1
|
Zhai J, Fu R, Luo S, Liu X, Xie Y, Cao K, Ge W, Chen Y. Lactylation-related molecular subtyping reveals the immune heterogeneity and clinical characteristics in ulcerative colitis. Biochem Biophys Res Commun 2025; 756:151584. [PMID: 40081238 DOI: 10.1016/j.bbrc.2025.151584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory disease linked to early-onset colorectal cancer and metabolic abnormalities. While intestinal lactate disturbances are observed in UC, the role of lactate and lactylation in its pathogenesis remains unclear. The lack of specific biomarkers reflecting these processes limits understanding of their biological significance. METHODS UC subtypes were classified using ConsensusClusterPlus and NMF based on LRGs. Immune infiltration was assessed with ssGSEA, xCell, and CIBERSORT. WGCNA identified subtype-specific gene modules, and Lasso regression pinpointed hub genes. Single-cell analysis determined cellular localization, while WB and IHC validated findings in clinical, mouse, and cell models. Prognostic machine learning models evaluated the clinical significance of these results. RESULTS LRGs distinguished UC patients from controls and stratified them into high and low immune infiltration groups. MSN and MAPRE1, strongly linked to UC, showed elevated expression in vitro and in vivo. They aid in diagnosing UC and UC-associated colorectal cancer and serve as predictors of UC severity and response to immunosuppressants. CONCLUSION Using high-throughput transcriptomic data, we identified hub LRGs and highlighted the role of lactate-mediated lactylation in UC. MSN and MAPRE1 were confirmed to be upregulated in an inflammatory environment, underscoring their potential for personalized UC diagnosis and treatment.
Collapse
Affiliation(s)
- Jinyang Zhai
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Institute for Pediatric Research, Shanghai, 200092, PR China
| | - Shangjian Luo
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Xiaoman Liu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Yang Xie
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Kejing Cao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Wensong Ge
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Institute for Pediatric Research, Shanghai, 200092, PR China.
| |
Collapse
|
2
|
Zhao X, Xu J, Wu D, Chen N, Liu Y. Gut Microbiota in Different Treatment Response Types of Crohn's Disease Patients Treated with Biologics over a Long Disease Course. Biomedicines 2025; 13:708. [PMID: 40149684 PMCID: PMC11940770 DOI: 10.3390/biomedicines13030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background and Aims: Crohn's disease (CD) is a chronic inflammatory bowel disease (IBD) with a globally increasing prevalence, partially driven by alterations in gut microbiota. Although biological therapy is the first-line treatment for CD, a significant proportion of patients experience a primary non-response or secondary loss of response over time. This study aimed to explore the differences in gut microbiota among CD patients with divergent long-term responses to biological therapy, focusing on a long disease course. Methods: Sixteen CD patients who applied the biological agents for a while were enrolled in this study and were followed for one year, during which fecal specimens were collected monthly. Metagenomic analysis was used to determine the microbiota profiles in fecal samples. The response to biological therapy was evaluated both endoscopically and clinically. Patients were categorized into three groups based on their response: R (long-term remission), mA (mild active), and R2A group (remission to active). The differences in the gut microbiota among the groups were analyzed. Results: Significant differences in fecal bacterial composition were observed between the groups. The R2A group exhibited a notable decline in gut microbial diversity compared to the other two groups (p < 0.05). Patients in the R group had higher abundances of Akkermansia muciniphila, Bifidobacterium adolescentis, and Megasphaera elsdenii. In contrast, Veillonella parvula, Veillonella atypica, and Klebsiella pneumoniae were higher in the R2A group. Conclusions: Gut microbial diversity and specific bacterial significantly differed among groups, reflecting distinct characteristics between responders and non-responders.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing 100730, China;
| | - Ning Chen
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
3
|
Guggeis MA, Harris DM, Welz L, Rosenstiel P, Aden K. Microbiota-derived metabolites in inflammatory bowel disease. Semin Immunopathol 2025; 47:19. [PMID: 40032666 DOI: 10.1007/s00281-025-01046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025]
Abstract
Understanding the role of the gut microbiota in the pathogenesis of inflammatory bowel diseases (IBD) has been an area of intense research over the past decades. Patients with IBD exhibit alterations in their microbial composition compared to healthy controls. However, studies focusing solely on taxonomic analyses have struggled to deliver replicable findings across cohorts regarding which microbial species drive the distinct patterns in IBD. The focus of research has therefore shifted to studying the functionality of gut microbes, especially by investigating their effector molecules involved in the immunomodulatory functions of the microbiota, namely metabolites. Metabolic profiles are altered in IBD, and several metabolites have been shown to play a causative role in shaping immune functions in animal models. Therefore, understanding the complex communication between the microbiota, metabolites, and the host bears great potential to unlock new biomarkers for diagnosis, disease course and therapy response as well as novel therapeutic options in the treatment of IBD. In this review, we primarily focus on promising classes of metabolites which are thought to exert beneficial effects and are generally decreased in IBD. Though results from human trials are promising, they have not so far provided a large-scale break-through in IBD-therapy improvement. We therefore propose tailored personalized supplementation of microbiota and metabolites based on multi-omics analysis which accounts for the individual microbial and metabolic profiles in IBD patients rather than one-size-fits-all approaches.
Collapse
Affiliation(s)
- Martina A Guggeis
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Danielle Mm Harris
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Division Nutriinformatics, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany.
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany.
| |
Collapse
|
4
|
Ye Z, Tan Q, Woltemate S, Tan X, Römermann D, Grassl GA, Vital M, Seidler U, Kini A. Escherichia coli Nissle Improves Short-Chain Fatty Acid Absorption and Barrier Function in a Mouse Model for Chronic Inflammatory Diarrhea. Inflamm Bowel Dis 2024:izae294. [PMID: 39708301 DOI: 10.1093/ibd/izae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Defects in SLC26A3, the major colonic Cl-/HCO3- exchanger, result in chloride-rich diarrhea, a reduction in short-chain fatty acid (SCFA)-producing bacteria, and a high incidence of inflammatory bowel disease in humans and in mice. Slc26a3-/- mice are, therefore, an interesting animal model for spontaneous but mild colonic inflammation and for testing strategies to reverse or prevent the inflammation. This study investigates the effect of Escherichia coli Nissle (EcN) application on the microbiome, SCFA production, barrier integrity, and mucosal inflammation in slc26a3-/- mice. METHODS In vivo fluid absorption and bicarbonate secretion were assessed in the gut of slc26a3+/+ and slc26a3-/- mice before and during luminal perfusion with 100 mM sodium acetate. Age-matched slc26a3+/+ and slc26a3-/- mice were intragastrically gavaged twice daily with 2 × 108 CFU/100 µL of EcN for 21 days. Body weight and stool water content were assessed daily, and stool and tissues were collected for further analysis. RESULTS Addition of sodium acetate to the lumen of the proximal colon significantly increased fluid absorption and luminal alkalinization in the slc26a3-/- mice. Gavage with EcN resulted in a significant increase in SCFA levels and the expression of SCFA transporters in the slc26a3-/- cecum, the predominant habitat of EcN in mice. This was accompanied by an increase in mucus-producing goblet cells and a decrease in the expression of inflammatory markers as well as host defense antimicrobial peptides. EcN did not improve the overall diversity of the luminal microbiome but resulted in a significant increase in SCFA producers Lachnospiraceae and Ruminococcaceae in the slc26a3-/- feces. CONCLUSIONS These findings suggest that EcN is able to proliferate in the inflamed cecum, resulting in increased microbial SCFA production, decreased inflammation, and improved gut barrier properties. In sufficient dosage, probiotics may thus be an effective anti-inflammatory strategy in the diseased gut.
Collapse
Affiliation(s)
- Zhenghao Ye
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Qinghai Tan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Sabrina Woltemate
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Xinjie Tan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dorothee Römermann
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Guntram A Grassl
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research DZIF, Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Archana Kini
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Ventura I, Chomon-García M, Tomás-Aguirre F, Palau-Ferré A, Legidos-García ME, Murillo-Llorente MT, Pérez-Bermejo M. Therapeutic and Immunologic Effects of Short-Chain Fatty Acids in Inflammatory Bowel Disease: A Systematic Review. Int J Mol Sci 2024; 25:10879. [PMID: 39456661 PMCID: PMC11506931 DOI: 10.3390/ijms252010879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammatory bowel disease is a chronic condition characterized by recurrent intestinal inflammation. Its etiopathogenesis is driven by a series of events that disrupt the mucosal barrier, alter the healthy balance of intestinal microbiota, and abnormally stimulate intestinal immune responses. Therefore, numerous studies suggest the use of short-chain fatty acids and their immunomodulatory effects as a therapeutic approach in this disease. The objective of this systematic review was to synthesize previous evidence on the relevance and therapeutic use of short-chain fatty acids, particularly butyrate, in the immune regulation of inflammatory bowel disease. This systematic review of articles linking inflammatory bowel disease with short-chain fatty acids was conducted according to the PRISMA-2020 guidelines. The Medline and the Web of Science databases were searched in August 2024. The risk of bias was assessed using the Joanna Briggs Institute checklists. A total of 1460 articles were reviewed, of which, 29 met the inclusion criteria. Short-chain fatty acids, particularly butyrate, play a critical role in the regulation of intestinal inflammation and can be used as a strategy to increase the levels of short-chain fatty acid-producing bacteria for use in therapeutic approaches.
Collapse
Affiliation(s)
- Ignacio Ventura
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain;
- Translational Research Center San Alberto Magno CITSAM, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain
| | - Miryam Chomon-García
- School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (M.C.-G.); (F.T.-A.)
| | - Francisco Tomás-Aguirre
- School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (M.C.-G.); (F.T.-A.)
| | - Alma Palau-Ferré
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (A.P.-F.); (M.E.L.-G.); (M.T.M.-L.)
| | - María Ester Legidos-García
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (A.P.-F.); (M.E.L.-G.); (M.T.M.-L.)
| | - María Teresa Murillo-Llorente
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (A.P.-F.); (M.E.L.-G.); (M.T.M.-L.)
| | - Marcelino Pérez-Bermejo
- SONEV Research Group, Faculty of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo No. 2, 46001 Valencia, Spain; (A.P.-F.); (M.E.L.-G.); (M.T.M.-L.)
| |
Collapse
|
6
|
Merchak AR, Bolen ML, Tansey MG, Menees KB. Thinking outside the brain: Gut microbiome influence on innate immunity within neurodegenerative disease. Neurotherapeutics 2024; 21:e00476. [PMID: 39482179 PMCID: PMC11585893 DOI: 10.1016/j.neurot.2024.e00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
The complex network of factors that contribute to neurodegeneration have hampered the discovery of effective preventative measures. While much work has focused on brain-first therapeutics, it is becoming evident that physiological changes outside of the brain are the best target for early interventions. Specifically, myeloid cells, including peripheral macrophages and microglia, are a sensitive population of cells whose activity can directly impact neuronal health. Myeloid cell activity includes cytokine production, migration, debris clearance, and phagocytosis. Environmental measures that can modulate these activities range from toxin exposure to diet. However, one of the most influential mediators of myeloid fitness is the gut microenvironment. Here, we review the current data about the role of myeloid cells in gastrointestinal disorders, Parkinson's disease, dementia, and multiple sclerosis. We then delve into the gut microbiota modulating therapies available and clinical evidence for their use in neurodegeneration. Modulating lifestyle and environmental mediators of inflammation are one of the most promising interventions for neurodegeneration and a systematic and concerted effort to examine these factors in healthy aging is the next frontier.
Collapse
Affiliation(s)
- Andrea R Merchak
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - MacKenzie L Bolen
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| | - Kelly B Menees
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Pusa T, Rousu J. Stable biomarker discovery in multi-omics data via canonical correlation analysis. PLoS One 2024; 19:e0309921. [PMID: 39250478 PMCID: PMC11383239 DOI: 10.1371/journal.pone.0309921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
Multi-omics analysis offers a promising avenue to a better understanding of complex biological phenomena. In particular, untangling the pathophysiology of multifactorial health conditions such as the inflammatory bowel disease (IBD) could benefit from simultaneous consideration of several omics levels. However, taking full advantage of multi-omics data requires the adoption of suitable new tools. Multi-view learning, a machine learning technique that natively joins together heterogeneous data, is a natural source for such methods. Here we present a new approach to variable selection in unsupervised multi-view learning by applying stability selection to canonical correlation analysis (CCA). We apply our method, StabilityCCA, to simulated and real multi-omics data, and demonstrate its ability to find relevant variables and improve the stability of variable selection. In a case study on an IBD microbiome data set, we link together metagenomics and metabolomics, revealing a connection between their joint structure and the disease, and identifying potential biomarkers. Our results showcase the usefulness of multi-view learning in multi-omics analysis and demonstrate StabilityCCA as a powerful tool for biomarker discovery.
Collapse
Affiliation(s)
- Taneli Pusa
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Juho Rousu
- Department of Computer Science, Aalto University, Espoo, Finland
| |
Collapse
|
8
|
Lee C, Kono T, Syed F, Weaver SA, Sohn P, Wu W, Chang G, Liu J, Slak Rupnik M, Evans‐Molina C. Sodium butyrate prevents cytokine-induced β-cell dysfunction through restoration of stromal interaction molecule 1 expression and activation of store-operated calcium entry. FASEB J 2024; 38:e23853. [PMID: 39120544 PMCID: PMC11607631 DOI: 10.1096/fj.202302501rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024]
Abstract
Sodium butyrate (NaB) improves β-cell function in preclinical models of diabetes; however, the mechanisms underlying these beneficial effects have not been fully elucidated. In this study, we investigated the impact of NaB on β-cell function and calcium (Ca2+) signaling using ex vivo and in vitro models of diabetes. Our results show that NaB significantly improved glucose-stimulated insulin secretion in islets from human organ donors with type 2 diabetes and in cytokine-treated INS-1 β cells. Consistently, NaB improved glucose-stimulated Ca2+ oscillations in mouse islets treated with proinflammatory cytokines. Because the oscillatory phenotype of Ca2+ in the β cell is governed by changes in endoplasmic reticulum (ER) Ca2+ levels, we explored the relationship between NaB and store-operated calcium entry (SOCE), a rescue mechanism that acts to refill ER Ca2+ levels through STIM1-mediated gating of plasmalemmal Orai channels. We found that NaB treatment preserved basal ER Ca2+ levels and restored SOCE in IL-1β-treated INS-1 cells. Furthermore, we linked these changes with the restoration of STIM1 levels in cytokine-treated INS-1 cells and mouse islets, and we found that NaB treatment was sufficient to prevent β-cell death in response to IL-1β treatment. Mechanistic experiments revealed that NaB mediated these beneficial effects in the β-cell through histone deacetylase (HDAC) inhibition, iNOS suppression, and modulation of AKT-GSK-3 signaling. Taken together, these data support a model whereby NaB treatment promotes β-cell function and Ca2+ homeostasis under proinflammatory conditions through pleiotropic effects that are linked with maintenance of SOCE. These results also suggest a relationship between β-cell SOCE and gut microbiome-derived butyrate that may be relevant in the treatment and prevention of diabetes.
Collapse
Affiliation(s)
- Chih‐Chun Lee
- Center for Diabetes and Metabolic DiseasesIndiana University School of MedicineIndianapolisIndianaUSA
- Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisIndianaUSA
| | - Tatsuyoshi Kono
- Center for Diabetes and Metabolic DiseasesIndiana University School of MedicineIndianapolisIndianaUSA
- Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisIndianaUSA
| | - Farooq Syed
- Center for Diabetes and Metabolic DiseasesIndiana University School of MedicineIndianapolisIndianaUSA
- Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisIndianaUSA
| | - Staci A. Weaver
- Center for Diabetes and Metabolic DiseasesIndiana University School of MedicineIndianapolisIndianaUSA
- Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Paul Sohn
- Center for Diabetes and Metabolic DiseasesIndiana University School of MedicineIndianapolisIndianaUSA
- Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisIndianaUSA
| | - Wenting Wu
- Center for Diabetes and Metabolic DiseasesIndiana University School of MedicineIndianapolisIndianaUSA
- Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Garrick Chang
- Department of PhysicsIndiana University IndianapolisIndianpolisIndianaUSA
| | - Jing Liu
- Department of Physics and AstronomyPurdue UniversityWest LafayetteIndianaUSA
| | - Marjan Slak Rupnik
- Center for Physiology and PharmacologyMedical University of ViennaWienAustria
- Alma Mater Europaea – European Center MariborMariborSlovenia
| | - Carmella Evans‐Molina
- Center for Diabetes and Metabolic DiseasesIndiana University School of MedicineIndianapolisIndianaUSA
- Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of PediatricsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| |
Collapse
|
9
|
Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat Rev Immunol 2024; 24:577-595. [PMID: 38565643 DOI: 10.1038/s41577-024-01014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
The short-chain fatty acids (SCFAs) butyrate, propionate and acetate are microbial metabolites and their availability in the gut and other organs is determined by environmental factors, such as diet and use of antibiotics, that shape the diversity and metabolism of the microbiota. SCFAs regulate epithelial barrier function as well as mucosal and systemic immunity via evolutionary conserved processes that involve G protein-coupled receptor signalling or histone deacetylase activity. Indicatively, the anti-inflammatory role of butyrate is mediated through direct effects on the differentiation of intestinal epithelial cells, phagocytes, B cells and plasma cells, and regulatory and effector T cells. Intestinally derived SCFAs also directly and indirectly affect immunity at extra-intestinal sites, such as the liver, the lungs, the reproductive tract and the brain, and have been implicated in a range of disorders, including infections, intestinal inflammation, autoimmunity, food allergies, asthma and responses to cancer therapies. An ecological understanding of microbial communities and their interrelated metabolic states, as well as the engineering of butyrogenic bacteria may support SCFA-focused interventions for the prevention and treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ying Ka Lam
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Serrano-Fernandez V, Laredo-Aguilera JA, Navarrete-Tejero C, Molina-Gallego B, Lopez-Fernandez-Roldan A, Carmona-Torres JM. The Role of Environmental and Nutritional Factors in the Development of Inflammatory Bowel Diseases: A Case-Control Study. Nutrients 2024; 16:2463. [PMID: 39125343 PMCID: PMC11313778 DOI: 10.3390/nu16152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The incidence and prevalence of inflammatory bowel diseases (IBD) are increasing around the world, especially in Western countries. The objective of this study was to evaluate the health habits of healthy controls and individuals with IBDs to identify possible risk factors for IBD development. METHODS A case-control study was conducted among Spanish participants over 18 years of age. A self-administered questionnaire was completed by subjects to collect information on several sociodemographic variables and habits, such as the consumption of tobacco, alcohol, antibiotics, nonsteroidal anti-inflammatory agents and macronutrients; anxiety and depression; and quality of life. RESULTS The main risk factors identified were age; living in an urban environment; anxiety; and excessive consumption of proteins, carbohydrates and fats. In addition, the consumption of fibre had a preventive effect against IBD development. CONCLUSIONS Age, anxiety and living in urban areas pose a risk of suffering from IBD, as does the excessive consumption of certain macronutrients. However, the consumption of fibre has a protective effect on the development of some IBD types.
Collapse
Affiliation(s)
- Victor Serrano-Fernandez
- Facultad de Fisioterapia y Enfermeria, Universidad de Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; (V.S.-F.); (C.N.-T.); (B.M.-G.); (A.L.-F.-R.); (J.M.C.-T.)
- Grupo de Investigación Multidisciplinar en Cuidados (IMCU), Universidad de Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain
| | - Jose Alberto Laredo-Aguilera
- Facultad de Fisioterapia y Enfermeria, Universidad de Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; (V.S.-F.); (C.N.-T.); (B.M.-G.); (A.L.-F.-R.); (J.M.C.-T.)
- Grupo de Investigación Multidisciplinar en Cuidados (IMCU), Universidad de Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain
| | - Carlos Navarrete-Tejero
- Facultad de Fisioterapia y Enfermeria, Universidad de Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; (V.S.-F.); (C.N.-T.); (B.M.-G.); (A.L.-F.-R.); (J.M.C.-T.)
| | - Brigida Molina-Gallego
- Facultad de Fisioterapia y Enfermeria, Universidad de Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; (V.S.-F.); (C.N.-T.); (B.M.-G.); (A.L.-F.-R.); (J.M.C.-T.)
| | - Angel Lopez-Fernandez-Roldan
- Facultad de Fisioterapia y Enfermeria, Universidad de Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; (V.S.-F.); (C.N.-T.); (B.M.-G.); (A.L.-F.-R.); (J.M.C.-T.)
| | - Juan Manuel Carmona-Torres
- Facultad de Fisioterapia y Enfermeria, Universidad de Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; (V.S.-F.); (C.N.-T.); (B.M.-G.); (A.L.-F.-R.); (J.M.C.-T.)
- Grupo de Investigación Multidisciplinar en Cuidados (IMCU), Universidad de Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain
| |
Collapse
|
11
|
Zhang T, Guo Z, Cheng X, Xia R, Lai S, Liao L. Protective properties of Ophiopogonin D in DSS-induced colitis: insights into microbiota modulation. Inflammopharmacology 2024:10.1007/s10787-024-01531-x. [PMID: 39039348 DOI: 10.1007/s10787-024-01531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Ulcerative colitis (UC), a chronic inflammatory gastrointestinal disorder, is becoming increasingly prevalent worldwide. Ophiopogonin D, which is derived from Ophiopogon japonicus, exhibits anti-inflammatory and antioxidant properties, yet its therapeutic potential in UC remains unclear. METHODS In this study, we employed a mouse model of DSS-induced colitis to assess the impact of Ophiopogonin D on various parameters, including weight loss, bloody stools, and inflammation in the colon. RESULTS Ophiopogonin-D treatment significantly mitigated these DSS-induced effects, improved colon permeability, and modulated inflammatory markers like ZO-1, MUC-2, TNF-α, and IL-1β in mice compared with the control. Furthermore, compared to the DSS-treatment group, Ophiopogonin-D treatment improved the α- and β-diversity indices of the mouse intestinal microbiota, along with an increase in the abundance of genera such as Akkermansia (AKK) and a decrease in the abundance of genera such as Enterobacter. Notably, propionic acid, a metabolite of AKK, demonstrated significant improvement in the symptoms of DSS-induced colitis in mice compared to the control. Moreover, propionic-acid administration also resulted in alterations in the levels of inflammatory factors and calreticulin within the intestinal tissues. CONCLUSION Overall, Ophiopogonin D significantly affects intestinal microbiota composition, thereby improving symptoms of DSS-induced colitis in mice. These findings present promising therapeutic strategies and potential pharmaceutical candidates for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 637000, China.
| | - Zhiguo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, China
| | - Xianhui Cheng
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Rongmu Xia
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, No.13 Hudongzhi Road, Gulou District, Fuzhou, 350003, China.
| | - Sicong Lai
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26 Yuancunerheng Road, Tianhe District, Guangzhou, 510000, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Lijun Liao
- Department of Pain Management, Shanghai East Hospital, School of Medicine, Tongji University, No. 1800 Yuntai Road, Pudong New District, Shanghai, 200120, China.
| |
Collapse
|
12
|
Ozturk O, Celebi G, Duman UG, Kupcuk E, Uyanik M, Sertoglu E. Short-chain fatty acid levels in stools of patients with inflammatory bowel disease are lower than those in healthy subjects. Eur J Gastroenterol Hepatol 2024; 36:890-896. [PMID: 38829943 DOI: 10.1097/meg.0000000000002789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Short-chain fatty acids (SCFAs) are produced when the microbiota in the large intestine cause fermentation of dietary carbohydrates and fibers. These fatty acids constitute the primary energy source of colon mucosa cells and have a protective effect in patients suffering from inflammatory bowel disease (IBD). This study aimed to compare the SCFA levels in the stools of patients with IBD and healthy controls. METHOD Healthy controls and patients with IBD aged 18 and over were included in the study. Stool samples from all patients and healthy controls were collected, and stool acetic acid, propionic acid, and butyric acid levels were measured using a gas chromatography-mass spectrometry measurement method. RESULTS In this study, 64 participants were divided into two groups: 34 were in IBD (Crohn disease and ulcerative colitis) and 30 were in healthy control group. When fecal SCFA concentrations of IBD and healthy control groups were compared, a statistically significant difference was observed between them. When the fecal SCFA concentrations of Crohn's disease and ulcerative colitis patients in the IBD group were compared, however, no statistically significant difference was observed between them. Furthermore, when the participants' diet type (carbohydrate-based, vegetable-protein-based and mixed diet) and the number of meals were compared with fecal SCFA concentrations, no statistically significant difference was observed between them. CONCLUSION In general, fecal SCFA levels in patients with IBD were lower than those in healthy controls. Moreover, diet type and the number of meals had no effect on stool SCFA levels in patients with IBD and healthy individuals.
Collapse
Affiliation(s)
| | - Gurkan Celebi
- Department of Gastroenterology, Gulhane School of Medicine, University of Health Sciences, Ankara
| | | | | | - Metin Uyanik
- Department of Biochemistry, Çorlu State Hospital, Tekirdag, Turkey
| | | |
Collapse
|
13
|
Wanyi Z, Jiao Y, Wen H, Bin X, Xuefei W, Lan J, Liuyin Z. Bidirectional communication of the gut-brain axis: new findings in Parkinson's disease and inflammatory bowel disease. Front Neurol 2024; 15:1407241. [PMID: 38854967 PMCID: PMC11157024 DOI: 10.3389/fneur.2024.1407241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Parkinson's disease (PD) and inflammatory bowel disease (IBD) are the two chronic inflammatory diseases that are increasingly affecting millions of people worldwide, posing a major challenge to public health. PD and IBD show similarities in epidemiology, genetics, immune response, and gut microbiota. Here, we review the pathophysiology of these two diseases, including genetic factors, immune system imbalance, changes in gut microbial composition, and the effects of microbial metabolites (especially short-chain fatty acids). We elaborate on the gut-brain axis, focusing on role of gut microbiota in the pathogenesis of PD and IBD. In addition, we discuss several therapeutic strategies, including drug therapy, fecal microbiota transplantation, and probiotic supplementation, and their potential benefits in regulating intestinal microecology and relieving disease symptoms. Our analysis will provide a new understanding and scientific basis for the development of more effective therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Zhang Wanyi
- Department of Neurology, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Yan Jiao
- Department of Nursing, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Huang Wen
- Department of Neurology, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Xu Bin
- Outpatient Department, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Wang Xuefei
- Department of Neurology, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Jiang Lan
- Outpatient Department, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| | - Zhou Liuyin
- Department of Respiratory Medicine, Chongqing Emergency Medical Center, Chongging University Central Hospital, Chongqing, China
| |
Collapse
|
14
|
Jain S, Safo SE. DeepIDA-GRU: a deep learning pipeline for integrative discriminant analysis of cross-sectional and longitudinal multiview data with applications to inflammatory bowel disease classification. Brief Bioinform 2024; 25:bbae339. [PMID: 39007595 PMCID: PMC11771283 DOI: 10.1093/bib/bbae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/29/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Biomedical research now commonly integrates diverse data types or views from the same individuals to better understand the pathobiology of complex diseases, but the challenge lies in meaningfully integrating these diverse views. Existing methods often require the same type of data from all views (cross-sectional data only or longitudinal data only) or do not consider any class outcome in the integration method, which presents limitations. To overcome these limitations, we have developed a pipeline that harnesses the power of statistical and deep learning methods to integrate cross-sectional and longitudinal data from multiple sources. In addition, it identifies key variables that contribute to the association between views and the separation between classes, providing deeper biological insights. This pipeline includes variable selection/ranking using linear and nonlinear methods, feature extraction using functional principal component analysis and Euler characteristics, and joint integration and classification using dense feed-forward networks for cross-sectional data and recurrent neural networks for longitudinal data. We applied this pipeline to cross-sectional and longitudinal multiomics data (metagenomics, transcriptomics and metabolomics) from an inflammatory bowel disease (IBD) study and identified microbial pathways, metabolites and genes that discriminate by IBD status, providing information on the etiology of IBD. We conducted simulations to compare the two feature extraction methods.
Collapse
Affiliation(s)
- Sarthak Jain
- Department of Electrical Engineering, University of
Minnesota, Minneapolis, MN 55455, United States
| | - Sandra E Safo
- Division of Biostatistics and Health Data Science, University of
Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
15
|
Wang J, He M, Yang M, Ai X. Gut microbiota as a key regulator of intestinal mucosal immunity. Life Sci 2024; 345:122612. [PMID: 38588949 DOI: 10.1016/j.lfs.2024.122612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Gut microbiota is a complex microbial community with the ability of maintaining intestinal health. Intestinal homeostasis largely depends on the mucosal immune system to defense external pathogens and promote tissue repair. In recent years, growing evidence revealed the importance of gut microbiota in shaping intestinal mucosal immunity. Therefore, according to the existing findings, this review first provided an overview of intestinal mucosal immune system before summarizing the regulatory roles of gut microbiota in intestinal innate and adaptive immunity. Specifically, this review delved into the gut microbial interactions with the cells such as intestinal epithelial cells (IECs), macrophages, dendritic cells (DCs), neutrophils, and innate lymphoid cells (ILCs) in innate immunity, and T and B lymphocytes in adaptive immunity. Furthermore, this review discussed the main effects of gut microbiota dysbiosis in intestinal diseases and offered future research prospects. The review highlighted the key regulatory roles of gut microbiota in intestinal mucosal immunity via various host-microbe interactions, providing valuable references for the development of microbial therapy in intestinal diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| | - Xiaopeng Ai
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
16
|
Wang C, Gu Y, Chu Q, Wang X, Ding Y, Qin X, Liu T, Wang S, Liu X, Wang B, Cao H. Gut microbiota and metabolites as predictors of biologics response in inflammatory bowel disease: A comprehensive systematic review. Microbiol Res 2024; 282:127660. [PMID: 38442454 DOI: 10.1016/j.micres.2024.127660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Nonresponse to biologic agents in patients with inflammatory bowel disease (IBD) poses a significant public health burden, and the prediction of response to biologics offers valuable insights for IBD management. Given the pivotal role of gut microbiota and their endogenous metabolites in IBD, we conducted a systematic review to investigate the potential of fecal microbiota and mucosal microbiota and endogenous metabolomic markers as predictors for biotherapy response in IBD patients. A total of 38 studies were included in the review. Following anti-TNF-α treatment, the bacterial community characteristics of IBD patients exhibited a tendency to resemble those observed in healthy controls, indicating an improved clinical response. The levels of endogenous metabolites butyrate and deoxycholic acid were significantly associated with clinical remission following anti-TNF-α therapy. IBD patients who responded well to vedolizumab treatment had higher levels of specific bacteria that produce butyrate, along with increased levels of metabolites such as butyrate, branched-chain amino acids and acetamide following vedolizumab treatment. Crohn's disease patients who responded positively to ustekinumab treatment showed higher levels of Faecalibacterium and lower levels of Escherichia/Shigella. In conclusion, fecal microbiota and mucosal microbiota as well as their endogenous metabolites could provide a predictive tool for assessing the response of IBD patients to various biological agents and serve as a valuable reference for precise drug selection in clinical IBD patients.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qiao Chu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
17
|
Mickiewicz-Góra D, Sznurkowska K, Drozd A, Borkowska A, Zagierski M, Troch J, Skonieczna-Żydecka K, Szlagatys-Sidorkiewicz A. No Impact of Enteral Nutrition on Fecal Short-Chain Fatty Acids in Children with Cerebral Palsy. Biomedicines 2024; 12:897. [PMID: 38672250 PMCID: PMC11048600 DOI: 10.3390/biomedicines12040897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Bacteria can impact the host organism through their metabolites, with short-chain fatty acids (SCFAs) being the most important, including acetate (C2), propionate (C3), butyrate (C4), valerate (C5n), and isovalerate (C5i). This study aimed to identify the impact of enteral nutrition on SCFAs in children with cerebral palsy and to test the hypothesis that the type of nutrition in cerebral palsy affects gut SCFA levels. Cerebral palsy is a heterogeneous syndrome resulting from non-progressive damage to the central nervous system. The study group included 30 children diagnosed with cerebral palsy, receiving enteral nutrition (Cerebral Palsy Enteral Nutrition (CPEN)) via gastrostomy. The first reference group (Cerebral Palsy Controls (CPCs)) consisted of 24 children diagnosed with cerebral palsy and fed orally on a regular diet. The second reference group (Healthy Controls (HCs)) consisted of 24 healthy children with no chronic disease and fed on a regular diet. Isolation and measurement of SCFAs were conducted using gas chromatography. Differences were observed in the median contents of isobutyric acid, valeric acid, and isovaleric acid between the CPC group, which had significantly higher levels of those acids than the HC group. No differences were found between the CPEN and CPC groups nor between the CPEN and HC groups. We conclude that enteral nutrition in cerebral palsy has no influence on the levels of SCFAs.
Collapse
Affiliation(s)
- Dorota Mickiewicz-Góra
- Department of Paediatrics, Gastroenterology, Allergology & Paediatric Nutrition, Medical University of Gdansk, 80-803 Gdansk, Poland; (K.S.); (A.B.); (M.Z.); (J.T.); (A.S.-S.)
| | - Katarzyna Sznurkowska
- Department of Paediatrics, Gastroenterology, Allergology & Paediatric Nutrition, Medical University of Gdansk, 80-803 Gdansk, Poland; (K.S.); (A.B.); (M.Z.); (J.T.); (A.S.-S.)
| | - Arleta Drozd
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Anna Borkowska
- Department of Paediatrics, Gastroenterology, Allergology & Paediatric Nutrition, Medical University of Gdansk, 80-803 Gdansk, Poland; (K.S.); (A.B.); (M.Z.); (J.T.); (A.S.-S.)
| | - Maciej Zagierski
- Department of Paediatrics, Gastroenterology, Allergology & Paediatric Nutrition, Medical University of Gdansk, 80-803 Gdansk, Poland; (K.S.); (A.B.); (M.Z.); (J.T.); (A.S.-S.)
| | - Joanna Troch
- Department of Paediatrics, Gastroenterology, Allergology & Paediatric Nutrition, Medical University of Gdansk, 80-803 Gdansk, Poland; (K.S.); (A.B.); (M.Z.); (J.T.); (A.S.-S.)
| | | | - Agnieszka Szlagatys-Sidorkiewicz
- Department of Paediatrics, Gastroenterology, Allergology & Paediatric Nutrition, Medical University of Gdansk, 80-803 Gdansk, Poland; (K.S.); (A.B.); (M.Z.); (J.T.); (A.S.-S.)
| |
Collapse
|
18
|
Liu Y, Robinson AM, Su XQ, Nurgali K. Krill Oil and Its Bioactive Components as a Potential Therapy for Inflammatory Bowel Disease: Insights from In Vivo and In Vitro Studies. Biomolecules 2024; 14:447. [PMID: 38672464 PMCID: PMC11048140 DOI: 10.3390/biom14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Krill oil is extracted from krill, a small crustacean in the Antarctic Ocean. It has received growing attention because of krill oil's unique properties and diverse health benefits. Recent experimental and clinical studies suggest that it has potential therapeutic benefits in preventing the development of a range of chronic conditions, including inflammatory bowel disease (IBD). Krill oil is enriched with long-chain n-3 polyunsaturated fatty acids, especially eicosapentaenoic and docosahexaenoic acids, and the potent antioxidant astaxanthin, contributing to its therapeutic properties. The possible underlying mechanisms of krill oil's health benefits include anti-inflammatory and antioxidant actions, maintaining intestinal barrier functions, and modulating gut microbiota. This review aims to provide an overview of the beneficial effects of krill oil and its bioactive components on intestinal inflammation and to discuss the findings on the molecular mechanisms associated with the role of krill oil in IBD prevention and treatment.
Collapse
Affiliation(s)
- Yingying Liu
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
| | - Ainsley M. Robinson
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
- School of Rural Health, La Trobe University, Melbourne, VIC 3010, Australia
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Xiao Qun Su
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
| | - Kulmira Nurgali
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
19
|
Wu Z, Li Y, Jiang M, Sang L, Chang B. Selenium Yeast Alleviates Dextran Sulfate Sodium-Induced Chronic Colitis in Mice by Reducing Proinflammatory Cytokines and Regulating the Gut Microbiota and Their Metabolites. J Inflamm Res 2024; 17:2023-2037. [PMID: 38577691 PMCID: PMC10992675 DOI: 10.2147/jir.s449335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic recurrent gastrointestinal inflammatory disease. Selenium has been reported to have therapeutic potential in IBD. Selenium yeast is a common selenium supplement that is convenient to access. This study explored the effect of selenium yeast on dextran sulfate sodium- (DSS-)induced chronic colitis in mice. Methods Mice were randomly divided into four groups: the control group, selenium yeast group, chronic colitis group, and chronic colitis+selenium yeast group (n=6). Mice were killed on the 26th day. The disease activity index (DAI) score and histological damage score were calculated. Cytokines, serum selenium, colonic tissue selenium, gut microbiota and their metabolites short-chain fatty acids (SCFAs) were evaluated. Results Selenium yeast lowered IL-1β, IL-6, TNF-α, IL-17A, IL-22 and IFN-γ (P<0.05). In addition, selenium yeast significantly elevated Turicibacter, Bifidobacterium, Allobaculum, Prevotella, Halomonas, Adlercreutzia (P<0.05), and butyric acid (P<0.05). Conclusion Selenium yeast could improve DSS-induced chronic colitis in mice by regulating cytokines, gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yan Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
20
|
Wu J, Lv Y, Hao P, Zhang Z, Zheng Y, Chen E, Fan Y. Immunological profile of lactylation-related genes in Crohn's disease: a comprehensive analysis based on bulk and single-cell RNA sequencing data. J Transl Med 2024; 22:300. [PMID: 38521905 PMCID: PMC10960451 DOI: 10.1186/s12967-024-05092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Crohn's disease (CD) is a disease characterized by intestinal immune dysfunction, often accompanied by metabolic abnormalities. Disturbances in lactate metabolism have been found in the intestine of patients with CD, but studies on the role of lactate and related Lactylation in the pathogenesis of CD are still unknown. METHODS We identified the core genes associated with Lactylation by downloading and merging three CD-related datasets (GSE16879, GSE75214, and GSE112366) from the GEO database, and analyzed the functions associated with the hub genes and the correlation between their expression levels and immune infiltration through comprehensive analysis. We explored the Lactylation levels of different immune cells using single-cell data and further analyzed the differences in Lactylation levels between inflammatory and non-inflammatory sites. RESULTS We identified six Lactylation-related hub genes that are highly associated with CD. Further analysis revealed that these six hub genes were highly correlated with the level of immune cell infiltration. To further clarify the effect of Lactylation on immune cells, we analyzed single-cell sequencing data of immune cells from inflammatory and non-inflammatory sites in CD patients and found that there were significant differences in the levels of Lactylation between different types of immune cells, and that the levels of Lactylation were significantly higher in immune cells from inflammatory sites. CONCLUSIONS These results suggest that Lactylation-related genes and their functions are closely associated with changes in inflammatory cells in CD patients.
Collapse
Affiliation(s)
- Jingtong Wu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Yinyin Lv
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Pei Hao
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Ziyi Zhang
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Yongtian Zheng
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Ermei Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
| |
Collapse
|
21
|
Pham NHT, Joglekar MV, Wong WKM, Nassif NT, Simpson AM, Hardikar AA. Short-chain fatty acids and insulin sensitivity: a systematic review and meta-analysis. Nutr Rev 2024; 82:193-209. [PMID: 37290429 PMCID: PMC10777678 DOI: 10.1093/nutrit/nuad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
CONTEXT There is substantial evidence that reduced short-chain fatty acids (SCFAs) in the gut are associated with obesity and type 2 diabetes, although findings from clinical interventions that can increase SCFAs are inconsistent. OBJECTIVE This systematic review and meta-analysis aimed to assess the effect of SCFA interventions on fasting glucose, fasting insulin, and homeostatic model assessment of insulin resistance (HOMA-IR). DATA SOURCES Relevant articles published up to July 28, 2022, were extracted from PubMed and Embase using the MeSH (Medical Subject Headings) terms of the defined keywords [(short-chain fatty acids) AND (obesity OR diabetes OR insulin sensitivity)] and their synonyms. Data analyses were performed independently by two researchers who used the Cochrane meta-analysis checklist and the PRISMA guidelines. DATA EXTRACTION Clinical studies and trials that measured SCFAs and reported glucose homeostasis parameters were included in the analysis. Standardized mean differences (SMDs) with 95%CIs were calculated using a random-effects model in the data extraction tool Review Manager version 5.4 (RevMan 5.4). The risk-of-bias assessment was performed following the Cochrane checklist for randomized and crossover studies. DATA ANALYSIS In total, 6040 nonduplicate studies were identified, 23 of which met the defined criteria, reported fasting insulin, fasting glucose, or HOMA-IR values, and reported change in SCFA concentrations post intervention. Meta-analyses of these studies indicated that fasting insulin concentrations were significantly reduced (overall effect: SMD = -0.15; 95%CI = -0.29 to -0.01, P = 0.04) in treatment groups, relative to placebo groups, at the end of the intervention. Studies with a confirmed increase in SCFAs at the end of intervention also had a significant effect on lowering fasting insulin (P = 0.008). Elevated levels of SCFAs, compared with baseline levels, were associated with beneficial effects on HOMA-IR (P < 0.00001). There was no significant change in fasting glucose concentrations. CONCLUSION Increased postintervention levels of SCFAs are associated with lower fasting insulin concentrations, offering a beneficial effect on insulin sensitivity. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42021257248.
Collapse
Affiliation(s)
- Nhan H T Pham
- are with the Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- are with the School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Mugdha V Joglekar
- are with the Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Wilson K M Wong
- are with the Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Najah T Nassif
- are with the School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Ann M Simpson
- are with the School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Anandwardhan A Hardikar
- are with the Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- is with the Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
22
|
Hirose M, Sekar P, Eladham MWA, Albataineh MT, Rahmani M, Ibrahim SM. Interaction between mitochondria and microbiota modulating cellular metabolism in inflammatory bowel disease. J Mol Med (Berl) 2023; 101:1513-1526. [PMID: 37819377 PMCID: PMC10698103 DOI: 10.1007/s00109-023-02381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Inflammatory bowel disease (IBD) is a prototypic complex disease in the gastrointestinal tract that has been increasing in incidence and prevalence in recent decades. Although the precise pathophysiology of IBD remains to be elucidated, a large body of evidence suggests the critical roles of mitochondria and intestinal microbiota in the pathogenesis of IBD. In addition to their contributions to the disease, both mitochondria and gut microbes may interact with each other and modulate disease-causing cell activities. Therefore, we hypothesize that dissecting this unique interaction may help to identify novel pathways involved in IBD, which will further contribute to discovering new therapeutic approaches to the disease. As poorly treated IBD significantly affects the quality of life of patients and is associated with risks and complications, successful treatment is crucial. In this review, we stratify previously reported experimental and clinical observations of the role of mitochondria and intestinal microbiota in IBD. Additionally, we review the intercommunication between mitochondria, and the intestinal microbiome in patients with IBD is reviewed along with the potential mediators for these interactions. We specifically focus on their roles in cellular metabolism in intestinal epithelial cells and immune cells. To this end, we propose a potential therapeutic intervention strategy for IBD.
Collapse
Affiliation(s)
- Misa Hirose
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Priyadharshini Sekar
- Sharjah Institute of Medical Research, RIMHS, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Mohammad T Albataineh
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mohamed Rahmani
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Saleh Mohamed Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
23
|
de Souza PB, de Araujo Borba L, Castro de Jesus L, Valverde AP, Gil-Mohapel J, Rodrigues ALS. Major Depressive Disorder and Gut Microbiota: Role of Physical Exercise. Int J Mol Sci 2023; 24:16870. [PMID: 38069198 PMCID: PMC10706777 DOI: 10.3390/ijms242316870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major depressive disorder (MDD) has a high prevalence and is a major contributor to the global burden of disease. This psychiatric disorder results from a complex interaction between environmental and genetic factors. In recent years, the role of the gut microbiota in brain health has received particular attention, and compelling evidence has shown that patients suffering from depression have gut dysbiosis. Several studies have reported that gut dysbiosis-induced inflammation may cause and/or contribute to the development of depression through dysregulation of the gut-brain axis. Indeed, as a consequence of gut dysbiosis, neuroinflammatory alterations caused by microglial activation together with impairments in neuroplasticity may contribute to the development of depressive symptoms. The modulation of the gut microbiota has been recognized as a potential therapeutic strategy for the management of MMD. In this regard, physical exercise has been shown to positively change microbiota composition and diversity, and this can underlie, at least in part, its antidepressant effects. Given this, the present review will explore the relationship between physical exercise, gut microbiota and depression, with an emphasis on the potential of physical exercise as a non-invasive strategy for modulating the gut microbiota and, through this, regulating the gut-brain axis and alleviating MDD-related symptoms.
Collapse
Affiliation(s)
- Pedro Borges de Souza
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Laura de Araujo Borba
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Louise Castro de Jesus
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Ana Paula Valverde
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| |
Collapse
|
24
|
Tan J, Taitz J, Nanan R, Grau G, Macia L. Dysbiotic Gut Microbiota-Derived Metabolites and Their Role in Non-Communicable Diseases. Int J Mol Sci 2023; 24:15256. [PMID: 37894934 PMCID: PMC10607102 DOI: 10.3390/ijms242015256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Dysbiosis, generally defined as the disruption to gut microbiota composition or function, is observed in most diseases, including allergies, cancer, metabolic diseases, neurological disorders and diseases associated with autoimmunity. Dysbiosis is commonly associated with reduced levels of beneficial gut microbiota-derived metabolites such as short-chain fatty acids (SCFA) and indoles. Supplementation with these beneficial metabolites, or interventions to increase their microbial production, has been shown to ameliorate a variety of inflammatory diseases. Conversely, the production of gut 'dysbiotic' metabolites or by-products by the gut microbiota may contribute to disease development. This review summarizes the various 'dysbiotic' gut-derived products observed in cardiovascular diseases, cancer, inflammatory bowel disease, metabolic diseases including non-alcoholic steatohepatitis and autoimmune disorders such as multiple sclerosis. The increased production of dysbiotic gut microbial products, including trimethylamine, hydrogen sulphide, products of amino acid metabolism such as p-Cresyl sulphate and phenylacetic acid, and secondary bile acids such as deoxycholic acid, is commonly observed across multiple diseases. The simultaneous increased production of dysbiotic metabolites with the impaired production of beneficial metabolites, commonly associated with a modern lifestyle, may partially explain the high prevalence of inflammatory diseases in western countries.
Collapse
Affiliation(s)
- Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Jemma Taitz
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- Sydney Medical School and Charles Perkins Centre Nepean, The University of Sydney, Sydney, NSW 2006, Australia
| | - Georges Grau
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Cytometry, The Centenary Institute and The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
25
|
Yan D, Ye S, He Y, Wang S, Xiao Y, Xiang X, Deng M, Luo W, Chen X, Wang X. Fatty acids and lipid mediators in inflammatory bowel disease: from mechanism to treatment. Front Immunol 2023; 14:1286667. [PMID: 37868958 PMCID: PMC10585177 DOI: 10.3389/fimmu.2023.1286667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal tract. Though the pathogenesis of IBD remains unclear, diet is increasingly recognized as a pivotal factor influencing its onset and progression. Fatty acids, essential components of dietary lipids, play diverse roles in IBD, ranging from anti-inflammatory and immune-regulatory functions to gut-microbiota modulation and barrier maintenance. Short-chain fatty acids (SCFAs), products of indigestible dietary fiber fermentation by gut microbiota, have strong anti-inflammatory properties and are seen as key protective factors against IBD. Among long-chain fatty acids, saturated fatty acids, trans fatty acids, and ω-6 polyunsaturated fatty acids exhibit pro-inflammatory effects, while oleic acid and ω-3 polyunsaturated fatty acids display anti-inflammatory actions. Lipid mediators derived from polyunsaturated fatty acids serve as bioactive molecules, influencing immune cell functions and offering both pro-inflammatory and anti-inflammatory benefits. Recent research has also highlighted the potential of medium- and very long-chain fatty acids in modulating inflammation, mucosal barriers, and gut microbiota in IBD. Given these insights, dietary intervention and supplementation with short-chain fatty acids are emerging as potential therapeutic strategies for IBD. This review elucidates the impact of various fatty acids and lipid mediators on IBD and delves into potential therapeutic avenues stemming from these compounds.
Collapse
Affiliation(s)
- Dong Yan
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yue He
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yi Xiao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xin Xiang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
26
|
Tews HC, Elger T, Gunawan S, Fererberger T, Sommersberger S, Loibl J, Huss M, Liebisch G, Müller M, Kandulski A, Buechler C. Fecal short chain fatty acids and urinary 3-indoxyl sulfate do not discriminate between patients with Crohn´s disease and ulcerative colitis and are not of diagnostic utility for predicting disease severity. Lipids Health Dis 2023; 22:164. [PMID: 37789460 PMCID: PMC10546683 DOI: 10.1186/s12944-023-01929-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Urinary 3-indoxyl sulfate levels as well as fecal short chain fatty acid (SCFA) concentrations are surrogate markers for gut microbiota diversity. Patients with inflammatory bowel diseases (IBDs) and patients with primary sclerosing cholangitis (PSC), a disease closely associated with IBD, have decreased microbiome diversity. In this paper, the fecal SCFAs propionate, acetate, butyrate and isobutyrate of patients with IBD and patients with PSC-IBD and urinary 3-indoxyl sulfate of IBD patients were determined to study associations with disease etiology and severity. METHODS SCFA levels in feces of 64 IBD patients and 20 PSC-IBD patients were quantified by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Urinary 3-indoxyl sulfate levels of 45 of these IBD patients were analysed by means of reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry. Feces of 17 healthy controls and urine of 13 of these controls were analyzed in parallel. These cohorts had comparable sex distribution and age. RESULTS Urinary 3-indoxyl sulfate concentrations (normalized to urinary creatinine levels) was increased (P = 0.030) and fecal isobutyrate levels (normalized to dry weight of the stool sample) of IBD patients were decreased (P = 0.035) in comparison to healthy controls. None of the analyzed metabolites differed between patients with Crohn´s disease (CD) and patients with ulcerative colitis (UC). Fecal acetate and butyrate positively correlated with fecal calprotectin (P = 0.040 and P = 0.005, respectively) and serum C-reactive protein (P = 0.024 and P = 0.025, respectively) in UC but not CD patients. UC patients with fecal calprotectin levels above 150 µg/g, indicating intestinal inflammatory activity, had higher fecal acetate (P = 0.016), butyrate (P = 0.007) and propionate (P = 0.046) in comparison to patients with fecal calprotectin levels < 50 µg/g. Fecal SCFA levels of PSC-IBD and IBD patients were comparable. CONCLUSIONS Current findings suggest that analysis of urinary 3-indoxyl-sulfate as well as fecal SCFAs has no diagnostic value for IBD and PSC-IBD diagnosis or monitoring of disease severity.
Collapse
Affiliation(s)
- Hauke Christian Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Stefan Gunawan
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Tanja Fererberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Stefanie Sommersberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Johanna Loibl
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Muriel Huss
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
27
|
Zhou F, Mai T, Wang Z, Zeng Z, Shi J, Zhang F, Kong N, Jiang H, Guo L, Xu M, Lin J. The improvement of intestinal dysbiosis and hepatic metabolic dysfunction in dextran sulfate sodium-induced colitis mice: effects of curcumin. J Gastroenterol Hepatol 2023; 38:1333-1345. [PMID: 37210613 DOI: 10.1111/jgh.16205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIM Curcumin may have promising application in the prevention and amelioration of inflammatory bowel disease (IBD). However, the underlying mechanisms underpinning the ability of curcumin to interact with the gut and liver in IBD remains to be defined, which is the exploration aim of this study. METHODS Mice with dextran sulfate sodium salt (DSS)-induced acute colitis were treated either with 100 mg/kg of curcumin or phosphate buffer saline (PBS). Hematoxylin-eosin (HE) staining, 16S rDNA Miseq sequencing, proton nuclear magnetic resonance (1 H NMR) spectroscopy, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were applied for analysis. Spearman's correlation coefficient (SCC) was utilized to assess the correlation between the modification of intestinal bacteria and hepatic metabolite parameters. RESULTS Curcumin supplementation not only prevented further loss of body weight and colon length in IBD mice but also improved diseases activity index (DAI), colonic mucosal injury, and inflammatory infiltration. Meanwhile, curcumin restored the composition of the gut microbiota, significantly increased Akkermansia, Muribaculaceae_unclassified, and Muribaculum, and significantly elevated the concentration of propionate, butyrate, glycine, tryptophan, and betaine in the intestine. For hepatic metabolic disturbances, curcumin intervention altered 14 metabolites, including anthranilic acid and 8-amino-7-oxononanoate while enriching pathways related to the metabolism of bile acids, glucagon, amino acids, biotin, and butanoate. Furthermore, SCC analysis revealed a potential correlation between the upregulation of intestinal probiotics and alterations in liver metabolites. CONCLUSION The therapeutic mechanism of curcumin against IBD mice occurs by improving intestinal dysbiosis and liver metabolism disorders, thus contributing to the stabilization of the gut-liver axis.
Collapse
Affiliation(s)
- Feini Zhou
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ting Mai
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ziren Wang
- The Third School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaolong Zeng
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jingjing Shi
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Fan Zhang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310006, China
| | - Ning Kong
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Hao Jiang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Lingnan Guo
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Maosheng Xu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jiangnan Lin
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
28
|
Kiasat A, Rautiainen S, Prast-Nielsen S, Engstrand L, Schuppe-Koistinen I, Gustafsson UO, Löf Granström A. Evaluation of plasma Short chain fatty acid levels as markers for Inflammatory bowel disease. Scand J Gastroenterol 2023; 58:1246-1252. [PMID: 37272725 DOI: 10.1080/00365521.2023.2219357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Specific variations of short chain fatty acids in fecal samples have been shown for patients with inflammatory bowel disease. The aim of this study was to assess if Crohn's disease and ulcerative colitis are associated with altered concentrations of short chain fatty acids also in blood plasma. METHOD Between 2016-2019, Swedish adults referred to a tertiary center for colonoscopy were asked to participate in a cross-sectional study. Individuals with Crohn's disease or ulcerative colitis as well as individuals with no findings on the colonoscopy (defined as clean colon) were included in the study. Data on colonoscopy findings, blood samples (including haemoglobin, C-reactive protein and short chain fatty acid analysis) as well as a validated lifestyle questionnaire including 277 questions were collected from all participants. Linear regression was used to compare mean concentrations of short chain fatty acids between Crohn's disease, ulcerative colitis and clean colon. RESULTS The cohort consisted of 132 individuals with Crohn's disease, 119 with ulcerative colitis and 205 with clean colon. In the crude model, succinic acid was significantly lower (p < 0.05) among patients with Crohn's disease (mean 3.00 µM SE 0.10) and ulcerative colitis (mean 3.13 µM SE 0.10) in comparison to clean colon (mean 3.41 µM SE 0.08), however when adjusting for sex, age and diet the results did not remain statistically significant. No differences in plasma concentration of the other measured short chain fatty acids were detected. CONCLUSION Crohn's disease and ulcerative colitis are not associated with altered short chain fatty acid concentrations in plasma. Further research is needed to confirm or refute our findings.
Collapse
Affiliation(s)
- Ali Kiasat
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Colorectal Surgery Unit, Department of Pelvic Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Susanne Rautiainen
- Global and Sexual Health Research Group, Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Prast-Nielsen
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Ina Schuppe-Koistinen
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Ulf O Gustafsson
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Colorectal Surgery Unit, Department of Pelvic Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Löf Granström
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Wu CY, Liang LL, Ho HJ, Hsu CT, Hsu HT, Ao CK, Wu CY, Lin YH, Chuang YF, Hsu YC, Chen YJ, Ng SC. Physical Fitness and Inflammatory Bowel Disease Risk Among Children and Adolescents in Taiwan. JAMA Pediatr 2023; 177:608-616. [PMID: 37126317 PMCID: PMC10152374 DOI: 10.1001/jamapediatrics.2023.0929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/01/2023] [Indexed: 05/02/2023]
Abstract
Importance The incidence of inflammatory bowel disease (IBD) is increasing in newly industrialized countries but disease etiologies remain unclear. Objective To investigate the association between physical fitness and subsequent IBD risk among children and adolescents in Taiwan. Design, Setting, and Participants This nationwide cohort study was conducted between January 1, 2010, and December 31, 2018. Data sources included the Taiwan National Health Insurance Research Database, the National Student Fitness Tests Database, and the Air Quality Monitoring System Database. This study included students who were aged 10 years, completed physical fitness tests between grades 4 and 13, and had at least 1 year of follow-up. Data analysis was last performed on January 15, 2023. Exposures Physical fitness tests included cardiorespiratory endurance (CE; number of minutes to complete an 800-m run), musculoskeletal endurance (ME; number of bent-leg curl-ups in 1 minute), musculoskeletal power (MP; standing broad jump distance), and flexibility fitness (FF; 2-leg sit-and-reach distance). Main Outcomes and Measures Subsequent risk of IBD was compared among students based on physical fitness test results. Six-year cumulative incidences and hazard ratios (HRs) were calculated after adjusting for competing mortality. Performance was reported in quantiles, ranging from 1 (best) to 4 (poorest). Results There were 4 552 866 students who completed physical fitness tests between grades 4 and 13; among these students, 1 393 641 were aged 10 years and were included in the analysis. Six-year cumulative incidence of IBD risk was lowest among students in the best-performing quantile of CE (quantile 1, 0.74% [95% CI, 0.63%-0.86%]; P < .001), ME (0.77% [0.65%-0.90%]; P < .001), and MP (0.81% [0.68%-0.93%]; P = .005) compared with students in quantiles 2 through 4, respectively; however, no association was observed for quantiles of FF. After adjusting for competing HRs for mortality and other confounders, better CE was inversely associated with IBD risk (adjusted HR, 0.36 [95% CI, 0.17-0.75]; P = .007). Other measures of physical fitness were not independently associated with IBD risk. Conclusions and Relevance The results of this study suggest that CE was inversely associated with IBD risk among children and adolescents, but ME, MP, and FF were not independently associated with IBD risk. Future studies that explore the mechanisms are needed.
Collapse
Affiliation(s)
- Chun-Ying Wu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Li-Lin Liang
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu J. Ho
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Te Hsu
- Department of Recreation and Sport Management, Shu-Te University, Kaohsiung, Taiwan
| | - Hsiu-Tao Hsu
- Center for Physical and Health Education, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chon-Kit Ao
- Department of Economics, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Yi Wu
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsian Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fang Chuang
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yao-Chun Hsu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Ju Chen
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Siew C. Ng
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center, Hong Kong, China
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Mu C, Zhao Q, Zhao Q, Yang L, Pang X, Liu T, Li X, Wang B, Fung SY, Cao H. Multi-omics in Crohn's disease: New insights from inside. Comput Struct Biotechnol J 2023; 21:3054-3072. [PMID: 37273853 PMCID: PMC10238466 DOI: 10.1016/j.csbj.2023.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) with complex clinical manifestations such as chronic diarrhea, weight loss and hematochezia. Despite the increasing incidence worldwide, cure of CD remains extremely difficult. The rapid development of high-throughput sequencing technology with integrated-omics analyses in recent years has provided a new means for exploring the pathogenesis, mining the biomarkers and designing targeted personalized therapeutics of CD. Host genomics and epigenomics unveil heredity-related mechanisms of susceptible individuals, while microbiome and metabolomics map host-microbe interactions in CD patients. Proteomics shows great potential in searching for promising biomarkers. Nonetheless, single omics technology cannot holistically connect the mechanisms with heterogeneity of pathological behavior in CD. The rise of multi-omics analysis integrates genetic/epigenetic profiles with protein/microbial metabolite functionality, providing new hope for comprehensive and in-depth exploration of CD. Herein, we emphasized the different omics features and applications of CD and discussed the current research and limitations of multi-omics in CD. This review will update and deepen our understanding of CD from integration of broad omics spectra and will provide new evidence for targeted individualized therapeutics.
Collapse
Affiliation(s)
- Chenlu Mu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qianjing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lijiao Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaomeng Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Shan-Yu Fung
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
31
|
Golpour F, Abbasi-Alaei M, Babaei F, Mirzababaei M, Parvardeh S, Mohammadi G, Nassiri-Asl M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother 2023; 163:114763. [PMID: 37105078 DOI: 10.1016/j.biopha.2023.114763] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Faezeh Golpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrsa Abbasi-Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Yu C, Chen Y, Ahmadi S, Wu D, Wu J, Ding T, Liu D, Ye X, Chen S, Pan H. Goji berry leaf exerts a comparable effect against colitis and microbiota dysbiosis to its fruit in dextran-sulfate-sodium-treated mice. Food Funct 2023; 14:3026-3037. [PMID: 36861301 DOI: 10.1039/d2fo02886g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Goji berry and mulberry are both popular berries with anti-colitis effects, but their leaves have received less attention. In this study, the anti-colitis effects of goji berry leaf and mulberry leaf were investigated in dextran-sulfate-sodium-induced colitis C57BL/6N mice compared with their fruits. Goji berry leaf and goji berry reduced colitic symptoms and ameliorated tissue damage, while mulberry leaf did not. ELISA and western blotting analysis suggested that goji berry showed the best performance in inhibiting the overproduction of pro-inflammatory cytokines (TNF-α, IL-6 and IL-10) and improving damaged colonic barrier (occludin and claudin-1). Besides, goji berry leaf and goji berry reversed the gut microbiota dysbiosis by increasing the abundance of beneficial bacteria like Bifidobacterium and Muribaculaceae, and decreasing the abundance of harmful bacteria like Bilophila and Lachnoclostridium. Goji berry, mulberry and goji berry leaf could restore acetate, propionate, butyrate and valerate to ameliorate inflammation, while mulberry leaf could not restore butyrate. To the best of our knowledge, this is the first report on the comparison of the anti-colitis effects of goji berry leaf, mulberry leaf and their fruits, which is meaningful for the rational utilization of goji berry leaf as a functional food.
Collapse
Affiliation(s)
- Chengxiao Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Yihao Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Shokouh Ahmadi
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Jiaxiong Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China. .,Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China.,Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China. .,Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China.,Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China. .,Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China.,Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
33
|
Hov JR, Karlsen TH. The microbiota and the gut-liver axis in primary sclerosing cholangitis. Nat Rev Gastroenterol Hepatol 2023; 20:135-154. [PMID: 36352157 DOI: 10.1038/s41575-022-00690-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/11/2022]
Abstract
Primary sclerosing cholangitis (PSC) offers unique opportunities to explore the gut-liver axis owing to the close association between liver disease and colonic inflammation. It is well established that the gut microbiota in people with PSC differs from that of healthy individuals, but details of the microbial factors that demarcate PSC from inflammatory bowel disease (IBD) without PSC are poorly understood. In this Review, we aim to provide an overview of the latest literature on the gut microbiome in PSC and PSC with IBD, critically examining hypotheses on how microorganisms could contribute to the pathogenesis of PSC. A particular emphasis will be put on pathogenic features of the gut microbiota that might explain the occurrence of bile duct inflammation and liver disease in the context of IBD, and we postulate the potential existence of a specific yet unknown factor related to the gut-liver axis as causative in PSC. Available data are scrutinized in the perspective of therapeutic approaches related to the gut-liver axis.
Collapse
Affiliation(s)
- Johannes R Hov
- Norwegian PSC Research Center and Section of gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tom H Karlsen
- Norwegian PSC Research Center and Section of gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
34
|
Wu Y, Ran L, Yang Y, Gao X, Peng M, Liu S, Sun L, Wan J, Wang Y, Yang K, Yin M, Chunyu W. Deferasirox alleviates DSS-induced ulcerative colitis in mice by inhibiting ferroptosis and improving intestinal microbiota. Life Sci 2023; 314:121312. [PMID: 36563842 DOI: 10.1016/j.lfs.2022.121312] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
AIMS Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) caused by multiple factors. Studies have shown that epithelial cell damage was associated with ferroptosis in UC. Therefore, our research focused on the effects and mechanism of iron chelator deferasirox in UC. MAIN METHODS The UC model was induced by 2.5 % dextran sulfate sodium salt (DSS) and administered with deferasirox (10 mg/kg) for 7 days. Histological pathologies, inflammatory response, ferrous iron contents, oxidative stress and ferroptosis regulators were determined. Intestinal microbiota alteration and short-chain fatty acids (SCFAs) production were analyzed through 16S rRNA gene sequencing and targeted metabolomics. KEY FINDINGS Deferasirox significantly relieved the DSS-induced UC in mice, as evidenced by weight loss, survival rate, colon length shortening disease activity index (DAI) score and histology score. Deferasirox treatment reduced the level of pro inflammatory cytokines (IL-1β, IL-6, TNF-α and INF-γ). Ferroptosis was induced in mice with UC, as evidenced by ferrous iron accumulation, increased ROS production, SOD and GSH depletion, decreased the expression of GPX-4 and FTH, accompanied by increased expression of TF. Deferasirox treatment strongly reversed the alterations caused by ferroptotic characteristics in DSS-induced mice. Moreover, deferasirox treatment reshaped the composition of intestinal microbiota. The results revealed the genera of norank_f__Muribaculaceae, Lachnospiraceae_NK4A136_group, Prevotellaceae_UCG-001, Odoribacter and Blautia were increased distinctly, while Escherichia-Shigella and Streptococcus were significantly decreased by deferasirox treatment. Targeted metabolomics analysis indicated the SCFAs production enhanced in deferasirox-treated mice. SIGNIFICANCE Our results suggested that deferasirox could treat DSS-induced UC in mice by inhibiting ferroptosis and improving intestinal microbiota.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China; Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lei Ran
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yue Yang
- Department of Anesthesiology, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Xianling Gao
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China; Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Man Peng
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Sida Liu
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Le Sun
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jia Wan
- Department of Vascular Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Yu Wang
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Kun Yang
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Min Yin
- School of Medicine, Yunnan University, Kunming, China.
| | - Weixun Chunyu
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China.
| |
Collapse
|
35
|
Hodgkinson K, El Abbar F, Dobranowski P, Manoogian J, Butcher J, Figeys D, Mack D, Stintzi A. Butyrate's role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin Nutr 2023; 42:61-75. [PMID: 36502573 DOI: 10.1016/j.clnu.2022.10.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Butyrate is a key energy source for colonocytes and is produced by the gut microbiota through fermentation of dietary fiber. Butyrate is a histone deacetylase inhibitor and also signals through three G-protein coupled receptors. It is clear that butyrate has an important role in gastrointestinal health and that butyrate levels can impact both host and microbial functions that are intimately coupled with each other. Maintaining optimal butyrate levels improves gastrointestinal health in animal models by supporting colonocyte function, decreasing inflammation, maintaining the gut barrier, and promoting a healthy microbiome. Butyrate has also shown protective actions in the context of intestinal diseases such as inflammatory bowel disease, graft-versus-host disease of the gastrointestinal tract, and colon cancer, whereas lower levels of butyrate and/or the microbes which are responsible for producing this metabolite are associated with disease and poorer health outcomes. However, clinical efforts to increase butyrate levels in humans and reverse these negative outcomes have generated mixed results. This article discusses our current understanding of the molecular mechanisms of butyrate action with a focus on the gastrointestinal system, the links between host and microbial factors, and the efforts that are currently underway to apply the knowledge gained from the bench to bedside.
Collapse
Affiliation(s)
- Kendra Hodgkinson
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Faiha El Abbar
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Peter Dobranowski
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Juliana Manoogian
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David Mack
- Department of Paediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
36
|
Yan XX, Wu D. Intestinal microecology-based treatment for inflammatory bowel disease: Progress and prospects. World J Clin Cases 2023; 11:47-56. [PMID: 36687179 PMCID: PMC9846986 DOI: 10.12998/wjcc.v11.i1.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent, and debilitating disorder, and includes Crohn’s disease and ulcerative colitis. The pathogenesis of IBD is closely associated with intestinal dysbiosis, but has not yet been fully clarified. Genetic and environmental factors can influence IBD patients’ gut microbiota and metabolism, disrupt intestinal barriers, and trigger abnormal immune responses. Studies have reported the alteration of gut microbiota and metabolites in IBD, providing the basis for potential therapeutic options. Intestinal microbiota-based treatments such as pre/probiotics, metabolite supplementation, and fecal microbiota transplantation have been extensively studied, but their clinical efficacy remains controversial. Repairing the intestinal barrier and promoting mucosal healing have also been proposed. We here review the current clinical trials on intestinal microecology and discuss the prospect of research and practice in this field.
Collapse
Affiliation(s)
- Xia-Xiao Yan
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
37
|
Old but Fancy: Curcumin in Ulcerative Colitis-Current Overview. Nutrients 2022; 14:nu14245249. [PMID: 36558408 PMCID: PMC9781182 DOI: 10.3390/nu14245249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) is one of the inflammatory bowel diseases (IBD). It is a chronic autoimmune inflammation of unclear etiology affecting the colon and rectum, characterized by unpredictable exacerbation and remission phases. Conventional treatment options for UC include mesalamine, glucocorticoids, immunosuppressants, and biologics. The management of UC is challenging, and other therapeutic options are constantly being sought. In recent years more attention is being paid to curcumin, a main active polyphenol found in the turmeric root, which has numerous beneficial effects in the human body, including anti-inflammatory, anticarcinogenic, and antioxidative properties targeting several cellular pathways and making an impact on intestinal microbiota. This review will summarize the current knowledge on the role of curcumin in the UC therapy.
Collapse
|
38
|
Misra R, Sarafian M, Pechlivanis A, Ding N, Miguens-Blanco J, McDonald J, Holmes E, Marchesi J, Arebi N. Ethnicity Associated Microbial and Metabonomic Profiling in Newly Diagnosed Ulcerative Colitis. Clin Exp Gastroenterol 2022; 15:199-212. [PMID: 36505887 PMCID: PMC9733448 DOI: 10.2147/ceg.s371965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/07/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction Ulcerative colitis (UC) differs across geography and ethnic groups. Gut microbial diversity plays a pivotal role in disease pathogenesis and differs across ethnic groups. The functional diversity in microbial-driven metabolites may have a pathophysiologic role and offer new therapeutic avenues. Methods Demographics and clinical data were recorded from newly diagnosed UC patients. Blood, urine and faecal samples were collected at three time points over one year. Bacterial content was analysed by 16S rRNA sequencing. Bile acid profiles and polar molecules in three biofluids were measured using liquid-chromatography mass spectrometry (HILIC) and nuclear magnetic resonance spectroscopy. Results We studied 42 patients with a new diagnosis of UC (27 South Asians; 15 Caucasians) with 261 biosamples. There were significant differences in relative abundance of bacteria at the phylum, genus and species level. Relative concentrations of urinary metabolites in South Asians were significantly lower for hippurate (positive correlation for Ruminococcus) and 4-cresol sulfate (Clostridia) (p<0.001) with higher concentrations of lactate (negative correlation for Bifidobacteriaceae). Faecal conjugated and primary conjugated bile acids concentrations were significantly higher in South Asians (p=0.02 and p=0.03 respectively). Results were unaffected by diet, phenotype, disease severity and ongoing therapy. Comparison of time points at diagnosis and at 1 year did not reveal changes in microbial and metabolic profile. Conclusion Ethnic-related microbial metabolite associations were observed in South Asians with UC. This suggests a predisposition to UC may be influenced by environmental factors reflected in a distinct gene-environment interaction. The variations may serve as markers to identify risk factors for UC and modified to enhance therapeutic response.
Collapse
Affiliation(s)
- Ravi Misra
- Gastroenterology, St Mark’s Academic Institute, London, UK,Correspondence: Ravi Misra, St. Mark’s Academic Institute, Imperial College, St. Mark’s Hospital, Watford Road, London, United Kingdom, Tel +44 0208 235 4124, Email
| | - Magali Sarafian
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College, London, UK
| | | | - Nik Ding
- St Vincent’s Hospital, Inflammatory Bowel Disease Unit, Melbourne, Australia
| | - Jesus Miguens-Blanco
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College, London, UK
| | | | - Elaine Holmes
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College, London, UK,Health Futures Institute, Murdoch and Edith Cowan Universities, Murdoch, Australia
| | - Julian Marchesi
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College, London, UK,School of Biosciences, Cardiff University, Cardiff, UK,Centre for Gut Health, Imperial College, London, UK
| | - Naila Arebi
- Gastroenterology, St Mark’s Academic Institute, London, UK
| |
Collapse
|
39
|
Taladrid D, Zorraquín‐Peña I, Molinero N, Silva M, Manceñido N, Pajares R, Bartolomé B, Moreno‐Arribas MV. Polyphenols and Ulcerative Colitis: An Exploratory Study of the Effects of Red Wine Consumption on Gut and Oral Microbiome in Active-Phase Patients. Mol Nutr Food Res 2022; 66:e2101073. [PMID: 35633101 PMCID: PMC9787944 DOI: 10.1002/mnfr.202101073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/09/2022] [Indexed: 12/30/2022]
Abstract
SCOPE This paper explores the effects of moderate red wine consumption on the clinical status and symptomatology of patients with ulcerative colitis (UC), including the study of the oral and intestinal microbiome. METHODS AND RESULTS A case control intervention study in UC patients is designed. Intervention patients (n = 5) consume red wine (250 mL day-1 ) for 4 weeks whereas control patients (n = 5) do not. Moderate wine consumption significantly (p < 0.05) improves some clinical parameters related to serum iron, and alleviates intestinal symptoms as evaluated by the IBDQ-32 questionnaire. 16S rRNA gene sequencing indicate a non-significant (p > 0.05) increase in bacterial alpha diversity after wine intervention in both saliva and fecal microbiota. Additional comparison of taxonomic data between UC patients (n = 10) and healthy subjects (n = 8) confirm intestinal dysbiosis for the UC patients. Finally, analysis of fecal metabolites (i.e., phenolic acids and SCFAs) indicates a non-significant increase (p > 0.05) for the UC patients that consumed wine. CONCLUSIONS Moderate and regular red wine intake seems to improve the clinical status and symptoms of UC patients in the active phase of the disease. However, studies with a greater sample size are required to achieve conclusive results.
Collapse
Affiliation(s)
- Diego Taladrid
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | - Irene Zorraquín‐Peña
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | - Natalia Molinero
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | - Mariana Silva
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | - Noemi Manceñido
- Hospital Universitario “Infanta Sofia”, P.° de Europa34, 28703 San Sebastián de los ReyesMadridSpain
| | - Ramón Pajares
- Hospital Universitario “Infanta Sofia”, P.° de Europa34, 28703 San Sebastián de los ReyesMadridSpain
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | | |
Collapse
|
40
|
Alvandi E, Wong WKM, Joglekar MV, Spring KJ, Hardikar AA. Short-chain fatty acid concentrations in the incidence and risk-stratification of colorectal cancer: a systematic review and meta-analysis. BMC Med 2022; 20:323. [PMID: 36184594 PMCID: PMC9528142 DOI: 10.1186/s12916-022-02529-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The beneficial role of gut microbiota and bacterial metabolites, including short-chain fatty acids (SCFAs), is well recognized, although the available literature around their role in colorectal cancer (CRC) has been inconsistent. METHODS We performed a systematic review and meta-analysis to examine the associations of fecal SCFA concentrations to the incidence and risk of CRC. Data extraction through Medline, Embase, and Web of Science was carried out from database conception to June 29, 2022. Predefined inclusion/exclusion criteria led to the selection of 17 case-control and six cross-sectional studies for quality assessment and analyses. Studies were categorized for CRC risk or incidence, and RevMan 5.4 was used to perform the meta-analyses. Standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated using a random-effects model. Studies lacking quantitation were included in qualitative analyses. RESULTS Combined analysis of acetic, propionic, and butyric acid revealed significantly lower concentrations of these SCFAs in individuals with a high-risk of CRC (SMD = 2.02, 95% CI 0.31 to 3.74, P = 0.02). Additionally, CRC incidence was higher in individuals with lower levels of SCFAs (SMD = 0.45, 95% CI 0.19 to 0.72, P = 0.0009), compared to healthy individuals. Qualitative analyses identified 70.4% of studies reporting significantly lower concentrations of fecal acetic, propionic, butyric acid, or total SCFAs in those at higher risk of CRC, while 66.7% reported significantly lower concentrations of fecal acetic and butyric acid in CRC patients compared to healthy controls. CONCLUSIONS Overall, lower fecal concentrations of the three major SCFAs are associated with higher risk of CRC and incidence of CRC.
Collapse
Affiliation(s)
- Ehsan Alvandi
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Wilson K M Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Translational Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Translational Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Kevin J Spring
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
- South-West Sydney Clinical Campuses, UNSW Medicine & Health, Sydney, NSW, Australia.
- Liverpool Clinical School, School of Medicine, Western Sydney University, Liverpool, NSW, Australia.
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
- Translational Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia.
- Department of Science and Environment, Roskilde University Copenhagen, Roskilde, Denmark.
| |
Collapse
|
41
|
Marzorati M, Bubeck S, Bayne T, Krishnan K, Giusto M. Effects of combined prebiotic, probiotic, IgG and amino acid supplementation on the gut microbiome of patients with inflammatory bowel disease. Future Microbiol 2022; 17:1307-1324. [DOI: 10.2217/fmb-2022-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The effects of the Total Gut Restoration (TGR) system supplementation on the gut microbiome were evaluated. Materials & methods: A mucosal in vitro simulation of the human gastrointestinal tract (M-SHIME®) system was inoculated with fecal samples from patients with inflammatory bowel disease. Chambers were supplemented for 5 days with the TGR system (five probiotic Bacillus strains, prebiotic mixture, immunoglobulin concentrate, amino acids and prebiotic flavonoids). Results: Compared with unsupplemented controls, supplementation was associated with a significant increase in short-chain fatty acid production, and changes to the microbiome were observed. Supernatants from supplemented chambers improved intestinal barrier function, increased IL-6 and IL-10 production and decreased MCP1 production versus control in Caco-2/THP1 coculture. Conclusion: Daily TGR supplementation facilitated changes to the gut microbiome of patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Massimo Marzorati
- Center for Microbial Ecology & Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
- ProDigest, Technologiepark 82, Zwijnaarde, 9052, Belgium
| | - Sarah Bubeck
- Bubeck Scientific Communications, 194 Rainbow Drive #9418, Livingston, TX 77399, USA
| | - Thomas Bayne
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| | - Kiran Krishnan
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| | - Morgan Giusto
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| |
Collapse
|
42
|
Valdivia-Garcia MA, Chappell KE, Camuzeaux S, Olmo-García L, van der Sluis VH, Radhakrishnan ST, Stephens H, Bouri S, de Campos Braz LM, Williams HT, Lewis MR, Frost G, Li JV. Improved quantitation of short-chain carboxylic acids in human biofluids using 3-nitrophenylhydrazine derivatization and liquid chromatography with tandem mass spectrometry (LC-MS/MS). J Pharm Biomed Anal 2022; 221:115060. [PMID: 36166933 DOI: 10.1016/j.jpba.2022.115060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
Short-chain carboxylic acids (SCCAs) produced by gut microbial fermentation may reflect gastrointestinal health. Their concentrations in serum and urine are indicative of specific metabolic pathway activity; therefore, accurate quantitation of SCCAs in different biofluids is desirable. However, it is often challenging to quantitate SCCAs since matrix effects, induced by the presence of a vast variety of other compounds other than SCCAs in complex biofluids, can suppress or enhance signals. Materials used for sample preparation may introduce further analytical challenges. This study reports for the first time a LC-MS/MS-based method to quantitate ten SCCAs (lactate, acetate, 2-hydroxybutyrate, propionate, isobutyrate, butyrate, 2-methylbutyrate, isovalerate, valerate and hexanoate) and evaluates the matrix effects in five human biofluids: serum, urine, stool, and contents from the duodenum and intestinal stoma bags. The optimized method, using 3-Nitrophenylhydrazone as a derivatization agent and a Charge Surface Hybrid reverse phase column, showed clear separation for all SCCAs at a concentration range of 0.1-100 µM, in a 10.5 min run without carry-over effects. The validation of the method showed a good linearity (R2 > 0.99), repeatability (CV ≤ 15%) assessed by intra- and inter-day monitoring. The lowest limit of detection (LLOD) was 25 nM and lowest limit of quantitation (LLOQ) was 50 nM for nine SCCA except acetate at 0.5 and 1 µM, respectively. Quantitative accuracy in all biofluids for most compounds was < ±15%. In summary, this methodology has the advantages over other techniques for its simple and fast sample preparation and a high level of selectivity, repeatability and robustness for SCCA quantification. It also reduced interferences from the matrix or sample containers, making it ideal for use in high-throughput analyses of biofluid samples from large-scale studies.
Collapse
Affiliation(s)
- Maria A Valdivia-Garcia
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Katie E Chappell
- The National Phenome Centre, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Stephane Camuzeaux
- The National Phenome Centre, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Lucía Olmo-García
- The National Phenome Centre, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Verena Horneffer van der Sluis
- The National Phenome Centre, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Shiva T Radhakrishnan
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, United Kingdom; Section of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Hannah Stephens
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Sonia Bouri
- Inflammatory Bowel Disease Unit, St Mark's Hospital, London HA1 3UJ, United Kingdom
| | - Lucia M de Campos Braz
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Horace T Williams
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, United Kingdom; Section of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthew R Lewis
- The National Phenome Centre, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Gary Frost
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Jia V Li
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
43
|
Chang C, Yuan X, Zhang X, Chen X, Li K. Gastrointestinal Microbiome and Multiple Health Outcomes: Umbrella Review. Nutrients 2022; 14:3726. [PMID: 36145102 PMCID: PMC9505003 DOI: 10.3390/nu14183726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, there has been growing concern about the impact of the gastrointestinal microbiome on human health outcomes. To clarify the evidence for a link between the gastrointestinal microbiome and a variety of health outcomes in humans, we conducted an all-encompassing review of meta-analyses and systematic reviews that included 195 meta-analyses containing 950 unique health outcomes. The gastrointestinal microbiome is related to mortality, gastrointestinal disease, immune and metabolic outcomes, neurological and psychiatric outcomes, maternal and infant outcomes, and other outcomes. Existing interventions for intestinal microbiota (such as probiotics, fecal microbiota transplant, etc.) are generally safe and beneficial to a variety of human health outcomes, but the quality of evidence is not high, and more detailed and well-designed randomized controlled trials are necessary.
Collapse
Affiliation(s)
- Chengting Chang
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, China
| | - Xingzhu Yuan
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, China
| | - Xingxia Zhang
- Department of Organization, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, China
| | - Xinrong Chen
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, China
| | - Ka Li
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, China
| |
Collapse
|
44
|
Gut Microbiota in Psoriasis. Nutrients 2022; 14:nu14142970. [PMID: 35889927 PMCID: PMC9321451 DOI: 10.3390/nu14142970] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with autoimmune pathogenic characteristics and is caused by chronic inflammation, which results in uncontrolled keratinocyte growth and defective differentiation. The link between the gut microbiota and immune system regulation opened a novel angle to understand the pathogenesis of many chronic multifactorial diseases, including psoriasis. Current evidence suggests that modulation of the gut microbiota, both through dietary approaches and through supplementation with probiotics and prebiotics, could represent a novel therapeutic approach. The present work aims to highlight the latest scientific evidence regarding the microbiome alterations of psoriatic patients, as well as state of the art insights in terms of microbiome-targeted therapies as promising preventive and therapeutic tools for psoriasis.
Collapse
|
45
|
Jagt JZ, Verburgt CM, de Vries R, de Boer NKH, Benninga MA, de Jonge WJ, van Limbergen JE, de Meij TGJ. Faecal Metabolomics in Paediatric Inflammatory Bowel Disease: A Systematic Review. J Crohns Colitis 2022; 16:1777-1790. [PMID: 35679608 PMCID: PMC9683079 DOI: 10.1093/ecco-jcc/jjac079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Paediatric inflammatory bowel disease [IBD] is characterized by altered immunological and metabolic pathways. Metabolomics may therefore increase pathophysiological understanding and could develop into characterization of biomarkers for diagnosis and IBD treatment response. However, no uniform metabolomic profiles have been identified to date. This systematic review aimed to identify faecal metabolomic signatures in paediatric IBD vs controls, and to describe metabolites associated with disease activity and treatment response. METHODS A literature search was performed in Embase, Medline, Web of Science and Cochrane Library. Studies assessing faecal metabolomics in paediatric patients < 18 years with IBD [de novo, active, inactive] with comparative groups [IBD vs non-IBD; responders vs non-responders] were included. The quality of included studies was assessed according to the Newcastle-Ottawa Scale. RESULTS Nineteen studies were included [540 patients with IBD, 386 controls], assessing faecal short-chain fatty acids [SCFA] [five studies], amino acids [AA] [ten studies], bile acids [BA] [eight studies] and other metabolites [nine studies] using various methodologies. Significantly increased levels of AA [particularly phenylalanine], primary BA and lower levels of secondary BA were described in paediatric IBD compared to controls. Faecal SCFA results varied across studies. Additionally, responders and non-responders to exclusive enteral nutrition and infliximab showed differences in baseline faecal metabolites [based on BA, AA]. CONCLUSIONS This systematic review provides evidence for distinct faecal metabolomic profiles in paediatric IBD. However, results varied across studies, possibly due to differences in study design and applied analytical techniques. Faecal metabolomics could provide more insight into host-microbial interactions in IBD, but further studies with standardized methodologies and reporting are needed.
Collapse
Affiliation(s)
- Jasmijn Z Jagt
- Corresponding author: Jasmijn Zaza Jagt, Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands. Tel.: +316-50063766; E-mail:
| | | | - Ralph de Vries
- Medical Library, Vrije Universiteit Amsterdam, HV Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute (AGEM), Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marc A Benninga
- Department of Paediatric Gastroenterology and Nutrition, Amsterdam University Medical Centres – location University of Amsterdam, Emma Children’s Hospital, AZ Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, BK Amsterdam, The Netherlands,Department of Surgery, University of Bonn, Bonn, Germany
| | - Johan E van Limbergen
- Department of Paediatric Gastroenterology and Nutrition, Amsterdam University Medical Centres – location University of Amsterdam, Emma Children’s Hospital, AZ Amsterdam, The Netherlands,Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, BK Amsterdam, The Netherlands,Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Tim G J de Meij
- Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, HV Amsterdam, The Netherlands,Department of Paediatric Gastroenterology and Nutrition, Amsterdam University Medical Centres – location University of Amsterdam, Emma Children’s Hospital, AZ Amsterdam, The Netherlands
| |
Collapse
|
46
|
An Improved Method to Quantify Short-Chain Fatty Acids in Biological Samples Using Gas Chromatography-Mass Spectrometry. Metabolites 2022; 12:metabo12060525. [PMID: 35736458 PMCID: PMC9228653 DOI: 10.3390/metabo12060525] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Gut microbial metabolites, short-chain fatty acids (SCFAs), are found at multiple locations in the host body and are identified as important metabolites in gut microbiome-associated diseases. Quantifying SCFAs in diverse biological samples is important to understand their roles in host health. This study developed an accurate SCFA quantification method by performing gas chromatography–mass spectrometry (GC/MS) in human plasma, serum, feces, and mouse cecum tissue. The samples were acidified with hydrochloric acid, and the SCFAs were extracted using methyl tert-butyl ether. In this method, distilled water was selected as a surrogate matrix for the quantification of SCFAs in target biological samples. The method was validated in terms of linearity, parallelism, precision, recovery, and matrix effect. The developed method was further applied in target biological samples. In conclusion, this optimized method can be used as a simultaneous SCFA quantification method in diverse biological samples.
Collapse
|
47
|
Dietary inflammatory potential mediated gut microbiota and metabolite alterations in Crohn's disease: A fire-new perspective. Clin Nutr 2022; 41:1260-1271. [DOI: 10.1016/j.clnu.2022.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
|
48
|
Effect of Shenling Baizhu San on Intestinal Flora in a Rat Model of Ulcerative Colitis with Spleen Deficiency and Dampness. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9985147. [PMID: 35190749 PMCID: PMC8858063 DOI: 10.1155/2022/9985147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 11/06/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Shenling Baizhu San (SLBZS) is reported as an effective drug for ulcerative colitis (UC); however, its effect on intestinal flora remains unknown. In this study, we investigated the effect of SLBZS on intestinal flora in a rat model of UC with spleen deficiency and dampness. METHODS UC was induced in rats using 2,4,6-trinitrobenzene sulfonic acid on the basis of a model of spleen deficiency and dampness. The 16S rDNA sequencing was used to detect structural changes in the intestinal flora; the phylogenetic investigation of communities by reconstruction of unobserved state (PICRUSt) analysis was used to predict the altered pathways. RESULTS Compared with the model group, rats in the SLBZS group exhibited decreased levels of TNF-α(P < 0.05), and increased abundance and diversity of the intestinal flora. The abundance of Actinobacteria (P < 0.001) and Bacteroides (P < 0.01) increased and that of Firmicutes decreased (P < 0.001), and the abundance of Bifidobacterium(P < 0.05) and Allobaculum increased. PICRUSt analysis showed that the altered pathways between the groups were those of fatty acid and antibiotic biosynthesis, amino acid metabolism, and the pentose phosphate pathway. CONCLUSIONS SLBZS can regulate the structure and function of the intestinal flora, alter expression levels of certain metabolic pathways, and has the potential to treat UC.
Collapse
|
49
|
Mousa WK, Chehadeh F, Husband S. Recent Advances in Understanding the Structure and Function of the Human Microbiome. Front Microbiol 2022; 13:825338. [PMID: 35185849 PMCID: PMC8851206 DOI: 10.3389/fmicb.2022.825338] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Trillions of microbes live within our bodies in a deep symbiotic relationship. Microbial populations vary across body sites, driven by differences in the environment, immunological factors, and interactions between microbial species. Major advances in genome sequencing enable a better understanding of microbiome composition. However, most of the microbial taxa and species of the human microbiome are still unknown. Without revealing the identity of these microbes as a first step, we cannot appreciate their role in human health and diseases. A shift in the microbial balance, termed dysbiosis, is linked to a broad range of diseases from simple colitis and indigestion to cancer and dementia. The last decade has witnessed an explosion in microbiome research that led to a better understanding of the microbiome structure and function. This understanding leads to potential opportunities to develop next-generation microbiome-based drugs and diagnostic biomarkers. However, our understanding is limited given the highly personalized nature of the microbiome and its complex and multidirectional interactions with the host. In this review, we discuss: (1) our current knowledge of microbiome structure and factors that shape the microbial composition, (2) recent associations between microbiome dysbiosis and diseases, and (3) opportunities of new microbiome-based therapeutics. We analyze common themes, promises, gaps, and challenges of the microbiome research.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
- Department of Biology, Whitman College, Walla Walla, WA, United States
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fadia Chehadeh
- Department of Biology, Whitman College, Walla Walla, WA, United States
| | - Shannon Husband
- Department of Biology, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
50
|
Konanov DN, Zakharzhevskaya NB, Kardonsky DA, Zhgun ES, Kislun YV, Silantyev AS, Shagaleeva OY, Krivonos DV, Troshenkova AN, Govorun VM, Ilina EN. UniqPy: a tool for estimation of short-chain fatty acids composition by gas-chromatography/mass-spectrometry with headspace extraction. J Pharm Biomed Anal 2022; 212:114681. [DOI: 10.1016/j.jpba.2022.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
|