1
|
Apostolopoulou A, Tranidou A, Chroni V, Tsakiridis I, Tsekitsidi E, Kalaitzopoulou I, Magriplis E, Bakaloudi D, Chrysoula L, Pazaras N, Dagklis T, Chourdakis M. Preconceptional micronutrient adequacy among women in Greece: a prospective epidemiological study. J Matern Fetal Neonatal Med 2024; 37:2343613. [PMID: 38637273 DOI: 10.1080/14767058.2024.2343613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/29/2024] [Indexed: 04/20/2024]
Abstract
INTRODUCTION The importance of micronutrient intake during the preconceptional and early pregnancy period for both maternal and fetal outcomes is well-known, however, relevant data are not available for Greek pregnant women. The aim of the present study is to delineate the nutritional status preceding conception among a representative cohort of Greek pregnant women. METHODS This was a prospective study of pregnant women from routine care, recruited at 11+0-13+6 gestational weeks, between December 2020 and October 2022, at the 3rd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Greece. Eligible participants for the study included healthy pregnant women aged 20 years or older, possessing a proficient understanding of the Greek language, and not engaged in specific nutritional programs. A validated Food Frequency Questionnaire was applied to gather information regarding nutritional habits in the last 6 months prior to conception. The consumption of nutrients was compared to the reference intake levels suggested by the European Food Safety Authority. Further analyses between different participants' subgroups were performed. RESULTS Overall, 1100 pregnant women (mean age: 32.4 ± 4.9 years) were enrolled. Almost all examined micronutrients' intake was significantly different from dietary reference values. Furthermore, nutrient adequacy ratio was below 60% in 6 out of 22 micronutrients examined, and Mean Adequacy Ratio was 93%. However, Mean Adequacy Ratio is characterized by extreme variance between the examined values. Iodine, folic acid, potassium, and vitamin D intake levels were significantly lower than the recommended intake levels (p < .001 for all), while vitamin K and niacin (p < .001 for both) were consumed in great extent. Sodium median intake, without calculating extra salt addition also exceeded the reference value levels (p = .03). Notably, magnesium intake exceeded the upper safety limits in 12.4% of the sample. CONCLUSION Potential inadequacies in important micronutrients for uneventful pregnancy outcomes have been revealed.. Special attention is needed for magnesium to balance possible toxicity with evident benefits.
Collapse
Affiliation(s)
- Aikaterini Apostolopoulou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antigoni Tranidou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Violeta Chroni
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Tsakiridis
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eirini Tsekitsidi
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioustini Kalaitzopoulou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emmanuella Magriplis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Dimitra Bakaloudi
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lydia Chrysoula
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Pazaras
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Themistoklis Dagklis
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Galan R, Pembrey L, Bustamante M, Aguilar R, Mason D, Vidal M, Bañuls M, Roumeliotaki T, Delgado-Saborit JM, Marin N, Vrijheid M, Bempi V, Moncunill G, Dobaño C, Kogevinas M, Karachaliou M. The association of Helicobacter pylori with adverse pregnancy outcomes in three European birth cohorts. BMC Pregnancy Childbirth 2024; 24:745. [PMID: 39533217 PMCID: PMC11558891 DOI: 10.1186/s12884-024-06901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Helicobacter pylori is a prevalent infection that may complicate pregnancy, but evidence remains limited, controversial and may not apply to all pregnant women. OBJECTIVE This study aims to evaluate whether Helicobacter pylori is a risk factor for adverse pregnancy outcomes and to identify vulnerable subpopulations. STUDY DESIGN Multiplex serology was utilized to measure blood levels of immunoglobulin G against eight Helicobacter pylori antigens in 1372 pregnant women from three European birth cohorts: BiB (United Kingdom), Rhea (Greece) and INMA (Spain). Outcomes of interest included gestational diabetes mellitus, gestational hypertension, preeclampsia, preterm birth and small for gestational age neonates, as well as prenatal anxiety and depression. Adjusted logistic regression models were used to evaluate the association between Helicobacter pylori seropositivity (overall and by antigen) and antigen specific antibody levels with the outcomes. We examined effect modification of the associations by ethnicity. RESULTS Helicobacter pylori seropositivity was detected in 18.8% (258/1372) of pregnant women. Preeclampsia was the least common outcome (26/830). Helicobacter pylori seropositivity was associated with the development of two or more adverse pregnancy outcomes (gestational hypertension, gestational diabetes, preterm birth, small gestational age and preeclampsia) [OR:1.32 (95% CI: 1.06-1.65), p-value: 0.01], especially in women with high antibody levels to OMP antigen [OR: 2.12 (95% CI: 1.62-2.76), p-value: 0.001]. Women with high antibody levels to Helicobacter pylori antigens GroEL and NapA were more likely to develop preeclampsia [OR: 2.34 (95% CI: 1.10-8.82), p-value: 0.03; OR: 4.09 (95% CI: 1.4-11.93), p-value 0.01)]. Helicobacter pylori seropositivity increased the odds of developing any hypertensive disorder during pregnancy among women of western ethnicity (948/1372) [OR:3.35 (95% CI: 1.29-8.74), p-value 0.03]. CONCLUSION Our study suggests that Helicobacter pylori seropositivity is a risk factor for multiple adverse pregnancy outcomes and particularly in women of western origin for hypertensive disorders during pregnancy. Moreover, pathogen specific characteristics reflected in the antibody responses against OMP, GroEL and NapA seem to determine disease associations.
Collapse
MESH Headings
- Humans
- Pregnancy
- Female
- Helicobacter pylori/immunology
- Helicobacter Infections/epidemiology
- Helicobacter Infections/complications
- Adult
- Pregnancy Complications, Infectious/epidemiology
- Pregnancy Complications, Infectious/microbiology
- Pregnancy Complications, Infectious/immunology
- Pregnancy Outcome/epidemiology
- Premature Birth/epidemiology
- Premature Birth/microbiology
- United Kingdom/epidemiology
- Spain/epidemiology
- Diabetes, Gestational/epidemiology
- Diabetes, Gestational/microbiology
- Diabetes, Gestational/immunology
- Greece/epidemiology
- Pre-Eclampsia/epidemiology
- Pre-Eclampsia/microbiology
- Hypertension, Pregnancy-Induced/epidemiology
- Birth Cohort
- Infant, Small for Gestational Age
- Risk Factors
- Cohort Studies
- Immunoglobulin G/blood
- Antibodies, Bacterial/blood
- Young Adult
- Infant, Newborn
Collapse
Affiliation(s)
- Raquel Galan
- Barcelona Institute for Global Health (ISGlobal), Carrer Rosello 132, Barcelona, 08036, Spain
| | - Lucy Pembrey
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Mariona Bustamante
- Barcelona Institute for Global Health (ISGlobal), Carrer Rosello 132, Barcelona, 08036, Spain
| | - Ruth Aguilar
- Barcelona Institute for Global Health (ISGlobal), Carrer Rosello 132, Barcelona, 08036, Spain
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Marta Vidal
- Barcelona Institute for Global Health (ISGlobal), Carrer Rosello 132, Barcelona, 08036, Spain
| | - Marc Bañuls
- Barcelona Institute for Global Health (ISGlobal), Carrer Rosello 132, Barcelona, 08036, Spain
| | - Theano Roumeliotaki
- Clinic of Preventive Medicine and Nutrition, Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Natalia Marin
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, 46020, Spain
- Faculty of Nursing and Chiropody, Universitat de València, Valencia, 46001, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, 28029, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Carrer Rosello 132, Barcelona, 08036, Spain
| | - Vicky Bempi
- Clinic of Preventive Medicine and Nutrition, Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Gemma Moncunill
- Barcelona Institute for Global Health (ISGlobal), Carrer Rosello 132, Barcelona, 08036, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, 46020, Spain
| | - Carlota Dobaño
- Barcelona Institute for Global Health (ISGlobal), Carrer Rosello 132, Barcelona, 08036, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, 46020, Spain
| | - Manolis Kogevinas
- Barcelona Institute for Global Health (ISGlobal), Carrer Rosello 132, Barcelona, 08036, Spain
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, 08003, Spain
| | - Marianna Karachaliou
- Barcelona Institute for Global Health (ISGlobal), Carrer Rosello 132, Barcelona, 08036, Spain.
- Clinic of Preventive Medicine and Nutrition, Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
3
|
Warkentin S, Stratakis N, Fabbri L, Wright J, Yang TC, Bryant M, Heude B, Slama R, Montazeri P, Vafeiadi M, Grazuleviciene R, Brantsæter AL, Vrijheid M. Dietary patterns among European children and their association with adiposity-related outcomes: a multi-country study. Int J Obes (Lond) 2024:10.1038/s41366-024-01657-6. [PMID: 39465309 DOI: 10.1038/s41366-024-01657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND/OBJECTIVE Children's diets in school-age are inherently unhealthy, with few meeting dietary recommendations. Yet, little is known about similarities and differences on dietary patterns across countries and their association with obesity. We aimed to derive dietary patterns in childhood and explore their association with adiposity-related outcomes in childhood and adolescence. SUBJCTS/METHODS This study included data from six European countries (Spain, France, UK, Greece, Lithuania and Norway) during childhood (n = 1597) and adolescence (n = 803). Using a food frequency questionnaire, we derived data-driven dietary patterns through exploratory factor analyses and calculated the Mediterranean KIDMED index. We assessed body mass index z-score (zBMI), fat mass proportion and waist-to-height ratio at both visits. Associations were estimated using generalized linear regressions, adjusted for key-confounders. RESULTS "Meat", "Dairy", "Western", "Healthy" and "Sweets and fats" dietary patterns were derived. Norwegian children showed better diet quality, with higher consumption of fruits and vegetables, and highest "Healthy pattern" adherence, and Lithuanian children, the worst, with higher sweets consumption, and highest "Western pattern" adherence. Children with lower intake of healthy foods (vegetables, fruits, fish) tended to have higher adiposity, e.g., children with average or low "Healthy pattern" adherence (vs. high) had higher fat mass proportion in childhood (average: β (95% CI) 1.44 (0.48; 2.39), low: 1.10 (0.09; 2.12)). Low adherence to a "Healthy pattern" (vs. high) was associated with increased adolescent zBMI, and child and adolescent waist-to-height ratio. Low "Dairy pattern" adherence (vs. high), was associated with lower zBMI and fat mass in childhood, but not in adolescence. No significant associations were seen with the KIDMED index. CONCLUSIONS Many European children have poor diets and a low adherence to a healthy diet pattern may be of concern for adiposity-related outcomes. Assessment of children's dietary patterns can help tailor dietary advice and provide support for families aiming to prevent future excess weight gain.
Collapse
Affiliation(s)
- Sarah Warkentin
- ISGlobal, Barcelona, Spain.
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| | - Nikos Stratakis
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Lorenzo Fabbri
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Maria Bryant
- Department of Health Sciences and the Hull York Medical School, University of York, York, UK
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Remy Slama
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Parisa Montazeri
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | | | - Anne Lise Brantsæter
- Department of Food Safety and Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
4
|
Li Y, Baumert BO, Stratakis N, Goodrich JA, Wu H, Liu SH, Wang H, Beglarian E, Bartell SM, Eckel SP, Walker D, Valvi D, La Merrill MA, Inge TH, Jenkins T, Ryder JR, Sisley S, Kohli R, Xanthakos SA, Vafeiadi M, Margetaki A, Roumeliotaki T, Aung M, McConnell R, Baccarelli A, Conti D, Chatzi L. Exposure to per- and polyfluoroalkyl substances and alterations in plasma microRNA profiles in children. ENVIRONMENTAL RESEARCH 2024; 259:119496. [PMID: 38936497 DOI: 10.1016/j.envres.2024.119496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that persist in the environment and can accumulate in humans, leading to adverse health effects. MicroRNAs (miRNAs) are emerging biomarkers that can advance the understanding of the mechanisms of PFAS effects on human health. However, little is known about the associations between PFAS exposures and miRNA alterations in humans. OBJECTIVE To investigate associations between PFAS concentrations and miRNA levels in children. METHODS Data from two distinct cohorts were utilized: 176 participants (average age 17.1 years; 75.6% female) from the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort in the United States, and 64 participants (average age 6.5 years, 39.1% female) from the Rhea study, a mother-child cohort in Greece. PFAS concentrations and miRNA levels were assessed in plasma samples from both studies. Associations between individual PFAS and plasma miRNA levels were examined after adjusting for covariates. Additionally, the cumulative effects of PFAS mixtures were evaluated using an exposure burden score. Ingenuity Pathways Analysis was employed to identify potential disease functions of PFAS-associated miRNAs. RESULTS Plasma PFAS concentrations were associated with alterations in 475 miRNAs in the Teen-LABs study and 5 miRNAs in the Rhea study (FDR p < 0.1). Specifically, plasma PFAS concentrations were consistently associated with decreased levels of miR-148b-3p and miR-29a-3p in both cohorts. Pathway analysis indicated that PFAS-related miRNAs were linked to numerous chronic disease pathways, including cardiovascular diseases, inflammatory conditions, and carcinogenesis. CONCLUSION Through miRNA screenings in two independent cohorts, this study identified both known and novel miRNAs associated with PFAS exposure in children. Pathway analysis revealed the involvement of these miRNAs in several cancer and inflammation-related pathways. Further studies are warranted to enhance our understanding of the relationships between PFAS exposure and disease risks, with miRNA emerging as potential biomarkers and/or mediators in these complex pathways.
Collapse
Affiliation(s)
- Yijie Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Shelley H Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emily Beglarian
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Scott M Bartell
- Department of Environmental and Occupational Health and Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Sandrah Proctor Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Douglas Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, 1518 Clifton Road, NE, Atlanta, GA, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Thomas H Inge
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Todd Jenkins
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Justin R Ryder
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Stephanie Sisley
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Rohit Kohli
- Division of Gastroenterology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Stavra A Xanthakos
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Social Medicine, School of Medicine, University of Crete, Greece
| | - Max Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrea Baccarelli
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - David Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Burnett AJ, Downing KL, Russell CG. Understanding bidirectional and transactional processes of child eating behaviours and parental feeding practices explaining poor health outcomes across infancy and early childhood in Australia: protocol for the Longitudinal Assessment of Children's Eating (LACE) study. BMJ Open 2024; 14:e082435. [PMID: 39343455 PMCID: PMC11440189 DOI: 10.1136/bmjopen-2023-082435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Child eating behaviours develop through interactions between the child's characteristics, psychological factors and the child's social environment and this affects the child's diet and weight. To examine the currently existing birth cohort studies examining child eating behaviours, a review was conducted. There are currently no birth cohorts that concurrently examine child eating behaviours, dietary intake, growth and parental feeding practices from birth into early childhood. Therefore, the primary objective of the Longitudinal Assessment of Children's Eating (LACE) study is to examine the bidirectional and transactional processes of child eating behaviours and parental feeding practices explaining poor dietary intake and excess weight across infancy and early childhood. METHODS AND ANALYSIS The LACE study will be a prospective, longitudinal parent-reported study following infants from younger than 4 months of age across nine waves of data collection: younger than 4 months, 4 months, 6 months, 9 months, 12 months, 18 months, 2 years, 3 years and 5 years. Participants will be included if they are parents of infants younger than 4 months, 18 years or older, fluent in English and living in Australia at baseline. A sample size of 1210 is proposed. Participants will be recruited online via paid social media (Facebook and Instagram) advertisements. The study will examine child eating behaviours, body mass index Z-score, dietary intake, screen time, temperament, parent feeding practices and styles, and demographics. The data will be obtained using the online survey software Qualtrics. Data analyses will be conducted using Stata. ETHICS AND DISSEMINATION Ethical approval was granted by the Deakin University Human Ethics Advisory Group, Faculty of Health (HEAG-H 120_2022). The findings from this study will be disseminated via presentations at scientific conferences and published manuscripts in peer-reviewed journals. Findings will be disseminated to the general public via mainstream media and to participants of the study with a summary of the findings.
Collapse
Affiliation(s)
- Alissa J Burnett
- Institute for Physical Activity and Nutrition, Deakin University, Burwood, Victoria, Australia
| | - Katherine L Downing
- Institute for Physical Activity and Nutrition, Deakin University, Burwood, Victoria, Australia
| | - Catherine G Russell
- Institute for Physical Activity and Nutrition, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
6
|
Kampouri M, Margetaki K, Koutra K, Kyriklaki A, Daraki V, Roumeliotaki T, Bempi V, Vafeiadi M, Kogevinas M, Chatzi L, Kippler M. Urinary iodine concentrations in preschoolers and cognitive development at 4 and 6 years of age, the Rhea mother-child cohort on Crete, Greece. J Trace Elem Med Biol 2024; 85:127486. [PMID: 38897044 DOI: 10.1016/j.jtemb.2024.127486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/29/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Evidence regarding child iodine intake and neurodevelopment is scarce. METHODS We aimed to assess the impact of child iodine intake at 4 years of age on cognitive and motor development at 4 and 6 years among 304 children from the Rhea cohort on Crete, Greece. Child iodine intake was assessed via urinary iodine concentrations (UIC) measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and adjusted for specific gravity. Child cognitive and motor development was assessed using the McCarthy Scales of Children's Abilities (MSCA) at 4 years of age and Raven's Coloured Progressive Matrices (RCPM), Finger Tapping Test (FTT), and Trail Making Test (TMT) at 6 years. Associations were explored using multivariable-adjusted linear regression analyses with UIC categorized according to WHO criteria [insufficient intake <100 µg/L, adequate 100-299 µg/L (reference group), excessive ≥300 µg/L]. RESULTS The children's median UIC was 249 µg/L (25-75th percentile: 181-344 μg/L). Children with UIC <100 μg/L had lower scores in the motor scale at 4 years (MSCA-motor scale: B=-10.3; 95 %CI -19.9, -0.6; n=10) and in intelligence at 6 years (RCPM-total score: B=-3.6, 95 %CI -6.8, -0.5; n=9) than children in the reference group. No associations were found with the general cognitive scale at 4 years or with TMT and FTT scales at 6 years. Children with UIC ≥300 μg/L had lower cognitive scores both at 4 (MSCA; B= -3.5; 95 %CI -6.9, -0.1; n =101) and 6 years of age (RCPM-total score; B= -1.2; 95 %CI -2.3, -0.0; n =98) than children in the reference group. No associations were observed with the motor scale at 4 years or with TMT and FTT scales at 6 years. CONCLUSION Our findings indicate that both low and excessive iodine intake at preschool age may adversely affect child cognitive abilities. Additionally, low iodine intake may also impact motor abilities.
Collapse
Affiliation(s)
- Mariza Kampouri
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Katerina Koutra
- Department of Psychology, Faculty of Social Sciences, University of Crete, Rethimno, Greece
| | - Andriani Kyriklaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Vasiliki Daraki
- Department of Endocrinology, General University Hospital of Heraklion, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Vicky Bempi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, LA, USA
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Tagne-Fotso R, Riou M, Saoudi A, Zeghnoun A, Frederiksen H, Berman T, Montazeri P, Andersson AM, Rodriguez-Martin L, Akesson A, Berglund M, Biot P, Castaño A, Charles MA, Cocco E, Den Hond E, Dewolf MC, Esteban-Lopez M, Gilles L, Govarts E, Guignard C, Gutleb AC, Hartmann C, Kold Jensen T, Koppen G, Kosjek T, Lambrechts N, McEachan R, Sakhi AK, Snoj Tratnik J, Uhl M, Urquiza J, Vafeiadi M, Van Nieuwenhuyse A, Vrijheid M, Weber T, Zaros C, Tarroja-Aulina E, Knudsen LE, Covaci A, Barouki R, Kolossa-Gehring M, Schoeters G, Denys S, Fillol C, Rambaud L. Exposure to bisphenol A in European women from 2007 to 2014 using human biomonitoring data - The European Joint Programme HBM4EU. ENVIRONMENT INTERNATIONAL 2024; 190:108912. [PMID: 39116556 DOI: 10.1016/j.envint.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bisphenol A (BPA; or 4,4'-isopropylidenediphenol) is an endocrine disrupting chemical. It was widely used in a variety of plastic-based manufactured products for several years. The European Food Safety Authority (EFSA) recently reduced the Tolerable Daily Intake (TDI) for BPA by 20,000 times due to concerns about immune-toxicity. OBJECTIVE We used human biomonitoring (HBM) data to investigate the general level of BPA exposure from 2007 to 2014 of European women aged 18-73 years (n = 4,226) and its determinants. METHODS Fifteen studies from 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Luxembourg, Slovenia, Spain, Sweden, and the United Kingdom) were included in the BPA Study protocol developed within the European Joint Programme HBM4EU. Seventy variables related to the BPA exposure were collected through a rigorous post-harmonization process. Linear mixed regression models were used to investigate the determinants of total urine BPA in the combined population. RESULTS Total BPA was quantified in 85-100 % of women in 14 out of 15 contributing studies. Only the Austrian PBAT study (Western Europe), which had a limit of quantification 2.5 to 25-fold higher than the other studies (LOQ=2.5 µg/L), found total BPA in less than 5 % of the urine samples analyzed. The geometric mean (GM) of total urine BPA ranged from 0.77 to 2.47 µg/L among the contributing studies. The lowest GM of total BPA was observed in France (Western Europe) from the ELFE subset (GM=0.77 µg/L (0.98 µg/g creatinine), n = 1741), and the highest levels were found in Belgium (Western Europe) and Greece (Southern Europe), from DEMOCOPHES (GM=2.47 µg/L (2.26 µg/g creatinine), n = 129) and HELIX-RHEA (GM=2.47 µg/L (2.44 µg/g creatinine), n = 194) subsets, respectively. One hundred percent of women in 14 out of 15 data collections in this study exceeded the health-based human biomonitoring guidance value for the general population (HBM-GVGenPop) of 0.0115 µg total BPA/L urine derived from the updated EFSA's BPA TDI. Variables related to the measurement of total urine BPA and those related to the main socio-demographic characteristics (age, height, weight, education, smoking status) were collected in almost all studies, while several variables related to BPA exposure factors were not gathered in most of the original studies (consumption of beverages contained in plastic bottles, consumption of canned food or beverages, consumption of food in contact with plastic packaging, use of plastic film or plastic containers for food, having a plastic floor covering in the house, use of thermal paper…). No clear determinants of total urine BPA concentrations among European women were found. A broader range of data planned for collection in the original questionnaires of the contributing studies would have resulted in a more thorough investigation of the determinants of BPA exposure in European women. CONCLUSION This study highlights the urgent need for action to further reduce exposure to BPA to protect the population, as is already the case in the European Union. The study also underscores the importance of pre-harmonizing HBM design and data for producing comparable data and interpretable results at a European-wide level, and to increase HBM uptake by regulatory agencies.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Abdessattar Saoudi
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Abdelkrim Zeghnoun
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem, Israel
| | - Parisa Montazeri
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Agneta Akesson
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Pierre Biot
- Federal Public Service Health, Food Chain Safety and Environment, Brussels, Belgium
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marie-Aline Charles
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France; Inserm UMR 1153, Centre for Research in Epidemiology and Statistics (CRESS), Team Early Life Research on Later Health, University of Paris, Villejuif, France
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Elly Den Hond
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - Marta Esteban-Lopez
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Cedric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | | | - Tina Kold Jensen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark (SDU), Odense, Denmark
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Tina Kosjek
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Nathalie Lambrechts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Janja Snoj Tratnik
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Maria Uhl
- German Environment Agency (UBA), Berlin, Germany
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - An Van Nieuwenhuyse
- Department Health Protection, Laboratoire national de santé (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Till Weber
- German Environment Agency (UBA), Berlin, Germany
| | - Cécile Zaros
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France
| | | | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | - Robert Barouki
- Inserm UMR S-1124, University of Paris, T3S, Paris, France; Biochemistry, Metabolomics, and Proteomics Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sebastien Denys
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Clemence Fillol
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| |
Collapse
|
8
|
Lozano M, McEachan RRC, Wright J, Yang TC, Dow C, Kadawathagedara M, Lepeule J, Bustamante M, Maitre L, Vrijheid M, Brantsæter AL, Meltzer HM, Bempi V, Roumeliotaki T, Thomsen C, Nawrot T, Broberg K, Llop S. Early life exposure to mercury and relationships with telomere length and mitochondrial DNA content in European children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173014. [PMID: 38729362 DOI: 10.1016/j.scitotenv.2024.173014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Telomere length (TL) and mitochondrial function expressed as mitochondrial DNA copy number (mtDNAcn) are biomarkers of aging and oxidative stress and inflammation, respectively. Methylmercury (MeHg), a common pollutant in fish, induces oxidative stress. We hypothesized that elevated oxidative stress from exposure to MeHg decreases mtDNAcn and shortens TL. METHODS Study participants are 6-11-year-old children from the HELIX multi-center birth cohort study, comprising six European countries. Prenatal and postnatal total mercury (THg) concentrations were measured in blood samples, TL and mtDNAcn were determined in child DNA. Covariates and confounders were obtained by questionnaires. Robust regression models were run, considering sociodemographic and lifestyle covariates, as well as fish consumption. Sex, ethnicity, and fish consumption interaction models were also run. RESULTS We found longer TL with higher pre- and postnatal THg blood concentrations, even at low-level THg exposure according to the RfD proposed by the US EPA. The prenatal association showed a significant linear relationship with a 3.46 % increase in TL for each unit increased THg. The postnatal association followed an inverted U-shaped marginal non-linear relationship with 1.38 % an increase in TL for each unit increased THg until reaching a cut-point at 0.96 μg/L blood THg, from which TL attrition was observed. Higher pre- and postnatal blood THg concentrations were consistently related to longer TL among cohorts and no modification effect of fish consumption nor children's sex was observed. No association between THg exposure and mtDNAcn was found. DISCUSSION We found evidence that THg is associated with TL but the associations seem to be time- and concentration-dependent. Further studies are needed to clarify the mechanism behind the telomere changes of THg and related health effects.
Collapse
Affiliation(s)
- Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain.
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Courtney Dow
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, CRESS, Paris, France
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, CRESS, Paris, France
| | - Johanna Lepeule
- Université Grenoble Alpes, INSERM, CNRS, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Mariona Bustamante
- ISGlobal, Universitat Pompeu Fabra (UPF); Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Lea Maitre
- ISGlobal, Universitat Pompeu Fabra (UPF); Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Universitat Pompeu Fabra (UPF); Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Anne Lise Brantsæter
- Division of Climate and Environmental Health and Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Helle Margrete Meltzer
- Division of Climate and Environmental Health and Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Vasiliki Bempi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Tim Nawrot
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
9
|
Yim G, Margetaki K, Romano ME, Kippler M, Vafeiadi M, Roumeliotaki T, Bempi V, Farzan SF, Chatzi L, Howe CG. Metal mixture exposures and serum lipid levels in childhood: the Rhea mother-child cohort in Greece. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:688-698. [PMID: 38698271 PMCID: PMC11559660 DOI: 10.1038/s41370-024-00674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Growing evidence suggests that cardiovascular disease develops over the lifetime, often beginning in childhood. Metal exposures have been associated with cardiovascular disease and important risk factors, including dyslipidemia, but prior studies have largely focused on adult populations and single metal exposures. OBJECTIVE To investigate the individual and joint impacts of multiple metal exposures on lipid levels during childhood. METHODS This cross-sectional study included 291 4-year-old children from the Rhea Cohort Study in Heraklion, Greece. Seven metals (manganese, cobalt, selenium, molybdenum, cadmium, mercury, and lead) were measured in whole blood using inductively coupled plasma mass spectrometry. Serum lipid levels included total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol. To determine the joint and individual impacts of child metal exposures (log2-transformed) on lipid levels, Bayesian kernel machine regression (BKMR) was employed as the primary multi-pollutant approach. Potential effect modification by child sex and childhood environmental tobacco smoke exposure was also evaluated. RESULTS BKMR identified a positive association between the metal mixture and both total and LDL cholesterol. Of the seven metals examined, selenium (median 90.6 [IQR = 83.6, 96.5] µg/L) was assigned the highest posterior inclusion probability for both total and LDL cholesterol. A difference in LDL cholesterol of 8.22 mg/dL (95% CI = 1.85, 14.59) was observed when blood selenium was set to its 75th versus 25th percentile, holding all other metals at their median values. In stratified analyses, the positive association between selenium and LDL cholesterol was only observed among boys or among children exposed to environmental tobacco smoke during childhood. IMPACT STATEMENT Growing evidence indicates that cardiovascular events in adulthood are the consequence of the lifelong atherosclerotic process that begins in childhood. Therefore, public health interventions targeting childhood cardiovascular risk factors may have a particularly profound impact on reducing the burden of cardiovascular disease. Although growing evidence supports that both essential and nonessential metals contribute to cardiovascular disease and risk factors, such as dyslipidemia, prior studies have mainly focused on single metal exposures in adult populations. To address this research gap, the current study investigated the joint impacts of multiple metal exposures on lipid concentrations in early childhood.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA.
| | - Katerina Margetaki
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Vicky Bempi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Division of Environmental Health, University of Southern California, Los Angeles, CA, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Division of Environmental Health, University of Southern California, Los Angeles, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
10
|
Guimbaud JB, Siskos AP, Sakhi AK, Heude B, Sabidó E, Borràs E, Keun H, Wright J, Julvez J, Urquiza J, Gützkow KB, Chatzi L, Casas M, Bustamante M, Nieuwenhuijsen M, Vrijheid M, López-Vicente M, de Castro Pascual M, Stratakis N, Robinson O, Grazuleviciene R, Slama R, Alemany S, Basagaña X, Plantevit M, Cazabet R, Maitre L. Machine learning-based health environmental-clinical risk scores in European children. COMMUNICATIONS MEDICINE 2024; 4:98. [PMID: 38783062 PMCID: PMC11116423 DOI: 10.1038/s43856-024-00513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Early life environmental stressors play an important role in the development of multiple chronic disorders. Previous studies that used environmental risk scores (ERS) to assess the cumulative impact of environmental exposures on health are limited by the diversity of exposures included, especially for early life determinants. We used machine learning methods to build early life exposome risk scores for three health outcomes using environmental, molecular, and clinical data. METHODS In this study, we analyzed data from 1622 mother-child pairs from the HELIX European birth cohorts, using over 300 environmental, 100 child peripheral, and 18 mother-child clinical markers to compute environmental-clinical risk scores (ECRS) for child behavioral difficulties, metabolic syndrome, and lung function. ECRS were computed using LASSO, Random Forest and XGBoost. XGBoost ECRS were selected to extract local feature contributions using Shapley values and derive feature importance and interactions. RESULTS ECRS captured 13%, 50% and 4% of the variance in mental, cardiometabolic, and respiratory health, respectively. We observed no significant differences in predictive performances between the above-mentioned methods.The most important predictive features were maternal stress, noise, and lifestyle exposures for mental health; proteome (mainly IL1B) and metabolome features for cardiometabolic health; child BMI and urine metabolites for respiratory health. CONCLUSIONS Besides their usefulness for epidemiological research, our risk scores show great potential to capture holistic individual level non-hereditary risk associations that can inform practitioners about actionable factors of high-risk children. As in the post-genetic era personalized prevention medicine will focus more and more on modifiable factors, we believe that such integrative approaches will be instrumental in shaping future healthcare paradigms.
Collapse
Affiliation(s)
- Jean-Baptiste Guimbaud
- ISGlobal, Barcelona, Spain
- Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, F-69622, Villeurbanne, France
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Meersens, Lyon, France
| | - Alexandros P Siskos
- Imperial College London, Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, London, UK
| | | | - Barbara Heude
- Université Paris Cité, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Hector Keun
- Imperial College London, Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, London, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford, UK
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Jordi Julvez
- ISGlobal, Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Jose Urquiza
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Leda Chatzi
- Department of Preventive Medicine, University of Southern Los Angeles, Los Angeles, CA, USA
| | - Maribel Casas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Mónica López-Vicente
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Montserrat de Castro Pascual
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- Department of Preventive Medicine, University of Southern Los Angeles, Los Angeles, CA, USA
| | - Oliver Robinson
- Μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Mohn Centre for Children's Health and Well-being, School of Public Health, Imperial College London, London, UK
| | | | - Remy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, Grenoble, France
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Marc Plantevit
- EPITA Research Laboratory (LRE), Kremlin-Bicêtre, France
| | - Rémy Cazabet
- Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, F-69622, Villeurbanne, France
| | - Léa Maitre
- ISGlobal, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
11
|
Costopoulou D, Kedikoglou K, Vafeiadi M, Roumeliotaki T, Margetaki K, Stephanou EG, Myridakis A, Leondiadis L. Systematic investigation of organochlorine pesticides and polychlorinated biphenyls blood levels in Greek children from the Rhea birth cohort suggests historical exposure to DDT and through diet to DDE. ENVIRONMENT INTERNATIONAL 2024; 187:108686. [PMID: 38669722 DOI: 10.1016/j.envint.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The blood levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) have been thoroughly investigated in Greek children from the Rhea birth cohort study. This investigation aimed to assess exposure levels, explore their possible relationship with children's age and sex, and indicate potential sources of exposure. Exposure patterns and common sources of PCBs and OCPs were analyzed using bivariate and multivariate statistics. A total of 947 blood samples from study participants were analyzed for OCP and PCB exposure, with 375 samples collected at 4 years old, 239 at 6.5 years old, and 333 at 11 years old. Elevated levels of DDE were observed in 6.5-year-old children compared to corresponding levels in other European countries. Higher levels of DDE were found in 4-year-old children, with the lowest concentrations in the 11-year-old group. The DDT/DDE ratio was consistently less than 1 among all the examined subjects. These results indicate exposure to DDT and DDE both in utero and through breastfeeding and dietary intake. For the entire cohort population, the highest concentration was determined for PCB 28, followed by PCBs 138, 153, and 180. The sum of the six indicator PCBs implied low exposure levels for the majority of the cohort population. Spearman correlations revealed strong associations between PCBs and OCPs, while principal component analysis identified two different groupings of exposure. DDE exhibited a correlation with a series of PCBs (153, 156, 163, 180), indicating a combined OCP-PCB source, and an anticorrelation with others (52, 28, 101), implying a separate and competing source.
Collapse
Affiliation(s)
- Danae Costopoulou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece.
| | - Kleopatra Kedikoglou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Euripides G Stephanou
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece.
| | - Antonis Myridakis
- Centre for Pollution Research & Policy, Environmental Sciences, Brunel University London, UB8 3PH, United Kingdom
| | - Leondios Leondiadis
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| |
Collapse
|
12
|
Domínguez A, Koch S, Marquez S, de Castro M, Urquiza J, Evandt J, Oftedal B, Aasvang GM, Kampouri M, Vafeiadi M, Mon-Williams M, Lewer D, Lepeule J, Andrusaityte S, Vrijheid M, Guxens M, Nieuwenhuijsen M. Childhood exposure to outdoor air pollution in different microenvironments and cognitive and fine motor function in children from six European cohorts. ENVIRONMENTAL RESEARCH 2024; 247:118174. [PMID: 38244968 DOI: 10.1016/j.envres.2024.118174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Exposure to air pollution during childhood has been linked with adverse effects on cognitive development and motor function. However, limited research has been done on the associations of air pollution exposure in different microenvironments such as home, school, or while commuting with these outcomes. OBJECTIVE To analyze the association between childhood air pollution exposure in different microenvironments and cognitive and fine motor function from six European birth cohorts. METHODS We included 1301 children from six European birth cohorts aged 6-11 years from the HELIX project. Average outdoor air pollutants concentrations (NO2, PM2.5) were estimated using land use regression models for different microenvironments (home, school, and commute), for 1-year before the outcome assessment. Attentional function, cognitive flexibility, non-verbal intelligence, and fine motor function were assessed using the Attention Network Test, Trail Making Test A and B, Raven Colored Progressive Matrices test, and the Finger Tapping test, respectively. Adjusted linear regressions models were run to determine the association between each air pollutant from each microenvironment on each outcome. RESULTS In pooled analysis we observed high correlation (rs = 0.9) between air pollution exposures levels at home and school. However, the cohort-by-cohort analysis revealed correlations ranging from low to moderate. Air pollution exposure levels while commuting were higher than at home or school. Exposure to air pollution in the different microenvironments was not associated with working memory, attentional function, non-verbal intelligence, and fine motor function. Results remained consistently null in random-effects meta-analysis. CONCLUSIONS No association was observed between outdoor air pollution exposure in different microenvironments (home, school, commute) and cognitive and fine motor function in children from six European birth cohorts. Future research should include a more detailed exposure assessment, considering personal measurements and time spent in different microenvironments.
Collapse
Affiliation(s)
- Alan Domínguez
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sarah Koch
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Marquez
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jose Urquiza
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jorun Evandt
- Norwegian Institute of Public Health, Department of Air Quality and Noise, Oslo, Norway
| | - Bente Oftedal
- Norwegian Institute of Public Health, Department of Air Quality and Noise, Oslo, Norway
| | - Gunn Marit Aasvang
- Norwegian Institute of Public Health, Department of Air Quality and Noise, Oslo, Norway
| | - Mariza Kampouri
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Mark Mon-Williams
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Dan Lewer
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, IAB, 38000, Grenoble, France
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Martine Vrijheid
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mònica Guxens
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mark Nieuwenhuijsen
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
13
|
Brennan Kearns P, van den Dries MA, Julvez J, Kampouri M, López-Vicente M, Maitre L, Philippat C, Småstuen Haug L, Vafeiadi M, Thomsen C, Yang TC, Vrijheid M, Tiemeier H, Guxens M. Association of exposure to mixture of chemicals during pregnancy with cognitive abilities and fine motor function of children. ENVIRONMENT INTERNATIONAL 2024; 185:108490. [PMID: 38364572 DOI: 10.1016/j.envint.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Chemical exposures often occur in mixtures and exposures during pregnancy may lead to adverse effects on the fetal brain, potentially reducing lower cognitive abilities and fine motor function of the child. We investigated the association of motheŕs exposure to a mixture of chemicals during pregnancy (i.e., organochlorine compounds, per- and polyfluoroalkyl substances, phenols, phthalates, organophosphate pesticides) with cognitive abilties and fine motor function in their children. We studied 1097 mother-child pairs from five European cohorts participating in the Human Early Life Exposome study (HELIX). Measurement of 26 biomarkers of exposure to chemicals was performed on urine or blood samples of pregnant women (mean age 31 years). Cognitive abilities and fine motor function were assessed in their children (mean age 8 years) with a battery of computerized tests administered in person (Raveńs Coloured Progressive Matrices, Attention Network Test, N-back Test, Trail Making Test, Finger Tapping Test). We estimated the joint effect of prenatal exposure to chemicals on cognitive abilities and fine motor function using the quantile-based g-computation method, adjusting for sociodemographic characteristics. A quartile increase in all the chemicals in the overall mixture was associated with worse fine motor function, specifically lower scores in the Finger Tapping Test [-8.5 points, 95 % confidence interval (CI) -13.6 to -3.4; -14.5 points, 95 % CI -22.4 to -6.6, and -18.0 points, 95 % CI -28.6 to -7.4) for the second, third and fourth quartile of the overal mixture, respectively, when compared to the first quartile]. Organochlorine compounds, phthalates, and per- and polyfluoroalkyl substances contributed most to this association. We did not find a relationship with cognitive abilities. We conclude that exposure to chemical mixtures during pregnancy may influence neurodevelopment, impacting fine motor function of the offspring.
Collapse
Affiliation(s)
- Pavla Brennan Kearns
- Department of Epidemiology, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michiel A van den Dries
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Jordi Julvez
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
| | - Mariza Kampouri
- University of Crete, Heraklion, Greece; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mónica López-Vicente
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Lea Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Line Småstuen Haug
- Norwegian Institute of Public Health, Department of Food Safety, Oslo, Norway
| | | | - Cathrine Thomsen
- Norwegian Institute of Public Health, Department of Food Safety, Oslo, Norway
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Mònica Guxens
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain.
| |
Collapse
|
14
|
Margetaki K, Bempi V, Michalaki E, Roumeliotaki T, Iakovides M, Stephanou E, Kogevinas M, Chatzi L, Vafeiadi M. Prenatal air pollution exposure and childhood obesity: Effect modification by maternal fruits and vegetables intake. Int J Hyg Environ Health 2024; 256:114314. [PMID: 38183793 DOI: 10.1016/j.ijheh.2023.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND & AIMS Prenatal exposure to air pollution is robustly associated with fetal growth restriction but the extent to which it is associated with postnatal growth and the risk of childhood obesity remains unknown. We examined the association of prenatal exposure to air pollution with offspring obesity related measures and evaluated the possible protective effect of maternal fruits and vegetables intake (FV). METHODS We included 633 mother-child pairs from the Rhea pregnancy cohort in Crete, Greece. Fine particles (PM2.5 and PM10) exposure levels during pregnancy were estimated using land-use regression models. We measured weight, height and waist circumference at 4 and 6 years of age, and body composition analysis was performed at 6 years using bioimpedance. Maternal diet was evaluated by means of a semi-quantitative food frequency questionnaire in mid-pregnancy. Adjusted associations were obtained via multivariable regression analyses and multiplicative interaction was used to evaluate the potential modifying role of FV intake. RESULTS Exposure to PMs in utero was not associated with measures of adiposity at 4 or 6 years of age. Associations at 4 years did not differ according to maternal consumption of FV. However, at 6 years, among children whose mothers reported consuming less than 5 servings of FV per day, one SD increase in PM10 during pregnancy was associated with increased BMI (beta 0.41 kg/m2, 95% CI: -0.06, 0.88, p-interaction = 0.037) and increased waist circumference (beta 0.83 cm, 95% CI: -0.38, 2.05, p-interaction = 0.043) and one SD increase in PM2.5 was associated with increased fat mass (beta 0.5 kg, 95% CI: 0.0, 0.99, p-interaction = 0.039) and increased percentage of body fat (beta 1.06%, 95% CI: -0.06, 2.17, p-interaction = 0.035). Similarly, higher prenatal PM2.5 and PM10 exposure was associated with increased risk for obesity and abdominal obesity at 6 years only in the low FV group. CONCLUSIONS Exposure to fine particulate matter during pregnancy was not associated with obesity-related measures at 4 and 6 years. However, only among offspring of mothers who consumed inadequate FV, we observed higher obesity-related measures at 6 years. Our results indicate that mothers' diet during pregnancy may play a role in the relationship between air-pollution and childhood obesity.
Collapse
Affiliation(s)
- Katerina Margetaki
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Greece.
| | - Vicky Bempi
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Greece
| | - Eirini Michalaki
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Greece
| | - Theano Roumeliotaki
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Greece
| | - Minas Iakovides
- Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, Greece
| | - Euripides Stephanou
- Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, Greece
| | - Manolis Kogevinas
- Barcelona Institute for Global Health (ISGlobal), Non-Communicable Diseases Programme, Barcelona, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Hospital del Mar Research Institute (IMIM), Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USA
| | - Marina Vafeiadi
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Greece
| |
Collapse
|
15
|
Descarpentrie A, Calas L, Cornet M, Heude B, Charles MA, Avraam D, Brescianini S, Cadman T, Elhakeem A, Fernández-Barrés S, Harris JR, Inskip H, Julvez J, Llop S, Margetaki K, Maritano S, Nader JLT, Roumeliotaki T, Salika T, Subiza-Pérez M, Vafeiadi M, Vrijheid M, Wright J, Yang T, Dargent-Molina P, Lioret S. Lifestyle patterns in European preschoolers: Associations with socio-demographic factors and body mass index. Pediatr Obes 2023; 18:e13079. [PMID: 37795656 DOI: 10.1111/ijpo.13079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Energy balance-related behaviours (EBRBs), that is, dietary intake, screen, outdoor play and sleep, tend to combine into 'lifestyle patterns', with potential synergistic influences on health. To date, studies addressing this theme mainly focused on school children and rarely accounted for sleep, with a cross-country perspective. OBJECTIVES We aimed at comparing lifestyle patterns among preschool-aged children across Europe, their associations with socio-demographic factors and their links with body mass index (BMI). METHODS Harmonized data on 2-5-year-olds participating in nine European birth cohorts from the EU Child Cohort Network were used (EBRBs, socio-demographics and anthropometrics). Principal component analysis and multivariable linear and logistic regressions were performed. RESULTS The most consistent pattern identified across cohorts was defined by at least three of the following EBRBs: discretionary consumption, high screen time, low outdoor play time and low sleep duration. Consistently, children from low-income households and born to mothers with low education level had higher scores on this pattern compared to their socioeconomically advantaged counterparts. Furthermore, it was associated with higher BMI z-scores in the Spanish and Italian cohorts (β = 0.06, 95% CI = [0.02; 0.10], both studies). CONCLUSION These findings may be valuable in informing early multi-behavioural interventions aimed at reducing social inequalities in health at a European scale.
Collapse
Affiliation(s)
- Alexandra Descarpentrie
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Lucinda Calas
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Maxime Cornet
- Télécom-Paris, Département SES, Institut Polytechnique de Paris, Palaiseau Cedex, France
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Marie-Aline Charles
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Demetris Avraam
- Department of Public Health, Policy and Systems, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Sonia Brescianini
- Centre of Behavioral Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Tim Cadman
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ahmed Elhakeem
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sílvia Fernández-Barrés
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Agència de Salut Pública de Barcelona, Barcelona, Spain
| | - Jennifer R Harris
- Centre for Fertility and Health, The Norwegian Institute of Public Health, Oslo, Norway
| | - Hazel Inskip
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton General Hospital, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jordi Julvez
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Clinical and Epidemiological Neuroscience Group (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Sabrina Llop
- CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valencia, Valencia, Spain
| | - Katerina Margetaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Silvia Maritano
- Cancer Epidemiology Unit-Department of Medical Sciences, University of Turin, Turin, Italy
- University School for Advanced Studies IUSS Pavia, Pavia PV, Italy
| | - Johanna Lucia Thorbjornsrud Nader
- Department of Genetics and Bioinformatics, Division of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Theano Roumeliotaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Theodosia Salika
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mikel Subiza-Pérez
- CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical and Health Psychology and Research Methods, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
- Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Patricia Dargent-Molina
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Sandrine Lioret
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| |
Collapse
|
16
|
Koutra K, Margetaki K, Kampouri M, Kyriklaki A, Roumeliotaki T, Vafeiadi M, Bitsios P, Kogevinas M, Chatzi L. Maternal sleep disturbances during late pregnancy and child neuropsychological and behavioral development in early childhood. Eur Child Adolesc Psychiatry 2023; 32:2139-2150. [PMID: 35927528 DOI: 10.1007/s00787-022-02053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/16/2022] [Indexed: 11/25/2022]
Abstract
The present study aims to explore the association of maternal sleep disturbances during late pregnancy on child neuropsychological and behavioral development in preschool years. The study included 638 mother-child pairs from the prospective Rhea mother-child cohort in Crete, Greece. Information on antenatal sleep disturbances was collected through a computer-assisted interview. Children's neuropsychological and behavioral development was assessed using the McCarthy Scales of Children's Abilities (MSCA), the Attention-Deficit Hyperactivity Disorder Test (ADHDT), and the Strengths and Difficulties Questionnaire (SDQ). Multivariate analysis showed that maternal sleep duration less than 8 h was associated with reduced scores in the general cognitive scale (β = -2.28, 95% CI -4.54, -0.02, R2 = 0.417) and memory span (β = -3.24, 95% CI -5.72, -0.77, R2 = 0.304), while mild-severe daytime sleepiness was associated with reduced scores in the memory scale (β = -5.42, 95% CI -10.47, -0.37, R2 = 0.304), memory span (β = -5.44, 95% CI -10.68, -0.21, R2 = 0.304), nd functions of posterior cortex (β = -5.55, 95% CI -10.40, -0.70, R2 = 0.393) of MSCA. Snoring in late pregnancy was related to higher child hyperactivity scores in SDQ (β = 1.05, 95% CI 0.16, 1.95, R2 = 0.160). An interaction between child sex and maternal sleep duration in response to ADHD symptoms was also found (p for interaction < 0.05). Stratified analysis revealed increased hyperactivity, inattention, and ADHD total scores for girls of mothers with sleep duration less than 8 h. Maternal sleep disturbances during pregnancy may be associated with impaired child neuropsychological and behavioral development during the preschool years. Early detection and intervention is necessary to reduce sleep disturbances habits in pregnancy and improve child neurodevelopment.
Collapse
Affiliation(s)
- Katerina Koutra
- Department of Psychology, School of Social Sciences, University of Crete, Gallos Campus Crete, 74100, Rethymno, Greece.
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece.
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
- Department of Preventive Medicine, Division of Environmental Health, University of Southern California, Los Angeles, CA, USA
| | - Mariza Kampouri
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andriani Kyriklaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Panos Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Manolis Kogevinas
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Division of Environmental Health, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Hasanaliyeva G, Sufar EK, Wang J, Rempelos L, Volakakis N, Iversen PO, Leifert C. Effects of Agricultural Intensification on Mediterranean Diets: A Narrative Review. Foods 2023; 12:3779. [PMID: 37893672 PMCID: PMC10606286 DOI: 10.3390/foods12203779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
INTRODUCTION Mediterranean diets (MedDiets) are linked to substantial health benefits. However, there is also growing evidence that the intensification of food production over the last 60 years has resulted in nutritionally relevant changes in the composition of foods that may augment the health benefits of MedDiets. OBJECTIVE To synthesize, summarize, and critically evaluate the currently available evidence for changes in food composition resulting from agricultural intensification practices and their potential impact on the health benefits of MedDiets. METHODS We summarized/synthesized information from (i) systematic literature reviews/meta-analyses and more recently published articles on composition differences between conventional and organic foods, (ii) desk studies which compared food composition data from before and after agricultural intensification, (iii) recent retail and farm surveys and/or factorial field experiments that identified specific agronomic practices responsible for nutritionally relevant changes in food composition, and (iv) a recent systematic literature review and a small number of subsequently published observational and dietary intervention studies that investigated the potential health impacts of changes in food composition resulting from agricultural intensification. RESULTS AND DISCUSSION There has been growing evidence that the intensification of food production has resulted in (i) lower concentrations of nutritionally desirable compounds (e.g., phenolics, certain vitamins, mineral micronutrients including Se, Zn, and omega-3 fatty acids, α-tocopherol) and/or (ii) higher concentrations of nutritionally undesirable or toxic compounds (pesticide residues, cadmium, omega-6 fatty acids) in many of the foods (including wholegrain cereals, fruit and vegetables, olive oil, dairy products and meat from small ruminants, and fish) that are thought to contribute to the health benefits associated with MedDiets. The evidence for negative health impacts of consuming foods from intensified conventional production systems has also increased but is still limited and based primarily on evidence from observational studies. Limitations and gaps in the current evidence base are discussed. Conclusions: There is now substantial evidence that the intensification of agricultural food production has resulted in a decline in the nutritional quality of many of the foods that are recognized to contribute to the positive health impacts associated with adhering to traditional MedDiets. Further research is needed to quantify to what extent this decline augments the positive health impacts of adhering to a traditional MedDiet.
Collapse
Affiliation(s)
- Gultekin Hasanaliyeva
- School of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Nottingham Trent University, Nottinghamshire NG25 0QF, UK
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (E.K.S.)
| | - Enas Khalid Sufar
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (E.K.S.)
| | - Juan Wang
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (E.K.S.)
- Department of Clinical Nutrition, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Leonidas Rempelos
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (E.K.S.)
- Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln LN2 2LG, UK
| | - Nikolaos Volakakis
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (E.K.S.)
- Geokomi Plc, P.O. Box 21, GR70200 Sivas Festos, Greece
| | - Per Ole Iversen
- Department of Nutrition, IMB, University of Oslo, 0317 Oslo, Norway
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
| | - Carlo Leifert
- Department of Nutrition, IMB, University of Oslo, 0317 Oslo, Norway
- SCU Plant Science, Southern Cross University, Military Rd., Lismore, NSW 2480, Australia
| |
Collapse
|
18
|
Dypås LB, Duale N, Olsen AK, Bustamante M, Maitre L, Escaramis G, Julvez J, Aguilar-Lacasaña S, Andrusaityte S, Casas M, Vafeiadi M, Grazuleviciene R, Heude B, Lepeule J, Urquiza J, Wright J, Yang TC, Vrijheid M, Gützkow KB. Blood miRNA levels associated with ADHD traits in children across six European birth cohorts. BMC Psychiatry 2023; 23:696. [PMID: 37749515 PMCID: PMC10521440 DOI: 10.1186/s12888-023-05199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a prevalent and highly heritable neurodevelopmental disorder of major societal concern. Diagnosis can be challenging and there are large knowledge gaps regarding its etiology, though studies suggest an interplay of genetic and environmental factors involving epigenetic mechanisms. MicroRNAs (miRNAs) show promise as biomarkers of human pathology and novel therapies, and here we aimed to identify blood miRNAs associated with traits of ADHD as possible biomarker candidates and further explore their biological relevance. METHODS Our study population consisted of 1126 children (aged 5-12 years, 46% female) from the Human Early Life Exposome study, a study spanning six ongoing population-based European birth cohorts. Expression profiles of miRNAs in whole blood samples were quantified by microarray and tested for association with ADHD-related measures of behavior and neuropsychological functions from questionnaires (Conner's Rating Scale and Child Behavior Checklist) and computer-based tests (the N-back task and Attention Network Test). RESULTS We identified 29 miRNAs significantly associated (false discovery rate < .05) with the Conner's questionnaire-rated trait hyperactivity, 15 of which have been linked to ADHD in previous studies. Investigation into their biological relevance revealed involvement in several pathways related to neurodevelopment and function, as well as being linked with other neurodevelopmental or psychiatric disorders known to overlap with ADHD both in symptomology, genetic risk, and co-occurrence, such as autism spectrum disorder or schizophrenia. An additional three miRNAs were significantly associated with Conner's-rated inattention. No associations were found with questionnaire-rated total ADHD index or with computer-based tests. CONCLUSIONS The large overlap of our hyperactivity-associated miRNAs with previous studies on ADHD is intriguing and warrant further investigation. Though this study should be considered explorative and preliminary, these findings contribute towards identifying a set of miRNAs for use as blood-based biomarkers to aid in earlier and easier ADHD diagnosis.
Collapse
Affiliation(s)
- Lene B Dypås
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Nur Duale
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lea Maitre
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Geòrgia Escaramis
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Jordi Julvez
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
| | - Sofia Aguilar-Lacasaña
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, Kaunas, Lithuania
| | - Maribel Casas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Barbara Heude
- Centre of Research in Epidemiology and Statistics (CRESS), Inserm, Université de Paris, Paris, France
| | - Johanna Lepeule
- Université Grenoble Alpes, INSERM, CNRS, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology Applied to Development and Respiratory Health, La Tronche, France
| | - Jose Urquiza
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - John Wright
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kristine B Gützkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
19
|
Amine I, Guillien A, Philippat C, Anguita-Ruiz A, Casas M, de Castro M, Dedele A, Garcia-Aymerich J, Granum B, Grazuleviciene R, Heude B, Haug LS, Julvez J, López-Vicente M, Maitre L, McEachan R, Nieuwenhuijsen M, Stratakis N, Vafeiadi M, Wright J, Yang T, Yuan WL, Basagaña X, Slama R, Vrijheid M, Siroux V. Environmental exposures in early-life and general health in childhood. Environ Health 2023; 22:53. [PMID: 37480033 PMCID: PMC10360263 DOI: 10.1186/s12940-023-01001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Early-life environmental exposures are suspected to be involved in the development of chronic diseases later in life. Most studies conducted so far considered single or few exposures and single-health parameter. Our study aimed to identify a childhood general health score and assess its association with a wide range of pre- and post-natal environmental exposures. METHODS The analysis is based on 870 children (6-12 years) from six European birth cohorts participating in the Human Early-Life Exposome project. A total of 53 prenatal and 105 childhood environmental factors were considered, including lifestyle, social, urban and chemical exposures. We built a general health score by averaging three sub-scores (cardiometabolic, respiratory/allergy and mental) built from 15 health parameters. By construct, a child with a low score has a low general health status. Penalized multivariable regression through Least Absolute Shrinkage and Selection Operator (LASSO) was fitted in order to identify exposures associated with the general health score. FINDINGS The results of LASSO show that a lower general health score was associated with maternal passive and active smoking during pregnancy and postnatal exposure to methylparaben, copper, indoor air pollutants, high intake of caffeinated drinks and few contacts with friends and family. Higher child's general health score was associated with prenatal exposure to a bluespace near residency and postnatal exposures to pets, cobalt, high intakes of vegetables and more physical activity. Against our hypotheses, postnatal exposure to organochlorine compounds and perfluorooctanoate were associated with a higher child's general health score. CONCLUSION By using a general health score summarizing the child cardiometabolic, respiratory/allergy and mental health, this study reinforced previously suspected environmental factors associated with various child health parameters (e.g. tobacco, air pollutants) and identified new factors (e.g. pets, bluespace) warranting further investigations.
Collapse
Affiliation(s)
- Ines Amine
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Alicia Guillien
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Augusto Anguita-Ruiz
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Maribel Casas
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Montserrat de Castro
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020, Valencia, Spain
| | - Audrius Dedele
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Judith Garcia-Aymerich
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Berit Granum
- Division for Climate and Environmental Health, Norwegian Institute of Public Health, 0213, Oslo, Norway
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), 75004, Paris, France
| | - Line Småstuen Haug
- Division for Climate and Environmental Health, Norwegian Institute of Public Health, 0213, Oslo, Norway
| | - Jordi Julvez
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Mónica López-Vicente
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
| | - Léa Maitre
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mark Nieuwenhuijsen
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Nikos Stratakis
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Wen Lun Yuan
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), 75004, Paris, France
- Singapore Institute for Clinical Science, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xavier Basagaña
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Martine Vrijheid
- Parc de Recerca Biomèdica de Barcelona (PRBB), ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), 08002, Barcelona, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
20
|
Karachaliou M, Damianaki I, Moudatsaki M, Margetaki K, Roumeliotaki T, Bempi V, Moudatsaki M, Chatzi LV, Vafeiadi M, Kogevinas M. Influenza Vaccination Coverage Rates and Determinants in Greek Children until the Age of Ten (2008-2019), the Rhea Mother-Child Cohort. Vaccines (Basel) 2023; 11:1241. [PMID: 37515056 PMCID: PMC10384674 DOI: 10.3390/vaccines11071241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND In Greece, influenza vaccination is currently recommended for children with high-risk conditions. There are limited data on influenza vaccination uptake among Greek children with and without high-risk conditions. We aim to describe the annual influenza vaccination uptake until the age of ten in a population-based mother-child cohort and identify the factors influencing vaccination rates. METHODS Immunization data from the child's health cards at 4 and 10 years were available for 830 and 298 children participating in the Rhea cohort (2008-2019). We calculated vaccination coverage by age, winter season and among children with asthma and obesity for whom the vaccine is indicated. Univariable and multivariable stepwise logistic regression models were utilized to identify the association between several sociodemographic, lifestyle and health-related variables and vaccine uptake by age four. RESULTS By the ages of four and ten, 37% and 40% of the children, respectively, had received at least one influenza vaccination. Only 2% of the children were vaccinated for all winter seasons during their first four years of life. The vaccination rate was highest at the age of two and during the 2009-2010 season. Vaccination rates for children with asthma and obesity were 18.2% and 13.3% at age four and 8.3% and 2.9% at age ten. About 10% of all vaccines were administered after December and 24% of the children received only one dose upon initial vaccination. Children with younger siblings and those who had experienced more respiratory infections were more likely to be vaccinated by the age of four, while children exposed to smoking were less likely to be vaccinated. CONCLUSIONS Children in our study were more likely to be vaccinated against influenza at an early age with the peak occurring at the age of two. Nonetheless, annual vaccination uptake was uncommon. Vaccination rates of children with asthma and obesity were well below the national target of 75% for individuals with chronic conditions. Certain groups may merit increased attention in future vaccination campaigns such as children raised in families with unfavourable health behaviours.
Collapse
Affiliation(s)
| | | | - Maria Moudatsaki
- Department of Pediatrics, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, 71500 Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, 71500 Heraklion, Greece
| | - Vicky Bempi
- Department of Social Medicine, Faculty of Medicine, University of Crete, 71500 Heraklion, Greece
| | - Marina Moudatsaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, 71500 Heraklion, Greece
| | - Lida Vaia Chatzi
- Department of Preventive Medicine, Division of Environmental Health, University of Southern California, Los Angeles, CA 90033, USA
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, 71500 Heraklion, Greece
| | - Manolis Kogevinas
- Barcelona Institute for Global Health, 08036 Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, 28029 Madrid, Spain
- Campus del Mar, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain
| |
Collapse
|
21
|
Keyes M, Andrews C, Midya V, Carrasco P, Guxens M, Jimeno-Romero A, Murcia M, Rodriguez-Dehli C, Romaguera D, Santa-Maria L, Vafeiadi M, Chatzi L, Oken E, Vrijheid M, Valvi D, Sen S. Mediators of the association between maternal body mass index and breastfeeding duration in 3 international cohorts. Am J Clin Nutr 2023; 118:255-263. [PMID: 37407164 PMCID: PMC10493413 DOI: 10.1016/j.ajcnut.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Maternal obesity has been associated with shorter breastfeeding duration, but little is known about mediating factors explaining this association. It is important to assess these relationships across diverse populations because breastfeeding is culturally patterned. OBJECTIVES We investigated the association of prepregnancy maternal body mass index (BMI) with breastfeeding outcomes and potential mediators of this relationship in 3 culturally diverse international cohorts. METHODS We analyzed 5120 singleton pregnancies from mother-child cohorts in Spain (INfancia y Medio Ambiente), Greece (Rhea), and the United States (Project Viva). Outcome variables were duration of any and exclusive breastfeeding. A priori hypothesized mediators in the association of maternal prepregnancy BMI with breastfeeding were birthweight (BW), maternal prenatal C-reactive protein (CRP), cesarean delivery, maternal dietary inflammatory index (DII) during pregnancy, gestational age at delivery, and gestational diabetes mellitus (GDM). We estimated the association between BMI and breastfeeding duration using linear regression adjusting for confounders. Mediation analysis estimated direct and indirect effects of maternal overweight/obesity on breastfeeding for each mediator. RESULTS Women with overweight and obesity had shorter duration of any and exclusive breastfeeding compared with normal-weight women (any: overweight β = -0.79 mo, 95% CI: -1.17, -0.40; obese β = -1.75 mo 95% CI: -2.25, -1.25; exclusive: overweight β = -0.30 mo, 95% CI: -0.42, -0.16; obese β = -0.73 mo, 95% CI: -0.90, -0.55). Significant mediators (% change in effect estimate) of this association were higher CRP (exclusive: 5.12%), cesarean delivery (any: 6.54%; exclusive: 7.69%), and higher DII (any: 6.48%; exclusive: 7.69%). GDM, gestational age, and BW did not mediate the association of maternal weight status with breastfeeding. CONCLUSIONS Higher prepregnancy BMI is associated with shorter duration of any and exclusive breastfeeding. Maternal dietary inflammation, systemic inflammation, and mode of delivery may be key modifiable mediators of this association. Identification of mediators provides potential targets for interventions to improve breastfeeding outcomes.
Collapse
Affiliation(s)
- Madeline Keyes
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States; Harvard Neonatal-Perinatal Medicine Fellowship Program, Boston, MA, United States.
| | - Chloe Andrews
- Department of Newborn Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Vishal Midya
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Paula Carrasco
- Department of Medicine, Universitat Jaume I, Castellón, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alba Jimeno-Romero
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, San Sebastian, Spain
| | - Mario Murcia
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Servicio de análisis de sistemas de información sanitaria, Conselleria de Sanitat, Generalitat Valenciana, Valencia, Spain
| | | | - Dora Romaguera
- ISGlobal, Barcelona, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Loreto Santa-Maria
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, San Sebastian, Spain; Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, San Sebastian, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Lida Chatzi
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| | | | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sarbattama Sen
- Department of Newborn Medicine, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
22
|
Cáceres A, Carreras-Gallo N, Andrusaityte S, Bustamante M, Carracedo Á, Chatzi L, Dwaraka VB, Grazuleviciene R, Gutzkow KB, Lepeule J, Maitre L, Mendez TL, Nieuwenhuijsen M, Slama R, Smith R, Stratakis N, Thomsen C, Urquiza J, Went H, Wright J, Yang T, Casas M, Vrijheid M, González JR. Prenatal environmental exposures associated with sex differences in childhood obesity and neurodevelopment. BMC Med 2023; 21:142. [PMID: 37046291 PMCID: PMC10099694 DOI: 10.1186/s12916-023-02815-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/06/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Obesity and neurodevelopmental delay are complex traits that often co-occur and differ between boys and girls. Prenatal exposures are believed to influence children's obesity, but it is unknown whether exposures of pregnant mothers can confer a different risk of obesity between sexes, and whether they can affect neurodevelopment. METHODS We analyzed data from 1044 children from the HELIX project, comprising 93 exposures during pregnancy, and clinical, neuropsychological, and methylation data during childhood (5-11 years). Using exposome-wide interaction analyses, we identified prenatal exposures with the highest sexual dimorphism in obesity risk, which were used to create a multiexposure profile. We applied causal random forest to classify individuals into two environments: E1 and E0. E1 consists of a combination of exposure levels where girls have significantly less risk of obesity than boys, as compared to E0, which consists of the remaining combination of exposure levels. We investigated whether the association between sex and neurodevelopmental delay also differed between E0 and E1. We used methylation data to perform an epigenome-wide association study between the environments to see the effect of belonging to E1 or E0 at the molecular level. RESULTS We observed that E1 was defined by the combination of low dairy consumption, non-smokers' cotinine levels in blood, low facility richness, and the presence of green spaces during pregnancy (ORinteraction = 0.070, P = 2.59 × 10-5). E1 was also associated with a lower risk of neurodevelopmental delay in girls, based on neuropsychological tests of non-verbal intelligence (ORinteraction = 0.42, P = 0.047) and working memory (ORinteraction = 0.31, P = 0.02). In line with this, several neurodevelopmental functions were enriched in significant differentially methylated probes between E1 and E0. CONCLUSIONS The risk of obesity can be different for boys and girls in certain prenatal environments. We identified an environment combining four exposure levels that protect girls from obesity and neurodevelopment delay. The combination of single exposures into multiexposure profiles using causal inference can help determine populations at risk.
Collapse
Affiliation(s)
- Alejandro Cáceres
- Instituto de Salud Global de Barcelona (ISGlobal), 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain.
- Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, 08019, Barcelona, Spain.
| | | | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Mariona Bustamante
- Instituto de Salud Global de Barcelona (ISGlobal), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona, Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Galicia, Santiago de Compostela, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | | | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Kristine Bjerve Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Johanna Lepeule
- Institut National de La Santé Et de La Recherche Médicale (Inserm) and Université Grenoble-Alpes, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Léa Maitre
- Instituto de Salud Global de Barcelona (ISGlobal), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Mark Nieuwenhuijsen
- Instituto de Salud Global de Barcelona (ISGlobal), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Remy Slama
- Institut National de La Santé Et de La Recherche Médicale (Inserm) and Université Grenoble-Alpes, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | | | - Nikos Stratakis
- Instituto de Salud Global de Barcelona (ISGlobal), 08003, Barcelona, Spain
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Jose Urquiza
- Instituto de Salud Global de Barcelona (ISGlobal), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Maribel Casas
- Instituto de Salud Global de Barcelona (ISGlobal), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martine Vrijheid
- Instituto de Salud Global de Barcelona (ISGlobal), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Juan R González
- Instituto de Salud Global de Barcelona (ISGlobal), 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain.
- Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona , Spain.
| |
Collapse
|
23
|
Tsarna E, Eleftheriades A, Tsomi E, Ziogou G, Vakas P, Panoskaltsis T, Christopoulos P. The Role of Diet during Pregnancy in Protecting against Gestational Diabetes Mellitus in a Population with Mediterranean Dietary Habits: A Cross-Sectional Study. J Clin Med 2023; 12:jcm12051857. [PMID: 36902644 PMCID: PMC10003761 DOI: 10.3390/jcm12051857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a common metabolic disorder among pregnant women. Dietary habits during pregnancy might alter the risk of GDM development, and populations following the Mediterranean diet are relatively understudied. This was a cross-sectional, observational study of 193 low-risk women admitted to a private maternity hospital in Greece to give birth. Food frequency data on specific food categories, selected based on previous research, were analyzed. Logistic regression models, both crude and adjusted for maternal age, body mass index before pregnancy, and gestational weight gain, were fitted. We observed no association of carbohydrate-rich meals, sweets, soft drinks, coffee, rice, pasta, bread and crackers, potatoes, lentils, and juices with GDM diagnosis. Cereals (crude p = 0.045, adjusted p = 0.095) and fruits and vegetables (crude p = 0.07, adjusted p = 0.04) appeared to have a protective effect against GDM, while frequent tea consumption was linked to higher risk of GDM development (crude p = 0.067, adjusted p = 0.035). These results strengthen previously identified associations and underline the importance and potential impact of changing dietary habits even during pregnancy in adjusting one's risk of metabolic pregnancy complications, such as GDM. The importance of healthy dietary habits is highlighted, with the goal of raising awareness amongst obstetric care specialists regarding the provision of systematic nutrition recommendations to pregnant women.
Collapse
Affiliation(s)
- Ermioni Tsarna
- 2nd Department of Obstetrics and Gynecology, Aretaieion University Hospital, Athens Medical School, 11527 Athens, Greece
| | - Anna Eleftheriades
- Postgraduate Programme “Maternal Fetal Medicine”, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efthymia Tsomi
- 2nd Department of Obstetrics and Gynecology, Aretaieion University Hospital, Athens Medical School, 11527 Athens, Greece
| | - Georgia Ziogou
- 2nd Department of Obstetrics and Gynecology, Aretaieion University Hospital, Athens Medical School, 11527 Athens, Greece
| | - Panagiotis Vakas
- 2nd Department of Obstetrics and Gynecology, Aretaieion University Hospital, Athens Medical School, 11527 Athens, Greece
| | - Theodoros Panoskaltsis
- 2nd Department of Obstetrics and Gynecology, Aretaieion University Hospital, Athens Medical School, 11527 Athens, Greece
| | - Panagiotis Christopoulos
- 2nd Department of Obstetrics and Gynecology, Aretaieion University Hospital, Athens Medical School, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
24
|
Tranidou A, Dagklis T, Magriplis E, Apostolopoulou A, Tsakiridis I, Chroni V, Tsekitsidi E, Kalaitzopoulou I, Pazaras N, Chourdakis M. Pre-Pregnancy Adherence to Mediterranean Diet and Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study in Greece. Nutrients 2023; 15:nu15040848. [PMID: 36839206 PMCID: PMC9967881 DOI: 10.3390/nu15040848] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) is a growing epidemic affecting pregnant women and their offspring. This study aimed to identify the relationship between adherence to a Mediterranean diet (MD) before conception and the risk of GDM in a contemporary Greek pregnant cohort. A prospective cohort of pregnant women was recruited at the routine first trimester visit. Nutritional intake was evaluated using a population specific validated food frequency questionnaire (FFQ). Pre-pregnancy adherence to MD was derived using two different scoring systems, the Mediterranean diet index score (MDS), and a modified version. Adjusted odds ratios (aOR) were computed using multiple logistic regression models for each score derived. Of 743 participating women, 112 (15.1%) developed GDM. The MDS index showed that scoring 5-9 points (high adherence) was associated with a lower GDM incidence (aOR: 0.57 95% CI (0.32, 0.90), p = 0.02), while the modified MDS index showed no significant association for any level of adherence. Pre-pregnancy consumption of "meat and derivatives" and "fatty meat and processed meat" was associated with a higher risk of GDM, with both scoring systems (p = 0.008, p = 0.004, respectively). A higher adherence to a MD pre-pregnancy, especially with less meat consumption, may have a protective effect on the occurrence of GDM.
Collapse
Affiliation(s)
- Antigoni Tranidou
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Themistoklis Dagklis
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Correspondence:
| | - Emmanuella Magriplis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Aikaterini Apostolopoulou
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Tsakiridis
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Violeta Chroni
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eirini Tsekitsidi
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioustini Kalaitzopoulou
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Pazaras
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
25
|
Alfano R, Zugna D, Barros H, Bustamante M, Chatzi L, Ghantous A, Herceg Z, Keski-Rahkonen P, de Kok TM, Nawrot TS, Relton CL, Robinson O, Roumeliotaki T, Scalbert A, Vrijheid M, Vineis P, Richiardi L, Plusquin M. Cord blood epigenome-wide meta-analysis in six European-based child cohorts identifies signatures linked to rapid weight growth. BMC Med 2023; 21:17. [PMID: 36627699 PMCID: PMC9831885 DOI: 10.1186/s12916-022-02685-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Rapid postnatal growth may result from exposure in utero or early life to adverse conditions and has been associated with diseases later in life and, in particular, with childhood obesity. DNA methylation, interfacing early-life exposures and subsequent diseases, is a possible mechanism underlying early-life programming. METHODS Here, a meta-analysis of Illumina HumanMethylation 450K/EPIC-array associations of cord blood DNA methylation at single CpG sites and CpG genomic regions with rapid weight growth at 1 year of age (defined with reference to WHO growth charts) was conducted in six European-based child cohorts (ALSPAC, ENVIRONAGE, Generation XXI, INMA, Piccolipiù, and RHEA, N = 2003). The association of gestational age acceleration (calculated using the Bohlin epigenetic clock) with rapid weight growth was also explored via meta-analysis. Follow-up analyses of identified DNA methylation signals included prediction of rapid weight growth, mediation of the effect of conventional risk factors on rapid weight growth, integration with transcriptomics and metabolomics, association with overweight in childhood (between 4 and 8 years), and comparison with previous findings. RESULTS Forty-seven CpGs were associated with rapid weight growth at suggestive p-value <1e-05 and, among them, three CpGs (cg14459032, cg25953130 annotated to ARID5B, and cg00049440 annotated to KLF9) passed the genome-wide significance level (p-value <1.25e-07). Sixteen differentially methylated regions (DMRs) were identified as associated with rapid weight growth at false discovery rate (FDR)-adjusted/Siddak p-values < 0.01. Gestational age acceleration was associated with decreasing risk of rapid weight growth (p-value = 9.75e-04). Identified DNA methylation signals slightly increased the prediction of rapid weight growth in addition to conventional risk factors. Among the identified signals, three CpGs partially mediated the effect of gestational age on rapid weight growth. Both CpGs (N=3) and DMRs (N=3) were associated with differential expression of transcripts (N=10 and 7, respectively), including long non-coding RNAs. An AURKC DMR was associated with childhood overweight. We observed enrichment of CpGs previously reported associated with birthweight. CONCLUSIONS Our findings provide evidence of the association between cord blood DNA methylation and rapid weight growth and suggest links with prenatal exposures and association with childhood obesity providing opportunities for early prevention.
Collapse
Affiliation(s)
- Rossella Alfano
- Medical Research Council Centre for Environment and Health, Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Daniela Zugna
- Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Henrique Barros
- Institute of Public Health, University of Porto, Porto, Portugal
| | - Mariona Bustamante
- ISGlobal, Institute of Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Akram Ghantous
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Caroline L Relton
- Μedical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Oliver Robinson
- Medical Research Council Centre for Environment and Health, Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
- Mohn Centre for Children's Health and Well-being, The School of Public Health, Imperial College London, London, UK
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Augustin Scalbert
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Martine Vrijheid
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Paolo Vineis
- Medical Research Council Centre for Environment and Health, Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
26
|
Saliaj A, Zahaj M, Vasilika P, Mechili EA. Long-term impact of tobacco exposure during pregnancy on children's psychomotor development. Pediatr Int 2023; 65:e15388. [PMID: 36251534 DOI: 10.1111/ped.15388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/21/2022] [Accepted: 10/14/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Both active and second-hand smoking (SHS) can cause complications during pregnancy and after delivery. This study aimed to assess how tobacco exposure (active and passive) during the fetal period could impact the psychomotor development of children when they attain the age of 3-6 years. METHODS The study included 160 mothers and their 3-6 year-old children. Two research groups were set up of children born to active or SHS mothers during the period when they were pregnant and a control group of children of non-smoking mothers. The parameters of the psychomotor development of the children were measured using the Age & Stage Questionnaires 3® (ASQ-3). RESULTS Children, whose mothers were smokers themselves or who were exposed to SHS during the period of pregnancy had an average psychomotor development score of 221 points versus 243.5 points in the control group. Twenty-six percent had delays (near or under the cut-off scores) in one of the assessed psychomotor areas and 60% had two or more psychomotor delays; 36% of children whose mothers were not exposed to smoking during pregnancy had normal psychomotor development and only 34% presented multiple psychomotor delays. CONCLUSIONS Fetuses exposed to tobacco are more likely to achieve a psychomotor development in the 'monitor' and 'fail' areas compared to the non-exposed control group. The children exposed to smoking during their fetal development should be considered as a group at risk of developmental delays, therefore they should be closely monitored and supported by caregivers and developmental pediatricians.
Collapse
Affiliation(s)
- Aurela Saliaj
- Department of Health care, Faculty of Health, University 'Ismail Qemali' of Vlora, Vlora, Albania
| | - Majlinda Zahaj
- Department of Nursing, Faculty of Health, University 'Ismail Qemali' of Vlora, Vlora, Albania
| | - Prifti Vasilika
- Department of Nursing, Faculty of Health, University 'Ismail Qemali' of Vlora, Vlora, Albania
| | | |
Collapse
|
27
|
Torres Toda M, Avraam D, James Cadman T, Fossati S, de Castro M, Dedele A, Donovan G, Elhakeem A, Estarlich M, Fernandes A, Gonçalves R, Grazuleviciene R, Harris JR, Harskamp-van Ginkel MW, Heude B, Ibarluzea J, Iñiguez C, Wv Jaddoe V, Lawlor D, Lertxundi A, Lepeule J, McEachan R, Moirano G, Lt Nader J, Nybo Andersen AM, Pedersen M, Pizzi C, Roumeliotaki T, Santos S, Sunyer J, Yang T, Vafeiadi M, Gm Vrijkotte T, Nieuwenhuijsen M, Vrijheid M, Foraster M, Dadvand P. Exposure to natural environments during pregnancy and birth outcomes in 11 European birth cohorts. ENVIRONMENT INTERNATIONAL 2022; 170:107648. [PMID: 36436464 DOI: 10.1016/j.envint.2022.107648] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/25/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Research suggests that maternal exposure to natural environments (i.e., green and blue spaces) promotes healthy fetal growth. However, the available evidence is heterogeneous across regions, with very few studies on the effects of blue spaces. This study evaluated associations between maternal exposure to natural environments and birth outcomes in 11 birth cohorts across nine European countries. This study, part of the LifeCycle project, was based on a total sample size of 69,683 newborns with harmonised data. For each participant, we calculated seven indicators of residential exposure to natural environments: surrounding greenspace in 100m, 300m, and 500m using Normalised Difference Vegetation Index (NDVI) buffers, distance to the nearest green space, accessibility to green space, distance to the nearest blue space, and accessibility to blue space. Measures of birth weight and small for gestational age (SGA) were extracted from hospital records. We used pooled linear and logistic regression models to estimate associations between exposure to the natural environment and birth outcomes, controlling for the relevant covariates. We evaluated the potential effect modification by socioeconomic status (SES) and region of Europe and the influence of ambient air pollution on the associations. In the pooled analyses, residential surrounding greenspace in 100m, 300m, and 500m buffer was associated with increased birth weight and lower odds for SGA. Higher residential distance to green space was associated with lower birth weight and higher odds for SGA. We observed close to null associations for accessibility to green space and exposure to blue space. We found stronger estimated magnitudes for those participants with lower educational levels, from more deprived areas, and living in the northern European region. Our associations did not change notably after adjustment for air pollution. These findings may support implementing policies to promote natural environments in our cities, starting in more deprived areas.
Collapse
Affiliation(s)
- Maria Torres Toda
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain.
| | - Demetris Avraam
- Population Health Sciences Institute, Newcastle University, Newcastle, UK; Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Timothy James Cadman
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.
| | - Serena Fossati
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain.
| | - Montserrat de Castro
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain.
| | - Audrius Dedele
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, 53361 Akademija, Lithuania.
| | - Geoffrey Donovan
- Center for Public Health Research, Massey University-Wellington Campus, PO Box 756, Wellington 6140, New Zealand; USDA Forest Service, PNW Research Station, 620 SW Main, Suite 502, Portland, OR 97205, USA.
| | - Ahmed Elhakeem
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Science, Bristol Medical School, University of Bristol, UK.
| | - Marisa Estarlich
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020, Valencia, Spain; Nursing School, Universitat de València, C/Menendez y Pelayo, s/n, 46010, Valencia, Spain.
| | - Amanda Fernandes
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.
| | - Romy Gonçalves
- The Generation R Study Group (NA-2915), Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands.
| | - Regina Grazuleviciene
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, 53361 Akademija, Lithuania.
| | - Jennifer R Harris
- Center for Fertility and Health, The Nowegian Institute of Public Health, Oslo, Norway.
| | - Margreet W Harskamp-van Ginkel
- Amsterdam UMC, University of Amsterdam, Department of Public and Occupational Health, Amsterdam Public Health research institute, Meibergdreef 9, Amsterdam, Netherlands.
| | - Barbara Heude
- Université de Paris Cité, Inserm, INRAE, Centre of Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France.
| | - Jesús Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastian, Spain; Faculty of Psychology of the University of the Basque Country, 20018, San Sebastian, Spain.
| | - Carmen Iñiguez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020, Valencia, Spain; Department of Statistics and Operational Research, Universitat de València, Dr. Moliner, 50 46100, Valencia, Spain.
| | - Vincent Wv Jaddoe
- The Generation R Study Group (NA-2915), Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Deborah Lawlor
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Science, Bristol Medical School, University of Bristol, UK.
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain; Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
| | - Johanna Lepeule
- Université Grenoble Alpes, Institut Albert Bonniot, équipe d'épidémiologie environnementale appliquée à la reproduction et la santé respiratoire, F-38000 Grenoble, France; Inserm, Institut Albert Bonniot, équipe d'épidémiologie environnementale appliquée à la reproduction et la santé respiratoire, F-38000 Grenoble, France.
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK.
| | - Giovenale Moirano
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Johanna Lt Nader
- Department of Genetics and Bioinformatics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway.
| | - Anne-Marie Nybo Andersen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Marie Pedersen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Costanza Pizzi
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Theano Roumeliotaki
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Social Medicine, School of Medicine, University of Crete, Greece.
| | - Susana Santos
- The Generation R Study Group (NA-2915), Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Portugal.
| | - Jordi Sunyer
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain.
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK.
| | - Marina Vafeiadi
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Social Medicine, School of Medicine, University of Crete, Greece.
| | - Tanja Gm Vrijkotte
- Amsterdam UMC, University of Amsterdam, Department of Public and Occupational Health, Amsterdam Public Health research institute, Meibergdreef 9, Amsterdam, Netherlands.
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain.
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain.
| | - Maria Foraster
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain.
| | - Payam Dadvand
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain.
| |
Collapse
|
28
|
Maitre L, Bustamante M, Hernández-Ferrer C, Thiel D, Lau CHE, Siskos AP, Vives-Usano M, Ruiz-Arenas C, Pelegrí-Sisó D, Robinson O, Mason D, Wright J, Cadiou S, Slama R, Heude B, Casas M, Sunyer J, Papadopoulou EZ, Gutzkow KB, Andrusaityte S, Grazuleviciene R, Vafeiadi M, Chatzi L, Sakhi AK, Thomsen C, Tamayo I, Nieuwenhuijsen M, Urquiza J, Borràs E, Sabidó E, Quintela I, Carracedo Á, Estivill X, Coen M, González JR, Keun HC, Vrijheid M. Multi-omics signatures of the human early life exposome. Nat Commun 2022; 13:7024. [PMID: 36411288 PMCID: PMC9678903 DOI: 10.1038/s41467-022-34422-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Environmental exposures during early life play a critical role in life-course health, yet the molecular phenotypes underlying environmental effects on health are poorly understood. In the Human Early Life Exposome (HELIX) project, a multi-centre cohort of 1301 mother-child pairs, we associate individual exposomes consisting of >100 chemical, outdoor, social and lifestyle exposures assessed in pregnancy and childhood, with multi-omics profiles (methylome, transcriptome, proteins and metabolites) in childhood. We identify 1170 associations, 249 in pregnancy and 921 in childhood, which reveal potential biological responses and sources of exposure. Pregnancy exposures, including maternal smoking, cadmium and molybdenum, are predominantly associated with child DNA methylation changes. In contrast, childhood exposures are associated with features across all omics layers, most frequently the serum metabolome, revealing signatures for diet, toxic chemical compounds, essential trace elements, and weather conditions, among others. Our comprehensive and unique resource of all associations ( https://helixomics.isglobal.org/ ) will serve to guide future investigation into the biological imprints of the early life exposome.
Collapse
Affiliation(s)
- Léa Maitre
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carles Hernández-Ferrer
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Denise Thiel
- Department of Mathematics, Imperial College London, South Kensington, London, UK
| | - Chung-Ho E Lau
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alexandros P Siskos
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Marta Vives-Usano
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlos Ruiz-Arenas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Dolors Pelegrí-Sisó
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Solène Cadiou
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Rémy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Barbara Heude
- Centre for Research in Epidemiology and Statistics (CRESS), Inserm, Université de Paris, Paris, France
| | - Maribel Casas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Eleni Z Papadopoulou
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Leda Chatzi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Amrit K Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ibon Tamayo
- Computational Biology program, CIMA-University of Navarra, Pamplona, Spain
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jose Urquiza
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Inés Quintela
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CIMUS, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CIMUS, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Xavier Estivill
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Muireann Coen
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Juan R González
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Hector C Keun
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Martine Vrijheid
- Institute for Global Health (ISGlobal), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
29
|
Rempelos L, Wang J, Barański M, Watson A, Volakakis N, Hadall C, Hasanaliyeva G, Chatzidimitriou E, Magistrali A, Davis H, Vigar V, Średnicka-Tober D, Rushton S, Rosnes KS, Iversen PO, Seal CJ, Leifert C. Diet, but not food type, significantly affects micronutrient and toxic metal profiles in urine and/or plasma; a randomized, controlled intervention trial. Am J Clin Nutr 2022; 116:1278-1290. [PMID: 36041176 PMCID: PMC9630859 DOI: 10.1093/ajcn/nqac233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/20/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Observational studies have linked Mediterranean Diets (MedDiet) and organic food consumption with positive health outcomes, which may be explained by higher mineral micronutrient and phenolic intake and lower dietary exposure to toxic compounds. OBJECTIVES To determine the effects of diet and food type (organic versus conventional) on urinary excretion (UE) and/or plasma concentrations of mineral micronutrients, phenolics and toxic metals. METHODS Healthy, adult participants were randomly allocated to a conventional (n=14) or an intervention (n=13) group. During a two-week period, the intervention group consumed a MedDiet made entirely from organic foods, while the conventional group consumed a MedDiet made from conventional foods. Before and after the intervention period, both groups consumed their habitual Western diets made from conventional foods. The primary outcome was UE and/or plasma concentrations of selected mineral micronutrients, toxic metals and phenolic markers. In addition, we monitored diets using food diaries. The participants were aware of study group assignment, but the study assessors were not. RESULTS Changing from a Western to a MedDiet for two weeks resulted in significant increases in UE of total phenolics and salicylic acid (by 46 and 45% respectively), the mineral micronutrients Co, I, and Mn (by 211, 70 and 102% respectively) and the toxic metal Ni (by 42%), and plasma Se concentrations (by 14%). However, no significant effects of food type (organic versus conventional) were detected. Redundancy analysis identified vegetables, coffee, wine and fruit as positive drivers for UE of phenolic markers and mineral micronutrients, and fish consumption as a positive driver for UE of Cd and Pb. CONCLUSIONS Although small effects of food type cannot be ruled out, our study suggests that only changing to a MedDiet with higher fruit and vegetable, and lower meat consumption results in a large increase in phenolic and mineral micronutrient intake.
Collapse
Affiliation(s)
| | - Juan Wang
- School of Agriculture, Food and Rural Development, Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne, United Kingdom,Human Nutrition Research Centre, Population and Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Marcin Barański
- School of Agriculture, Food and Rural Development, Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne, United Kingdom,Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anthony Watson
- Human Nutrition Research Centre, Population and Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Catherine Hadall
- Royal Victoria Infirmary, Newcastle upon Tyne Hospitals, Newcastle upon Tyne, United Kingdom
| | - Gultakin Hasanaliyeva
- School of Agriculture, Food and Rural Development, Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne, United Kingdom,Department of Sustainable Crop and Food Protection, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of the Sacred Heart, Piacenza, Italy
| | - Eleni Chatzidimitriou
- School of Agriculture, Food and Rural Development, Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne, United Kingdom,French Agency for Food, Environmental, and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Amelia Magistrali
- School of Agriculture, Food and Rural Development, Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hannah Davis
- School of Agriculture, Food and Rural Development, Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Vanessa Vigar
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, New South Wales, Australia
| | | | - Steven Rushton
- Modelling Evidence and Policy Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kristin S Rosnes
- Department of Nutrition, Institute of Medical Biology, University of Oslo, Oslo, Norway
| | - Per O Iversen
- Department of Nutrition, Institute of Medical Biology, University of Oslo, Oslo, Norway,Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Chris J Seal
- Human Nutrition Research Centre, Population and Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
30
|
de Prado-Bert P, Warembourg C, Dedele A, Heude B, Borràs E, Sabidó E, Aasvang GM, Lepeule J, Wright J, Urquiza J, Gützkow KB, Maitre L, Chatzi L, Casas M, Vafeiadi M, Nieuwenhuijsen MJ, de Castro M, Grazuleviciene R, McEachan RRC, Basagaña X, Vrijheid M, Sunyer J, Bustamante M. Short- and medium-term air pollution exposure, plasmatic protein levels and blood pressure in children. ENVIRONMENTAL RESEARCH 2022; 211:113109. [PMID: 35292243 DOI: 10.1016/j.envres.2022.113109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 05/26/2023]
Abstract
Exposure to air pollution influences children's health, however, the biological mechanisms underlying these effects are not completely elucidated. We investigated the association between short- and medium-term outdoor air pollution exposure with protein profiles and their link with blood pressure in 1170 HELIX children aged 6-11 years. Different air pollutants (NO2, PM10, PM2.5, and PM2.5abs) were estimated based on residential and school addresses at three different windows of exposure (1-day, 1-week, and 1-year before clinical and molecular assessment). Thirty-six proteins, including adipokines, cytokines, or apolipoproteins, were measured in children's plasma using Luminex. Systolic and diastolic blood pressure (SBP and DBP) were measured following a standardized protocol. We performed an association study for each air pollutant at each location and time window and each outcome, adjusting for potential confounders. After correcting for multiple-testing, hepatocyte growth factor (HGF) and interleukin 8 (IL8) levels were positively associated with 1-week home exposure to some of the pollutants (NO2, PM10, or PM2.5). NO2 1-week home exposure was also related to higher SBP. The mediation study suggested that HGF could explain 19% of the short-term effect of NO2 on blood pressure, but other study designs are needed to prove the causal directionality between HGF and blood pressure.
Collapse
Affiliation(s)
- Paula de Prado-Bert
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Audrius Dedele
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004 Paris, France
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Gunn Marit Aasvang
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, 38000, Grenoble, France
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford Royal, UK
| | - Jose Urquiza
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kristine B Gützkow
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Léa Maitre
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USA; Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Maribel Casas
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Mark J Nieuwenhuijsen
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford Royal, UK
| | - Xavier Basagaña
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
31
|
Alfano R, Plusquin M, Robinson O, Brescianini S, Chatzi L, Keski-Rahkonen P, Handakas E, Maitre L, Nawrot T, Robinot N, Roumeliotaki T, Sassi F, Scalbert A, Vrijheid M, Vineis P, Richiardi L, Zugna D. Cord blood metabolites and rapid postnatal growth as multiple mediators in the prenatal propensity to childhood overweight. Int J Obes (Lond) 2022; 46:1384-1393. [PMID: 35508813 PMCID: PMC9239910 DOI: 10.1038/s41366-022-01108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The mechanisms underlying childhood overweight and obesity are poorly known. Here, we investigated the direct and indirect effects of different prenatal exposures on offspring rapid postnatal growth and overweight in childhood, mediated through cord blood metabolites. Additionally, rapid postnatal growth was considered a potential mediator on childhood overweight, alone and sequentially to each metabolite. METHODS Within four European birth-cohorts (N = 375 mother-child dyads), information on seven prenatal exposures (maternal education, pre-pregnancy BMI, weight gain and tobacco smoke during pregnancy, age at delivery, parity, and child gestational age), selected as obesogenic according to a-priori knowledge, was collected. Cord blood levels of 31 metabolites, associated with rapid postnatal growth and/or childhood overweight in a previous study, were measured via liquid-chromatography-quadrupole-time-of-flight-mass-spectrometry. Rapid growth at 12 months and childhood overweight (including obesity) between four and eight years were defined with reference to WHO growth charts. Single mediation analysis was performed using the imputation approach and multiple mediation analysis using the extended-imputation approach. RESULTS Single mediation suggested that the effect of maternal education, pregnancy weight gain, parity, and gestational age on rapid postnatal growth but not on childhood overweight was partly mediated by seven metabolites, including cholestenone, decenoylcarnitine(C10:1), phosphatidylcholine(C34:3), progesterone and three unidentified metabolites; and the effect of gestational age on childhood overweight was mainly mediated by rapid postnatal growth. Multiple mediation suggested that the effect of gestational age on childhood overweight was mainly mediated by rapid postnatal growth and that the mediating role of the metabolites was marginal. CONCLUSION Our findings provide evidence of the involvement of in utero metabolism in the propensity to rapid postnatal growth and of rapid postnatal growth in the propensity to childhood overweight. We did not find evidence supporting a mediating role of the studied metabolites alone between the studied prenatal exposures and the propensity to childhood overweight.
Collapse
Affiliation(s)
- Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
- Μedical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK.
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Oliver Robinson
- Μedical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Sonia Brescianini
- Centre for Behavioural Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Evangelos Handakas
- Μedical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Lea Maitre
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nivonirina Robinot
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Franco Sassi
- Centre for Health Economics & Policy Innovation, Department of Economics & Public Policy, Imperial College Business School, South Kensington Campus, London, UK
| | - Augustin Scalbert
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Martine Vrijheid
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Paolo Vineis
- Μedical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Torino, Italy
| | - Daniela Zugna
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Torino, Italy
| |
Collapse
|
32
|
Yin J, Cao Y, Liang C, Peng X, Xu X, Zhou W, Khutan R, Tao FB, Chen R. Cohort profile: Anhui Maternal-Child Health Study in China. BMJ Open 2022; 12:e060091. [PMID: 35768099 PMCID: PMC9240940 DOI: 10.1136/bmjopen-2021-060091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
PURPOSE The Anhui Maternal-Child Health Study (AMCHS) aims to examine determinants of reproduction, pregnancy and postpartum maternal and child health outcomes in Chinese women who received assisted reproductive technology (ART). STUDY DESIGN AND PARTICIPANTS AMCHS is an ongoing cohort study starting from May 2017. AMCHS recruits participants from all couples who sought ART treatment in the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China. The participants are interviewed to document baseline sociodemography, lifestyles, dietary intake and environmental exposure. Their clinical characteristics are obtained from hospital records. Samples of blood, follicular fluid and semen are collected at the clinic. Participants receive a standard long pituitary downregulation or a short protocol with an antagonist for the treatment. They are followed up from preconception to delivery, or discontinuation of ART treatment. Details of their children's health are documented through a questionnaire focusing on developmental status and anthropometry measurement. FINDINGS TO DATE Until April 2021, AMCHS had recruited 2042 couples in the study. 111 women withdrew from the study and 19 failed to retrieve oocytes. Among the 1475 confirmed pregnancies, 146 had miscarriages or terminated their pregnancies, 9 had stillbirths and 263 were ongoing pregnancies. The implantation failure increased with maternal age; adjusted OR was 1.43 (95% CI 1.16 to 1.77) in the age of 31-35 years, 1.97 (95% CI 1.46 to 2.66) in 35-39 years and 6.52 (95% CI 3.35 to 12.68) in ≥40 years compared with those aged 20-30 years. Among the 1057 couples with successful ART who were followed up for delivering babies, 576 had their children examined at age 30-42 days, 459 at 6 months and 375 at 12 months. FUTURE PLANS The AMCHS will identify comprehensive risk factors for poor ART outcomes and explore potential interaction effects of multiple factors including sociopsychological aspects of environmental exposure, dietary intake and genetics on maternal and child health.
Collapse
Affiliation(s)
- Jiaqian Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Anhui Medical University, Hefei, China
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Chunmei Liang
- National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
| | | | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weiju Zhou
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
- The Chinese University of Hong Kong, Hong Kong, China
| | - Ranjit Khutan
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | | | - Ruoling Chen
- Centre for Health and Social Care Improvement, University of Wolverhampton, Wolverhampton, UK
| |
Collapse
|
33
|
Prenatal exposure to multiple organochlorine compounds and childhood body mass index. Environ Epidemiol 2022; 6:e201. [PMID: 35702503 PMCID: PMC9187184 DOI: 10.1097/ee9.0000000000000201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Prenatal exposure to organochlorine compounds (OCs) has been associated with increased childhood body mass index (BMI); however, only a few studies have focused on longitudinal BMI trajectories, and none of them used multiple exposure mixture approaches. Aim: To determine the association between in-utero exposure to eight OCs and childhood BMI measures (BMI and BMI z-score) at 4 years and their yearly change across 4–12 years of age in 279 Rhea child-mother dyads. Methods: We applied three approaches: (1) linear mixed-effect regressions (LMR) to associate individual compounds with BMI measures; (2) Bayesian weighted quantile sum regressions (BWQSR) to provide an overall OC mixture association with BMI measures; and (3)Bayesian varying coefficient kernel machine regressions (BVCKMR) to model nonlinear and nonadditive associations. Results: In the LMR, yearly change of BMI measures was consistently associated with a quartile increase in hexachlorobenzene (HCB) (estimate [95% Confidence or Credible interval] BMI: 0.10 [0.06, 0.14]; BMI z-score: 0.02 [0.01, 0.04]). BWQSR results showed that a quartile increase in mixture concentrations was associated with yearly increase of BMI measures (BMI: 0.10 [0.01, 0.18]; BMI z-score: 0.03 [0.003, 0.06]). In the BVCKMR, a quartile increase in dichlorodiphenyldichloroethylene concentrations was associated with higher BMI measures at 4 years (BMI: 0.33 [0.24, 0.43]; BMI z-score: 0.19 [0.15, 0.24]); whereas a quartile increase in HCB and polychlorinated biphenyls (PCB)-118 levels was positively associated with BMI measures yearly change (BMI: HCB:0.10 [0.07, 0.13], PCB-118:0.08 [0.04, 012]; BMI z-score: HCB:0.03 [0.02, 0.05], PCB-118:0.02 [0.002,04]). BVCKMR suggested that PCBs had nonlinear relationships with BMI measures, and HCB interacted with other compounds. Conclusions: All analyses consistently demonstrated detrimental associations between prenatal OC exposures and childhood BMI measures.
Collapse
|
34
|
Carreras-Gallo N, Cáceres A, Balagué-Dobón L, Ruiz-Arenas C, Andrusaityte S, Carracedo Á, Casas M, Chatzi L, Grazuleviciene R, Gutzkow KB, Lepeule J, Maitre L, Nieuwenhuijsen M, Slama R, Stratakis N, Thomsen C, Urquiza J, Wright J, Yang T, Escaramís G, Bustamante M, Vrijheid M, Pérez-Jurado LA, González JR. The early-life exposome modulates the effect of polymorphic inversions on DNA methylation. Commun Biol 2022; 5:455. [PMID: 35550596 PMCID: PMC9098634 DOI: 10.1038/s42003-022-03380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
Polymorphic genomic inversions are chromosomal variants with intrinsic variability that play important roles in evolution, environmental adaptation, and complex traits. We investigated the DNA methylation patterns of three common human inversions, at 8p23.1, 16p11.2, and 17q21.31 in 1,009 blood samples from children from the Human Early Life Exposome (HELIX) project and in 39 prenatal heart tissue samples. We found inversion-state specific methylation patterns within and nearby flanking each inversion region in both datasets. Additionally, numerous inversion-exposure interactions on methylation levels were identified from early-life exposome data comprising 64 exposures. For instance, children homozygous at inv-8p23.1 and higher meat intake were more susceptible to TDH hypermethylation (P = 3.8 × 10−22); being the inversion, exposure, and gene known risk factors for adult obesity. Inv-8p23.1 associated hypermethylation of GATA4 was also detected across numerous exposures. Our data suggests that the pleiotropic influence of inversions during development and lifetime could be substantially mediated by allele-specific methylation patterns which can be modulated by the exposome. Analysis of the relationship between presence of common DNA sequence inversions and DNA methylation patterns suggests a role for environmental exposures (such as food intake) in mediating inversion state-specific methylation patterns.
Collapse
Affiliation(s)
| | - Alejandro Cáceres
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, Barcelona, 08019, Spain
| | | | - Carlos Ruiz-Arenas
- Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CEGEN-PRB3, Santiago de Compostela, Spain.,Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Kristine Bjerve Gutzkow
- Department of Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Johanna Lepeule
- Institut national de la santé et de la recherche médicale (Inserm) and Université Grenoble-Alpes, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Léa Maitre
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Remy Slama
- Institut national de la santé et de la recherche médicale (Inserm) and Université Grenoble-Alpes, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Nikos Stratakis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Cathrine Thomsen
- Department of Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Geòrgia Escaramís
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Biomedical Science, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain.,Research Group on Statistics, Econometrics and Health (GRECS), UdG, Girona, Spain
| | - Mariona Bustamante
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luis A Pérez-Jurado
- Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Genetics Service, Hospital del Mar, Barcelona, Spain
| | - Juan R González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. .,Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
35
|
Lertxundi N, Molinuevo A, Valvi D, Gorostiaga A, Balluerka N, Shivappa N, Hebert J, Navarrete-Muñoz EM, Vioque J, Tardón A, Vrijheid M, Roumeliotaki T, Koutra K, Chatzi L, Ibarluzea J. Dietary inflammatory index of mothers during pregnancy and Attention Deficit-Hyperactivity Disorder symptoms in the child at preschool age: a prospective investigation in the INMA and RHEA cohorts. Eur Child Adolesc Psychiatry 2022; 31:615-624. [PMID: 33398651 PMCID: PMC8713648 DOI: 10.1007/s00787-020-01705-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Inflammation provides a substrate for mechanisms that underlie the association of maternal diet during pregnancy with Attention Deficit-Hyperactivity Disorder (ADHD) symptoms in childhood. However, no previous study has quantified the proinflammatory potential of maternal diet as a risk factor for ADHD. Thus, we evaluated the association of maternal dietary inflammatory index (DII®) scores during pregnancy with ADHD symptoms in 4-year-old children born in two Mediterranean regions. We analyzed data from two population-based birth cohort studies-INMA (Environment and Childhood) four subcohorts in Spain (N = 2097), and RHEA study in Crete (Greece) (N = 444). The DII score of maternal diet was calculated based on validated food frequency questionnaires completed during pregnancy (12th and/or 32nd week of gestation). ADHD symptoms were assessed by ADHD-DSM-IV in INMA cohort and by ADHDT test in RHEA cohort, with questionnaires filled-out by teachers and parents, respectively. The associations between maternal DII and ADHD symptoms were analysed using multivariable-adjusted zero-inflated negative binomial regression models in each cohort study separately. Meta-analysis was conducted to combine data across the cohorts for fitting within one model. The DII was significantly higher in RHEA (RHEA = 2.09 [1.94, 2.24]) in comparison to INMA subcohorts (Asturias = - 1.52 [- 1.67, - 1.38]; Gipuzkoa = - 1.48 [- 1.64, - 1.33]; Sabadell = - 0.95 [- 1.07, - 0.83]; Valencia = - 0.76 [- 0.90, - 0.62]). Statistically significant reduced risk of inattention symptomatology (OR = 0.86; CI 95% = 0.77-0.96), hyperactivity symptomatology (OR = 0.82; CI 95% = 0.72-0.92) and total ADHD symptomatology (OR = 0.82; CI 95% = - 0.72 to 0.93) were observed with increased maternal DII in boys. No statistically significant associations were observed in girls between maternal DII and inattention, hyperactivity and total ADHD symptomatology. We found reduced risk of ADHD symptomatology with increased DII only in boys. This relationship requires further exploration in other settings.
Collapse
Grants
- R21 ES029328, R21 ES028903 NIEHS NIH HHS
- P30 ES007048 NIEHS NIH HHS
- R21 ES028903 NIEHS NIH HHS
- R21 ES029328 NIEHS NIH HHS
- CIRIT 1999SGR 00241, Departament de Salut, Generalitat de Catalunya
- G03/176, CB06/02/0041, FIS-PI041436, FIS- PI081151, FIS-PI042018, FISPI09/02311, FIS-PI06/0867, FIS-PS09/00090, FIS-FEDER PI11/1007 FIS-FEDER 03/1615, 04/1509, 04/1112, 04/1931 , 05/1079, 05/1052, 06/1213, 07/0314, and 09/02647 Instituto de Salud Carlos III
- R21 ES029328, R21 ES028903 NIEHS NIH HHS
Collapse
Affiliation(s)
- Nerea Lertxundi
- University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain.
- Health Research Institute BIODONOSTIA, Donostia-San Sebastián, Spain.
| | - Amaia Molinuevo
- Public Health Division of Gipuzkoa, Donostia-San Sebastian, Spain
| | - Dania Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine At Mount Sinai, New York, NY, USA
| | - Arantxa Gorostiaga
- University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
- Health Research Institute BIODONOSTIA, Donostia-San Sebastián, Spain
| | - Nekane Balluerka
- University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
- Health Research Institute BIODONOSTIA, Donostia-San Sebastián, Spain
| | - Nitin Shivappa
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Connecting Health Innovations LLC, Columbia, SC, USA
| | - James Hebert
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Connecting Health Innovations LLC, Columbia, SC, USA
| | - Eva María Navarrete-Muñoz
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institute for Health and Biomedical Research, ISABIAL-UMH, Alicante, Spain
- Department of Surgery and Pathology, Miguel Hernández University, Alicante, Spain
| | - Jesus Vioque
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institute for Health and Biomedical Research, ISABIAL-UMH, Alicante, Spain
| | | | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Theano Roumeliotaki
- Department of Psychology, School of Social Sciences, University of Crete, Heraklion, Greece
| | - Katerina Koutra
- Department of Psychology, School of Social Sciences, University of Crete, Heraklion, Greece
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Jesus Ibarluzea
- University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
- Health Research Institute BIODONOSTIA, Donostia-San Sebastián, Spain
- Public Health Division of Gipuzkoa, Donostia-San Sebastian, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
36
|
Abellan A, Mensink-Bout SM, Garcia-Esteban R, Beneito A, Chatzi L, Duarte-Salles T, Fernandez MF, Garcia-Aymerich J, Granum B, Iñiguez C, Jaddoe VWV, Kannan K, Lertxundi A, Lopez-Espinosa MJ, Philippat C, Sakhi AK, Santos S, Siroux V, Sunyer J, Trasande L, Vafeiadi M, Vela-Soria F, Yang TC, Zabaleta C, Vrijheid M, Duijts L, Casas M. In utero exposure to bisphenols and asthma, wheeze, and lung function in school-age children: a prospective meta-analysis of 8 European birth cohorts. ENVIRONMENT INTERNATIONAL 2022; 162:107178. [PMID: 35314078 DOI: 10.1016/j.envint.2022.107178] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In utero exposure to bisphenols, widely used in consumer products, may alter lung development and increase the risk of respiratory morbidity in the offspring. However, evidence is scarce and mostly focused on bisphenol A (BPA) only. OBJECTIVE To examine the associations of in utero exposure to BPA, bisphenol F (BPF), and bisphenol S (BPS) with asthma, wheeze, and lung function in school-age children, and whether these associations differ by sex. METHODS We included 3,007 mother-child pairs from eight European birth cohorts. Bisphenol concentrations were determined in maternal urine samples collected during pregnancy (1999-2010). Between 7 and 11 years of age, current asthma and wheeze were assessed from questionnaires and lung function by spirometry. Wheezing patterns were constructed from questionnaires from early to mid-childhood. We performed adjusted random-effects meta-analysis on individual participant data. RESULTS Exposure to BPA was prevalent with 90% of maternal samples containing concentrations above detection limits. BPF and BPS were found in 27% and 49% of samples. In utero exposure to BPA was associated with higher odds of current asthma (OR = 1.13, 95% CI = 1.01, 1.27) and wheeze (OR = 1.14, 95% CI = 1.01, 1.30) (p-interaction sex = 0.01) among girls, but not with wheezing patterns nor lung function neither in overall nor among boys. We observed inconsistent associations of BPF and BPS with the respiratory outcomes assessed in overall and sex-stratified analyses. CONCLUSION This study suggests that in utero BPA exposure may be associated with higher odds of asthma and wheeze among school-age girls.
Collapse
Affiliation(s)
- Alicia Abellan
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sara M Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Raquel Garcia-Esteban
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Mariana F Fernandez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Berit Granum
- Norwegian Institute of Public Health, Oslo, Norway
| | - Carmen Iñiguez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Department of Statistics and Operational Research. Universitat de València. València, Spain
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kurunthachalam Kannan
- Departments of Pediatrics and Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Preventive medicine and public health department, University of Basque Country (UPV/EHU), Leioa, Spain; Biodonostia Health research institute, Donostia-San Sebastian, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| | | | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Valérie Siroux
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Leonardo Trasande
- Departments of Pediatrics and Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | | | | | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
37
|
Ruiz-Arenas C, Hernandez-Ferrer C, Vives-Usano M, Marí S, Quintela I, Mason D, Cadiou S, Casas M, Andrusaityte S, Gutzkow KB, Vafeiadi M, Wright J, Lepeule J, Grazuleviciene R, Chatzi L, Carracedo Á, Estivill X, Marti E, Escaramís G, Vrijheid M, González JR, Bustamante M. Identification of autosomal cis expression quantitative trait methylation (cis eQTMs) in children's blood. eLife 2022; 11:e65310. [PMID: 35302492 PMCID: PMC8933004 DOI: 10.7554/elife.65310] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background The identification of expression quantitative trait methylation (eQTMs), defined as associations between DNA methylation levels and gene expression, might help the biological interpretation of epigenome-wide association studies (EWAS). We aimed to identify autosomal cis eQTMs in children's blood, using data from 832 children of the Human Early Life Exposome (HELIX) project. Methods Blood DNA methylation and gene expression were measured with the Illumina 450K and the Affymetrix HTA v2 arrays, respectively. The relationship between methylation levels and expression of nearby genes (1 Mb window centered at the transcription start site, TSS) was assessed by fitting 13.6 M linear regressions adjusting for sex, age, cohort, and blood cell composition. Results We identified 39,749 blood autosomal cis eQTMs, representing 21,966 unique CpGs (eCpGs, 5.7% of total CpGs) and 8,886 unique transcript clusters (eGenes, 15.3% of total transcript clusters, equivalent to genes). In 87.9% of these cis eQTMs, the eCpG was located at <250 kb from eGene's TSS; and 58.8% of all eQTMs showed an inverse relationship between the methylation and expression levels. Only around half of the autosomal cis-eQTMs eGenes could be captured through annotation of the eCpG to the closest gene. eCpGs had less measurement error and were enriched for active blood regulatory regions and for CpGs reported to be associated with environmental exposures or phenotypic traits. In 40.4% of the eQTMs, the CpG and the eGene were both associated with at least one genetic variant. The overlap of autosomal cis eQTMs in children's blood with those described in adults was small (13.8%), and age-shared cis eQTMs tended to be proximal to the TSS and enriched for genetic variants. Conclusions This catalogue of autosomal cis eQTMs in children's blood can help the biological interpretation of EWAS findings and is publicly available at https://helixomics.isglobal.org/ and at Dryad (doi:10.5061/dryad.fxpnvx0t0). Funding The study has received funding from the European Community's Seventh Framework Programme (FP7/2007-206) under grant agreement no 308333 (HELIX project); the H2020-EU.3.1.2. - Preventing Disease Programme under grant agreement no 874583 (ATHLETE project); from the European Union's Horizon 2020 research and innovation programme under grant agreement no 733206 (LIFECYCLE project), and from the European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL and Instituto de Salud Carlos III) under the grant agreement no AC18/00006 (NutriPROGRAM project). The genotyping was supported by the projects PI17/01225 and PI17/01935, funded by the Instituto de Salud Carlos III and co-funded by European Union (ERDF, "A way to make Europe") and the Centro Nacional de Genotipado-CEGEN (PRB2-ISCIII). BiB received core infrastructure funding from the Wellcome Trust (WT101597MA) and a joint grant from the UK Medical Research Council (MRC) and Economic and Social Science Research Council (ESRC) (MR/N024397/1). INMA data collections were supported by grants from the Instituto de Salud Carlos III, CIBERESP, and the Generalitat de Catalunya-CIRIT. KANC was funded by the grant of the Lithuanian Agency for Science Innovation and Technology (6-04-2014_31V-66). The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research. The Rhea project was financially supported by European projects (EU FP6-2003-Food-3-NewGeneris, EU FP6. STREP Hiwate, EU FP7 ENV.2007.1.2.2.2. Project No 211250 Escape, EU FP7-2008-ENV-1.2.1.4 Envirogenomarkers, EU FP7-HEALTH-2009- single stage CHICOS, EU FP7 ENV.2008.1.2.1.6. Proposal No 226285 ENRIECO, EU- FP7- HEALTH-2012 Proposal No 308333 HELIX), and the Greek Ministry of Health (Program of Prevention of obesity and neurodevelopmental disorders in preschool children, in Heraklion district, Crete, Greece: 2011-2014; "Rhea Plus": Primary Prevention Program of Environmental Risk Factors for Reproductive Health, and Child Health: 2012-15). We acknowledge support from the Spanish Ministry of Science and Innovation through the "Centro de Excelencia Severo Ochoa 2019-2023" Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program. MV-U and CR-A were supported by a FI fellowship from the Catalan Government (FI-DGR 2015 and #016FI_B 00272). MC received funding from Instituto Carlos III (Ministry of Economy and Competitiveness) (CD12/00563 and MS16/00128).
Collapse
Affiliation(s)
- Carlos Ruiz-Arenas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Carles Hernandez-Ferrer
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- ISGlobalBarcelonaSpain
| | - Marta Vives-Usano
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ISGlobalBarcelonaSpain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sergi Marí
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ISGlobalBarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
| | - Ines Quintela
- Medicine Genomics Group, University of Santiago de CompostelaSantiago de CompostelaSpain
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation TrustBradfordUnited Kingdom
| | - Solène Cadiou
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory HealthGrenobleFrance
| | - Maribel Casas
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ISGlobalBarcelonaSpain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus UniversityKaunasLithuania
| | | | - Marina Vafeiadi
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ISGlobalBarcelonaSpain
- Department of Social Medicine, University of CreteCreteGreece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation TrustBradfordUnited Kingdom
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory HealthGrenobleFrance
| | | | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los AngelesLos AngelesUnited States
| | - Ángel Carracedo
- Medicine Genomics Group, CIBERER, University of Santiago de CompostelaSantiago de CompostelaSpain
- Galician Foundation of Genomic MedicineSantiago de CompostelaSpain
| | - Xavier Estivill
- Quantitative Genomics Medicine Laboratories (qGenomics), Esplugues del LlobregaBarcelonaSpain
| | - Eulàlia Marti
- CIBER Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
- Departament de Biomedicina, Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
| | - Geòrgia Escaramís
- CIBER Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
- Departament de Biomedicina, Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
| | - Martine Vrijheid
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ISGlobalBarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
| | - Juan R González
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ISGlobalBarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
| | - Mariona Bustamante
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ISGlobalBarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
| |
Collapse
|
38
|
Lozano M, Yousefi P, Broberg K, Soler-Blasco R, Miyashita C, Pesce G, Kim WJ, Rahman M, Bakulski KM, Haug LS, Ikeda-Araki A, Huel G, Park J, Relton C, Vrijheid M, Rifas-Shiman S, Oken E, Dou JF, Kishi R, Gutzkow KB, Annesi-Maesano I, Won S, Hivert MF, Fallin MD, Vafeiadi M, Ballester F, Bustamante M, Llop S. DNA methylation changes associated with prenatal mercury exposure: A meta-analysis of prospective cohort studies from PACE consortium. ENVIRONMENTAL RESEARCH 2022; 204:112093. [PMID: 34562483 PMCID: PMC10879652 DOI: 10.1016/j.envres.2021.112093] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a ubiquitous heavy metal that originates from both natural and anthropogenic sources and is transformed in the environment to its most toxicant form, methylmercury (MeHg). Recent studies suggest that MeHg exposure can alter epigenetic modifications during embryogenesis. In this study, we examined associations between prenatal MeHg exposure and levels of cord blood DNA methylation (DNAm) by meta-analysis in up to seven independent studies (n = 1462) as well as persistence of those relationships in blood from 7 to 8 year-old children (n = 794). In cord blood, we found limited evidence of differential DNAm at cg24184221 in MED31 (β = 2.28 × 10-4, p-value = 5.87 × 10-5) in relation to prenatal MeHg exposure. In child blood, we identified differential DNAm at cg15288800 (β = 0.004, p-value = 4.97 × 10-5), also located in MED31. This repeated link to MED31, a gene involved in lipid metabolism and RNA Polymerase II transcription function, may suggest a DNAm perturbation related to MeHg exposure that persists into early childhood. Further, we found evidence for association between prenatal MeHg exposure and child blood DNAm levels at two additional CpGs: cg12204245 (β = 0.002, p-value = 4.81 × 10-7) in GRK1 and cg02212000 (β = -0.001, p-value = 8.13 × 10-7) in GGH. Prenatal MeHg exposure was associated with DNAm modifications that may influence health outcomes, such as cognitive or anthropometric development, in different populations.
Collapse
Affiliation(s)
- Manuel Lozano
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain.
| | - Paul Yousefi
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Karin Broberg
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Giancarlo Pesce
- INSERM UMR1018, Université Paris-Saclay, UVSQ, Centre for Epidemiology and Public Health (CESP), Villejuif, France
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, South Korea
| | - Mohammad Rahman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| | - Kelly M Bakulski
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Line S Haug
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan; Faculty of Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Guy Huel
- INSERM UMR1018, Université Paris-Saclay, UVSQ, Centre for Epidemiology and Public Health (CESP), Villejuif, France
| | - Jaehyun Park
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Sheryl Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| | - John F Dou
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Kristine B Gutzkow
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Isabella Annesi-Maesano
- INSERM UMR1302, Montpellier University, Insitut Desbrest d'Épidémiologie et de Santé Publique (IDESP), Montpellier, France
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea; Department of Public Health Sciences, Seoul National University, Seoul, South Korea
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States; Diabetes Unit, Massachusetts General Hospital, Boston, MA, United States
| | - M Daniele Fallin
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; School of Nursing, Universitat de València, Valencia, Spain
| | - Mariona Bustamante
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
39
|
Stratakis N, Siskos AP, Papadopoulou E, Nguyen AN, Zhao Y, Margetaki K, Lau CHE, Coen M, Maitre L, Fernández-Barrés S, Agier L, Andrusaityte S, Basagaña X, Brantsaeter AL, Casas M, Fossati S, Grazuleviciene R, Heude B, McEachan RRC, Meltzer HM, Millett C, Rauber F, Robinson O, Roumeliotaki T, Borras E, Sabidó E, Urquiza J, Vafeiadi M, Vineis P, Voortman T, Wright J, Conti DV, Vrijheid M, Keun HC, Chatzi L. Urinary metabolic biomarkers of diet quality in European children are associated with metabolic health. eLife 2022; 11:e71332. [PMID: 35076016 PMCID: PMC8789316 DOI: 10.7554/elife.71332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/02/2022] [Indexed: 11/13/2022] Open
Abstract
Urinary metabolic profiling is a promising powerful tool to reflect dietary intake and can help understand metabolic alterations in response to diet quality. Here, we used 1H NMR spectroscopy in a multicountry study in European children (1147 children from 6 different cohorts) and identified a common panel of 4 urinary metabolites (hippurate, N-methylnicotinic acid, urea, and sucrose) that was predictive of Mediterranean diet adherence (KIDMED) and ultra-processed food consumption and also had higher capacity in discriminating children's diet quality than that of established sociodemographic determinants. Further, we showed that the identified metabolite panel also reflected the associations of these diet quality indicators with C-peptide, a stable and accurate marker of insulin resistance and future risk of metabolic disease. This methodology enables objective assessment of dietary patterns in European child populations, complementary to traditional questionary methods, and can be used in future studies to evaluate diet quality. Moreover, this knowledge can provide mechanistic evidence of common biological pathways that characterize healthy and unhealthy dietary patterns, and diet-related molecular alterations that could associate to metabolic disease.
Collapse
Affiliation(s)
- Nikos Stratakis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Alexandros P Siskos
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer and Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
| | | | - Anh N Nguyen
- Department of Epidemiology, Erasmus University Medical CenterRotterdamNetherlands
| | - Yinqi Zhao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Katerina Margetaki
- Department of Preventive Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Chung-Ho E Lau
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer and Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
- MRC Centre for Environment and Health, School of Public Health, Imperial College LondonLondonUnited Kingdom
| | - Muireann Coen
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer and Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaCambridgeUnited Kingdom
| | - Lea Maitre
- ISGlobalBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Epidemiologia y Salud PúblicaMadridSpain
| | - Silvia Fernández-Barrés
- ISGlobalBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Epidemiologia y Salud PúblicaMadridSpain
| | - Lydiane Agier
- Inserm, CNRS, University Grenoble Alpes, Team of environmental epidemiology applied to reproduction and respiratory health, IABGrenobleFrance
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus UniversityKaunasLithuania
| | - Xavier Basagaña
- ISGlobalBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Epidemiologia y Salud PúblicaMadridSpain
| | | | - Maribel Casas
- ISGlobalBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Epidemiologia y Salud PúblicaMadridSpain
| | - Serena Fossati
- ISGlobalBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Epidemiologia y Salud PúblicaMadridSpain
| | | | - Barbara Heude
- Centre for Research in Epidemiology and Statistics, Université de Paris, Inserm, InraParisFrance
| | - Rosemary RC McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation TrustBradfordUnited Kingdom
| | | | - Christopher Millett
- Public Health Policy Evaluation Unit, School of Public Health, Imperial CollegeLondonUnited Kingdom
- Department of Preventive Medicine, School of Medicine, University of São PauloSão PauloBrazil
| | - Fernanda Rauber
- Public Health Policy Evaluation Unit, School of Public Health, Imperial CollegeLondonUnited Kingdom
- Department of Preventive Medicine, School of Medicine, University of São PauloSão PauloBrazil
- Center for Epidemiological Research in Nutrition and Health, University of São PauloSão PauloBrazil
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College LondonLondonUnited Kingdom
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of CreteHeraklionGreece
| | - Eva Borras
- ISGlobalBarcelonaSpain
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Eduard Sabidó
- ISGlobalBarcelonaSpain
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jose Urquiza
- ISGlobalBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Epidemiologia y Salud PúblicaMadridSpain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of CreteHeraklionGreece
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College LondonLondonUnited Kingdom
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical CenterRotterdamNetherlands
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation TrustBradfordUnited Kingdom
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Martine Vrijheid
- ISGlobalBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Epidemiologia y Salud PúblicaMadridSpain
| | - Hector C Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer and Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
40
|
van den Bosch M, Basagaña X, Mudu P, Kendrovski V, Maitre L, Hjertager Krog N, Aasvang GM, Grazuleviciene R, McEachan R, Vrijheid M, Nieuwenhuijsen MJ. Green CURIOCITY: a study protocol for a European birth cohort study analysing childhood heat-related health impacts and protective effects of urban natural environments. BMJ Open 2022; 12:e052537. [PMID: 35074814 PMCID: PMC8788192 DOI: 10.1136/bmjopen-2021-052537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/04/2022] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION The European climate is getting warmer and the impact on childhood health and development is insufficiently understood. Equally, how heat-related health risks can be reduced through nature-based solutions, such as exposure to urban natural environments, is unknown. Green CURe In Outdoor CITY spaces (Green CURIOCITY) will analyse how heat exposure during pregnancy affects birth outcomes and how long-term heat exposure may influence children's neurodevelopment. We will also investigate if adverse effects can be mitigated by urban natural environments. A final goal is to visualise intraurban patterns of heat vulnerability and assist planning towards healthier cities. METHODS AND ANALYSIS We will use existing data from the Human Early-Life Exposure cohort, which includes information on birth outcomes and neurodevelopment from six European birth cohorts. The cohort is linked to data on prenatal heat exposure and impact on birth outcomes will be analysed with logistic regression models, adjusting for air pollution and noise and sociobehavioural covariates. Similarly, impact of cumulative and immediate heat exposure on neurodevelopmental outcomes at age 5 will be assessed. For both analyses, the potentially moderating impact of natural environments will be quantified. For visualisation, Geographical information systems data will be combined to develop vulnerability maps, demonstrating urban 'hot spots' where the risk of negative impacts of heat is aggravated due to sociodemographic and land use patterns. Finally, geospatial and meteorological data will be used for informing GreenUr, an existing software prototype developed by the WHO Regional Office for Europe to quantify health impacts and augment policy tools for urban green space planning. ETHICS AND DISSEMINATION The protocol was approved by the Comité Ético de Investigación Clínica Parc de Salut MAR, Spain. Findings will be published in peer-reviewed journals and presented at policy events. Through stakeholder engagement, the results will also reach user groups and practitioners.
Collapse
Affiliation(s)
- Matilda van den Bosch
- Air pollution and Urban Environment, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Xavier Basagaña
- Air pollution and Urban Environment, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pierpaolo Mudu
- World Health Organization European Centre for Environment and Health, Bonn, Nordrhein-Westfalen, Germany
| | - Vladimir Kendrovski
- World Health Organization European Centre for Environment and Health, Bonn, Nordrhein-Westfalen, Germany
| | - Léa Maitre
- Air pollution and Urban Environment, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Gunn Marit Aasvang
- Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Regina Grazuleviciene
- Department of Environmental Sciences, Vytauto Didziojo Universitetas, Kaunas, Lithuania
| | | | - Martine Vrijheid
- Air pollution and Urban Environment, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mark J Nieuwenhuijsen
- Air pollution and Urban Environment, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
41
|
Binter AC, Bernard JY, Mon-Williams M, Andiarena A, González-Safont L, Vafeiadi M, Lepeule J, Soler-Blasco R, Alonso L, Kampouri M, Mceachan R, Santa-Marina L, Wright J, Chatzi L, Sunyer J, Philippat C, Nieuwenhuijsen M, Vrijheid M, Guxens M. Urban environment and cognitive and motor function in children from four European birth cohorts. ENVIRONMENT INTERNATIONAL 2022; 158:106933. [PMID: 34662798 DOI: 10.1016/j.envint.2021.106933] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The urban environment may influence neurodevelopment from conception onwards, but there is no evaluation of the impact of multiple groups of exposures simultaneously. We investigated the association between early-life urban environment and cognitive and motor function in children. METHODS We used data from 5403 mother-child pairs from four population-based birth-cohorts (UK, France, Spain, and Greece). We estimated thirteen urban home exposures during pregnancy and childhood, including: built environment, natural spaces, and air pollution. Verbal, non-verbal, gross motor, and fine motor functions were assessed using validated tests at five years old. We ran adjusted multi-exposure models using the Deletion-Substitution-Addition algorithm. RESULTS Higher greenness exposure within 300 m during pregnancy was associated with higher verbal abilities (1.5 points (95% confidence interval 0.4, 2.7) per 0.20 unit increase in greenness). Higher connectivity density within 100 m and land use diversity during pregnancy were related to lower verbal abilities. Childhood exposure to PM2.5 mediated 74% of the association between greenness during childhood and verbal abilities. Higher exposure to PM2.5 during pregnancy was related to lower fine motor function (-1.2 points (-2.1, -0.4) per 3.2 μg/m3 increase in PM2.5). No associations were found with non-verbal abilities and gross motor function. DISCUSSION This study suggests that built environment, greenness, and air pollution may impact child cognitive and motor function at five years old. This study adds evidence that well-designed urban planning may benefit children's cognitive and motor development.
Collapse
Affiliation(s)
- Anne-Claire Binter
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain
| | - Jonathan Y Bernard
- Université de Paris, Centre for Research in Epidemiology and StatisticS (CRESS), Inserm, INRAE, F-75004 Paris, France; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Mark Mon-Williams
- Bradford Institute for Health Research, Bradford, West Yorkshire, UK; School of Psychology, University of Leeds, Leeds, UK; National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| | - Ainara Andiarena
- Faculty of Psychology, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; Biodonostia, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain
| | - Llúcia González-Safont
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO -Universitat Jaume I -Universitat de Val ència, Valencia, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO -Universitat Jaume I -Universitat de Val ència, Valencia, Spain
| | - Lucia Alonso
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain
| | - Mariza Kampouri
- Department of Social Medicine, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rosie Mceachan
- Bradford Institute of Health Research, Bradford BD9 6RJ, United Kingdom
| | - Loreto Santa-Marina
- Epidemiology and Environmental Health Joint Research Unit, FISABIO -Universitat Jaume I -Universitat de Val ència, Valencia, Spain; Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, 20013 San Sebastian, Spain
| | - John Wright
- Bradford Institute of Health Research, Bradford BD9 6RJ, United Kingdom
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, US
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain; IMIM-Parc Salut Mar, Barcelona
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Spain; Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
42
|
Margetaki K, Stratakis N, Roumeliotaki T, Karachaliou M, Alexaki M, Kogevinas M, Chatzi L, Vafeiadi M. Prenatal and infant antibiotic exposure and childhood growth, obesity and cardiovascular risk factors: The Rhea mother-child cohort study, Crete, Greece. Pediatr Obes 2022; 17:e12843. [PMID: 34369080 DOI: 10.1111/ijpo.12843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Early-life antibiotic use has been hypothesized to promote weight gain and increase the risk of childhood obesity. OBJECTIVES To examine the associations of prenatal and infant antibiotics with childhood growth, adiposity and cardiometabolic traits in the Greek Rhea cohort. METHODS We used data from 747 mother-child pairs with anthropometric measurements drawn from medical records or measured at 4 and 6 years of age. Antibiotic exposure was assessed by maternal report during pregnancy and at the first year of life. Children were classified as exposed to antibiotics prenatally if the mother received at least one course of oral antibiotics during pregnancy and postnatally if the mother reported that the child received at least one oral antibiotic treatment during the first year of life. Outcomes included repeated weight, body mass index (BMI), waist circumference, body fat (%), total cholesterol and blood pressure. We applied mixed effects, linear and log-binomial regression models after adjusting for important covariates. RESULTS Around 14.6% of the participating children were prenatally exposed to antibiotics and 32.4% received antibiotics during the first year of life. Prenatal exposure to antibiotics was associated with a twofold increase in the risk for obesity (risk ratio [RR]; 95% confidence interval [CI]: 2.09 [1.58, 2.76]) and abdominal obesity (RR [95% CI]: 2.56 [1.89, 3.47]) at 6 years. Postnatal exposure to antibiotics was associated with increased weight (beta [95% CI]: 00.25 [0.06, 0.44]) and BMI (beta [95% CI]: 0.23 [0.003, 0.45]) SD scores from 2 to 7 years of life. CONCLUSION Early-life antibiotic use was associated with accelerated childhood growth and higher adiposity.
Collapse
Affiliation(s)
- Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece.,Department of Preventive Medicine, Division of Environmental Health, University of Southern California, Los Angeles, California, USA
| | - Nikos Stratakis
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece.,Department of Preventive Medicine, Division of Environmental Health, University of Southern California, Los Angeles, California, USA
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marianna Karachaliou
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Maria Alexaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Manolis Kogevinas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédicaen Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Leda Chatzi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece.,Department of Preventive Medicine, Division of Environmental Health, University of Southern California, Los Angeles, California, USA
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
43
|
The longitudinal association of eating behaviour and ADHD symptoms in school age children: a follow-up study in the RHEA cohort. Eur Child Adolesc Psychiatry 2022; 31:511-517. [PMID: 33599859 PMCID: PMC8634555 DOI: 10.1007/s00787-021-01720-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/11/2021] [Indexed: 10/26/2022]
Abstract
Previous evidence suggests a link between attention deficit hyperactivity disorder (ADHD) symptoms and disordered eating behaviours; however, the direction of the causal association remains unclear. Building on our previous research, we aimed to examine the longitudinal association between eating behaviours at 4 years, ADHD symptoms at 6 years of age, and the role of body mass index (BMI). We included children from the RHEA mother-child cohort in Greece, followed up at 4 and 6 years (n = 926). Parents completed the Children's Eating Behaviour Questionnaire (CEBQ) to assess children's eating behaviour at 4 years and the ADHD Test (ADHDT) and Child Behaviour Checklist for ages 6-18 (CBCL/6-18) to evaluate ADHD symptoms at 4 and 6 years, respectively, as well as measures of BMI. Longitudinal structural equation modeling (SEM) was carried out to evaluate the associations of all variables between 4 and 6 years. Food responsiveness at 4 years was positively associated with hyperactivity at age 6, whereas emotional overeating was negatively associated with hyperactivity. There was no evidence of an association between eating behaviours of preschoolers and BMI at 6 years, or BMI at 4 years and later ADHD symptoms and vice versa. Findings suggest that food responsiveness is an early marker of ADHD symptoms at 6 years of age. In contrast to our hypothesis there was no significant association between ADHD at age 4 and BMI at age 6.
Collapse
|
44
|
Sex specific associations between in utero exposure to persistent organic pollutants and allergy-related outcomes in childhood: The Rhea Mother-Child Cohort (Crete, Greece). J Dev Orig Health Dis 2021; 13:566-574. [PMID: 34859763 DOI: 10.1017/s2040174421000660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that in utero exposures can influence the development of the immune system. Few studies have investigated whether prenatal exposure to persistent organic pollutants (POPs) is associated with allergy-related phenotypes in childhood, nor explored sex differences. We examined the association between prenatal exposure to POPs and offspring allergic outcomes in early and mid-childhood. We included 682 mother-child pairs from the prospective birth cohort Rhea. We measured dichlorodiphenyldichloroethylene (DDE), hexachlorobenzene (HCB) and 6 polychlorinated biphenyl (PCB) congeners in maternal first trimester serum. Parents completed the questionnaires adapted from the International Study on Asthma and Allergy in Childhood (ISAAC) for allergy-related phenotypes when their children were 4 and 6 years old. We used Poisson regression models to estimate Risk Ratios. Prenatal HCB was associated with increased risk for rhinoconjunctivitis at 6 years (RR (95% CI): 2.5; (1.3, 4.8) for a doubling in the exposure). Among girls, prenatal DDE was associated with increased risk for current wheeze, current asthma and current rhinoconjunctivitis at 4 years (RR (95%CI): 1.4 (0.8, 2.6), 1.6 (1.1, 2.4) and 1.8 (1.0, 3.3) and p-interaction = 0.035, 0.027 and 0.059, respectively), with increased risk for current rhinoconjunctivitis at 6 years (RR (95%CI): 1.7 (0.7, 3.8) and p-interaction = 0.028) and total PCBs were associated with increased risk for current eczema at 4 years (RR (95%CI): 2.1 (1.1, 4.2) and p-interaction = 0.028). In boys, prenatal DDE was associated with decreased risk for current wheeze and current asthma at 4 years. Our findings suggest that even low levels of exposure to POPs prenatally may affect the development of childhood allergy-related outcomes in a sex and age-specific manner.
Collapse
|
45
|
Papadopoulou E, Stratakis N, Basagaña X, Brantsæter AL, Casas M, Fossati S, Gražulevičienė R, Småstuen Haug L, Heude B, Maitre L, McEachan RRC, Robinson O, Roumeliotaki T, Sabidó E, Borràs E, Urquiza J, Vafeiadi M, Zhao Y, Slama R, Wright J, Conti DV, Vrijheid M, Chatzi L. Prenatal and postnatal exposure to PFAS and cardiometabolic factors and inflammation status in children from six European cohorts. ENVIRONMENT INTERNATIONAL 2021; 157:106853. [PMID: 34500361 DOI: 10.1016/j.envint.2021.106853] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/14/2023]
Abstract
Developing children are particularly vulnerable to the effects of exposure to per- and polyfluoroalkyl substances (PFAS), a group of endocrine disrupting chemicals. We hypothesized that early life exposure to PFASs is associated with poor metabolic health in children. We studied the association between prenatal and postnatal PFASs mixture exposure and cardiometabolic health in children, and the role of inflammatory proteins. In 1,101 mothers-child pairs from the Human Early Life Exposome project, we measured the concentrations of PFAS in blood collected in pregnancy and at 8 years (range = 6-12 years). We applied Bayesian Kernel Machine regression (BKMR) to estimate the associations between exposure to PFAS mixture and the cardiometabolic factors as age and sex- specific z-scores of waist circumference (WC), systolic and diastolic blood pressures (BP), and concentrations of triglycerides (TG), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) cholesterol. We measured thirty six inflammatory biomarkers in child plasma and examined the underlying role of inflammatory status for the exposure-outcome association by integrating the three panels into a network. Exposure to the PFAS mixture was positively associated with HDL-C and systolic BP, and negatively associated with WC, LDL-C and TG. When we examined the independent effects of the individual chemicals in the mixture, prenatal PFHxS was negatively associated with HDL-C and prenatal PFNA was positively associated with WC and these were opposing directions from the overall mixture. Further, the network consisted of five distinct communities connected with positive and negative correlations. The selected inflammatory biomarkers were positively, while the postnatal PFAS were negatively related with the included cardiometabolic factors, and only prenatal PFOA was positively related with the pro-inflammatory cytokine IL-1beta and WC. Our study supports that prenatal, rather than postnatal, PFAS exposure might contribute to an unfavorable lipidemic profile and adiposity in childhood.
Collapse
Affiliation(s)
| | - Nikos Stratakis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA; Department of Complex Genetics and Epidemiology, CAPHRI School for Public Health and Primary Care, University of Maastricht, Maastricht, the Netherlands
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | | | | | - Barbara Heude
- Centre for Research in Epidemiology and Statistics, INSERM, Université de Paris, INRAe, Paris, France
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eva Borràs
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose Urquiza
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Yinqi Zhao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Rémy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Inserm, CNRS, University Grenoble Alpes, Institute of Advanced Biosciences, Joint research center (U1209), La Tronche, Grenoble, France
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
46
|
Margetaki K, Vafeiadi M, Kampouri M, Roumeliotaki T, Karakosta P, Daraki V, Kogevinas M, Hu H, Kippler M, Chatzi L. Associations of exposure to cadmium, antimony, lead and their mixture with gestational thyroid homeostasis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117905. [PMID: 34371266 DOI: 10.1016/j.envpol.2021.117905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Maintaining thyroid homeostasis during pregnancy is vital for fetal development. The few studies that have investigated associations between metal exposure and gestational thyroid function have yielded mixed findings. To evaluate the association of exposure to a mixture of toxic metals with thyroid parameters in 824 pregnant women from the Rhea birth cohort in Crete, Greece. Concentrations of three toxic metals [cadmium (Cd), antimony (Sb), lead (Pb)] and iodine were measured in urine using inductively coupled plasma mass spectrometry and thyroid hormones [Thyroid Stimulating Hormone (TSH), free thyroxine (fT4), and free triiodothyronine (fT3)] were measured in serum in early pregnancy. Associations of individual metals with thyroid parameters were assessed using adjusted regression models, while associations of the metal mixture with thyroid parameters were assessed using Bayesian Kernel Machine Regression (BKMR).Women with high (3rd tertile) concentrations of urinary Cd, Sb and Pb, respectively, had 13.3 % (95%CI: 2.0 %, 23.2 %), 12.5 % (95%CI: 1.8 %, 22.0 %) and 16.0 % (95%CI: 5.7 %, 25.2 %) lower TSH compared to women with low concentrations (2nd and 1st tertile). In addition, women with high urinary Cd had 2.2 % (95%CI: 0.0 %, 4.4 %) higher fT4 and 4.0 % (95%CI: -0.1 %, 8.1 %) higher fT3 levels, and women with high urinary Pb had 4 % (95%CI: 0.2 %, 8.0 %) higher fT3 levels compared to women with low exposure. The negative association of Cd with TSH persisted only when iodine sufficiency was unfavorable. BKMR attested that simultaneous exposure to toxic metals was associated with decreased TSH and increased fT3 and revealed a potential synergistic interaction of Cd and Pb in association with TSH. The present results suggest that exposure to toxic metals even at low levels can alter gestational thyroid homeostasis.
Collapse
Affiliation(s)
- Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece.
| | - Mariza Kampouri
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Polyxeni Karakosta
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Vasiliki Daraki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Howard Hu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
47
|
Handakas E, Keski-Rahkonen P, Chatzi L, Alfano R, Roumeliotaki T, Plusquin M, Maitre L, Richiardi L, Brescianini S, Scalbert A, Robinot N, Nawrot T, Sassi F, Vrijheid M, Vineis P, Robinson O. Cord blood metabolic signatures predictive of childhood overweight and rapid growth. Int J Obes (Lond) 2021; 45:2252-2260. [PMID: 34253844 PMCID: PMC8455328 DOI: 10.1038/s41366-021-00888-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Metabolomics may identify biological pathways predisposing children to the risk of overweight and obesity. In this study, we have investigated the cord blood metabolic signatures of rapid growth in infancy and overweight in early childhood in four European birth cohorts. METHODS Untargeted liquid chromatography-mass spectrometry metabolomic profiles were measured in cord blood from 399 newborns from four European cohorts (ENVIRONAGE, Rhea, INMA and Piccolipiu). Rapid growth in the first year of life and overweight in childhood was defined with reference to WHO growth charts. Metabolome-wide association scans for rapid growth and overweight on over 4500 metabolic features were performed using multiple adjusted logistic mixed-effect models and controlling the false discovery rate (FDR) at 5%. In addition, we performed a look-up analysis of 43 pre-annotated metabolites, previously associated with birthweight or rapid growth. RESULTS In the Metabolome-Wide Association Study analysis, we identified three and eight metabolites associated with rapid growth and overweight, respectively, after FDR correction. Higher levels of cholestenone, a cholesterol derivative produced by microbial catabolism, were predictive of rapid growth (p = 1.6 × 10-3). Lower levels of the branched-chain amino acid (BCAA) valine (p = 8.6 × 10-6) were predictive of overweight in childhood. The area under the receiver operator curve for multivariate prediction models including these metabolites and traditional risk factors was 0.77 for rapid growth and 0.82 for overweight, compared with 0.69 and 0.69, respectively, for models using traditional risk factors alone. Among the 43 pre-annotated metabolites, seven and five metabolites were nominally associated (P < 0.05) with rapid growth and overweight, respectively. The BCAA leucine, remained associated (1.6 × 10-3) with overweight after FDR correction. CONCLUSION The metabolites identified here may assist in the identification of children at risk of developing obesity and improve understanding of mechanisms involved in postnatal growth. Cholestenone and BCAAs are suggestive of a role of the gut microbiome and nutrient signalling respectively in child growth trajectories.
Collapse
Affiliation(s)
- Evangelos Handakas
- Μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rossella Alfano
- Μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Léa Maitre
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Torino, Italy
| | - Sonia Brescianini
- Centre for Behavioural Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Augustin Scalbert
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Nivonirina Robinot
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Franco Sassi
- Centre for Health Economics & Policy Innovation, Department of Economics & Public Policy, Imperial College Business School, South Kensington Campus, London, UK
| | - Martine Vrijheid
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Paolo Vineis
- Μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Oliver Robinson
- Μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
48
|
Vrijheid M, Basagaña X, Gonzalez JR, Jaddoe VWV, Jensen G, Keun HC, McEachan RRC, Porcel J, Siroux V, Swertz MA, Thomsen C, Aasvang GM, Andrušaitytė S, Angeli K, Avraam D, Ballester F, Burton P, Bustamante M, Casas M, Chatzi L, Chevrier C, Cingotti N, Conti D, Crépet A, Dadvand P, Duijts L, van Enckevort E, Esplugues A, Fossati S, Garlantezec R, Gómez Roig MD, Grazuleviciene R, Gützkow KB, Guxens M, Haakma S, Hessel EVS, Hoyles L, Hyde E, Klanova J, van Klaveren JD, Kortenkamp A, Le Brusquet L, Leenen I, Lertxundi A, Lertxundi N, Lionis C, Llop S, Lopez-Espinosa MJ, Lyon-Caen S, Maitre L, Mason D, Mathy S, Mazarico E, Nawrot T, Nieuwenhuijsen M, Ortiz R, Pedersen M, Perelló J, Pérez-Cruz M, Philippat C, Piler P, Pizzi C, Quentin J, Richiardi L, Rodriguez A, Roumeliotaki T, Sabin Capote JM, Santiago L, Santos S, Siskos AP, Strandberg-Larsen K, Stratakis N, Sunyer J, Tenenhaus A, Vafeiadi M, Wilson RC, Wright J, Yang T, Slama R. Advancing tools for human early lifecourse exposome research and translation (ATHLETE): Project overview. Environ Epidemiol 2021; 5:e166. [PMID: 34934888 PMCID: PMC8683140 DOI: 10.1097/ee9.0000000000000166] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/28/2021] [Indexed: 11/26/2022] Open
Abstract
Early life stages are vulnerable to environmental hazards and present important windows of opportunity for lifelong disease prevention. This makes early life a relevant starting point for exposome studies. The Advancing Tools for Human Early Lifecourse Exposome Research and Translation (ATHLETE) project aims to develop a toolbox of exposome tools and a Europe-wide exposome cohort that will be used to systematically quantify the effects of a wide range of community- and individual-level environmental risk factors on mental, cardiometabolic, and respiratory health outcomes and associated biological pathways, longitudinally from early pregnancy through to adolescence. Exposome tool and data development include as follows: (1) a findable, accessible, interoperable, reusable (FAIR) data infrastructure for early life exposome cohort data, including 16 prospective birth cohorts in 11 European countries; (2) targeted and nontargeted approaches to measure a wide range of environmental exposures (urban, chemical, physical, behavioral, social); (3) advanced statistical and toxicological strategies to analyze complex multidimensional exposome data; (4) estimation of associations between the exposome and early organ development, health trajectories, and biological (metagenomic, metabolomic, epigenetic, aging, and stress) pathways; (5) intervention strategies to improve early life urban and chemical exposomes, co-produced with local communities; and (6) child health impacts and associated costs related to the exposome. Data, tools, and results will be assembled in an openly accessible toolbox, which will provide great opportunities for researchers, policymakers, and other stakeholders, beyond the duration of the project. ATHLETE's results will help to better understand and prevent health damage from environmental exposures and their mixtures from the earliest parts of the life course onward.
Collapse
Affiliation(s)
- Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Corresponding Author. Address: ISGlobal, Institute for Global Health, C. Doctor Aiguader 88, 08003 Barcelona, Spain. E-mail: (M. Vrijheid)
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan R. Gonzalez
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Vincent W. V. Jaddoe
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Genon Jensen
- Health & Environment Alliance (HEAL), Brussels, Belgium
| | - Hector C. Keun
- Department of Surgery & Cancer and Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Rosemary R. C. McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford,United Kingdom
| | - Joana Porcel
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Valerie Siroux
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| | - Morris A. Swertz
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Cathrine Thomsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gunn Marit Aasvang
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Sandra Andrušaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Karine Angeli
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Risk Assessment Department, Maisons-Alfort, France
| | - Demetris Avraam
- Population Health Sciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Ferran Ballester
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
- Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Paul Burton
- Population Health Sciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Cécile Chevrier
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
| | | | - David Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amélie Crépet
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Risk Assessment Department, Maisons-Alfort, France
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Esther van Enckevort
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Ana Esplugues
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
- Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Ronan Garlantezec
- CHU de Rennes, University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
| | - María Dolores Gómez Roig
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- BCNatal—Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Kristine B. Gützkow
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Department of Child and Adolescence Psychiatry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sido Haakma
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Ellen V. S. Hessel
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Eleanor Hyde
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Jana Klanova
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jacob D. van Klaveren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Andreas Kortenkamp
- Brunel University London, College of Health, Medicine and Life Sciences, Uxbridge, United Kingdom
| | - Laurent Le Brusquet
- University Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France
| | - Ivonne Leenen
- Health & Environment Alliance (HEAL), Brussels, Belgium
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- University of Basque Country UPV/EHU, Basque Country, Bilbao, Spain
- Biodonostia, Research Health Institute, Donostia-San Sebastian, Spain
| | - Nerea Lertxundi
- University of Basque Country UPV/EHU, Basque Country, Bilbao, Spain
- Biodonostia, Research Health Institute, Donostia-San Sebastian, Spain
| | - Christos Lionis
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
- Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| | - Lea Maitre
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford,United Kingdom
| | - Sandrine Mathy
- University Grenoble Alpes, CNRS, INRAE, Grenoble INP, GAEL, Grenoble, France
| | - Edurne Mazarico
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- BCNatal—Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Centre for Health and Environment, Leuven University, Leuven, Belgium
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Rodney Ortiz
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Marie Pedersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Míriam Pérez-Cruz
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- BCNatal—Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| | - Pavel Piler
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Costanza Pizzi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Joane Quentin
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Theano Roumeliotaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | | | - Susana Santos
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alexandros P. Siskos
- Department of Surgery & Cancer and Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | | | - Nikos Stratakis
- ISGlobal, Barcelona, Spain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Arthur Tenenhaus
- University Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Rebecca C. Wilson
- Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, United Kingdom
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford,United Kingdom
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford,United Kingdom
| | - Remy Slama
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| |
Collapse
|
49
|
Sharp GC, Alfano R, Ghantous A, Urquiza J, Rifas-Shiman SL, Page CM, Jin J, Fernández-Barrés S, Santorelli G, Tindula G. Paternal body mass index and offspring DNA methylation: findings from the PACE consortium. Int J Epidemiol 2021; 50:1297-1315. [PMID: 33517419 PMCID: PMC8407864 DOI: 10.1093/ije/dyaa267] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Accumulating evidence links paternal adiposity in the periconceptional period to offspring health outcomes. DNA methylation has been proposed as a mediating mechanism, but very few studies have explored this possibility in humans. METHODS In the Pregnancy And Childhood Epigenetics (PACE) consortium, we conducted a meta-analysis of coordinated epigenome-wide association studies (EWAS) of paternal prenatal body mass index (BMI) (with and without adjustment for maternal BMI) in relation to DNA methylation in offspring blood at birth (13 data sets; total n = 4894) and in childhood (6 data sets; total n = 1982). RESULTS We found little evidence of an association at either time point: at all CpGs, the false-discovery-rate-adjusted P-values were >0.05. In secondary sex-stratified analyses, we found just four CpGs for which there was robust evidence of an association in female offspring. To compare our findings to those of other studies, we conducted a systematic review, which identified seven studies, including five candidate gene studies showing associations between paternal BMI/obesity and offspring or sperm DNA methylation at imprinted regions. However, in our own study, we found very little evidence of enrichment for imprinted genes. CONCLUSION Our findings do not support the hypothesis that paternal BMI around the time of pregnancy is associated with offspring-blood DNA methylation, even at imprinted regions.
Collapse
Affiliation(s)
- Gemma C Sharp
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- MRC Centre for Environment and Health School of Public Health Imperial College London, London, UK
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Jose Urquiza
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Norway
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | | | - Silvia Fernández-Barrés
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Gwen Tindula
- Children’s Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | | |
Collapse
|
50
|
Gallego-Paüls M, Hernández-Ferrer C, Bustamante M, Basagaña X, Barrera-Gómez J, Lau CHE, Siskos AP, Vives-Usano M, Ruiz-Arenas C, Wright J, Slama R, Heude B, Casas M, Grazuleviciene R, Chatzi L, Borràs E, Sabidó E, Carracedo Á, Estivill X, Urquiza J, Coen M, Keun HC, González JR, Vrijheid M, Maitre L. Variability of multi-omics profiles in a population-based child cohort. BMC Med 2021; 19:166. [PMID: 34289836 PMCID: PMC8296694 DOI: 10.1186/s12916-021-02027-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Multiple omics technologies are increasingly applied to detect early, subtle molecular responses to environmental stressors for future disease risk prevention. However, there is an urgent need for further evaluation of stability and variability of omics profiles in healthy individuals, especially during childhood. METHODS We aimed to estimate intra-, inter-individual and cohort variability of multi-omics profiles (blood DNA methylation, gene expression, miRNA, proteins and serum and urine metabolites) measured 6 months apart in 156 healthy children from five European countries. We further performed a multi-omics network analysis to establish clusters of co-varying omics features and assessed the contribution of key variables (including biological traits and sample collection parameters) to omics variability. RESULTS All omics displayed a large range of intra- and inter-individual variability depending on each omics feature, although all presented a highest median intra-individual variability. DNA methylation was the most stable profile (median 37.6% inter-individual variability) while gene expression was the least stable (6.6%). Among the least stable features, we identified 1% cross-omics co-variation between CpGs and metabolites (e.g. glucose and CpGs related to obesity and type 2 diabetes). Explanatory variables, including age and body mass index (BMI), explained up to 9% of serum metabolite variability. CONCLUSIONS Methylation and targeted serum metabolomics are the most reliable omics to implement in single time-point measurements in large cross-sectional studies. In the case of metabolomics, sample collection and individual traits (e.g. BMI) are important parameters to control for improved comparability, at the study design or analysis stage. This study will be valuable for the design and interpretation of epidemiological studies that aim to link omics signatures to disease, environmental exposures, or both.
Collapse
Affiliation(s)
- Marta Gallego-Paüls
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigacion Biomedica en Red de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | - Carles Hernández-Ferrer
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigacion Biomedica en Red de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigacion Biomedica en Red de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigacion Biomedica en Red de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | - Jose Barrera-Gómez
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigacion Biomedica en Red de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | - Chung-Ho E Lau
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London, UK
| | - Alexandros P Siskos
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer and Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Marta Vives-Usano
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigacion Biomedica en Red de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos Ruiz-Arenas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigacion Biomedica en Red de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Remy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004, Paris, France
| | - Maribel Casas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigacion Biomedica en Red de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | | | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CEGEN-PRB3, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Xavier Estivill
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jose Urquiza
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigacion Biomedica en Red de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | - Muireann Coen
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London, UK
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Hector C Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer and Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Juan R González
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigacion Biomedica en Red de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigacion Biomedica en Red de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain
| | - Léa Maitre
- ISGlobal, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Consorcio de Investigacion Biomedica en Red de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain.
| |
Collapse
|