1
|
Meena A, Maggu K, De Nardo AN, Sbilordo SH, Eggs B, Al Toma Sho R, Lüpold S. Life stage-specific effects of heat stress on spermatogenesis and oogenesis in Drosophila melanogaster. J Therm Biol 2024; 125:104001. [PMID: 39486108 DOI: 10.1016/j.jtherbio.2024.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Biodiversity is increasingly threatened by unpredictable, frequent, and intense climatic events like heatwaves that pose harmful impacts on ectotherms. Beyond the health and survival of organisms, reduced reproductive performance has emerged as a critical fitness consequence of thermal stress induced by high temperatures. Many studies on these effects expose organisms to heat stress during the adult stage or throughout development, often focusing on cumulative effects across life stages, and they tend to examine one or the other sex. This approach may not reflect the short-term nature of many extreme heat events and limits our understanding of stage- and sex-specific fitness consequences in short-lived organisms. To address this gap, we used Drosophila melanogaster to investigate the sex-specific reproductive performance following short heat stress of varying intensity at different developmental stages. We found the thermal sensitivity to be higher in males than females, and to increase toward adult emergence, leading to nearly complete reproductive failure and substantially slowed recovery. These results highlight how even brief bouts of heat stress during a sensitive phase could affect population dynamics and persistence. Our findings also underscore that incorporating both sex and life stage could improve predictions of species persistence.
Collapse
Affiliation(s)
- Abhishek Meena
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | - Komal Maggu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alessio N De Nardo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sonja H Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Benjamin Eggs
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rawaa Al Toma Sho
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Amarasekare P. Pattern and Process in a Rapidly Changing World: Ideas and Approaches. Am Nat 2024; 204:361-369. [PMID: 39326058 DOI: 10.1086/731993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractScience is as dynamic as the world around us. Our ideas continually change, as do the approaches we use to study science. Few things remain invariant in this changing landscape, but a fascination with pattern and process is one that has endured throughout the history of science. Paying homage to this long-held tradition, the 2023 Vice Presidential Symposium of the American Society of Naturalists focused on the role of pattern and process in ecology and evolution. It brought together a group of early-career researchers working on topics ranging from genetic diversity in microbes to changing patterns of species interactions in the geological record. Their work spanned the taxonomic spectrum from microbes to mammals, the temporal dimension from the Cenozoic to the present, and approaches ranging from manipulative experiments to comparative approaches. In this introductory article, I discuss how these diverse topics are linked by the common thread of elucidating processes underlying patterns and how they collectively generate novel insights into diversity maintenance at different levels of organization.
Collapse
|
3
|
King KC, Schultz CB. Fecundity without nectar is insufficient for the persistence of a blue butterfly. Oecologia 2024:10.1007/s00442-024-05609-9. [PMID: 39341908 DOI: 10.1007/s00442-024-05609-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024]
Abstract
Organisms with complex life cycles undergo ecological transitions between life stages, often resulting in stage-specific resource use. The relative contribution of each stage-specific resource to vital rates influences population dynamics and subsequently whether habitats can support viable populations. In lepidopterans, survival to reproduction requires sufficient resources for immature life stages, but the extent to which resources for adults are critical to population persistence is variable. We studied Boisduval's blue butterflies (Icaricia icarioides), in a greenhouse experiment, to quantify the effect of the adult diet, nectar, on vital rates. Butterflies fed ad libitum produced 3.4 times more eggs, on average, over their lifetime and lived 6 more days relative to those which only had access to water. We used these experimental data to parameterize a population model to test if vital rates with and without nectar result in viable population growth rates. Despite individual females laying 68 eggs without nectar, we found that Boisduval's blue butterfly populations will not persist without the improved fecundity associated with nectar resources (λ < 1). In this species, although amino acids in the adult diet contributed to various improvements in fecundity, these improvements did not translate to improvements in population growth rates. Incorporating our experimental vital rates into a population model indicates that the relative abundance and quality of nectar can alter at what threshold other resource(s) are limiting the population.
Collapse
Affiliation(s)
- Kelsey C King
- School of Biological Sciences, Washington State University, Vancouver, WA, 98686, USA.
| | - Cheryl B Schultz
- School of Biological Sciences, Washington State University, Vancouver, WA, 98686, USA
| |
Collapse
|
4
|
Wang YC, Chang YW, Yang F, Gong WR, Hu J, Du YZ. A potential trade-off between reproduction and enhancement of thermotolerance in Liriomyza trifolii populations driven by thermal acclimation. J Therm Biol 2024; 125:103988. [PMID: 39366146 DOI: 10.1016/j.jtherbio.2024.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
The invasive pest, Liriomyza trifolii, poses a significant threat to ornamental and vegetable plants. It spreads rapidly and causes large-scale outbreaks with pronounced thermotolerance. In this study, we developed L. trifolii strains adapted to high temperatures (strains designated 35 and 40); these were generated from a susceptible strain (designated S) by long-term thermal acclimation to 35 °C and 40 °C, respectively. Age-stage, two-sex life tables, thermal preferences, critical thermal limits, knockdown behaviors, eclosion and survival rates as well as expression of genes encoding heat shock proteins (Hsps) were compared for the three strains. Our findings indicated that the thermotolerance of L. trifolii was enhanced after long-term thermal acclimation, which suggested an adaptive plastic response to thermal stress. A trade-off between reproduction and thermotolerance was observed under thermal stress, potentially improving survival of the population and fostering adaptionary changes. Acclimation at 35 °C improved reproductive performance and population density of L. trifolii, particularly by enhancing the fecundity of female adults and accelerating the speed of development. Although the 40 strain exhibited the highest developmental speed and greater thermotolerance, it incurred a larger reproductive cost. This study provides a theoretical framework for monitoring and controlling leafminers and understanding their evolutionary adaptation to environmental changes.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225000, China
| | - Ya-Wen Chang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225000, China.
| | - Fei Yang
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, 210036, China
| | - Jie Hu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, 210036, China
| | - Yu-Zhou Du
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225000, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
5
|
Baleba SBS, Jiang NJ, Hansson BS. Temperature-mediated dynamics: Unravelling the impact of temperature on cuticular hydrocarbon profiles, mating behaviour, and life history traits in three Drosophila species. Heliyon 2024; 10:e36671. [PMID: 39263086 PMCID: PMC11387341 DOI: 10.1016/j.heliyon.2024.e36671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
In a world grappling with climate change, understanding the enduring impact of changes in temperatures on insect adult traits is crucial. It is proposed that cold- and warm-adapted species exhibit specialized behavioural and physiological responses to their respective temperature ranges. In contrast, generalist species maintain more stable metabolic and developmental rates across a broader range of temperatures, reflecting their ability to exploit diverse thermal niches. Here, we explored this intricate response to temperature exposure in three Drosophila species: Drosophila ezoana originating in Arctic regions, D. novamexicana in arid, hot environments, and in the cosmopolitan species D. virilis. Rearing these flies at 15, 20, 25, and 30 °C revealed striking variations in their cuticular hydrocarbon (CHC) profiles, known to mediate mate recognition and prevent water loss in insects. The cold-adapted D. ezoana consistently exhibited reduced CHC levels with increasing temperatures, while the warm-adapted D. novamexicana and the cosmopolitan D. virilis displayed more nuanced responses. Additionally, we observed a significant influence of rearing temperature on the mating behaviour of these flies, where those reared at the extreme temperatures, 15 and 30 °C, exhibiting reduced mating success. Consequently, this led to a decrease in the production of adult offspring. Also, these adult offspring underwent notable alterations in life history traits, reaching adulthood more rapidly at 25 and 30 °C but with lower weight and reduced longevity. Furthermore, among these offspring, those produced by the cold-adapted D. ezoana were more vulnerable to desiccation and starvation than those from the warm-adapted D. novamexicana and the cosmopolitan D. virilis. In summary, our research demonstrates that Drosophila species from diverse ecological regions exhibit distinct responses to temperature changes, as evidenced by variations in CHC profiles, mating behaviours, fertility, and life history traits. This provides valuable insights into how environmental conditions shape the biology and ecology of insects.
Collapse
Affiliation(s)
- Steve B S Baleba
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Nan-Ji Jiang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| |
Collapse
|
6
|
Schou MF, Cornwallis CK. Adaptation to fluctuating temperatures across life stages in endotherms. Trends Ecol Evol 2024; 39:841-850. [PMID: 38902165 DOI: 10.1016/j.tree.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
Accelerating rates of climate change have intensified research on thermal adaptation. Increasing temperature fluctuations, a prominent feature of climate change, means that the persistence of many species depends on both heat and cold tolerance across the entire life cycle. In endotherms, research has focused on specific life stages, with changes in thermoregulation across life rarely being examined. Consequently, there is a need to (i) analyse how heat and cold tolerance mechanisms coevolve, and (ii) test whether antagonistic effects between heat and cold tolerance across different life stages limit thermal adaptation. Information on genes influencing heat and cold tolerance and how they are expressed through life will enable more accurate modelling of species vulnerabilities to future climatic volatility.
Collapse
Affiliation(s)
- Mads F Schou
- Department of Biology, Aarhus University, 8000 Aarhus, Denmark.
| | | |
Collapse
|
7
|
Pan MZ, Shen RC, Fu ZX, Lu ZZ, Ma BB, Liu TX. High-temperature responses of Myzus persicae and its parasitoid Aphidius gifuensis in relation to heat level, duration and developmental stage. PEST MANAGEMENT SCIENCE 2024; 80:4628-4636. [PMID: 38877352 DOI: 10.1002/ps.8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Understanding how parasitoids respond to temperature is crucial for improving biological control strategies under the context of global warming. This study examined the suitability of Myzus persicae and its parasitoid Aphidius gifuensis to varying temperature conditions, as well as the stage-specific response of A. gifuensis to high temperatures. RESULTS High temperatures had a significant impact on the both M. persicae and A. gifuensis. When exposed to 36°C, M. persicae developed more slowly and produced smaller adults compared to control, regardless of the duration of exposure (2, 4 or 6 h); additionally, the survival rate of M. persicae nymphs sharply decreased under these conditions. Exposure to 36°C for 4 h negatively impacted the development of A. gifuensis. Female parasitoids exposed to 32°C developed into smaller adults, whereas males exposed to all three temperature levels were smaller compared to control group. Female parasitoids exposed to high temperatures, regardless of the specific heat level and duration, exhibited reduced longevity and decreased fecundity. None of the parasitoids exposed to 36°C for 6 h daily developed into adults. Heat treated during early developmental stages (2 and 4 days old) had a greater influence on parasitoid development, whereas heat treatment at 4 and 6 days old had a more significant impact on its fecundity. CONCLUSION High temperatures not only directly affected the performance of A. gifuensis, but also exerted indirect effects by influencing the quality of the host aphids M. persicae. The deleterious effects of high temperature on larvae can persist into the adult stage, affecting the longevity and reproduction of adults. These findings are important for the utilization of A. gifuensis in the control of M. persicae in warming environments. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming-Zhen Pan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Managemnent, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Rui-Chun Shen
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Managemnent, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhi-Xiao Fu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Managemnent, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhao-Zhi Lu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Managemnent, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Bei-Bei Ma
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Managemnent, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Velikaneye BA, Kozak GM. Timing-dependent effects of elevated temperature on reproductive traits in the European corn borer moth. J Evol Biol 2024; 37:1076-1090. [PMID: 39037024 DOI: 10.1093/jeb/voae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Elevated temperature often has life stage-specific effects on ectotherms because thermal tolerance varies throughout ontogeny. Impacts of elevated temperature may extend beyond the exposed life stage if developmental plasticity causes early exposure to carry-over or if exposure at multiple life stages cumulatively produces effects. Reproductive traits may be sensitive to different thermal environments experienced during development, but such effects have not been comprehensively measured in Lepidoptera. In this study, we investigate how elevated temperature at different life stages alters reproduction in the European corn borer moth, Ostrinia nubilalis. We tested effects of exposure to elevated temperature (28 °C) separately or additively during larval, pupal, and adult life stages compared to control temperatures (23 °C). We found that exposure to elevated pupal and adult temperature decreased the number of egg clusters produced, but exposure limited to a single stage did not significantly impact reproductive output. Furthermore, elevated temperature during the pupal stage led to a faster transition to the adult stage and elevated larval temperature altered synchrony of adult eclosion, either by itself or combined with pupal temperature exposure. These results suggest that exposure to elevated temperature during development alters reproduction in corn borers in multiple ways, including through carry-over and additive effects. Additive effects of temperature across life stages are thought to be less common than stage-specific or carry-over effects, but our results suggest thermal environments experienced at all life stages need to be considered when predicting reproductive responses of insects to heatwaves.
Collapse
Affiliation(s)
- Brittany A Velikaneye
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| |
Collapse
|
9
|
Malod K, Bierman A, Karsten M, Manrakhan A, Weldon CW, Terblanche JS. Evidence for transient deleterious thermal acclimation in field recapture rates of an invasive tropical species, Bactrocera dorsalis (Diptera: Tephritidae). INSECT SCIENCE 2024. [PMID: 39126165 DOI: 10.1111/1744-7917.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Knowing how environmental conditions affect performance traits in pest insects is important to improve pest management strategies. It can be informative for monitoring, but also for control programs where insects are mass-reared, and field-released. Here, we investigated how adult thermal acclimation in sterile Bactrocera dorsalis affects dispersal and recapture rates in the field using a mark-release-recapture method. We also considered how current abiotic factors may affect recapture rates and interact with thermal history. We found that acclimation at 20 or 30 °C for 4 d prior to release reduced the number of recaptures in comparison with the 25 °C control group, but with no differences between groups in the willingness to disperse upon release. However, the deleterious effects of acclimation were only detectable in the first week following release, whereafter only the recent abiotic conditions explained recapture rates. In addition, we found that recent field conditions contributed more than thermal history to explain patterns of recaptures. The two most important variables affecting the number of recaptures were the maximum temperature and the average relative humidity experienced in the 24 h preceding trapping. Our results add to the handful of studies that have considered the effect of thermal acclimation on insect field performance, but notably lend support to the deleterious acclimation hypothesis among the various hypotheses that have been proposed. Finally, this study shows that there are specific abiotic conditions (cold/hot and dry) in which recaptures will be reduced, which may therefore bias estimates of wild population size.
Collapse
Affiliation(s)
- Kevin Malod
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Anandi Bierman
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Minette Karsten
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Aruna Manrakhan
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
- Citrus Research International, Mbombela, South Africa
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Powers SD, Grayson KL, Martinez E, Agosta SJ. Ontogenetic variation in metabolic rate-temperature relationships during larval development. J Exp Biol 2024; 227:jeb247912. [PMID: 38940758 DOI: 10.1242/jeb.247912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Predictive models of ectotherm responses to environmental change often rely on thermal performance data from the literature. For insects, the majority of these data focus on two traits, development rate and thermal tolerance limits. Data are also often limited to the adult stage. Consequently, predictions based on these data generally ignore other measures of thermal performance and do not account for the role of ontogenetic variation in thermal physiology across the complex insect life cycle. Theoretical syntheses for predicting metabolic rate also make similar assumptions despite the strong influence of body size as well as temperature on metabolic rate. The aim of this study was to understand the influence of ontogenetic variation on ectotherm physiology and its potential impact on predictive modeling. To do this, we examined metabolic rate-temperature (MR-T) relationships across the larval stage in a laboratory strain of the spongy moth (Lymantria dispar dispar). Routine metabolic rates (RMRs) of larvae were assayed at eight temperatures across the first five instars of the larval stage. After accounting for differences in body mass, larval instars showed significant variation in MR-T. Both the temperature sensitivity and allometry of RMR increased and peaked during the third instar, then declined in the fourth and fifth instar. Generally, these results show that insect thermal physiology does not remain static during larval ontogeny and suggest that ontogenetic variation should be an important consideration when modeling thermal performance.
Collapse
Affiliation(s)
- Sean D Powers
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA 2328, USA
| | | | - Eloy Martinez
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Salvatore J Agosta
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
11
|
Fox TP, Raka YP, Smith K, Harrison JF. Mesocosm Studies Suggest Climate Change May Release Aedes aegypti (Diptera: Culicidae) Larvae from Cold Inhibition and Enable Year-Round Development in a Desert City. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:250-261. [PMID: 39270329 DOI: 10.1086/731710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
AbstractGlobal warming trends, human-assisted transport, and urbanization have allowed poleward expansion of many tropical vector species, but the specific mechanisms responsible for thermal mediation of range changes and ecological success of invaders remain poorly understood. Aedes aegypti (Diptera: Culicidae) is a tropical mosquito currently expanding into many higher-latitude regions, including the urban desert region of Maricopa County, Arizona. Here, adult populations virtually disappear in winter and spring and then increase exponentially through summer and fall, indicating that winter conditions remain a barrier to the development of some life stages of A. aegypti. To determine whether cold limits the winter development of A. aegypti larvae in Maricopa County, we surveyed for larval abundance and tested their capacity to develop in ambient and warmed conditions. Aedes aegypti larvae were not observed in artificial aquatic habitats in winter and spring but were abundant in summer and fall, suggesting winter suppression of adults, larvae, or both. Water temperatures in winter months fluctuated strongly; larvae were usually cold paralyzed at night but active during the day. Despite daytime temperatures that allowed activity and achieving similar degree-days as warmed mesocosms, larvae reared under ambient winter conditions were unable to develop to adulthood, perhaps due to repetitive cold damage. However, warming average temperature by 1.7°C allowed many larvae to successfully develop to adults. Because daytime highs in winter will often allow adult flight, it is likely that relatively minor additional winter warming may allow A. aegypti populations to develop and reproduce year-round in Maricopa County.
Collapse
|
12
|
Egli L, Work TT. Forest harvest causes rapid changes of maternal investment strategies in ground beetles. Ecology 2024; 105:e4330. [PMID: 38802263 DOI: 10.1002/ecy.4330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Species recovery following anthropogenic disturbances will depend on adaptations in survivorship and fecundity. Life-history theory predicts increased environmental stress will result in (1) shifts in resource allocation from fecundity to body growth/maintenance and (2) increased provisioning among offspring at the cost of reproductive output. For remnant populations that persist after forest harvesting, selection mediated through anthropogenic disturbances may affect resilience to additional stressors such as climate change. We tested how rapid changes in environmental conditions affected maternal investment strategies in two ground beetle species, Pterostichus pensylvanicus and Pterostichus coracinus, by comparing fecundity and survivorship in populations from recently clear-cut and uncut habitats. Using parents drawn from clear-cut or uncut stands, we reared progeny in both common garden and reciprocal transplant experiments. In P. pensylvanicus, we found that neither lineage nor rearing habitat affected the number of eggs laid per female or survivorship of offspring. However, eggs laid by females from clear-cuts were more likely to hatch and offspring reached maturity more quickly, suggesting increased provisioning per offspring. In P. coracinus, females from clear-cuts laid more eggs, and their eggs hatched more rapidly and had greater hatching success, suggesting increased investment in overall reproductive output and increased offspring provisioning. In the reciprocal transplant, we observed significant habitat by lineage interactions on survival in P. coracinus, with survivorship increasing when progeny were reared in novel habitats. In both species, increased maternal investment among offspring was not associated with a reduction in overall reproductive output, as anticipated. However, maternal investment among offspring declined with increasing female size, implying trade-offs between increased metabolic demand and fecundity. Taken together, our work suggests that females from more stressful, clear-cut habitats increased investment in fecundity, compared to females from uncut habitats, and may compensate for larval mortality. These changes were driven by smaller individuals, suggesting that increased environmental stress can influence the relationship between female size and maternal investment strategy. Additionally, reciprocal increases in offspring survivorship in habitats other than the parents suggest that adjacent areas between unharvested and clear-cut habitat may be useful in maintaining biodiversity under future climate stressors.
Collapse
Affiliation(s)
- Lauren Egli
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Timothy T Work
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Ran W, Chen J, Zhao Y, Zhang N, Luo G, Zhao Z, Song Y. Global climate change-driven impacts on the Asian distribution of Limassolla leafhoppers, with implications for biological and environmental conservation. Ecol Evol 2024; 14:e70003. [PMID: 39026963 PMCID: PMC11257772 DOI: 10.1002/ece3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Knowing the impacts of global climate change on the habitat suitability distribution of Limassolla leafhoppers contributes to understanding the feedback of organisms on climate change from a macroecological perspective, and provides important scientific basis for protecting the ecological environment and biodiversity. However, there is limited knowledge on this aspect. Thus, our study aimed to address this gap by analyzing Asian habitat suitability and centroid shifts of Limassolla based on 19 bioclimatic variables and occurrence records. Selecting five ecological niche models with the outstanding predictive performance (Maxlike, generalized linear model, generalized additive model, random forest, and maximum entropy) along with their ensemble model from 12 models, the current habitat suitability of Limassolla and its future habitat suitability under two Shared Socio-economic Pathways (SSP1-2.6 and SSP5-8.5) in the 2050s and 2090s were predicted. The results showed that the prediction results of the five models are generally consistent. Based on ensemble model, 11 potential biodiversity hotspots with high suitability were identified. With climate change, the suitable range of Limassolla will experience both expansion and contraction. In SSP5-8.52050s, the expansion area is 118.56 × 104 km2, while the contraction area is 25.40 × 104 km2; in SSP1-2.62090s, the expansion area is 91.71 × 104 km2, and the contraction area is 26.54 × 104 km2. Furthermore, the distribution core of Limassolla will shift toward higher latitudes in the northeast direction, and the precipitation of warmest quarter was found to have the greatest impact on the distribution of Limassolla. Our research results supported our four hypotheses. Finally, this research suggests establishing ecological reserves in identified contraction to prevent habitat loss, enhancing the protection of biodiversity hotspots, and pursuing a sustainable development path with reduced emissions.
Collapse
Affiliation(s)
- Weiwei Ran
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| | - Jiajia Chen
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| | - Yuanqi Zhao
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| | - Ni Zhang
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| | - Guimei Luo
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| | - Zhibing Zhao
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification ControlGuiyangChina
- School of Food Science and EngineeringGuiyang UniversityGuiyangChina
| | - Yuehua Song
- School of Karst ScienceGuizhou Normal UniversityGuiyangChina
- State Engineering Technology Institute for Karst Desertification ControlGuiyangChina
| |
Collapse
|
14
|
Serediuk H, Jackson J, Evers SM, Paniw M. Comparative life-history responses of lacewings to changes in temperature. Ecol Evol 2024; 14:e70000. [PMID: 39026964 PMCID: PMC11257770 DOI: 10.1002/ece3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Insects play a crucial role in all ecosystems, and are increasingly exposed to higher in temperature extremes under climate change, which can have substantial effects on their abundances. However, the effects of temperature on changes in abundances or population fitness are filtered through differential responses of life-history components, such as survival, reproduction, and development, to their environment. Such differential responses, or trade-offs, have been widely studied in birds and mammals, but comparative studies on insects are largely lacking, limiting our understanding of key mechanisms that may buffer or exacerbate climate-change effects across insect species. Here, we performed a systematic literature review of the ecological studies of lacewings (Neuroptera), predatory insects that play a crucial role in ecosystem pest regulation, to investigate the impact of temperature on life cycle dynamics across species. We found quantitative information, linking stage-specific survival, development, and reproduction to temperature variation, for 62 species from 39 locations. We then performed a metanalysis calculating sensitives to temperature across life-history processes for all publications. We found that developmental times consistently decreased with temperature for all species. Survival and reproduction however showed a weaker response to temperature, and temperature sensitivities varied substantially among species. After controlling for the effect of temperature on life-history processes, the latter covaried consistently across two main axes of variation related to instar and pupae development, suggesting the presence of life-history trade-offs. Our work provides new information that can help generalize life-history responses of insects to temperature, which can then expand comparative demographic and climate-change research. We also discuss important remaining knowledge gaps, such as a better assessment of adult survival and diapause.
Collapse
Affiliation(s)
- Hanna Serediuk
- Department of Conservation Biology and Global ChangeEstación Biológica de Doñana (EBD‐CSIC)SevilleSpain
- State Museum of Natural History NASULvivUkraine
| | - John Jackson
- Department of Conservation Biology and Global ChangeEstación Biológica de Doñana (EBD‐CSIC)SevilleSpain
| | - Sanne Maria Evers
- Department of Conservation Biology and Global ChangeEstación Biológica de Doñana (EBD‐CSIC)SevilleSpain
| | - Maria Paniw
- Department of Conservation Biology and Global ChangeEstación Biológica de Doñana (EBD‐CSIC)SevilleSpain
| |
Collapse
|
15
|
Lv W, Shu Y, Wang F. Effects of short-term high temperature at different life stages on reproductive fitness in Mythimna separata (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae128. [PMID: 38836579 DOI: 10.1093/jee/toae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Extreme heat events commonly occur under climate warming. All life stages of insects may experience the occurrence of extremely high temperatures. However, the effects of short-term extreme heat events on life-history traits remain unclear in most migratory pests. Here, we investigated the biological effects of short-term heat exposure (35 °C for 4 h) at different life stages on Mythimna separata Walker (Lepidoptera: Noctuidae), a typical migratory pest. We found that the reproductive sensitivity of pupae and adults was higher than that of 3rd-instar larvae. Increasing the frequency of heat exposure decreased the reproductive performance of M. separata at all life stages. Parental short-term heat exposures could cause transgenerational damage to offspring survival and reproductive fitness when the exposure frequency reached 3 times. Our results suggest that short-term exposure to extreme temperatures could impact reproductive fitness across different life stages in M. separata. This should be taken into consideration in the population prediction of migratory pests under climate change.
Collapse
Affiliation(s)
- Weixiang Lv
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Ya Shu
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Fang Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| |
Collapse
|
16
|
Simon MW, Amarasekare P. Predicting the fundamental thermal niche of ectotherms. Ecology 2024; 105:e4289. [PMID: 38578245 PMCID: PMC11374413 DOI: 10.1002/ecy.4289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/04/2023] [Accepted: 02/01/2024] [Indexed: 04/06/2024]
Abstract
Climate warming is predicted to increase mean temperatures and thermal extremes on a global scale. Because their body temperature depends on the environmental temperature, ectotherms bear the full brunt of climate warming. Predicting the impact of climate warming on ectotherm diversity and distributions requires a framework that can translate temperature effects on ectotherm life-history traits into population- and community-level outcomes. Here we present a mechanistic theoretical framework that can predict the fundamental thermal niche and climate envelope of ectotherm species based on how temperature affects the underlying life-history traits. The advantage of this framework is twofold. First, it can translate temperature effects on the phenotypic traits of individual organisms to population-level patterns observed in nature. Second, it can predict thermal niches and climate envelopes based solely on trait response data and, hence, completely independently of any population-level information. We find that the temperature at which the intrinsic growth rate is maximized exceeds the temperature at which abundance is maximized under density-dependent growth. As a result, the temperature at which a species will increase the fastest when rare is lower than the temperature at which it will recover from a perturbation the fastest when abundant. We test model predictions using data from a naturalized-invasive interaction to identify the temperatures at which the invasive can most easily invade the naturalized's habitat and the naturalized is most likely to resist the invasive. The framework is sufficiently mechanistic to yield reliable predictions for individual species and sufficiently broad to apply across a range of ectothermic taxa. This ability to predict the thermal niche before a species encounters a new thermal environment is essential to mitigating some of the major effects of climate change on ectotherm populations around the globe.
Collapse
Affiliation(s)
- Margaret W Simon
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, Los Angeles, USA
| | - Priyanga Amarasekare
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, Los Angeles, USA
| |
Collapse
|
17
|
Verble KM, Keaveny EC, Rahman SR, Jenny MJ, Dillon ME, Lozier JD. A rapid return to normal: temporal gene expression patterns following cold exposure in the bumble bee Bombus impatiens. J Exp Biol 2024; 227:jeb247040. [PMID: 38629177 DOI: 10.1242/jeb.247040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Bumble bees are common in cooler climates and many species likely experience periodic exposure to very cold temperatures, but little is known about the temporal dynamics of cold response mechanisms following chill exposure, especially how persistent effects of cold exposure may facilitate tolerance of future events. To investigate molecular processes involved in the temporal response by bumble bees to acute cold exposure, we compared mRNA transcript abundance in Bombus impatiens workers exposed to 0°C for 75 min (inducing chill coma) and control bees maintained at a constant ambient temperature (28°C). We sequenced the 3' end of mRNA transcripts (TagSeq) to quantify gene expression in thoracic tissue of bees at several time points (0, 10, 30, 120 and 720 min) following cold exposure. Significant differences from control bees were only detectable within 30 min after the treatment, with most occurring at the 10 min recovery time point. Genes associated with gluconeogenesis and glycolysis were most notably upregulated, while genes related to lipid and purine metabolism were downregulated. The observed patterns of expression indicate a rapid recovery after chill coma, suggesting an acute differential transcriptional response during recovery from chill coma and return to baseline expression levels within an hour, with no long-term gene expression markers of this cold exposure. Our work highlights the functions and pathways important for acute cold recovery, provides an estimated time frame for recovery from cold exposure in bumble bees, and suggests that cold hardening may be less important for these heterothermic insects.
Collapse
Affiliation(s)
- Kelton M Verble
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ellen C Keaveny
- Department of Zoology & Physiology and Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82072, USA
| | | | - Matthew J Jenny
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82072, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
18
|
Ruthsatz K, Dahlke F, Alter K, Wohlrab S, Eterovick PC, Lyra ML, Gippner S, Cooke SJ, Peck MA. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations. GLOBAL CHANGE BIOLOGY 2024; 30:e17318. [PMID: 38771091 DOI: 10.1111/gcb.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Amphibians and fishes play a central role in shaping the structure and function of freshwater environments. These organisms have a limited capacity to disperse across different habitats and the thermal buffer offered by freshwater systems is small. Understanding determinants and patterns of their physiological sensitivity across life history is, therefore, imperative to predicting the impacts of climate change in freshwater systems. Based on a systematic literature review including 345 experiments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic, ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal tolerance (CTmax) and thermal acclimation capacity (acclimation response ratio, ARR) as well as the influence of the methodology used to assess these thermal traits using a conditional inference tree analysis. We found globally consistent patterns in CTmax and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and life stage as significant determinants of thermal traits. The analysis demonstrated that CTmax does not primarily depend on the climatic origin but on experimental acclimation temperature and duration, and life stage. Higher acclimation temperatures and longer acclimation times led to higher CTmax values, whereby Anuran larvae revealed a higher CTmax than older life stages. The ARR of freshwater fishes was more than twice that of amphibians. Differences in ARR between life stages were not significant. In addition to phylogenetic differences, we found that ARR also depended on acclimation duration, ramping rate, and adaptation to local temperature variability. However, the amount of data on early life stages is too small, methodologically inconsistent, and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal traits. We, therefore, propose methods to improve the robustness and comparability of CTmax/ARR data across species and life stages, which is crucial for the conservation of freshwater biodiversity under climate change.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Animal Cell and Systems Biology, Universität Hamburg, Hamburg, Germany
| | - Flemming Dahlke
- Ecology of Living Marine Resources, Universität Hamburg, Hamburg, Germany
| | - Katharina Alter
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Sylke Wohlrab
- Alfred Wegner Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mariana L Lyra
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Research on Biodiversity Dynamics and Climate Change, State University of São Paulo-UNESP, Rio Claro, Brazil
| | - Sven Gippner
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Marine Animal Ecology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
19
|
Cochrane MM, Addis BR, Lowe WH. Stage-Specific Demographic Effects of Hydrologic Variation in a Stream Salamander. Am Nat 2024; 203:E175-E187. [PMID: 38635365 DOI: 10.1086/729466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractWe lack a strong understanding of how organisms with complex life histories respond to climate variation. Many stream-associated species have multistage life histories that are likely to influence the demographic consequences of floods and droughts. However, tracking stage-specific demographic responses requires high-resolution, long-term data that are rare. We used 8 years of capture-recapture data for the headwater stream salamander Gyrinophilus porphyriticus to quantify the effects of flooding and drying magnitude on stage-specific vital rates and population growth. Drying reduced larval recruitment but increased the probability of metamorphosis (i.e., adult recruitment). Flooding reduced adult recruitment but had no effect on larval recruitment. Larval and adult survival declined with flooding but were unaffected by drying. Annual population growth rates (λ) declined with flooding and drying. Lambda also declined over the study period (2012-2021), although mean λ was 1.0 over this period. Our results indicate that G. porphyriticus populations are resilient to hydrologic variation because of compensatory effects on recruitment of larvae versus adults (i.e., reproduction vs. metamorphosis). Complex life cycles may enable this resilience to climate variation by creating opportunities for compensatory demographic responses across stages. However, more frequent and intense hydrologic variation in the latter half of this study contributed to a decline in λ over time, suggesting that increasing environmental variability poses a threat even when demographic compensation occurs.
Collapse
|
20
|
Ferguson LF, Ross PA, van Heerwaarden B. Wolbachia infection negatively impacts Drosophila simulans heat tolerance in a strain- and trait-specific manner. Environ Microbiol 2024; 26:e16609. [PMID: 38558489 DOI: 10.1111/1462-2920.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The susceptibility of insects to rising temperatures has largely been measured by their ability to survive thermal extremes. However, the capacity for maternally inherited endosymbionts to influence insect heat tolerance has been overlooked. Further, while some studies have addressed the impact of heat on traits like fertility, which can decline at temperatures below lethal thermal limits, none have considered the impact of endosymbionts. Here, we assess the impact of three Wolbachia strains (wRi, wAu and wNo) on the survival and fertility of Drosophila simulans exposed to heat stress during development or as adults. The effect of Wolbachia infection on heat tolerance was generally small and trait/strain specific. Only the wNo infection significantly reduced the survival of adult males after a heat shock. When exposed to fluctuating heat stress during development, the wRi and wAu strains reduced egg-to-adult survival but only the wNo infection reduced male fertility. Wolbachia densities of all three strains decreased under developmental heat stress, but reductions occurred at temperatures above those that reduced host fertility. These findings emphasize the necessity to account for endosymbionts and their effect on both survival and fertility when investigating insect responses to heat stress.
Collapse
Affiliation(s)
- Liam F Ferguson
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Perran A Ross
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Belinda van Heerwaarden
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Amarasekare P. Temperature-dependent dispersal and ectotherm species' distributions in a warming world. J Anim Ecol 2024; 93:428-446. [PMID: 38406823 DOI: 10.1111/1365-2656.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/12/2023] [Indexed: 02/27/2024]
Abstract
Dispersal is a crucial component of species' responses to climate warming. Warming-induced changes in species' distributions are the outcome of how temperature affects dispersal at the individual level. Yet, there is little or no theory that considers the temperature dependence of dispersal when investigating the impacts of warming on species' distributions. Here I take a first step towards filling this key gap in our knowledge. I focus on ectotherms, species whose body temperature depends on the environmental temperature, not least because they constitute the majority of biodiversity on the planet. I develop a mathematical model of spatial population dynamics that explicitly incorporates mechanistic descriptions of ectotherm life history trait responses to temperature. A novel feature of this framework is the explicit temperature dependence of all phases of dispersal: emigration, transfer and settlement. I report three key findings. First, dispersal, regardless of whether it is random or temperature-dependent, allows both tropical and temperate ectotherms to track warming-induced changes in their thermal environments and to expand their distributions beyond the lower and upper thermal limits of their respective climate envelopes. In the absence of dispersal mortality, warming does not alter these new distributional limits. Second, an analysis based solely on trait response data predicts that tropical ectotherms should be able to expand their distributions polewards to a greater degree than temperate ectotherms. Analysis of the dynamical model confirms this prediction. Tropical ectotherms have an advantage when moving to cooler climates because they experience lower within-patch and dispersal mortality, and their higher thermal optima and maximal birth rates allow them to take advantage of the warmer parts of the year. Previous theory has shown that tropical ectotherms are more successful in invading and adapting the temperate climates than vice versa. This study provides the key missing piece, by showing how temperature-dependent dispersal could facilitate both invasion and adaptation. Third, dispersal mortality does not affect the poleward expansion of ectotherm distributions. But, it prevents both tropical and temperate ectotherms from maintaining sink populations in localities that are too warm to be viable in the absence of dispersal. Dispersal mortality also affects species' abundance patterns, causing a larger decline in abundance throughout the range when species disperse randomly rather than in response to thermal habitat suitability. In this way, dispersal mortality can facilitate the evolution of dispersal modes that maximize fitness in warmer thermal environments.
Collapse
Affiliation(s)
- Priyanga Amarasekare
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
22
|
Fisher AM, Knell RJ, Price TAR, Bonsall MB. Sex ratio distorting microbes exacerbate arthropod extinction risk in variable environments. Ecol Evol 2024; 14:e11216. [PMID: 38571791 PMCID: PMC10985368 DOI: 10.1002/ece3.11216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Maternally-inherited sex ratio distorting microbes (SRDMs) are common among arthropod species. Typically, these microbes cause female-biased sex ratios in host broods, either by; killing male offspring, feminising male offspring, or inducing parthenogenesis. As a result, infected populations can experience drastic ecological and evolutionary change. The mechanism by which SRDMs operate is likely to alter their impact on host evolutionary ecology; despite this, the current literature is heavily biased towards a single mechanism of sex ratio distortion, male-killing. Furthermore, amidst the growing concerns surrounding the loss of arthropod diversity, research into the impact of SRDMs on the viability of arthropod populations is generally lacking. In this study, using a theoretical approach, we model the epidemiology of an understudied mechanism of microbially-induced sex ratio distortion-feminisation-to ask an understudied question-how do SRDMs impact extinction risk in a changing environment? We constructed an individual-based model and measured host population extinction risk under various environmental and epidemiological scenarios. We also used our model to identify the precise mechanism modulating extinction. We find that the presence of feminisers increases host population extinction risk, an effect that is exacerbated in highly variable environments. We also identified transmission rate as the dominant epidemiological trait responsible for driving extinction. Finally, our model shows that sex ratio skew is the mechanism driving extinction. We highlight feminisers and, more broadly, SRDMs as important determinants of the resilience of arthropod populations to environmental change.
Collapse
Affiliation(s)
- Adam M. Fisher
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | | | - Tom A. R. Price
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | | |
Collapse
|
23
|
Müller J, Hothorn T, Yuan Y, Seibold S, Mitesser O, Rothacher J, Freund J, Wild C, Wolz M, Menzel A. Weather explains the decline and rise of insect biomass over 34 years. Nature 2024; 628:349-354. [PMID: 37758943 DOI: 10.1038/s41586-023-06402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 07/04/2023] [Indexed: 09/29/2023]
Abstract
Insects have a pivotal role in ecosystem function, thus the decline of more than 75% in insect biomass in protected areas over recent decades in Central Europe1 and elsewhere2,3 has alarmed the public, pushed decision-makers4 and stimulated research on insect population trends. However, the drivers of this decline are still not well understood. Here, we reanalysed 27 years of insect biomass data from Hallmann et al.1, using sample-specific information on weather conditions during sampling and weather anomalies during the insect life cycle. This model explained variation in temporal decline in insect biomass, including an observed increase in biomass in recent years, solely on the basis of these weather variables. Our finding that terrestrial insect biomass is largely driven by complex weather conditions challenges previous assumptions that climate change is more critical in the tropics5,6 or that negative consequences in the temperate zone might only occur in the future7. Despite the recent observed increase in biomass, new combinations of unfavourable multi-annual weather conditions might be expected to further threaten insect populations under continuing climate change. Our findings also highlight the need for more climate change research on physiological mechanisms affected by annual weather conditions and anomalies.
Collapse
Affiliation(s)
- Jörg Müller
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany.
- Bavarian Forest National Park, Grafenau, Germany.
| | - Torsten Hothorn
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Ye Yuan
- Ecoclimatology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Sebastian Seibold
- Ecosystem Dynamics and Forest Management Research Group, School of Life Sciences, Technical University of Munich, Freising, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
- Forest Zoology, TUD Dresden University of Technology, Tharandt, Germany
| | - Oliver Mitesser
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Julia Rothacher
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Julia Freund
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Clara Wild
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Marina Wolz
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Annette Menzel
- Ecoclimatology, School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
24
|
Belitz MW, Sawyer A, Hendrick LK, Kawahara AY, Guralnick RP. Substantial urbanization-driven declines of larval and adult moths in a subtropical environment. GLOBAL CHANGE BIOLOGY 2024; 30:e17241. [PMID: 38525809 DOI: 10.1111/gcb.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Recent work has shown the decline of insect abundance, diversity and biomass, with potential implications for ecosystem services. These declines are especially pronounced in regions with high human activity, and urbanization is emerging as a significant contributing factor. However, the scale of these declines and the traits that determine variation in species-specific responses remain less well understood, especially in subtropical and tropical regions, where insect diversity is high and urban footprints are rapidly expanding. Here, we surveyed moths across an entire year in protected forested sites across an urbanization gradient to test how caterpillar and adult life stages of subtropical moths (Lepidoptera) are impacted by urbanization. Specifically, we assess how urban development affects the total biomass of caterpillars, abundance of adult moths and quantify how richness and phylogenetic diversity of macro-moths are impacted by urban development. Additionally, we explore how life-history traits condition species' responses to urban development. At the community level, we find that urban development decreases caterpillar biomass and adult moth abundance. We also find sharp declines of adult macro-moths in response to urban development across the phylogeny, leading to a decrease in species richness and phylogenetic diversity in more urban sites. Finally, our study found that smaller macro-moths are less impacted by urban development than larger macro-moths in subtropical environments, perhaps highlighting the tradeoffs of metabolic costs of urban heat favoring smaller moths over the relative benefits of dispersal for larger moths. In summary, our research underscores the far-reaching consequences of urbanization on moths and provides compelling evidence that urban forests alone may not be sufficient to safeguard biodiversity in cities.
Collapse
Affiliation(s)
- Michael W Belitz
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, USA
- Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Asia Sawyer
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Lillian K Hendrick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
Haskett H, Gill L, Spicer JI, Truebano M. The embryonic thermal environment has positive but weak effects on thermal tolerance later in life in the aquatic invertebrate Gammarus chevreuxi. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106350. [PMID: 38219380 DOI: 10.1016/j.marenvres.2024.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Recent evidence suggests that the adult phenotype is influenced by temperatures experienced in early life. However, our understanding of the extent to which the embryonic environment can modulate thermal tolerance later in life is limited, owing to the paucity of studies with appropriate experimental designs to test for this form of developmental plasticity. We investigated whether the thermal environment experienced during embryonic development affects thermal limits in later life. Embryos of the estuarine amphipod Gammarus chevreuxi were incubated until hatching to 15 °C, 20 °C and 25 °C, then reared under a common temperature. Using thermal ramping assays, we determined upper thermal limits in juveniles, four weeks post-hatch. Individuals exposed to higher temperatures during embryonic development displayed greater thermal tolerance as juveniles (acclimation response ratio ≈ 0.10-0.25 for upper lethal temperature). However, we suggest that the degree of developmental plasticity observed is limited, and will provide little benefit under future climate change scenarios.
Collapse
Affiliation(s)
- Honor Haskett
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Luke Gill
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - John I Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
26
|
Pawar S, Huxley PJ, Smallwood TRC, Nesbit ML, Chan AHH, Shocket MS, Johnson LR, Kontopoulos DG, Cator LJ. Variation in temperature of peak trait performance constrains adaptation of arthropod populations to climatic warming. Nat Ecol Evol 2024; 8:500-510. [PMID: 38273123 DOI: 10.1038/s41559-023-02301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
The capacity of arthropod populations to adapt to long-term climatic warming is currently uncertain. Here we combine theory and extensive data to show that the rate of their thermal adaptation to climatic warming will be constrained in two fundamental ways. First, the rate of thermal adaptation of an arthropod population is predicted to be limited by changes in the temperatures at which the performance of four key life-history traits can peak, in a specific order of declining importance: juvenile development, adult fecundity, juvenile mortality and adult mortality. Second, directional thermal adaptation is constrained due to differences in the temperature of the peak performance of these four traits, with these differences expected to persist because of energetic allocation and life-history trade-offs. We compile a new global dataset of 61 diverse arthropod species which provides strong empirical evidence to support these predictions, demonstrating that contemporary populations have indeed evolved under these constraints. Our results provide a basis for using relatively feasible trait measurements to predict the adaptive capacity of diverse arthropod populations to geographic temperature gradients, as well as ongoing and future climatic warming.
Collapse
Affiliation(s)
- Samraat Pawar
- Department of Life Sciences, Imperial College London, Ascot, UK.
| | - Paul J Huxley
- Department of Life Sciences, Imperial College London, Ascot, UK.
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA.
| | - Thomas R C Smallwood
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Miles L Nesbit
- Department of Life Sciences, Imperial College London, Ascot, UK
- The Pirbright Institute, Woking, UK
| | - Alex H H Chan
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Marta S Shocket
- Department of Geography, University of Florida, Gainesville, FL, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| | | | - Lauren J Cator
- Department of Life Sciences, Imperial College London, Ascot, UK.
| |
Collapse
|
27
|
Amer NR, Stoks R, Antoł A, Sniegula S. Microgeographic differentiation in thermal and antipredator responses and their carry-over effects across life stages in a damselfly. PLoS One 2024; 19:e0295707. [PMID: 38394143 PMCID: PMC10889876 DOI: 10.1371/journal.pone.0295707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 02/25/2024] Open
Abstract
Global warming and invasive species, separately or combined, can impose a large impact on the condition of native species. However, we know relatively little about how these two factors, individually and in combination, shape phenotypes in ectotherms across life stages and how this can differ between populations. We investigated the non-consumptive predator effects (NCEs) imposed by native (perch) and invasive (signal crayfish) predators experienced only during the egg stage or during both the egg and larval stages in combination with warming on adult life history traits of the damselfly Ischnura elegans. To explore microgeographic differentiation, we compared two nearby populations differing in thermal conditions and predator history. In the absence of predator cues, warming positively affected damselfly survival, possibly because the warmer temperature was closer to the optimal temperature. In the presence of predator cues, warming decreased survival, indicating a synergistic effect of these two variables on survival. In one population, predator cues from perch led to increased survival, especially under the current temperature, likely because of predator stress acclimation phenomena. While warming decreased, predator cues increased larval development time with a proportionally stronger effect of signal crayfish cues experienced during the egg stage, indicating a negative carry-over effect from egg to larva. Warming and predator cues increased mass at emergence, with the predator effect driven mainly by exposure to signal crayfish cues during the egg stage, indicating a positive carry-over effect from egg to adult. Notably, warming and predator effects were not consistent across the two studied populations, suggesting a phenotypic signal of adaptation at a microgeographic scale to thermal conditions and predator history. We also observed pronounced shifts during ontogeny from synergistic (egg and early larval stage) toward additive (late larval stage up to emergence) effects between warming and predator stress. The results point out that population- and life-stage-specific responses in life-history traits to NCEs are needed to predict fitness consequences of exposure to native and invasive predators and warming in prey at a microgeographic scale.
Collapse
Affiliation(s)
- Nermeen R. Amer
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Robby Stoks
- Department of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Andrzej Antoł
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Szymon Sniegula
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
28
|
Jensen PM, Danielsen F, Jacobsen SK, Vikstrøm T. Fair concordance between Google Trends and Danish ornithologists in the assessment of temporal trends in Danish bird populations highlights the informational value of big data. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:276. [PMID: 38366261 PMCID: PMC10873222 DOI: 10.1007/s10661-024-12439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/03/2024] [Indexed: 02/18/2024]
Abstract
The ongoing depletion of natural systems and associated biodiversity decline is of growing international concern. Climate change is expected to exacerbate anthropogenic impacts on wild populations. The scale of impact on ecosystems and ecosystem services will be determined by the impact on a multitude of species and functional groups, which due to their biology and numbers are difficult to monitor. The IPCC has argued that surveillance or monitoring is critical and proposed that monitoring systems should be developed, which not only track developments but also function as "early warning systems." Human populations are already generating large continuous datasets on multiple taxonomic groups through internet searches. These time series could in principle add substantially to current monitoring if they reflect true changes in the natural world. We here examined whether information on internet search frequencies delivered by the Danish population and captured by Google Trends (GT) appropriately informs on population trends in 106 common Danish bird species. We compared the internet search activity with independent equivalent population trend assessments from the Danish Ornithological Society (BirdLife Denmark/DOF). We find a fair concordance between the GT trends and the assessments by DOF. A substantial agreement can be obtained by omitting species without clear temporal trends. Our findings suggest that population trend proxies from internet search frequencies can be used to supplement existing wildlife population monitoring and to ask questions about an array of ecological phenomena, which potentially can be integrated into an early warning system for biodiversity under climate change.
Collapse
Affiliation(s)
- Per M Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
| | | | - Stine K Jacobsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Thomas Vikstrøm
- DOF/BirdLife Denmark, Vesterbrogade 140A, 1620, Copenhagen V, Denmark
| |
Collapse
|
29
|
Kang D, Zhao C, Sun Z, Chen G, Feng J, Zhu W, Huang Y, Zhao T. Effects of microhabitat features on the intraspecific variability of the distribution and functional traits in a highest elevational distributed lizard. Ecol Evol 2024; 14:e10902. [PMID: 38371862 PMCID: PMC10869896 DOI: 10.1002/ece3.10902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Exploring the microhabitat determinants of organisms distribution and functional traits differences can help us better understand the importance of intraspecific variations in ecological niches. Investigations on animals functional niche primarily focused on differences among species and tended to neglect the potential variability within species, despite the fact that the ecological and evolutionary importance of intraspecific variations was widely recognized. In this study, we examined the influence of microhabitat features on the intraspecific variability of the distribution and functional traits of a highest elevational distributed lizard species Phrynocephalus erythrurus. To do so, field work was conducted between July and August, 2020 and August and September, 2021 in Namtso watershed in central Xizang, China. Specifically, 11 transects were sampled for P. erythrurus individuals, which were measured for a set of 10 morphological traits. Moreover, 11 microhabitat variables that potentially affect the distribution of lizards were also measured for each transect. Our results indicated that juveniles, males, and females exhibited different functional traits, allowing them to occupy distinct functional space. The distribution of juveniles, males, and females was determined by different microhabitat variables such as illuminance and air temperature. More importantly, these variables also determined the intraspecific functional traits variability in this lizard species. All of these results supported previous claims that intraspecific traits variation should be incorporated into functional ecological studies, and diverse microhabitat features should be conserved to maintain high intraspecific diversity. Future studies can focus on the food analysis to explore the linkage between functional traits and resources utilization within animal populations.
Collapse
Affiliation(s)
- Da Kang
- College of Fisheries, Southwest UniversityChongqingChina
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological ServicesSouthwest Forestry UniversityKunmingChina
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of Biology, Chinese Academy of SciencesChengduChina
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)College of Life Science, China West Normal UniversityNanchongSichuan ProvinceChina
| | - Chunlin Zhao
- School of Biological and Chemical Engineering (School of Agriculture)Panzhihua UniversityPanzhihuaChina
| | - Zijian Sun
- College of Fisheries, Southwest UniversityChongqingChina
| | - Guozhu Chen
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological ServicesSouthwest Forestry UniversityKunmingChina
| | - Jianyi Feng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of Biology, Chinese Academy of SciencesChengduChina
| | - Wenbo Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of Biology, Chinese Academy of SciencesChengduChina
| | - Yan Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)College of Life Science, China West Normal UniversityNanchongSichuan ProvinceChina
| | - Tian Zhao
- College of Fisheries, Southwest UniversityChongqingChina
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological ServicesSouthwest Forestry UniversityKunmingChina
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of Biology, Chinese Academy of SciencesChengduChina
| |
Collapse
|
30
|
Abarca M, Parker AL, Larsen EA, Umbanhowar J, Earl C, Guralnick R, Kingsolver J, Ries L. How development and survival combine to determine the thermal sensitivity of insects. PLoS One 2024; 19:e0291393. [PMID: 38289939 PMCID: PMC10826953 DOI: 10.1371/journal.pone.0291393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/28/2023] [Indexed: 02/01/2024] Open
Abstract
Thermal performance curves (TPCs) depict variation in vital rates in response to temperature and have been an important tool to understand ecological and evolutionary constraints on the thermal sensitivity of ectotherms. TPCs allow for the calculation of indicators of thermal tolerance, such as minimum, optimum, and maximum temperatures that allow for a given metabolic function. However, these indicators are computed using only responses from surviving individuals, which can lead to underestimation of deleterious effects of thermal stress, particularly at high temperatures. Here, we advocate for an integrative framework for assessing thermal sensitivity, which combines both vital rates and survival probabilities, and focuses on the temperature interval that allows for population persistence. Using a collated data set of Lepidopteran development rate and survival measured on the same individuals, we show that development rate is generally limiting at low temperatures, while survival is limiting at high temperatures. We also uncover differences between life stages and across latitudes, with extended survival at lower temperatures in temperate regions. Our combined performance metric demonstrates similar thermal breadth in temperate and tropical individuals, an effect that only emerges from integration of both development and survival trends. We discuss the benefits of using this framework in future predictive and management contexts.
Collapse
Affiliation(s)
- Mariana Abarca
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Anna L. Parker
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina United States of America
| | - Elise A. Larsen
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - James Umbanhowar
- Department of Biology, Georgetown University, Washington, District of Columbia, United States of America
| | - Chandra Earl
- Department of Natural Sciences, Bernice Pauahi Bishop Museum, Honolulu, Hawaii, United States of America
| | - Robert Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
| | - Joel Kingsolver
- Department of Biology, Georgetown University, Washington, District of Columbia, United States of America
| | - Leslie Ries
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
31
|
Merckx T, Nielsen ME, Kankaanpää T, Kadlec T, Yazdanian M, Kivelä SM. Continent-wide parallel urban evolution of increased heat tolerance in a common moth. Evol Appl 2024; 17:e13636. [PMID: 38283598 PMCID: PMC10810253 DOI: 10.1111/eva.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024] Open
Abstract
Urbanization and its urban-heat-island effect (UHI) have expanding footprints worldwide. The UHI means that urban habitats experience a higher mean and more frequent extreme high temperatures than rural habitats, impacting the ontogeny and resilience of urban biodiversity. However, many organisms occupy different microhabitats during different life stages and thus may experience the UHI differently across their development. While evolutionary changes in heat tolerance in line with the UHI have been demonstrated, it is unknown whether such evolutionary responses can vary across development. Here, using common-garden-reared Chiasmia clathrata moths from urban and rural populations from three European countries, we tested for urban evolution of heat shock tolerance in two life stages: larvae and adults. Our results indicate widespread urban evolution of increased heat tolerance in the adult stage only, suggesting that the UHI may be a stronger selective agent in adults. We also found that the difference in heat tolerance between urban and rural populations was similar to the difference between Mid- and North-European regions, suggesting similarity between adaptation to the UHI and natural, latitudinal temperature variation. Our observations incentivize further research to quantify the impact of these UHI adaptations on fitness during urbanization and climate change, and to check whether life-stage-specific adaptations in heat tolerance are typical of other ectothermic species that manage to survive in urbanized settings.
Collapse
Affiliation(s)
- Thomas Merckx
- WILD, Biology DepartmentVrije Universiteit BrusselBrusselsBelgium
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Matthew E. Nielsen
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
- Faculty 2 Biology/ChemistryUniversity of BremenBremenGermany
| | | | - Tomáš Kadlec
- Department of EcologyCzech University of Life Sciences PraguePragueCzech Republic
| | | | - Sami M. Kivelä
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| |
Collapse
|
32
|
Davidson AT, Stunkle CR, Armstrong JT, Hamman EA, McCoy MW, Vonesh JR. Warming and top-down control of stage-structured prey: Linking theory to patterns in natural systems. Ecology 2024; 105:e4213. [PMID: 38029361 DOI: 10.1002/ecy.4213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/01/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Warming has broad and often nonlinear impacts on organismal physiology and traits, allowing it to impact species interactions like predation through a variety of pathways that may be difficult to predict. Predictions are commonly based on short-term experiments and models, and these studies often yield conflicting results depending on the environmental context, spatiotemporal scale, and the predator and prey species considered. Thus, the accuracy of predicted changes in interaction strength, and their importance to the broader ecosystems they take place in, remain unclear. Here, we attempted to link one such set of predictions generated using theory, modeling, and controlled experiments to patterns in the natural abundance of prey across a broad thermal gradient. To do so, we first predicted how warming would impact a stage-structured predator-prey interaction in riverine rock pools between Pantala spp. dragonfly nymph predators and Aedes atropalpus mosquito larval prey. We then described temperature variation across a set of hundreds of riverine rock pools (n = 775) and leveraged this natural gradient to look for evidence for or against our model's predictions. Our model's predictions suggested that warming should weaken predator control of mosquito larval prey by accelerating their development and shrinking the window of time during which aquatic dragonfly nymphs could consume them. This was consistent with data collected in rock pool ecosystems, where the negative effects of dragonfly nymph predators on mosquito larval abundance were weaker in warmer pools. Our findings provide additional evidence to substantiate our model-derived predictions while emphasizing the importance of assessing similar predictions using natural gradients of temperature whenever possible.
Collapse
Affiliation(s)
- Andrew T Davidson
- Department of Integrative Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - C Ryland Stunkle
- Department of Integrative Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Joshua T Armstrong
- Department of Integrative Life Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Elizabeth A Hamman
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
| | - Michael W McCoy
- Department of Biological Sciences, Florida Atlantic University, Fort Pierce, Florida, USA
| | - James R Vonesh
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
33
|
Botsch JC, Zaveri AN, Nell LA, McCormick AR, Book KR, Phillips JS, Einarsson Á, Ives AR. Disentangling the drivers of decadal body size decline in an insect population. GLOBAL CHANGE BIOLOGY 2024; 30:e17014. [PMID: 37943090 DOI: 10.1111/gcb.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/10/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
While climate warming is widely predicted to reduce body size of ectotherms, evidence for this trend is mixed. Body size depends not only on temperature but also on other factors, such as food quality and intraspecific competition. Because temperature trends or other long-term environmental factors may affect population size and food sources, attributing trends in average body size to temperature requires the separation of potentially confounding effects. We evaluated trends in the body size of the midge Tanytarsus gracilentus and potential drivers (water temperature, population size, and food quality) between 1977 and 2015 at Lake Mývatn, Iceland. Although temperatures increased at Mývatn over this period, there was only a slight (non-significant) decrease in midge adult body size, contrary to theoretical expectations. Using a state-space model including multiple predictors, body size was negatively associated with both water temperature and midge population abundance, and it was positively associated with 13 C enrichment of midges (an indicator of favorable food conditions). The magnitude of these effects were similar, such that simultaneous changes in temperature, abundance, and carbon stable isotopic signature could counteract each other in the long-term body size trend. Our results illustrate how multiple factors, all of which could be influenced by global change, interact to affect average ectotherm body size.
Collapse
Affiliation(s)
- Jamieson C Botsch
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aayush N Zaveri
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lucas A Nell
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amanda R McCormick
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - K Riley Book
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph S Phillips
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Árni Einarsson
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
- Mývatn Research Station, Skútustaðir, Iceland
| | - Anthony R Ives
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
34
|
Earls KN, Campbell JB, Rinehart JP, Greenlee KJ. Effects of temperature on metabolic rate during metamorphosis in the alfalfa leafcutting bee. Biol Open 2023; 12:bio060213. [PMID: 38156711 PMCID: PMC10805150 DOI: 10.1242/bio.060213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Spring conditions, especially in temperate regions, may fluctuate abruptly and drastically. Environmental variability can expose organisms to temperatures outside of their optimal thermal ranges. For ectotherms, sudden changes in temperature may cause short- and long-term physiological effects, including changes in respiration, morphology, and reproduction. Exposure to variable temperatures during active development, which is likely to occur for insects developing in spring, can cause detrimental effects. Using the alfalfa leafcutting bee, Megachile rotundata, we aimed to determine if oxygen consumption could be measured using a new system and to test the hypothesis that female and male M. rotundata have a thermal performance curve with a wide optimal range. Oxygen consumption of M. rotundata pupae was measured across a large range of temperatures (6-48°C) using an optical oxygen sensor in a closed respirometry system. Absolute and mass-specific metabolic rates were calculated and compared between bees that were extracted from their brood cells and those remaining in the brood cell to determine whether pupae could be accurately measured inside their brood cells. The metabolic response to temperature was non-linear, which is an assumption of a thermal performance curve; however, the predicted negative slope at higher temperatures was not observed. Despite sexual dimorphism in body mass, sex differences only occurred in mass-specific metabolic rates. Higher metabolic rates in males may be attributed to faster development times, which could explain why there were no differences in absolute metabolic rate measurements. Understanding the physiological and ecological effects of thermal environmental variability on M. rotundata will help to better predict their response to climate change.
Collapse
Affiliation(s)
- Kayla N. Earls
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jacob B. Campbell
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Joseph P. Rinehart
- Edward T. Schafer Agricultural Research Center, US Department of Agriculture/Agricultural Research Station, Fargo, ND 58102,USA
| | - Kendra J. Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
35
|
Johnson CA, Ren R, Buckley LB. Temperature Sensitivity of Fitness Components across Life Cycles Drives Insect Responses to Climate Change. Am Nat 2023; 202:753-766. [PMID: 38033177 DOI: 10.1086/726896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractThermal performance curves (TPCs) are increasingly used as a convenient approach to predict climate change impacts on ectotherms that accounts for organismal thermal sensitivity; however, directly applying TPCs to temperature data to estimate fitness has yielded contrasting predictions depending on assumptions regarding climate variability. We compare direct application of TPCs to an approach integrating TPCs for different fitness components (e.g., per capita birth rate, adult life span) across ectotherm life cycles into a population dynamic model, which we independently validated with census data and applied to hemipteran insect populations across latitude. The population model predicted that climate change will reduce insect fitness more at higher latitudes due to its effects on survival but will reduce net reproductive rate more at lower latitudes due to its effects on fecundity. Directly applying TPCs underestimated climate change impacts on fitness relative to incorporating the TPCs into the population model due to simplifying survival dynamics across the life cycle. The population model predicted that climate change will reduce mean insect density and increase population variability at higher latitudes via reduced survival, despite faster development and a longer activity period. Our study highlights the importance of considering how multiple fitness components respond to climate variability across the life cycle to better understand and anticipate the ecological consequence of climate change.
Collapse
|
36
|
Ardelan A, Tsai A, Will S, McGuire R, Amarasekare P. Increase in heat tolerance following a period of heat stress in a naturally occurring insect species. J Anim Ecol 2023; 92:2039-2051. [PMID: 37667662 DOI: 10.1111/1365-2656.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/28/2023] [Indexed: 09/06/2023]
Abstract
Climate warming is the defining environmental crisis of the 21st century. Elucidating whether organisms can adapt to rapidly changing thermal environments is therefore a crucial research priority. We investigated warming effects on a native Hemipteran insect (Murgantia histrionica) that feeds on an endemic plant species (Isomeris arborea) of the California coastal sage scrub. Experiments conducted in 2009 quantified the temperature responses of juvenile maturation rates and stage-specific and cumulative survivorship. The intervening decade has seen some of the hottest years ever recorded, with increasing mean temperatures accompanied by an increase in the frequency of hot extremes. Experiments repeated in 2021 show a striking change in the bugs' temperature responses. In 2009, no eggs developed past the second nymphal stage at 33°C. In 2021, eggs developed into reproductive adults at 33°C. Upper thermal limits for maturation and survivorship have increased, along with a decrease in mortality risk with increasing age and temperature, and a decrease in the temperature sensitivity of mortality with increasing age. While we cannot exclude the possibility that other environmental factors occurring in concert could have affected our findings, the fact that all observed trait changes are in the direction of greater heat tolerance suggests that consistent exposure to extreme heat stress may at least be partially responsible for these changes. Harlequin bugs belong to the suborder Heteroptera, which contains a number of economically important pests, biological control agents and disease carriers. Their differential success in withstanding warming compared to beneficial holometabolous insects such as pollinators may exacerbate the decline of beneficial insects due to other causes (e.g. pollution and pesticides) with potentially serious consequences on both biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Andre Ardelan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Anne Tsai
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Sophia Will
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Rosa McGuire
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Priyanga Amarasekare
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
37
|
Ashe‐Jepson E, Hayes MP, Hitchcock GE, Wingader K, Turner EC, Bladon AJ. Day-flying lepidoptera larvae have a poorer ability to thermoregulate than adults. Ecol Evol 2023; 13:e10623. [PMID: 37854314 PMCID: PMC10580006 DOI: 10.1002/ece3.10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Changes to ambient temperatures under climate change may detrimentally impact small ectotherms that rely on their environment for thermoregulation; however, there is currently a limited understanding of insect larval thermoregulation. As holometabolous insects, Lepidoptera differ in morphology, ecology and behaviour across the life cycle, and so it is likely that adults and larvae differ in their capacity to thermoregulate. In this study, we investigated the thermoregulatory capacity (buffering ability) of 14 species of day-flying Lepidoptera, whether this is influenced by body length or gregariousness, and whether it differs between adult and larval life stages. We also investigated what thermoregulation mechanisms are used: microclimate selection (choosing locations with a particular temperature) or behavioural thermoregulation (controlling temperature through other means, such as basking). We found that Lepidoptera larvae differ in their buffering ability between species and body lengths, but gregariousness did not influence buffering ability. Larvae are worse at buffering themselves against changes in air temperature than adults. Therefore Lepidoptera may be more vulnerable to adverse temperature conditions during their larval life stage. Adults and larvae rely on different thermoregulatory mechanisms; adults primarily use behavioural thermoregulation, whereas larvae use microclimate selection. This implies that larvae are highly dependent on the area around their foodplant for effective thermoregulation. These findings have implications for the management of land and species, for example, highlighting the importance of creating and preserving microclimates and vegetation complexity surrounding Lepidoptera foodplants for larval thermoregulation under future climate change.
Collapse
Affiliation(s)
| | | | - Gwen E. Hitchcock
- The Wildlife Trust for Bedfordshire, Cambridgeshire and NorthamptonshireCambridgeUK
| | | | | | | |
Collapse
|
38
|
Daňková K, Nicholas S, Nordström K. Temperature during pupal development affects hoverfly developmental time, adult life span, and wing length. Ecol Evol 2023; 13:e10516. [PMID: 37881229 PMCID: PMC10597744 DOI: 10.1002/ece3.10516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/25/2023] [Accepted: 08/29/2023] [Indexed: 10/27/2023] Open
Abstract
Hoverflies (Diptera, Syrphidae) are cosmopolitan, generalist flower visitors and among the most important pollinators after bees and bumblebees. The dronefly Eristalis tenax can be found in temperate and continental climates across the globe, often synanthropically. Eristalis tenax pupae of different generations and different climate zones are thus exposed to vastly different temperatures. In many insects, the ambient temperature during the pupal stage affects development, adult size, and survival; however, the effect of developmental temperature on these traits in hoverflies is comparatively poorly understood. We here reared E. tenax pupae at different temperatures, from 10°C to 25°C, and quantified the effect on adult hoverflies. We found that pupal rearing at 17°C appeared to be optimal, with high eclosion rates, longer wings, and increased adult longevity. Rearing temperatures above or below this optimum led to decreased eclosion rates, wing size, and adult survival. Similar thermal dependence has been observed in other insects. We found that rearing temperature had no significant effect on locomotor activity, coloration or weight, despite evidence of strong sexual dimorphism for each of these traits. Our findings are important as hoverflies are key pollinators, and understanding the effects of developmental temperature could potentially be useful for horticulture.
Collapse
Affiliation(s)
- Klára Daňková
- Flinders Health and Medical Research InstituteFlinders UniversityAdelaideSouth AustraliaAustralia
- Department of Zoology, Faculty of ScienceCharles UniversityPraha 2Czech Republic
| | - Sarah Nicholas
- Flinders Health and Medical Research InstituteFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Karin Nordström
- Flinders Health and Medical Research InstituteFlinders UniversityAdelaideSouth AustraliaAustralia
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
39
|
Medina-Báez OA, Lenard A, Muzychuk RA, da Silva CRB, Diamond SE. Life cycle complexity and body mass drive erratic changes in climate vulnerability across ontogeny in a seasonally migrating butterfly. CONSERVATION PHYSIOLOGY 2023; 11:coad058. [PMID: 37547363 PMCID: PMC10401068 DOI: 10.1093/conphys/coad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Physiological traits are often used for vulnerability assessments of organismal responses to climate change. Trait values can change dramatically over the life cycle of organisms but are typically assessed at a single developmental stage. Reconciling ontogenetic changes in physiological traits with vulnerability assessments often reveals early life-stage vulnerabilities. The degree to which ontogenetic changes in physiological traits are due to changes in body mass over development versus stage-specific responses determines the degree to which mass can be used as a proxy for vulnerability. Here, we use the painted lady butterfly, Vanessa cardui, to test ontogenetic changes in two physiological traits, the acute thermal sensitivity of routine metabolic rate (RMR Q10) and the critical thermal maximum (CTmax). RMR Q10 generally followed ontogenetic changes in body mass, with stages characterized by smaller body mass exhibiting lower acute thermal sensitivity. However, CTmax was largely decoupled from ontogenetic changes in body mass. In contrast with trends from other studies showing increasing vulnerability among progressively earlier developmental stages, our study revealed highly erratic patterns of vulnerability across ontogeny. Specifically, we found the lowest joint-trait vulnerability (both RMR Q10 and CTmax) in the earliest developmental stage we tested (3rd instar larvae), the highest vulnerabilities in the next two developmental stages (4th and 5th instar larvae), and reduced vulnerability into the pupal and adult stages. Our study supports growing evidence of mechanistic decoupling of physiology across developmental stages and suggests that body mass is not a universal proxy for all physiological trait indicators of climate vulnerability.
Collapse
Affiliation(s)
- Osmary A Medina-Báez
- Corresponding author: Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA. Tel: 1-216-368-0699.
| | - Angie Lenard
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
| | - Rut A Muzychuk
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
| | - Carmen R B da Silva
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton 3800, Australia
- College of Science and Engineering, Flinders University, Anchor Court, Bedford Park 5042, South Australia, Australia
| | - Sarah E. Diamond
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
| |
Collapse
|
40
|
Laird‐Hopkins BC, Ashe‐Jepson E, Basset Y, Arizala Cobo S, Eberhardt L, Freiberga I, Hellon J, Hitchcock GE, Kleckova I, Linke D, Lamarre GPA, McFarlane A, Savage AF, Turner EC, Zamora AC, Sam K, Bladon AJ. Thermoregulatory ability and mechanism do not differ consistently between neotropical and temperate butterflies. GLOBAL CHANGE BIOLOGY 2023; 29:4180-4192. [PMID: 37315654 PMCID: PMC10946725 DOI: 10.1111/gcb.16797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023]
Abstract
Climate change is a major threat to species worldwide, yet it remains uncertain whether tropical or temperate species are more vulnerable to changing temperatures. To further our understanding of this, we used a standardised field protocol to (1) study the buffering ability (ability to regulate body temperature relative to surrounding air temperature) of neotropical (Panama) and temperate (the United Kingdom, Czech Republic and Austria) butterflies at the assemblage and family level, (2) determine if any differences in buffering ability were driven by morphological characteristics and (3) used ecologically relevant temperature measurements to investigate how butterflies use microclimates and behaviour to thermoregulate. We hypothesised that temperate butterflies would be better at buffering than neotropical butterflies as temperate species naturally experience a wider range of temperatures than their tropical counterparts. Contrary to our hypothesis, at the assemblage level, neotropical species (especially Nymphalidae) were better at buffering than temperate species, driven primarily by neotropical individuals cooling themselves more at higher air temperatures. Morphology was the main driver of differences in buffering ability between neotropical and temperate species as opposed to the thermal environment butterflies experienced. Temperate butterflies used postural thermoregulation to raise their body temperature more than neotropical butterflies, probably as an adaptation to temperate climates, but the selection of microclimates did not differ between regions. Our findings demonstrate that butterfly species have unique thermoregulatory strategies driven by behaviour and morphology, and that neotropical species are not likely to be more inherently vulnerable to warming than temperate species.
Collapse
Affiliation(s)
- Benita C. Laird‐Hopkins
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Smithsonian Tropical Research InstitutePanama CityPanama
| | | | - Yves Basset
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Smithsonian Tropical Research InstitutePanama CityPanama
- Maestria de EntomologiaUniversity of PanamaPanama CityPanama
| | | | | | - Inga Freiberga
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Josh Hellon
- Wildlife Trust of Bedfordshire, Cambridgeshire, and NorthamptonshireCambourneUK
| | - Gwen E. Hitchcock
- Wildlife Trust of Bedfordshire, Cambridgeshire, and NorthamptonshireCambourneUK
| | - Irena Kleckova
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Daniel Linke
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Greg P. A. Lamarre
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Alex McFarlane
- Smithsonian Tropical Research InstitutePanama CityPanama
| | | | | | | | - Katerina Sam
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | | |
Collapse
|
41
|
Azevedo KEX, Magalhães DM, de Andrade Moral R, Bento JMS. Weathering the hunt: The role of barometric pressure in predator insects' foraging behaviour. Ecol Evol 2023; 13:e10416. [PMID: 37575593 PMCID: PMC10412439 DOI: 10.1002/ece3.10416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
Abiotic factors strongly influence ecological interactions and the spatial distribution of organisms. Despite the essential role of barometric pressure, its influence on insect behaviour remains poorly understood, particularly in predators. The effect of barometric pressure variation can significantly impact biological control programs involving entomophagous insects, as they must efficiently allocate time and energy to search for prey in challenging environments. We investigated how predatory insects from different taxonomic groups (Coleoptera, Dermaptera and Neuroptera) adapt their foraging behaviour in response to variations in barometric pressure (low, medium and high). We also examined the response of different life stages to changes in pressure regimes during foraging activities. Our results showed that the searching time of Doru luteipes (Dermaptera: Forficulidae) was faster in a favourable high-pressure regime, whereas Chrysoperla externa (Neuroptera: Chrysopidae) and Eriopis connexa (Coleoptera: Coccinellidae) had similar searching times under varying pressure regimes. Although no differences in prey feeding time were observed among the studied species, the consumption rate was influenced by low barometric pressure leading to a decrease in the number of preyed eggs. Moreover, we provide novel insights into how hemimetabolous (D. luteipes) and holometabolous (E. connexa) species at different life stages respond to barometric pressure. Doru luteipes nymphs and adults had similar consumption rates across all pressure regimes tested, whereas E. connexa larvae consumed fewer eggs under low barometric pressure, but adults were unaffected. This highlights the importance of investigating how abiotic factors affect insects foraging efficiency and predator-prey interactions. Such studies are especially relevant in the current context of climate change, as even subtle changes in abiotic factors can have strong effects on insect behaviour. Barometric pressure is a key meteorological variable that serve as a warning signal for insects to seek shelter and avoid exposure to weather events that could potentially increase their mortality. Understanding the effects of barometric pressure on predatory insects' behaviour can help us develop more effective pest management strategies and promote the resilience of agroecosystems. We provide new insights into the complex relationship between barometric pressure and predator-prey interactions.
Collapse
Affiliation(s)
- Kamila E. X. Azevedo
- Department of Entomology and Acarology, “Luiz de Queiroz” College of AgricultureUniversity of São PauloPiracicabaBrazil
| | - Diego M. Magalhães
- Department of Entomology and Acarology, “Luiz de Queiroz” College of AgricultureUniversity of São PauloPiracicabaBrazil
| | | | - José Maurício S. Bento
- Department of Entomology and Acarology, “Luiz de Queiroz” College of AgricultureUniversity of São PauloPiracicabaBrazil
| |
Collapse
|
42
|
Richard R, Zhang YK, Hung KW. Thermal dependence of Daphnia life history reveals asymmetries between key vital rates. J Therm Biol 2023; 115:103653. [PMID: 37453218 DOI: 10.1016/j.jtherbio.2023.103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Temperature variation affects virtually every aspect of ectotherms' ecological performance, such as their foraging rate, reproduction, and survival. Although these changes influence what happens at higher levels of organizations, such as populations and communities, qualitative changes in dynamics usually require some degree of asymmetry between key vital rates, i.e. that different vital rates, such as growth, development, fecundity and mortality rates, respond differently to temperature. In order to identify possible asymmetries among vital rates and/or life stages, we characterized the thermal response of individuals a clone of Daphnia sinensis, drawn from a high-mountain environment in Taiwan, and examined the temperature dependence of growth, maturation, reproduction, and mortality rates, as well as fitness measures (r and R0) at eight temperatures. Daphnia sinensis was able to maintain reproductive success over a broad range of temperatures, much wider than the one experienced in its environment. However, negative effects of temperature were perceptible at temperatures much lower than the highest one at which they can achieve reproductive success. Adult mortality greatly increased for temperatures above 23 °C, and other vital rates started to decelerate, resulting in a large drop in lifetime reproductive success. This finding implies that D. sinensis may be able to persist over a wide range of temperatures, but also that it may become more sensitive to the detrimental effect of species interactions at increased temperatures. Different vital rates responded relatively similarly at low temperatures, but the degree of asymmetry among these rates was much more pronounced at higher temperatures. In particular, rates associated with adult performance decelerated more strongly than juveniles' rates. These findings indicate that elevated temperatures affect the balance between juvenile and adult performance, which is known to have a crucial role in Daphnia population dynamics. We discuss the implications of these results for the dynamics of structured populations.
Collapse
Affiliation(s)
- Romain Richard
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan.
| | - Yi-Kuan Zhang
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Kuan-Wei Hung
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| |
Collapse
|
43
|
Li MJ, Zhang B, Chen GH, Zhou SW, Liu JH, Lu M, Zhang JL, Yang SW, Zhang XM. Effects of short-term extreme temperature treatment on the development and reproductive capacity of Encarsia formosa. Front Physiol 2023; 14:1187743. [PMID: 37389122 PMCID: PMC10304823 DOI: 10.3389/fphys.2023.1187743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
Encarsia formosa is a natural enemy of the invasive pest Bemisia tabaci and is known to be a dominant parasitic. The frequency and magnitude of climate extremes, particularly temperature extremes, have increased, which has put insect populations at risk. However, the effects of temperature extremes on E. formosa are not well understood. To examine the impact of short-term extreme temperature exposure on the development and reproduction of E. formosa, eggs, larvae, pupae, and adults were exposed to high/low temperature treatments (HLT25, HLT50, LLT25, and LLT50). Our findings indicate that the pupal stage of E. formosa exhibited the strongest tolerance to both heat and cold, while adults exhibited a weaker tolerance. The shortest egg-to-adult development period of 12.65 days was observed in E. formosa exposed to HLT50 treatment during the egg-larval stage. The parasitism peak of the adult stage was delayed by 1-6 days after exposure to extreme temperatures during the egg-larval stage. Conversely, the parasitism peak was advanced by 1-3 days after exposure to extreme temperatures during the pupal and adult stages. The eclosion rate, total parasitism, eclosion rate of the F1 generation, and adult longevity of the F1 generation were lower in the treatment groups than in the control groups. The F1 generation's development period was prolonged to 15.49 and 15.19 days after exposure to HLT25 and HLT50 treatments, respectively, during the egg-larval stage. The F1 generation's development period was shortened to 13.33 days after exposure to LLT50 treatment during the pupal stage. Male individuals appeared in the F1 generation after exposure to HLT50 treatment during the pupal stage, with females accounting for only 56.38%. Our results demonstrate that short-term exposure to extreme temperatures has detrimental effects on the growth and reproduction of E. formosa. In field biocontrol against E. formosa, the release of E. formosa should be avoided as much as possible when the ambient temperature is higher than 35°C or lower than 0°C. During extreme temperature conditions, timely supplementation and release of E. formosa population, along with ventilation and cooling in greenhouse facilities during summer, are necessary for better pest control efficacy.
Collapse
Affiliation(s)
- Ming-Jiang Li
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- Yunnan Yuntianhua Co., Ltd., Kunming, Yunnan, China
| | - Bo Zhang
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Guo-Hua Chen
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shun-Wen Zhou
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ji-Huan Liu
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Mei Lu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Jin-Long Zhang
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shao-Wu Yang
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agronomy and Life Sciences, Kunming University, Kunming, China
| | - Xiao-Ming Zhang
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
44
|
Bai X, Wang XJ, Ma CS, Ma G. Heat-avoidance behavior associates with thermal sensitivity rather than tolerance in aphid assemblages. J Therm Biol 2023; 114:103550. [PMID: 37344023 DOI: 10.1016/j.jtherbio.2023.103550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/23/2023]
Abstract
How to predict animals' heat-avoidance behaviors is critical since behavior stands the first line for animals dealing with frequent heat events under ongoing climate warming. However, the discrepancy between the scarcity of research on heat-avoidance behaviors and the commonness of eco-physiological data for thermal tolerance and for thermal sensitivity such as the temperature-dependent survival time makes it difficult to link physiological thermal traits to heat-avoidance behavior. Aphids usually suck plant sap on a fixed site on the host plants at moderate temperatures, but they will leave and seek cooler feeding sites under stressful temperatures. Here we take the cereal aphid assemblages comprising different species with various development stages as a model system. We tested the hypotheses that heat tolerance (critical thermal maximum, CTmax) or heat sensitivity (temperature-dependent declining rate of survival time, similarly hereinafter) would associate with the temperature at which aphid activate heat-avoidance behavior. Specifically, we hypothesized the aphids with less heat tolerance or greater heat sensitivity would take a lower heat risk by leaving the host plant earlier. By mimicking the linear increase in ambient temperature during the daytime, we measured the CTmax and the heat-avoidance temperature (HAT, at which aphids leave the host plant to find cooler places) to understand their heat tolerance and heat-avoidance behavior. Then, we tested the survival time of aphids at different temperatures and calculated the slope of survival time declining with temperature to assess their heat sensitivity (HS). Finally, we examined the relationships between CTmax and HAT and between HS and HAT to understand if the heat-avoidance behavior associates with heat tolerance or with heat sensitivity. The results showed that HS and HAT had a strong correlation, with more heat sensitive individuals displayed lower HAT. By contrast, CTmax and HAT had a weak correlation. Our results thus provide evidence that heat sensitivity is a more reliable indicator than thermal tolerance linking with the heat-avoidance behavior in the aphid assemblages. Most existing studies use the indexes related to thermal tolerance to predict warming impacts. Our findings highlight the urgency to incorporate thermal sensitivity when predicting animal responses to climate change.
Collapse
Affiliation(s)
- Xue Bai
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue-Jing Wang
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
45
|
Twardochleb LA, Zarnetske PL, Klausmeier CA. Life-history responses to temperature and seasonality mediate ectotherm consumer-resource dynamics under climate warming. Proc Biol Sci 2023; 290:20222377. [PMID: 37122251 PMCID: PMC10130723 DOI: 10.1098/rspb.2022.2377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Climate warming is altering life cycles of ectotherms by advancing phenology and decreasing generation times. Theoretical models provide powerful tools to investigate these effects of climate warming on consumer-resource population dynamics. Yet, existing theory primarily considers organisms with simplified life histories in constant temperature environments, making it difficult to predict how warming will affect organisms with complex life cycles in seasonal environments. We develop a size-structured consumer-resource model with seasonal temperature dependence, parameterized for a freshwater insect consuming zooplankton. We simulate how climate warming in a seasonal environment could alter a key life-history trait of the consumer, number of generations per year, mediating responses of consumer-resource population sizes and consumer persistence. We find that, with warming, consumer population sizes increase through multiple mechanisms. First, warming decreases generation times by increasing rates of resource ingestion and growth and/or lengthening the growing season. Second, these life-history changes shorten the juvenile stage, increasing the number of emerging adults and population-level reproduction. Unstructured models with similar assumptions found that warming destabilized consumer-resource dynamics. By contrast, our size-structured model predicts stability and consumer persistence. Our study suggests that, in seasonal environments experiencing climate warming, life-history changes that lead to shorter generation times could delay population extinctions.
Collapse
Affiliation(s)
- Laura A. Twardochleb
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Phoebe L. Zarnetske
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Christopher A. Klausmeier
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| |
Collapse
|
46
|
Rubenstein MA, Weiskopf SR, Bertrand R, Carter SL, Comte L, Eaton MJ, Johnson CG, Lenoir J, Lynch AJ, Miller BW, Morelli TL, Rodriguez MA, Terando A, Thompson LM. Climate change and the global redistribution of biodiversity: substantial variation in empirical support for expected range shifts. ENVIRONMENTAL EVIDENCE 2023; 12:7. [PMID: 39294691 PMCID: PMC11378804 DOI: 10.1186/s13750-023-00296-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/12/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Among the most widely predicted climate change-related impacts to biodiversity are geographic range shifts, whereby species shift their spatial distribution to track their climate niches. A series of commonly articulated hypotheses have emerged in the scientific literature suggesting species are expected to shift their distributions to higher latitudes, greater elevations, and deeper depths in response to rising temperatures associated with climate change. Yet, many species are not demonstrating range shifts consistent with these expectations. Here, we evaluate the impact of anthropogenic climate change (specifically, changes in temperature and precipitation) on species' ranges, and assess whether expected range shifts are supported by the body of empirical evidence. METHODS We conducted a Systematic Review, searching online databases and search engines in English. Studies were screened in a two-stage process (title/abstract review, followed by full-text review) to evaluate whether they met a list of eligibility criteria. Data coding, extraction, and study validity assessment was completed by a team of trained reviewers and each entry was validated by at least one secondary reviewer. We used logistic regression models to assess whether the direction of shift supported common range-shift expectations (i.e., shifts to higher latitudes and elevations, and deeper depths). We also estimated the magnitude of shifts for the subset of available range-shift data expressed in distance per time (i.e., km/decade). We accounted for methodological attributes at the study level as potential sources of variation. This allowed us to answer two questions: (1) are most species shifting in the direction we expect (i.e., each observation is assessed as support/fail to support our expectation); and (2) what is the average speed of range shifts? REVIEW FINDINGS We found that less than half of all range-shift observations (46.60%) documented shifts towards higher latitudes, higher elevations, and greater marine depths, demonstrating significant variation in the empirical evidence for general range shift expectations. For the subset of studies looking at range shift rates, we found that species demonstrated significant average shifts towards higher latitudes (average = 11.8 km/dec) and higher elevations (average = 9 m/dec), although we failed to find significant evidence for shifts to greater marine depths. We found that methodological factors in individual range-shift studies had a significant impact on the reported direction and magnitude of shifts. Finally, we identified important variation across dimensions of range shifts (e.g., greater support for latitude and elevation shifts than depth), parameters (e.g., leading edge shifts faster than trailing edge for latitude), and taxonomic groups (e.g., faster latitudinal shifts for insects than plants). CONCLUSIONS Despite growing evidence that species are shifting their ranges in response to climate change, substantial variation exists in the extent to which definitively empirical observations confirm these expectations. Even though on average, rates of shift show significant movement to higher elevations and latitudes for many taxa, most species are not shifting in expected directions. Variation across dimensions and parameters of range shifts, as well as differences across taxonomic groups and variation driven by methodological factors, should be considered when assessing overall confidence in range-shift hypotheses. In order for managers to effectively plan for species redistribution, we need to better account for and predict which species will shift and by how much. The dataset produced for this analysis can be used for future research to explore additional hypotheses to better understand species range shifts.
Collapse
Affiliation(s)
| | - Sarah R Weiskopf
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center, Reston, USA.
| | | | - Shawn L Carter
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center, Reston, USA
| | - Lise Comte
- School of Biological Sciences, Illinois State University, Normal, USA
| | | | - Ciara G Johnson
- Department of Environmental Science & Policy, George Mason University, Fairfax, USA
| | | | - Abigail J Lynch
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center, Reston, USA
| | - Brian W Miller
- North Central Climate Adaptation Science Center, USGS, Boulder, USA
| | | | - Mari Angel Rodriguez
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center, Reston, USA
| | - Adam Terando
- Southeast Climate Adaptation Science Center, USGS, Raleigh, USA
| | - Laura M Thompson
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center, Reston, USA
| |
Collapse
|
47
|
Messina S, Costantini D, Eens M. Impacts of rising temperatures and water acidification on the oxidative status and immune system of aquatic ectothermic vertebrates: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161580. [PMID: 36646226 DOI: 10.1016/j.scitotenv.2023.161580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Species persistence in the Anthropocene is dramatically threatened by global climate change. Large emissions of carbon dioxide (CO2) from human activities are driving increases in mean temperature, intensity of heatwaves, and acidification of oceans and freshwater bodies. Ectotherms are particularly sensitive to CO2-induced stressors, because the rate of their metabolic reactions, as well as their immunological performance, are affected by environmental temperatures and water pH. We reviewed and performed a meta-analysis of 56 studies, involving 1259 effect sizes, that compared oxidative status or immune function metrics between 42 species of ectothermic vertebrates exposed to long-term increased temperatures or water acidification (≥48 h), and those exposed to control parameters resembling natural conditions. We found that CO2-induced stressors enhance levels of molecular oxidative damages in ectotherms, while the activity of antioxidant enzymes was upregulated only at higher temperatures, possibly due to an increased rate of biochemical reactions dependent on the higher ambient temperature. Differently, both temperature and water acidification showed weak impacts on immune function, indicating different direction (increase or decrease) of responses among immune traits. Further, we found that the intensity of temperature treatments (Δ°C) and their duration, enhance the physiological response of ectotherms, pointing to stronger effects of prolonged extreme warming events (i.e., heatwaves) on the oxidative status. Finally, adult individuals showed weaker antioxidant enzymatic responses to an increase in water temperature compared to early life stages, suggesting lower acclimation capacity. Antarctic species showed weaker antioxidant response compared to temperate and tropical species, but level of uncertainty in the antioxidant enzymatic response of Antarctic species was high, thus pairwise comparisons were statistically non-significant. Overall, the results of this meta-analysis indicate that the regulation of oxidative status might be one key mechanism underlying thermal plasticity in aquatic ectothermic vertebrates.
Collapse
Affiliation(s)
- Simone Messina
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy.
| | - David Costantini
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy; Unité Physiologie Moléculaire et Adaptation, UMR 7221, Muséum National d'Histoire Naturelle, CNRS - 7 rue Cuvier, 75005 Paris, France
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
48
|
Wos G, Palomar G, Marszałek M, Babik W, Sniegula S. The effect of temperature and invasive alien predator on genetic and phenotypic variation in the damselfly Ischnura elegans: cross-latitude comparison. Front Zool 2023; 20:13. [PMID: 37032330 PMCID: PMC10084621 DOI: 10.1186/s12983-023-00494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Understanding and predicting how organisms respond to human-caused environmental changes has become a major concern in conservation biology. Here, we linked gene expression and phenotypic data to identify candidate genes underlying existing phenotypic trait differentiation under individual and combined environmental variables. For this purpose, we used the damselfly Ischnura elegans. Egg clutches from replicated high- (southern Sweden) and central-latitude (southern Poland) populations facing different degrees of seasonal time constraints were collected. Damselfly larvae were exposed to experimental treatments: current and mild warming temperatures crossed with the presence or absence of an invasive alien predator cue released by the spiny-cheek crayfish, Faxonius limosus, which is only present in Poland to date. We measured the following traits: larval development time, body size, mass and growth rate, and used the larvae for gene expression analysis by RNA-seq. Data were analysed using a multivariate approach. RESULTS We showed latitudinal differences in coping with mild warming and predator cues. When exposed to an increased temperature and a predator cue, central-latitude individuals had the shortest development and the fastest growth compared to high-latitude individuals. There was a general effect of predator cues regarding mass and growth rate reduction independent of latitude. Transcriptome analysis revealed that metabolic pathways related to larval anatomy and development tended to be upregulated in response to mild warming but only in fast-growing central-latitude individuals. Metabolic pathways linked to oxidative stress tended to be downregulated in response to a predator cue, especially in central-latitude individuals. CONCLUSION Different phenotypic and transcriptomic responses to environmental factors might be attributed to the variability in I. elegans life history strategies between the two latitudes caused by seasonal time constraints and to its coexistence with the invasive alien predator in nature. By providing insights into how organisms may respond to future anthropogenic changes, our results may be of particular interest in conservation biology.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Gemma Palomar
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland
- Department of Genetics, Physiology, and Microbiology, Complutense University of Madrid, C/Jose Antonio Novais 12, 28040, Madrid, Spain
| | - Marzena Marszałek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
49
|
Pullock DA, Malod K, Manrakhan A, Weldon CW. Larval and adult diet affect phenotypic plasticity in thermal tolerance of the marula fly, Ceratitis cosyra (Walker) (Diptera: Tephritidae). FRONTIERS IN INSECT SCIENCE 2023; 3:1122161. [PMID: 38469504 PMCID: PMC10926529 DOI: 10.3389/finsc.2023.1122161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/13/2024]
Abstract
Introduction Temperature fluctuations are important for the distribution and survival of insects. Rapid hardening, a type of phenotypic plasticity, is an adaptation that can help individuals better tolerate lethal temperatures because of earlier exposure to a sublethal but stressful temperature. Nutrition and sex are also known to influence a species ability to tolerate thermal stress. This study determined the effects of larval diet, adult diet, sex and hardening on the thermal tolerance of Ceratitis cosyra (Walker) (Diptera: Tephritidae) at lower and upper lethal temperatures. Methods Larvae were raised on either an 8% torula yeast (high) or a 1% torula yeast (low) larval diet and then introduced to one of three dietary regimes as adults for thermal tolerance and hardening assays: no adult diet, sugar only, or sugar and hydrolysed yeast diet. Flies of known weight were then either heat- or cold-hardened for 2 hours before being exposed to a potentially lethal high or low temperature, respectively. Results Both nutrition and hardening as well as their interaction affected C. cosyra tolerance of stressful temperatures. However, this interaction was dependent on the type of stress, with nutrient restriction and possible adult dietary compensation resulting in improved cold temperature resistance only. Discussion The ability of the insect to both compensate for a low protein larval diet and undergo rapid cold hardening after a brief exposure to sublethal cold temperatures even when both the larva and the subsequent adult fed on low protein diets indicates that C. cosyra have a better chance of survival in environments with extreme temperature variability, particularly at low temperatures. However, there appears to be limitations to the ability of C. cosyra to cold harden and the species may be more at risk from long term chronic effects than from any exposure to acute thermal stress.
Collapse
Affiliation(s)
- Dylan A. Pullock
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Kévin Malod
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Aruna Manrakhan
- Citrus Research International, Mbombela, South Africa
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
50
|
Shin J, Rahman MM, Kim J, Marcombe S, Jung J. Genetic Diversity of Dengue Vector Aedes albopictus Collected from South Korea, Japan, and Laos. INSECTS 2023; 14:297. [PMID: 36975982 PMCID: PMC10051289 DOI: 10.3390/insects14030297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Aedes albopictus is native to Southeast Asia and has emerged as a major vector for vector-borne diseases that are spreading rapidly worldwide. Recent studies have shown that Ae. albopictus populations have different genetic groups dependent on their thermal adaptations; however, studies on Korean populations are limited. In this study, we analyzed the genetic diversity and structure of two mitochondrial genes (COI and ND5) and sixteen microsatellites in mosquitoes inhabiting Korea, Japan, and Laos. The results indicate that the Korean population has low genetic diversity, with an independent cluster distinct from the Laos population. Mixed clusters have also been observed in the Korean population. On the basis of these findings, two hypotheses are proposed. First, certain Korean populations are native. Second, some subpopulations that descended from the metapopulation (East Asian countries) were introduced to Japan before migrating to Korea. Furthermore, we previously demonstrated that Ae. albopictus appears to have been imported to Korea. In conclusion, the dengue-virus-carrying mosquitoes could migrate to Korea from Southeast Asian epidemic regions, where they can survive during the severe winter months. The key findings can be used to establish an integrated pest management strategy based on population genetics for the Korean Ae. albopictus population.
Collapse
Affiliation(s)
- Jiyeong Shin
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- The Division of EcoCreative, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Md-Mafizur Rahman
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Juil Kim
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Program of Applied Biology, Division of Bio-resource Sciences, CALS, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sébastien Marcombe
- Vector Control Consulting—South East Asia (VCC-SEA), Vientian 01000, Laos
| | - Jongwoo Jung
- The Division of EcoCreative, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|