1
|
Shirai T, Okazaki S, Tanifuji T, Numata S, Nakayama T, Yoshida T, Mouri K, Otsuka I, Hiroi N, Hishimoto A. Meta-analyses of epigenetic age acceleration and GrimAge components of schizophrenia or first-episode psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:108. [PMID: 39548083 PMCID: PMC11568310 DOI: 10.1038/s41537-024-00531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Schizophrenia is a common chronic psychiatric disorder that causes age-related dysfunction. The life expectancy in patients with schizophrenia is ≥10 years shorter than that in the general population because of the higher risk of other diseases, such as cardiovascular diseases. Aging studies based on DNA methylation status have received considerable attention. Several epigenetic age accelerations and predicted values of aging-related proteins (GrimAge and GrimAge2 components) have been analyzed in multiple diseases. However, no studies have investigated up to GrimAge and GrimAge2 components between patients with schizophrenia and controls. Therefore, we aimed to conduct multiple regression analyses to investigate the association between schizophrenia and epigenetic age accelerations and GrimAge and GrimAge2 components in seven cohorts. Furthermore, we included patients with first-episode psychosis whose illness duration was often shorter than schizophrenia in our analysis. We integrated these results with meta-analyses, noting the acceleration of GrimAge, GrimAge2, and DunedinPACE, and increase in adrenomedullin, beta-2 microglobulin, cystatin C, and plasminogen activation inhibitor-1 levels, in patients with schizophrenia or first-episode psychosis. These results corroborated the finding that patients with schizophrenia had an increased risk of diabetes, cardiovascular disease, and cognitive dysfunction from a biological perspective. Patients with schizophrenia and first-episode psychosis showed differences in the results when compared with controls. Such analyses may lead to the development of novel therapeutic targets to patients with schizophrenia or relevant diseases from the perspective of aging in the future.
Collapse
Affiliation(s)
- Toshiyuki Shirai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Takaki Tanifuji
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, USA
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohiko Nakayama
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohiro Yoshida
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kentaro Mouri
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, USA
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Kiltschewskij DJ, Reay WR, Cairns MJ. Schizophrenia is associated with altered DNA methylation variance. Mol Psychiatry 2024:10.1038/s41380-024-02749-5. [PMID: 39271751 DOI: 10.1038/s41380-024-02749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Varying combinations of genetic and environmental risk factors are thought to underpin phenotypic heterogeneity between individuals in psychiatric conditions such as schizophrenia. While epigenome-wide association studies in schizophrenia have identified extensive alteration of mean DNA methylation levels, less is known about the location and impact of DNA methylation variance, which could contribute to phenotypic and treatment response heterogeneity. To explore this question, we conducted the largest meta-analysis of blood DNA methylation variance in schizophrenia to date, leveraging three cohorts comprising 1036 individuals with schizophrenia and 954 non-psychiatric controls. Surprisingly, only a small proportion (0.1%) of the 213 variably methylated positions (VMPs) associated with schizophrenia (Benjamini-Hochberg FDR < 0.05) were shared with differentially methylated positions (DMPs; sites with mean changes between cases and controls). These blood-derived VMPs were found to be overrepresented in genes previously associated with schizophrenia and amongst brain-enriched genes, with evidence of concordant changes at VMPs in the cerebellum, hippocampus, prefrontal cortex, or striatum. Epigenetic covariance was also observed with respect to clinically significant metrics including age of onset, cognitive deficits, and symptom severity. We also uncovered a significant VMP in individuals with first-episode psychosis (n = 644) from additional cohorts and a non-psychiatric comparison group (n = 633). Collectively, these findings suggest schizophrenia is associated with significant changes in DNA methylation variance, which may contribute to individual-to-individual heterogeneity.
Collapse
Affiliation(s)
- Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - William R Reay
- Menzies Institute for Medical Research, Hobart, TAS, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
| |
Collapse
|
3
|
Lee D, Baek JH, Kim Y, Lee BD, Cho EY, Joo EJ, Ahn YM, Kim SH, Chung YC, Rami FZ, Kim SJ, Kim SW, Myung W, Ha TH, Lee HJ, Oh H, Lee KY, Kim MJ, Kang CY, Jeon S, Jo A, Yu H, Jeong S, Ha K, Kim B, Shim I, Cho C, Huang H, Won HH, Hong KS. Genome-wide association study and polygenic risk score analysis for schizophrenia in a Korean population. Asian J Psychiatr 2024; 102:104203. [PMID: 39293130 DOI: 10.1016/j.ajp.2024.104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024]
Abstract
Although large-scale genome-wide association studies (GWASs) have revealed the genetic architecture of schizophrenia, these studies have mainly focused on populations of European ancestry. This study aimed to identify common genetic variants associated with schizophrenia in the Korean population and evaluate the performance of polygenic risk scores (PRSs) derived from large-scale GWASs across ancestries. In the Korean psychiatric GWAS project (KPGP), seven academic institutes and their affiliated hospitals across South Korea recruited a cohort of 1670 patients with DSM-IV-defined schizophrenia and 2271 healthy controls. A total of 6690,822 SNPs were tested for association with schizophrenia. We identified one previously unreported genome-wide significant locus rs2423464 (P = 2.83 × 10-11; odds ratio = 1.65; 95 % confidence interval = 1.43-1.91, minor allele frequency = 0.126). This variant was also associated with increased lysosomal-associated membrane protein family member 5 (LAMP5) gene expression. The PRS derived from the meta-analysis results of East Asian and European GWASs explained a larger proportion of the phenotypic variance in the Korean schizophrenia sample than the PRS of an East Asian or European GWAS. (R2 = 0.073 for meta-analysis; 0.028 for East Asian GWAS; 0.037 for European GWAS). GWASs involving diverse ethnic groups will expand our understanding of the genetic architecture of schizophrenia.
Collapse
Affiliation(s)
- Dongbin Lee
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Ji Hyun Baek
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yujin Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Byung Dae Lee
- Pusan National University Research Park, Busan, South Korea
| | - Eun-Young Cho
- Samsung Biomedical Research Institute, Seoul, South Korea
| | - Eun-Jeong Joo
- Department of Psychiatry, Euijeongbu Eulji University Hospital, Euijeongbu, South Korea; Department of Neuropsychiatry, Eulji University, School of Medicine, Daejeon, South Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Se Hyun Kim
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, South Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, South Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Se Joo Kim
- Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Woojae Myung
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Tae Hyon Ha
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | - Hayoung Oh
- Pusan National University Research Park, Pusan, South Korea
| | - Kyu Young Lee
- Department of Neuropsychiatry, Eulji University, School of Medicine, Daejeon, South Korea; Department of Psychiatry, Nowon Eulji University Hospital, Seoul, South Korea
| | - Min Ji Kim
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Chae Yeong Kang
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, South Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Sumoa Jeon
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Anna Jo
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Hyeona Yu
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seunghwa Jeong
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | - Kyooseob Ha
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Department of Psychiatry, Lions Gate Hospital - Vancouver Coastal Health Authority, British Columbia, Canada
| | - Beomsu Kim
- Department of Precision Medicine, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Injeong Shim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Chamlee Cho
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Hong-Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea.
| | - Kyung Sue Hong
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Department of Psychiatry, Lions Gate Hospital - Vancouver Coastal Health Authority, British Columbia, Canada.
| |
Collapse
|
4
|
Büki G, Hadzsiev K, Bene J. Copy Number Variations in Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:13671. [PMID: 37761973 PMCID: PMC10530736 DOI: 10.3390/ijms241813671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Neuropsychiatric disorders are complex conditions that represent a significant global health burden with complex and multifactorial etiologies. Technological advances in recent years have improved our understanding of the genetic architecture of the major neuropsychiatric disorders and the genetic loci involved. Previous studies mainly investigated genome-wide significant SNPs to elucidate the cross-disorder and disorder-specific genetic basis of neuropsychiatric disorders. Although copy number variations represent a major source of genetic variations, they are known risk factors in developing a variety of human disorders, including certain neuropsychiatric diseases. In this review, we demonstrate the current understanding of CNVs contributing to liability for schizophrenia, bipolar disorder, and major depressive disorder.
Collapse
Affiliation(s)
| | | | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.B.); (K.H.)
| |
Collapse
|
5
|
Ahangari M, Gentry AE, Nguyen TH, Kirkpatrick R, Verrelli BC, Bacanu SA, Kendler KS, Webb BT, Riley BP. Evaluating the role of common risk variation in the recurrence risk of schizophrenia in multiplex schizophrenia families. Transl Psychiatry 2022; 12:291. [PMID: 35864105 PMCID: PMC9304393 DOI: 10.1038/s41398-022-02060-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022] Open
Abstract
Multiplex families have higher recurrence risk of schizophrenia compared to the families of sporadic cases, but the source of this increased recurrence risk is unknown. We used schizophrenia genome-wide association study data (N = 156,509) to construct polygenic risk scores (PRS) in 1005 individuals from 257 multiplex schizophrenia families, 2114 ancestry-matched sporadic cases, and 2205 population controls, to evaluate whether increased PRS can explain the higher recurrence risk of schizophrenia in multiplex families compared to ancestry-matched sporadic cases. Using mixed-effects logistic regression with family structure modeled as a random effect, we show that SCZ PRS in familial cases does not differ significantly from sporadic cases either with, or without family history (FH) of psychotic disorders (All sporadic cases p = 0.90, FH+ cases p = 0.88, FH- cases p = 0.82). These results indicate that increased burden of common schizophrenia risk variation as indexed by current SCZ PRS, is unlikely to account for the higher recurrence risk of schizophrenia in multiplex families. In the absence of elevated PRS, segregation of rare risk variation or environmental influences unique to the families may explain the increased familial recurrence risk. These findings also further validate a genetically influenced psychosis spectrum, as shown by a continuous increase of common SCZ risk variation burden from unaffected relatives to schizophrenia cases in multiplex families. Finally, these results suggest that common risk variation loading are unlikely to be predictive of schizophrenia recurrence risk in the families of index probands, and additional components of genetic risk must be identified and included in order to improve recurrence risk prediction.
Collapse
Affiliation(s)
- Mohammad Ahangari
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Integrative Life Sciences PhD Program, Virginia Commonwealth University, Richmond, VA USA
| | - Amanda E. Gentry
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA
| | | | - Tan-Hoang Nguyen
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Psychiatry, Virginia Commonwealth University, Richmond, VA USA
| | - Robert Kirkpatrick
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Psychiatry, Virginia Commonwealth University, Richmond, VA USA
| | - Brian C. Verrelli
- grid.224260.00000 0004 0458 8737Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA USA
| | - Silviu-Alin Bacanu
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Psychiatry, Virginia Commonwealth University, Richmond, VA USA
| | - Kenneth S. Kendler
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Psychiatry, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA USA
| | - Bradley T. Webb
- grid.505215.6GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI, Richmond, VA USA
| | - Brien P. Riley
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Psychiatry, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
6
|
Chen H, Gao J, Xu Q, Wan D, Zhai W, Deng L, Qie R. MiR-145-5p modulates lipid metabolism and M2 macrophage polarization by targeting PAK7 and regulating β-catenin signaling in hyperlipidemia. Can J Physiol Pharmacol 2021; 99:857-863. [PMID: 34143694 DOI: 10.1139/cjpp-2020-0539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study aims to explore the role of microRNA 145-5p (miR-145-5p) in hyperlipidemia. Using bioinformatics tools and a wide range of function and mechanism assays, we attempted to understand the specific function and potential mechanism of miR-145-5p in hyperlipidemia. A cholesterol-enriched diet induced an increase of serum cholesterol and triacylglycerol but a decrease of serum high-density lipoprotein. MiR-145-5p level was decreased in hyperlipidemia rat models. MiR-145-5p regulated lipid metabolism by antagonizing the alteration of high-density lipoprotein, cholesterol, and triacylglycerol in serum mediated by a cholesterol-enriched diet. In mechanism, miR-145-5p directly bound with p21 protein (RAC1)-activated kinase 7 (PAK7) and negatively regulated mRNA and protein levels of PAK7 in THP-1 cells. Furthermore, miR-145-5p level was negatively associated with PAK7 level in rat cardiac tissues. Finally, overexpression of PAK7 reversed the effects of miR-145-5p on β-catenin activation and M2 macrophages polarization in THP-1 cells. In conclusion, MiR-145-5p modulated lipid metabolism and M2 macrophage polarization by targeting PAK7 and regulating β-catenin signaling in hyperlipidemia, which may provide a potential biomarker for the treatment of hyperlipidemia-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Huijun Chen
- Department of Cardiology, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang, China
| | - Jing Gao
- Department of Cardiology, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang, China
| | - Qian Xu
- Department of Cardiology, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang, China
| | - Dongmei Wan
- Department of Cardiology, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang, China
| | - Wenji Zhai
- Department of Cardiology, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang, China
| | - Limei Deng
- Department of Cardiology, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang, China
| | - Rui Qie
- Department of Emergency, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| |
Collapse
|
7
|
Córdova-Palomera A, van der Meer D, Kaufmann T, Bettella F, Wang Y, Alnæs D, Doan NT, Agartz I, Bertolino A, Buitelaar JK, Coynel D, Djurovic S, Dørum ES, Espeseth T, Fazio L, Franke B, Frei O, Håberg A, Le Hellard S, Jönsson EG, Kolskår KK, Lund MJ, Moberget T, Nordvik JE, Nyberg L, Papassotiropoulos A, Pergola G, de Quervain D, Rampino A, Richard G, Rokicki J, Sanders AM, Schwarz E, Smeland OB, Steen VM, Starrfelt J, Sønderby IE, Ulrichsen KM, Andreassen OA, Westlye LT. Genetic control of variability in subcortical and intracranial volumes. Mol Psychiatry 2021; 26:3876-3883. [PMID: 32047264 DOI: 10.1038/s41380-020-0664-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 12/14/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022]
Abstract
Sensitivity to external demands is essential for adaptation to dynamic environments, but comes at the cost of increased risk of adverse outcomes when facing poor environmental conditions. Here, we apply a novel methodology to perform genome-wide association analysis of mean and variance in ten key brain features (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, intracranial volume, cortical surface area, and cortical thickness), integrating genetic and neuroanatomical data from a large lifespan sample (n = 25,575 individuals; 8-89 years, mean age 51.9 years). We identify genetic loci associated with phenotypic variability in thalamus volume and cortical thickness. The variance-controlling loci involved genes with a documented role in brain and mental health and were not associated with the mean anatomical volumes. This proof-of-principle of the hypothesis of a genetic regulation of brain volume variability contributes to establishing the genetic basis of phenotypic variance (i.e., heritability), allows identifying different degrees of brain robustness across individuals, and opens new research avenues in the search for mechanisms controlling brain and mental health.
Collapse
Affiliation(s)
- Aldo Córdova-Palomera
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Francesco Bettella
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yunpeng Wang
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nhat Trung Doan
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway.,Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden.,NORMENT, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alessandro Bertolino
- Institute of Psychiatry, Bari University Hospital, Bari, Italy.,Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - David Coynel
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.,Division of Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Srdjan Djurovic
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Erlend S Dørum
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway.,Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | | | - Leonardo Fazio
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oleksandr Frei
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Asta Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, Norway
| | | | - Erik G Jönsson
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Knut K Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway.,Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Martina J Lund
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torgeir Moberget
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Lars Nyberg
- Department of Radiation Sciences, Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Andreas Papassotiropoulos
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.,Division of Molecular Neuroscience, University of Basel, Basel, Switzerland.,Life Sciences Training Facility, Department Biozentrum, University of Basel, Basel, Switzerland
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Dominique de Quervain
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.,Division of Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Antonio Rampino
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Genevieve Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway.,Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Jaroslav Rokicki
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Anne-Marthe Sanders
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway.,Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Emanuel Schwarz
- Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Olav B Smeland
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vidar M Steen
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway.,Dr. E. Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Jostein Starrfelt
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ida E Sønderby
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Kristine M Ulrichsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway.,Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Psychology, University of Oslo, Oslo, Norway.
| |
Collapse
|
8
|
Rare Copy Number Variants Are Associated With Poorer Cognition in Schizophrenia. Biol Psychiatry 2021; 90:28-34. [PMID: 33678419 DOI: 10.1016/j.biopsych.2020.11.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 10/09/2020] [Accepted: 11/15/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cognitive impairment in schizophrenia is a major contributor to poor outcomes, yet its causes are poorly understood. Some rare copy number variants (CNVs) are associated with schizophrenia risk and affect cognition in healthy populations, but their contribution to cognitive impairment in schizophrenia has not been investigated. We examined the effect of 12 schizophrenia CNVs on cognition in those with schizophrenia. METHODS General cognitive ability was measured using the Measurement and Treatment Research to Improve Cognition in Schizophrenia composite z score in 875 patients with schizophrenia and in a replication sample of 519 patients with schizophrenia using Wechsler Adult Intelligence Scale Full Scale IQ. Using linear regression, we tested for association between cognition and schizophrenia CNV status, covarying for age and sex. In addition, we tested whether CNVs hitting genes in schizophrenia-enriched gene sets (loss-of-function intolerant and synaptic gene sets) were associated with cognitive impairment. RESULTS A total of 23 schizophrenia CNV carriers were identified. Schizophrenia CNV carriers had lower general cognitive ability than nonschizophrenia CNV carriers in discovery (β = -0.66, 95% confidence interval [CI] = -1.31 to -0.01) and replication samples (β = -0.91, 95% CI = -1.71 to -0.11) and after meta-analysis (β = -0.76, 95% CI = -1.26 to -0.25, p = .003). CNVs hitting loss-of-function intolerant genes were associated with lower cognition (β = -0.15, 95% CI = -0.29 to -0.001, p = .048). CONCLUSIONS In those with schizophrenia, cognitive ability in schizophrenia CNV carriers is 0.5-1.0 standard deviations below non-CNV carriers, which may have implications for clinical assessment and management. We also demonstrate that rare CNVs hitting genes intolerant to loss-of-function variation lead to more severe cognitive impairment, above and beyond the effect of known schizophrenia CNVs.
Collapse
|
9
|
Liu H, Liu K, Dong Z. The Role of p21-Activated Kinases in Cancer and Beyond: Where Are We Heading? Front Cell Dev Biol 2021; 9:641381. [PMID: 33796531 PMCID: PMC8007885 DOI: 10.3389/fcell.2021.641381] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The p21-activated kinases (PAKs), downstream effectors of Ras-related Rho GTPase Cdc42 and Rac, are serine/threonine kinases. Biologically, PAKs participate in various cellular processes, including growth, apoptosis, mitosis, immune response, motility, inflammation, and gene expression, making PAKs the nexus of several pathogenic and oncogenic signaling pathways. PAKs were proved to play critical roles in human diseases, including cancer, infectious diseases, neurological disorders, diabetes, pancreatic acinar diseases, and cardiac disorders. In this review, we systematically discuss the structure, function, alteration, and molecular mechanisms of PAKs that are involved in the pathogenic and oncogenic effects, as well as PAK inhibitors, which may be developed and deployed in cancer therapy, anti-viral infection, and other diseases. Furthermore, we highlight the critical questions of PAKs in future research, which provide an opportunity to offer input and guidance on new directions for PAKs in pathogenic, oncogenic, and drug discovery research.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| |
Collapse
|
10
|
Tromp A, Mowry B, Giacomotto J. Neurexins in autism and schizophrenia-a review of patient mutations, mouse models and potential future directions. Mol Psychiatry 2021; 26:747-760. [PMID: 33191396 DOI: 10.1038/s41380-020-00944-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 01/29/2023]
Abstract
Mutations in the family of neurexins (NRXN1, NRXN2 and NRXN3) have been repeatedly identified in patients with autism spectrum disorder (ASD) and schizophrenia (SCZ). However, it remains unclear how these DNA variants affect neurexin functions and thereby predispose to these neurodevelopmental disorders. Understanding both the wild-type and pathologic roles of these genes in the brain could help unveil biological mechanisms underlying mental disorders. In this regard, numerous studies have focused on generating relevant loss-of-function (LOF) mammalian models. Although this has increased our knowledge about their normal functions, the potential pathologic role(s) of these human variants remains elusive. Indeed, after reviewing the literature, it seems apparent that a traditional LOF-genetic approach based on complete LOF might not be sufficient to unveil the role of these human mutations. First, these genes present a very complex transcriptome and total-LOF of all isoforms may not be the cause of toxicity in patients, particularly given evidence that causative variants act through haploinsufficiency. Moreover, human DNA variants may not all lead to LOF but potentially to intricate transcriptome changes that could also include the generation of aberrant isoforms acting as a gain-of-function (GOF). Furthermore, their transcriptomic complexity most likely renders them prone to genetic compensation when one tries to manipulate them using traditional site-directed mutagenesis approaches, and this could act differently from model to model leading to heterogeneous and conflicting phenotypes. This review compiles the relevant literature on variants identified in human studies and on the mouse models currently deployed, and offers suggestions for future research.
Collapse
Affiliation(s)
- Alisha Tromp
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Bryan Mowry
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| | - Jean Giacomotto
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| |
Collapse
|
11
|
Hannon E, Dempster EL, Mansell G, Burrage J, Bass N, Bohlken MM, Corvin A, Curtis CJ, Dempster D, Di Forti M, Dinan TG, Donohoe G, Gaughran F, Gill M, Gillespie A, Gunasinghe C, Hulshoff HE, Hultman CM, Johansson V, Kahn RS, Kaprio J, Kenis G, Kowalec K, MacCabe J, McDonald C, McQuillin A, Morris DW, Murphy KC, Mustard CJ, Nenadic I, O'Donovan MC, Quattrone D, Richards AL, Rutten BPF, St Clair D, Therman S, Toulopoulou T, Van Os J, Waddington JL, Sullivan P, Vassos E, Breen G, Collier DA, Murray RM, Schalkwyk LS, Mill J. DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of treatment-resistant schizophrenia. eLife 2021; 10:e58430. [PMID: 33646943 PMCID: PMC8009672 DOI: 10.7554/elife.58430] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
We performed a systematic analysis of blood DNA methylation profiles from 4483 participants from seven independent cohorts identifying differentially methylated positions (DMPs) associated with psychosis, schizophrenia, and treatment-resistant schizophrenia. Psychosis cases were characterized by significant differences in measures of blood cell proportions and elevated smoking exposure derived from the DNA methylation data, with the largest differences seen in treatment-resistant schizophrenia patients. We implemented a stringent pipeline to meta-analyze epigenome-wide association study (EWAS) results across datasets, identifying 95 DMPs associated with psychosis and 1048 DMPs associated with schizophrenia, with evidence of colocalization to regions nominated by genetic association studies of disease. Many schizophrenia-associated DNA methylation differences were only present in patients with treatment-resistant schizophrenia, potentially reflecting exposure to the atypical antipsychotic clozapine. Our results highlight how DNA methylation data can be leveraged to identify physiological (e.g., differential cell counts) and environmental (e.g., smoking) factors associated with psychosis and molecular biomarkers of treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Eilis Hannon
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| | - Emma L Dempster
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| | - Georgina Mansell
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| | - Joe Burrage
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| | - Nick Bass
- Division of Psychiatry, University College LondonLondonUnited Kingdom
| | - Marc M Bohlken
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, HeidelberglaanUtrechtNetherlands
| | - Aiden Corvin
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute, Trinity College Dublin, St. James HospitalDublinIreland
| | - Charles J Curtis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- NIHR BioResource Centre Maudsley, South London and Maudsley NHS Foundation Trust (SLaM), King’s College LondonLondonUnited Kingdom
| | - David Dempster
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
| | - Marta Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- South London and Maudsley NHS Mental Health Foundation TrustLondonUnited Kingdom
- National Institute for Health Research (NIHR), Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College LondonLondonUnited Kingdom
| | | | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland GalwayGalwayIreland
| | - Fiona Gaughran
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- National Psychosis Service, South London and Maudsley NHS Foundation TrustLondonUnited Kingdom
| | - Michael Gill
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute, Trinity College DublinDublinIreland
| | - Amy Gillespie
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- Department of Psychiatry, Medical Sciences Division, University of OxfordOxfordUnited Kingdom
| | - Cerisse Gunasinghe
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
| | - Hilleke E Hulshoff
- Department of Psychiatry, University Medical Center UtrechtUtrechtNetherlands
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
| | - Viktoria Johansson
- Department of Medical Epidemiology and Biostatistics Sweden, Karolinska InstitutetStockholmSweden
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm Health Care ServicesStockholmSweden
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrechtNetherlands
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of HelsinkiHelsinkiFinland
- Department of Public Health, University of HelsinkiHelsinkiFinland
| | - Gunter Kenis
- Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastrichtNetherlands
| | - Kaarina Kowalec
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
- College of Pharmacy, University of ManitobaWinnipegCanada
| | - James MacCabe
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
| | - Colm McDonald
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Medicine, National University of Ireland GalwayGalwayIreland
| | - Andrew McQuillin
- Division of Psychiatry, University College LondonLondonUnited Kingdom
- Division of Psychiatry, University College LondonLondonUnited Kingdom
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland GalwayGalwayIreland
| | - Kieran C Murphy
- Department of Psychiatry, Royal College of Surgeons in IrelandDublinIreland
| | - Colette J Mustard
- Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and IslandsInvernessUnited Kingdom
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Jena University HospitalJenaGermany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg/ Marburg University Hospital UKGMMarburgGermany
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Diego Quattrone
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- South London and Maudsley NHS Mental Health Foundation TrustLondonUnited Kingdom
| | - Alexander L Richards
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Bart PF Rutten
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastrichtNetherlands
| | - David St Clair
- The Institute of Medical Sciences, Univeristy of AberdeenAberdeenUnited Kingdom
| | - Sebastian Therman
- Department of Public Health Solutions, Mental Health Unit, National Institute for Health and WelfareHelsinkiFinland
| | - Timothea Toulopoulou
- Department of Psychology and National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent UniversityAnkaraTurkey
| | - Jim Van Os
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrechtNetherlands
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in IrelandDublinIreland
| | - Wellcome Trust Case Control Consortium (WTCCC)
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
- Division of Psychiatry, University College LondonLondonUnited Kingdom
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, HeidelberglaanUtrechtNetherlands
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute, Trinity College Dublin, St. James HospitalDublinIreland
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- NIHR BioResource Centre Maudsley, South London and Maudsley NHS Foundation Trust (SLaM), King’s College LondonLondonUnited Kingdom
- South London and Maudsley NHS Mental Health Foundation TrustLondonUnited Kingdom
- National Institute for Health Research (NIHR), Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College LondonLondonUnited Kingdom
- APC Microbiome Ireland, University College CorkCorkIreland
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland GalwayGalwayIreland
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- National Psychosis Service, South London and Maudsley NHS Foundation TrustLondonUnited Kingdom
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute, Trinity College DublinDublinIreland
- Department of Psychiatry, Medical Sciences Division, University of OxfordOxfordUnited Kingdom
- Department of Psychiatry, University Medical Center UtrechtUtrechtNetherlands
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
- Department of Medical Epidemiology and Biostatistics Sweden, Karolinska InstitutetStockholmSweden
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm Health Care ServicesStockholmSweden
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrechtNetherlands
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Molecular Medicine FIMM, University of HelsinkiHelsinkiFinland
- Department of Public Health, University of HelsinkiHelsinkiFinland
- Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastrichtNetherlands
- College of Pharmacy, University of ManitobaWinnipegCanada
- Centre for Neuroimaging and Cognitive Genomics (NICOG), School of Medicine, National University of Ireland GalwayGalwayIreland
- Division of Psychiatry, University College LondonLondonUnited Kingdom
- Department of Psychiatry, Royal College of Surgeons in IrelandDublinIreland
- Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and IslandsInvernessUnited Kingdom
- Department of Psychiatry and Psychotherapy, Jena University HospitalJenaGermany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg/ Marburg University Hospital UKGMMarburgGermany
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastrichtNetherlands
- The Institute of Medical Sciences, Univeristy of AberdeenAberdeenUnited Kingdom
- Department of Public Health Solutions, Mental Health Unit, National Institute for Health and WelfareHelsinkiFinland
- Department of Psychology and National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent UniversityAnkaraTurkey
- Molecular and Cellular Therapeutics, Royal College of Surgeons in IrelandDublinIreland
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel HillChapel HillUnited States
- Neuroscience Genetics, Eli Lilly and CompanySurreyUnited Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, King’s College LondonLondonUnited Kingdom
- School of Life Sciences, University of EssexColchesterUnited Kingdom
| | | | - Patrick Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel HillChapel HillUnited States
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College LondonLondonUnited Kingdom
- NIHR BioResource Centre Maudsley, South London and Maudsley NHS Foundation Trust (SLaM), King’s College LondonLondonUnited Kingdom
| | | | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, King’s College LondonLondonUnited Kingdom
| | | | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Barrack RoadExeterUnited Kingdom
| |
Collapse
|
12
|
Buljan M, Ciuffa R, van Drogen A, Vichalkovski A, Mehnert M, Rosenberger G, Lee S, Varjosalo M, Pernas LE, Spegg V, Snijder B, Aebersold R, Gstaiger M. Kinase Interaction Network Expands Functional and Disease Roles of Human Kinases. Mol Cell 2020; 79:504-520.e9. [PMID: 32707033 PMCID: PMC7427327 DOI: 10.1016/j.molcel.2020.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/14/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022]
Abstract
Protein kinases are essential for signal transduction and control of most cellular processes, including metabolism, membrane transport, motility, and cell cycle. Despite the critical role of kinases in cells and their strong association with diseases, good coverage of their interactions is available for only a fraction of the 535 human kinases. Here, we present a comprehensive mass-spectrometry-based analysis of a human kinase interaction network covering more than 300 kinases. The interaction dataset is a high-quality resource with more than 5,000 previously unreported interactions. We extensively characterized the obtained network and were able to identify previously described, as well as predict new, kinase functional associations, including those of the less well-studied kinases PIM3 and protein O-mannose kinase (POMK). Importantly, the presented interaction map is a valuable resource for assisting biomedical studies. We uncover dozens of kinase-disease associations spanning from genetic disorders to complex diseases, including cancer.
Collapse
Affiliation(s)
- Marija Buljan
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Rodolfo Ciuffa
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Audrey van Drogen
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Anton Vichalkovski
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Mehnert
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - George Rosenberger
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Columbia University Department of Systems Biology, New York, NY 10032, USA
| | - Sohyon Lee
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Lucia Espona Pernas
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland.
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
13
|
van der Meer D, Sønderby IE, Kaufmann T, Walters GB, Abdellaoui A, Ames D, Amunts K, Andersson M, Armstrong NJ, Bernard M, Blackburn NB, Blangero J, Boomsma DI, Brodaty H, Brouwer RM, Bülow R, Cahn W, Calhoun VD, Caspers S, Cavalleri GL, Ching CRK, Cichon S, Ciufolini S, Corvin A, Crespo-Facorro B, Curran JE, Dalvie S, Dazzan P, de Geus EJC, de Zubicaray GI, de Zwarte SMC, Delanty N, den Braber A, Desrivieres S, Di Forti M, Doherty JL, Donohoe G, Ehrlich S, Eising E, Espeseth T, Fisher SE, Fladby T, Frei O, Frouin V, Fukunaga M, Gareau T, Glahn DC, Grabe HJ, Groenewold NA, Gústafsson Ó, Haavik J, Haberg AK, Hashimoto R, Hehir-Kwa JY, Hibar DP, Hillegers MHJ, Hoffmann P, Holleran L, Hottenga JJ, Hulshoff Pol HE, Ikeda M, Jacquemont S, Jahanshad N, Jockwitz C, Johansson S, Jönsson EG, Kikuchi M, Knowles EEM, Kwok JB, Le Hellard S, Linden DEJ, Liu J, Lundervold A, Lundervold AJ, Martin NG, Mather KA, Mathias SR, McMahon KL, McRae AF, Medland SE, Moberget T, Moreau C, Morris DW, Mühleisen TW, Murray RM, Nordvik JE, Nyberg L, Olde Loohuis LM, Ophoff RA, Owen MJ, Paus T, Pausova Z, Peralta JM, Pike B, Prieto C, Quinlan EB, Reinbold CS, Reis Marques T, Rucker JJH, Sachdev PS, Sando SB, Schofield PR, Schork AJ, Schumann G, Shin J, Shumskaya E, Silva AI, Sisodiya SM, Steen VM, Stein DJ, Strike LT, Tamnes CK, Teumer A, Thalamuthu A, Tordesillas-Gutiérrez D, Uhlmann A, Úlfarsson MÖ, van 't Ent D, van den Bree MBM, Vassos E, Wen W, Wittfeld K, Wright MJ, Zayats T, Dale AM, Djurovic S, Agartz I, Westlye LT, Stefánsson H, Stefánsson K, Thompson PM, Andreassen OA. Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition. JAMA Psychiatry 2020; 77:420-430. [PMID: 31665216 PMCID: PMC6822096 DOI: 10.1001/jamapsychiatry.2019.3779] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023]
Abstract
Importance Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities. Objective To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance. Design, Setting, and Participants In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019. Main Outcomes and Measures The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort. Results Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (β = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks. Conclusions and Relevance These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Ida E Sønderby
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - G Bragi Walters
- deCODE Genetics, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
| | - David Ames
- University of Melbourne Academic Unit for Psychiatry of Old Age, Kew, Australia
- National Ageing Research Institute, Parkville, Australia
| | - Katrin Amunts
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- JARA-BRAIN, Juelich-Aachen Research Alliance, Juelich, Germany
| | - Micael Andersson
- Umeå Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Manon Bernard
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicholas B Blackburn
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville
| | - John Blangero
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville
| | - Dorret I Boomsma
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Rachel M Brouwer
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robin Bülow
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Wiepke Cahn
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Altrecht Science, Utrecht, the Netherlands
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta
- The Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque
| | - Svenja Caspers
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- JARA-BRAIN, Juelich-Aachen Research Alliance, Juelich, Germany
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gianpiero L Cavalleri
- The School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The SFI FutureNeuro Research Centre, Dublin, Ireland
| | - Christopher R K Ching
- Interdepartmental Neuroscience Program, University of California, Los Angeles
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles
| | - Sven Cichon
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Aiden Corvin
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, IdahoIVAL, Centre de Investigación Biomédica en Red Salud Mental (CIBERSAM), Santander, Spain
- University Hospital Virgen del Rocío, IBiS, Centre de Investigación Biomédica en Red Salud Mental (CIBERSAM), Sevilla, Spain
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville
| | - Shareefa Dalvie
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eco J C de Geus
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Greig I de Zubicaray
- Faculty of Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Sonja M C de Zwarte
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Norman Delanty
- The SFI FutureNeuro Research Centre, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| | - Anouk den Braber
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sylvane Desrivieres
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marta Di Forti
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Joanne L Doherty
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Stefan Ehrlich
- Psychological and Social Medicine, Faculty of Medicine, Dresden University of Technology, Dresden, Germany
| | - Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | | | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tormod Fladby
- Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Lorenskog, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vincent Frouin
- Neurospin, Le Commissariat à l'énergie atomique et aux énergies alternatives, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Life Science, Sokendai, Hayama, Japan
| | - Thomas Gareau
- Neurospin, Le Commissariat à l'énergie atomique et aux énergies alternatives, Université Paris-Saclay, Gif-sur-Yvette, France
| | - David C Glahn
- Boston Children's Hospital, Boston, Massachusetts
- Institute of Living, Hartford, Connecticut
- Harvard Medical School, Boston, Massachusetts
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | | | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Asta K Haberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- St Olav's Hospital, Department of Radiology and Nuclear Medicine, Trondheim, Norway
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Osaka University, Osaka, Japan
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Manon H J Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia's Children's Hospital, Rotterdam, the Netherlands
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn Medical School, Bonn, Germany
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Jouke-Jan Hottenga
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Sébastien Jacquemont
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Emma E M Knowles
- Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - John B Kwok
- The University of Sydney Central Clinical School, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Stephanie Le Hellard
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - David E J Linden
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta
| | - Arvid Lundervold
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Randwick, Australia
| | - Samuel R Mathias
- Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Katie L McMahon
- Herston Imaging Research Facility and School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Torgeir Moberget
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Clara Moreau
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Robin M Murray
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Lars Nyberg
- Umeå Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | | | - Roel A Ophoff
- Center for Neurobehavioral Genetics, University of California, Los Angeles
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Zdenka Pausova
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Juan M Peralta
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville
| | - Bruce Pike
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Carlos Prieto
- Bioinformatics Service, Nucleus, University of Salamanca, Salamanca, Spain
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Céline S Reinbold
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - James J H Rucker
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| | - Sigrid B Sando
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, University Hospital of Trondheim, Trondheim, Norway
| | - Peter R Schofield
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | | | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jean Shin
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Elena Shumskaya
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ana I Silva
- Cardiff University Brain Research Imaging Centre School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology and Chalfont Centre for Epilepsy, London, United Kingdom
| | - Vidar M Steen
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Diana Tordesillas-Gutiérrez
- Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute, IdahoIVAL, Santander, Spain
| | - Anne Uhlmann
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Magnús Ö Úlfarsson
- deCODE Genetics, Reykjavík, Iceland
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavík, Iceland
| | - Dennis van 't Ent
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marianne B M van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Evangelos Vassos
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research, Mental Health Biomedical Research Centre, South London and Maudsley National Health Service Foundation Trust and King's College London, London, United Kingdom
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Tetyana Zayats
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Kári Stefánsson
- deCODE Genetics, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Casamassa A, Ferrari D, Gelati M, Carella M, Vescovi AL, Rosati J. A Link between Genetic Disorders and Cellular Impairment, Using Human Induced Pluripotent Stem Cells to Reveal the Functional Consequences of Copy Number Variations in the Central Nervous System-A Close Look at Chromosome 15. Int J Mol Sci 2020; 21:ijms21051860. [PMID: 32182809 PMCID: PMC7084702 DOI: 10.3390/ijms21051860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Recent cutting-edge human genetics technology has allowed us to identify copy number variations (CNVs) and has provided new insights for understanding causative mechanisms of human diseases. A growing number of studies show that CNVs could be associated with physiological mechanisms linked to evolutionary trigger, as well as to the pathogenesis of various diseases, including cancer, autoimmune disease and mental disorders such as autism spectrum disorders, schizophrenia, intellectual disabilities or attention-deficit/hyperactivity disorder. Their incomplete penetrance and variable expressivity make diagnosis difficult and hinder comprehension of the mechanistic bases of these disorders. Additional elements such as co-presence of other CNVs, genomic background and environmental factors are involved in determining the final phenotype associated with a CNV. Genetically engineered animal models are helpful tools for understanding the behavioral consequences of CNVs. However, the genetic background and the biology of these animal model systems have sometimes led to confusing results. New cellular models obtained through somatic cellular reprogramming technology that produce induced pluripotent stem cells (iPSCs) from human subjects are being used to explore the mechanisms involved in the pathogenic consequences of CNVs. Considering the vast quantity of CNVs found in the human genome, we intend to focus on reviewing the current literature on the use of iPSCs carrying CNVs on chromosome 15, highlighting advantages and limits of this system with respect to mouse model systems.
Collapse
Affiliation(s)
- Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Viale Abramo Lincoln 5, 81100 Caserta, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
| | - Maurizio Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Massimo Carella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
- Correspondence: (A.L.V.); (J.R.)
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Correspondence: (A.L.V.); (J.R.)
| |
Collapse
|
15
|
Hu Z, Xiao X, Zhang Z, Li M. Genetic insights and neurobiological implications from NRXN1 in neuropsychiatric disorders. Mol Psychiatry 2019; 24:1400-1414. [PMID: 31138894 DOI: 10.1038/s41380-019-0438-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/31/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023]
Abstract
Many neuropsychiatric and neurodevelopmental disorders commonly share genetic risk factors. To date, the mechanisms driving the pathogenesis of these disorders, particularly how genetic variations affect the function of risk genes and contribute to disease symptoms, remain largely unknown. Neurexins are a family of synaptic adhesion molecules, which play important roles in the formation and establishment of synaptic structure, as well as maintenance of synaptic function. Accumulating genomic findings reveal that genetic variations within genes encoding neurexins are associated with a variety of psychiatric conditions such as schizophrenia, autism spectrum disorder, and some developmental abnormalities. In this review, we focus on NRXN1, one of the most compelling psychiatric risk genes of the neurexin family. We performed a comprehensive survey and analysis of current genetic and molecular data including both common and rare alleles within NRXN1 associated with psychiatric illnesses, thus providing insights into the genetic risk conferred by NRXN1. We also summarized the neurobiological evidences, supporting the function of NRXN1 and its protein products in synaptic formation, organization, transmission and plasticity, as well as disease-relevant behaviors, and assessed the mechanistic link between the mutations of NRXN1 and synaptic and behavioral pathology in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
16
|
Abstract
The structure of neuronal circuits that subserve cognitive functions in the brain is shaped and refined throughout development and into adulthood. Evidence from human and animal studies suggests that the cellular and synaptic substrates of these circuits are atypical in neuropsychiatric disorders, indicating that altered structural plasticity may be an important part of the disease biology. Advances in genetics have redefined our understanding of neuropsychiatric disorders and have revealed a spectrum of risk factors that impact pathways known to influence structural plasticity. In this Review, we discuss the importance of recent genetic findings on the different mechanisms of structural plasticity and propose that these converge on shared pathways that can be targeted with novel therapeutics.
Collapse
|
17
|
Quintana DS, Rokicki J, van der Meer D, Alnæs D, Kaufmann T, Córdova-Palomera A, Dieset I, Andreassen OA, Westlye LT. Oxytocin pathway gene networks in the human brain. Nat Commun 2019; 10:668. [PMID: 30737392 PMCID: PMC6368605 DOI: 10.1038/s41467-019-08503-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 01/09/2019] [Indexed: 11/09/2022] Open
Abstract
Oxytocin is a neuropeptide involved in animal and human reproductive and social behavior. Three oxytocin signaling genes have been frequently implicated in human social behavior: OXT (structural gene for oxytocin), OXTR (oxytocin receptor), and CD38 (oxytocin secretion). Here, we characterized the distribution of OXT, OXTR, and CD38 mRNA across the human brain by creating voxel-by-voxel volumetric expression maps, and identified putative gene pathway interactions by comparing gene expression patterns across 20,737 genes. Expression of the three selected oxytocin pathway genes was enriched in subcortical and olfactory regions and there was high co-expression with several dopaminergic and muscarinic acetylcholine genes, reflecting an anatomical basis for critical gene pathway interactions. fMRI meta-analysis revealed that the oxytocin pathway gene maps correspond with the processing of anticipatory, appetitive, and aversive cognitive states. The oxytocin signaling system may interact with dopaminergic and muscarinic acetylcholine signaling to modulate cognitive state processes involved in complex human behaviors.
Collapse
Affiliation(s)
- Daniel S Quintana
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway.
| | - Jaroslav Rokicki
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, 0373, Norway
| | - Dennis van der Meer
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway
| | - Dag Alnæs
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway
| | - Aldo Córdova-Palomera
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway
| | - Ingrid Dieset
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway
| | - Lars T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, 0373, Norway
| |
Collapse
|
18
|
Muth D, Corman VM, Roth H, Binger T, Dijkman R, Gottula LT, Gloza-Rausch F, Balboni A, Battilani M, Rihtarič D, Toplak I, Ameneiros RS, Pfeifer A, Thiel V, Drexler JF, Müller MA, Drosten C. Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission. Sci Rep 2018; 8:15177. [PMID: 30310104 PMCID: PMC6181990 DOI: 10.1038/s41598-018-33487-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/27/2018] [Indexed: 12/03/2022] Open
Abstract
A 29 nucleotide deletion in open reading frame 8 (ORF8) is the most obvious genetic change in severe acute respiratory syndrome coronavirus (SARS-CoV) during its emergence in humans. In spite of intense study, it remains unclear whether the deletion actually reflects adaptation to humans. Here we engineered full, partially deleted (-29 nt), and fully deleted ORF8 into a SARS-CoV infectious cDNA clone, strain Frankfurt-1. Replication of the resulting viruses was compared in primate cell cultures as well as Rhinolophus bat cells made permissive for SARS-CoV replication by lentiviral transduction of the human angiotensin-converting enzyme 2 receptor. Cells from cotton rat, goat, and sheep provided control scenarios that represent host systems in which SARS-CoV is neither endemic nor epidemic. Independent of the cell system, the truncation of ORF8 (29 nt deletion) decreased replication up to 23-fold. The effect was independent of the type I interferon response. The 29 nt deletion in SARS-CoV is a deleterious mutation acquired along the initial human-to-human transmission chain. The resulting loss of fitness may be due to a founder effect, which has rarely been documented in processes of viral emergence. These results have important implications for the retrospective assessment of the threat posed by SARS.
Collapse
Affiliation(s)
- Doreen Muth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Hanna Roth
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Tabea Binger
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Ronald Dijkman
- Federal Department of Home Affairs, Institute of Virology and Immunology IVI, Bern and Mittelhäusern, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Lina Theresa Gottula
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Florian Gloza-Rausch
- Noctalis, Centre for Bat Protection and Information, Oberbergstraße 27, 23795, Bad Segeberg, Germany
| | - Andrea Balboni
- Dipartimento di Scienze Mediche Veterinarie, Facoltà di Medicina Veterinaria, Alma Mater Studiorum-Università di Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, (BO), Italy
| | - Mara Battilani
- Dipartimento di Scienze Mediche Veterinarie, Facoltà di Medicina Veterinaria, Alma Mater Studiorum-Università di Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, (BO), Italy
| | - Danijela Rihtarič
- Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Ivan Toplak
- Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Ramón Seage Ameneiros
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89069, Ulm, Germany
- Group Morcegos de Galicia, Drosera Society, Pdo. Magdalena, G-2, 2° esq, 15320, As Pontes, Spain
| | - Alexander Pfeifer
- Institute for Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Volker Thiel
- Federal Department of Home Affairs, Institute of Virology and Immunology IVI, Bern and Mittelhäusern, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Marcel Alexander Müller
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Christian Drosten
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, 10117, Berlin, Germany.
- German Center for Infection Research (DZIF), Berlin, Germany.
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| |
Collapse
|
19
|
Lew AR, Kellermayer TR, Sule BP, Szigeti K. Copy Number Variations in Adult-onset Neuropsychiatric Diseases. Curr Genomics 2018; 19:420-430. [PMID: 30258274 PMCID: PMC6128389 DOI: 10.2174/1389202919666180330153842] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 03/01/2017] [Accepted: 03/13/2018] [Indexed: 11/22/2022] Open
Abstract
Adult-onset neuropsychiatric diseases are one of the most challenging areas of medicine. While symptomatic treatments are available, for most of these diseases the exact pathomechanism is not known, thus, disease-modifying therapies are difficult to conceptualize and find. The two most common and best studied neuropsychiatric diseases affecting higher cortical functions in humans are schizophrenia and Alzheimer's disease; both diseases have high heritability, however, the genetic architecture is not fully elucidated. Robust Single Nucleotide Variant (SNV) studies have identified several loci with modest effect sizes. While Copy Number Variants (CNV) make an important contribution to genetic variation, CNV GWAS suffer from dependence on mainly SNP arrays with underperforming genotyping accuracy. We evaluated dynamic range of the assays for three types of CNV loci, including biallelic deletion, high copy gain, and fusion gene, to assess the depth of exploration of the contribution of CNVs to disease susceptibility. Despite the suboptimal genotyping, novel mechanisms are emerging and further large-scale studies with genotyping assays optimized for CNV detection are needed. Furthermore, the CHRFAM7A human-specific fusion gene association warrants large scale locus specific association studies in AD, schizophrenia, bipolar disorder and ADHD.
Collapse
Affiliation(s)
- Alexandra R Lew
- Department of Neurology, University at Buffalo, SUNY, Buffalo, NY14203, USA
| | | | - Balint P Sule
- Department of Neurology, University at Buffalo, SUNY, Buffalo, NY14203, USA
| | - Kinga Szigeti
- Department of Neurology, University at Buffalo, SUNY, Buffalo, NY14203, USA
| |
Collapse
|
20
|
Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res 2018; 265:25-38. [PMID: 29680514 DOI: 10.1016/j.psychres.2018.04.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022]
Abstract
Over the last decade, finding a reliable biomarker for the early detection of schizophrenia (Scz) has been a topic of interest. The main goal of the current review is to provide a comprehensive view of the brain, blood, cerebrospinal fluid (CSF), and serum biomarkers of Scz disease. Imaging studies have demonstrated that the volumes of the corpus callosum, thalamus, hippocampal formation, subiculum, parahippocampal gyrus, superior temporal gyrus, prefrontal and orbitofrontal cortices, and amygdala-hippocampal complex were reduced in patients diagnosed with Scz. It has been revealed that the levels of interleukin 1β (IL-1β), IL-6, IL-8, and TNF-α were increased in patients with Scz. Decreased mRNA levels of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), neurotrophin-3 (NT-3), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) genes have also been reported in Scz patients. Genes with known strong relationships with this disease include BDNF, catechol-O-methyltransferase (COMT), regulator of G-protein signaling 4 (RGS4), dystrobrevin-binding protein 1 (DTNBP1), neuregulin 1 (NRG1), Reelin (RELN), Selenium-binding protein 1 (SELENBP1), glutamic acid decarboxylase 67 (GAD 67), and disrupted in schizophrenia 1 (DISC1). The levels of dopamine, tyrosine hydroxylase (TH), serotonin or 5-hydroxytryptamine (5-HT) receptor 1A and B (5-HTR1A and 5-HTR1B), and 5-HT1B were significantly increased in Scz patients, while the levels of gamma-aminobutyric acid (GABA), 5-HT transporter (5-HTT), and 5-HT receptor 2A (5-HTR2A) were decreased. The increased levels of SELENBP1 and Glycogen synthase kinase 3 subunit α (GSK3α) genes in contrast with reduced levels of B-cell translocation gene 1 (BTG1), human leukocyte antigen DRB1 (HLA-DRB1), heterogeneous nuclear ribonucleoprotein A3 (HNRPA3), and serine/arginine-rich splicing factor 1 (SFRS1) genes have also been reported. This review covers various dysregulation of neurotransmitters and also highlights the strengths and weaknesses of studies attempting to identify candidate biomarkers.
Collapse
Affiliation(s)
- Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ehsan Rashidi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ghasem Amooeian
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This is an era where we have significantly advanced the understanding of the genetic architecture of schizophrenia. In this review, we consider how this knowledge may translate into advances that will improve patient care. RECENT FINDINGS Large-scale genome-wide association studies (GWAS) have identified more than a hundred loci each making a small contribution to illness risk. Meta-analysis of copy number variants (CNVs) in the Psychiatric Genomics Consortium (PGC) dataset has confirmed that some variants have a moderate or large impact on risk, although these are rare in the population. Genome sequencing advances allow a much more comprehensive evaluation of genomic variation. We describe the key findings from whole exome studies to date. These studies are happening against a backdrop of growing understanding of the regulation and expression of genes and better functional tools to investigate molecular mechanisms in model systems. We provide an overview of how recent approaches in schizophrenia genetics are converging and consider how they could impact on diagnostics, the development of personalized medicine, and drug discovery.
Collapse
Affiliation(s)
- Claire Foley
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity College Dublin, Dublin, Ireland
| | - Aiden Corvin
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity College Dublin, Dublin, Ireland.
| | - Shigeki Nakagome
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Chang H, Li L, Li M, Xiao X. Rare and common variants at 16p11.2 are associated with schizophrenia. Schizophr Res 2017; 184:105-108. [PMID: 27889382 DOI: 10.1016/j.schres.2016.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 01/18/2023]
Abstract
Recent studies suggest that both common and rare variants are involved in the genetic risk of schizophrenia. Using a Cochran-Mantel-Haenszel (CMH) adjusted meta-analysis in 36,676 schizophrenia patients and 48,331 healthy controls from 24 independent samples, we identify the microduplications at 16p11.2 locus (29.6-30.2Mb, hg19) to be strongly associated with the illness (P value<2.2×10-16, CHM-adjusted OR=10.79). The frequency of this microduplication is significantly higher in schizophrenia patients (0.267%) comparing to healthy controls (0.025%). Further, using the largest published genome-wide association study (GWAS) data (36,989 cases and 113,075 controls), we show that common variants at the 16p11.2 locus are also significantly associated with schizophrenia (e.g., rs12691307, P value=4.55×10-11, OR=1.073). These results confirm the link between 16p11.2 genomic region and genetic risk of schizophrenia.
Collapse
Affiliation(s)
- Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Lingyi Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
| |
Collapse
|
23
|
Kumar R, Sanawar R, Li X, Li F. Structure, biochemistry, and biology of PAK kinases. Gene 2016; 605:20-31. [PMID: 28007610 DOI: 10.1016/j.gene.2016.12.014] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
PAKs, p21-activated kinases, play central roles and act as converging junctions for discrete signals elicited on the cell surface and for a number of intracellular signaling cascades. PAKs phosphorylate a vast number of substrates and act by remodeling cytoskeleton, employing scaffolding, and relocating to distinct subcellular compartments. PAKs affect wide range of processes that are crucial to the cell from regulation of cell motility, survival, redox, metabolism, cell cycle, proliferation, transformation, stress, inflammation, to gene expression. Understandably, their dysregulation disrupts cellular homeostasis and severely impacts key cell functions, and many of those are implicated in a number of human diseases including cancers, neurological disorders, and cardiac disorders. Here we provide an overview of the members of the PAK family and their current status. We give special emphasis to PAK1 and PAK4, the prototypes of groups I and II, for their profound roles in cancer, the nervous system, and the heart. We also highlight other family members. We provide our perspective on the current advancements, their growing importance as strategic therapeutic targets, and our vision on the future of PAKs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Cancer Biology Program, Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram 695014, India.
| | - Rahul Sanawar
- Cancer Biology Program, Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram 695014, India
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, China Medical University, Shenyang 110122, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
24
|
Chang H, Li L, Peng T, Li M, Gao L, Xiao X. Replication analyses of four chromosomal deletions with schizophrenia via independent large-scale meta-analyses. Am J Med Genet B Neuropsychiatr Genet 2016; 171:1161-1169. [PMID: 27727512 DOI: 10.1002/ajmg.b.32502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/27/2016] [Indexed: 01/01/2023]
Abstract
Recent studies suggest that copy number variations (CNVs) are also involved in the genetic risk of schizophrenia. Using a Cochran-Mantel-Haenszel (CMH) adjusted meta-analysis in 18,497 schizophrenia patients and 25,522 healthy controls from 14 independent samples, we conducted replication analyses of four chromosomal deletions at 1q21.1, 15q11.2, 15q13.3, and 22q11.2 Loci for their associations with schizophrenia. Only CNVs larger than 100 kb that had >50% reciprocal overlap with the canonical deletion chromosomal regions were considered. We successfully replicate the significant associations at 1q21.1 (P value = 3.101 × 10-7 , odds ratio (OR) = 6.91), 15q13.3 (P value = 4.771 × 10-4 , OR = 7.83), and 22q11.2 (P value = 1.725 × 10-5 , OR = 9.21) deletions, although the effect sizes are relatively smaller than the original studies, which is not unexpected and adds further support for the involvement of these genetic lesions in the risk of schizophrenia. The 15q11.2 deletion, which shows higher frequency in healthy populations than the other three CNV loci, though is not significant in the present meta-analysis (P value = 0.1545, OR = 1.42), it shows the same direction of effects with previous studies. These results further confirm the genetic connections between rare CNVs and schizophrenia, and suggest the importance of adequate sample size in replication analyses for such risk loci with low frequency in general populations. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Lingyi Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Tao Peng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Lei Gao
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Science, Shandong University of Technology, Zibo, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|
25
|
Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 2016; 21:10-28. [PMID: 26390828 PMCID: PMC4684728 DOI: 10.1038/mp.2015.141] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a devastating psychiatric condition affecting numerous brain systems. Recent studies have identified genetic factors that confer an increased risk of SZ and participate in the disease etiopathogenesis. In parallel to such bottom-up approaches, other studies have extensively reported biological changes in patients by brain imaging, neurochemical and pharmacological approaches. This review highlights the molecular substrates identified through studies with SZ patients, namely those using top-down approaches, while also referring to the fruitful outcomes of recent genetic studies. We have subclassified the molecular substrates by system, focusing on elements of neurotransmission, targets in white matter-associated connectivity, immune/inflammatory and oxidative stress-related substrates, and molecules in endocrine and metabolic cascades. We further touch on cross-talk among these systems and comment on the utility of animal models in charting the developmental progression and interaction of these substrates. Based on this comprehensive information, we propose a framework for SZ research based on the hypothesis of an imbalance in homeostatic signaling from immune/inflammatory, oxidative stress, endocrine and metabolic cascades that, at least in part, underlies deficits in neural connectivity relevant to SZ. Thus, this review aims to provide information that is translationally useful and complementary to pathogenic hypotheses that have emerged from genetic studies. Based on such advances in SZ research, it is highly expected that we will discover biomarkers that may help in the early intervention, diagnosis or treatment of SZ.
Collapse
Affiliation(s)
- M A Landek-Salgado
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - T E Faust
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Disrupted in schizophrenia 1 (DISC1) L100P mutants have impaired activity-dependent plasticity in vivo and in vitro. Transl Psychiatry 2016; 6:e712. [PMID: 26756905 PMCID: PMC5068880 DOI: 10.1038/tp.2015.206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/30/2015] [Indexed: 12/26/2022] Open
Abstract
Major neuropsychiatric disorders are genetically complex but share overlapping etiology. Mice mutant for rare, highly penetrant risk variants can be useful in dissecting the molecular mechanisms involved. The gene disrupted in schizophrenia 1 (DISC1) has been associated with increased risk for neuropsychiatric conditions. Mice mutant for Disc1 display morphological, functional and behavioral deficits that are consistent with impairments observed across these disorders. Here we report that Disc1 L100P mutants are less able to reorganize cortical circuitry in response to stimulation in vivo. Molecular analysis reveals that the mutants have a reduced expression of PSD95 and pCREB in visual cortex and fail to adjust expression of such markers in response to altered stimulation. In vitro analysis shows that mutants have impaired functional reorganization of cortical neurons in response to selected forms of neuronal stimulation, but there is no altered basal expression of synaptic markers. These findings suggest that DISC1 has a critical role in the reorganization of cortical plasticity and that this phenotype becomes evident only under challenge, even at early postnatal stages. This result may represent an important etiological mechanism in the emergence of neuropsychiatric disorders.
Collapse
|
27
|
|
28
|
|
29
|
Moyer CE, Shelton MA, Sweet RA. Dendritic spine alterations in schizophrenia. Neurosci Lett 2014; 601:46-53. [PMID: 25478958 DOI: 10.1016/j.neulet.2014.11.042] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/19/2022]
Abstract
Schizophrenia is a chronic illness affecting approximately 0.5-1% of the world's population. The etiology of schizophrenia is complex, including multiple genes, and contributing environmental effects that adversely impact neurodevelopment. Nevertheless, a final common result, present in many subjects with schizophrenia, is impairment of pyramidal neuron dendritic morphology in multiple regions of the cerebral cortex. In this review, we summarize the evidence of reduced dendritic spine density and other dendritic abnormalities in schizophrenia, evaluate current data that informs the neurodevelopment timing of these impairments, and discuss what is known about possible upstream sources of dendritic spine loss in this illness.
Collapse
Affiliation(s)
- Caitlin E Moyer
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Micah A Shelton
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA.
| |
Collapse
|
30
|
Zheng X, Demirci FY, Barmada MM, Richardson GA, Lopez OL, Sweet RA, Kamboh MI, Feingold E. A rare duplication on chromosome 16p11.2 is identified in patients with psychosis in Alzheimer's disease. PLoS One 2014; 9:e111462. [PMID: 25379732 PMCID: PMC4224411 DOI: 10.1371/journal.pone.0111462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/29/2014] [Indexed: 01/10/2023] Open
Abstract
Epidemiological and genetic studies suggest that schizophrenia and autism may share genetic links. Besides common single nucleotide polymorphisms, recent data suggest that some rare copy number variants (CNVs) are risk factors for both disorders. Because we have previously found that schizophrenia and psychosis in Alzheimer's disease (AD+P) share some genetic risk, we investigated whether CNVs reported in schizophrenia and autism are also linked to AD+P. We searched for CNVs associated with AD+P in 7 recurrent CNV regions that have been previously identified across autism and schizophrenia, using the Illumina HumanOmni1-Quad BeadChip. A chromosome 16p11.2 duplication CNV (chr16: 29,554,843-30,105,652) was identified in 2 of 440 AD+P subjects, but not in 136 AD subjects without psychosis, or in 593 AD subjects with intermediate psychosis status, or in 855 non-AD individuals. The frequency of this duplication CNV in AD+P (0.46%) was similar to that reported previously in schizophrenia (0.46%). This duplication CNV was further validated using the NanoString nCounter CNV Custom CodeSets. The 16p11.2 duplication has been associated with developmental delay, intellectual disability, behavioral problems, autism, schizophrenia (SCZ), and bipolar disorder. These two AD+P patients had no personal of, nor any identified family history of, SCZ, bipolar disorder and autism. To the best of our knowledge, our case report is the first suggestion that 16p11.2 duplication is also linked to AD+P. Although rare, this CNV may have an important role in the development of psychosis.
Collapse
Affiliation(s)
- Xiaojing Zheng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - F. Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M. Michael Barmada
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gale A. Richardson
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- VISN 4 Mental Illness Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Robert A. Sweet
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- VISN 4 Mental Illness Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - M. Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- VISN 4 Mental Illness Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Eleanor Feingold
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
31
|
Merikangas AK, Segurado R, Cormican P, Heron EA, Anney RJL, Moore S, Kelleher E, Hargreaves A, Anderson-Schmidt H, Gill M, Gallagher L, Corvin A. The phenotypic manifestations of rare CNVs in schizophrenia. Schizophr Res 2014; 158:255-60. [PMID: 24999052 DOI: 10.1016/j.schres.2014.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/14/2014] [Accepted: 06/14/2014] [Indexed: 10/25/2022]
Abstract
There is compelling evidence for the role of copy number variants (CNVs) in schizophrenia susceptibility, and it has been estimated that up to 2-3% of schizophrenia cases may carry rare CNVs. Despite evidence that these events are associated with an increased risk across categorical neurodevelopmental disorders, there is limited understanding of the impact of CNVs on the core features of disorders like schizophrenia. Our objective was to evaluate associations between rare CNVs in differentially brain expressed (BE) genes and the core features and clinical correlates of schizophrenia. The sample included 386 cases of Irish ancestry with a diagnosis of schizophrenia, at least one rare CNV impacting any gene, and a core set of phenotypic measures. Statistically significant associations between deletions in differentially BE genes were found for family history of mental illness (decreased prevalence of all CNVs and deletions, unadjusted and adjusted) and for paternal age (increase in deletions only, unadjusted, among those with later ages at birth of patient). The strong effect of a lack of a family history on BE genes suggests that CNVs may comprise one pathway to schizophrenia, whereas a positive family history could index other genetic mechanisms that increase schizophrenia vulnerability. To our knowledge, this is the first investigation of the association between genome-wide CNVs and risk factors and sub-phenotypic features of schizophrenia beyond cognitive function.
Collapse
Affiliation(s)
- Alison K Merikangas
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Ricardo Segurado
- Centre for Support and Training in Analysis and Research, University College Dublin, Dublin 4, Ireland
| | - Paul Cormican
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Elizabeth A Heron
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Richard J L Anney
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Susan Moore
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Eric Kelleher
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - April Hargreaves
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Heike Anderson-Schmidt
- Psychiatric Genetics, Department of Psychiatry and Psychotherapy, University Medical Centre, Georg-August-University Göttingen, Germany
| | - Michael Gill
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Louise Gallagher
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Aiden Corvin
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
32
|
Abstract
Significant progress is being made in defining the genetic etiology of schizophrenia. As the list of implicated genes grows, parallel developments in gene editing technology provide new methods to investigate gene function in model systems. The confluence of these two research fields--gene discovery and functional biology--may offer novel insights into schizophrenia etiology. We review recent advances in these fields, consider the likely obstacles to progress, and consider strategies as to how these can be overcome.
Collapse
Affiliation(s)
- Shane E. McCarthy
- Stanley Institute of Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, NY
| | - W. Richard McCombie
- Stanley Institute of Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, NY
| | - Aiden Corvin
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland,*To whom correspondence should be addressed; Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland; tel: +353-1-8962467, fax: +353-1-8963405, e-mail:
| |
Collapse
|