1
|
Wilson R, Kovacs D, Crosby M, Ho A. Global Epidemiology and Seasonality of Human Seasonal Coronaviruses: A Systematic Review. Open Forum Infect Dis 2024; 11:ofae418. [PMID: 39113828 PMCID: PMC11304597 DOI: 10.1093/ofid/ofae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Background We characterized the global epidemiology and seasonality of human coronaviruses (HCoVs) OC43, NL63, 229E, and HKU1. Methods In this systematic review, we searched MEDLINE, EMBASE, Web of Science, SCOPUS, CINAHL, and backward citations for studies published until 1 September 2023. We included studies with ≥12 months of consecutive data and tested for ≥1 HCoV species. Case reports, review articles, animal studies, studies focusing on SARS-CoV-1, SARS-CoV-2, and/or Middle East respiratory syndrome, and those including <100 cases were excluded. Study quality and risk of bias were assessed using Joanna Briggs Institute Critical Appraisal Checklist tools. We reported the prevalence of all HCoVs and individual species. Seasonality was reported for studies that included ≥100 HCoVs annually. This study is registered with PROSPERO, CRD42022330902. Results A total of 201 studies (1 819 320 samples) from 68 countries were included. A high proportion were from China (19.4%; n = 39), whereas the Southern Hemisphere was underrepresented. Most were case series (77.1%, n = 155) with samples from secondary care (74.1%, n = 149). Seventeen (8.5%) studies included asymptomatic controls, whereas 76 (37.8%) reported results for all 4 HCoV species. Overall, OC43 was the most prevalent HCoV. Median test positivity of OC43 and NL63 was higher in children, and 229E and HKU1 in adults. Among 18 studies that described seasonality (17 from the Northern Hemisphere), circulation of all HCoVs mostly peaked during cold months. Conclusions In our comprehensive review, few studies reported the prevalence of individual HCoVs or seasonality. Further research on the burden and circulation of HCoVs is needed, particularly from Africa, South Asia, and Central/South America.
Collapse
Affiliation(s)
- Rory Wilson
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Dory Kovacs
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mairi Crosby
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Antonia Ho
- Medical Research Council-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Richards KA, Changrob S, Thomas PG, Wilson PC, Sant AJ. Lack of memory recall in human CD4 T cells elicited by the first encounter with SARS-CoV-2. iScience 2024; 27:109992. [PMID: 38868209 PMCID: PMC11166706 DOI: 10.1016/j.isci.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
The studies reported here focus on the impact of pre-existing CD4 T cell immunity on the first encounter with SARS-CoV-2. They leverage PBMC samples from plasma donors collected after a first SARS-CoV-2 infection, prior to vaccine availability and compared to samples collected prior to the emergence of SARS-CoV-2. Analysis of CD4 T cell specificity across the entire SARS-CoV-2 proteome revealed that the recognition of SARS-CoV-2-derived epitopes by CD4 memory cells prior to the pandemic are enriched for reactivity toward non-structural proteins conserved across endemic CoV strains. However, CD4 T cells after primary infection with SARS-CoV-2 focus on epitopes from structural proteins. We observed little evidence for preferential recall to epitopes conserved between SARS-CoV-2 and seasonal CoV, a finding confirmed through use of selectively curated conserved and SARS-unique peptides. Our data suggest that SARS-CoV-2 CD4 T cells elicited by the first infection are primarily established from the naive CD4 T cell pool.
Collapse
Affiliation(s)
- Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Siriruk Changrob
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Patrick C. Wilson
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
3
|
Zhu R, Cao R, Wang L, Gong Y, Cheng Q, Long H, Xia D, Song Q, Xia Z, Liu M, Du H, Song J, Han J, Gao C. Seasonal human coronavirus NL63 epidemics in children in Guilin, China, reveal the emergence of a new subgenotype of HCoV-NL63. Front Cell Infect Microbiol 2024; 14:1378804. [PMID: 38736749 PMCID: PMC11082418 DOI: 10.3389/fcimb.2024.1378804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Seasonal human coronavirus NL63 (HCoV-NL63) is a frequently encountered virus linked to mild upper respiratory infections. However, its potential to cause more severe or widespread disease remains an area of concern. This study aimed to investigate a rare localized epidemic of HCoV-NL63-induced respiratory infections among pediatric patients in Guilin, China, and to understand the viral subtype distribution and genetic characteristics. Methods In this study, 83 pediatric patients hospitalized with acute respiratory infections and positive for HCoV-NL63 were enrolled. Molecular analysis was conducted to identify the viral subgenotypes and to assess genetic variations in the receptor-binding domain of the spiking protein. Results Among the 83 HCoV-NL63-positive children, three subgenotypes were identified: C4, C3, and B. Notably, 21 cases exhibited a previously unreported subtype, C4. Analysis of the C4 subtype revealed a unique amino acid mutation (I507L) in the receptor-binding domain of the spiking protein, which was also observed in the previously reported C3 genotype. This mutation may suggest potential increases in viral transmissibility and pathogenicity. Discussion The findings of this study highlight the rapid mutation dynamics of HCoV-NL63 and its potential for increased virulence and epidemic transmission. The presence of a unique mutation in the C4 subtype, shared with the C3 genotype, raises concerns about the virus's evolving nature and its potential public health implications. This research contributes valuable insights into the understanding of HCoV-NL63's epidemiology and pathogenesis, which is crucial for effective disease prevention and control strategies. Future studies are needed to further investigate the biological significance of the observed mutation and its potential impact on the virus's transmissibility and pathogenicity.
Collapse
Affiliation(s)
- Renhe Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Rundong Cao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lulu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue Gong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Cheng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hu Long
- Epidemic Prevention and Control Department, Guilin Center for Disease Control and Prevention, Guilin, China
| | - Dong Xia
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qinqin Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiqiang Xia
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mi Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - HaiJun Du
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Ventura-Enríquez Y, Cortina-De la Rosa E, Díaz-Padilla E, Murrieta S, Segundo-Martínez S, Fernández-Sánchez V, Vargas-De-León C. Immunogenicity of Two Doses of BNT162b2 mRNA COVID-19 Vaccine with a ChAdOx1-S Booster Dose among Navy Personnel in Mexico. Viruses 2024; 16:551. [PMID: 38675894 PMCID: PMC11054223 DOI: 10.3390/v16040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Booster doses of the SARS-CoV-2 vaccine have been recommended to improve and prolong immunity, address waning immunity over time, and contribute to the control of the COVID-19 pandemic. A heterologous booster vaccine strategy may offer advantages over a homologous approach. To compare the immunogenicity of two doses of BNT162b2 mRNA COVID-19 vaccine with a ChAdOx1-S booster dose, immunoglobulin G (IgG) anti-spike (anti-S) and anti-nucleocapsid (anti-N) antibody titers (Ab) were compared over 1 year and post-booster vaccination. Results showed that, at 3- to 9-month assessments in vaccinated subjects, an-ti-N Ab were undetectable in participants with no history of COVID-19. In contrast, anti-S Ab measurements were lower than those with COVID-19, and a decrease was observed during the 9 months of observation. After booster vaccination, no differences were found in anti-S between participants who reported a history of COVID-19 and those who did not. Anti-S levels were higher after booster vaccination measurement vs. at 9 months in participants with COVID-19 and without COVID-19, i.e., independent of an infection history. Vaccine administration elicited a response of higher anti-S IgG levels in those infected before vaccination, although levels decreased during the first nine months. IgG anti-N titers were higher in participants with a history of declared infection and who were asymptomatic. The ChAdOx1-S booster increased anti-S Ab levels in participants regardless of whether they had been infected or not to a significantly higher value than with the first two vaccines. These findings underscore the importance of booster vaccination in eliciting a robust and sustained immune response against COVID-19, regardless of the prior infection status.
Collapse
Affiliation(s)
- Yanet Ventura-Enríquez
- Banco de Sangre, Centro Médico Naval (CEMENAV), Coyoacán, Ciudad de México 04470, Mexico; (Y.V.-E.); (E.D.-P.); (S.M.); (S.S.-M.)
| | - Evelyn Cortina-De la Rosa
- Departamento de Hematología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico;
| | - Elizabeth Díaz-Padilla
- Banco de Sangre, Centro Médico Naval (CEMENAV), Coyoacán, Ciudad de México 04470, Mexico; (Y.V.-E.); (E.D.-P.); (S.M.); (S.S.-M.)
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Sandra Murrieta
- Banco de Sangre, Centro Médico Naval (CEMENAV), Coyoacán, Ciudad de México 04470, Mexico; (Y.V.-E.); (E.D.-P.); (S.M.); (S.S.-M.)
| | - Silvia Segundo-Martínez
- Banco de Sangre, Centro Médico Naval (CEMENAV), Coyoacán, Ciudad de México 04470, Mexico; (Y.V.-E.); (E.D.-P.); (S.M.); (S.S.-M.)
| | - Verónica Fernández-Sánchez
- Banco de Sangre, Centro Médico Naval (CEMENAV), Coyoacán, Ciudad de México 04470, Mexico; (Y.V.-E.); (E.D.-P.); (S.M.); (S.S.-M.)
- Facultad de Estudios Superiores Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 54090, Mexico
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico
| | - Cruz Vargas-De-León
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico
- Laboratorio de Modelación Bioestadística Para la Salud, Sección de Estudios de Investigación y Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
5
|
Najimi N, Tajount L, Regragui Z, Remz C, Ait-Lhaj-Mhand R, Kadi C, Belayachi L, Seghrouchni F, Nadia dakka, El Hassani RA, Elharti E, Oumzil H, Bakri Y. Pre-pandemic antibodies screening against SARS-CoV-2 and virus detection among children diagnosed with eruptive fevers. Int J Immunopathol Pharmacol 2024; 38:3946320241260633. [PMID: 38836458 PMCID: PMC11155355 DOI: 10.1177/03946320241260633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
OBJECTIVES This study aims to assess the seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG antibodies against the spike (S) and nucleocapsid (NP) proteins, as well as neutralizing antibodies against the receptor-binding domain (RBD). Additionally, it aims to detect viral RNA of SARS-CoV-2 in pre-pandemic archival pediatric specimens collected before the announcement of the COVID-19 pandemic spread on March 20th, 2020, in Morocco. The objective is to investigate the existence of pre-pandemic immunity to SARS-CoV-2. METHODS We conducted a cross-sectional study, to analyze IgG antibody levels in a cohort of 106 pre-pandemic pediatric participants. Using an indirect enzyme-linked immunosorbent assay (ELISA), we measured the IgG levels against the S and NP proteins of SARS-CoV-2. Additionally, we staged a competitive ELISA assay to evaluate the neutralizing capability of these antibodies. We used reverse transcription polymerase chain reaction (rRT-PCR) to detect viral NP and ORF1ab genes of SARS-CoV-2 in oropharyngeal swabs. Moreover, we conducted on the same specimens a multiplexed RT-PCR to detect RNA of the most common 27 pathogens involved in lower respiratory tract infections. RESULTS Among the 106 serum samples, 13% (nn = =14) tested positive for SARS-CoV-2 IgG antibodies using ELISA. Temporal analysis indicated varying IgG positivity levels across 2019. Neutralizing antibodies were found in 21% of the 28 samples analyzed, including two with high inhibition rates (93%). The SARS-CoV-2 RNA was detected using rRT-PCR in 14 samples. None of the samples tested positive for the other 27 pathogens associated with lower respiratory tract infections, using multiplexed RT-PCR. CONCLUSION Our study addresses the possibility, that COVID-19 infections occurred in Morocco before the recognized outbreak. On the other hand, some of the cases might reflect cross-reactivity with other coronaviruses or be influenced by previous viral exposures or vaccinations. Understanding these factors is crucial to comprehending pediatric immune responses to newly emerging infectious diseases.
Collapse
Affiliation(s)
- Nouhaila Najimi
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Latifa Tajount
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Materials for Environment Team, ENSAM, Mohammed V University in Rabat, Rabat, Morocco
| | - Zakia Regragui
- Virology Department, Institut National d’Hygiène, Rabat, Morocco
| | - Chaimae Remz
- Virology Department, Institut National d’Hygiène, Rabat, Morocco
| | | | - Chaimae Kadi
- Mohammed VI Center for Research & Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Laboratory of Biology and Health, Faculty of Sciences of Tetouan, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Lamiae Belayachi
- International University of Rabat (UIR), Faculty of Medicine, Centre de Recherche en Sciences de la Santé (CreSS), Faculty of Medecine, Health Sciences Research Centre (CReSS), International University of Rabat (UIR), Rabat, Morocco
| | - Fouad Seghrouchni
- Mohammed VI Center for Research & Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Nadia dakka
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Center of Genomic of Human Pathologies Biology Faculty of Medicine, Mohammed V University in Rabat, Rabat, Morocco
| | - Rabii Ameziane El Hassani
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Center of Genomic of Human Pathologies Biology Faculty of Medicine, Mohammed V University in Rabat, Rabat, Morocco
| | - Elmir Elharti
- Virology Department, Institut National d’Hygiène, Rabat, Morocco
| | - Hicham Oumzil
- Center of Genomic of Human Pathologies Biology Faculty of Medicine, Mohammed V University in Rabat, Rabat, Morocco
- Medical Biotechnology Laboratory, Faculty of Medicine at Mohammed V University in Rabat, Rabat, Morocco
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Center of Genomic of Human Pathologies Biology Faculty of Medicine, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
6
|
Ratcliffe H, Tiley KS, Longet S, Tonry C, Roarty C, Watson C, Amirthalingam G, Vichos I, Morey E, Douglas NL, Marinou S, Plested E, Aley PK, Galiza E, Faust SN, Hughes S, Murray C, Roderick MR, Shackley F, Oddie S, Lee TW, Turner DP, Raman M, Owens S, Turner PJ, Cockerill H, Lopez Bernal J, Ijaz S, Poh J, Shute J, Linley E, Borrow R, Hoschler K, Brown KE, Carroll MW, Klenerman P, Dunachie SJ, Ramsay M, Voysey M, Waterfield T, Snape MD. Serum HCoV-spike specific antibodies do not protect against subsequent SARS-CoV-2 infection in children and adolescents. iScience 2023; 26:108500. [PMID: 38089581 PMCID: PMC10711458 DOI: 10.1016/j.isci.2023.108500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 02/15/2024] Open
Abstract
SARS-CoV-2 infections in children are generally asymptomatic or mild and rarely progress to severe disease and hospitalization. Why this is so remains unclear. Here we explore the potential for protection due to pre-existing cross-reactive seasonal coronavirus antibodies and compare the rate of antibody decline for nucleocapsid and spike protein in serum and oral fluid against SARS-CoV-2 within the pediatric population. No differences in seasonal coronaviruses antibody concentrations were found at baseline between cases and controls, suggesting no protective effect from pre-existing immunity against seasonal coronaviruses. Antibodies against seasonal betacoronaviruses were boosted in response to SARS-CoV-2 infection. In serum, anti-nucleocapsid antibodies fell below the threshold of positivity more quickly than anti-spike protein antibodies. These findings add to our understanding of protection against infection with SARS-CoV-2 within the pediatric population, which is important when considering pediatric SARS-CoV-2 immunization policies.
Collapse
Affiliation(s)
- Helen Ratcliffe
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Karen S. Tiley
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Claire Tonry
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Cathal Roarty
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Chris Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | | | - Iason Vichos
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Ella Morey
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Naomi L. Douglas
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Spyridoula Marinou
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Emma Plested
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Parvinder K. Aley
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Eva Galiza
- St Georges Hospital NHS Foundation Trust
| | - Saul N. Faust
- NIHR Southampton Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine and Institute of Life Sciences, University of Southampton
- National Immunisation Schedule Evaluation Consortium
| | - Stephen Hughes
- Manchester University NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Clare Murray
- Manchester University NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | | | - Sam Oddie
- Bradford Teaching Hospitals NHS Foundation Trust
| | | | - David P.J. Turner
- School of Life Sciences, University of Nottingham
- Nottingham University Hospitals NHS Trust
| | | | - Stephen Owens
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust
| | - Paul J. Turner
- National Heart & Lung Institute, Imperial College London
| | | | | | | | | | | | | | | | | | | | - Miles W. Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford BRC
| | - Susanna J. Dunachie
- National Institute for Health Research (NIHR) Oxford BRC
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Merryn Voysey
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Thomas Waterfield
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Matthew D. Snape
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
- National Immunisation Schedule Evaluation Consortium
- West Suffolk NHS Foundation Trust
| |
Collapse
|
7
|
Chmielewski D, Wilson EA, Pintilie G, Zhao P, Chen M, Schmid MF, Simmons G, Wells L, Jin J, Singharoy A, Chiu W. Structural insights into the modulation of coronavirus spike tilting and infectivity by hinge glycans. Nat Commun 2023; 14:7175. [PMID: 37935678 PMCID: PMC10630519 DOI: 10.1038/s41467-023-42836-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectrometry. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a role of hinge glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays implicated involvement of N1242-glyan in virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.
Collapse
Affiliation(s)
- David Chmielewski
- Biophysics Graduate Program, Stanford University, Stanford, CA, 94305, USA
| | - Eric A Wilson
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Grigore Pintilie
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jing Jin
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
- Vitalant Research Institute, San Francisco, CA, 94118, USA.
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Abhishek Singharoy
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Wah Chiu
- Biophysics Graduate Program, Stanford University, Stanford, CA, 94305, USA.
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| |
Collapse
|
8
|
Ruttoh VK, Symekher SL, Majanja JM, Opanda SM, Chitechi EW, Wadegu M, Tonui R, Rotich PK, Nyandwaro TT, Mwangi AW, Mwangi IN, Oira RM, Musimbi AG, Nzou SM. Tracking severe acute respiratory syndrome coronavirus 2 transmission and co-infection with other acute respiratory pathogens using a sentinel surveillance system in Rift Valley, Kenya. Influenza Other Respir Viruses 2023; 17:e13227. [PMID: 38019696 PMCID: PMC10686236 DOI: 10.1111/irv.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been the most significant public health challenge in over a century. SARS-CoV-2 has infected over 765 million people worldwide, resulting in over 6.9 million deaths. This study aimed to detect community transmission of SARS-CoV-2 and monitor the co-circulation of SARS-CoV-2 with other acute respiratory pathogens in Rift Valley, Kenya. METHODS We conducted a cross-sectional active sentinel surveillance for the SARS-CoV-2 virus among patients with acute respiratory infections at four sites in Rift Valley from January 2022 to December 2022. One thousand two hundred seventy-one patients aged between 3 years and 98 years presenting with influenza-like illness (ILI) were recruited into the study. Nasopharyngeal swab specimens from all study participants were screened using a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for SARS-CoV-2, influenza A, influenza B and respiratory syncytial virus (RSV). RESULTS The samples that tested positive for influenza A (n = 73) and RSV (n = 12) were subtyped, while SARS-CoV-2 (n = 177) positive samples were further screened for 12 viral and seven bacterial respiratory pathogens. We had a prevalence of 13.9% for SARS-CoV-2, 5.7% for influenza A, 2% for influenza B and 1% for RSV. Influenza A-H1pdm09 and RSV B were the most dominant circulating subtypes of influenza A and RSV, respectively. The most common co-infecting pathogens were Streptococcus pneumoniae (n = 29) and Haemophilus influenzae (n = 19), accounting for 16.4% and 10.7% of all the SARS-CoV-2 positive samples. CONCLUSIONS Augmenting syndromic testing in acute respiratory infections (ARIs) surveillance is crucial to inform evidence-based clinical and public health interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Meshack Wadegu
- Centre for Virus ResearchKenya Medical Research InstituteNairobiKenya
| | - Ronald Tonui
- Department of Molecular Biology and BiotechnologyPan African University Institute of Basic Sciences Technology and InnovationNairobiKenya
| | | | | | - Anne Wanjiru Mwangi
- Centre for Microbiology ResearchKenya Medical Research InstituteNairobiKenya
| | - Ibrahim Ndungu Mwangi
- Centre for Biotechnology Research and DevelopmentKenya Medical Research InstituteNairobiKenya
| | | | | | - Samson Muuo Nzou
- Centre for Microbiology ResearchKenya Medical Research InstituteNairobiKenya
| |
Collapse
|
9
|
Tambe LAM, Mathobo P, Munzhedzi M, Bessong PO, Mavhandu-Ramarumo LG. Prevalence and Molecular Epidemiology of Human Coronaviruses in Africa Prior to the SARS-CoV-2 Outbreak: A Systematic Review. Viruses 2023; 15:2146. [PMID: 38005824 PMCID: PMC10675249 DOI: 10.3390/v15112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Coronaviruses, re-emerging in human populations, cause mild or severe acute respiratory diseases, and occasionally epidemics. This study systematically reviewed human coronavirus (HCoVs) infections in Africa prior to the SARS-CoV-2 outbreak. Forty studies on the prevalence or molecular epidemiology of HCoVs were available from 13/54 African countries (24%). The first published data on HCoV was from South Africa in 2008. Eight studies (20%) reported on HCoV molecular epidemiology. Endemic HCoV prevalence ranged from 0.0% to 18.2%. The prevalence of zoonotic MERS-CoV ranged from 0.0% to 83.5%. Two studies investigated SARS-CoV infection, for which a prevalence of 0.0% was reported. There was heterogeneity in the type of tests used in determining HCoV prevalence. Two studies reported that risk factors for HCoV include exposure to infected animals or humans. The quantity of virologic investigations on HCoV on the African continent was scant, and Africa was not prepared for SARS-CoV-2.
Collapse
Affiliation(s)
- Lisa Arrah Mbang Tambe
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Phindulo Mathobo
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Mukhethwa Munzhedzi
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Pascal Obong Bessong
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
- Centre for Global Health Equity, School of Medicine, 1400 University Ave, Charlottesville, VA 22903, USA
| | - Lufuno Grace Mavhandu-Ramarumo
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
| |
Collapse
|
10
|
Jiang S, Zhang S, Kang X, Feng Y, Li Y, Nie M, Li Y, Chen Y, Zhao S, Jiang T, Li J. Risk Assessment of the Possible Intermediate Host Role of Pigs for Coronaviruses with a Deep Learning Predictor. Viruses 2023; 15:1556. [PMID: 37515242 PMCID: PMC10384923 DOI: 10.3390/v15071556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Swine coronaviruses (CoVs) have been found to cause infection in humans, suggesting that Suiformes might be potential intermediate hosts in CoV transmission from their natural hosts to humans. The present study aims to establish convolutional neural network (CNN) models to predict host adaptation of swine CoVs. Decomposing of each ORF1ab and Spike sequence was performed with dinucleotide composition representation (DCR) and other traits. The relationship between CoVs from different adaptive hosts was analyzed by unsupervised learning, and CNN models based on DCR of ORF1ab and Spike were built to predict the host adaptation of swine CoVs. The rationality of the models was verified with phylogenetic analysis. Unsupervised learning showed that there is a multiple host adaptation of different swine CoVs. According to the adaptation prediction of CNN models, swine acute diarrhea syndrome CoV (SADS-CoV) and porcine epidemic diarrhea virus (PEDV) are adapted to Chiroptera, swine transmissible gastroenteritis virus (TGEV) is adapted to Carnivora, porcine hemagglutinating encephalomyelitis (PHEV) might be adapted to Primate, Rodent, and Lagomorpha, and porcine deltacoronavirus (PDCoV) might be adapted to Chiroptera, Artiodactyla, and Carnivora. In summary, the DCR trait has been confirmed to be representative for the CoV genome, and the DCR-based deep learning model works well to assess the adaptation of swine CoVs to other mammals. Suiformes might be intermediate hosts for human CoVs and other mammalian CoVs. The present study provides a novel approach to assess the risk of adaptation and transmission to humans and other mammals of swine CoVs.
Collapse
Affiliation(s)
- Shuyang Jiang
- College of Mathematics, Jilin University, Changchun, Jilin 130012, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Xiaoping Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Ye Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Yadan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Maoshun Nie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Yuehong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Shishun Zhao
- College of Mathematics, Jilin University, Changchun, Jilin 130012, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| |
Collapse
|
11
|
Devaux CA, Fantini J. Unravelling Antigenic Cross-Reactions toward the World of Coronaviruses: Extent of the Stability of Shared Epitopes and SARS-CoV-2 Anti-Spike Cross-Neutralizing Antibodies. Pathogens 2023; 12:713. [PMID: 37242383 PMCID: PMC10220573 DOI: 10.3390/pathogens12050713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The human immune repertoire retains the molecular memory of a very great diversity of target antigens (epitopes) and can recall this upon a second encounter with epitopes against which it has previously been primed. Although genetically diverse, proteins of coronaviruses exhibit sufficient conservation to lead to antigenic cross-reactions. In this review, our goal is to question whether pre-existing immunity against seasonal human coronaviruses (HCoVs) or exposure to animal CoVs has influenced the susceptibility of human populations to SARS-CoV-2 and/or had an impact upon the physiopathological outcome of COVID-19. With the hindsight that we now have regarding COVID-19, we conclude that although antigenic cross-reactions between different coronaviruses exist, cross-reactive antibody levels (titers) do not necessarily reflect on memory B cell frequencies and are not always directed against epitopes which confer cross-protection against SARS-CoV-2. Moreover, the immunological memory of these infections is short-term and occurs in only a small percentage of the population. Thus, in contrast to what might be observed in terms of cross-protection at the level of a single individual recently exposed to circulating coronaviruses, a pre-existing immunity against HCoVs or other CoVs can only have a very minor impact on SARS-CoV-2 circulation at the level of human populations.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM Institut Hospitalo-Universitaire—Méditerranée Infection, 13005 Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), 13009 Marseille, France
| | - Jacques Fantini
- Aix-Marseille Université, INSERM UMR_S 1072, 13015 Marseille, France
| |
Collapse
|
12
|
Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis NI, Katzourakis A. The evolution of SARS-CoV-2. Nat Rev Microbiol 2023; 21:361-379. [PMID: 37020110 DOI: 10.1038/s41579-023-00878-2] [Citation(s) in RCA: 392] [Impact Index Per Article: 392.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths and substantial morbidity worldwide. Intense scientific effort to understand the biology of SARS-CoV-2 has resulted in daunting numbers of genomic sequences. We witnessed evolutionary events that could mostly be inferred indirectly before, such as the emergence of variants with distinct phenotypes, for example transmissibility, severity and immune evasion. This Review explores the mechanisms that generate genetic variation in SARS-CoV-2, underlying the within-host and population-level processes that underpin these events. We examine the selective forces that likely drove the evolution of higher transmissibility and, in some cases, higher severity during the first year of the pandemic and the role of antigenic evolution during the second and third years, together with the implications of immune escape and reinfections, and the increasing evidence for and potential relevance of recombination. In order to understand how major lineages, such as variants of concern (VOCs), are generated, we contrast the evidence for the chronic infection model underlying the emergence of VOCs with the possibility of an animal reservoir playing a role in SARS-CoV-2 evolution, and conclude that the former is more likely. We evaluate uncertainties and outline scenarios for the possible future evolutionary trajectories of SARS-CoV-2.
Collapse
Affiliation(s)
- Peter V Markov
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
- London School of Hygiene & Tropical Medicine, University of London, London, UK.
| | - Mahan Ghafari
- Big Data Institute, University of Oxford, Oxford, UK
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | | | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nikolaos I Stilianakis
- European Commission, Joint Research Centre (JRC), Ispra, Italy
- Department of Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
13
|
Castillo G, Mora-Díaz JC, Breuer M, Singh P, Nelli RK, Giménez-Lirola LG. Molecular mechanisms of human coronavirus NL63 infection and replication. Virus Res 2023; 327:199078. [PMID: 36813239 PMCID: PMC9944649 DOI: 10.1016/j.virusres.2023.199078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is spread globally, causing upper and lower respiratory tract infections mainly in young children. HCoV-NL63 shares a host receptor (ACE2) with severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 but, unlike them, HCoV-NL63 primarily develops into self-limiting mild to moderate respiratory disease. Although with different efficiency, both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells using ACE2 as receptor for binding and cell entry. Working with SARS-like CoVs require access to BSL-3 facilities, while HCoV-NL63 research can be performed at BSL-2 laboratories. Thus, HCoV-NL63 could be used as a safer surrogate for comparative studies on receptor dynamics, infectivity and virus replication, disease mechanism, and potential therapeutic interventions against SARS-like CoVs. This prompted us to review the current knowledge on the infection mechanism and replication of HCoV-NL63. Specifically, after a brief overview on the taxonomy, genomic organization and virus structure, this review compiles the current HCoV-NL63-related research in virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription. Furthermore, we reviewed cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, we discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.
Collapse
Affiliation(s)
- Gino Castillo
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Mary Breuer
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rahul K Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
14
|
Chmielewski D, Wilson EA, Pintilie G, Zhao P, Chen M, Schmid MF, Simmons G, Wells L, Jin J, Singharoy A, Chiu W. Integrated analyses reveal a hinge glycan regulates coronavirus spike tilting and virus infectivity. RESEARCH SQUARE 2023:rs.3.rs-2553619. [PMID: 36824920 PMCID: PMC9949256 DOI: 10.21203/rs.3.rs-2553619/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectroscopy. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a novel role of stalk glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays support the hypothesis that this glycan-dependent motion impacts virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.
Collapse
Affiliation(s)
- David Chmielewski
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Eric A. Wilson
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Grigore Pintilie
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Michael F. Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jing Jin
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Wah Chiu
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
15
|
Validation of a SARS-CoV-2 Surrogate Virus Neutralization Test in Recovered and Vaccinated Healthcare Workers. Viruses 2023; 15:v15020426. [PMID: 36851641 PMCID: PMC9958856 DOI: 10.3390/v15020426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/03/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Vaccination against COVID-19 is the main public health approach to fight against the pandemic. The Spike (S) glycoprotein of SARS-CoV-2 is the principal target of the neutralizing humoral response. We evaluated the analytical and clinical performances of a surrogate virus neutralization test (sVNT) compared to conventional neutralization tests (cVNTs) and anti-S eCLIA assays in recovered and/or vaccinated healthcare workers. Our results indicate that sVNTs displayed high specificity and no cross-reactivity. Both eCLIA and sVNT immunoassays were good at identifying cVNT serum dilutions ≥1:16. The optimal thresholds when identifying cVNT titers ≥1:16, were 74.5 U/mL and 49.4 IU/mL for anti-S eCLIA and sVNT, respectively. Our data show that neutralizing antibody titers (Nab) differ from one individual to another and may diminish over time. Specific assays such as sVNTs could offer a reliable complementary tool to routine anti-S serological assays.
Collapse
|
16
|
Alsulami AO, Chahine R, Kong M, Kimberlin DW, Whitley RJ, James SH. Impact of human coronavirus infections on paediatric patients at a tertiary paediatric hospital: a retrospective study of the prepandemic era. J Hosp Infect 2023; 134:27-34. [PMID: 36682627 PMCID: PMC9850843 DOI: 10.1016/j.jhin.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Human coronaviruses (HCoVs) are important respiratory pathogens in humans and animals. Most HCoVs are emerging pathogens, with five known human pathogens identified in the last two decades. AIM To examine the clinical course of HCoV infection in children to improve understanding of severity and outcomes. METHODS A retrospective review was undertaken of all encounters of children with known HCoV infection at a tertiary paediatric hospital from January 2015 to January 2018. Electronic medical records were reviewed for demographic data, HCoV type, viral co-pathogens, time to testing, need for hospitalization, requirement for higher-level care (HLC) including intensive care unit management and requirement for oxygen support, radiographic findings suggestive of lower respiratory tract (LRT) disease, and length of stay (LOS). FINDINGS In total, 450 encounters for 430 different patients were identified, with the majority (85%) being inpatient. OC43 was the most common HCoV. Younger patients (age <5 years) had higher probability of hospitalization [adjusted odds ratio (aOR) 2.2, 95% confidence interval (CI) 1.2-4.1], requirement for HLC (aOR 1.8, 95% CI 1.0-3.1) and presence of LRT findings on chest radiographs (aOR 1.7, 95% CI 1.01-2.9). Clinical outcomes did not differ between HCoV types, except LOS which was longer for 229E. Fifty-two (11%) encounters were detected after 3 days of hospitalization (median 25.5 days), suggesting possible nosocomial infection. CONCLUSION HCoVs are important respiratory pathogens in the paediatric population, especially among patients aged <5 years who are at increased risk for severe disease. The role of HCoVs as hospital-acquired pathogens may be underappreciated.
Collapse
Affiliation(s)
- A O Alsulami
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Alabama at Birmingham, AL, USA; Department of Paediatrics, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - R Chahine
- Research Triangle Institute International, Raleigh, NC, USA
| | - M Kong
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, AL, USA
| | - D W Kimberlin
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Alabama at Birmingham, AL, USA
| | - R J Whitley
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Alabama at Birmingham, AL, USA
| | - S H James
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
17
|
SHRIVASTAVA ABHINAV, PADHIARI SATYAJIT, SINGH RAJNISH. Recurrence of disease in a patient with Covid-19: Re-activation or re-infection? THE NATIONAL MEDICAL JOURNAL OF INDIA 2022; 35:165-167. [DOI: 10.25259/nmji-35-3-165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) was expected to induce a monophasic disease with subsequent immunity. However, case reports have since emerged which have found patients with either re-infection or re-activation of the virus. We describe a 44-year-old man with severe Covid-19-induced pneumonia who had recurrence of the disease after testing Covid-19-negative on three consecutive reverse transcriptase-polymerase chain reaction (RT-PCR) tests. Our patient underlines that caution should be exercised while planning for discharge of a patient irrespective of his previous negative test, especially in vulnerable patients and those who had moderate-to-severe disease requiring the use of immunosuppressive therapy. The fact that such patients could experience a re-activation or re-infection, requires monitoring and vigilance in the management of the pandemic at individual and collective levels.
Collapse
Affiliation(s)
- ABHINAV SHRIVASTAVA
- Department of Cardiology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi 110001, India
| | - SATYAJIT PADHIARI
- Department of Medicine, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi 110001, India
| | - RAJNISH SINGH
- Department of Medicine, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi 110001, India
| |
Collapse
|
18
|
Dowran R, Damavandi AR, Azad TM. Reinfection and reactivation of SARS-CoV-2. Future Virol 2022. [PMID: 36176508 PMCID: PMC9514089 DOI: 10.2217/fvl-2021-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/31/2022] [Indexed: 11/21/2022]
Abstract
As the cases of SARS-CoV-2 infection escalates, the essence of in-depth knowledge around acquired immunity and emergence of reinfection and reactivation have to be captured. While being a rare phenomenon, reinfection occurs as the result of diminishing protection conferred by antibodies, especially IgG. Reactivation is more concerned with the role of various elements including shedding lingering viral RNA for a prolonged time and incomplete resolution of infection along with the insight of dormant viral exosomes’ role. The concept of testing positive after two consecutive negative results requires proper discrimination of reinfection from reactivation. In this review, we summarized the current evidence for possible mechanisms leading to viral reactivation or test re-positivity. We also pointed out risk factors associated with both reinfection and reactivation.
Collapse
Affiliation(s)
- Razieh Dowran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Association of Virology, Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- Student Scientific Association of Virology, Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Li H, Zhao X, Li J, Zheng H, Zhao Y, Yang J, Zhou J, Yang F, Chen Y, Zuo Y, Lai Q, Long H, Li Y, Jin W, Shi H, Liu L. Nasal Mucosa Exploited by SARS-CoV-2 for Replicating and Shedding during Reinfection. Viruses 2022; 14:v14081608. [PMID: 35893674 PMCID: PMC9394478 DOI: 10.3390/v14081608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Reinfection risk is a great concern with regard to the COVID-19 pandemic because a large proportion of the population has recovered from an initial infection, and previous reports found that primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques without viral presence and pathological injury; however, a high possibility for reinfection at the current stage of the pandemic has been proven. We found the reinfection of SARS-CoV-2 in Syrian hamsters with continuous viral shedding in the upper respiratory tracts and few injuries in the lung, and nasal mucosa was exploited by SARS-CoV-2 for replication and shedding during reinfection; meanwhile, no viral replication or enhanced damage was observed in the lower respiratory tracts. Consistent with the mild phenotype in the reinfection, increases in mRNA levels in cytokines and chemokines in the nasal mucosa but only slight increases in the lung were found. Notably, the high levels of neutralizing antibodies in serum could not prevent reinfection in hamsters but may play roles in benefitting the lung recovery and symptom relief of COVID-19. In summary, Syrian hamsters could be reinfected by SARS-CoV-2 with mild symptoms but with obvious viral shedding and replication, and both convalescent and vaccinated patients should be wary of the transmission and reinfection of SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Longding Liu
- Correspondence: ; Tel.: +86-871-6833-5905; Fax: +86-871-6833-4483
| |
Collapse
|
20
|
Otieno JR, Cherry JL, Spiro DJ, Nelson MI, Trovão NS. Origins and Evolution of Seasonal Human Coronaviruses. Viruses 2022; 14:1551. [PMID: 35891531 PMCID: PMC9320361 DOI: 10.3390/v14071551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Four seasonal human coronaviruses (sHCoVs) are endemic globally (229E, NL63, OC43, and HKU1), accounting for 5-30% of human respiratory infections. However, the epidemiology and evolution of these CoVs remain understudied due to their association with mild symptomatology. Using a multigene and complete genome analysis approach, we find the evolutionary histories of sHCoVs to be highly complex, owing to frequent recombination of CoVs including within and between sHCoVs, and uncertain, due to the under sampling of non-human viruses. The recombination rate was highest for 229E and OC43 whereas substitutions per recombination event were highest in NL63 and HKU1. Depending on the gene studied, OC43 may have ungulate, canine, or rabbit CoV ancestors. 229E may have origins in a bat, camel, or an unsampled intermediate host. HKU1 had the earliest common ancestor (1809-1899) but fell into two distinct clades (genotypes A and B), possibly representing two independent transmission events from murine-origin CoVs that appear to be a single introduction due to large gaps in the sampling of CoVs in animals. In fact, genotype B was genetically more diverse than all the other sHCoVs. Finally, we found shared amino acid substitutions in multiple proteins along the non-human to sHCoV host-jump branches. The complex evolution of CoVs and their frequent host switches could benefit from continued surveillance of CoVs across non-human hosts.
Collapse
Affiliation(s)
- James R. Otieno
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| | - Joshua L. Cherry
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - David J. Spiro
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| | - Martha I. Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| | - Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| |
Collapse
|
21
|
Hansen F, Meade-White K, Clancy C, Rosenke R, Okumura A, Hawman DW, Feldmann F, Kaza B, Jarvis MA, Rosenke K, Feldmann H. SARS-CoV-2 reinfection prevents acute respiratory disease in Syrian hamsters but not replication in the upper respiratory tract. Cell Rep 2022; 38:110515. [PMID: 35263638 PMCID: PMC8860630 DOI: 10.1016/j.celrep.2022.110515] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/05/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022] Open
Abstract
Human cases of SARS-CoV-2 reinfection have been documented throughout the pandemic, but are likely under-reported. In the current study, we use the Syrian hamster SARS-CoV-2 model to assess reinfection with homologous WA1 and heterologous B.1.1.7 (Alpha) and B.1.351 (Beta) SARS-CoV-2 variants over time. Upon primary infection with SARS-CoV-2 WA1, hamsters rapidly develop a strong and long-lasting humoral immune response. After reinfection with homologous and heterologous SARS-CoV-2 variants, this immune response protects hamsters from clinical disease, virus replication in the lower respiratory tract, and acute lung pathology. However, reinfection leads to SARS-CoV-2 replication in the upper respiratory tract with the potential for virus shedding. Our findings indicate that reinfection results in restricted SARS-CoV-2 replication despite substantial levels of humoral immunity, denoting the potential for transmission through reinfected asymptomatic individuals.
Collapse
Affiliation(s)
- Frederick Hansen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA
| | - Chad Clancy
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA
| | - David W Hawman
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Benjamin Kaza
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA
| | - Michael A Jarvis
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA; University of Plymouth, Plymouth, Devon, UK; The Vaccine Group Ltd, Plymouth, Devon, UK
| | - Kyle Rosenke
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA.
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 S 4(th) Street, Hamilton, MT 59840, USA.
| |
Collapse
|
22
|
Tomic A, Skelly DT, Ogbe A, O'Connor D, Pace M, Adland E, Alexander F, Ali M, Allott K, Azim Ansari M, Belij-Rammerstorfer S, Bibi S, Blackwell L, Brown A, Brown H, Cavell B, Clutterbuck EA, de Silva T, Eyre D, Lumley S, Flaxman A, Grist J, Hackstein CP, Halkerston R, Harding AC, Hill J, James T, Jay C, Johnson SA, Kronsteiner B, Lie Y, Linder A, Longet S, Marinou S, Matthews PC, Mellors J, Petropoulos C, Rongkard P, Sedik C, Silva-Reyes L, Smith H, Stockdale L, Taylor S, Thomas S, Tipoe T, Turtle L, Vieira VA, Wrin T, Pollard AJ, Lambe T, Conlon CP, Jeffery K, Travis S, Goulder P, Frater J, Mentzer AJ, Stafford L, Carroll MW, James WS, Klenerman P, Barnes E, Dold C, Dunachie SJ. Divergent trajectories of antiviral memory after SARS-CoV-2 infection. Nat Commun 2022; 13:1251. [PMID: 35273178 PMCID: PMC8913789 DOI: 10.1038/s41467-022-28898-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
The trajectories of acquired immunity to severe acute respiratory syndrome coronavirus 2 infection are not fully understood. We present a detailed longitudinal cohort study of UK healthcare workers prior to vaccination, presenting April-June 2020 with asymptomatic or symptomatic infection. Here we show a highly variable range of responses, some of which (T cell interferon-gamma ELISpot, N-specific antibody) wane over time, while others (spike-specific antibody, B cell memory ELISpot) are stable. We use integrative analysis and a machine-learning approach (SIMON - Sequential Iterative Modeling OverNight) to explore this heterogeneity. We identify a subgroup of participants with higher antibody responses and interferon-gamma ELISpot T cell responses, and a robust trajectory for longer term immunity associates with higher levels of neutralising antibodies against the infecting (Victoria) strain and also against variants B.1.1.7 (alpha) and B.1.351 (beta). These variable trajectories following early priming may define subsequent protection from severe disease from novel variants.
Collapse
Affiliation(s)
- Adriana Tomic
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Donal T Skelly
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Dept of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Frances Alexander
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kirk Allott
- Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Luke Blackwell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Breeze Cavell
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
| | | | - Thushan de Silva
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - David Eyre
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Big Data Institute, Nuffield Dept. of Population Health, University of Oxford, Oxford, UK
| | - Sheila Lumley
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Amy Flaxman
- Jenner Institute, University of Oxford, Oxford, UK
| | - James Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Rachel Halkerston
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
| | - Adam C Harding
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Tim James
- Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Cecilia Jay
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Síle A Johnson
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford University Medical School, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Yolanda Lie
- Monogram Biosciences LabCorp, San Francisco, CA, USA
| | - Aline Linder
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Stephanie Longet
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Spyridoula Marinou
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Philippa C Matthews
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jack Mellors
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
| | | | - Patpong Rongkard
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Cynthia Sedik
- Monogram Biosciences LabCorp, San Francisco, CA, USA
| | - Laura Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Holly Smith
- Jenner Institute, University of Oxford, Oxford, UK
| | - Lisa Stockdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Stephen Taylor
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
| | - Stephen Thomas
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
| | - Timothy Tipoe
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Lance Turtle
- HPRU in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust (a member of Liverpool Health Partners), Liverpool, UK
| | - Vinicius Adriano Vieira
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Terri Wrin
- Monogram Biosciences LabCorp, San Francisco, CA, USA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Teresa Lambe
- Jenner Institute, University of Oxford, Oxford, UK
| | - Chris P Conlon
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Simon Travis
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alex J Mentzer
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lizzie Stafford
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Miles W Carroll
- United Kingdom Health Security Agency, Porton Down, Wiltshire, England
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - William S James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susanna J Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Centre For Global Health Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
23
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (COVID)-19 has emerged as the greatest global health threat in generations. An unprecedented mobilization of researchers has generated a wealth of data on humoral responses to SARS-CoV-2 within a year of the pandemic's beginning. The rapidly developed understanding of acute-phase antibody induction and medium-term antibody durability in COVID-19 is important at an individual level to inform patient care and a population level to help predict transmission dynamics. In this brief review, we will describe the development and maintenance of antibody responses to immunization and infections generally and the specific antibody dynamics observed for COVID-19. These crucial features of the humoral response have implications for the use of antibody therapeutics against the virus and can inform the likelihood of reinfection of individuals by the virus.
Collapse
Affiliation(s)
- Adam Zuiani
- Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA,BioNTech, Cambridge, MA 02139, USA
| | - Duane R. Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA,Corresponding author. Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139
| |
Collapse
|
24
|
Hamady A, Lee J, Loboda ZA. Waning antibody responses in COVID-19: what can we learn from the analysis of other coronaviruses? Infection 2022; 50:11-25. [PMID: 34324165 PMCID: PMC8319587 DOI: 10.1007/s15010-021-01664-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The coronavirus disease 2019 (COVID-19), caused by the novel betacoronavirus severe acute respiratory syndrome 2 (SARS-CoV-2), was declared a pandemic in March 2020. Due to the continuing surge in incidence and mortality globally, determining whether protective, long-term immunity develops after initial infection or vaccination has become critical. METHODS/RESULTS In this narrative review, we evaluate the latest understanding of antibody-mediated immunity to SARS-CoV-2 and to other coronaviruses (SARS-CoV, Middle East respiratory syndrome coronavirus and the four endemic human coronaviruses) in order to predict the consequences of antibody waning on long-term immunity against SARS-CoV-2. We summarise their antibody dynamics, including the potential effects of cross-reactivity and antibody waning on vaccination and other public health strategies. At present, based on our comparison with other coronaviruses we estimate that natural antibody-mediated protection for SARS-CoV-2 is likely to last for 1-2 years and therefore, if vaccine-induced antibodies follow a similar course, booster doses may be required. However, other factors such as memory B- and T-cells and new viral strains will also affect the duration of both natural and vaccine-mediated immunity. CONCLUSION Overall, antibody titres required for protection are yet to be established and inaccuracies of serological methods may be affecting this. We expect that with standardisation of serological testing and studies with longer follow-up, the implications of antibody waning will become clearer.
Collapse
Affiliation(s)
- Ali Hamady
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - JinJu Lee
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Zuzanna A Loboda
- Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
25
|
Matsuba I, Takuma T, Hatori N, Takai M, Watanabe Y, Takada N, Kishi S, Matsuzawa Y, Nishikawa T, Kunishima T, Degawa H, Nishikawa M, Ono Y, Kanamori A. Study on Continuation of Antibody Prevalence Six Months after Detection of Subclinical Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Intern Med 2022; 61:159-165. [PMID: 34744105 PMCID: PMC8851192 DOI: 10.2169/internalmedicine.8019-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Objective To examine the continuation of antibody prevalence and background factors in antibody-positive subjects after asymptomatic infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods A study was carried out to investigate the SARS-CoV-2 antibody (IgG) prevalence. SARS-CoV-2 antibodies (IgG) were measured and analyzed with immunochromatographic tests. Patients Among 1,603 subjects, comprising patients, physicians, and nurses at 65 medical institutes in Kanagawa, Japan, 39 antibody-positive subjects received follow-up for 6 months. Results Of the 33 subjects who consented to the follow-up (23 patients and 10 medical professionals), continued positivity of IgG antibodies was confirmed in 11 of 32 cases (34.4%) after 2 months, 8 of 33 (24.2%) after 4 months, and 8 of 33 (24.2%) after 6 months. A significant difference was found in the sleeping time, drinking habits, hypertension, and use of angiotensin-receptor blockers on comparing subject background characteristics among three groups: patients with antibody production that continued for six months after the first detection of positivity, patients in whom antibody production stopped at four months, and patients in whom antibody production stopped at two months. Conclusion The continuation rate of IgG antibody prevalence was 24.2% at 6 months after the first detection of antibody positivity in cases with asymptomatic coronavirus disease 2019 (COVID-19) infections. This percentage is low compared with the antibody continuation rate in patients who have recovered from symptomatic COVID-19 infection.
Collapse
|
26
|
Lin CY, Wolf J, Brice DC, Sun Y, Locke M, Cherry S, Castellaw AH, Wehenkel M, Crawford JC, Zarnitsyna VI, Duque D, Allison KJ, Allen EK, Brown SA, Mandarano AH, Estepp JH, Taylor C, Molina-Paris C, Schultz-Cherry S, Tang L, Thomas PG, McGargill MA. Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response. Cell Host Microbe 2022; 30:83-96.e4. [PMID: 34965382 PMCID: PMC8648673 DOI: 10.1016/j.chom.2021.12.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 11/03/2022]
Abstract
SARS-CoV-2 infection causes diverse outcomes ranging from asymptomatic infection to respiratory distress and death. A major unresolved question is whether prior immunity to endemic, human common cold coronaviruses (hCCCoVs) impacts susceptibility to SARS-CoV-2 infection or immunity following infection and vaccination. Therefore, we analyzed samples from the same individuals before and after SARS-CoV-2 infection or vaccination. We found hCCCoV antibody levels increase after SARS-CoV-2 exposure, demonstrating cross-reactivity. However, a case-control study indicates that baseline hCCCoV antibody levels are not associated with protection against SARS-CoV-2 infection. Rather, higher magnitudes of pre-existing betacoronavirus antibodies correlate with more SARS-CoV-2 antibodies following infection, an indicator of greater disease severity. Additionally, immunization with hCCCoV spike proteins before SARS-CoV-2 immunization impedes the generation of SARS-CoV-2-neutralizing antibodies in mice. Together, these data suggest that pre-existing hCCCoV antibodies hinder SARS-CoV-2 antibody-based immunity following infection and provide insight on how pre-existing coronavirus immunity impacts SARS-CoV-2 infection, which is critical considering emerging variants.
Collapse
Affiliation(s)
- Chun-Yang Lin
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science, Memphis, TN, USA
| | - Joshua Wolf
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Brice
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yilun Sun
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Sean Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashley H Castellaw
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marie Wehenkel
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Veronika I Zarnitsyna
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel Duque
- School of Mathematics, University of Leeds, Leeds, UK
| | - Kim J Allison
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott A Brown
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jeremie H Estepp
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Carmen Molina-Paris
- School of Mathematics, University of Leeds, Leeds, UK; T-6, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Li Tang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
27
|
Abstract
The germinal centre (GC) response is critical for the generation of affinity-matured plasma cells and memory B cells capable of mediating long-term protective immunity. Understanding whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or vaccination elicits a GC response has profound implications for the capacity of responding B cells to contribute to protection against infection. However, direct assessment of the GC response in humans remains a major challenge. Here we summarize emerging evidence for the importance of the GC response in the establishment of durable and broad immunity against SARS-CoV-2 and discuss new approaches to modulate the GC response to better protect against newly emerging SARS-CoV-2 variants. We also discuss new findings showing that the GC B cell response persists in the draining lymph nodes for at least 6 months in some individuals following vaccination with SARS-CoV-2 mRNA-based vaccines.
Collapse
Affiliation(s)
- Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
28
|
Alefishat E, Jelinek HF, Mousa M, Tay GK, Alsafar HS. Immune response to SARS-CoV-2 Variants: A focus on severity, susceptibility, and preexisting immunity. J Infect Public Health 2022; 15:277-288. [PMID: 35074728 PMCID: PMC8757655 DOI: 10.1016/j.jiph.2022.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/16/2021] [Accepted: 01/09/2022] [Indexed: 01/08/2023] Open
Abstract
The heterogeneous phenotypes among patients with coronavirus disease 2019 (COVID-19) has drawn worldwide attention, especially those with severe symptoms without comorbid conditions. Immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative virus of COVID-19, occur mainly by the innate immune response via the interferon (IFN)-mediated pathways, and the adaptive immunity via the T lymphocyte and the antibody mediated pathways. The ability of the original Wuhan SARS-CoV-2 strain, and possibly more so with new emerging variants, to antagonize IFN-mediated antiviral responses can be behind the higher early viral load, higher transmissibility, and milder symptoms compared to SARS-CoV and are part of the continued clinical evolution of COVID-19. Since it first emerged, several variants of SARS-CoV-2 have been circulating worldwide. Variants that have the potential to elude natural or vaccine-mediated immunity are variants of concern. This review focuses on the main host factors that may explain the immune responses to SARS-CoV-2 and its variants in the context of susceptibility, severity, and preexisting immunity.
Collapse
Affiliation(s)
- Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Herbert F Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Guan K Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Discipline of Psychiatry, Medical School, the University of Western Australia, Perth WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Emirates Bio-Research Center, Ministry of Interior, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
29
|
Rees EM, Waterlow NR, Lowe R, Kucharski AJ. Estimating the duration of seropositivity of human seasonal coronaviruses using seroprevalence studies. Wellcome Open Res 2021; 6:138. [PMID: 34708157 PMCID: PMC8517721.3 DOI: 10.12688/wellcomeopenres.16701.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background: The duration of immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still uncertain, but it is of key clinical and epidemiological importance. Seasonal human coronaviruses (HCoV) have been circulating for longer and, therefore, may offer insights into the long-term dynamics of reinfection for such viruses. Methods: Combining historical seroprevalence data from five studies covering the four circulating HCoVs with an age-structured reverse catalytic model, we estimated the likely duration of seropositivity following seroconversion. Results: We estimated that antibody persistence lasted between 0.9 (95% Credible interval: 0.6 - 1.6) and 3.8 (95% CrI: 2.0 - 7.4) years. Furthermore, we found the force of infection in older children and adults (those over 8.5 [95% CrI: 7.5 - 9.9] years) to be higher compared with young children in the majority of studies. Conclusions: These estimates of endemic HCoV dynamics could provide an indication of the future long-term infection and reinfection patterns of SARS-CoV-2.
Collapse
Affiliation(s)
- Eleanor M Rees
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Naomi R Waterlow
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Rachel Lowe
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Adam J Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
30
|
SARS-CoV-2 and Variant Diagnostic Testing Approaches in the United States. Viruses 2021; 13:v13122492. [PMID: 34960762 PMCID: PMC8703625 DOI: 10.3390/v13122492] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose of Review Given the rapid development of diagnostic approaches to test for and diagnose infection with SARS-CoV-2 and its associated variants including Omicron (B.1.1.529), many options are available to diagnose infection. Multiple established diagnostic companies are now providing testing platforms whereas initially, testing was being performed with simple PCR-based tests using standard laboratory reagents. Recent Findings Additional testing platforms continue to be developed, including those to detect specific variants, but challenges with testing, including obtaining testing reagents and other related supplies, are frequently encountered. With time, the testing supply chain has improved, and more established companies are providing materials to support these testing efforts. In the United States (U.S.), the need for rapid assay development and subsequent approval through the attainment of emergency use authorization (EUA) has superseded the traditional arduous diagnostic testing approval workflow mandated by the FDA. Through these efforts, the U.S. has been able to continue to significantly increase its testing capabilities to address this pandemic; however, challenges still remain due to the diversity of the performance characteristics of tests being utilized and newly discovered viral variants. Summary This review provides an overview of the current diagnostic testing landscape, with pertinent information related to SARS-CoV-2 virology, variants and antibody responses that are available to diagnose infection in the U.S.
Collapse
|
31
|
Letizia AG, Arnold CE, Adhikari BN, Voegtly LJ, Glang L, Rice GK, Goforth CW, Schilling MA, Weir DL, Malagon F, Ramos I, Vangeti S, Gonzalez-Reiche AS, Cer RZ, Sealfon SC, van Bakel H, Bishop-Lilly KA. Immunological and Genetic Investigation of SARS-CoV-2 Reinfection in an Otherwise Healthy, Young Marine Recruit. Pathogens 2021; 10:pathogens10121589. [PMID: 34959544 PMCID: PMC8709254 DOI: 10.3390/pathogens10121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
We used epidemiologic and viral genetic information to identify a case of likely reinfection in an otherwise healthy, young Marine recruit enrolled in the prospective, longitudinal COVID-19 Health Action Response for Marines (CHARM) study, and we paired these findings with serological studies. This participant had a positive RT-PCR to SARS-CoV-2 upon routine sampling on study day 7, although he was asymptomatic at that time. He cleared the infection within seven days. On study day 46, he had developed symptoms consistent with COVID-19 and tested positive by RT-PCR for SARS-CoV-2 again. Viral whole genome sequencing was conducted from nares swabs at multiple time points. The day 7 sample was determined to be lineage B.1.340, whereas both the day 46 and day 49 samples were B.1.1. The first positive result for anti-SARS-CoV-2 IgM serology was collected on day 49 and for IgG on day 91. This case appears most consistent with a reinfection event. Our investigation into this case is unique in that we compared sequence data from more than just paired specimens, and we also assayed for immune response after both the initial infection and the later reinfection. These data demonstrate that individuals who have experienced an infection with SARS-CoV-2 may fail to generate effective or long-lasting immunity, similar to endemic human beta coronaviruses.
Collapse
Affiliation(s)
- Andrew G. Letizia
- Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (A.G.L.); (C.W.G.); (M.A.S.); (D.L.W.)
| | - Catherine E. Arnold
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA; (C.E.A.); (B.N.A.)
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
| | - Bishwo N. Adhikari
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA; (C.E.A.); (B.N.A.)
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
| | - Logan J. Voegtly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
- Leidos, Inc., Reston, VA 20190, USA
| | - Lindsay Glang
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
- Leidos, Inc., Reston, VA 20190, USA
| | - Gregory K. Rice
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
- Leidos, Inc., Reston, VA 20190, USA
| | - Carl W. Goforth
- Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (A.G.L.); (C.W.G.); (M.A.S.); (D.L.W.)
| | - Megan A. Schilling
- Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (A.G.L.); (C.W.G.); (M.A.S.); (D.L.W.)
| | - Dawn L. Weir
- Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (A.G.L.); (C.W.G.); (M.A.S.); (D.L.W.)
| | - Francisco Malagon
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
- Leidos, Inc., Reston, VA 20190, USA
| | - Irene Ramos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (I.R.); (S.V.); (S.C.S.)
| | - Sindhu Vangeti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (I.R.); (S.V.); (S.C.S.)
| | - Ana S. Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology at Mount Sinai, New York, NY 10029, USA; (A.S.G.-R.); (H.v.B.)
| | - Regina Z. Cer
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (I.R.); (S.V.); (S.C.S.)
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology at Mount Sinai, New York, NY 10029, USA; (A.S.G.-R.); (H.v.B.)
| | - Kimberly A. Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center–Frederick, Fort Detrick, MD 21702, USA; (L.J.V.); (L.G.); (G.K.R.); (F.M.); (R.Z.C.)
- Correspondence:
| |
Collapse
|
32
|
Kim YI, Kim SM, Park SJ, Kim EH, Yu KM, Chang JH, Kim EJ, Casel MAB, Rollon R, Jang SG, Um J, Song MS, Jeong HW, Kim EG, Kim Y, Kim SY, Park JS, Park MS, Kwon GY, Yeo SG, Lee SA, Choi YJ, Jung JU, Choi YK. Critical role of neutralizing antibody for SARS-CoV-2 reinfection and transmission. Emerg Microbes Infect 2021; 10:152-160. [PMID: 33407005 PMCID: PMC7832474 DOI: 10.1080/22221751.2021.1872352] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/07/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023]
Abstract
Cases of laboratory-confirmed SARS-CoV-2 reinfection have been reported in a number of countries. Further, the level of natural immunity induced by SARS-CoV-2 infection is not fully clear, nor is it clear if a primary infection is protective against reinfection. To investigate the potential association between serum antibody titres and reinfection of SARS-CoV-2, ferrets with different levels of NAb titres after primary SARS-CoV-2 infection were subjected to reinfection with a heterologous SARS-CoV-2 strain. All heterologous SARS-CoV-2 reinfected ferrets showed active virus replication in the upper respiratory and gastro-intestinal tracts. However, the high NAb titre group showed attenuated viral replication and rapid viral clearance. In addition, direct-contact transmission was observed only from reinfected ferrets with low NAb titres (<20), and not from other groups. Further, lung histopathology demonstrated the presence of limited inflammatory regions in the high NAb titre groups compared with control and low NAb groups. This study demonstrates a close correlation between a low NAb titre and SARS-CoV-2 reinfection in a recovered ferret reinfection model.
Collapse
Affiliation(s)
- Young-Il Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Se-Mi Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
- Division of Life Science and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Jae-Hyung Chang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Eun Ji Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Mark Anthony B. Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Rare Rollon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Jihye Um
- Research institute of Public Health, National Medical Center, Seoul, Republic of Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Hye Won Jeong
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Eung-Gook Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Yeonjae Kim
- Research institute of Public Health, National Medical Center, Seoul, Republic of Korea
| | - So Yeon Kim
- Research institute of Public Health, National Medical Center, Seoul, Republic of Korea
| | - Jun-Sun Park
- Research institute of Public Health, National Medical Center, Seoul, Republic of Korea
| | - Mi Sun Park
- Div. of Public Health Research, Sejong Institute of Health & Environment, Sejong City, Republic of Korea
| | - Geun-Yong Kwon
- Sejong Public Health Center, Sejong City, Republic of Korea
| | - Sang Gu Yeo
- Div. of Public Health Research, Sejong Institute of Health & Environment, Sejong City, Republic of Korea
| | - Shin-Ae Lee
- Department of Cancer Biology and Center for Global and Emerging Pathogen Research, Lerner Research Institute, Cleveland, OH, USA
| | - Youn Jung Choi
- Department of Cancer Biology and Center for Global and Emerging Pathogen Research, Lerner Research Institute, Cleveland, OH, USA
| | - Jae U. Jung
- Department of Cancer Biology and Center for Global and Emerging Pathogen Research, Lerner Research Institute, Cleveland, OH, USA
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
33
|
Rees EM, Waterlow NR, Lowe R, Kucharski AJ. Estimating the duration of seropositivity of human seasonal coronaviruses using seroprevalence studies. Wellcome Open Res 2021; 6:138. [PMID: 34708157 PMCID: PMC8517721 DOI: 10.12688/wellcomeopenres.16701.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The duration of immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still uncertain, but it is of key clinical and epidemiological importance. Seasonal human coronaviruses (HCoV) have been circulating for longer and, therefore, may offer insights into the long-term dynamics of reinfection for such viruses. Methods: Combining historical seroprevalence data from five studies covering the four circulating HCoVs with an age-structured reverse catalytic model, we estimated the likely duration of seropositivity following seroconversion. Results: We estimated that antibody persistence lasted between 0.9 (95% Credible interval: 0.6 - 1.6) and 3.8 (95% CrI: 2.0 - 7.4) years. Furthermore, we found the force of infection in older children and adults (those over 8.5 [95% CrI: 7.5 - 9.9] years) to be higher compared with young children in the majority of studies. Conclusions: These estimates of endemic HCoV dynamics could provide an indication of the future long-term infection and reinfection patterns of SARS-CoV-2.
Collapse
Affiliation(s)
- Eleanor M. Rees
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Naomi R. Waterlow
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Rachel Lowe
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Adam J. Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
34
|
Lee JS, Kim SY, Kim TS, Hong KH, Ryoo NH, Lee J, Park JH, Cho SI, Kim MJ, Kim YG, Kim B, Shin HS, Oh HS, Seo MS, Gwon TR, Kim Y, Park JS, Chin BS, Park WB, Park SS, Seong MW. Evidence of Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection After Recovery from Mild Coronavirus Disease 2019. Clin Infect Dis 2021; 73:e3002-e3008. [PMID: 33219681 PMCID: PMC7890673 DOI: 10.1093/cid/ciaa1421] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Positive results from real-time reverse-transcription polymerase chain reaction (rRT-PCR) in recovered patients raise concern that patients who recover from coronavirus disease 2019 (COVID-19) may be at risk of reinfection. Currently, however, evidence that supports reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not been reported. METHODS We conducted whole-genome sequencing of the viral RNA from clinical specimens at the initial infection and at the positive retest from 6 patients who recovered from COVID-19 and retested positive for SARS-CoV-2 via rRT-PCR after recovery. A total of 13 viral RNAs from the patients' respiratory specimens were consecutively obtained, which enabled us to characterize the difference in viral genomes between initial infection and positive retest. RESULTS At the time of the positive retest, we were able to acquire a complete genome sequence from patient 1, a 21-year-old previously healthy woman. In this patient, through the phylogenetic analysis, we confirmed that the viral RNA of positive retest was clustered into a subgroup distinct from that of the initial infection, suggesting that there was a reinfection of SARS-CoV-2 with a subtype that was different from that of the primary strain. The spike protein D614G substitution that defines the clade "G" emerged in reinfection, while mutations that characterize the clade "V" (ie, nsp6 L37F and ORF3a G251V) were present at initial infection. CONCLUSIONS Reinfection with a genetically distinct SARS-CoV-2 strain may occur in an immunocompetent patient shortly after recovery from mild COVID-19. SARS-CoV-2 infection may not confer immunity against a different SARS-CoV-2 strain.
Collapse
Affiliation(s)
- Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - So Yeon Kim
- Department of Laboratory Medicine, National Medical Center, Seoul, South Korea
| | - Taek Soo Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ki Ho Hong
- Department of Laboratory Medicine, Seoul Medical Center, Seoul, South Korea
| | - Nam-Hee Ryoo
- Department of Laboratory Medicine, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Jaehyeon Lee
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Jae Hyeon Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung Im Cho
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Man Jin Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Young-gon Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Boram Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ho Seob Shin
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyeon Sae Oh
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Myoung-Seock Seo
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae-Rin Gwon
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Yeonjae Kim
- Department of Infectious Disease, National Medical Center, Seoul, South Korea
| | - Jun-Sun Park
- Research Institute of Public Health, National Medical Center, Seoul, South Korea
| | - Bum Sik Chin
- Department of Infectious Disease, National Medical Center, Seoul, South Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
35
|
Kim AY, Gandhi RT. Reinfection With Severe Acute Respiratory Syndrome Coronavirus 2: What Goes Around May Come Back Around. Clin Infect Dis 2021; 73:e3009-e3012. [PMID: 33035308 PMCID: PMC7665341 DOI: 10.1093/cid/ciaa1541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 01/25/2023] Open
Affiliation(s)
- Arthur Y Kim
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rajesh T Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Thomas E, Delabat S, Andrews DM. Diagnostic Testing for SARS-CoV-2 Infection. CURRENT HEPATOLOGY REPORTS 2021; 20:166-174. [PMID: 34725630 PMCID: PMC8550867 DOI: 10.1007/s11901-021-00567-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Given the rapid development of diagnostic approaches to test for and diagnose infection with SARS-CoV-2, many options are available to assess infection. Multiple established diagnostic companies are now providing testing platforms whereas initially, testing was being performed with simple PCR-based tests using standard laboratory reagents. RECENT FINDINGS Additional testing platforms continue to be developed but challenges with testing, including obtaining testing reagents and other related supplies, are frequently encountered. With time, the testing supply chain will improve and more companies will be providing materials to support these testing efforts. In the USA, the need for rapid assay development and subsequent approval through attainment of emergency use authorization (EUA) has superseded the traditional arduous diagnostic testing approval workflow mandated by the FDA. It is anticipated that the USA will be able to continue to significantly increase its testing capabilities to address this pandemic; however, challenges remain due to the diversity of the performance characteristics of tests being utilized. SUMMARY This review provides an overview of the current diagnostic testing landscape, with pertinent information related to SARS-CoV-2 virology and antibody responses, that is available to diagnose infection.
Collapse
Affiliation(s)
- Emmanuel Thomas
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL USA
- Schiff Center for Liver Disease, University of Miami Miller School of Medicine, 1550 NW 10th Ave., Papanicolaou Bldg., RM PAP 514, Miami, FL 33136 USA
| | - Stephanie Delabat
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL USA
| | - David M. Andrews
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL USA
| |
Collapse
|
37
|
Figueiredo EAD, Polli DA, Andrade BBD. Estimated prevalence of COVID-19 in Brazil with probabilistic bias correction. CAD SAUDE PUBLICA 2021; 37:e00290120. [PMID: 34669777 DOI: 10.1590/0102-311x00290120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/29/2021] [Indexed: 11/22/2022] Open
Abstract
Using data collected by the Brazilian National Household Sample Survey - COVID-19 (PNAD-COVID19) and semi-Bayesian modelling developed by Wu et al., we have estimated the effect of underreporting of COVID-19 cases in Brazil as of December 2020. The total number of infected individuals is about 3 to 8 times the number of cases reported, depending on the state. Confirmed cases are at 3.1% of the total population and our estimate of total cases is at almost 15% of the approximately 212 million Brazilians as of 2020. The method we adopted from Wu et al., with slight modifications in prior specifications, applies bias corrections to account for incomplete testing and imperfect test accuracy. Our estimates, which are comparable to results obtained by Wu et al. for the United States, indicate that projections from compartmental models (such as SEIR models) tend to overestimate the number of infections and that there is considerable regional heterogeneity (results are presented by state).
Collapse
|
38
|
Lo Muzio L, Ambosino M, Lo Muzio E, Quadri MFA. SARS-CoV-2 Reinfection Is a New Challenge for the Effectiveness of Global Vaccination Campaign: A Systematic Review of Cases Reported in Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11001. [PMID: 34682746 PMCID: PMC8535385 DOI: 10.3390/ijerph182011001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
Reinfection with SARS-CoV-2 seems to be a rare phenomenon. The objective of this study is to carry out a systematic search of literature on the SARS-CoV-2 reinfection in order to understand the success of the global vaccine campaigns. A systematic search was performed. Inclusion criteria included a positive RT-PCR test of more than 90 days after the initial test and the confirmed recovery or a positive RT-PCR test of more than 45 days after the initial test that is accompanied by compatible symptoms or epidemiological exposure, naturally after the confirmed recovery. Only 117 articles were included in the final review with 260 confirmed cases. The severity of the reinfection episode was more severe in 92/260 (35.3%) with death only in 14 cases. The observation that many reinfection cases were less severe than initial cases is interesting because it may suggest partial protection from disease. Another interesting line of data is the detection of different clades or lineages by genome sequencing between initial infection and reinfection in 52/260 cases (20%). The findings are useful and contribute towards the role of vaccination in response to the COVID-19 infections. Due to the reinfection cases with SARS-CoV-2, it is evident that the level of immunity is not 100% for all individuals. These data highlight how it is necessary to continue to observe all the prescriptions recently indicated in the literature in order to avoid new contagion for all people after healing from COVID-19 or becoming asymptomatic positive.
Collapse
Affiliation(s)
- Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy;
- Consorzio Interuniversitario Nazionale per la Bio-Oncologia (C.I.N.B.O.), 66100 Chieti, Italy
| | - Mariateresa Ambosino
- Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy;
| | - Eleonora Lo Muzio
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Mir Faeq Ali Quadri
- Department of Preventive Dental Sciences, Jazan University, Jazan 82511, Saudi Arabia;
| |
Collapse
|
39
|
Hristov DR, Gomez-Marquez J, Wade D, Hamad-Schifferli K. SARS-CoV-2 and approaches for a testing and diagnostic strategy. J Mater Chem B 2021; 9:8157-8173. [PMID: 34494642 DOI: 10.1039/d1tb00674f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The COVID-19 pandemic has led to an unprecedented global health challenge, creating sudden, massive demands for diagnostic testing, treatment, therapies, and vaccines. In particular, the development of diagnostic assays for SARS-CoV-2 has been pursued as they are needed for quarantine, disease surveillance, and patient treatment. One of the major lessons the pandemic highlighted was the need for fast, cheap, scalable and reliable diagnostic methods, such as paper-based assays. Furthermore, it has previously been suggested that paper-based tests may be more suitable for settings with lower resource availability and may help alleviate some supply chain challenges which arose during the COVID-19 pandemic. Therefore, we explore how such devices may fit in a comprehensive diagnostic strategy and how some of the challenges to the technology, e.g. low sensitivity, may be addressed. We discuss the properties of the SARS-CoV-2 virus itself, the COVID-19 disease pathway, and the immune response. We then describe the different diagnostic strategies that have been pursued, focusing on molecular strategies for viral genetic material, antigen tests, and serological assays, and innovations for improving the diagnostic sensitivity and capabilities. Finally, we discuss pressing issues for the future, and what needs to be addressed for the ongoing pandemic and future outbreaks.
Collapse
Affiliation(s)
- Delyan R Hristov
- Department of Engineering, University of Massachusetts Boston, Boston, MA, USA.
| | - Jose Gomez-Marquez
- Little Devices Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Djibril Wade
- iLEAD (Innovation in Laboratory Engineered Accelerated Diagnostics), Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formations (IRESSEF), Dakar, Senegal
| | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, MA, USA. .,School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
40
|
Forni D, Cagliani R, Arrigoni F, Benvenuti M, Mozzi A, Pozzoli U, Clerici M, De Gioia L, Sironi M. Adaptation of the endemic coronaviruses HCoV-OC43 and HCoV-229E to the human host. Virus Evol 2021; 7:veab061. [PMID: 34527284 PMCID: PMC8344746 DOI: 10.1093/ve/veab061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022] Open
Abstract
Four coronaviruses (HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E) are endemic in human populations. All these viruses are seasonal and generate short-term immunity. Like the highly pathogenic coronaviruses, the endemic coronaviruses have zoonotic origins. Thus, understanding the evolutionary dynamics of these human viruses might provide insight into the future trajectories of SARS-CoV-2 evolution. Because the zoonotic sources of HCoV-OC43 and HCoV-229E are known, we applied a population genetics-phylogenetic approach to investigate which selective events accompanied the divergence of these viruses from the animal ones. Results indicated that positive selection drove the evolution of some accessory proteins, as well as of the membrane proteins. However, the spike proteins of both viruses and the hemagglutinin-esterase (HE) of HCoV-OC43 represented the major selection targets. Specifically, for both viruses, most positively selected sites map to the receptor-binding domains (RBDs) and are polymorphic. Molecular dating for the HCoV-229E spike protein indicated that RBD Classes I, II, III, and IV emerged 3-9 years apart. However, since the appearance of Class V (with much higher binding affinity), around 25 years ago, limited genetic diversity accumulated in the RBD. These different time intervals are not fully consistent with the hypothesis that HCoV-229E spike evolution was driven by antigenic drift. An alternative, not mutually exclusive possibility is that strains with higher affinity for the cellular receptor have out-competed strains with lower affinity. The evolution of the HCoV-OC43 spike protein was also suggested to undergo antigenic drift. However, we also found abundant signals of positive selection in HE. Whereas such signals might result from antigenic drift, as well, previous data showing co-evolution of the spike protein with HE suggest that optimization for human cell infection also drove the evolution of this virus. These data provide insight into the possible trajectories of SARS-CoV-2 evolution, especially in case the virus should become endemic.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza, Milan 20126, Italy
| | - Martino Benvenuti
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza, Milan 20126, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, via Francesco Sforza, Milan 20122, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza, Milan 20126, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| |
Collapse
|
41
|
Hawkes MT, Lee BE, Kanji JN, Zelyas N, Wong K, Barton M, Mukhi S, Robinson JL. Seasonality of Respiratory Viruses at Northern Latitudes. JAMA Netw Open 2021; 4:e2124650. [PMID: 34529066 PMCID: PMC8446819 DOI: 10.1001/jamanetworkopen.2021.24650] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
IMPORTANCE Every year, respiratory viruses exact a heavy burden on Canadian hospitals during winter months. Generalizable seasonal patterns of respiratory virus transmission may estimate the evolution of SARS-CoV-2 or other emerging pathogens. OBJECTIVE To describe the annual and biennial variation in respiratory virus seasonality in a northern climate. DESIGN, SETTING, AND PARTICIPANTS This cohort study is an epidemiological assessment using population-based surveillance of patients with medically attended respiratory tract infection from 2005 through 2017 in Alberta, Canada. Incident cases of respiratory virus infection and infant respiratory syncytial virus (RSV) hospitalizations in Alberta were extracted from the Data Integration for Alberta Laboratories platform and Alberta Health Services Discharge Abstract Database, respectively. A deterministic susceptible-infected-recovered-susceptible mathematical model with seasonal forcing function was fitted to the data for each virus. The possible future seasonal course of SARS-CoV-2 in northern latitudes was modeled on the basis of these observations. The analysis was conducted between December 15, 2020, and February 10, 2021. EXPOSURES Seasonal respiratory pathogens. MAIN OUTCOMES AND MEASURES Incidence (temporal pattern) of respiratory virus infections and RSV hospitalizations. RESULTS A total of 37 719 incident infections with RSV, human metapneumovirus, or human coronaviruses 229E, NL63, OC43, or HKU1 among 35 375 patients (18 069 [51.1%] male; median [interquartile range], 1.29 [0.42-12.2] years) were documented. A susceptible-infected-recovered-susceptible model mirrored the epidemiological data, including a striking biennial variation with alternating severe and mild winter peaks. Qualitative description of the model and numerical simulations showed that strong seasonal contact rate and temporary immunity lasting 6 to 12 months were sufficient to explain biennial seasonality in these various respiratory viruses. The seasonality of 10 212 hospitalizations among children younger than 5 years with RSV was also explored. The median (interquartile range) rate of hospitalizations per 1000 live births was 18.6 (17.6-19.9) and 11.0 (10.4-11.7) in alternating even (severe) and odd (less-severe) seasons, respectively (P = .001). The hazard of admission was higher for children born in severe (even) seasons compared with those born in less-severe (odd) seasons (hazard ratio, 1.68; 95% CI, 1.61-1.75; P < .001). CONCLUSIONS AND RELEVANCE In this modeling study of respiratory viruses in Alberta, Canada, the seasonality followed a pattern estimated by simple mathematical models, which may be informative for anticipating future waves of pandemic SARS-CoV-2.
Collapse
Affiliation(s)
- Michael T. Hawkes
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- University of Alberta School of Public Health, Edmonton, Alberta, Canada
- Stollery Science Lab, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jamil N. Kanji
- Public Health Laboratory, Alberta Precision Laboratories, University of Alberta Hospital, Edmonton, Alberta, Canada
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Nathan Zelyas
- Public Health Laboratory, Alberta Precision Laboratories, University of Alberta Hospital, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kerry Wong
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Michelle Barton
- London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Shamir Mukhi
- Canadian Network for Public Health Intelligence, Edmonton, Alberta, Canada
| | - Joan L. Robinson
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Rice BL, Douek DC, McDermott AB, Grenfell BT, Metcalf CJE. Why are there so few (or so many) circulating coronaviruses? Trends Immunol 2021; 42:751-763. [PMID: 34366247 PMCID: PMC8272969 DOI: 10.1016/j.it.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Despite vast diversity in non-human hosts and conspicuous recent spillover events, only a small number of coronaviruses have been observed to persist in human populations. This puzzling mismatch suggests substantial barriers to establishment. We detail hypotheses that might contribute to explain the low numbers of endemic coronaviruses, despite their considerable evolutionary and emergence potential. We assess possible explanations ranging from issues of ascertainment, historically lower opportunities for spillover, aspects of human demographic changes, and features of pathogen biology and pre-existing adaptive immunity to related viruses. We describe how successful emergent viral species must triangulate transmission, virulence, and host immunity to maintain circulation. Characterizing the factors that might shape the limits of viral persistence can delineate promising research directions to better understand the combinations of pathogens and contexts that are most likely to lead to spillover.
Collapse
Affiliation(s)
- Benjamin L Rice
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| |
Collapse
|
43
|
Singh J, Pandit P, McArthur AG, Banerjee A, Mossman K. Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virol J 2021; 18:166. [PMID: 34389034 PMCID: PMC8361246 DOI: 10.1186/s12985-021-01633-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and more recently, the independent evolution of multiple SARS-CoV-2 variants has generated renewed interest in virus evolution and cross-species transmission. While all known human coronaviruses (HCoVs) are speculated to have originated in animals, very little is known about their evolutionary history and factors that enable some CoVs to co-exist with humans as low pathogenic and endemic infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1), while others, such as SARS-CoV, MERS-CoV and SARS-CoV-2 have evolved to cause severe disease. In this review, we highlight the origins of all known HCoVs and map positively selected for mutations within HCoV proteins to discuss the evolutionary trajectory of SARS-CoV-2. Furthermore, we discuss emerging mutations within SARS-CoV-2 and variants of concern (VOC), along with highlighting the demonstrated or speculated impact of these mutations on virus transmission, pathogenicity, and neutralization by natural or vaccine-mediated immunity.
Collapse
Affiliation(s)
- Jalen Singh
- School of Interdisciplinary Science, McMaster University, Hamilton, ON, Canada
| | - Pranav Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | - Karen Mossman
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
44
|
Rella SA, Kulikova YA, Dermitzakis ET, Kondrashov FA. Rates of SARS-CoV-2 transmission and vaccination impact the fate of vaccine-resistant strains. Sci Rep 2021; 11:15729. [PMID: 34330988 PMCID: PMC8324827 DOI: 10.1038/s41598-021-95025-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Vaccines are thought to be the best available solution for controlling the ongoing SARS-CoV-2 pandemic. However, the emergence of vaccine-resistant strains may come too rapidly for current vaccine developments to alleviate the health, economic and social consequences of the pandemic. To quantify and characterize the risk of such a scenario, we created a SIR-derived model with initial stochastic dynamics of the vaccine-resistant strain to study the probability of its emergence and establishment. Using parameters realistically resembling SARS-CoV-2 transmission, we model a wave-like pattern of the pandemic and consider the impact of the rate of vaccination and the strength of non-pharmaceutical intervention measures on the probability of emergence of a resistant strain. As expected, we found that a fast rate of vaccination decreases the probability of emergence of a resistant strain. Counterintuitively, when a relaxation of non-pharmaceutical interventions happened at a time when most individuals of the population have already been vaccinated the probability of emergence of a resistant strain was greatly increased. Consequently, we show that a period of transmission reduction close to the end of the vaccination campaign can substantially reduce the probability of resistant strain establishment. Our results suggest that policymakers and individuals should consider maintaining non-pharmaceutical interventions and transmission-reducing behaviours throughout the entire vaccination period.
Collapse
Affiliation(s)
- Simon A Rella
- Institute of Science and Technology Austria, 1 Am Campus, 3400, Klosterneuburg, Austria
| | | | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.
| | - Fyodor A Kondrashov
- Institute of Science and Technology Austria, 1 Am Campus, 3400, Klosterneuburg, Austria.
| |
Collapse
|
45
|
Crellen T, Pi L, Davis EL, Pollington TM, Lucas TCD, Ayabina D, Borlase A, Toor J, Prem K, Medley GF, Klepac P, Déirdre Hollingsworth T. Dynamics of SARS-CoV-2 with waning immunity in the UK population. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200274. [PMID: 34053264 PMCID: PMC8165597 DOI: 10.1098/rstb.2020.0274] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
The dynamics of immunity are crucial to understanding the long-term patterns of the SARS-CoV-2 pandemic. Several cases of reinfection with SARS-CoV-2 have been documented 48-142 days after the initial infection and immunity to seasonal circulating coronaviruses is estimated to be shorter than 1 year. Using an age-structured, deterministic model, we explore potential immunity dynamics using contact data from the UK population. In the scenario where immunity to SARS-CoV-2 lasts an average of three months for non-hospitalized individuals, a year for hospitalized individuals, and the effective reproduction number after lockdown ends is 1.2 (our worst-case scenario), we find that the secondary peak occurs in winter 2020 with a daily maximum of 387 000 infectious individuals and 125 000 daily new cases; threefold greater than in a scenario with permanent immunity. Our models suggest that longitudinal serological surveys to determine if immunity in the population is waning will be most informative when sampling takes place from the end of the lockdown in June until autumn 2020. After this period, the proportion of the population with antibodies to SARS-CoV-2 is expected to increase due to the secondary wave. Overall, our analysis presents considerations for policy makers on the longer-term dynamics of SARS-CoV-2 in the UK and suggests that strategies designed to achieve herd immunity may lead to repeated waves of infection as immunity to reinfection is not permanent. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.
Collapse
Affiliation(s)
- Thomas Crellen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Li Pi
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Emma L. Davis
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Timothy M. Pollington
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
- MathSys CDT, University of Warwick, Coventry CV4 7AL, UK
| | - Tim C. D. Lucas
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Diepreye Ayabina
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Anna Borlase
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Jaspreet Toor
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Kiesha Prem
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Graham F. Medley
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Petra Klepac
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - T. Déirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| |
Collapse
|
46
|
Rees EM, Waterlow NR, Lowe R, Kucharski AJ. Estimating the duration of seropositivity of human seasonal coronaviruses using seroprevalence studies. Wellcome Open Res 2021; 6:138. [PMID: 34708157 PMCID: PMC8517721 DOI: 10.12688/wellcomeopenres.16701.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The duration of immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still uncertain, but it is of key clinical and epidemiological importance. Seasonal human coronaviruses (HCoV) have been circulating for longer and, therefore, may offer insights into the long-term dynamics of reinfection for such viruses. Methods: Combining historical seroprevalence data from five studies covering the four circulating HCoVs with an age-structured reverse catalytic model, we estimated the likely duration of seropositivity following seroconversion. Results: We estimated that antibody persistence lasted between 0.9 (95% Credible interval: 0.6 - 1.6) and 3.8 (95% CrI: 2.0 - 7.4) years. Furthermore, we found the force of infection in older children and adults (those over 8.5 [95% CrI: 7.5 - 9.9] years) to be higher compared with young children in the majority of studies. Conclusions: These estimates of endemic HCoV dynamics could provide an indication of the future long-term infection and reinfection patterns of SARS-CoV-2.
Collapse
Affiliation(s)
- Eleanor M. Rees
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Naomi R. Waterlow
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Rachel Lowe
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Adam J. Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
47
|
Jelinek HF, Mousa M, Alefishat E, Osman W, Spence I, Bu D, Feng SF, Byrd J, Magni PA, Sahibzada S, Tay GK, Alsafar HS. Evolution, Ecology, and Zoonotic Transmission of Betacoronaviruses: A Review. Front Vet Sci 2021; 8:644414. [PMID: 34095271 PMCID: PMC8173069 DOI: 10.3389/fvets.2021.644414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus infections have been a part of the animal kingdom for millennia. The difference emerging in the twenty-first century is that a greater number of novel coronaviruses are being discovered primarily due to more advanced technology and that a greater number can be transmitted to humans, either directly or via an intermediate host. This has a range of effects from annual infections that are mild to full-blown pandemics. This review compares the zoonotic potential and relationship between MERS, SARS-CoV, and SARS-CoV-2. The role of bats as possible host species and possible intermediate hosts including pangolins, civets, mink, birds, and other mammals are discussed with reference to mutations of the viral genome affecting zoonosis. Ecological, social, cultural, and environmental factors that may play a role in zoonotic transmission are considered with reference to SARS-CoV, MERS, and SARS-CoV-2 and possible future zoonotic events.
Collapse
Affiliation(s)
- Herbert F. Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Wael Osman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ian Spence
- Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Samuel F. Feng
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jason Byrd
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Paola A. Magni
- Discipline of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Murdoch University Singapore, King's Centre, Singapore, Singapore
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Guan K. Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S. Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
48
|
Zhang Y, Su L, Chen Y, Yu S, Zhang D, Mao H, Fang L. Etiology and clinical characteristics of SARS-CoV-2 and other human coronaviruses among children in Zhejiang Province, China 2017-2019. Virol J 2021; 18:89. [PMID: 33931105 PMCID: PMC8085659 DOI: 10.1186/s12985-021-01562-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/21/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND A novel coronavirus (SARS-CoV-2) emerging has put global public health institutes on high alert. Little is known about the epidemiology and clinical characteristics of human coronaviruses infections in relation to infections with other respiratory viruses. METHODS From February 2017 to December 2019, 3660 respiratory samples submitted to Zhejiang Children Hospital with acute respiratory symptoms were tested for four human coronaviruses RNA by a novel two-tube multiplex reverse transcription polymerase chain reaction assays. Samples were also screened for the occurrence of SARS-CoV-2 by reverse transcription-PCR analysis. RESULTS Coronavirus RNAs were detected in 144 (3.93%) specimens: HCoV-HKU1 in 38 specimens, HCoV-NL63 in 62 specimens, HCoV-OC43 in 38 specimens and HCoV-229E in 8 specimens. Genomes for SARS-CoV-2 were absent in all specimens by RT-PCR analysis during the study period. The majority of HCoV infections occurred during fall months. No significant differences in gender, sample type, year were seen across species. 37.5 to 52.6% of coronaviruses detected were in specimens testing positive for other respiratory viruses. Phylogenic analysis identified that Zhejiang coronaviruses belong to multiple lineages of the coronaviruses circulating in other countries and areas. CONCLUSION Common HCoVs may have annual peaks of circulation in fall months in the Zhejiang province, China. Genetic relatedness to the coronaviruses in other regions suggests further surveillance on human coronaviruses in clinical samples are clearly needed to understand their patterns of activity and role in the emergence of novel coronaviruses.
Collapse
Affiliation(s)
- Yanjun Zhang
- Department of Laboratory, School of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310053, China.,Zhejiang Provincial Center of Disease Control and Prevention, 3399 Bincheng Road, Hangzhou, 310051, China
| | - Lingxuan Su
- Department of Laboratory, School of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yin Chen
- Zhejiang Provincial Center of Disease Control and Prevention, 3399 Bincheng Road, Hangzhou, 310051, China
| | - Sicong Yu
- Department of Laboratory, School of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Haiyan Mao
- Zhejiang Provincial Center of Disease Control and Prevention, 3399 Bincheng Road, Hangzhou, 310051, China
| | - Lei Fang
- Zhejiang Provincial Center of Disease Control and Prevention, 3399 Bincheng Road, Hangzhou, 310051, China.
| |
Collapse
|
49
|
Fintelman-Rodrigues N, da Silva APD, Dos Santos MC, Saraiva FB, Ferreira MA, Gesto J, Rodrigues DAS, Vale AM, de Azevedo IG, Soares VC, Jiang H, Tan H, Tschoeke DA, Sacramento CQ, Bozza FA, Morel CM, Bozza PT, Souza TML. Genetic Evidence and Host Immune Response in Persons Reinfected with SARS-CoV-2, Brazil. Emerg Infect Dis 2021; 27:1446-1453. [PMID: 33797393 PMCID: PMC8084520 DOI: 10.3201/eid2705.204912] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The dynamics underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection remain poorly understood. We identified a small cluster of patients in Brazil who experienced 2 episodes of coronavirus disease (COVID-19) in March and late May 2020. In the first episode, patients manifested an enhanced innate response compared with healthy persons, but neutralizing humoral immunity was not fully achieved. The second episode was associated with different SARS-CoV-2 strains, higher viral loads, and clinical symptoms. Our finding that persons with mild COVID-19 may have controlled SARS-CoV-2 replication without developing detectable humoral immunity suggests that reinfection is more frequent than supposed, but this hypothesis is not well documented.
Collapse
|
50
|
Ogbe A, Kronsteiner B, Skelly DT, Pace M, Brown A, Adland E, Adair K, Akhter HD, Ali M, Ali SE, Angyal A, Ansari MA, Arancibia-Cárcamo CV, Brown H, Chinnakannan S, Conlon C, de Lara C, de Silva T, Dold C, Dong T, Donnison T, Eyre D, Flaxman A, Fletcher H, Gardner J, Grist JT, Hackstein CP, Jaruthamsophon K, Jeffery K, Lambe T, Lee L, Li W, Lim N, Matthews PC, Mentzer AJ, Moore SC, Naisbitt DJ, Ogese M, Ogg G, Openshaw P, Pirmohamed M, Pollard AJ, Ramamurthy N, Rongkard P, Rowland-Jones S, Sampson O, Screaton G, Sette A, Stafford L, Thompson C, Thomson PJ, Thwaites R, Vieira V, Weiskopf D, Zacharopoulou P, Turtle L, Klenerman P, Goulder P, Frater J, Barnes E, Dunachie S. T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nat Commun 2021; 12:2055. [PMID: 33824342 PMCID: PMC8024333 DOI: 10.1038/s41467-021-21856-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations.
Collapse
Affiliation(s)
- Ane Ogbe
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Barbara Kronsteiner
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Donal T Skelly
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Matthew Pace
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Anthony Brown
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Emily Adland
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Kareena Adair
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Hossain Delowar Akhter
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Mohammad Ali
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Serat-E Ali
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Adrienn Angyal
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - M Azim Ansari
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Carolina V Arancibia-Cárcamo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Helen Brown
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Senthil Chinnakannan
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Christopher Conlon
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Catherine de Lara
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Thushan de Silva
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Timothy Donnison
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - David Eyre
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Big Data Institute, Nuffield Department. of Population Health, University of Oxford, Oxford, UK
| | - Amy Flaxman
- Jenner Institute, University of Oxford, Oxford, UK
| | - Helen Fletcher
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Joshua Gardner
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - James T Grist
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Carl-Philipp Hackstein
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Kanoot Jaruthamsophon
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Teresa Lambe
- Jenner Institute, University of Oxford, Oxford, UK
| | - Lian Lee
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Wenqin Li
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Nicholas Lim
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Philippa C Matthews
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexander J Mentzer
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Shona C Moore
- HPRU in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Monday Ogese
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Graham Ogg
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Peter Openshaw
- Faculty of Medicine, National Heart and Lung institute, Imperial College, London, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Narayan Ramamurthy
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Patpong Rongkard
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Sarah Rowland-Jones
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
- Nuffield Department. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Oliver Sampson
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, Los Angeles, California, USA
| | - Lizzie Stafford
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Craig Thompson
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Paul J Thomson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Ryan Thwaites
- Faculty of Medicine, National Heart and Lung institute, Imperial College, London, UK
| | - Vinicius Vieira
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, Los Angeles, California, USA
| | - Panagiota Zacharopoulou
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Lance Turtle
- HPRU in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Paul Klenerman
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, UK
| | - John Frater
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Susanna Dunachie
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| |
Collapse
|