. Using stable isotope tracing methodology, we confirmed that products of peroxisomal DCA β-oxidation can be transported to mitochondria for further metabolism. Finally, we show that, in liver, Ehhadh KO mice have increased mRNA and protein expression of cholesterol biosynthesis enzymes with decreased (in females) or similar (in males) rate of cholesterol synthesis. We conclude that EHHADH plays an essential role in the metabolism of medium-chain DCAs and postulate that peroxisomal DCA β-oxidation is a regulator of hepatic cholesterol biosynthesis.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, 10029, USA
| | - Sara Violante
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, 10029, USA
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, 10029, USA
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hongjie Chen
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, 10029, USA
- Mount Sinai Genomics, Inc, Stamford, CT, 06902, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, 10029, USA
- Mount Sinai Genomics, Inc, Stamford, CT, 06902, USA
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, 10029, USA.
| |
Collapse
|
21
|
Zhang X, Gao T, Deng S, Shang L, Chen X, Chen K, Li P, Cui X, Zeng J. Fasting induces hepatic lipid accumulation by stimulating peroxisomal dicarboxylic acid oxidation. J Biol Chem 2021; 296:100622. [PMID: 33811861 PMCID: PMC8102918 DOI: 10.1016/j.jbc.2021.100622] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023] Open
Abstract
Fasting induces lipid accumulation in the liver, while the mechanisms by which fasting dysregulates liver fatty acid oxidation are not clear. Fatty acid ω-oxidation is induced in the fasting state, and administration of dicarboxylic acids to fasting animals decreases plasma ketone bodies. We hypothesized that endogenous dicarboxylic acids might play a role in controlling mitochondrial β-oxidation in fasting animals. A peroxisome proliferator-activated receptor-alpha agonist and an inhibitor for peroxisomal β-oxidation were administered to the fasting rats to investigate the role of dicarboxylic acids in liver fatty acid oxidation and lipid homeostasis. We observed that excessive β-oxidation of endogenous dicarboxylic acids by peroxisomes generated considerable levels of succinate in the liver. Excessive succinate oxidation subsequently increased the mitochondrial NADH/NAD+ ratio and led to an accumulation of 3-OH-CoA and 2-enoyl-CoA intermediates in the liver. This further induced feedback suppression of mitochondrial β-oxidation and promoted hepatic lipid deposition and steatosis. Specific inhibition of peroxisomal β-oxidation attenuated fasting-induced lipid deposition in the liver by reducing succinate production and enhancing mitochondrial fatty acid oxidation. We conclude that suppression of mitochondrial β-oxidation by oxidation of dicarboxylic acids serves as a mechanism for fasting-induced hepatic lipid accumulation and identifies cross talk between peroxisomal and mitochondrial fatty acid oxidation.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Ting Gao
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Senwen Deng
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Lin Shang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Xiaocui Chen
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Kai Chen
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Ping Li
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Xiaojuan Cui
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China
| | - Jia Zeng
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, P. R. China.
| |
Collapse
|
22
|
Diekman EF, van Weeghel M, Suárez-Fariñas M, Argmann C, Ranea-Robles P, Wanders RJA, Visser G, van der Made I, Creemers EE, Houten SM. Dietary restriction in the long-chain acyl-CoA dehydrogenase knockout mouse. Mol Genet Metab Rep 2021; 27:100749. [PMID: 33868931 PMCID: PMC8040332 DOI: 10.1016/j.ymgmr.2021.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 10/31/2022] Open
Abstract
Patients with a disorder of mitochondrial long-chain fatty acid β-oxidation (FAO) have reduced fasting tolerance and may present with hypoketotic hypoglycemia, hepatomegaly, (cardio)myopathy and rhabdomyolysis. Patients should avoid a catabolic state because it increases reliance on FAO as energy source. It is currently unclear whether weight loss through a reduction of caloric intake is safe in patients with a FAO disorder. We used the long-chain acyl-CoA dehydrogenase knockout (LCAD KO) mouse model to study the impact of dietary restriction (DR) on the plasma metabolite profile and cardiac function. For this, LCAD KO and wild type (WT) mice were subjected to DR (70% of ad libitum chow intake) for 4 weeks and compared to ad libitum chow fed mice. We found that DR had a relatively small impact on the plasma metabolite profile of WT and LCAD KO mice. Echocardiography revealed a small decrease in left ventricular systolic function of LCAD KO mice, which was most noticeable after DR, but there was no evidence of DR-induced cardiac remodeling. Our results suggest that weight loss through DR does not have acute and detrimental consequences in a mouse model for FAO disorders.
Collapse
Affiliation(s)
- Eugène F Diekman
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, UMC Utrecht, the Netherlands.,Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, the Netherlands
| | - Mayte Suárez-Fariñas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo Ranea-Robles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, the Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Gepke Visser
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, UMC Utrecht, the Netherlands
| | | | - Esther E Creemers
- Department of Experimental Cardiology, Amsterdam UMC, Amsterdam, Netherlands
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Raimo S, Zura-Miller G, Fezelinia H, Spruce LA, Zakopoulos I, Mohsen AW, Vockley J, Ischiropoulos H. Mitochondrial morphology, bioenergetics and proteomic responses in fatty acid oxidation disorders. Redox Biol 2021; 41:101923. [PMID: 33725513 PMCID: PMC7970426 DOI: 10.1016/j.redox.2021.101923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/30/2022] Open
Abstract
Mutations in nuclear genes encoding for mitochondrial proteins very long-chain acyl-CoA dehydrogenase (VLCAD) and trifunctional protein (TFP) cause rare autosomal recessive disorders. Studies in fibroblasts derived from patients with mutations in VLCAD and TFP exhibit mitochondrial defects. To gain insights on pathological changes that account for the mitochondrial deficits we performed quantitative proteomic, biochemical, and morphometric analyses in fibroblasts derived from subjects with three different VLCAD and three different TFP mutations. Proteomic data that was corroborated by antibody-based detection, indicated reduced levels of VLCAD and TFP protein in cells with VLCAD and TFP mutations respectively, which in part accounted for the diminished fatty acid oxidation capacity. Decreased mitochondrial respiratory capacity in cells with VLCAD and TFP mutations was quantified after glucose removal and cells with TFP mutations had lower levels of glycogen. Despite these energetic deficiencies, the cells with VLCAD and TFP mutations did not exhibit changes in mitochondria morphology, distribution, fusion and fission, quantified by either confocal or transmission electron microscopy and corroborated by proteomic and antibody-based protein analysis. Fibroblasts with VLCAD and to a lesser extend cells with TFP mutations had increased levels of mitochondrial respiratory chain proteins and proteins that facilitate the assembly of respiratory complexes. With the exception of reduced levels of catalase and glutathione S-transferase theta-1 in cells with TFP mutations, the levels of 45 proteins across all major intracellular antioxidant networks were similar between cells with VLCAD and TFP mutations and non-disease controls. Collectively the data indicate that despite the metabolic deficits, cells with VLCAD and TFP mutations maintain their proteomic integrity to preserve cellular and mitochondria architecture, support energy production and protect against oxidative stress.
Collapse
Affiliation(s)
- Serena Raimo
- Children's Hospital of Philadelphia Research Institute and Division of Neonatology, Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics, the Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriella Zura-Miller
- Children's Hospital of Philadelphia Research Institute and Division of Neonatology, Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics, the Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hossein Fezelinia
- Proteomics Core Facility, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Biomedical Health and Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A Spruce
- Proteomics Core Facility, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Iordanis Zakopoulos
- Children's Hospital of Philadelphia Research Institute and Division of Neonatology, Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics, the Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Al-Walid Mohsen
- Division of Medical Genetics, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Human Genetics, School of Public Health, Pittsburgh, PA 15261, USA
| | - Jerry Vockley
- Division of Medical Genetics, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Human Genetics, School of Public Health, Pittsburgh, PA 15261, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute and Division of Neonatology, Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics, the Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Okun JG, Rusu PM, Chan AY, Wu Y, Yap YW, Sharkie T, Schumacher J, Schmidt KV, Roberts-Thomson KM, Russell RD, Zota A, Hille S, Jungmann A, Maggi L, Lee Y, Blüher M, Herzig S, Keske MA, Heikenwalder M, Müller OJ, Rose AJ. Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes. Nat Metab 2021; 3:394-409. [PMID: 33758419 DOI: 10.1038/s42255-021-00369-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Both obesity and sarcopenia are frequently associated in ageing, and together may promote the progression of related conditions such as diabetes and frailty. However, little is known about the pathophysiological mechanisms underpinning this association. Here we show that systemic alanine metabolism is linked to glycaemic control. We find that expression of alanine aminotransferases is increased in the liver in mice with obesity and diabetes, as well as in humans with type 2 diabetes. Hepatocyte-selective silencing of both alanine aminotransferase enzymes in mice with obesity and diabetes retards hyperglycaemia and reverses skeletal muscle atrophy through restoration of skeletal muscle protein synthesis. Mechanistically, liver alanine catabolism driven by chronic glucocorticoid and glucagon signalling promotes hyperglycaemia and skeletal muscle wasting. We further provide evidence for amino acid-induced metabolic cross-talk between the liver and skeletal muscle in ex vivo experiments. Taken together, we reveal a metabolic inter-tissue cross-talk that links skeletal muscle atrophy and hyperglycaemia in type 2 diabetes.
Collapse
Affiliation(s)
- Jürgen G Okun
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Patricia M Rusu
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Andrea Y Chan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yuqin Wu
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yann W Yap
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Thomas Sharkie
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Jonas Schumacher
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin V Schmidt
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Katherine M Roberts-Thomson
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Ryan D Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Annika Zota
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital and Chair Molecular Metabolic Control, Technical University Munich, Neuherberg, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Heidelberg and Kiel sites, Germany
| | - Andreas Jungmann
- German Center for Cardiovascular Research (DZHK), Heidelberg and Kiel sites, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Ludovico Maggi
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Young Lee
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Leipzig, Germany
| | - Stephan Herzig
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital and Chair Molecular Metabolic Control, Technical University Munich, Neuherberg, Germany
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Heidelberg and Kiel sites, Germany
| | - Adam J Rose
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
- Division of Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
25
|
Lund M, Andersen KG, Heaton R, Hargreaves IP, Gregersen N, Olsen RKJ. Bezafibrate activation of PPAR drives disturbances in mitochondrial redox bioenergetics and decreases the viability of cells from patients with VLCAD deficiency. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166100. [PMID: 33549744 DOI: 10.1016/j.bbadis.2021.166100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is the most common inborn long-chain fatty acid oxidation (FAO) disorder. VLCAD deficiency is characterized by distinct phenotypes. The severe phenotypes are potentially life-threatening and affect the heart or liver, with a comparatively milder phenotype characterized by myopathic symptoms. There is an unmet clinical need for effective treatment options for the myopathic phenotype. The molecular mechanisms driving the gradual decrease in mitochondrial function and associated alterations of muscle fibers are unclear. The peroxisome proliferator-activated receptor (PPAR) pan-agonist bezafibrate is a potent modulator of FAO and multiple other mitochondrial functions and has been proposed as a potential medication for myopathic cases of long-chain FAO disorders. In vitro experiments have demonstrated the ability of bezafibrate to increase VLCAD expression and activity. However, the outcome of small-scale clinical trials has been controversial. We found VLCAD deficient patient fibroblasts to have an increased oxidative stress burden and deranged mitochondrial bioenergetic capacity, compared to controls. Applying heat stress under fasting conditions to bezafibrate pretreated patient cells, caused a marked further increase of mitochondrial superoxide levels. Patient cells failed to maintain levels of the essential thiol peptide antioxidant glutathione and experienced a decrease in cellular viability. Our findings indicate that chronic PPAR activation is a plausible initiator of long-term pathogenesis in VLCAD deficiency. Our findings further implicate disruption of redox homeostasis as a key pathogenic mechanism in VLCAD deficiency and support the notion that a deranged thiol metabolism might be an important pathogenic factor in VLCAD deficiency.
Collapse
Affiliation(s)
- Martin Lund
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Kathrine G Andersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Robert Heaton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Iain P Hargreaves
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juel-Jensens Boulevard 99, 8200 Aarhus, Denmark.
| |
Collapse
|
26
|
Ranea-Robles P, Yu C, van Vlies N, Vaz FM, Houten SM. Slc22a5 haploinsufficiency does not aggravate the phenotype of the long-chain acyl-CoA dehydrogenase KO mouse. J Inherit Metab Dis 2020; 43:486-495. [PMID: 31845336 PMCID: PMC7205564 DOI: 10.1002/jimd.12204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 01/10/2023]
Abstract
Secondary carnitine deficiency is commonly observed in inherited metabolic diseases characterised by the accumulation of acylcarnitines such as mitochondrial fatty acid oxidation (FAO) disorders. It is currently unclear if carnitine deficiency and/or acylcarnitine accumulation play a role in the pathophysiology of FAO disorders. The long-chain acyl-CoA dehydrogenase (LCAD) KO mouse is a model for long-chain FAO disorders and is characterised by decreased levels of tissue and plasma free carnitine. Tissue levels of carnitine are controlled by SLC22A5, the plasmalemmal carnitine transporter. Here, we have further decreased carnitine availability in the LCAD KO mouse through a genetic intervention by introducing one defective Slc22a5 allele (jvs). Slc22a5 haploinsufficiency decreased free carnitine levels in liver, kidney, and heart of LCAD KO animals. The resulting decrease in the tissue long-chain acylcarnitines levels had a similar magnitude as the decrease in free carnitine. Levels of cardiac deoxycarnitine, a carnitine biosynthesis intermediate, were elevated due to Slc22a5 haploinsufficiency in LCAD KO mice. A similar increase in heart and muscle deoxycarnitine was observed in an independent experiment using Slc22a5jvs/jvs mice. Cardiac hypertrophy, fasting-induced hypoglycemia and increased liver weight, the major phenotypes of the LCAD KO mouse, were not affected by Slc22a5 haploinsufficiency. This may suggest that secondary carnitine deficiency does not play a major role in the pathophysiology of these phenotypes. Similarly, our data do not support a major role for toxicity of long-chain acylcarnitines in the phenotype of the LCAD KO mouse.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
- Mount Sinai Genomics, Inc., New York, New York
| | - Naomi van Vlies
- Institute for Translational Vaccinology, Bilthoven, The Netherlands
- Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
27
|
Burgin HJ, McKenzie M. Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency. FEBS Lett 2020; 594:590-610. [PMID: 31944285 DOI: 10.1002/1873-3468.13735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 12/29/2022]
Abstract
Mitochondria provide the main source of energy for eukaryotic cells, oxidizing fatty acids and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two key pathways involved in this process. Disruption of FAO can cause human disease, with patients commonly presenting with liver failure, hypoketotic glycaemia and rhabdomyolysis. However, patients with deficiencies in the FAO enzyme short-chain enoyl-CoA hydratase 1 (ECHS1) are typically diagnosed with Leigh syndrome, a lethal form of subacute necrotizing encephalomyelopathy that is normally associated with OXPHOS dysfunction. Furthermore, some ECHS1-deficient patients also exhibit secondary OXPHOS defects. This sequela of FAO disorders has long been thought to be caused by the accumulation of inhibitory fatty acid intermediates. However, new evidence suggests that the mechanisms involved are more complex, and that disruption of OXPHOS protein complex biogenesis and/or stability is also involved. In this review, we examine the clinical, biochemical and genetic features of all ECHS1-deficient patients described to date. In particular, we consider the secondary OXPHOS defects associated with ECHS1 deficiency and discuss their possible contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Harrison James Burgin
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Australia
| | - Matthew McKenzie
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| |
Collapse
|
28
|
Hepatic neddylation targets and stabilizes electron transfer flavoproteins to facilitate fatty acid β-oxidation. Proc Natl Acad Sci U S A 2020; 117:2473-2483. [PMID: 31941714 DOI: 10.1073/pnas.1910765117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neddylation is a ubiquitination-like pathway that controls cell survival and proliferation by covalently conjugating NEDD8 to lysines in specific substrate proteins. However, the physiological role of neddylation in mammalian metabolism remains elusive, and no mitochondrial targets have been identified. Here, we report that mouse models with liver-specific deficiency of NEDD8 or ubiquitin-like modifier activating enzyme 3 (UBA3), the catalytic subunit of the NEDD8-activating enzyme, exhibit neonatal death with spontaneous fatty liver as well as hepatic cellular senescence. In particular, liver-specific UBA3 deficiency leads to systemic abnormalities similar to glutaric aciduria type II (GA-II), a rare autosomal recessive inherited fatty acid oxidation disorder resulting from defects in mitochondrial electron transfer flavoproteins (ETFs: ETFA and ETFB) or the corresponding ubiquinone oxidoreductase. Neddylation inhibition by various strategies results in decreased protein levels of ETFs in neonatal livers and embryonic hepatocytes. Hepatic neddylation also enhances ETF expression in adult mice and prevents fasting-induced steatosis and mortality. Interestingly, neddylation is active in hepatic mitochondria. ETFs are neddylation substrates, and neddylation stabilizes ETFs by inhibiting their ubiquitination and degradation. Moreover, certain mutations of ETFs found in GA-II patients hinder the neddylation of these substrates. Taken together, our results reveal substrates for neddylation and add insight into GA-II.
Collapse
|
29
|
Transcriptome analysis suggests a compensatory role of the cofactors coenzyme A and NAD + in medium-chain acyl-CoA dehydrogenase knockout mice. Sci Rep 2019; 9:14539. [PMID: 31601874 PMCID: PMC6787083 DOI: 10.1038/s41598-019-50758-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
During fasting, mitochondrial fatty-acid β-oxidation (mFAO) is essential for the generation of glucose by the liver. Children with a loss-of-function deficiency in the mFAO enzyme medium-chain acyl-Coenzyme A dehydrogenase (MCAD) are at serious risk of life-threatening low blood glucose levels during fasting in combination with intercurrent disease. However, a subset of these children remains asymptomatic throughout life. In MCAD-deficient (MCAD-KO) mice, glucose levels are similar to those of wild-type (WT) mice, even during fasting. We investigated if metabolic adaptations in the liver may underlie the robustness of this KO mouse. WT and KO mice were given a high- or low-fat diet and subsequently fasted. We analyzed histology, mitochondrial function, targeted mitochondrial proteomics, and transcriptome in liver tissue. Loss of MCAD led to a decreased capacity to oxidize octanoyl-CoA. This was not compensated for by altered protein levels of the short- and long-chain isoenzymes SCAD and LCAD. In the transcriptome, we identified subtle adaptations in the expression of genes encoding enzymes catalyzing CoA- and NAD(P)(H)-involving reactions and of genes involved in detoxification mechanisms. We discuss how these processes may contribute to robustness in MCAD-KO mice and potentially also in asymptomatic human subjects with a complete loss of MCAD activity.
Collapse
|
30
|
Gillingham MB, Elizondo G, Behrend A, Matern D, Schoeller DA, Harding CO, Purnell JQ. Higher dietary protein intake preserves lean body mass, lowers liver lipid deposition, and maintains metabolic control in participants with long-chain fatty acid oxidation disorders. J Inherit Metab Dis 2019; 42:857-869. [PMID: 31295363 PMCID: PMC7452215 DOI: 10.1002/jimd.12155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022]
Abstract
Medical nutrition therapy for long-chain fatty acid oxidation disorders (LC-FAODs) currently emphasizes fasting avoidance, restricted dietary long-chain fatty acid intake, supplementation with medium chain triglycerides, and increased carbohydrate intake. We hypothesize that increasing dietary protein intake relative to carbohydrate intake would preserve metabolic control yet induce physical benefits including reduced hepatic lipogenesis. Therefore, we compared two dietary approaches with similar fat intake but different carbohydrate to protein ratios in participants diagnosed with LC-FAODs. Thirteen participants were enrolled and randomized into either a high-protein (PRO) or a high-carbohydrate (CHO) diet for 4 months. Baseline and 4-month assessments included body composition, ectopic lipid deposition, and resting energy expenditure. End of study assessments also included total energy expenditure, metabolic responses to oral feedings, and whole-body fatty acid oxidation capacity. At the end of the dietary intervention, both groups had similar energy expenditure, fat and glucose oxidation rates, and glucolipid responses to mixed meal and oral glucose loads. Neither dietary group experienced worsening symptoms related to their LC-FAOD. Compared to the CHO group, the PRO group exhibited increased blood levels of short-chain acylcarnitines, reduced intrahepatic lipid content, and maintained lean body mass while the CHO group lost lean mass. In patients with LC-FAODs, increasing protein intake maintained metabolic control, reduced liver fat without risk of metabolic decompensation, and helped preserve lean body mass. We propose that a modest increase in dietary protein along with fasting avoidance and fat restriction may improve body composition and energy expenditure in patients with LC-FAODs.
Collapse
Affiliation(s)
- Melanie B. Gillingham
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
- Graduate Programs in Human Nutrition, Oregon Health and Science University, Portland, Oregon
| | - Gabriela Elizondo
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Annie Behrend
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
- Graduate Programs in Human Nutrition, Oregon Health and Science University, Portland, Oregon
| | - Dietrich Matern
- Biochemical Genetics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Dale A. Schoeller
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Cary O. Harding
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Jonathan Q. Purnell
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
31
|
van Weeghel M, Abdurrachim D, Nederlof R, Argmann CA, Houtkooper RH, Hagen J, Nabben M, Denis S, Ciapaite J, Kolwicz SC, Lopaschuk GD, Auwerx J, Nicolay K, Des Rosiers C, Wanders RJ, Zuurbier CJ, Prompers JJ, Houten SM. Increased cardiac fatty acid oxidation in a mouse model with decreased malonyl-CoA sensitivity of CPT1B. Cardiovasc Res 2019; 114:1324-1334. [PMID: 29635338 DOI: 10.1093/cvr/cvy089] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
Aims Mitochondrial fatty acid oxidation (FAO) is an important energy provider for cardiac work and changes in cardiac substrate preference are associated with different heart diseases. Carnitine palmitoyltransferase 1B (CPT1B) is thought to perform the rate limiting enzyme step in FAO and is inhibited by malonyl-CoA. The role of CPT1B in cardiac metabolism has been addressed by inhibiting or decreasing CPT1B protein or after modulation of tissue malonyl-CoA metabolism. We assessed the role of CPT1B malonyl-CoA sensitivity in cardiac metabolism. Methods and results We generated and characterized a knock in mouse model expressing the CPT1BE3A mutant enzyme, which has reduced sensitivity to malonyl-CoA. In isolated perfused hearts, FAO was 1.9-fold higher in Cpt1bE3A/E3A hearts compared with Cpt1bWT/WT hearts. Metabolomic, proteomic and transcriptomic analysis showed increased levels of malonylcarnitine, decreased concentration of CPT1B protein and a small but coordinated downregulation of the mRNA expression of genes involved in FAO in Cpt1bE3A/E3A hearts, all of which aim to limit FAO. In vivo assessment of cardiac function revealed only minor changes, cardiac hypertrophy was absent and histological analysis did not reveal fibrosis. Conclusions Malonyl-CoA-dependent inhibition of CPT1B plays a crucial role in regulating FAO rate in the heart. Chronic elevation of FAO has a relatively subtle impact on cardiac function at least under baseline conditions.
Collapse
Affiliation(s)
- Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands.,Amsterdam Institute for Gastroenterology and Metabolism (AG&M), Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Rianne Nederlof
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Carmen A Argmann
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, USA
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands.,Amsterdam Institute for Gastroenterology and Metabolism (AG&M), Amsterdam, The Netherlands
| | - Jacob Hagen
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, USA
| | - Miranda Nabben
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Simone Denis
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands.,Amsterdam Institute for Gastroenterology and Metabolism (AG&M), Amsterdam, The Netherlands
| | - Jolita Ciapaite
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephen C Kolwicz
- Mitochondria and Metabolism Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Gary D Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Christine Des Rosiers
- Montreal Heart Institute Research Center and Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Ronald J Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands.,Amsterdam Institute for Gastroenterology and Metabolism (AG&M), Amsterdam, The Netherlands.,Department of Pediatrics, Academic Medical Center, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands.,Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, USA
| |
Collapse
|
32
|
Wanders RJA, Vaz FM, Ferdinandusse S, van Kuilenburg ABP, Kemp S, van Karnebeek CD, Waterham HR, Houtkooper RH. Translational Metabolism: A multidisciplinary approach towards precision diagnosis of inborn errors of metabolism in the omics era. J Inherit Metab Dis 2019; 42:197-208. [PMID: 30723938 DOI: 10.1002/jimd.12008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
The laboratory diagnosis of inborn errors of metabolism has been revolutionized in recent years, thanks to the amazing developments in the field of DNA sequencing including whole exome and whole genome sequencing (WES and WGS). Interpretation of the results coming from WES and/or WGS analysis is definitely not trivial especially since the biological relevance of many of the variants identified by WES and/or WGS, have not been tested experimentally and prediction programs like POLYPHEN-2 and SIFT are far from perfect. Correct interpretation of WES and/or WGS results can only be achieved by performing functional studies at multiple levels (different metabolomics platforms, enzymology, in vitro and in vivo flux analysis), often requires studies in model organisms like zebra fish, Caenorhabditis elegans, Saccharomyces cerevisiae, mutant mice and others, and also requires the input of many different disciplines to make this Translational Metabolism approach effective.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Frederic M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Clara D van Karnebeek
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Metabotypes of response to bariatric surgery independent of the magnitude of weight loss. PLoS One 2018; 13:e0198214. [PMID: 29856816 PMCID: PMC5983508 DOI: 10.1371/journal.pone.0198214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 05/15/2018] [Indexed: 12/18/2022] Open
Abstract
Objective Bariatric surgery is considered the most efficient treatment for morbid obesity and its related diseases. However, its role as a metabolic modifier is not well understood. We aimed to determine biosignatures of response to bariatric surgery and elucidate short-term metabolic adaptations. Methods We used a LC- and FIA-ESI-MS/MS approach to quantify acylcarnitines, (lyso)phosphatidylcholines, sphingomyelins, amino acids, biogenic amines and hexoses in serum samples of subjects with morbid obesity (n = 39) before and 1, 3 and 6 months after bariatric surgery. K-means cluster analysis allowed to distinguish metabotypes of response to bariatric surgery. Results For the first time, global metabolic changes following bariatric surgery independent of the baseline health status of the subjects have been revealed. We identify two metabolic phenotypes (metabotypes) at the interval 6 months-baseline after surgery, which presented differences in the levels of compounds of urea metabolism, gluconeogenic precursors and (lyso)phospholipid particles. Clinically, metabotypes were different in terms of the degree of improvement in insulin resistance, cholesterol, low-density lipoproteins and uric acid independent of the magnitude of weight loss. Conclusions This study opens new perspectives and new hypotheses on the metabolic benefits of bariatric surgery and understanding of the biology of obesity and its associated diseases.
Collapse
|
34
|
Reijngoud DJ. Flux analysis of inborn errors of metabolism. J Inherit Metab Dis 2018; 41:309-328. [PMID: 29318410 PMCID: PMC5959979 DOI: 10.1007/s10545-017-0124-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023]
Abstract
Patients with an inborn error of metabolism (IEM) are deficient of an enzyme involved in metabolism, and as a consequence metabolism reprograms itself to reach a new steady state. This new steady state underlies the clinical phenotype associated with the deficiency. Hence, we need to know the flux of metabolites through the different metabolic pathways in this new steady state of the reprogrammed metabolism. Stable isotope technology is best suited to study this. In this review the progress made in characterizing the altered metabolism will be presented. Studies done in patients to estimate the residual flux through the metabolic pathway affected by enzyme deficiencies will be discussed. After this, studies done in model systems will be reviewed. The focus will be on glycogen storage disease type I, medium-chain acyl-CoA dehydrogenase deficiency, propionic and methylmalonic aciduria, urea cycle defects, phenylketonuria, and combined D,L-2-hydroxyglutaric aciduria. Finally, new developments are discussed, which allow the tracing of metabolic reprogramming in IEM on a genome-wide scale. In conclusion, the outlook for flux analysis of metabolic derangement in IEMs looks promising.
Collapse
Affiliation(s)
- D-J Reijngoud
- Section of Systems Medicine and Metabolic Signaling, Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- Center of Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- European Research Institute of the Biology of Ageing, Internal ZIP code EA12, A. Deusinglaan 1, 9713, AV, Groningen, The Netherlands.
| |
Collapse
|
35
|
Shinde A, Luo J, Bharathi SS, Shi H, Beck ME, McHugh KJ, Alcorn JF, Wang J, Goetzman ES. Increased mortality from influenza infection in long-chain acyl-CoA dehydrogenase knockout mice. Biochem Biophys Res Commun 2018; 497:700-704. [PMID: 29458021 DOI: 10.1016/j.bbrc.2018.02.135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/15/2018] [Indexed: 10/18/2022]
Abstract
We previously showed that the mitochondrial fatty acid oxidation enzyme long-chain acyl-CoA dehydrogenase (LCAD) is expressed in alveolar type II pneumocytes and that LCAD-/- mice have altered breathing mechanics and surfactant defects. Here, we hypothesized that LCAD-/- mice would be susceptible to influenza infection. Indeed, LCAD-/- mice demonstrated increased mortality following infection with 2009 pandemic influenza (A/CA/07/09). However, the mortality was not due to increased lung injury, as inflammatory cell counts, viral titers, and histology scores all showed non-significant trends toward milder injury in LCAD-/- mice. To confirm this, LCAD-/- were infected with a second, mouse-adapted H1N1 virus (A/PR/8/34), to which they responded with significantly less lung injury. While both strains become increasingly hypoglycemic over the first week post-infection, LCAD-/- mice lose body weight more rapidly than wild-type mice. Surprisingly, while acutely fasted LCAD-/- mice develop hepatic steatosis, influenza-infected LCAD-/- mice do not. They do, however, become more hypothermic than wild-type mice and demonstrate increased blood lactate values. We conclude that LCAD-/- mice succumb to influenza from bioenergetic starvation, likely due to increased reliance upon glucose for energy.
Collapse
Affiliation(s)
- Apurva Shinde
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Jiadi Luo
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Sivakama S Bharathi
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Huifang Shi
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Megan E Beck
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Kevin J McHugh
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - John F Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Jieru Wang
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Eric S Goetzman
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States.
| |
Collapse
|
36
|
Longman D, Stock JT, Wells JCK. A trade-off between cognitive and physical performance, with relative preservation of brain function. Sci Rep 2017; 7:13709. [PMID: 29057922 PMCID: PMC5651807 DOI: 10.1038/s41598-017-14186-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
Debate surrounds the issue of how the large, metabolically expensive brains of Homo sapiens can be energetically afforded. At the evolutionary level, decreased investment in muscularity, adiposity and the digestive tract allow for a larger brain. Developmentally, high neo-natal adiposity and preferential distribution of resources to the brain provide an energetic buffer during times of environmental stress. Through an experimental design, we investigated the hypothesis of a trade-off involving brain and muscle at the acute level in humans. Mental performance was measured by a free-recall test, and physical performance by power output on an indoor rowing ergometer. Sixty-two male student rowers performed the two tests in isolation, and then again simultaneously. Paired samples t-tests revealed that both power output and mental performance reduced when tested together compared to in isolation (t(61) = 9.699, p < 0.001 and t(61) = 8.975, p < 0.001). Furthermore, the decrease in physical performance was greater than the decrease in mental performance (t(61) = -2.069, p = 0.043). This is the first investigation to demonstrate an acute level trade-off between these two functions, and provides support for the selfish brain hypothesis due to the relative preservation of cognitive function over physical power output. The underlying mechanism is unclear, and requires further work.
Collapse
Affiliation(s)
- Daniel Longman
- Department of Archaeology and Anthropology, University of Cambridge, Cambridge, CB2 3QG, UK.
| | - Jay T Stock
- Department of Archaeology and Anthropology, University of Cambridge, Cambridge, CB2 3QG, UK
- Department of Anthropology, University of Western Ontario, Ontario, Canada
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| |
Collapse
|
37
|
van Dijk TH, Reijngoud D, Kuipers F. The art of quantifying glucose metabolism. Am J Physiol Endocrinol Metab 2017; 313:E257-E258. [PMID: 28794099 DOI: 10.1152/ajpendo.00066.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 11/22/2022]
Affiliation(s)
- Theo H van Dijk
- Departments of Pediatrics and Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirkjan Reijngoud
- Departments of Pediatrics and Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Departments of Pediatrics and Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Liu T, He Z, Tian X, Kamal GM, Li Z, Liu Z, Liu H, Xu F, Wang J, Xiang H. Specific patterns of spinal metabolites underlying α-Me-5-HT-evoked pruritus compared with histamine and capsaicin assessed by proton nuclear magnetic resonance spectroscopy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1222-1230. [PMID: 28344131 DOI: 10.1016/j.bbadis.2017.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 12/29/2022]
Abstract
The mechanism behind itching is not well understood. Proton nuclear magnetic resonance (1H-NMR) spectroscopic analysis of spinal cord extracts provides a quick modality for evaluating the specific metabolic activity of α-Me-5-HT-evoked pruritus mice. In the current study, four groups of young adult male C57Bl/6 mice were investigated; one group treated with saline, while the other groups intradermally injected with α-Me-5-HT (histamine independent pruritogen), histamine (histamine dependent pruritogen) and capsaicin (algogenic substance), respectively. The intradermal microinjection of α-Me-5-HT and histamine resulted in a dramatic increase in the itch behavior. Furthermore, the results of NMR studies of the spinal cord extracts revealed that the metabolites show very different patterns for these different drugs, especially when comparing α-Me-5-HT and capsaicin. All the animals in the groups of α-Me-5-HT and capsaicin were completely separated using the metabolite parameters and principal component analysis. For α-Me-5-HT, the concentrations of glutamate, GABA, glycine and aspartate increased significantly, especially for GABA (increased 17.2%, p=0.008). Furthermore, the concentration of NAA increased, but there was no significant difference (increased 11.3%, p=0.191) compared to capsaicin (decreased 29.1%, p=0.002). Thus the application of magnetic resonance spectroscopy technique, coupled with statistical analysis, could further explain the mechanism behind itching evoked by α-Me-5-HT or other drugs. It can thus improve our understanding of itch pathophysiology and pharmacological therapies which may contribute to itch relief.
Collapse
Affiliation(s)
- Taotao Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Zhigang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xuebi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ghulam Mustafa Kamal
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhixiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Zeyuan Liu
- College of Life Science, Wuhan University, Wuhan, Hubei 430076, PR China
| | - Huili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
39
|
van Eunen K, Volker-Touw CML, Gerding A, Bleeker A, Wolters JC, van Rijt WJ, Martines ACMF, Niezen-Koning KE, Heiner RM, Permentier H, Groen AK, Reijngoud DJ, Derks TGJ, Bakker BM. Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders. BMC Biol 2016; 14:107. [PMID: 27927213 PMCID: PMC5142382 DOI: 10.1186/s12915-016-0327-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/11/2016] [Indexed: 12/02/2022] Open
Abstract
Background Defects in genes involved in mitochondrial fatty-acid oxidation (mFAO) reduce the ability of patients to cope with metabolic challenges. mFAO enzymes accept multiple substrates of different chain length, leading to molecular competition among the substrates. Here, we combined computational modeling with quantitative mouse and patient data to investigate whether substrate competition affects pathway robustness in mFAO disorders. Results First, we used comprehensive biochemical analyses of wild-type mice and mice deficient for medium-chain acyl-CoA dehydrogenase (MCAD) to parameterize a detailed computational model of mFAO. Model simulations predicted that MCAD deficiency would have no effect on the pathway flux at low concentrations of the mFAO substrate palmitoyl-CoA. However, high concentrations of palmitoyl-CoA would induce a decline in flux and an accumulation of intermediate metabolites. We proved computationally that the predicted overload behavior was due to substrate competition in the pathway. Second, to study the clinical relevance of this mechanism, we used patients’ metabolite profiles and generated a humanized version of the computational model. While molecular competition did not affect the plasma metabolite profiles during MCAD deficiency, it was a key factor in explaining the characteristic acylcarnitine profiles of multiple acyl-CoA dehydrogenase deficient patients. The patient-specific computational models allowed us to predict the severity of the disease phenotype, providing a proof of principle for the systems medicine approach. Conclusion We conclude that substrate competition is at the basis of the physiology seen in patients with mFAO disorders, a finding that may explain why these patients run a risk of a life-threatening metabolic catastrophe. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0327-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen van Eunen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Top Institute for Food and Nutrition, Nieuwe Kanaal 9A, 7609 PA, Wageningen, The Netherlands
| | - Catharina M L Volker-Touw
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Present address: Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert Gerding
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Aycha Bleeker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Top Institute for Food and Nutrition, Nieuwe Kanaal 9A, 7609 PA, Wageningen, The Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Analytical Biochemistry and Interfaculty Mass Spectrometry Center, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Willemijn J van Rijt
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Anne-Claire M F Martines
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Klary E Niezen-Koning
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Rebecca M Heiner
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Hjalmar Permentier
- Analytical Biochemistry and Interfaculty Mass Spectrometry Center, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Albert K Groen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Top Institute for Food and Nutrition, Nieuwe Kanaal 9A, 7609 PA, Wageningen, The Netherlands.,Systems Biology Center for Energy Metabolism and Aging, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Dirk-Jan Reijngoud
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Systems Biology Center for Energy Metabolism and Aging, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Barbara M Bakker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands. .,Systems Biology Center for Energy Metabolism and Aging, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands. .,, PO Box 196, Internal ZIP code EA12, NL-9700 AD, Groningen, The Netherlands.
| |
Collapse
|
40
|
Tulipani S, Griffin J, Palau-Rodriguez M, Mora-Cubillos X, Bernal-Lopez RM, Tinahones FJ, Corkey BE, Andres-Lacueva C. Metabolomics-guided insights on bariatric surgery versus behavioral interventions for weight loss. Obesity (Silver Spring) 2016; 24:2451-2466. [PMID: 27891833 DOI: 10.1002/oby.21686] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To review the metabolomic studies carried out so far to identify metabolic markers associated with surgical and dietary treatments for weight loss in subjects with obesity. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. RESULTS Thirty-two studies successfully met the eligibility criteria. The metabolic adaptations shared by surgical and dietary interventions mirrored a state of starvation ketoacidosis (increase of circulating ketone bodies), an increase of acylcarnitines and fatty acid β-oxidation, a decrease of specific amino acids including branched-chain amino acids (BCAA) and (lyso)glycerophospholipids previously associated with obesity, and adipose tissue expansion. The metabolic footprint of bariatric procedures was specifically characterized by an increase of bile acid circulating pools and a decrease of ceramide levels, a greater perioperative decline in BCAA, and the rise of circulating serine and glycine, mirroring glycemic control and inflammation improvement. In one study, 3-hydroxybutyrate was particularly identified as an early metabolic marker of long-term prognosis after surgery and proposed to increase current prognostic modalities and contribute to personalized treatment. CONCLUSIONS Metabolomics helped in deciphering the metabolic response to weight loss treatments. Moving from association to causation is the next challenge to move to a further level of clinical application.
Collapse
Affiliation(s)
- Sara Tulipani
- Department of Nutrition, Food Sciences and Gastronomy, Biomarkers & Nutrimetabolomic Lab, XaRTA, INSA, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Institute (IBIMA), Service of Endocrinology and Nutrition, Malaga Hospital Complex (Virgen de la Victoria), University of Malaga, Malaga, Spain
| | - Jules Griffin
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Magali Palau-Rodriguez
- Department of Nutrition, Food Sciences and Gastronomy, Biomarkers & Nutrimetabolomic Lab, XaRTA, INSA, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Ximena Mora-Cubillos
- Department of Nutrition, Food Sciences and Gastronomy, Biomarkers & Nutrimetabolomic Lab, XaRTA, INSA, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Rosa M Bernal-Lopez
- Biomedical Research Institute (IBIMA), Service of Internal Medicine, Malaga Hospital Complex (Hospital Regional Universitario de Malaga), University of Malaga, Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco J Tinahones
- Biomedical Research Institute (IBIMA), Service of Endocrinology and Nutrition, Malaga Hospital Complex (Virgen de la Victoria), University of Malaga, Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Barbara E Corkey
- School of Medicine, Obesity Research Center, Boston University, Boston, Massachusetts, USA
| | - Cristina Andres-Lacueva
- Department of Nutrition, Food Sciences and Gastronomy, Biomarkers & Nutrimetabolomic Lab, XaRTA, INSA, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Tol MJ, Ottenhoff R, van Eijk M, Zelcer N, Aten J, Houten SM, Geerts D, van Roomen C, Bierlaagh MC, Scheij S, Hoeksema MA, Aerts JM, Bogan JS, Dorn GW, Argmann CA, Verhoeven AJ. A PPARγ-Bnip3 Axis Couples Adipose Mitochondrial Fusion-Fission Balance to Systemic Insulin Sensitivity. Diabetes 2016; 65:2591-605. [PMID: 27325287 PMCID: PMC5001173 DOI: 10.2337/db16-0243] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022]
Abstract
Aberrant mitochondrial fission plays a pivotal role in the pathogenesis of skeletal muscle insulin resistance. However, fusion-fission dynamics are physiologically regulated by inherent tissue-specific and nutrient-sensitive processes that may have distinct or even opposing effects with respect to insulin sensitivity. Based on a combination of mouse population genetics and functional in vitro assays, we describe here a regulatory circuit in which peroxisome proliferator-activated receptor γ (PPARγ), the adipocyte master regulator and receptor for the thiazolidinedione class of antidiabetic drugs, controls mitochondrial network fragmentation through transcriptional induction of Bnip3. Short hairpin RNA-mediated knockdown of Bnip3 in cultured adipocytes shifts the balance toward mitochondrial elongation, leading to compromised respiratory capacity, heightened fatty acid β-oxidation-associated mitochondrial reactive oxygen species generation, insulin resistance, and reduced triacylglycerol storage. Notably, the selective fission/Drp1 inhibitor Mdivi-1 mimics the effects of Bnip3 knockdown on adipose mitochondrial bioenergetics and glucose disposal. We further show that Bnip3 is reciprocally regulated in white and brown fat depots of diet-induced obesity and leptin-deficient ob/ob mouse models. Finally, Bnip3(-/-) mice trade reduced adiposity for increased liver steatosis and develop aggravated systemic insulin resistance in response to high-fat feeding. Together, our data outline Bnip3 as a key effector of PPARγ-mediated adipose mitochondrial network fragmentation, improving insulin sensitivity and limiting oxidative stress.
Collapse
Affiliation(s)
- Marc J Tol
- Department of Medical Biochemistry, University of Amsterdam, Academic Medical Centre, Amsterdam, the Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, University of Amsterdam, Academic Medical Centre, Amsterdam, the Netherlands
| | - Marco van Eijk
- Department of Medical Biochemistry, University of Amsterdam, Academic Medical Centre, Amsterdam, the Netherlands Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, University of Amsterdam, Academic Medical Centre, Amsterdam, the Netherlands
| | - Jan Aten
- Department of Pathology, University of Amsterdam, Academic Medical Centre, Amsterdam, the Netherlands
| | - Sander M Houten
- Department of Genetic Metabolic Diseases, University of Amsterdam, Academic Medical Centre, Amsterdam, the Netherlands Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dirk Geerts
- Department of Human Genetics, University of Amsterdam, Academic Medical Centre, Amsterdam, the Netherlands
| | - Cindy van Roomen
- Department of Medical Biochemistry, University of Amsterdam, Academic Medical Centre, Amsterdam, the Netherlands
| | - Marlou C Bierlaagh
- Department of Medical Biochemistry, University of Amsterdam, Academic Medical Centre, Amsterdam, the Netherlands
| | - Saskia Scheij
- Department of Medical Biochemistry, University of Amsterdam, Academic Medical Centre, Amsterdam, the Netherlands
| | - Marten A Hoeksema
- Department of Medical Biochemistry, University of Amsterdam, Academic Medical Centre, Amsterdam, the Netherlands
| | - Johannes M Aerts
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Jonathan S Bogan
- Section of Endocrinology and Metabolism, Departments of Internal Medicine & Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Gerald W Dorn
- Centre for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Carmen A Argmann
- Department of Medical Biochemistry, University of Amsterdam, Academic Medical Centre, Amsterdam, the Netherlands Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Arthur J Verhoeven
- Department of Medical Biochemistry, University of Amsterdam, Academic Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
42
|
Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice. Sci Rep 2016; 6:27557. [PMID: 27272163 PMCID: PMC4897618 DOI: 10.1038/srep27557] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/18/2016] [Indexed: 12/03/2022] Open
Abstract
Homeostasis of riboflavin should be maintained by transporters. Previous in vitro studies have elucidated basic information about riboflavin transporter RFVT3 encoded by SLC52A3 gene. However, the contribution of RFVT3 to the maintenance of riboflavin homeostasis and the significance in vivo remain unclear. Here, we investigated the physiological role of RFVT3 using Slc52a3 knockout (Slc52a3−/−) mice. Most Slc52a3−/− mice died with hyperlipidemia and hypoglycemia within 48 hr after birth. The plasma and tissue riboflavin concentrations in Slc52a3−/− mice at postnatal day 0 were dramatically lower than those in wild-type (WT) littermates. Slc52a3−/− fetuses showed a lower capacity of placental riboflavin transport compared with WT fetuses. Riboflavin supplement during pregnancy and after birth reduced neonatal death and metabolic disorders. To our knowledge, this is the first report to indicate that Rfvt3 contributes to placental riboflavin transport, and that disruption of Slc52a3 gene caused neonatal mortality with hyperlipidemia and hypoglycemia owing to riboflavin deficiency.
Collapse
|
43
|
McCoin CS, Piccolo BD, Knotts TA, Matern D, Vockley J, Gillingham MB, Adams SH. Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation. J Inherit Metab Dis 2016; 39:399-408. [PMID: 26907176 PMCID: PMC4851894 DOI: 10.1007/s10545-016-9915-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/09/2016] [Accepted: 01/22/2016] [Indexed: 01/29/2023]
Abstract
Blood and urine acylcarnitine profiles are commonly used to diagnose long-chain fatty acid oxidation disorders (FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase [LCHAD] and carnitine palmitoyltransferase 2 [CPT2] deficiency), but the global metabolic impact of long-chain FAOD has not been reported. We utilized untargeted metabolomics to characterize plasma metabolites in 12 overnight-fasted individuals with FAOD (10 LCHAD, two CPT2) and 11 healthy age-, sex-, and body mass index (BMI)-matched controls, with the caveat that individuals with FAOD consume a low-fat diet supplemented with medium-chain triglycerides (MCT) while matched controls consume a typical American diet. In plasma 832 metabolites were identified, and partial least squared-discriminant analysis (PLS-DA) identified 114 non-acylcarnitine variables that discriminated FAOD subjects and controls. FAOD individuals had significantly higher triglycerides and lower specific phosphatidylethanolamines, ceramides, and sphingomyelins. Differences in phosphatidylcholines were also found but the directionality differed by metabolite species. Further, there were few differences in non-lipid metabolites, indicating the metabolic impact of FAOD specifically on lipid pathways. This analysis provides evidence that LCHAD/CPT2 deficiency significantly alters complex lipid pathway flux. This metabolic signature may provide new clinical tools capable of confirming or diagnosing FAOD, even in subjects with a mild phenotype, and may provide clues regarding the biochemical and metabolic impact of FAOD that is relevant to the etiology of FAOD symptoms.
Collapse
Affiliation(s)
- Colin S McCoin
- Molecular, Cellular and Integrative Physiology Graduate Group, University of California, Davis, CA, USA
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, 15 Children's Way, Little Rock, AR, 72202, USA
| | - Trina A Knotts
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Dietrich Matern
- Biochemical Genetics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Jerry Vockley
- Department of Pediatrics, School of Medicine, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, Pittsburgh, PA, USA
| | - Melanie B Gillingham
- Department of Molecular & Medical Genetics and Graduate Programs in Human Nutrition, Oregon Health & Science University, Portland, OR, USA
| | - Sean H Adams
- Molecular, Cellular and Integrative Physiology Graduate Group, University of California, Davis, CA, USA.
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, 15 Children's Way, Little Rock, AR, 72202, USA.
| |
Collapse
|
44
|
Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. Biosci Rep 2016; 36:BSR20150295. [PMID: 26839416 PMCID: PMC4793296 DOI: 10.1042/bsr20150295] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/02/2016] [Indexed: 12/20/2022] Open
Abstract
Mitochondria provide the main source of energy to eukaryotic cells, oxidizing fats and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two metabolic pathways which are central to this process. Defects in these pathways can result in diseases of the brain, skeletal muscle, heart and liver, affecting approximately 1 in 5000 live births. There are no effective therapies for these disorders, with quality of life severely reduced for most patients. The pathology underlying many aspects of these diseases is not well understood; for example, it is not clear why some patients with primary FAO deficiencies exhibit secondary OXPHOS defects. However, recent findings suggest that physical interactions exist between FAO and OXPHOS proteins, and that these interactions are critical for both FAO and OXPHOS function. Here, we review our current understanding of the interactions between FAO and OXPHOS proteins and how defects in these two metabolic pathways contribute to mitochondrial disease pathogenesis.
Collapse
|
45
|
Abstract
Inborn errors of metabolism (IEM) are not unlike common diseases. They often present as a spectrum of disease phenotypes that correlates poorly with the severity of the disease-causing mutations. This greatly impacts patient care and reveals fundamental gaps in our knowledge of disease modifying biology. Systems biology approaches that integrate multi-omics data into molecular networks have significantly improved our understanding of complex diseases. Similar approaches to study IEM are rare despite their complex nature. We highlight that existing common disease-derived datasets and networks can be repurposed to generate novel mechanistic insight in IEM and potentially identify candidate modifiers. While understanding disease pathophysiology will advance the IEM field, the ultimate goal should be to understand per individual how their phenotype emerges given their primary mutation on the background of their whole genome, not unlike personalized medicine. We foresee that panomics and network strategies combined with recent experimental innovations will facilitate this.
Collapse
Affiliation(s)
- Carmen A Argmann
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA.
| | - Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA.
| |
Collapse
|
46
|
Houten SM, Violante S, Ventura FV, Wanders RJA. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annu Rev Physiol 2015; 78:23-44. [PMID: 26474213 DOI: 10.1146/annurev-physiol-021115-105045] [Citation(s) in RCA: 539] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders.
Collapse
Affiliation(s)
- Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Sara Violante
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Fatima V Ventura
- Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences, iMed.ULisboa, 1649-003 Lisboa, Portugal; .,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, University of Amsterdam, 1100 DE Amsterdam, The Netherlands; .,Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
47
|
Diekman E, de Sain-van der Velden M, Waterham H, Kluijtmans L, Schielen P, van Veen EB, Ferdinandusse S, Wijburg F, Visser G. The Newborn Screening Paradox: Sensitivity vs. Overdiagnosis in VLCAD Deficiency. JIMD Rep 2015; 27:101-6. [PMID: 26453363 DOI: 10.1007/8904_2015_476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To improve the efficacy of newborn screening (NBS) for very long chain acyl-CoA dehydrogenase deficiency (VLCADD). PATIENTS AND METHODS Data on all dried blood spots collected by the Dutch NBS from October 2007 to 2010 (742.728) were included. Based solely on the C14:1 levels (cutoff ≥0.8 μmol/L), six newborns with VLCADD had been identified through NBS during this period. The ratio of C14:1 over C2 was calculated. DNA of all blood spots with a C14:1/C2 ratio of ≥0.020 was isolated and sequenced. Children homozygous or compound heterozygous for mutations in the ACADVL gene were traced back and invited for detailed clinical, biochemical, and genetic evaluation. RESULTS Retrospective analysis based on the C14:1/C2 ratio with a cutoff of ≥0.020 identified an additional five children with known ACADVL mutations and low enzymatic activity. All were still asymptomatic at the time of diagnosis (age 2-5 years). Increasing the cutoff to ≥0.023 resulted in a sensitivity of 93% and a positive predictive value of 37%. The sensitivity of the previously used screening approach (C14:1 ≥0.8) was 50%. CONCLUSION This study shows that the ratio C14:1/C2 is a more sensitive marker than C14:1 for identifying VLCADD patients in NBS. However, as these patients were all asymptomatic at the time of diagnosis, this suggests that a more sensitive screening approach may also identify individuals who may never develop clinical disease. Long-term follow-up studies are needed to establish the risk of these VLCADD-deficient individuals for developing clinical signs and symptoms.
Collapse
Affiliation(s)
- Eugene Diekman
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Paediatric Gastroenterology and Metabolic Diseases, Wilhelmina Children's Hospital UMC Utrecht, Utrecht, The Netherlands
| | | | - Hans Waterham
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Leo Kluijtmans
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Schielen
- National Institute for Public Health and the Environment (RIVM), Reference Laboratory for Pre- and Neonatal Screening, Bilthoven, The Netherlands
| | - Evert Ben van Veen
- National Institute for Public Health and the Environment (RIVM), Reference Laboratory for Pre- and Neonatal Screening, Bilthoven, The Netherlands
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Frits Wijburg
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Gepke Visser
- Department of Paediatric Gastroenterology and Metabolic Diseases, Wilhelmina Children's Hospital UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
48
|
Tarasenko TN, Singh LN, Chatterji-Len M, Zerfas PM, Cusmano-Ozog K, McGuire PJ. Kupffer cells modulate hepatic fatty acid oxidation during infection with PR8 influenza. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2391-401. [PMID: 26319418 DOI: 10.1016/j.bbadis.2015.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
In response to infection, patients with inborn errors of metabolism may develop a functional deterioration termed metabolic decompensation. The biochemical hallmarks of this disruption of metabolic homeostasis are disease specific and may include acidosis, hyperammonemia or hypoglycemia. In a model system previously published by our group, we noted that during influenza infection, mice displayed a depression in hepatic mitochondrial enzymes involved in nitrogen metabolism. Based on these findings, we hypothesized that this normal adaptation may extend to other metabolic pathways, and as such, may impact various inborn errors of metabolism. Since the liver is a critical organ in inborn errors of metabolism, we carried out untargeted metabolomic profiling of livers using mass spectrometry in C57Bl/6 mice infected with influenza to characterize metabolic adaptation. Pathway analysis of metabolomic data revealed reductions in CoA synthesis, and long chain fatty acyl CoA and carnitine species. These metabolic adaptations coincided with a depression in hepatic long chain β-oxidation mRNA and protein. To our surprise, the metabolic changes observed occurred in conjunction with a hepatic innate immune response, as demonstrated by transcriptional profiling and flow cytometry. By employing an immunomodulation strategy to deplete Kupffer cells, we were able to improve the expression of multiple genes involved in β-oxidation. Based on these findings, we are the first to suggest that the role of the liver as an immunologic organ is central in the pathophysiology of hepatic metabolic decompensation in inborn errors of metabolism due to respiratory viral infection.
Collapse
Affiliation(s)
- Tatyana N Tarasenko
- Metabolism, Infection and Immunity Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Milani Chatterji-Len
- Metabolism, Infection and Immunity Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patricia M Zerfas
- Office of Research Services, Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | - Kristina Cusmano-Ozog
- Biochemical Genetics and Metabolism Laboratory, Children's National Medical Center, Washington, DC, USA
| | - Peter J McGuire
- Metabolism, Infection and Immunity Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
49
|
Zhu L, Yin Q, Irwin DM, Zhang S. Phosphoenolpyruvate carboxykinase 1 gene (Pck1) displays parallel evolution between Old World and New World fruit bats. PLoS One 2015; 10:e0118666. [PMID: 25807515 PMCID: PMC4373879 DOI: 10.1371/journal.pone.0118666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/15/2014] [Indexed: 11/19/2022] Open
Abstract
Bats are an ideal mammalian group for exploring adaptations to fasting due to their large variety of diets and because fasting is a regular part of their life cycle. Mammals fed on a carbohydrate-rich diet experience a rapid decrease in blood glucose levels during a fast, thus, the development of mechanisms to resist the consequences of regular fasts, experienced on a daily basis, must have been crucial in the evolution of frugivorous bats. Phosphoenolpyruvate carboxykinase 1 (PEPCK1, encoded by the Pck1 gene) is the rate-limiting enzyme in gluconeogenesis and is largely responsible for the maintenance of glucose homeostasis during fasting in fruit-eating bats. To test whether Pck1 has experienced adaptive evolution in frugivorous bats, we obtained Pck1 coding sequence from 20 species of bats, including five Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our molecular evolutionary analyses of these sequences revealed that Pck1 was under purifying selection in both Old World and New World fruit bats with no evidence of positive selection detected in either ancestral branch leading to fruit bats. Interestingly, however, six specific amino acid substitutions were detected on the ancestral lineage of OWFBs. In addition, we found considerable evidence for parallel evolution, at the amino acid level, between the PEPCK1 sequences of Old World fruit bats and New World fruit bats. Test for parallel evolution showed that four parallel substitutions (Q276R, R503H, I558V and Q593R) were driven by natural selection. Our study provides evidence that Pck1 underwent parallel evolution between Old World and New World fruit bats, two lineages of mammals that feed on a carbohydrate-rich diet and experience regular periods of fasting as part of their life cycle.
Collapse
Affiliation(s)
- Lei Zhu
- Institute of Molecular Ecology and Evolution, SKLEC & IECR & IAIR, East China Normal University, Shanghai, China
| | - Qiuyuan Yin
- Institute of Molecular Ecology and Evolution, SKLEC & IECR & IAIR, East China Normal University, Shanghai, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, SKLEC & IECR & IAIR, East China Normal University, Shanghai, China
| |
Collapse
|
50
|
Haglind CB, Nordenström A, Ask S, von Döbeln U, Gustafsson J, Stenlid MH. Increased and early lipolysis in children with long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency during fast. J Inherit Metab Dis 2015; 38:315-22. [PMID: 25141826 DOI: 10.1007/s10545-014-9750-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/03/2014] [Accepted: 07/16/2014] [Indexed: 12/31/2022]
Abstract
Children with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHAD) have a defect in the degradation of long-chain fatty acids and are at risk of hypoketotic hypoglycemia and insufficient energy production as well as accumulation of toxic fatty acid intermediates. Knowledge on substrate metabolism in children with LCHAD deficiency during fasting is limited. Treatment guidelines differ between centers, both as far as length of fasting periods and need for night feeds are concerned. To increase the understanding of fasting intolerance and improve treatment recommendations, children with LCHAD deficiency were investigated with stable isotope technique, microdialysis, and indirect calometry, in order to assess lipolysis and glucose production during 6 h of fasting. We found an early and increased lipolysis and accumulation of long chain acylcarnitines after 4 h of fasting, albeit no patients developed hypoglycemia. The rate of glycerol production, reflecting lipolysis, averaged 7.7 ± 1.6 µmol/kg/min, which is higher compared to that of peers. The rate of glucose production was normal for age; 19.6 ± 3.4 µmol/kg/min (3.5 ± 0.6 mg/kg/min). Resting energy expenditure was also normal, even though the respiratory quotient was increased indicating mainly glucose oxidation. The results show that lipolysis and accumulation of long chain acylcarnitines occurs before hypoglycemia in fasting children with LCHAD, which may indicate more limited fasting tolerance than previously suggested.
Collapse
Affiliation(s)
- C Bieneck Haglind
- Women's and Children's Health, Karolinska Institute, Stockholm, Sweden,
| | | | | | | | | | | |
Collapse
|