1
|
Wei CF, Tindula G, Mukherjee SK, Wang X, Ekramullah SM, Arman DM, Islam MJ, Azim M, Rahman A, Afreen S, Ziaddin M, Warf BC, Weisskopf MG, Christiani DC, Liang L, Mazumdar M. Maternal arsenic exposure modifies associations between arsenic, folate and arsenic metabolism gene variants, and spina bifida risk: A case‒control study in Bangladesh. ENVIRONMENTAL RESEARCH 2024; 261:119714. [PMID: 39094898 PMCID: PMC11460318 DOI: 10.1016/j.envres.2024.119714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Spina bifida is a type of neural tube defect (NTD); NTDs are developmental malformations of the spinal cord that result from failure of neural tube closure during embryogenesis and are likely caused by interactions between genetic and environmental factors. Arsenic induces NTDs in animal models, and studies demonstrate that mice with genetic defects related to folate metabolism are more susceptible to arsenic's effects. We sought to determine whether 25 single-nucleotide polymorphisms (SNPs) in genes involved in folate and arsenic metabolism modified the associations between maternal arsenic exposure and risk of spina bifida (a common NTD) among a hospital-based case-control study population in Bangladesh. METHODS We used data from 262 mothers and 220 infants who participated in a case‒control study at the National Institutes of Neurosciences & Hospital and Dhaka Shishu Hospital in Dhaka, Bangladesh. Neurosurgeons assessed infants using physical examinations, review of imaging, and we collected histories using questionnaires. We assessed arsenic from mothers' toenails using inductively coupled plasma mass spectrometry (ICP-MS), and we genotyped participants using the Illumina Global Screening Array v1.0. We chose candidate genes and SNPs through a review of the literature. We assessed SNP-environment interactions using interaction terms and stratified models, and we assessed gene-environment interactions using interaction sequence/SNP-set kernel association tests (iSKAT). RESULTS The median toenail arsenic concentration was 0.42 μg/g (interquartile range [IQR]: 0.27-0.86) among mothers of cases and 0.47 μg/g (IQR: 0.30-0.97) among mothers of controls. We found an two SNPs in the infants' AS3MT gene (rs11191454 and rs7085104) and one SNP in mothers' DNMT1 gene (rs2228611) were associated with increased odds of spina bifida in the setting of high arsenic exposure (rs11191454, OR 3.01, 95% CI: 1.28-7.09; rs7085104, OR 2.33, 95% CI: 1.20-4.and rs2228611, OR 2.11, 95% CI: 1.11-4.01), along with significant SNP-arsenic interactions. iSKAT analyses revealed significant interactions between mothers' toenail concentrations and infants' AS3MT and MTR genes (p = 0.02), and mothers' CBS gene (p = 0.05). CONCLUSIONS Our results support the hypothesis that arsenic increases spina bifida risk via interactions with folate and arsenic metabolic pathways and suggests that individuals in the population who have certain genetic polymorphisms in genes involved with arsenic and folate metabolism may be more susceptible than others to the arsenic teratogenicity.
Collapse
Affiliation(s)
- Chih-Fu Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gwen Tindula
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA, USA
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Xingyan Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Md Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | | | - Asifur Rahman
- Department of Neurosurgery, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Shamantha Afreen
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Md Ziaddin
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
O’Connor C, Keele GR, Martin W, Stodola T, Gatti D, Hoffman BR, Korstanje R, Churchill GA, Reinholdt LG. Unraveling the genetics of arsenic toxicity with cellular morphology QTL. PLoS Genet 2024; 20:e1011248. [PMID: 38662777 PMCID: PMC11075906 DOI: 10.1371/journal.pgen.1011248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/07/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
The health risks that arise from environmental exposures vary widely within and across human populations, and these differences are largely determined by genetic variation and gene-by-environment (gene-environment) interactions. However, risk assessment in laboratory mice typically involves isogenic strains and therefore, does not account for these known genetic effects. In this context, genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening because they provide a way to introduce genetic variation in risk assessment without increasing animal use. Cell lines from genetic reference populations of laboratory mice offer genetic diversity, power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.
Collapse
Affiliation(s)
- Callan O’Connor
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Gregory R. Keele
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- RTI International, Research Triangle Park, Durham, North Carolina, United States of America
| | - Whitney Martin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Timothy Stodola
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Daniel Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Brian R. Hoffman
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Gary A. Churchill
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Laura G. Reinholdt
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Elgenidy A, Odat RM, Al-Ghorbany HA, Shahin HN, Abdel-Bary IS, AbdulHamid RA, Dhahab A, Salem M, Negm YA, El Attar NM, Abdelfattah AA, Khaliel MM, Moawad SM, Afifi AM. Arsenic's shadowy influence: A systematic review of its carcinogenic role in gallbladder cancer. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2024. [PMID: 38561626 DOI: 10.1002/jhbp.1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Gallbladder carcinoma (GBC) and cholangiocarcinoma are aggressive forms of cancer developed in the gallbladder and biliary tracts which are related to the liver. This systematic review aimed to highlight the significant association between gallbladder, biliary cancers, and arsenic exposure. METHODS An extensive search was conducted in Embase, Cochrane, Scopus, PubMed, and Web of Science. We included studies that assessed arsenic levels in gallbladder cancer patients, without restrictions on age, sex, or language. Biological samples, such blood, bile, gallbladder tissue, gallstones, and hair were obtained, and arsenic levels were measured. Also, arsenic water and soil concentrations were collected. RESULTS A total of 13 studies were included in our review. These studies included 2234 non-gallbladder carcinoma patients and 22 585 gallbladder carcinoma cases. The participant demographics showed a gender distribution of 862 males and 1845 females, with an age range of 20-75 years. The average body mass index (BMI) was 19.8 kg/m2 for nongallbladder carcinoma patients and 20.1 kg/m2 for gallbladder carcinoma cases. The selected studies examined arsenic concentrations across various biological samples, including blood, hair, gallstones, and bile. Blood arsenic levels ranged from 0.0002 to 0.3893 μg/g and were significantly associated with increased gallbladder carcinoma risk in several studies. Hair also demonstrated a significant correlation, with arsenic concentrations ranging from 0.0002 to 6.9801 μg/g. CONCLUSION There is a strong link between arsenic exposure and gallbladder cancer or cholangiocarcinoma. Even chronic exposure to low-moderate amounts could lead to gallbladder carcinoma. These findings stress the need for more comprehensive and dedicated studies, to control arsenic water/soil levels and seek other preventive measures for this high mortality disease.
Collapse
Affiliation(s)
- Anas Elgenidy
- Faculty of Medicine, Cairo University, Cairo, Egypt
- Karl-Jaspers-Klinik, Zwischenahn, Germany
| | - Ramez M Odat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | | | | - Amal Dhahab
- Faculty of medicine, Mansoura University, Mansoura, Egypt
| | - Moustafa Salem
- Faculty of medicine, Mansoura University, Mansoura, Egypt
| | - Youmna A Negm
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | | - Mai M Khaliel
- Faculty of medicine, Alexandria university, Alexandria, Egypt
| | | | - Ahmed M Afifi
- Department of Surgery, University of Toledo Medical Center, Toledo, Ohio, USA
| |
Collapse
|
4
|
Liu Y, Li W, Zhang J, Yan Y, Zhou Q, Liu Q, Guan Y, Zhao Z, An J, Cheng X, He M. Associations of arsenic exposure and arsenic metabolism with the risk of non-alcoholic fatty liver disease. Int J Hyg Environ Health 2024; 257:114342. [PMID: 38401403 DOI: 10.1016/j.ijheh.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Growing evidences supported that arsenic exposure contributes to non-alcoholic fatty liver disease (NAFLD) risk, but findings were still inconsistent. Additionally, once absorbed, arsenic is methylated into monomethyl and dimethyl arsenicals. However, no studies investigated the association of arsenic metabolism with NAFLD. Our objectives were to evaluate the associations of arsenic exposure and arsenic metabolism with NAFLD prevalence. We conducted a case-control study with 1790 participants derived from Dongfeng-Tongji cohort and measured arsenic species (arsenite, arsenate, monomethylarsonate [MMA], dimethylarsinate [DMA], and arsenobetaine) in urine. Arsenic exposure (∑As) was defined as the sum of inorganic arsenic (iAs), MMA, and DMA. Arsenic metabolism was evaluated as the proportions of inorganic-related species (iAs%, MMA%, and DMA%) and methylation efficiency ratios (primary methylation index [PMI], secondary methylation index [SMI]). NAFLD was diagnosed by liver ultrasound. Logistic regression was used to evaluate the associations. The median of ∑As was 13.24 μg/g creatinine. The ∑As showed positive and nonlinear association with moderate/severe NAFLD (OR: per log-SD = 1.33, 95% CI: [1.03,1.71]; Pfor nonlinearity = 0.021). The iAs% (OR: per SD = 1.16, 95% CI: [1.03,1.30]) and SMI (OR: per log-SD = 1.16, 95% CI: [1.03,1.31]) showed positive while MMA% (OR: per SD = 0.80, 95% CI: [0.70,0.91]) and PMI (OR: per log-SD = 0.86, 95% CI: [0.77,0.96]) showed inverse associations with NAFLD. Moreover, the ORs (95% CI) of NAFLD for each 5% increase in iAs% was 1.36 (1.17,1.58) when MMA% decreased and 1.07 (1.01,1.13) when DMA% decreased; and for each 5% increase in MMA%, it was 0.74 (0.63,0.86) and 0.79 (0.69,0.91) when iAs% and DMA% decreased, respectively. The results suggest that inorganic arsenic exposure is positively associated with NAFLD risk and arsenic methylation efficiency plays a role in the NAFLD. The findings provide clues to explore potential interventions for the prevention of NAFLD. Prospective studies are needed to validate our findings.
Collapse
Affiliation(s)
- Yuenan Liu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianying Liu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youbin Guan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoya Zhao
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun An
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Cheng
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Zhang K, Yin Y, Lv M, Zhang X, Zhang M, Cui J, Guan Z, Liu X, Liu Y, Gao Y, Yang Y. Positive Association of Urinary Dimethylarsinic Acid (DMA V) with Serum 25(OH)D in Adults Living in an Area of Water-Borne Arsenicosis in Shanxi, China. TOXICS 2024; 12:83. [PMID: 38251038 PMCID: PMC10820359 DOI: 10.3390/toxics12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Limited studies have demonstrated that inorganic arsenic exposure is positively associated with serum vitamin D levels, although the correlation between urinary arsenic species and serum vitamin D has not been investigated in areas of water-borne arsenicosis. A cross-sectional study of 762 participants was conducted in Wenshui Country, Shanxi Province, a water-borne arsenicosis area. The results showed a positive relationship between urinary arsenic species (inorganic arsenic (iAs), methylarsonic acid (MMAV), dimethylarsinic acid (DMAV) and serum 25(OH)D. Log-binomial regression analysis indicated a 0.4% increase in the risk of vitamin D excess for every 1-unit increment in the Box-Cox transformed urinary DMAV after adjustment for covariates. After stratifying populations by inorganic arsenic methylation metabolic capacity, serum 25(OH)D levels in the populations with iAs% above the median and primary methylation index (PMI) below the median increased by 0.064 ng/mL (95% CI: 0.032 to 0.096) for every one-unit increase in the Box-Cox transformed total arsenic (tAs) levels. Serum 25(OH)D levels increased by 0.592 ng/mL (95% CI: 0.041 to 1.143) for every one-unit rise in the Box-Cox transformed iAs levels in people with skin hyperkeratosis. Overall, our findings support a positive relationship between urinary arsenic species and serum 25(OH)D. It was recommended that those residing in regions with water-borne arsenicosis should take moderate vitamin D supplements to avoid vitamin D poisoning.
Collapse
Affiliation(s)
- Kunyu Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China (Y.Y.)
- Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
| | - Yunyi Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China (Y.Y.)
- Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
| | - Man Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China (Y.Y.)
- Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
| | - Xin Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China (Y.Y.)
- Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China (Y.Y.)
- Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
| | - Jia Cui
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China (Y.Y.)
- Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
| | - Ziqiao Guan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China (Y.Y.)
- Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China (Y.Y.)
- Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China (Y.Y.)
- Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China (Y.Y.)
- Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China (Y.Y.)
- Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
6
|
O'Connor C, Keele GR, Martin W, Stodola T, Gatti D, Hoffman BR, Korstanje R, Churchill GA, Reinholdt LG. Cell morphology QTL reveal gene by environment interactions in a genetically diverse cell population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567597. [PMID: 38014303 PMCID: PMC10680806 DOI: 10.1101/2023.11.18.567597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening as they offer power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.
Collapse
Affiliation(s)
- Callan O'Connor
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Gregory R Keele
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- RTI International, RTP, NC 27709, USA
| | | | | | - Daniel Gatti
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | - Laura G Reinholdt
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
7
|
Zhang M, Xu H, Lou Q, Zhang Z, Zhang X, Yin F, Lv M, Zhang Y, Yin Y, Gao Y, Liu X, Yang Y. Association between arsenic (+3 oxidation state) methyltransferase gene polymorphisms and arsenic methylation capacity in rural residents of northern China: a cross-sectional study. Arch Toxicol 2023; 97:2919-2928. [PMID: 37658865 DOI: 10.1007/s00204-023-03590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Arsenic is a toxic metal-like element. The toxic reaction of the body to arsenic is related to the ability of arsenic methylation metabolism. As the rate-limiting enzyme of arsenic methylation metabolism, the genetic single nucleotide polymorphisms (SNPs) of arsenic (+ 3 oxidation state) methyltransferase (AS3MT) gene are related to capacity of arsenic methylation. In this paper, we investigated the association of five SNPs (rs7085104, rs3740390, 3740393, rs10748835, and rs1046778) in AS3MT with arsenic methylation metabolizing using the data and samples from a cross-sectional case-control study of arsenic and Type 2 diabetes mellitus conducted in Shanxi, China. A total of 340 individuals were included in the study. Urinary total arsenic (tAs, μg/L) was detected by liquid chromatography-atomic fluorescence spectrometry (LC-AFS). According to "safety guidance value of urinary arsenic for population" as specified in WS/T665-2019 (China), participants were divided into the control group (tAs ≤ 32 μg/L, n = 172) and arsenic-exposed group (tAs > 32 μg/L, n = 168). iAs%, MMA%, and DMA% are as the indicator of arsenic methylation capacity. The genotypes of AS3MT SNPs were examined by Multiple PCR combined sequencing. Linear regression analysis showed that AG + GG genotype in rs7085104 was associated with decreased iAs% and increased DMA%. Moreover, AG + AA genotype in rs10748835 and TC + CC genotype in rs1046778 were associated with decreased iAs% and MMA% and increased DMA%. The interaction between rs7085104 and arsenic is associated with iAs% and DMA%. The interaction of rs3740390 and rs10748835 with arsenic is associated with iAs%. Haplotype CTAC (rs3740393-rs3740390-rs10748835-rs1046778) was associated with lower iAs% and higher DMA%, but this association disappeared after adjusting for age, gender, drink, smoking, BMI and tAs. Haplotype GCAC was associated with decreased MMA%. Our study provides additional support for revealing the factors influencing the metabolic capacity of arsenic methylation and might be helpful to identify the population susceptible to arsenic exposure through individualized screening in the future.
Collapse
Affiliation(s)
- Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Haili Xu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Qun Lou
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Zaihong Zhang
- Department of Infection Control and Public Health, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Xin Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Fanshuo Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Man Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Ying Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Yunyi Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China.
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China.
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China.
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
8
|
Shraim R, Farran MZ, He G, Marunica Karsaj J, Zgaga L, McManus R. Systematic review on gene-sun exposure interactions in skin cancer. Mol Genet Genomic Med 2023; 11:e2259. [PMID: 37537768 PMCID: PMC10568388 DOI: 10.1002/mgg3.2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The risk of skin cancer is determined by environmental factors like ultraviolet radiation (UVR), personal habits like time spent outdoors and genetic factors. This review aimed to survey existing studies in gene-environment (GxE) interaction on skin cancer risk, and report on GxE effect estimates. METHODS We searched Embase, Medline (Ovid) and Web of Science (Core Collection) and included only primary research that reported on GxE on the risk of the three most common types of skin cancer: basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and melanoma. Quality assessment followed the Newcastle-Ottawa Scale. Meta-analysis was not possible because no two studies examined the same interaction. This review was registered on PROSPERO (CRD42021238064). RESULTS In total 260 records were identified after exclusion of duplicates. Fifteen studies were included in the final synthesis-12 used candidate gene approach. We found some evidence of GxE interactions with sun exposure, notably, with MC1R, CAT and NOS1 genes in melanoma, HAL and IL23A in BCC and HAL and XRCC1 in SCC. CONCLUSION Sun exposure seems to interact with genes involved in pigmentation, oxidative stress and immunosuppression, indicating that excessive UV exposure might exhaust oxidative defence and repair systems differentially, dependent on genetic make-up. Further research is warranted to better understand skin cancer epidemiology and develop sun exposure recommendations. A genome-wide approach is recommended as it might uncover unknown disease pathways dependent on UV radiation.
Collapse
Affiliation(s)
- Rasha Shraim
- Department of Public Health and Primary Care, Institute of Population HealthTrinity College DublinDublinIreland
- Department of Clinical Medicine, Trinity Translational Medicine InstituteTrinity College DublinDublinIreland
- The SFI Centre for Research Training in Genomics Data SciencesUniversity of GalwayGalwayIreland
| | - Mohamed Ziad Farran
- Department of Public Health and Primary Care, Institute of Population HealthTrinity College DublinDublinIreland
- Department of Clinical Medicine, Trinity Translational Medicine InstituteTrinity College DublinDublinIreland
| | - George He
- Department of Public Health and Primary Care, Institute of Population HealthTrinity College DublinDublinIreland
- Department of Clinical Medicine, Trinity Translational Medicine InstituteTrinity College DublinDublinIreland
| | - Jelena Marunica Karsaj
- Department of Rheumatology, Physical Medicine and RehabilitationSestre milosrdnice University Hospital CenterZagrebCroatia
| | - Lina Zgaga
- Department of Public Health and Primary Care, Institute of Population HealthTrinity College DublinDublinIreland
| | - Ross McManus
- Department of Clinical Medicine, Trinity Translational Medicine InstituteTrinity College DublinDublinIreland
| |
Collapse
|
9
|
Demanelis K, Delgado DA, Tong L, Jasmine F, Ahmed A, Islam T, Parvez F, Kibriya MG, Graziano JH, Ahsan H, Pierce BL. Somatic loss of the Y chromosome is associated with arsenic exposure among Bangladeshi men. Int J Epidemiol 2023; 52:1035-1046. [PMID: 36130227 PMCID: PMC10695470 DOI: 10.1093/ije/dyac176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/01/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Arsenic exposure increases the risk of several cancers in humans and contributes to genomic instability. Somatic loss of the Y chromosome (LoY) is a potential biomarker of genomic instability and cancer risk. Smoking is associated with LoY, but few other carcinogens have been investigated. We tested the cross-sectional association between arsenic exposure and LoY in leukocytes among genotyped Bangladeshi men (age 20-70 years) from the Health Effects of Arsenic Longitudinal Study. METHODS We extracted the median of logR-ratios from probes on the Y chromosome (mLRR-chrY) from genotyping arrays (n = 1364) and estimated the percentage of cells with LoY (% LoY) from mLRR-chrY. We evaluated the association between arsenic exposure (measured in drinking water and urine) and LoY using multivariable linear and logistic regression models. The association between LoY and incident arsenic-induced skin lesions was also examined. RESULTS Ten percent of genotyped men had LoY in at least 5% of cells and % LoY increased with age. Among men randomly selected for genotyping (n = 778), higher arsenic in drinking water, arsenic consumed and urinary arsenic were associated with increased % LoY (P = 0.006, P = 0.06 and P = 0.13, respectively). LoY was associated with increased risk of incident skin lesions (P = 0.008). CONCLUSION Arsenic exposure was associated with increased LoY, providing additional evidence that arsenic contributes to genomic instability. LoY was associated with developing skin lesions, a risk factor for cancer, suggesting that LoY may be a biomarker of susceptibility in arsenic-exposed populations. The effect of arsenic on somatic events should be further explored in cancer-prone tissue types.
Collapse
Affiliation(s)
- Kathryn Demanelis
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Dayana A Delgado
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | | | | | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
- Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Weiss MC, Shih YH, Bryan MS, Jackson BP, Aguilar D, Brown EL, Jun G, Hanis CL, Argos M, Sargis RM. Arsenic metabolism, diabetes prevalence, and insulin resistance among Mexican Americans: A mendelian randomization approach. ENVIRONMENTAL ADVANCES 2023; 12:100361. [PMID: 37426694 PMCID: PMC10328543 DOI: 10.1016/j.envadv.2023.100361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background Differences in arsenic metabolism capacity may influence risk for type 2 diabetes, but the mechanistic drivers are unclear. We evaluated the associations between arsenic metabolism with overall diabetes prevalence and with static and dynamic measures of insulin resistance among Mexican Americans living in Starr County, Texas. Methods We utilized data from cross-sectional studies conducted in Starr County, Texas, from 2010-2014. A Mendelian randomization approach was utilized to evaluate the associations between arsenic metabolism and type 2 diabetes prevalence using the intronic variant in the arsenic methylating gene, rs9527, as the instrumental variable for arsenic metabolism. To further assess mechanisms for diabetes pathogenesis, proportions of the urinary arsenic metabolites were employed to assess the association between arsenic metabolism and insulin resistance among participants without diabetes. Urinary biomarkers of arsenic metabolites were modeled as individual proportions of the total. Arsenic metabolism was evaluated both with a static outcome of insulin resistance, homeostatic measure of assessment (HOMA-IR), and a dynamic measure of insulin sensitivity, Matsuda Index. Results Among 475 Mexican American participants from Starr County, higher metabolism capacity for arsenic is associated with higher diabetes prevalence driven by worse insulin resistance. Presence of the minor T allele of rs9527 is independently associated with an increase in the proportion of monomethylated arsenic (MMA%) and is associated with an odds ratio of 0.50 (95% CI: 0.24, 0.90) for type 2 diabetes. This association was conserved after potential covariate adjustment. Furthermore, among participants without type 2 diabetes, the highest quartile of MMA% was associated with 22% (95% CI: -33.5%, -9.07%) lower HOMA-IR and 56% (95% CI: 28.3%, 91.3%) higher Matsuda Index for insulin sensitivity. Conclusions Arsenic metabolism capacity, indicated by a lower proportion of monomethylated arsenic, is associated with increased diabetes prevalence driven by an insulin resistant phenotype among Mexican Americans living in Starr County, Texas.
Collapse
Affiliation(s)
- Margaret C. Weiss
- School of Public Health, University of Illinois at Chicago, Chicago, IL, United States of America
- College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Yu-Hsuan Shih
- School of Public Health, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Molly Scannell Bryan
- Institute for Minority Health Research, University of Illinois at Chicago, United States of America
- Center for Infectious Disease, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, United States of America
| | - David Aguilar
- Division of Cardiovascular Medicine, LSU Health School of Medicine, New Orleans, LA, United States
| | - Eric L. Brown
- Center for Infectious Disease, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Goo Jun
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Craig L. Hanis
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Maria Argos
- School of Public Health, University of Illinois at Chicago, Chicago, IL, United States of America
- Chicago Center for Health and Environment, Chicago, IL, United States of America
| | - Robert M. Sargis
- College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
- Chicago Center for Health and Environment, Chicago, IL, United States of America
- Section of Endocrinology, Diabetes, and Metabolism, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States of America
| |
Collapse
|
11
|
Douillet C, Miller M, Cable PH, Shi Q, El-Masri H, Matoušek T, Koller BH, Thomas DJ, Stýblo M. Fate of arsenicals in mice carrying the human AS3MT gene exposed to environmentally relevant levels of arsenite in drinking water. Sci Rep 2023; 13:3660. [PMID: 36871058 PMCID: PMC9985638 DOI: 10.1038/s41598-023-30723-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Although mice are widely used to study adverse effects of inorganic arsenic (iAs), higher rates of iAs methylation in mice than in humans may limit their utility as a model organism. A recently created 129S6 mouse strain in which the Borcs7/As3mt locus replaces the human BORCS7/AS3MT locus exhibits a human-like pattern of iAs metabolism. Here, we evaluate dosage dependency of iAs metabolism in humanized (Hs) mice. We determined tissue and urinary concentrations and proportions of iAs, methylarsenic (MAs), and dimethylarsenic (DMAs) in male and female Hs and wild-type (WT) mice that received 25- or 400-ppb iAs in drinking water. At both exposure levels, Hs mice excrete less total arsenic (tAs) in urine and retain more tAs in tissues than WT mice. Tissue tAs levels are higher in Hs females than in Hs males, particularly after exposure to 400-ppb iAs. Tissue and urinary fractions of tAs present as iAs and MAs are significantly greater in Hs mice than in WT mice. Notably, tissue tAs dosimetry in Hs mice resembles human tissue dosimetry predicted by a physiologically based pharmacokinetic model. These data provide additional support for use of Hs mice in laboratory studies examining effects of iAs exposure in target tissues or cells.
Collapse
Affiliation(s)
- Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Madison Miller
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Peter H Cable
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Hisham El-Masri
- Chemical Characterization and Exposure Division, Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Tomáš Matoušek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří 97, 602 00, Brno, Czech Republic
| | - Beverly H Koller
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David J Thomas
- Dinkey Creek Consulting, LLC, Chapel Hill, NC, 27517, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA.
| |
Collapse
|
12
|
Wai KM, Swe T, Myar MT, Aisyah CR, Hninn TSS. Telomeres susceptibility to environmental arsenic exposure: Shortening or lengthening? Front Public Health 2023; 10:1059248. [PMID: 36703827 PMCID: PMC9871564 DOI: 10.3389/fpubh.2022.1059248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Maintaining telomere length plays a crucial role in regulating cellular life span. Telomere lengthening or shortening is one of the important biomarkers which could predict the preceding or present diseases. Meanwhile, the impact of environmental arsenic exposure on telomere length has increasingly concerned. Although previous studies demonstrated the effects of arsenic on telomere length, the findings were unclear on whether telomere shortens or lengthens by arsenic exposure. Thus, this manuscript summarized and discussed the telomere length alteration following arsenic exposure and the possible does-response effect of arsenic on telomere length. The present review suggested that different age groups may respond differently to arsenic exposure, and the dose-response effect of arsenic could be a critical factor in its effect on telomere length. Moreover, speciation analysis of arsenic could be more informative in identifying the effect of arsenic on telomere length.
Collapse
Affiliation(s)
- Kyi Mar Wai
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan,Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,*Correspondence: Kyi Mar Wai ✉
| | - Thinzar Swe
- Pre-clinical Department, University of Medicine 2, Yangon, Myanmar
| | - Maw Thoe Myar
- Pre-clinical Department, University of Medicine Taunggyi, Taunggyi, Myanmar
| | - Cindy Rahman Aisyah
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
13
|
Chernoff MB, Delgado D, Tong L, Chen L, Oliva M, Tamayo LI, Best LG, Cole S, Jasmine F, Kibriya MG, Nelson H, Huang L, Haack K, Kent J, Umans JG, Graziano J, Navas-Acien A, Karagas MR, Ahsan H, Pierce BL. Sequencing-based fine-mapping and in silico functional characterization of the 10q24.32 arsenic metabolism efficiency locus across multiple arsenic-exposed populations. PLoS Genet 2023; 19:e1010588. [PMID: 36668670 PMCID: PMC9891528 DOI: 10.1371/journal.pgen.1010588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/01/2023] [Accepted: 12/20/2022] [Indexed: 01/22/2023] Open
Abstract
Inorganic arsenic is highly toxic and carcinogenic to humans. Exposed individuals vary in their ability to metabolize arsenic, and variability in arsenic metabolism efficiency (AME) is associated with risks of arsenic-related toxicities. Inherited genetic variation in the 10q24.32 region, near the arsenic methyltransferase (AS3MT) gene, is associated with urine-based measures of AME in multiple arsenic-exposed populations. To identify potential causal variants in this region, we applied fine mapping approaches to targeted sequencing data generated for exposed individuals from Bangladeshi, American Indian, and European American populations (n = 2,357, 557, and 648 respectively). We identified three independent association signals for Bangladeshis, two for American Indians, and one for European Americans. The size of the confidence sets for each signal varied from 4 to 85 variants. There was one signal shared across all three populations, represented by the same SNP in American Indians and European Americans (rs191177668) and in strong linkage disequilibrium (LD) with a lead SNP in Bangladesh (rs145537350). Beyond this shared signal, differences in LD patterns, minor allele frequency (MAF) (e.g., rs12573221 ~13% in Bangladesh ~0.2% among American Indians), and/or heterogeneity in effect sizes across populations likely contributed to the apparent population specificity of the additional identified signals. One of our potential causal variants influences AS3MT expression and nearby DNA methylation in numerous GTEx tissue types (with rs4919690 as a likely causal variant). Several SNPs in our confidence sets overlap transcription factor binding sites and cis-regulatory elements (from ENCODE). Taken together, our analyses reveal multiple potential causal variants in the 10q24.32 region influencing AME, including a variant shared across populations, and elucidate potential biological mechanisms underlying the impact of genetic variation on AME.
Collapse
Affiliation(s)
- Meytal Batya Chernoff
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, United States of America
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States of America
| | - Dayana Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Lin Chen
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Lizeth I. Tamayo
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Lyle G. Best
- Missouri Breaks Industries Research Inc, Eagle Butte, South Dakota, United States of America
| | - Shelley Cole
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Muhammad G. Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Heather Nelson
- School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lei Huang
- Center for Research Informatics, University of Chicago, Chicago, Illinois, United States of America
| | - Karin Haack
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Jack Kent
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Jason G. Umans
- MedStar Health Research Institute, Hyattsville, Maryland, United States of America
- Georgetown-Howard Universities Center for Clinical and Translational Science, Georgetown University, Washington, District of Columbia, United States of America
| | - Joseph Graziano
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Department of Pharmacology, Columbia University, New York City, New York, United States of America
| | - Ana Navas-Acien
- Mailman School of Public Health, Columbia University, New York City, New York, United States of America
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Habib Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
- Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Brandon L. Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America
- Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
14
|
Inherited genetic effects on arsenic metabolism: A comparison of effects on arsenic species measured in urine and in blood. Environ Epidemiol 2022; 6:e230. [PMID: 36530933 PMCID: PMC9746746 DOI: 10.1097/ee9.0000000000000230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
Inorganic arsenic (iAs) is a carcinogen, and chronic exposure is associated with adverse health outcomes, including cancer and cardiovascular disease. Consumed iAs can undergo two methylation reactions catalyzed by arsenic methyltransferase (AS3MT), producing monomethylated and dimethylated forms of arsenic (MMA and DMA). Methylation of iAs helps facilitate excretion of arsenic in urine, with DMA composing the majority of arsenic species excreted. Past studies have identified genetic variation in the AS3MT (10q24.32) and FTCD (21q22.3) regions associated with arsenic metabolism efficiency (AME), measured as the proportion of each species present in urine (iAs%, MMA%, and DMA%), but their association with arsenic species present in blood has not been examined. We use data from three studies nested within the Health Effects and Longitudinal Study (HEALS)-the Nutritional Influences on Arsenic Toxicity Study, the Folate and Oxidative Stress study, and the Folic Acid and Creatine Trial-to examine the association of previously identified genetic variants with arsenic species in both urine and blood of 334 individuals. We confirm that the genetic variants in AS3MT and FTCD known to effect arsenic species composition in urine (an excreted byproduct of metabolism) have similar effects on arsenic species in blood (a tissue type that directly interacts with many organs, including those prone to arsenic toxicity). This consistency we observe provides further support for the hypothesis the AME SNPs identified to date impact the efficiency of arsenic metabolism and elimination, thereby influencing internal dose of arsenic and the dose delivered to toxicity-prone organs and tissues.
Collapse
|
15
|
Choi JW, Song YC, Cheong NY, Lee K, Kim S, Lee KM, Ji K, Shin MY, Kim S. Concentrations of blood and urinary arsenic species and their characteristics in general Korean population. ENVIRONMENTAL RESEARCH 2022; 214:113846. [PMID: 35820651 DOI: 10.1016/j.envres.2022.113846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) exposure has been extensively studied by investigating As species (e.g., inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)) in urine, yet recent research suggests that blood could be a possible biomarker of As exposure. These investigations, however, were conducted on iAs-contaminated areas, and evidence on populations exposed to low levels of iAs is limited. This study aimed to describe the levels and distributions of As species in urine and blood, as well as to estimate methylation efficiency and related factors in the Korean population. Biological samples were obtained by the Korean Ministry of Food and Drug Safety. A total of 2025 urine samples and 598 blood samples were utilized in this study. Six As species were measured using ultra-high-performance liquid chromatography with inductively coupled plasma mass spectrometry (UPLC-ICP-MS): As(V), As(III), MMA, DMA, arsenobetaine (AsB), and arsenocholine (AsC). Multiple linear regression models were used to examine the relationship between As species (concentrations and proportions) and covariates. AsB was the most prevalent species in urine and blood. The relative composition of iAs, MMA, DMA, and AsC in urine and blood differed significantly. Consumption of blue-backed fish was linked to higher levels of AsB in urine and blood. Type of drinking water and multigrain rice consumption were associated with increased iAs concentration in urine. Except for iAs, every species had correlations in urine and blood in both univariate and multivariate analyses. Adolescents and smokers presented a lower methylation efficiency (higher %MMA and lower %DMA in urine) and females presented a higher methylation efficiency (lower %iAs, %MMA, and higher %DMA in urine). In conclusion, blood iAs concentration cannot represent urinary iAs; nonetheless, different compositions of urine and blood might reflect distinct information about iAs exposure. Further investigations on exposure factors and health are needed using low-exposure groups.
Collapse
Affiliation(s)
- Jeong Weon Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Yoon Chae Song
- Korea Apparel Testing and Research Institute (KATRI), Anyang, Gyeonggi-do, South Korea
| | - Nam-Yong Cheong
- Korea Apparel Testing and Research Institute (KATRI), Anyang, Gyeonggi-do, South Korea
| | - Kiyoung Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Sunmi Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Kyoung-Mu Lee
- Department of Environmental Health, Korea National Open University, Seoul, South Korea
| | - Kyunghee Ji
- Department of Occupational and Environmental Health, Yongin University, Yongin, Gyeonggi-do, South Korea
| | - Mi-Yeon Shin
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Office of Dental Education, School of Dentistry, Seoul National University, Seoul, South Korea.
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
16
|
Avery CL, Howard AG, Ballou AF, Buchanan VL, Collins JM, Downie CG, Engel SM, Graff M, Highland HM, Lee MP, Lilly AG, Lu K, Rager JE, Staley BS, North KE, Gordon-Larsen P. Strengthening Causal Inference in Exposomics Research: Application of Genetic Data and Methods. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:55001. [PMID: 35533073 PMCID: PMC9084332 DOI: 10.1289/ehp9098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 05/11/2023]
Abstract
Advances in technologies to measure a broad set of exposures have led to a range of exposome research efforts. Yet, these efforts have insufficiently integrated methods that incorporate genetic data to strengthen causal inference, despite evidence that many exposome-associated phenotypes are heritable. Objective: We demonstrate how integration of methods and study designs that incorporate genetic data can strengthen causal inference in exposomics research by helping address six challenges: reverse causation and unmeasured confounding, comprehensive examination of phenotypic effects, low efficiency, replication, multilevel data integration, and characterization of tissue-specific effects. Examples are drawn from studies of biomarkers and health behaviors, exposure domains where the causal inference methods we describe are most often applied. Discussion: Technological, computational, and statistical advances in genotyping, imputation, and analysis, combined with broad data sharing and cross-study collaborations, offer multiple opportunities to strengthen causal inference in exposomics research. Full application of these opportunities will require an expanded understanding of genetic variants that predict exposome phenotypes as well as an appreciation that the utility of genetic variants for causal inference will vary by exposure and may depend on large sample sizes. However, several of these challenges can be addressed through international scientific collaborations that prioritize data sharing. Ultimately, we anticipate that efforts to better integrate methods that incorporate genetic data will extend the reach of exposomics research by helping address the challenges of comprehensively measuring the exposome and its health effects across studies, the life course, and in varied contexts and diverse populations. https://doi.org/10.1289/EHP9098.
Collapse
Affiliation(s)
- Christy L Avery
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Population Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Annie Green Howard
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Population Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna F Ballou
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victoria L Buchanan
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason M Collins
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carolina G Downie
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heather M Highland
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Moa P Lee
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Adam G Lilly
- Carolina Population Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Sociology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brooke S Staley
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Population Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Abstract
Mendelian randomization (MR) is a method of studying the causal effects of modifiable exposures (i.e., potential risk factors) on health, social, and economic outcomes using genetic variants associated with the specific exposures of interest. MR provides a more robust understanding of the influence of these exposures on outcomes because germline genetic variants are randomly inherited from parents to offspring and, as a result, should not be related to potential confounding factors that influence exposure-outcome associations. The genetic variant can therefore be used as a tool to link the proposed risk factor and outcome, and to estimate this effect with less confounding and bias than conventional epidemiological approaches. We describe the scope of MR, highlighting the range of applications being made possible as genetic data sets and resources become larger and more freely available. We outline the MR approach in detail, covering concepts, assumptions, and estimation methods. We cover some common misconceptions, provide strategies for overcoming violation of assumptions, and discuss future prospects for extending the clinical applicability, methodological innovations, robustness, and generalizability of MR findings.
Collapse
Affiliation(s)
- Rebecca C Richmond
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, United Kingdom
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol BS1 3NU, United Kingdom
| |
Collapse
|
18
|
Zhang Q, Zhang X, Li S, Liu H, Liu L, Huang Q, Hou Y, Liang X, Cui B, Zhang M, Xia L, Zhang L, Li C, Li J, Sun G, Tang N. Joint effect of urinary arsenic species and serum one-carbon metabolism nutrients on gestational diabetes mellitus: A cross-sectional study of Chinese pregnant women. ENVIRONMENT INTERNATIONAL 2021; 156:106741. [PMID: 34217037 DOI: 10.1016/j.envint.2021.106741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/06/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Growing evidence indicates that arsenic (As) exposure can increase the risk of gestational diabetes mellitus (GDM). However, little is known about As species and GDM and the combined effect of As and one-carbon metabolism (OCM) on GDM. OBJECTIVES We aimed to examine the associations between As species and GDM and evaluate the potential interactions of folate, vitamin B12, and homocysteine (Hcy) with As species on GDM prevalence. METHOD We measured levels of arsenite (As3+), arsenate (As5+), dimethylarsinic acid (DMA), and arsenobetaine (AsB) species in urine and folate, vitamin B12, and Hcy in serum from 396 pregnant women in Tianjin, China. The diagnosis of GDM was based on an oral glucose tolerance test. Associations of As species in urine with GDM were evaluated using generalized linear models (GLMs) and Bayesian kernel machine regression (BKMR). Additive interactions of As and OCM with GDM were estimated by determining the relative excess risk due to interaction (RERI). RESULTS Of the 396 pregnant women, 89 were diagnosed with GDM. Continuous increases in urinary inorganic As were associated with GDM in the GLMs, with adjusted odds ratios of 2.12 (95% CI: 0.96, 4.71) for As3+, and 0.27 (95% CI: 0.07, 0.98) for As5+. The BKMR in estimating the exposure-response functions showed that As3+ and AsB were positively associated with GDM. However, As5+ showed a negative relationship with GDM. Although the additive interactions between As exposure and OCM indicators were not significant, we found that pregnant women with higher urinary As3+ and total As accompanied by lower serum vitamin B12 were more likely to have higher odds of GDM (3.12, 95% CI: 1.32, 7.38 and 3.10, 95% CI: 1.30, 7.38, respectively). CONCLUSIONS Our data suggest a positive relation between As3+ and GDM but a negative relation between As5+ and GDM. Potential additive interaction of As and OCM with GDM requires further investigation.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xumei Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Shuying Li
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin 300380, China
| | - Huihuan Liu
- Beichen District Women's and Children's Health Center, Tianjin 300400, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001 China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yaxing Hou
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoshan Liang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Bo Cui
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Ming Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Liting Xia
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Guifan Sun
- Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
19
|
Nigra AE, Moon KA, Jones MR, Sanchez TR, Navas-Acien A. Urinary arsenic and heart disease mortality in NHANES 2003-2014. ENVIRONMENTAL RESEARCH 2021; 200:111387. [PMID: 34090890 PMCID: PMC8403626 DOI: 10.1016/j.envres.2021.111387] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Evidence evaluating the prospective association between low-to moderate-inorganic arsenic (iAs) exposure and cardiovascular disease in the general US population is limited. We evaluated the association between urinary arsenic concentrations in National Health and Nutrition Examination Survey (NHANES) 2003-2014 and heart disease mortality linked from the National Death Index through 2015. METHODS We modeled iAs exposure as urinary total arsenic and dimethylarsinate among participants with low seafood intake, based on low arsenobetaine levels (N = 4990). We estimated multivariable adjusted hazard ratios (HRs) for heart disease mortality per interquartile range (IQR) increase in urinary arsenic levels using survey-weighted, Cox proportional hazards models, and evaluated flexible dose-response analyses using restricted quadratic spline models. We updated a previously published relative risk of coronary heart disease mortality from a dose-response meta-analysis per a doubling of water iAs (e.g., from 10 to 20 μg/L) with our results from NHANES 2003-2014, assuming all iAs exposure came from drinking water. RESULTS A total of 77 fatal heart disease events occurred (median follow-up time 75 months). The adjusted HRs (95% CI) of heart disease mortality for an increase in urinary total arsenic and DMA corresponding to the interquartile range were 1.20 (0.83, 1.74) and 1.18 (0.68, 2.05), respectively. Restricted quadratic splines indicate a significant association between increasing urinary total arsenic and the HR of fatal heart disease for all participants at the lowest exposure levels <4.5 μg/L. The updated pooled relative risk of coronary heart disease mortality per doubling of water iAs (μg/L) was 1.16 (95% CI 1.07, 1.25). CONCLUSIONS Despite a small number of events, relatively short follow-up time, and high analytical limits of detection for urinary arsenic species, iAs exposure at low-to moderate-levels is consistent with increased heart disease mortality in NHANES 2003-2014 although the associations were only significant in flexible dose-response models.
Collapse
Affiliation(s)
- Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Katherine A Moon
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Miranda R Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
20
|
Chernoff M, Tong L, Demanelis K, Vander Griend D, Ahsan H, Pierce BL. Genetic Determinants of Reduced Arsenic Metabolism Efficiency in the 10q24.32 Region Are Associated With Reduced AS3MT Expression in Multiple Human Tissue Types. Toxicol Sci 2021; 176:382-395. [PMID: 32433756 DOI: 10.1093/toxsci/kfaa075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Approximately 140 million people worldwide are exposed to inorganic arsenic through contaminated drinking water. Chronic exposure increases risk for cancers as well as cardiovascular, respiratory, and neurologic diseases. Arsenic metabolism involves the AS3MT (arsenic methyltransferase) gene, and arsenic metabolism efficiency (AME, measured as relative concentrations of arsenic metabolites in urine) varies among individuals. Inherited genetic variation in the 10q24.32 region, containing AS3MT, influences AME, but the mechanisms remain unclear. To better understand these mechanisms, we use tissue-specific expression data from GTEx (Genotype-tissue Expression project) to identify cis-eQTLs (expression quantitative trait loci) for AS3MT and other nearby genes. We combined these data with results from a genome-wide association study of AME using "colocalization analysis," to determine if 10q24.32 SNPs (single nucleotide polymorphisms) that affect AME also affect expression of AS3MT or nearby genes. These analyses identified cis-eQTLs for AS3MT in 38 tissue types. Colocalization results suggest that the casual variant represented by AME lead SNP rs4919690 impacts expression of AS3MT in 13 tissue types (> 80% probability). Our results suggest this causal SNP also regulates/coregulates expression of nearby genes: BORCS7 (43 tissues), NT5C2 (2 tissues), CYP17A1-AS1 (1 tissue), and RP11-724N1.1 (1 tissue). The rs4919690 allele associated with decreased AME is associated with decreased expression of AS3MT (and other coregulated genes). Our study provides a potential biological mechanism for the association between 10q24.32 variation and AME and suggests that the causal variant, represented by rs4919690, may impact AME (as measured in urine) through its effects on arsenic metabolism occurring in multiple tissue types.
Collapse
Affiliation(s)
- Meytal Chernoff
- The Department of Public Health Sciences, The University of Chicago, Chicago, Illinois 60637 - 1447.,The Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, Illinois 60637
| | - Lin Tong
- The Department of Public Health Sciences, The University of Chicago, Chicago, Illinois 60637 - 1447
| | - Kathryn Demanelis
- The Department of Public Health Sciences, The University of Chicago, Chicago, Illinois 60637 - 1447
| | - Donald Vander Griend
- The Department of Pathology, The University of Illinois at Chicago, Chicago, Illinois 60612
| | - Habib Ahsan
- The Department of Public Health Sciences, The University of Chicago, Chicago, Illinois 60637 - 1447
| | - Brandon L Pierce
- The Department of Public Health Sciences, The University of Chicago, Chicago, Illinois 60637 - 1447.,The Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
21
|
Mendelian randomization analysis of arsenic metabolism and pulmonary function within the Hispanic Community Health Study/Study of Latinos. Sci Rep 2021; 11:13470. [PMID: 34188144 PMCID: PMC8242019 DOI: 10.1038/s41598-021-92911-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Arsenic exposure has been linked to poor pulmonary function, and inefficient arsenic metabolizers may be at increased risk. Dietary rice has recently been identified as a possible substantial route of exposure to arsenic, and it remains unknown whether it can provide a sufficient level of exposure to affect pulmonary function in inefficient metabolizers. Within 12,609 participants of HCHS/SOL, asthma diagnoses and spirometry-based measures of pulmonary function were assessed, and rice consumption was inferred from grain intake via a food frequency questionnaire. After stratifying by smoking history, the relationship between arsenic metabolism efficiency [percentages of inorganic arsenic (%iAs), monomethylarsenate (%MMA), and dimethylarsinate (%DMA) species in urine] and the measures of pulmonary function were estimated in a two-sample Mendelian randomization approach (genotype information from an Illumina HumanOmni2.5-8v1-1 array), focusing on participants with high inferred rice consumption. Among never-smoking high inferred consumers of rice (n = 1395), inefficient metabolism was associated with past asthma diagnosis and forced vital capacity below the lower limit of normal (LLN) (OR 1.40, p = 0.0212 and OR 1.42, p = 0.0072, respectively, for each percentage-point increase in %iAs; OR 1.26, p = 0.0240 and OR 1.24, p = 0.0193 for %MMA; OR 0.87, p = 0.0209 and OR 0.87, p = 0.0123 for the marker of efficient metabolism, %DMA). Among ever-smoking high inferred consumers of rice (n = 1127), inefficient metabolism was associated with peak expiratory flow below LLN (OR 1.54, p = 0.0108/percentage-point increase in %iAs, OR 1.37, p = 0.0097 for %MMA, and OR 0.83, p = 0.0093 for %DMA). Less efficient arsenic metabolism was associated with indicators of pulmonary dysfunction among those with high inferred rice consumption, suggesting that reductions in dietary arsenic could improve respiratory health.
Collapse
|
22
|
Arsenic methylation - Lessons from three decades of research. Toxicology 2021; 457:152800. [PMID: 33901604 PMCID: PMC10048126 DOI: 10.1016/j.tox.2021.152800] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 01/26/2023]
Abstract
Between 1990 and 2020, our understanding of the significance of arsenic biomethylation changed in remarkable ways. At the beginning of this period, the conversion of inorganic arsenic into mono- and di-methylated metabolites was viewed primarily as a process that altered the kinetic behavior of arsenic. By increasing the rate of clearance of arsenic, the formation of methylated metabolites reduced exposure to this toxin; that is, methylation was detoxification. By 2020, it was clear that at least some of the toxic effects associated with As exposure depended on formation of methylated metabolites containing trivalent arsenic. Because the trivalent oxidation state of arsenic is associated with increased potency as a cytotoxin and clastogen, these findings were consistent with methylation-related changes in the dynamic behavior of arsenic. That is, methylation was activation. Our current understanding of the role of methylation as a modifier of kinetic and dynamic behaviors of arsenic is the product of research at molecular, cellular, organismic, and population levels. This information provides a basis for refining our estimates of risk associated with long term exposure to inorganic arsenic in environmental media, food, and water. This report summarizes the growth of our knowledge of enzymatically catalyzed methylation of arsenic over this period and considers the prospects for new discoveries.
Collapse
|
23
|
Monomethylated arsenic was the Major methylated arsenic in Red blood cells of acute promyelocytic leukemia patients treated with arsenic trioxide. Toxicol Lett 2021; 347:78-85. [PMID: 33865921 DOI: 10.1016/j.toxlet.2021.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Arsenic trioxide (ATO) has been successfully applied in the treatment of acute promyelocytic leukemia (APL). Arsenic metabolites including inorganic arsenic and methylated arsenic could lead to different toxicity and curative effect. This study aims to establish a method to determine arsenic species in red blood cells (RBCs), clarify the distribution characteristics of arsenic species in RBCs. METHODS Steady state blood samples were collected from 97 APL patients. H2O2 and HClO4 were used to release the hemoglobin bounding arsenic and precipitate protein. Arsenite (iAsIII), arsenate (iAsV), monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) in plasma and RBCs were detected by HPLC-HG-AFS. Free and bound arsenic species in RBCs were separated by 30 kDa molecular mass cutoff filters and determined to evaluate hemoglobin binding capacity of different arsenic species. RESULTS The method was validated with accuracy ranged from 84.75% to 104.13%. Arsenic species in RBCs followed the trend iAs > MMA > DMA (p < 0.01), while the concentration of DMA was significantly higher than iAs and MMA in plasma (p < 0.01). The correlation between iAs concentration in plasma and corresponding RBCs arsenic level was weak. And the concentrations of DMA and MMA in plasma were moderately positive correlated with those in RBCs. Hemoglobin-binding ratios of iAs, MMA and DMA were all over 70 %. CONCLUSIONS In this study, we provided a reliable method to determine arsenic species in RBCs of APL patients treated with ATO by HPLC-HG-AFS. It was confirmed that the concentration of DMA is the highest in plasma, while MMA is the most predominant methylated arsenic in RBCs. High affinity of MMA with human Hb was responsible for the accumulation of arsenic in RBCs of APL patients.
Collapse
|
24
|
Delgado DA, Chernoff M, Huang L, Tong L, Chen L, Jasmine F, Shinkle J, Cole SA, Haack K, Kent J, Umans J, Best LG, Nelson H, Griend DV, Graziano J, Kibriya MG, Navas-Acien A, Karagas MR, Ahsan H, Pierce BL. Rare, Protein-Altering Variants in AS3MT and Arsenic Metabolism Efficiency: A Multi-Population Association Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47007. [PMID: 33826413 PMCID: PMC8041273 DOI: 10.1289/ehp8152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Common genetic variation in the arsenic methyltransferase (AS3MT) gene region is known to be associated with arsenic metabolism efficiency (AME), measured as the percentage of dimethylarsinic acid (DMA%) in the urine. Rare, protein-altering variants in AS3MT could have even larger effects on AME, but their contribution to AME has not been investigated. OBJECTIVES We estimated the impact of rare, protein-coding variation in AS3MT on AME using a multi-population approach to facilitate the discovery of population-specific and shared causal rare variants. METHODS We generated targeted DNA sequencing data for the coding regions of AS3MT for three arsenic-exposed cohorts with existing data on arsenic species measured in urine: Health Effects of Arsenic Longitudinal Study (HEALS, n = 2,434 ), Strong Heart Study (SHS, n = 868 ), and New Hampshire Skin Cancer Study (NHSCS, n = 666 ). We assessed the collective effects of rare (allele frequency < 1 % ), protein-altering AS3MT variants on DMA%, using multiple approaches, including a test of the association between rare allele carrier status (yes/no) and DMA% using linear regression (adjusted for common variants in 10q24.32 region, age, sex, and population structure). RESULTS We identified 23 carriers of rare-protein-altering AS3MT variant across all cohorts (13 in HEALS and 5 in both SHS and NHSCS), including 6 carriers of predicted loss-of-function variants. DMA% was 6-10% lower in carriers compared with noncarriers in HEALS [β = - 9.4 (95% CI: - 13.9 , - 4.8 )], SHS [β = - 6.9 (95% CI: - 13.6 , - 0.2 )], and NHSCS [β = - 8.7 (95% CI: - 15.6 , - 2.2 )]. In meta-analyses across cohorts, DMA% was 8.7% lower in carriers [β = - 8.7 (95% CI: - 11.9 , - 5.4 )]. DISCUSSION Rare, protein-altering variants in AS3MT were associated with lower mean DMA%, an indicator of reduced AME. Although a small percentage of the population (0.5-0.7%) carry these variants, they are associated with a 6-10% decrease in DMA% that is consistent across multiple ancestral and environmental backgrounds. https://doi.org/10.1289/EHP8152.
Collapse
Affiliation(s)
- Dayana A. Delgado
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Meytal Chernoff
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Lei Huang
- Center for Research Informatics, UChicago, Chicago, Illinois, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Lin Chen
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Shelley A. Cole
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Karin Haack
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jack Kent
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jason Umans
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | - Lyle G. Best
- Missouri Breaks Industries Research, Inc., Timber Lake, South Dakota, USA
| | - Heather Nelson
- School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Donald Vander Griend
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joseph Graziano
- Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Muhammad G. Kibriya
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
| | - Ana Navas-Acien
- Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
- Department of Human Genetics, UChicago, Chicago, Illinois, USA
- Comprehensive Cancer Center, UChicago, Chicago, Illinois, USA
- Department of Medicine, UChicago, Chicago, Illinois, USA
| | - Brandon L. Pierce
- Department of Public Health Sciences, University of Chicago (UChicago), Chicago, Illinois, USA
- Department of Human Genetics, UChicago, Chicago, Illinois, USA
- Comprehensive Cancer Center, UChicago, Chicago, Illinois, USA
| |
Collapse
|
25
|
Douillet C, Ji J, Meenakshi IL, Lu K, de Villena FPM, Fry RC, Stýblo M. Diverse genetic backgrounds play a prominent role in the metabolic phenotype of CC021/Unc and CC027/GeniUNC mice exposed to inorganic arsenic. Toxicology 2021; 452:152696. [PMID: 33524430 DOI: 10.1016/j.tox.2021.152696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/12/2020] [Accepted: 01/23/2021] [Indexed: 12/30/2022]
Abstract
Arsenic methyltransferase (AS3MT) is the key enzyme in the pathway for the methylation of inorganic arsenic (iAs), a potent human carcinogen and diabetogen. AS3MT converts iAs to mono- and dimethylated arsenic species (MAs, DMAs) that are excreted mainly in urine. Polymorphisms in AS3MT is a key genetic factor affecting iAs metabolism and toxicity. The present study examined the role of As3mt polymorphisms in the susceptibility to the diabetogenic effects of iAs exposure using two Collaborative Cross mouse strains, CC021/Unc and CC027/GeniUnc, carrying different As3mt haplotypes. Male mice from the two strains were exposed to iAs in drinking water (0, 0.1 or 50 ppm) for 11 weeks. Blood glucose and plasma insulin levels were measured after 6-h fasting and 15 min after i.p. injection of glucose. Body composition was determined using magnetic resonance imaging. To asses iAs metabolism, the concentrations of iAs, MAs and DMAs were measured in urine. The results show that CC021 mice, both iAs-exposed and controls, had higher body fat percentage, lower fasting blood glucose, higher fasting plasma insulin, and were more insulin resistant than their CC027 counterparts. iAs exposure had a minor effect on diabetes indicators and only in CC027 mice. Blood glucose levels 15 min after glucose injection were significantly higher in CC027 mice exposed to 0.1 ppm iAs than in control mice. No significant differences were found in the concentrations or proportions of arsenic species in urine of CC021 and CC027 mice at the same exposure level. These results suggest that the differences in As3mt haplotypes did not affect the profiles of iAs or its metabolites in mouse urine. The major differences in diabetes indicators were associated with the genetic backgrounds of CC021 and CC027 mice. The effects of iAs exposure, while minor, were genotype- and dose-dependent.
Collapse
Affiliation(s)
- Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jinglin Ji
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Immaneni Lakshmi Meenakshi
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
26
|
Koller BH, Snouwaert JN, Douillet C, Jania LA, El-Masri H, Thomas DJ, Stýblo M. Arsenic Metabolism in Mice Carrying a BORCS7/AS3MT Locus Humanized by Syntenic Replacement. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:87003. [PMID: 32779937 PMCID: PMC7418654 DOI: 10.1289/ehp6943] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Chronic exposure to inorganic arsenic (iAs) is a significant public health problem. Methylation of iAs by arsenic methyltransferase (AS3MT) controls iAs detoxification and modifies risks of iAs-induced diseases. Mechanisms underlying these diseases have been extensively studied using animal models. However, substantive differences between humans and laboratory animals in efficiency of iAs methylation have hindered the translational potential of the laboratory studies. OBJECTIVES The goal of this study was to determine whether humanization of the As3mt gene confers a human-like pattern of iAs metabolism in mice. METHODS We generated a mouse strain in which the As3mt gene along with the adjacent Borcs7 gene was humanized by syntenic replacement. We compared expression of the mouse As3mt and the human AS3MT and the rate and pattern of iAs metabolism in the wild-type and humanized mice. RESULTS AS3MT expression in mouse tissues closely modeled that of human and differed substantially from expression of As3mt. Detoxification of iAs was much less efficient in the humanized mice than in wild-type mice. Profiles for iAs and its methylated metabolites in tissues and excreta of the humanized mice were consistent with those reported in humans. Notably, the humanized mice expressed both the full-length AS3MT that catalyzes iAs methylation and the human-specific AS3MTd2d3 splicing variant that has been linked to schizophrenia. CONCLUSIONS These results suggest that AS3MT is the primary genetic locus responsible for the unique pattern of iAs metabolism in humans. Thus, the humanized mouse strain can be used to study the role of iAs methylation in the pathogenesis of iAs-induced diseases, as well as to evaluate the role of AS3MTd2d3 in schizophrenia. https://doi.org/10.1289/EHP6943.
Collapse
Affiliation(s)
- Beverly H. Koller
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - John N. Snouwaert
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Christelle Douillet
- Department of Nutrition, UNC Gillings School of Public Health, Chapel Hill, North Carolina, USA
| | - Leigh A. Jania
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Hisham El-Masri
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - David J. Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Miroslav Stýblo
- Department of Nutrition, UNC Gillings School of Public Health, Chapel Hill, North Carolina, USA
| |
Collapse
|
27
|
Barahona Ponce C, Scherer D, Boekstegers F, Garate-Calderon V, Jenab M, Aleksandrova K, Katzke V, Weiderpass E, Bonet C, Moradi T, Fischer K, Bossers W, Brenner H, Schöttker B, Holleczek B, Hveem K, Eklund N, Völker U, Waldenberger M, Lorenzo Bermejo J. Arsenic and gallbladder cancer risk: Mendelian randomization analysis of European prospective data. Int J Cancer 2020; 146:2648-2650. [PMID: 31846055 DOI: 10.1002/ijc.32837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Carol Barahona Ponce
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago, Chile
| | - Dominique Scherer
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Felix Boekstegers
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Valentina Garate-Calderon
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago, Chile
| | - Mazda Jenab
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Krasimira Aleksandrova
- Nutrition, Immunity and Metabolism Senior Scientist Group, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Catalina Bonet
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Tahereh Moradi
- Division of Epidemiology, Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Krista Fischer
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Kristian Hveem
- The Nord-Trøndelag Health (HUNT) Research Centre, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Niina Eklund
- Genomiikka ja Biomarkkerit, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Uwe Völker
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Universitätsmedizin Greifswald, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology and Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Justo Lorenzo Bermejo
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
DiGiovanni A, Demanelis K, Tong L, Argos M, Shinkle J, Jasmine F, Sabarinathan M, Rakibuz-Zaman M, Sarwar G, Islam MT, Shahriar H, Islam T, Rahman M, Yunus M, Graziano J, Gamble MV, Ahsan H, Pierce BL. Assessing the impact of arsenic metabolism efficiency on DNA methylation using Mendelian randomization. Environ Epidemiol 2020; 4:e083. [PMID: 32337471 PMCID: PMC7147391 DOI: 10.1097/ee9.0000000000000083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Arsenic exposure affects >100 million people globally and increases risk for chronic diseases. One possible toxicity mechanism is epigenetic modification. Previous epigenome-wide association studies (EWAS) have identified associations between arsenic exposure and CpG-specific DNA methylation. To provide additional evidence that observed associations represent causal relationships, we examine the association between genetic determinants of arsenic metabolism efficiency (percent dimethylarsinic acid, DMA%, in urine) and DNA methylation among individuals from the Health Effects of Arsenic Longitudinal Study (n = 379) and Bangladesh Vitamin E and Selenium Trial (n = 393). METHODS We used multivariate linear models to assess the association of methylation at 221 arsenic-associated CpGs with DMA% and measures of genetically predicted DMA% derived from three SNPs (rs9527, rs11191527, and rs61735836). We also conducted two-sample Mendelian randomization analyses to estimate the association between arsenic metabolism efficiency and CpG methylation. RESULTS Among the associations between DMA% and methylation at each of 221 CpGs, 64% were directionally consistent with associations observed between arsenic exposure and the 221 CpGs from a prior EWAS. Similarly, among the associations between genetically predicted DMA% and each CpG, 62% were directionally consistent with the prior EWAS results. Two-sample Mendelian randomization analyses produced similar conclusions. CONCLUSION Our findings support the hypothesis that arsenic exposure effects DNA methylation at specific CpGs in whole blood. Our novel approach for assessing the impact of arsenic exposure on DNA methylation requires larger samples in order to draw more robust conclusions for specific CpG sites.
Collapse
Affiliation(s)
- Anthony DiGiovanni
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Kathryn Demanelis
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois
| | - Justin Shinkle
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Farzana Jasmine
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Mekala Sabarinathan
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | | | - Golam Sarwar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Hasan Shahriar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mahfuzar Rahman
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
- Research and Evaluation Division, BRAC, Dhaka, Bangladesh
| | - Md Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Joseph Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
- Department of Human Genetics
- Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Brandon L Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
- Department of Human Genetics
- Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois
| |
Collapse
|
29
|
Tamayo LI, Lin H, Ahmed A, Shahriar H, Hasan R, Sarwar G, Eunus HM, Ahsan H, Pierce BL. Research Participants' Attitudes towards Receiving Information on Genetic Susceptibility to Arsenic Toxicity in Rural Bangladesh. Public Health Genomics 2020; 23:69-76. [PMID: 32069464 PMCID: PMC7605079 DOI: 10.1159/000505632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In human genetics research, it has become common practice for researchers to consider returning genetic information to participants who wish to receive it. Research participants in lower-resource settings may have barriers or competing interests that reduce the benefit or relevance of such information. Thus, the decision to return genetic information in these settings may involve special considerations of participants' interests and preferences. In this project, our goal was to assess Bangladeshi research participants' attitudes towards receiving information regarding genetic susceptibility to the effects of consuming arsenic-contaminated drinking water, a serious environmental health concern in Bangladesh and other countries. METHODS We administered a short questionnaire to 200 individuals participating in the Health Effects of Arsenic Longitudinal Study. Associations between survey responses and participant characteristics were estimated using logistic regression. RESULTS Overall, 100% of our participants were interested in receiving information regarding their genetic susceptibility to arsenic toxicities, and 91% indicated that being at increased genetic risk would motivate them to make efforts to reduce their exposure. Lower levels of education showed evidence of association with less concern regarding the health effects of arsenic and lower levels of motivation to reduce exposure in response to genetic information. CONCLUSIONS Research participants in this low-resource setting appeared interested in receiving information on their genetic susceptibility to arsenic toxicity and motivated to reduce exposure in response to such information. Additional research is needed to understand how best to communicate genetic information in this population and to assess the impact of such information on individuals' behaviors and health.
Collapse
Affiliation(s)
- Lizeth I Tamayo
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, USA
| | - Hannah Lin
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, USA
| | - Alauddin Ahmed
- University of Chicago Research Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- University of Chicago Research Bangladesh, Dhaka, Bangladesh
| | - Rabiul Hasan
- University of Chicago Research Bangladesh, Dhaka, Bangladesh
| | - Golam Sarwar
- University of Chicago Research Bangladesh, Dhaka, Bangladesh
| | | | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
- Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, USA,
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA,
- Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA,
| |
Collapse
|
30
|
Khan KM, Parvez F, Zoeller RT, Hocevar BA, Kamendulis LM, Rohlman D, Eunus M, Graziano J. Thyroid hormones and neurobehavioral functions among adolescents chronically exposed to groundwater with geogenic arsenic in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:278-287. [PMID: 31075594 PMCID: PMC6544172 DOI: 10.1016/j.scitotenv.2019.04.426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Groundwater, the major source of drinking water in Bengal Delta Plain, is contaminated with geogenic arsenic (As) enrichment affecting millions of people. Children exposed to tubewell water containing As may be associated with thyroid dysfunction, which in turn may impact neurodevelopmental outcomes. However, data to support such relationship is sparse. The purpose of this study was to examine if chronic water As (WAs) from Holocene alluvial aquifers in this region was associated with serum thyroid hormone (TH) and if TH biomarkers were related to neurobehavioral (NB) performance in a group of adolescents. A sample of 32 healthy adolescents were randomly drawn from a child cohort in the Health Effects of Arsenic Longitudinal Study (HEALS) in Araihazar, Bangladesh. Half of these participants were consistently exposed to low WAs (<10 μg/L) and the remaining half had high WAs exposure (≥10 μg/L) since birth. Measurements included serum total triiodothyronine (tT3), free thyroxine (fT4), thyrotropin (TSH) and thyroperoxidase antibodies (TPOAb); concurrent WAs and urinary arsenic (UAs); and adolescents' NB performance. WAs and UAs were positively and significantly correlated with TPOAb but were not correlated with TSH, tT3 and fT4. After accounting for covariates, both WAs and UAs demonstrated positive but non-significant relationships with TSH and TPOAb and negative but non-significant relationships with tT3 and fT4. TPOAb was significantly associated with reduced NB performance indicated by positive associations with latencies in simple reaction time (b = 82.58; p < 0.001) and symbol digit (b = 276.85; p = 0.005) tests. TSH was significantly and negatively associated with match-to-sample correct count (b = -0.95; p = 0.05). Overall, we did not observe significant associations between arsenic exposure and TH biomarkers although the relationships were in the expected directions. We observed TH biomarkers to be related to reduced NB performance as hypothesized. Our study indicated a possible mechanism of As-induced neurotoxicity, which requires further investigations for confirmatory findings.
Collapse
Affiliation(s)
- Khalid M Khan
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, IN, USA.
| | - Faruque Parvez
- Department of Environmental Health, Mailman School of Public Health, Columbia University, New York, USA
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, MA, USA
| | - Barbara A Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, IN, USA
| | - Lisa M Kamendulis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, IN, USA
| | - Diane Rohlman
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, IA, USA
| | | | - Joseph Graziano
- Department of Environmental Health, Mailman School of Public Health, Columbia University, New York, USA
| |
Collapse
|
31
|
Medina-Pizzali M, Damián-Bastidas N, Vargas-Reyes M. Arsenic in baby foods: health effects and dietary exposure. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- M. Medina-Pizzali
- Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Av. Alameda San Marcos, Cuadra 2, Chorrillos, Lima, Perú
| | - N. Damián-Bastidas
- Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Av. Alameda San Marcos, Cuadra 2, Chorrillos, Lima, Perú
| | - M. Vargas-Reyes
- Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Av. Alameda San Marcos, Cuadra 2, Chorrillos, Lima, Perú
| |
Collapse
|
32
|
Scannell Bryan M, Sofer T, Mossavar-Rahmani Y, Thyagarajan B, Zeng D, Daviglus ML, Argos M. Mendelian randomization of inorganic arsenic metabolism as a risk factor for hypertension- and diabetes-related traits among adults in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) cohort. Int J Epidemiol 2019; 48:876-886. [PMID: 30929011 PMCID: PMC6659367 DOI: 10.1093/ije/dyz046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Hypertension and diabetes have been associated with inefficient arsenic metabolism, primarily through studies undertaken in populations exposed through drinking water. Recently, rice has been recognized as a source of arsenic exposure, but it remains unclear whether populations with high rice consumption but no known water exposure are at risk for the health problems associated with inefficient arsenic metabolism. METHODS The relationships between arsenic metabolism efficiency (% inorganic arsenic, % monomethylarsenate and % dimethylarsinate in urine) and three hypertension- and seven diabetes-related traits were estimated among 12 609 participants of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). A two-sample Mendelian randomization approach incorporated genotype-arsenic metabolism relationships from literature, and genotype-trait relationships from HCHS/SOL, with a mixed-effect linear model. Analyses were stratified by rice consumption and smoking. RESULTS Among never smokers with high rice consumption, each percentage point increase in was associated with increases of 1.96 mmHg systolic blood pressure (P = 0.034) and 1.85 mmHg inorganic arsenic diastolic blood pressure (P = 0.003). Monomethylarsenate was associated with increased systolic (1.64 mmHg/percentage point increase; P = 0.021) and diastolic (1.33 mmHg/percentage point increase; P = 0.005) blood pressure. Dimethylarsinate, a marker of efficient metabolism, was associated with lower systolic (-0.92 mmHg/percentage point increase; P = 0.025) and diastolic (-0.79 mmHg/percentage point increase; P = 0.004) blood pressure. Among low rice consumers and ever smokers, the results were consistent with no association. Evidence for a relationship with diabetes was equivocal. CONCLUSIONS Less efficient arsenic metabolism was associated with increased blood pressure among never smokers with high rice consumption, suggesting that arsenic exposure through rice may contribute to high blood pressure in the Hispanic/Latino community.
Collapse
Affiliation(s)
- Molly Scannell Bryan
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Tamar Sofer
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Einstein College of Medicine, Bronx, New York, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Donglin Zeng
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Navas-Acien A, Sanchez TR, Mann K, Jones MR. Arsenic Exposure and Cardiovascular Disease: Evidence Needed to Inform the Dose-Response at Low Levels. CURR EPIDEMIOL REP 2019. [DOI: 10.1007/s40471-019-00186-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Gao S, Mostofa MG, Quamruzzaman Q, Rahman M, Rahman M, Su L, Hsueh YM, Weisskopf M, Coull B, Christiani DC. Gene-environment interaction and maternal arsenic methylation efficiency during pregnancy. ENVIRONMENT INTERNATIONAL 2019; 125:43-50. [PMID: 30703610 PMCID: PMC7592115 DOI: 10.1016/j.envint.2019.01.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) may influence arsenic methylation efficiency, affecting arsenic metabolism. Whether gene-environment interactions affect arsenic metabolism during pregnancy remains unclear, which may have implications for pregnancy outcomes. OBJECTIVE We aimed to investigate main effects as well as potential SNP-arsenic interactions on arsenic methylation efficiency in pregnant women. METHOD We recruited 1613 pregnant women in Bangladesh, and collected two urine samples from each participant, one at 4-16 weeks, and the second at 21-37 weeks of pregnancy. We determined the proportions of each arsenic metabolite [inorganic As (iAs)%, monomethylarsonic acid (MMA)%, and dimethylarsinic acid (DMA)%] from the total urinary arsenic level of each sample. A panel of 63 candidate SNPs was selected for genotyping based on their reported associations with arsenic metabolism (including in As3MT, N6AMT1, and GSTO2 genes). We used linear regression models to assess the association between each SNP and DMA% with an additive allelic assumption, as well as SNP-arsenic interaction on DMA%. These analyses were performed separately for two urine collection time-points to capture differences in susceptibility to arsenic toxicity. RESULT Intron variants for As3MT were associated with DMA%. rs9527 (β = -2.98%, PFDR = 0.008) and rs1046778 (β = 1.64%, PFDR = 0.008) were associated with this measure in the early gestational period; rs3740393 (β = 2.54%, PFDR = 0.002) and rs1046778 (β = 1.97%, PFDR = 0.003) in the mid-to-late gestational period. Further, As3MT, GSTO2, and N6AMT1 polymorphisms showed different effect sizes on DMA% conditional on arsenic exposure levels. However, SNP-arsenic interactions were not statistically significant after adjusting for false discovery rate (FDR). rs1048546 in N6AMT1 had the highest significance level in the SNP-arsenic interaction test during mid-to-late gestation (β = -1.8% vs. 1.4%, PGxE_FDR = 0.075). Finally, As3MT and As3MT/CNNM2 haplotypes were associated with DMA% at both time points. CONCLUSION We found that not all genetic associations reported in arsenic methylation efficiency replicate in pregnant women. Arsenic exposure level has a limited effect in modifying the association between genetic variation and arsenic methylation efficiency.
Collapse
Affiliation(s)
- Shangzhi Gao
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | | | - Mohammad Rahman
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yu-Mei Hsueh
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Marc Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Prohaska A, Racimo F, Schork AJ, Sikora M, Stern AJ, Ilardo M, Allentoft ME, Folkersen L, Buil A, Moreno-Mayar JV, Korneliussen T, Geschwind D, Ingason A, Werge T, Nielsen R, Willerslev E. Human Disease Variation in the Light of Population Genomics. Cell 2019; 177:115-131. [DOI: 10.1016/j.cell.2019.01.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/25/2023]
|
36
|
Pierce BL, Tong L, Dean S, Argos M, Jasmine F, Rakibuz-Zaman M, Sarwar G, Islam MT, Shahriar H, Islam T, Rahman M, Yunus M, Lynch VJ, Oglesbee D, Graziano JH, Kibriya MG, Gamble MV, Ahsan H. A missense variant in FTCD is associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet 2019; 15:e1007984. [PMID: 30893314 PMCID: PMC6443193 DOI: 10.1371/journal.pgen.1007984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 04/01/2019] [Accepted: 01/23/2019] [Indexed: 12/02/2022] Open
Abstract
Inorganic arsenic (iAs) is a carcinogen, and exposure to iAs via food and water is a global public health problem. iAs-contaminated drinking water alone affects >100 million people worldwide, including ~50 million in Bangladesh. Once absorbed into the blood stream, most iAs is converted to mono-methylated (MMA) and then di-methylated (DMA) forms, facilitating excretion in urine. Arsenic metabolism efficiency varies among individuals, in part due to genetic variation near AS3MT (arsenite methyltransferase; 10q24.32). To identify additional arsenic metabolism loci, we measured protein-coding variants across the human exome for 1,660 Bangladeshi individuals participating in the Health Effects of Arsenic Longitudinal Study (HEALS). Among the 19,992 coding variants analyzed exome-wide, the minor allele (A) of rs61735836 (p.Val101Met) in exon 3 of FTCD (formiminotransferase cyclodeaminase) was associated with increased urinary iAs% (P = 8x10-13), increased MMA% (P = 2x10-16) and decreased DMA% (P = 6x10-23). Among 2,401 individuals with arsenic-induced skin lesions (an indicator of arsenic toxicity and cancer risk) and 2,472 controls, carrying the low-efficiency A allele (frequency = 7%) was associated with increased skin lesion risk (odds ratio = 1.35; P = 1x10-5). rs61735836 is in weak linkage disequilibrium with all nearby variants. The high-efficiency/major allele (G/Valine) is human-specific and eliminates a start codon at the first 5´-proximal Kozak sequence in FTCD, suggesting selection against an alternative translation start site. FTCD is critical for catabolism of histidine, a process that generates one-carbon units that can enter the one-carbon/folate cycle, which provides methyl groups for arsenic metabolism. In our study population, FTCD and AS3MT SNPs together explain ~10% of the variation in DMA% and support a causal effect of arsenic metabolism efficiency on arsenic toxicity (i.e., skin lesions). In summary, this work identifies a coding variant in FTCD associated with arsenic metabolism efficiency, providing new evidence supporting the established link between one-carbon/folate metabolism and arsenic toxicity.
Collapse
Affiliation(s)
- Brandon L. Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL United States of America
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Samantha Dean
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Farzana Jasmine
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | | | - Golam Sarwar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Hasan Shahriar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mahfuzar Rahman
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
- Research and Evaluation Division, BRAC, Dhaka, Bangladesh
| | - Md. Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Vincent J. Lynch
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States of America
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Muhammad G. Kibriya
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Mary V. Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL United States of America
- Department of Medicine, The University of Chicago, Chicago, IL, United States of America
- Institute for Population and Precision Health, The University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
37
|
Bommarito PA, Xu X, González-Horta C, Sánchez-Ramirez B, Ballinas-Casarrubias L, Luna RS, Pérez SR, Ávila JEH, García-Vargas GG, Del Razo LM, Stýblo M, Mendez MA, Fry RC. One-carbon metabolism nutrient intake and the association between body mass index and urinary arsenic metabolites in adults in the Chihuahua cohort. ENVIRONMENT INTERNATIONAL 2019; 123:292-300. [PMID: 30553202 PMCID: PMC6369528 DOI: 10.1016/j.envint.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Exposure to inorganic arsenic (iAs) via drinking water is a serious global health threat. Various factors influence susceptibility to iAs-associated health outcomes, including differences in iAs metabolism. Previous studies have shown that obesity is associated with iAs metabolism. It has been hypothesized that this association can be explained by confounding from nutritional factors involved in one-carbon metabolism, such as folate or other B vitamins, whose intake may differ across BMI categories and is known be associated with iAs metabolism. However, no studies have explored whether this association is confounded by nutritional factors. METHODS We investigated the relationship between body mass index (BMI) and the distribution of urinary arsenic species in a cross-sectional cohort of 1166 adults living in Chihuahua, Mexico from 2008 to 2013. Nutrient intake related to one-carbon metabolism, including folate, vitamin B2, and vitamin B12, was assessed using a food frequency questionnaire developed for Mexican populations. Multivariable linear regression was used to estimate the association between BMI and the distribution of urinary arsenic metabolites. Effect modification by drinking water iAs level and sex was also examined. RESULTS After adjusting for potential confounders, including age, educational attainment, smoking, alcohol consumption, seafood consumption, water iAs, and sex, BMI was negatively associated with the proportion of urinary inorganic arsenic (%U-iAs) and urinary monomethylated arsenic (%U-MMAs) and positively associated with urinary dimethylated arsenic (%U-DMAs). This relationship was not influenced by additional adjustment for folate, vitamin B2, or vitamin B12 intake. Additionally, there was significant effect modification by both drinking water iAs level and sex. CONCLUSIONS This study provides further evidence for an association between BMI and arsenic metabolism. However, contrary to previous hypotheses, these results suggest that this association is not confounded by the intake of micronutrients involved in one-carbon metabolism.
Collapse
Affiliation(s)
- Paige A Bommarito
- Environmental Science and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Xiaofan Xu
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Carmen González-Horta
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico.
| | | | | | | | | | | | - Gonzalo G García-Vargas
- Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Luz M Del Razo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Mirek Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Michelle A Mendez
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Rebecca C Fry
- Environmental Science and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Bozack AK, Hall MN, Liu X, Ilievski V, Lomax-Luu AM, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Gamble MV. Folic acid supplementation enhances arsenic methylation: results from a folic acid and creatine supplementation randomized controlled trial in Bangladesh. Am J Clin Nutr 2019; 109:380-391. [PMID: 30590411 PMCID: PMC6367980 DOI: 10.1093/ajcn/nqy148] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/19/2018] [Indexed: 02/02/2023] Open
Abstract
Background Arsenic exposure through drinking water persists in many regions. Inorganic As (InAs) is methylated to monomethyl-arsenical species (MMAs) and dimethyl-arsenical species (DMAs), facilitating urinary excretion. Arsenic methylation is dependent on one-carbon metabolism, which is influenced by nutritional factors such as folate and creatine. Objective This study investigated the effects of folic acid (FA) and/or creatine supplementation on the proportion of As metabolites in urine. Design In a 24-wk randomized, double-blinded, placebo-controlled trial, 622 participants were assigned to receive FA (400 or 800 μg per day), 3 g creatine per day, 400 μg FA + 3 g creatine per day, or placebo. The majority of participants were folate sufficient; all received As-removal water filters. From wk 12-24, half of the participants receiving FA received placebo. Results Among groups receiving FA, the mean decrease in ln(%InAs) and %MMAs and increase in %DMAs exceeded those of the placebo group at wk 6 and 12 (P < 0.05). In the creatine group, the mean decrease in %MMAs exceeded that of the placebo group at wk 6 and 12 (P < 0.05); creatine supplementation did not affect change in %InAs or %DMAs. The decrease in %MMAs at wk 6 and 12 was larger in the 800 µg FA than in the 400 µg FA group (P = 0.034). There were no differences in treatment effects between the 400 µg FA and creatine + FA groups. Data suggest a rebound in As metabolite proportions after FA cessation; at wk 24, log(%InAs) and %DMAs were not significantly different than baseline levels among participants who discontinued FA supplementation. Conclusions The results of this study confirm that FA supplementation rapidly and significantly increases methylation of InAs to DMAs. Further research is needed to understand the strong cross-sectional associations between urinary creatinine and As methylation in previous studies. This trial was registered at https://clinicaltrials.gov as NCT01050556.
Collapse
Affiliation(s)
| | | | - Xinhua Liu
- Biostatistics, Columbia University, New York, NY
| | | | | | | | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | | | - Mary V Gamble
- Departments of Environmental Health Sciences,Address correspondence to MVG (e-mail: )
| |
Collapse
|
39
|
Matthews NH, Fitch K, Li WQ, Morris JS, Christiani DC, Qureshi AA, Cho E. Exposure to Trace Elements and Risk of Skin Cancer: A Systematic Review of Epidemiologic Studies. Cancer Epidemiol Biomarkers Prev 2019; 28:3-21. [PMID: 30297516 PMCID: PMC6324965 DOI: 10.1158/1055-9965.epi-18-0286] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/30/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Exposure to environmental trace elements has been studied in relation to many cancers. However, an association between exposure to trace elements and skin cancer remains less understood. Therefore, we conducted a systematic review of published epidemiologic literature examining the association between exposure to trace elements, and risk of melanoma and keratinocyte carcinoma in humans. We identified epidemiologic studies investigating exposure to arsenic, cadmium, chromium, copper, iron, selenium, and zinc and risk of skin cancer in humans. Among the minerals, arsenic, selenium, and zinc had more than five studies available. Exposure to arsenic was associated with increased risk of keratinocyte carcinoma, while too few studies existed on melanoma to draw conclusions. Exposure to selenium was associated with possible increased risk of keratinocyte carcinoma. Studies of zinc and skin cancer were case-control in design and were found to have inconsistent associations. The data on the association between cadmium, chromium, copper, and iron and risk of skin cancer remain too sparse to draw any conclusions. In summary, epidemiologic studies on exposure to trace elements and cutaneous malignancies are limited. Studies with larger sample sizes and prospective designs are warranted to improve our knowledge of trace elements and skin cancer.
Collapse
Affiliation(s)
- Natalie H Matthews
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Katherine Fitch
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Wen-Qing Li
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - J Steven Morris
- Research Reactor Center, University of Missouri-Columbia and Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Pulmonary and Critical Care Unit, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Abrar A Qureshi
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Dermatology, Rhode Island Hospital, Providence, Rhode Island
| | - Eunyoung Cho
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island.
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Wahlberg KE, Guazzetti S, Pineda D, Larsson SC, Fedrighi C, Cagna G, Zoni S, Placidi D, Wright RO, Smith DR, Lucchini RG, Broberg K. Polymorphisms in Manganese Transporters SLC30A10 and SLC39A8 Are Associated With Children's Neurodevelopment by Influencing Manganese Homeostasis. Front Genet 2018; 9:664. [PMID: 30619481 PMCID: PMC6307466 DOI: 10.3389/fgene.2018.00664] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/04/2018] [Indexed: 11/19/2022] Open
Abstract
Background: Manganese (Mn) is an essential element but at excessive levels, it is neurotoxic. Even a moderate increase in Mn has been suggested to interfere with neurodevelopment in children. Genetics influencing Mn concentrations and toxicity is unclear. Objective: We assessed, in a cross-sectional study, whether common single-nucleotide polymorphisms in the Mn transporters SLC39A8 (influx) and SLC30A10 (efflux) are associated with neurodevelopment in children. Design: We genotyped SLC39A8 (rs13107325 C/T) and SLC30A10 (rs1776029 G/A and rs12064812 T/C) in Italian children (n = 686, ages 11–14). We then used linear regression models to analyze associations between genotype, blood Mn concentrations, and neurodevelopmental outcomes including intelligence, behavior, motor function, and sway. Inferred causal relationships were evaluated using instrumental variables (IV) analysis. Results: For SLC30A10 rs1776029, the minor allele (A) was associated with increased average blood Mn of 41% (p < 0.001), whereas minor alleles for rs12064812 (C) and rs13107325 (T) were associated with reduced blood Mn of 7% (p = 0.002) and 15% (p < 0.001), respectively. For children carrying genotypes associated with high blood Mn, we observed lower performance for certain IQ subtests, increased sway, and increased scores for behavioral problems. High Mn genotypes showed odds ratios of 2–4 (p ≤ 0.01) for high scores in tests assessing ADHD-related behavior. IV analyses suggested that several of the associations were mediated by blood Mn. Conclusions: Our results suggest that common polymorphisms in SLC39A8 and SLC30A10 influence neurodevelopmental outcomes in children via differences in Mn homeostasis.
Collapse
Affiliation(s)
- Karin E Wahlberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Daniela Pineda
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Chiara Fedrighi
- Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Silvia Zoni
- Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Donatella Placidi
- Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Robert O Wright
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Donald R Smith
- Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Roberto G Lucchini
- Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.,Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
41
|
Delgado DA, Zhang C, Gleason K, Demanelis K, Chen LS, Gao J, Roy S, Shinkle J, Sabarinathan M, Argos M, Tong L, Ahmed A, Islam T, Rakibuz-Zaman M, Sarwar G, Shahriar H, Rahman M, Yunus M, Doherty JA, Jasmine F, Kibriya MG, Ahsan H, Pierce BL. The contribution of parent-to-offspring transmission of telomeres to the heritability of telomere length in humans. Hum Genet 2018; 138:49-60. [PMID: 30536049 DOI: 10.1007/s00439-018-1964-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/25/2018] [Indexed: 12/18/2022]
Abstract
Leukocyte telomere length (LTL) is a heritable trait with two potential sources of heritability (h2): inherited variation in non-telomeric regions (e.g., SNPs that influence telomere maintenance) and variability in the lengths of telomeres in gametes that produce offspring zygotes (i.e., "direct" inheritance). Prior studies of LTL h2 have not attempted to disentangle these two sources. Here, we use a novel approach for detecting the direct inheritance of telomeres by studying the association between identity-by-descent (IBD) sharing at chromosome ends and phenotypic similarity in LTL. We measured genome-wide SNPs and LTL for a sample of 5069 Bangladeshi adults with substantial relatedness. For each of the 6318 relative pairs identified, we used SNPs near the telomeres to estimate the number of chromosome ends shared IBD, a proxy for the number of telomeres shared IBD (Tshared). We then estimated the association between Tshared and the squared pairwise difference in LTL ((ΔLTL)2) within various classes of relatives (siblings, avuncular, cousins, and distant), adjusting for overall genetic relatedness (ϕ). The association between Tshared and (ΔLTL)2 was inverse among all relative pair types. In a meta-analysis including all relative pairs (ϕ > 0.05), the association between Tshared and (ΔLTL)2 (P = 0.01) was stronger than the association between ϕ and (ΔLTL)2 (P = 0.43). Our results provide strong evidence that telomere length (TL) in parental germ cells impacts TL in offspring cells and contributes to LTL h2 despite telomere "reprogramming" during embryonic development. Applying our method to larger studies will enable robust estimation of LTL h2 attributable to direct transmission of telomeres.
Collapse
Affiliation(s)
- Dayana A Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Chenan Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Kevin Gleason
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Kathryn Demanelis
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shantanu Roy
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA.,Division of Foodborne, Waterborne, and Environmental Diseases, Center for Disease Control, Atlanta, GA, 30333, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, 60637, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | | | | | | | | | | | | | - Muhammad Yunus
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jennifer A Doherty
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA.,Department of Human Genetics, University of Chicago, Chicago, IL, 60615, USA.,Comprehensive Cancer Center, University of Chicago, Chicago, IL, 60615, USA.,Department of Medicine, University of Chicago, Chicago, IL, 60615, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60615, USA. .,Department of Human Genetics, University of Chicago, Chicago, IL, 60615, USA. .,Comprehensive Cancer Center, University of Chicago, Chicago, IL, 60615, USA.
| |
Collapse
|
42
|
Wei B, Yu J, Kong C, Li H, Yang L, Xia Y, Wu K. A follow-up study of the development of skin lesions associated with arsenic exposure duration. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:2729-2738. [PMID: 29948538 DOI: 10.1007/s10653-018-0136-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Little information about the development of skin lesions in relation to arsenic exposure duration is available. Therefore, skin lesions in a cohort from the Bameng region of China were diagnosed in 2012 and 2017. The results indicated that the prevalence of hyperkeratosis, pigmentation and depigmentation in 2017 was 64.67, 6.67 and 12.67%. There were 42 and 34% of male subjects and female subjects suffered from skin lesions in 2012. Their morbidity rates were 10.43 and 8.98 per 1000 person-years. In 2017, the values were significantly increased. The prevalence and morbidity rate of skin lesions were positively correlated with age and arsenic levels in drinking water. Males had higher prevalence of skin lesions compared with female. However, the ≤ 40 years female group had higher prevalence of skin lesions. In addition, the increased rate of skin lesions prevalence was negatively correlated with arsenic levels in drinking water. The odds ratios (ORs) showed that the risks of skin lesions were positively associated with the proportion of inorganic arsenic (%iAs) and monomethylarsonic acid (%MMA) in urine, and negatively correlated with arsenic methylation capacity in both 2012 and 2017. It can be concluded that females immigrated from other areas were more susceptible to developing skin lesions. A certain cumulative arsenic exposure dose, which may be existing, significantly increased the prevalence of skin lesions. Longer arsenic exposure duration might elevate the toxicity of iAs to skin lesions and reduce the positive effects of arsenic methylation capacity on skin lesions.
Collapse
Affiliation(s)
- Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Chang Kong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
- Collage of Resources and Environment, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
- Collage of Resources and Environment, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
- Collage of Resources and Environment, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Yajuan Xia
- Inner Mongolia Center for Comprehensive Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| | - Kegong Wu
- Inner Mongolia Center for Comprehensive Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| |
Collapse
|
43
|
De Loma J, Skröder H, Raqib R, Vahter M, Broberg K. Arsenite methyltransferase (AS3MT) polymorphisms and arsenic methylation in children in rural Bangladesh. Toxicol Appl Pharmacol 2018; 357:80-87. [DOI: 10.1016/j.taap.2018.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/28/2022]
|
44
|
Wei B, Yu J, Kong C, Li H, Yang L, Xia Y, Wu K. Effects of arsenic methylation and metabolism on the changes of arsenic-related skin lesions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24394-24402. [PMID: 29948723 DOI: 10.1007/s11356-018-2512-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Little was known about the arsenic metabolism and arsenic methylation associated with the changes of skin lesions after reducing the arsenic in drinking water (WAs). Therefore, urinary concentrations and proportions of arsenic species were determined for recovery (RC), improvement (IC), persistent (PE), aggravation (AC), new incidence (NC), and no sign (HC) groups based on the changes of skin lesions between before (in 2004) and after (in 2017) WAs reduction. The results indicate that the urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and total arsenic (TAs) were much higher for RC and IC groups than for the other groups in 2004, while these values varied slightly among the groups in 2017. The urinary %iAs of all the groups was significantly decreased after WAs reduction. In contrast, the urinary %DMA of RC, IC, AC, and NC groups was increased. From 2004 to 2017, the PE and HC groups had lower decrease rate of %iAs and %MMA, and increase rate of %DMA, primary methylation index (PMI), and secondary methylation index (SMI) after WAs reduction. The adjusted odd ratios (ORs) showed that the RC, IC, AC, and NC groups were positively related with %iAs and %MMA and were negatively correlated with %DMA, PMI, and SMI before WAs reduction. It can be concluded that higher urinary %iAs and %MMA before WAs reduction increased the probability of skin lesions recovery and improvement, and the risks of skin lesions aggravation and incidence. Higher increase rate of urinary %DMA was positively associated with of skin lesions recovery and improvement. Moreover, higher urinary %iAs and %MMA or lower increase rate of urinary %DMA might increase the risk of skin lesions aggravation.
Collapse
Affiliation(s)
- Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Chang Kong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Yajuan Xia
- Inner Mongolia Center for Comprehensive Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| | - Kegong Wu
- Inner Mongolia Center for Comprehensive Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| |
Collapse
|
45
|
Zhang C, Kibriya MG, Jasmine F, Roy S, Gao J, Sabarinathan M, Shinkle J, Delgado D, Ahmed A, Islam T, Eunus M, Islam MT, Hasan R, Graziano JH, Ahsan H, Pierce BL. A study of telomere length, arsenic exposure, and arsenic toxicity in a Bangladeshi cohort. ENVIRONMENTAL RESEARCH 2018; 164:346-355. [PMID: 29567420 PMCID: PMC6647858 DOI: 10.1016/j.envres.2018.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Chronic arsenic exposure is associated with increased risk for arsenical skin lesions, cancer, and other adverse health outcomes. One potential mechanism of arsenic toxicity is telomere dysfunction. However, prior epidemiological studies of arsenic exposure, telomere length (TL), and skin lesion are small and cross-sectional. We investigated the associations between arsenic exposure and TL and between baseline TL and incident skin lesion risk among individuals participating in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2000-2009). METHODS Quantitative PCR was used to measure the average TL of peripheral blood DNA collected at baseline. The association between baseline arsenic exposure (well water and urine) and TL was estimated in a randomly-selected subcohort (n = 1469). A nested case-control study (466 cases and 464 age- and sex-matched controls) was used to estimate the association between baseline TL and incident skin lesion risk (diagnosed < 8 years after baseline). RESULTS No association was observed between arsenic exposure (water or urine) and TL. Among incident skin lesion cases and matched controls, we observed higher skin lesion risk among individuals with shorter TL (Ptrend = 1.5 × 10-5) with odds ratios of 2.60, 1.59, and 1.10 for the first (shortest), second, and third TL quartiles compared to the fourth (longest). CONCLUSIONS Arsenic exposure was not associated with TL among Bangladeshi adults, suggesting that leukocyte TL may not reflect a primary mode of action for arsenic's toxicity. However, short TL was associated with increased skin lesion risk, and may be a biomarker of arsenic susceptibility modifying arsenic's effect on skin lesion risk.
Collapse
Affiliation(s)
- Chenan Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Shantanu Roy
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Jianjun Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Dayana Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | | | | | | | | | | | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Department of Human Genetics, University of Chicago, Chicago, IL 60615, United States; Comprehensive Cancer Center, University of Chicago, Chicago, IL 60615, United States; Department of Medicine, University of Chicago, Chicago, IL 60615, United States
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Department of Human Genetics, University of Chicago, Chicago, IL 60615, United States; Comprehensive Cancer Center, University of Chicago, Chicago, IL 60615, United States.
| |
Collapse
|
46
|
Zhu J, Gao Y, Sun D, Wei Y. Serum folate and cobalamin levels and urinary dimethylarsinic acid in US children and adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17168-17175. [PMID: 29651724 DOI: 10.1007/s11356-018-1951-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Nutritional status could affect arsenic metabolism and toxicity in the general population chronically exposed to low levels of inorganic arsenic. In this study, we examined the association of serum folate and cobalamin with urinary concentrations of dimethylarsinic acid (DMA), the most abundant metabolite of inorganic arsenic measured in urine, in children and adults who participated in the 2003-2006 US National Health and Nutrition Examination Surveys. A total of 1161 children (aged 6-19 years) and 1938 adults (aged 20-85 years) were analyzed for the association using multivariate general linear models, adjusting for potential confounders. We observed a positive association between serum levels of folate and cobalamin and creatinine-corrected urinary concentrations of DMA in both children and adults. Furthermore, serum levels of folate and cobalamin were inversely associated with homocysteine (Hcy). These results suggest that dietary intake of folate and cobalamin may exhibit protective functions against arsenic toxicity by increasing arsenic metabolism to the less toxic metabolite DMA and decreasing serum levels of Hcy.
Collapse
Affiliation(s)
- Jianmin Zhu
- Department of Mathematics and Computer Science, Fort Valley State University, Fort Valley, GA, 31030, USA
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Yudan Wei
- Department of Community Medicine, Mercer University School of Medicine, 1550 College St, Macon, GA, 31207, USA.
| |
Collapse
|
47
|
Niedzwiecki MM, Liu X, Zhu H, Hall MN, Slavkovich V, Ilievski V, Levy D, Siddique AB, Kibriya MG, Parvez F, Islam T, Ahmed A, Navas-Acien A, Graziano JH, Finnell RH, Ahsan H, Gamble MV. Serum homocysteine, arsenic methylation, and arsenic-induced skin lesion incidence in Bangladesh: A one-carbon metabolism candidate gene study. ENVIRONMENT INTERNATIONAL 2018; 113:133-142. [PMID: 29421402 PMCID: PMC5873983 DOI: 10.1016/j.envint.2018.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/28/2017] [Accepted: 01/18/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Inorganic arsenic (As) is methylated via one carbon metabolism (OCM) to mono- and dimethylated arsenicals (MMA and DMA), facilitating urinary excretion. Hyperhomocysteinemia (HHcys), a marker of impaired OCM, is a risk factor for As-induced skin lesions, but the influences of single nucleotide polymorphisms (SNPs) in OCM genes on Hcys, As metabolism and skin lesion risk is unclear. OBJECTIVES To (i) explore genetic sources of Hcys and the causal role of HHcys in As-induced skin lesion development using OCM genetic proxies for HHcys and (ii) identify OCM SNPs associated with urinary As metabolite proportions and/or skin lesion incidence. METHODS We conducted a case-control study nested in the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh which 876 incident skin lesion cases were matched to controls on sex, age, and follow-up time. We measured serum Hcys, urinary As metabolites, and 26 SNPs in 13 OCM genes. RESULTS Serum Hcys and urinary %DMA were independently associated with increased and decreased odds of skin lesions, respectively. The T allele of MTHFR 677 C ➔ T (rs1801133) was associated with HHcys, higher %MMA, and lower %DMA, but not with skin lesions. Interactions between SNPs and water As on skin lesion risk were suggestive for three variants: the G allele of MTRR rs1801394 and T allele of FOLR1 rs1540087 were associated with lower odds of skin lesions with lower As (≤50 μg/L), and the T allele of TYMS rs1001761 was associated with higher odds of skin lesions with higher As. CONCLUSIONS While HHcys and decreased %DMA were associated with increased risk for skin lesions, and MTHFR 677 C ➔ T was a strong predictor of HHcys, MTHFR 677 C ➔ T was not associated with skin lesion risk. Future studies should explore (i) non-OCM and non-genetic determinants of Hcys and (ii) if genetic findings are replicated in other As-exposed populations, mechanisms by which OCM SNPs may influence the dose-dependent effects of As on skin lesion risk.
Collapse
Affiliation(s)
- Megan M Niedzwiecki
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Huiping Zhu
- Department of Pediatrics, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Megan N Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane Levy
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Tariqul Islam
- University of Chicago Research Bangladesh, Dhaka, Bangladesh
| | - Alauddin Ahmed
- University of Chicago Research Bangladesh, Dhaka, Bangladesh
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Richard H Finnell
- Department of Pediatrics, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
48
|
Minatel BC, Sage AP, Anderson C, Hubaux R, Marshall EA, Lam WL, Martinez VD. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. ENVIRONMENT INTERNATIONAL 2018; 112:183-197. [PMID: 29275244 DOI: 10.1016/j.envint.2017.12.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 05/21/2023]
Abstract
More than 200 million people in 70 countries are exposed to arsenic through drinking water. Chronic exposure to this metalloid has been associated with the onset of many diseases, including cancer. Epidemiological evidence supports its carcinogenic potential, however, detailed molecular mechanisms remain to be elucidated. Despite the global magnitude of this problem, not all individuals face the same risk. Susceptibility to the toxic effects of arsenic is influenced by alterations in genes involved in arsenic metabolism, as well as biological factors, such as age, gender and nutrition. Moreover, chronic arsenic exposure results in several genotoxic and epigenetic alterations tightly associated with the arsenic biotransformation process, resulting in an increased cancer risk. In this review, we: 1) review the roles of inter-individual DNA-level variations influencing the susceptibility to arsenic-induced carcinogenesis; 2) discuss the contribution of arsenic biotransformation to cancer initiation; 3) provide insights into emerging research areas and the challenges in the field; and 4) compile a resource of publicly available arsenic-related DNA-level variations, transcriptome and methylation data. Understanding the molecular mechanisms of arsenic exposure and its subsequent health effects will support efforts to reduce the worldwide health burden and encourage the development of strategies for managing arsenic-related diseases in the era of personalized medicine.
Collapse
Affiliation(s)
- Brenda C Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Adam P Sage
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Christine Anderson
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| |
Collapse
|
49
|
Pierce BL, Tong L, Argos M, Demanelis K, Jasmine F, Rakibuz-Zaman M, Sarwar G, Islam MT, Shahriar H, Islam T, Rahman M, Yunus M, Kibriya MG, Chen LS, Ahsan H. Co-occurring expression and methylation QTLs allow detection of common causal variants and shared biological mechanisms. Nat Commun 2018; 9:804. [PMID: 29476079 PMCID: PMC5824840 DOI: 10.1038/s41467-018-03209-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Inherited genetic variation affects local gene expression and DNA methylation in humans. Most expression quantitative trait loci (cis-eQTLs) occur at the same genomic location as a methylation QTL (cis-meQTL), suggesting a common causal variant and shared mechanism. Using DNA and RNA from peripheral blood of Bangladeshi individuals, here we use co-localization methods to identify eQTL-meQTL pairs likely to share a causal variant. We use partial correlation and mediation analyses to identify >400 of these pairs showing evidence of a causal relationship between expression and methylation (i.e., shared mechanism) with many additional pairs we are underpowered to detect. These co-localized pairs are enriched for SNPs showing opposite associations with expression and methylation, although many SNPs affect multiple CpGs in opposite directions. This work demonstrates the pervasiveness of co-regulated expression and methylation in the human genome. Applying this approach to other types of molecular QTLs can enhance our understanding of regulatory mechanisms.
Collapse
Affiliation(s)
- Brandon L Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA.
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL, 60637, USA.
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kathryn Demanelis
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Golam Sarwar
- UChicago Research Bangladesh, Mohakhali, Dhaka, 1230, Bangladesh
| | - Md Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, 1230, Bangladesh
| | - Hasan Shahriar
- UChicago Research Bangladesh, Mohakhali, Dhaka, 1230, Bangladesh
| | - Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, 1230, Bangladesh
| | - Mahfuzar Rahman
- UChicago Research Bangladesh, Mohakhali, Dhaka, 1230, Bangladesh
- Research and Evaluation Division, BRAC, Dhaka, 1212, Bangladesh
| | - Md Yunus
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, 1000, Bangladesh
| | - Muhammad G Kibriya
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Lin S Chen
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA.
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
50
|
Argos M, Tong L, Roy S, Sabarinathan M, Ahmed A, Islam MT, Islam T, Rakibuz-Zaman M, Sarwar G, Shahriar H, Rahman M, Yunus M, Graziano JH, Jasmine F, Kibriya MG, Zhou X, Ahsan H, Pierce BL. Screening for gene-environment (G×E) interaction using omics data from exposed individuals: an application to gene-arsenic interaction. Mamm Genome 2018. [PMID: 29453499 DOI: 10.1007/s00r335-00018-09737-00338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Identifying gene-environment interactions is a central challenge in the quest to understand susceptibility to complex, multi-factorial diseases. Developing an understanding of how inter-individual variability in inherited genetic variation alters the effects of environmental exposures will enhance our knowledge of disease mechanisms and improve our ability to predict disease and target interventions to high-risk sub-populations. Limited progress has been made identifying gene-environment interactions in the epidemiological setting using existing statistical approaches for genome-wide searches for interaction. In this paper, we describe a novel two-step approach using omics data to conduct genome-wide searches for gene-environment interactions. Using existing genome-wide SNP data from a large Bangladeshi cohort study specifically designed to assess the effect of arsenic exposure on health, we evaluated gene-arsenic interactions by first conducting genome-wide searches for SNPs that modify the effect of arsenic on molecular phenotypes (gene expression and DNA methylation features). Using this set of SNPs showing evidence of interaction with arsenic in relation to molecular phenotypes, we then tested SNP-arsenic interactions in relation to skin lesions, a hallmark characteristic of arsenic toxicity. With the emergence of additional omics data in the epidemiologic setting, our approach may have the potential to boost power for genome-wide interaction research, enabling the identification of interactions that will enhance our understanding of disease etiology and our ability to develop interventions targeted at susceptible sub-populations.
Collapse
Affiliation(s)
- Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, 1603 West Taylor Street, MC 923, Chicago, IL, 60612, USA.
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Shantanu Roy
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Center for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | | | | | | | | | | | | | | | - Md Yunus
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Comprehensive Cancer Center, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
- Comprehensive Cancer Center, University of Chicago, Chicago, IL, 60637, USA.
- The University of Chicago, 5841 South Maryland Avenue, Room W264, MC2000, Chicago, IL, 60637, USA.
| |
Collapse
|