1
|
Suresh K, Bhattacharyya S, Carvajal J, Ghosh R, Zeisler-Diehl VV, Böckem V, Nagel KA, Wojciechowski T, Schreiber L. Effects of water stress on apoplastic barrier formation in soil grown roots differ from hydroponically grown roots: Histochemical, biochemical and molecular evidence. PLANT, CELL & ENVIRONMENT 2024; 47:4917-4931. [PMID: 39110071 DOI: 10.1111/pce.15067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/20/2024] [Indexed: 11/06/2024]
Abstract
In root research, hydroponic plant cultivation is commonly used and soil experiments are rare. We investigated the response of 12-day-old barley roots, cultivated in soil-filled rhizotrons, to different soil water potentials (SWP) comparing a modern cultivar (cv. Scarlett) with a wild accession ICB181243 from Pakistan. Water potentials were quantified in soils with different relative water contents. Root anatomy was studied using histochemistry and microscopy. Suberin and lignin amounts were quantified by analytical chemistry. Transcriptomic changes were observed by RNA-sequencing. Compared with control with decreasing SWP, total root length decreased, the onset of endodermal suberization occurred much closer towards the root tips, amounts of suberin and lignin increased, and corresponding biosynthesis genes were upregulated in response to decreasing SWP. We conclude that decreasing water potentials enhanced root suberization and lignification, like osmotic stress experiments in hydroponic cultivation. However, in soil endodermal cell suberization was initiated very close towards the root tip, and root length as well as suberin amounts were about twofold higher compared with hydroponic cultivation.
Collapse
Affiliation(s)
- Kiran Suresh
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Sabarna Bhattacharyya
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Jorge Carvajal
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Charles University, Praha, Czech Republic
| | - Viktoria V Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Vera Böckem
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kerstin A Nagel
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Yuan Z, Rembe M, Mascher M, Stein N, Jayakodi M, Börner A, Oldach K, Jahoor A, Jensen JD, Rudloff J, Dohrendorf VE, Kuhfus LP, Dyrszka E, Conte M, Hinz F, Trouchaud S, Reif JC, El Hanafi S. Capitalizing on genebank core collections for rare and novel disease resistance loci to enhance barley resilience. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5940-5954. [PMID: 38932564 PMCID: PMC11427843 DOI: 10.1093/jxb/erae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
In the realm of agricultural sustainability, the utilization of plant genetic resources for enhanced disease resistance is paramount. Preservation efforts in genebanks are justified by their potential contributions to future crop improvement. To capitalize on the potential of plant genetic resources, we focused on a barley core collection from the German ex situ genebank and contrasted it with a European elite collection. The phenotypic assessment included 812 plant genetic resources and 298 elites, with a particular emphasis on four disease traits (Puccinia hordei, Blumeria graminis hordei, Ramularia collo-cygni, and Rhynchosporium commune). An integrated genome-wide association study, employing both Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) and a linear mixed model, was performed to unravel the genetic underpinnings of disease resistance. A total of 932 marker-trait associations were identified and assigned to 49 quantitative trait loci. The accumulation of novel and rare resistance alleles significantly bolstered the overall resistance level in plant genetic resources. Three plant genetic resources donors with high counts of novel/rare alleles and exhibiting exceptional resistance to leaf rust and powdery mildew were identified, offering promise for targeted pre-breeding goals and enhanced resilience in future varieties. Our findings underscore the critical contribution of plant genetic resources to strengthening crop resilience and advancing sustainable agricultural practices.
Collapse
Affiliation(s)
- Zhihui Yuan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Maximilian Rembe
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, D-37574 Einbeck, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Klaus Oldach
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str. 5, D-29303 Bergen, Germany
| | - Ahmed Jahoor
- Nordic Seed Germany GmbH, Kirchhorster Str. 16, D-31688 Nienstädt, Germany
| | - Jens Due Jensen
- Nordic Seed Germany GmbH, Kirchhorster Str. 16, D-31688 Nienstädt, Germany
| | - Julia Rudloff
- Limagrain GmbH, Salderstr. 4, D-31226 Peine-Rosenthal, Germany
| | | | | | - Emmanuelle Dyrszka
- Syngenta France SAS, 12 Chemin de l’hobit, BP 27, 31790, Saint-Sauveur, France
| | - Matthieu Conte
- Syngenta France SAS, 12 Chemin de l’hobit, BP 27, 31790, Saint-Sauveur, France
| | - Frederik Hinz
- SAATZUCHT BAUER GmbH & CO.KG, Landshuter Straße 3a, D-93083 Obertraubling, Germany
| | - Salim Trouchaud
- Secobra Saatzucht GmbH, Feldkirchen 3, D-85368 Moosburg an der Isar, Germany
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Samira El Hanafi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| |
Collapse
|
3
|
Chen B, Hou Y, Huo Y, Zeng Z, Hu D, Mao X, Zhong C, Xu Y, Tang X, Gao X, Ma J, Chen G. QTL Mapping of Yield, Agronomic, and Nitrogen-Related Traits in Barley ( Hordeum vulgare L.) under Low Nitrogen and Normal Nitrogen Treatments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2137. [PMID: 39124255 PMCID: PMC11314459 DOI: 10.3390/plants13152137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Improving low nitrogen (LN) tolerance in barley (Hordeum vulgare L.) increases global barley yield and quality. In this study, a recombinant inbred line (RIL) population crossed between "Baudin × CN4079" was used to conduct field experiments on twenty traits of barley yield, agronomy, and nitrogen(N)-related traits under LN and normal nitrogen (NN) treatments for two years. This study identified seventeen QTL, comprising eight QTL expressed under both LN and NN treatments, eight LN-specific QTL, and one NN-specific QTL. The localized C2 cluster contained QTL controlling yield, agronomic, and N-related traits. Of the four novel QTL, the expression of the N-related QTL Qstna.sau-5H and Qnhi.sau-5H was unaffected by N treatment. Qtgw.sau-2H for thousand-grain weight, Qph.sau-3H for plant height, Qsl.sau-7H for spike length, and Qal.sau-7H for awn length were identified to be the four stable expression QTL. Correlation studies revealed a significant negative correlation between grain N content and harvest index (p < 0.01). These results are essential for barley marker-assisted selection (MAS) breeding.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Yao Hou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Yuanfeng Huo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Zhaoyong Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Deyi Hu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xingwu Mao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Chengyou Zhong
- College of Economics, Hunan Agricultural University, Changsha 410125, China;
| | - Yinggang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| |
Collapse
|
4
|
Maanju S, Jasrotia P, Yadav SS, Kashyap PL, Kumar S, Jat MK, Lal C, Sharma P, Singh G, Singh GP. Deciphering the genetic diversity and population structure of wild barley germplasm against corn leaf aphid, Rhopalosiphum maidis (Fitch). Sci Rep 2023; 13:17313. [PMID: 37828115 PMCID: PMC10570286 DOI: 10.1038/s41598-023-42717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Corn-leaf aphid (CLA-Rhopalosiphum maidis) is a major insect pest of barley (Hordeum vulgare) causing yield loss upto 30% under severe infestation. Keeping in view of the availability of very few sources of CLA resistance in barley, the present investigation was framed to assess the genetic diversity and population structure of 43 wild barley (H. vulgare subsp. spontaneum) genotypes using eight microsatellite markers against R. maidis. Three statistical methods viz. multivariate-hierarchical clustering, Bayesian clustering and PCoA, unanimously grouped genotypes into three subpopulations (K = 3) with 25.58% (SubPop1-Red), 39.53% (SubPop2-Green) and 34.88% (SubPop3-Blue) genotypes including admixtures. Based on Q ≥ 66.66%, 37.20% genotypes formed a superficial "Mixed/Admixture" subpopulation. All polymorphic SSR markers generated 36 alleles, averaging to 4.5 alleles/locus (2-7 range). The PIC and H were highest in MS31 and lowest in MS28, with averages of 0.66 and 0.71. MAF and mean genetic diversity were 0.16 and 89.28%, respectively. All these parameters indicated the presence of predominant genetic diversity and population structure amongst the studied genotypes. Based on AII, only 6 genotypes were found to be R. maidis resistant. SubPop3 had 91.66% (11) of the resistant or moderately resistant genotypes. SubPop3 also had the most pure genotypes (11), the least aphid infestation (8.78), and the highest GS (0.88), indicating its suitability for future R. maidis resistance breeding initiatives.
Collapse
Affiliation(s)
- Sunny Maanju
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
- CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Poonam Jasrotia
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India.
| | | | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Manoj Kumar Jat
- CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Chuni Lal
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Preeti Sharma
- CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Gyanendra Pratap Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| |
Collapse
|
5
|
Farooqi MQU, Moody D, Bai G, Bernardo A, St. Amand P, Diggle AJ, Rengel Z. Genetic characterization of root architectural traits in barley ( Hordeum vulgare L.) using SNP markers. FRONTIERS IN PLANT SCIENCE 2023; 14:1265925. [PMID: 37860255 PMCID: PMC10582755 DOI: 10.3389/fpls.2023.1265925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023]
Abstract
Increasing attention is paid to providing new tools to breeders for targeted breeding for specific root traits that are beneficial in low-fertility, drying soils; however, such information is not available for barley (Hordeum vulgare L.). A panel of 191 barley accessions (originating from Australia, Europe, and Africa) was phenotyped for 26 root and shoot traits using the semi-hydroponic system and genotyped using 21 062 high-quality single nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing (GBS). The population structure analysis of the barley panel identified six distinct groups. We detected 1199 significant (P<0.001) marker-trait associations (MTAs) with r2 values up to 0.41. The strongest MTAs were found for root diameter in the top 20 cm and the longest root length. Based on the physical locations of these MTAs in the barley reference genome, we identified 37 putative QTLs for the root traits, and three QTLs for shoot traits, with nine QTLs located in the same physical regions. The genomic region 640-653 Mb on chromosome 7H was significant for five root length-related traits, where 440 annotated genes were located. The putative QTLs for various root traits identified in this study may be useful for genetic improvement regarding the adaptation of new barley cultivars to suboptimal environments and abiotic stresses.
Collapse
Affiliation(s)
- M. Q. U. Farooqi
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | | | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Amy Bernardo
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Paul St. Amand
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Art J. Diggle
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
6
|
Qiu CW, Ma Y, Wang QQ, Fu MM, Li C, Wang Y, Wu F. Barley HOMOCYSTEINE METHYLTRANSFERASE 2 confers drought tolerance by improving polyamine metabolism. PLANT PHYSIOLOGY 2023; 193:389-409. [PMID: 37300541 DOI: 10.1093/plphys/kiad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Drought stress poses a serious threat to crop production worldwide. Genes encoding homocysteine methyltransferase (HMT) have been identified in some plant species in response to abiotic stress, but its molecular mechanism in plant drought tolerance remains unclear. Here, transcriptional profiling, evolutionary bioinformatics, and population genetics were conducted to obtain insight into the involvement of HvHMT2 from Tibetan wild barley (Hordeum vulgare ssp. agriocrithon) in drought tolerance. We then performed genetic transformation coupled with physio-biochemical dissection and comparative multiomics approaches to determine the function of this protein and the underlying mechanism of HvHMT2-mediated drought tolerance. HvHMT2 expression was strongly induced by drought stress in tolerant genotypes in a natural Tibetan wild barley population and contributed to drought tolerance through S-adenosylmethionine (SAM) metabolism. Overexpression of HvHMT2 promoted HMT synthesis and efficiency of the SAM cycle, leading to enhanced drought tolerance in barley through increased endogenous spermine and less oxidative damage and growth inhibition, thus improving water status and final yield. Disruption of HvHMT2 expression led to hypersensitivity under drought treatment. Application of exogenous spermine reduced accumulation of reactive oxygen species (ROS), which was increased by exogenous mitoguazone (inhibitor of spermine biosynthesis), consistent with the association of HvHMT2-mediated spermine metabolism and ROS scavenging in drought adaptation. Our findings reveal the positive role and key molecular mechanism of HvHMT2 in drought tolerance in plants, providing a valuable gene not only for breeding drought-tolerant barley cultivars but also for facilitating breeding schemes in other crops in a changing global climate.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P.R. China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qing-Qing Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P.R. China
| | - Man-Man Fu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chengdao Li
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
7
|
Ogrodowicz P, Wojciechowicz MK, Kuczyńska A, Krajewski P, Kempa M. The Effects of Growth Modification on Pollen Development in Spring Barley ( Hordeum vulgare L.) Genotypes with Contrasting Drought Tolerance. Cells 2023; 12:1656. [PMID: 37371126 DOI: 10.3390/cells12121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Drought stress inducing pollen sterility can reduce crop yield worldwide. The regulatory crosstalk associated with the effects of drought on pollen formation at the cellular level has not been explored in detail so far. In this study, we performed morphological and cytoembryological analysis of anther perturbations and examined pollen development in two spring barley genotypes that differ in earliness and drought tolerance. The Syrian breeding line CamB (drought-tolerant) and the European cultivar Lubuski (drought-sensitive) were used as experimental materials to analyze the drought-induced changes in yield performance, chlorophyll fluorescence kinetics, the pollen grain micromorphology and ultrastructure during critical stages of plant development. In addition, fluctuations in HvGAMYB expression were studied, as this transcription factor is closely associated with the development of the anther. In the experiments, the studied plants were affected by drought, as was confirmed by the analyses of yield performance and chlorophyll fluorescence kinetics. However, contrary to our expectations, the pollen development of plants grown under specific conditions was not severely affected. The results also suggest that growth modification, as well as the perturbation in light distribution, can affect the HvGAMYB expression. This study demonstrated that the duration of the vegetation period can influence plant drought responses and, as a consequence, the processes associated with pollen development as every growth modification changes the dynamics of drought effects as well as the duration of plant exposition to drought.
Collapse
Affiliation(s)
- Piotr Ogrodowicz
- Institute of Plant Genetics Polish Academy of Sciences, 34 Strzeszynska Street, 60-479 Poznan, Poland
| | - Maria Katarzyna Wojciechowicz
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 1 Wieniawskiego Street, 60-479 Poznan, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics Polish Academy of Sciences, 34 Strzeszynska Street, 60-479 Poznan, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics Polish Academy of Sciences, 34 Strzeszynska Street, 60-479 Poznan, Poland
| | - Michał Kempa
- Institute of Plant Genetics Polish Academy of Sciences, 34 Strzeszynska Street, 60-479 Poznan, Poland
| |
Collapse
|
8
|
Zeng Z, Song S, Ma J, Hu D, Xu Y, Hou Y, He C, Tang X, Lan T, Zeng J, Gao X, Chen G. QTL Mapping of Agronomic and Physiological Traits at the Seedling and Maturity Stages under Different Nitrogen Treatments in Barley. Int J Mol Sci 2023; 24:ijms24108736. [PMID: 37240081 DOI: 10.3390/ijms24108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Nitrogen (N) stress seriously constrains barley (Hordeum vulgare L.) production globally by influencing its growth and development. In this study, we used a recombinant inbred line (RIL) population of 121 crosses between the variety Baudin and the wild barley accession CN4027 to detect QTL for 27 traits at the seedling stage in hydroponic culture trials and 12 traits at the maturity stage in field trials both under two N treatments, aiming to uncover favorable alleles for N tolerance in wild barley. In total, eight stable QTL and seven QTL clusters were detected. Among them, the stable QTL Qtgw.sau-2H located in a 0.46 cM interval on the chromosome arm 2HL was a novel QTL specific for low N. Notably, Clusters C4 and C7 contained QTL for traits at both the seedling and maturity stages. In addition, four stable QTLs in Cluster C4 were identified. Furthermore, a gene (HORVU2Hr1G080990.1) related to grain protein in the interval of Qtgw.sau-2H was predicted. Correlation analysis and QTL mapping showed that different N treatments significantly affected agronomic and physiological traits at the seedling and maturity stages. These results provide valuable information for understanding N tolerance as well as breeding and utilizing the loci of interest in barley.
Collapse
Affiliation(s)
- Zhaoyong Zeng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiyun Song
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Deyi Hu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinggang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Hou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengjun He
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Zahn T, Zhu Z, Ritoff N, Krapf J, Junker A, Altmann T, Schmutzer T, Tüting C, Kastritis PL, Babben S, Quint M, Pillen K, Maurer A. Novel exotic alleles of EARLY FLOWERING 3 determine plant development in barley. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad127. [PMID: 37010230 DOI: 10.1093/jxb/erad127] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 06/19/2023]
Abstract
EARLY FLOWERING 3 (ELF3) is an important regulator of various physiological and developmental processes and hence may serve to improve plant adaptation which will be substantial for future plant breeding. To expand the limited knowledge on barley ELF3 in determining agronomic traits, we conducted field studies with heterogeneous inbred families (HIFs) derived from selected lines of the wild barley nested association mapping population HEB-25. During two growing seasons, phenotypes of nearly isogenic HIF sister lines, segregating for exotic and cultivated alleles at the ELF3 locus, were compared for ten developmental and yield-related traits. We determine novel exotic ELF3 alleles and show that HIF lines, carrying the exotic ELF3 allele, accelerated plant development compared to the cultivated ELF3 allele, depending on the genetic background. Remarkably, the most extreme effects on phenology could be attributed to one exotic ELF3 allele differing from the cultivated Barke ELF3 allele in only one SNP. This SNP causes an amino acid substitution (W669G), which predictively has an impact on the protein structure of ELF3, thereby possibly affecting phase separation behaviour and nano-compartment formation of ELF3 and, potentially, also affecting its local cellular interactions causing significant trait differences between HIF sister lines.
Collapse
Affiliation(s)
- Tanja Zahn
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120, Halle (Saale), Germany
| | - Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120, Halle (Saale), Germany
| | - Niklas Ritoff
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120, Halle (Saale), Germany
| | - Jonathan Krapf
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120, Halle (Saale), Germany
| | - Astrid Junker
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120, Halle (Saale), Germany
| | - Christian Tüting
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Steve Babben
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120, Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120, Halle (Saale), Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120, Halle (Saale), Germany
| |
Collapse
|
10
|
Wang Y, Chen G, Zeng F, Han Z, Qiu CW, Zeng M, Yang Z, Xu F, Wu D, Deng F, Xu S, Chater C, Korol A, Shabala S, Wu F, Franks P, Nevo E, Chen ZH. Molecular evidence for adaptive evolution of drought tolerance in wild cereals. THE NEW PHYTOLOGIST 2023; 237:497-514. [PMID: 36266957 DOI: 10.1111/nph.18560] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The considerable drought tolerance of wild cereal crop progenitors has diminished during domestication in the pursuit of higher productivity. Regaining this trait in cereal crops is essential for global food security but requires novel genetic insight. Here, we assessed the molecular evidence for natural variation of drought tolerance in wild barley (Hordeum spontaneum), wild emmer wheat (Triticum dicoccoides), and Brachypodium species collected from dry and moist habitats at Evolution Canyon, Israel (ECI). We report that prevailing moist vs dry conditions have differentially shaped the stomatal and photosynthetic traits of these wild cereals in their respective habitats. We present the genomic and transcriptomic evidence accounting for differences, including co-expression gene modules, correlated with physiological traits, and selective sweeps, driven by the xeric site conditions on the African Slope (AS) at ECI. Co-expression gene module 'circadian rhythm' was linked to significant drought-induced delay in flowering time in Brachypodium stacei genotypes. African Slope-specific differentially expressed genes are important in barley drought tolerance, verified by silencing Disease-Related Nonspecific Lipid Transfer 1 (DRN1), Nonphotochemical Quenching 4 (NPQ4), and Brassinosteroid-Responsive Ring-H1 (BRH1). Our results provide new genetic information for the breeding of resilient wheat and barley in a changing global climate with increasingly frequent drought events.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fanrong Zeng
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Cheng-Wei Qiu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zeng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Fei Xu
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Dezhi Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fenglin Deng
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shengchun Xu
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Caspar Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Mount Carmel, 34988384, Haifa, Israel
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, 7004, Australia
- School of Biological Science, University of Western Australia, Crawley, WA, 6009, Australia
| | - Feibo Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Peter Franks
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, 34988384, Haifa, Israel
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
11
|
Elbasyoni IS, Eltaher S, Morsy S, Mashaheet AM, Abdallah AM, Ali HG, Mariey SA, Baenziger PS, Frels K. Novel Single-Nucleotide Variants for Morpho-Physiological Traits Involved in Enhancing Drought Stress Tolerance in Barley. PLANTS (BASEL, SWITZERLAND) 2022; 11:3072. [PMID: 36432800 PMCID: PMC9696095 DOI: 10.3390/plants11223072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Barley (Hordeum vulgare L.) thrives in the arid and semi-arid regions of the world; nevertheless, it suffers large grain yield losses due to drought stress. A panel of 426 lines of barley was evaluated in Egypt under deficit (DI) and full irrigation (FI) during the 2019 and 2020 growing seasons. Observations were recorded on the number of days to flowering (NDF), total chlorophyll content (CH), canopy temperature (CAN), grain filling duration (GFD), plant height (PH), and grain yield (Yield) under DI and FI. The lines were genotyped using the 9K Infinium iSelect single nucleotide polymorphisms (SNP) genotyping platform, which resulted in 6913 high-quality SNPs. In conjunction with the SNP markers, the phenotypic data were subjected to a genome-wide association scan (GWAS) using Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK). The GWAS results indicated that 36 SNPs were significantly associated with the studied traits under DI and FI. Furthermore, eight markers were significant and common across DI and FI water regimes, while 14 markers were uniquely associated with the studied traits under DI. Under DI and FI, three (11_10326, 11_20042, and 11_20170) and five (11_20099, 11_10326, 11_20840, 12_30298, and 11_20605) markers, respectively, had pleiotropic effect on at least two traits. Among the significant markers, 24 were annotated to known barley genes. Most of these genes were involved in plant responses to environmental stimuli such as drought. Overall, nine of the significant markers were previously reported, and 27 markers might be considered novel. Several markers identified in this study could enable the prediction of barley accessions with optimal agronomic performance under DI and FI.
Collapse
Affiliation(s)
- Ibrahim S. Elbasyoni
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Shamseldeen Eltaher
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City 32897, Egypt
| | - Sabah Morsy
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Alsayed M. Mashaheet
- Plant Pathology Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Ahmed M. Abdallah
- Natural Resources and Agricultural Engineering Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Heba G. Ali
- Barley Research Department, Field Crops Research Institute, Agricultural Research Center, 9 Gamma Street-Giza, Cairo 12619, Egypt
| | - Samah A. Mariey
- Barley Research Department, Field Crops Research Institute, Agricultural Research Center, 9 Gamma Street-Giza, Cairo 12619, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Katherine Frels
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
12
|
Leybourne DJ, Valentine TA, Binnie K, Taylor A, Karley AJ, Bos JIB. Drought stress increases the expression of barley defence genes with negative consequences for infesting cereal aphids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2238-2250. [PMID: 35090009 DOI: 10.1093/jxb/erac010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Crops are exposed to myriad abiotic and biotic stressors with negative consequences. Two stressors that are expected to increase under climate change are drought and infestation with herbivorous insects, including important aphid species. Expanding our understanding of the impact drought has on the plant-aphid relationship will become increasingly important under future climate scenarios. Here we use a previously characterized plant-aphid system comprising a susceptible variety of barley, a wild relative of barley with partial aphid resistance, and the bird cherry-oat aphid to examine the drought-plant-aphid relationship. We show that drought has a negative effect on plant physiology and aphid fitness, and provide evidence to suggest that plant resistance influences aphid responses to drought stress. Furthermore, we show that the expression of thionin genes, plant defensive compounds that contribute to aphid resistance, increase in susceptible plants exposed to drought stress but remain at constant levels in the partially resistant plant, suggesting that they play an important role in determining the success of aphid populations. This study highlights the role of plant defensive processes in mediating the interactions between the environment, plants, and herbivorous insects.
Collapse
Affiliation(s)
- Daniel J Leybourne
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Tracy A Valentine
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Kirsty Binnie
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Anna Taylor
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Alison J Karley
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
13
|
Jabeen Z, Irshad F, Hussain N, Han Y, Zhang G. NHX-Type Na +/H + Antiporter Gene Expression Under Different Salt Levels and Allelic Diversity of HvNHX in Wild and Cultivated Barleys. Front Genet 2022; 12:809988. [PMID: 35273633 PMCID: PMC8902669 DOI: 10.3389/fgene.2021.809988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Salinity tolerance is a multifaceted trait attributed to various mechanisms. Wild barley is highly specialized to grow under severe environmental conditions of Tibet and is well-known for its diverse germplasm with high tolerance to abiotic stresses. The present study focused on determining the profile of the expression of isoforms of the HvNHX gene in 36 wild and two cultivated barley under salt stress. Our findings revealed that in leaves and roots, expression of HvNHX1 and HvNHX3 in XZ16 and CM72 was upregulated at all times as compared with sensitive ones. The HvNHX2 and HvNHX4 isoforms were also induced by salt stress, although not to the same extent as HvNHX1 and HvNHX3. Gene expression analysis revealed that HvNHX1 and HvNHX3 are the candidate genes that could have the function of regulators of ions by sequestration of Na+ in the vacuole. HvNHX1 and HvNHX3 showed a wide range of sequence variations in an amplicon, identified via single-nucleotide polymorphisms (SNPs). Evaluation of the sequencing data of 38 barley genotypes, including Tibetan wild and cultivated varieties, showed polymorphisms, including SNPs, and small insertion and deletion (INDEL) sites in the targeted genes HvNHX1 and HvNHX3. Comprehensive analysis of the results revealed that Tibetan wild barley has distinctive alleles of HvNHX1 and HvNHX3 which confer tolerance to salinity. Furthermore, less sodium accumulation was observed in the root of XZ16 than the other genotypes as visualized by CoroNa-Green, a sodium-specific fluorophore. XZ16 is the tolerant genotype, showing least reduction of root and leaf dry weight under moderate (150 mM) and severe (300 mM) NaCl stress. Evaluation of genetic variation and identification of salt tolerance mechanism in wild barley could be promoting approaches to unravel the novel alleles involved in salinity tolerance.
Collapse
Affiliation(s)
- Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan.,Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Faiza Irshad
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Nazim Hussain
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yong Han
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Fu L, Wu D, Zhang X, Xu Y, Kuang L, Cai S, Zhang G, Shen Q. Vacuolar H+-pyrophosphatase HVP10 enhances salt tolerance via promoting Na+ translocation into root vacuoles. PLANT PHYSIOLOGY 2022; 188:1248-1263. [PMID: 34791461 PMCID: PMC8825340 DOI: 10.1093/plphys/kiab538] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 05/06/2023]
Abstract
Vacuolar H+-pumping pyrophosphatases (VPs) provide a proton gradient for Na+ sequestration in the tonoplast; however, the regulatory mechanisms of VPs in developing salt tolerance have not been fully elucidated. Here, we cloned a barley (Hordeum vulgare) VP gene (HVP10) that was identified previously as the HvNax3 gene. Homology analysis showed VP10 in plants had conserved structure and sequence and likely originated from the ancestors of the Ceramiales order of Rhodophyta (Cyanidioschyzon merolae). HVP10 was mainly expressed in roots and upregulated in response to salt stress. After salt treatment for 3 weeks, HVP10 knockdown (RNA interference) and knockout (CRISPR/Cas9 gene editing) barley plants showed greatly inhibited growth and higher shoot Na+ concentration, Na+ transportation rate and xylem Na+ loading relative to wild-type (WT) plants. Reverse transcription quantitative polymerase chain reaction and microelectronic Ion Flux Estimation results indicated that HVP10 likely modulates Na+ sequestration into the root vacuole by acting synergistically with Na+/H+ antiporters (HvNHX1 and HvNHX4) to enhance H+ efflux and K+ maintenance in roots. Moreover, transgenic rice (Oryza sativa) lines overexpressing HVP10 also showed higher salt tolerance than the WT at both seedling and adult stages with less Na+ translocation to shoots and higher grain yields under salt stress. This study reveals the molecular mechanism of HVP10 underlying salt tolerance and highlights its potential in improving crop salt tolerance.
Collapse
Affiliation(s)
- Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xincheng Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yunfeng Xu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liuhui Kuang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Shengguan Cai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
- Author for communication:
| |
Collapse
|
15
|
Gharaghanipor N, Arzani A, Rahimmalek M, Ravash R. Physiological and Transcriptome Indicators of Salt Tolerance in Wild and Cultivated Barley. FRONTIERS IN PLANT SCIENCE 2022; 13:819282. [PMID: 35498693 PMCID: PMC9047362 DOI: 10.3389/fpls.2022.819282] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/21/2022] [Indexed: 05/05/2023]
Abstract
Barley is used as a model cereal to decipher salt tolerance mechanisms due to its simpler genome than wheat and enhanced salt tolerance compared to rice and wheat. In the present study, RNA-Seq based transcriptomic profiles were compared between salt-tolerant wild (Hordeum spontaneum, genotype no. 395) genotype and salt-sensitive cultivated (H. vulgare, 'Mona' cultivar) subjected to salt stress (300 mM NaCl) and control (0 mM NaCl) conditions. Plant growth and physiological attributes were also evaluated in a separate experiment as a comparison. Wild barley was significantly less impacted by salt stress than cultivated barley in growth and physiology and hence was more stress-responsive functionally. A total of 6,048 differentially expressed genes (DEGs) including 3,025 up-regulated and 3,023 down-regulated DEGs were detected in the wild genotype in salt stress conditions. The transcripts of salt-stress-related genes were profoundly lower in the salt-sensitive than the tolerant barley having a total of 2,610 DEGs (580 up- and 2,030 down-regulated). GO enrichment analysis showed that the DEGs were mainly enriched in biological processes associated with stress defenses (e.g., cellular component, signaling network, ion transporter, regulatory proteins, reactive oxygen species (ROS) scavenging, hormone biosynthesis, osmotic homeostasis). Comparison of the candidate genes in the two genotypes showed that the tolerant genotype contains higher functional and effective salt-tolerance related genes with a higher level of transcripts than the sensitive one. In conclusion, the tolerant genotype consistently exhibited better tolerance to salt stress in physiological and functional attributes than did the sensitive one. These differences provide a comprehensive understanding of the evolved salt-tolerance mechanism in wild barley. The shared mechanisms between these two sub-species revealed at each functional level will provide more reliable insights into the basic mechanisms of salt tolerance in barley species.
Collapse
Affiliation(s)
- Narges Gharaghanipor
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- *Correspondence: Narges Gharaghanipor,
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- Ahmad Arzani, , orcid.org/0000-0001-5297-6724
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Rudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
16
|
Pan Y, Zhu J, Hong Y, Zhang M, Lv C, Guo B, Shen H, Xu X, Xu R. Identification of novel QTL contributing to barley yellow mosaic resistance in wild barley (Hordeum vulgare spp. spontaneum). BMC PLANT BIOLOGY 2021; 21:560. [PMID: 34823470 PMCID: PMC8613928 DOI: 10.1186/s12870-021-03321-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Barley yellow mosaic disease (BYMD) caused by Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV) seriously threatens the production of winter barley. Cultivating and promoting varieties that carry disease-resistant genes is one of the most powerful ways to minimize the disease's effect on yield. However, as the BYMD virus mutates rapidly, resistance conferred by the two cloned R genes to the virus had been overcome by new virus strains. There is an urgent need for novel resistance genes in barley that convey sustainable resistance to newly emerging virus strains causing BYMD. RESULTS A doubled haploid (DH) population derived from a cross of SRY01 (BYMD resistant wild barley) and Gairdner (BYMD susceptible barley cultivar) was used to explore for QTL of resistance to BYMD in barley. A total of six quantitative trait loci (qRYM-1H, qRYM-2Ha, qRYM-2Hb, qRYM-3H, qRYM-5H, and qRYM-7H) related to BYMD resistance were detected, which were located on chromosomes 1H, 2H, 3H, 5H, and 7H. Both qRYM-1H and qRYM-2Ha were detected in all environments. qRYM-1H was found to be overlapped with rym7, a known R gene to the disease, whereas qRYM-2Ha is a novel QTL on chromosome 2H originated from SRY01, explaining phenotypic variation from 9.8 to 17.8%. The closely linked InDel markers for qRYM-2Ha were developed which could be used for marker-assisted selection in barley breeding. qRYM-2Hb and qRYM-3H were stable QTL for specific resistance to Yancheng and Yangzhou virus strains, respectively. qRYM-5H and qRYM-7H identified in Yangzhou were originated from Gairdner. CONCLUSIONS Our work is focusing on a virus disease (barley yellow mosaic) of barley. It is the first report on BYMD-resistant QTL from wild barley accessions. One novel major QTL (qRYM-2Ha) for the resistance was detected. The consistently detected new genes will potentially serve as novel sources for achieving pre-breeding barley materials with resistance to BYMD.
Collapse
Affiliation(s)
- Yuhan Pan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Huiquan Shen
- Jiangsu Institute for Seaside Agricultural Sciences and Yancheng Academy of Agricultural Science, Yancheng, 224002, Jiangsu, China
| | - Xiao Xu
- Jiangsu Institute for Seaside Agricultural Sciences and Yancheng Academy of Agricultural Science, Yancheng, 224002, Jiangsu, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
17
|
Clare SJ, Çelik Oğuz A, Effertz K, Sharma Poudel R, See D, Karakaya A, Brueggeman RS. Genome-wide association mapping of Pyrenophora teres f. maculata and Pyrenophora teres f. teres resistance loci utilizing natural Turkish wild and landrace barley populations. G3 GENES|GENOMES|GENETICS 2021; 11:6332006. [PMID: 34849783 PMCID: PMC8527468 DOI: 10.1093/g3journal/jkab269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 11/15/2022]
Abstract
Unimproved landraces and wild relatives of crops are sources of genetic diversity that
were lost post domestication in modern breeding programs. To tap into this rich resource,
genome-wide association studies in large plant genomes have enabled the rapid genetic
characterization of desired traits from natural landrace and wild populations. Wild barley
(Hordeum spontaneum), the progenitor of domesticated barley
(Hordeum vulgare), is dispersed across Asia and North Africa, and has
co-evolved with the ascomycetous fungal pathogens Pyrenophora teres f.
teres and P. teres f. maculata, the
causal agents of the diseases net form of net blotch and spot form of net blotch,
respectively. Thus, these wild and local adapted barley landraces from the region of
origin of both the host and pathogen represent a diverse gene pool to identify new sources
of resistance, due to millions of years of co-evolution. The barley—P.
teres pathosystem is governed by complex genetic interactions with dominant,
recessive, and incomplete resistances and susceptibilities, with many isolate-specific
interactions. Here, we provide the first genome-wide association study of wild and
landrace barley from the Fertile Crescent for resistance to both forms of P.
teres. A total of 14 loci, four against P. teres f.
maculata and 10 against P. teres f.
teres, were identified in both wild and landrace populations, showing
that both are genetic reservoirs for novel sources of resistance. We also highlight the
importance of using multiple algorithms to both identify and validate additional loci.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | - Arzu Çelik Oğuz
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | | | - Deven See
- Wheat Health, Genetics and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99163, USA
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Aziz Karakaya
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
18
|
Genome-wide identification of expansin gene family in barley and drought-related expansins identification based on RNA-seq. Genetica 2021; 149:283-297. [PMID: 34643833 DOI: 10.1007/s10709-021-00136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Expansins are cell wall loosening proteins and involved in various developmental processes and abiotic stress. No systematic research, however, has been conducted on expansin genes family in barley. A total of 46 expansins were identified and could be classified into three subfamilies in Hordeum vulgare: HvEXPA, HvEXPB, and HvEXLA. All expansin proteins contained two conserved domains: DPBB_1 and Pollen_allerg_1. Expansins, in the same subfamily, share similar motifs composition and exon-intron organization; but greater differences were found among different subfamilies. Expansins are distributed unevenly on 7 barley chromosomes; tandem duplicates, including the collinear tandem array, contribute to the forming of the expansin genes family in barley with few whole-genome duplication events. Most HvEXPAs mainly expressed in embryonic and root tissues. HvEXPBs and HvEXLAs showed different expression patterns in 16 tissues during different developmental stages. In response to water deficit, expansins in wild barley were more sensitive than that in cultivated barley; the expressions of HvEXPB5 and HvEXPB6 were significantly induced in wild barley under drought stress. Our study provides a comprehensive and systematic analysis of the barley expansin genes in genome-wide level. This information will lay a solid foundation for further functional exploration of expansin genes in plant development and drought stress tolerance.
Collapse
|
19
|
Chen C, Chu Y, Huang Q, Zhang W, Ding C, Zhang J, Li B, Zhang T, Li Z, Su X. Morphological, physiological, and transcriptional responses to low nitrogen stress in Populus deltoides Marsh. clones with contrasting nitrogen use efficiency. BMC Genomics 2021; 22:697. [PMID: 34579659 PMCID: PMC8474845 DOI: 10.1186/s12864-021-07991-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Background Nitrogen (N) is one of the main factors limiting the wood yield in poplar cultivation. Understanding the molecular mechanism of N utilization could play a guiding role in improving the nitrogen use efficiency (NUE) of poplar. Results In this study, three N-efficient genotypes (A1-A3) and three N-inefficient genotypes (C1-C3) of Populus deltoides were cultured under low N stress (5 μM NH4NO3) and normal N supply (750 μM NH4NO3). The dry matter mass, leaf morphology, and chlorophyll content of both genotypes decreased under N starvation. The low nitrogen adaptation coefficients of the leaves and stems biomass of group A were significantly higher than those of group C (p < 0.05). Interestingly, N starvation induced fine root growth in group A, but not in group C. Next, a detailed time-course analysis of enzyme activities and gene expression in leaves identified 2062 specifically differentially expressed genes (DEGs) in group A and 1118 in group C. Moreover, the sensitivity to N starvation of group A was weak, and DEGs related to hormone signal transduction and stimulus response played an important role in the low N response this group. Weighted gene co-expression network analysis identified genes related to membranes, catalytic activity, enzymatic activity, and response to stresses that might be critical for poplar’s adaption to N starvation and these genes participated in the negative regulation of various biological processes. Finally, ten influential hub genes and twelve transcription factors were identified in the response to N starvation. Among them, four hub genes were related to programmed cell death and the defense response, and PodelWRKY18, with high connectivity, was involved in plant signal transduction. The expression of hub genes increased gradually with the extension of low N stress time, and the expression changes in group A were more obvious than those in group C. Conclusions Under N starvation, group A showed stronger adaptability and better NUE than group C in terms of morphology and physiology. The discovery of hub genes and transcription factors might provide new information for the analysis of the molecular mechanism of NUE and its improvement in poplar. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07991-7.
Collapse
Affiliation(s)
- Cun Chen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Yanguang Chu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Bo Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Tengqian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Zhenghong Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China. .,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
20
|
Liu W, Feng X, Cao F, Wu D, Zhang G, Vincze E, Wang Y, Chen ZH, Wu F. An ATP binding cassette transporter HvABCB25 confers aluminum detoxification in wild barley. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123371. [PMID: 32763683 DOI: 10.1016/j.jhazmat.2020.123371] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Aluminum (Al) stress in acid soils is one of the major factors limiting crop productivity. ATP binding cassette (ABC) transporters have numerous roles in plants, but the link between ABCB protein subfamily and plant Al tolerance is still elusive. Here, we identified and characterized a novel tonoplast HvABCB25 in barley root cells. HvABCB25 was up-regulated in the transcriptome of Al-tolerant wild barley XZ16 under Al treatment and was highly Al-inducible in root tips. ABCB25 is originated from Streptophyte algae and evolutionarily conserved in land plants. Moreover, silencing HvABCB25 in Al-tolerant XZ16 led to significant suppression of Al tolerance as indicated by significantly reduced root growth and enhanced Al accumulation in root cells. Conversely, HvABCB25-overexpressed plants and Golden Promise showed similar Al content in whole roots and in cell sap, but the overexpression lines exhibited significantly higher Al-induced relative root growth and dry weight. Al florescence in cytosol of root cells were significantly less in overexpression lines than that in GP. These results indicated that overexpressing HvABCB25 may be responsible for Al detoxification via vacuolar Al sequestration in barley roots, providing useful insight into the genetic basis for a new Al detoxification mechanism towards plant Al tolerance in acid soils.
Collapse
Affiliation(s)
- Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Dezhi Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Eva Vincze
- Department of Molecular Biology and Genetics, University of Aarhus, Fosøgsvej 1, DK-4200 Slagelse, Denmark
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
21
|
Feng X, Liu W, Cao F, Wang Y, Zhang G, Chen ZH, Wu F. Overexpression of HvAKT1 improves drought tolerance in barley by regulating root ion homeostasis and ROS and NO signaling. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6587-6600. [PMID: 32766860 DOI: 10.1093/jxb/eraa354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2020] [Indexed: 05/24/2023]
Abstract
Potassium (K+) is the major cationic inorganic nutrient utilized for osmotic regulation, cell growth, and enzyme activation in plants. Inwardly rectifying K+ channel 1 (AKT1) is the primary channel for root K+ uptake in plants, but the function of HvAKT1 in barley plants under drought stress has not been fully elucidated. In this study, we conducted evolutionary bioinformatics, biotechnological, electrophysiological, and biochemical assays to explore molecular mechanisms of HvAKT1 in response to drought in barley. The expression of HvAKT1 was significantly up-regulated by drought stress in the roots of XZ5-a drought-tolerant wild barley genotype. We isolated and functionally characterized the plasma membrane-localized HvAKT1 using Agrobacterium-mediated plant transformation and Barley stripe mosaic virus-induced gene silencing of HvAKT1 in barley. Evolutionary bioinformatics indicated that the K+ selective filter in AKT1 originated from streptophyte algae and is evolutionarily conserved in land plants. Silencing of HvAKT1 resulted in significantly decreased biomass and suppressed K+ uptake in root epidermal cells under drought treatment. Disruption of HvAKT1 decreased root H+ efflux, H+-ATPase activity, and nitric oxide (NO) synthesis, but increased hydrogen peroxide (H2O2) production in the roots under drought stress. Furthermore, we observed that overexpression of HvAKT1 improves K+ uptake and increases drought resistance in barley. Our results highlight the importance of HvAKT1 for root K+ uptake and its pleiotropic effects on root H+-ATPase, and H2O2 and NO in response to drought stress, providing new insights into the genetic basis of drought tolerance and K+ nutrition in barley.
Collapse
Affiliation(s)
- Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Gao S, Wu J, Stiller J, Zheng Z, Zhou M, Wang YG, Liu C. Identifying barley pan-genome sequence anchors using genetic mapping and machine learning. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2535-2544. [PMID: 32448920 DOI: 10.1007/s00122-020-03615-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
We identified 1.844 million barley pan-genome sequence anchors from 12,306 genotypes using genetic mapping and machine learning. There is increasing evidence that genes from a given crop genotype are far to cover all genes in that species; thus, building more comprehensive pan-genomes is of great importance in genetic research and breeding. Obtaining a thousand-genotype scale pan-genome using deep-sequencing data is currently impractical for species like barley which has a huge and highly repetitive genome. To this end, we attempted to identify barley pan-genome sequence anchors from a large quantity of genotype-by-sequencing (GBS) datasets by combining genetic mapping and machine learning algorithms. Based on the GBS sequences from 11,166 domesticated and 1140 wild barley genotypes, we identified 1.844 million pan-genome sequence anchors. Of them, 532,253 were identified as presence/absence variation (PAV) tags. Through aligning these PAV tags to the genome of hulless barley genotype Zangqing320, our analysis resulted in a validation of 83.6% of them from the domesticated genotypes and 88.6% from the wild barley genotypes. Association analyses against flowering time, plant height and kernel size showed that the relative importance of the PAV and non-PAV tags varied for different traits. The pan-genome sequence anchors based on GBS tags can facilitate the construction of a comprehensive pan-genome and greatly assist various genetic studies including identification of structural variation, genetic mapping and breeding in barley.
Collapse
Affiliation(s)
- Shang Gao
- Agriculture and Food, CSIRO, St Lucia, QLD, 4067, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, 7250, Australia
| | - Jinran Wu
- School of Mathematical Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Jiri Stiller
- Agriculture and Food, CSIRO, St Lucia, QLD, 4067, Australia
| | - Zhi Zheng
- Agriculture and Food, CSIRO, St Lucia, QLD, 4067, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, 7250, Australia
| | - You-Gan Wang
- School of Mathematical Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| | - Chunji Liu
- Agriculture and Food, CSIRO, St Lucia, QLD, 4067, Australia.
| |
Collapse
|
23
|
Kreszies T, Eggels S, Kreszies V, Osthoff A, Shellakkutti N, Baldauf JA, Zeisler-Diehl VV, Hochholdinger F, Ranathunge K, Schreiber L. Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. PLANT, CELL & ENVIRONMENT 2020; 43:344-357. [PMID: 31762057 DOI: 10.1111/pce.13675] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/23/2019] [Accepted: 11/03/2019] [Indexed: 05/13/2023]
Abstract
Wild barley, Hordeum vulgare spp. spontaneum, has a wider genetic diversity than its cultivated progeny, Hordeum vulgare spp. vulgare. Osmotic stress leads to a series of different responses in wild barley seminal roots, ranging from no changes in suberization to enhanced endodermal suberization of certain zones and the formation of a suberized exodermis, which was not observed in the modern cultivars studied so far. Further, as a response to osmotic stress, the hydraulic conductivity of roots was not affected in wild barley, but it was 2.5-fold reduced in cultivated barley. In both subspecies, osmotic adjustment by increasing proline concentration and decreasing osmotic potential in roots was observed. RNA-sequencing indicated that the regulation of suberin biosynthesis and water transport via aquaporins were different between wild and cultivated barley. These results indicate that wild barley uses different strategies to cope with osmotic stress compared with cultivated barley. Thus, it seems that wild barley is better adapted to cope with osmotic stress by maintaining a significantly higher hydraulic conductivity of roots during water deficit.
Collapse
Affiliation(s)
- Tino Kreszies
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, 53115, Germany
| | - Stella Eggels
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, 53115, Germany
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, 85354, Germany
| | - Victoria Kreszies
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, 53115, Germany
| | - Alina Osthoff
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Nandhini Shellakkutti
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, 53115, Germany
| | - Jutta A Baldauf
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Viktoria V Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, 53115, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Kosala Ranathunge
- School of Biological Sciences, Faculty of Science, University of Western Australia, Perth, 6009, Australia
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, 53115, Germany
| |
Collapse
|
24
|
Liu M, Li Y, Ma Y, Zhao Q, Stiller J, Feng Q, Tian Q, Liu D, Han B, Liu C. The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:443-456. [PMID: 31314154 PMCID: PMC6953193 DOI: 10.1111/pbi.13210] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/13/2019] [Indexed: 05/06/2023]
Abstract
Wild barley (Hordeum spontaneum) is the progenitor of cultivated barley (Hordeum vulgare) and provides a rich source of genetic variations for barley improvement. Currently, the genome sequences of wild barley and its differences with cultivated barley remain unclear. In this study, we report a high-quality draft assembly of wild barley accession (AWCS276; henceforth named as WB1), which consists of 4.28 Gb genome and 36 395 high-confidence protein-coding genes. BUSCO analysis revealed that the assembly included full lengths of 95.3% of the 956 single-copy plant genes, illustrating that the gene-containing regions have been well assembled. By comparing with the genome of the cultivated genotype Morex, it is inferred that the WB1 genome contains more genes involved in resistance and tolerance to biotic and abiotic stresses. The presence of the numerous WB1-specific genes indicates that, in addition to enhance allele diversity for genes already existing in the cultigen, exploiting the wild barley taxon in breeding should also allow the incorporation of novel genes. Furthermore, high levels of genetic variation in the pericentromeric regions were detected in chromosomes 3H and 5H between the wild and cultivated genotypes, which may be the results of domestication. This H. spontaneum draft genome assembly will help to accelerate wild barley research and be an invaluable resource for barley improvement and comparative genomics research.
Collapse
Affiliation(s)
- Miao Liu
- CSIRO Agriculture and FoodSt LuciaQldAustralia
- Crop Research InstituteSichuan Academy of Agricultural SciencesJinjiang District, ChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityWenjiang, ChengduChina
| | - Yan Li
- National Center for Gene ResearchChinese Academy of SciencesShanghaiChina
| | - Yanling Ma
- CSIRO Agriculture and FoodSt LuciaQldAustralia
- Institute of Crop SciencesChinese Academy of Agricultural SciencesHaidian District, BeijingChina
| | - Qiang Zhao
- National Center for Gene ResearchChinese Academy of SciencesShanghaiChina
| | | | - Qi Feng
- National Center for Gene ResearchChinese Academy of SciencesShanghaiChina
| | - Qilin Tian
- National Center for Gene ResearchChinese Academy of SciencesShanghaiChina
| | - Dengcai Liu
- Triticeae Research InstituteSichuan Agricultural UniversityWenjiang, ChengduChina
| | - Bin Han
- National Center for Gene ResearchChinese Academy of SciencesShanghaiChina
| | - Chunji Liu
- CSIRO Agriculture and FoodSt LuciaQldAustralia
| |
Collapse
|
25
|
Cai K, Chen X, Han Z, Wu X, Zhang S, Li Q, Nazir MM, Zhang G, Zeng F. Screening of Worldwide Barley Collection for Drought Tolerance: The Assessment of Various Physiological Measures as the Selection Criteria. FRONTIERS IN PLANT SCIENCE 2020; 11:1159. [PMID: 32849716 PMCID: PMC7403471 DOI: 10.3389/fpls.2020.01159] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/16/2020] [Indexed: 05/21/2023]
Abstract
Drought is a devastating environmental constraint affecting the agronomic production of barley. To facilitate the breeding process, abundant germplasm resources and reliable evaluation systems to identify the true drought-tolerant barley genotypes are needed. In this study, 237 cultivated and 190 wild barley genotypes, originating from 28 countries, were screened for drought tolerance under the conditions of both water deficit and polyethylene glycol (PEG)-simulated drought at seedling stage. Drought stress significantly reduced the plant growth of all barley genotypes, but no significant difference in drought-induced reduction in the performance of barley seedlings was observed under these two drought conditions. Both cultivated and wild barley subspecies displayed considerable genotypic variability in drought tolerance, which underpinned the identification of 18 genotypes contrasting in drought tolerance. A comparative analysis of drought effects on biomass, water relation, photosynthesis, and osmotic adjustment was undertaken using these contrasting barley genotypes, in order to verify the reliability of the screening and to obtain the credible traits as screening criteria of drought tolerance in barley. As expected, the selected drought-tolerant genotypes showed much less reduction in shoot biomass than drought-sensitive ones under water deficit, which was significantly positively correlated with the results of large-scale screening, confirming the reliability of the screening for drought tolerance under two drought conditions in this study. Likewise, the traits of water relation, photosynthetic activity, and osmotic adjustment differed greatly between the contrasting genotypes under water deficit stress, and they were highly correlated to the growth of barley seedlings, suggesting the potential of them to be the selection criteria for drought tolerance. The analysis of the variable importance of these traits in drought tolerance indicated that sap osmolality and relative water content in the youngest fully-expanded leaf are the suitable selection criteria of screening for drought tolerance in barley at seedling stage.
Collapse
Affiliation(s)
- Kangfeng Cai
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Xiaohui Chen
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Zhigang Han
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Xiaojian Wu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuo Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Qi Li
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | | | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Fanrong Zeng
- Institute of Crop Science, Zhejiang University, Hangzhou, China
- *Correspondence: Fanrong Zeng,
| |
Collapse
|
26
|
Bondareva L, Danilov D, Kartashova L. Breeding spring barley for ecological plasticity and adaptability in the North-Western Region. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202700067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Creation of productive and plastic varieties of spring barley (Hordeum vulgare L.) resistant to adverse weather factors will improve the efficiency of grain production in conditions of low fertility of sodpodzolic soils in the Leningrad region in Russia. The purpose of the study was to determine the environmental plasticity and adaptation features of the new line of spring barley in comparison with the standards: Suzdalets variety (nutans variety) and Leningradsky variety (pallidum variety). The main abiotic stressors for spring barley plants are increased acidity and low supply with plant nutrients, drought followed with excess moisture at the end of the growing season. Field, laboratory, and statistical methods generally accepted for these studies were used in this work. Using the ecological plasticity index (Isp) and the generative to reproductive organs length ratio ds /dk simplifies the task of evaluating hybrids, lines, and varieties. Genotype-environment interaction is a complex process both in its nature and in intensity. The selection of promising variety samples is aimed at isolating genotypes for which the influence of this interaction is minimal. Of particular importance in the selection of spring barley is the creation of varieties with a genetically determined mechanism of protection against adverse environmental factors.
Collapse
|
27
|
Bustos‐Korts D, Dawson IK, Russell J, Tondelli A, Guerra D, Ferrandi C, Strozzi F, Nicolazzi EL, Molnar‐Lang M, Ozkan H, Megyeri M, Miko P, Çakır E, Yakışır E, Trabanco N, Delbono S, Kyriakidis S, Booth A, Cammarano D, Mascher M, Werner P, Cattivelli L, Rossini L, Stein N, Kilian B, Waugh R, van Eeuwijk FA. Exome sequences and multi-environment field trials elucidate the genetic basis of adaptation in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1172-1191. [PMID: 31108005 PMCID: PMC6851764 DOI: 10.1111/tpj.14414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 05/25/2023]
Abstract
Broadening the genetic base of crops is crucial for developing varieties to respond to global agricultural challenges such as climate change. Here, we analysed a diverse panel of 371 domesticated lines of the model crop barley to explore the genetics of crop adaptation. We first collected exome sequence data and phenotypes of key life history traits from contrasting multi-environment common garden trials. Then we applied refined statistical methods, including some based on exomic haplotype states, for genotype-by-environment (G×E) modelling. Sub-populations defined from exomic profiles were coincident with barley's biology, geography and history, and explained a high proportion of trial phenotypic variance. Clear G×E interactions indicated adaptation profiles that varied for landraces and cultivars. Exploration of circadian clock-related genes, associated with the environmentally adaptive days to heading trait (crucial for the crop's spread from the Fertile Crescent), illustrated complexities in G×E effect directions, and the importance of latitudinally based genic context in the expression of large-effect alleles. Our analysis supports a gene-level scientific understanding of crop adaption and leads to practical opportunities for crop improvement, allowing the prioritisation of genomic regions and particular sets of lines for breeding efforts seeking to cope with climate change and other stresses.
Collapse
Affiliation(s)
- Daniela Bustos‐Korts
- BiometrisWageningen University and Research CentrePO Box 166700 ACWageningenThe Netherlands
| | - Ian K. Dawson
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Joanne Russell
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Alessandro Tondelli
- CREA – Research Centre for Genomics and BioinformaticsVia S. Protaso 30229017Fiorenzuola d'ArdaItaly
| | - Davide Guerra
- CREA – Research Centre for Genomics and BioinformaticsVia S. Protaso 30229017Fiorenzuola d'ArdaItaly
| | - Chiara Ferrandi
- PTP Science ParkVia Einstein, Loc. Cascina Codazza26900LodiItaly
| | | | | | - Marta Molnar‐Lang
- Agricultural InstituteCentre for Agricultural ResearchHungarian Academy of Sciences2462MartonvásárHungary
| | - Hakan Ozkan
- University of ÇukurovaFaculty of AgricultureDepartment of Field Crops01330AdanaTurkey
| | - Maria Megyeri
- Agricultural InstituteCentre for Agricultural ResearchHungarian Academy of Sciences2462MartonvásárHungary
| | - Peter Miko
- Agricultural InstituteCentre for Agricultural ResearchHungarian Academy of Sciences2462MartonvásárHungary
| | - Esra Çakır
- University of ÇukurovaFaculty of AgricultureDepartment of Field Crops01330AdanaTurkey
| | - Enes Yakışır
- Bahri Dagdas International Agricultural Research InstituteKonyaTurkey
| | - Noemi Trabanco
- Università degli Studi di Milano – DiSAAVia Celoria 220133MilanoItaly
| | - Stefano Delbono
- CREA – Research Centre for Genomics and BioinformaticsVia S. Protaso 30229017Fiorenzuola d'ArdaItaly
| | | | - Allan Booth
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Davide Cammarano
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466SeelandGermany
| | - Peter Werner
- KWS UK Ltd56 Church StreetThriplow, RoystonSG8 7REUK
| | - Luigi Cattivelli
- CREA – Research Centre for Genomics and BioinformaticsVia S. Protaso 30229017Fiorenzuola d'ArdaItaly
| | - Laura Rossini
- Università degli Studi di Milano – DiSAAVia Celoria 220133MilanoItaly
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466SeelandGermany
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466SeelandGermany
- Present address:
Global Crop Diversity TrustPlatz der Vereinten Nationen 753113BonnGermany
| | - Robbie Waugh
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
- Division of Plant SciencesSchool of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHUK
| | - Fred A. van Eeuwijk
- BiometrisWageningen University and Research CentrePO Box 166700 ACWageningenThe Netherlands
| |
Collapse
|
28
|
Cai K, Gao H, Wu X, Zhang S, Han Z, Chen X, Zhang G, Zeng F. The Ability to Regulate Transmembrane Potassium Transport in Root Is Critical for Drought Tolerance in Barley. Int J Mol Sci 2019; 20:E4111. [PMID: 31443572 PMCID: PMC6747136 DOI: 10.3390/ijms20174111] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/11/2019] [Accepted: 08/20/2019] [Indexed: 01/26/2023] Open
Abstract
In this work, the effect of drought on K+ uptake in root and its translocation from root to shoot was investigated using six barley genotypes contrasting in drought tolerance. Results showed that drought conditions caused significant changes in K+ uptake and translocation in a time- and genotype-specific manner, which consequently resulted in a significant difference in tissue K+ contents and drought tolerance levels between the contrasting barley genotypes. The role of K+ transporters and channels and plasma membrane (PM) H+-ATPase in barley's adaptive response to drought stress was further investigated at the transcript level. The expression of genes conferring K+ uptake (HvHAK1, HvHAK5, HvKUP1, HvKUP2 and HvAKT1) and xylem loading (HvSKOR) in roots were all affected by drought stress in a time- and genotype-specific manner, indicating that the regulation of these K+ transporters and channels is critical for root K+ uptake and root to shoot K+ translocation in barley under drought stress. Furthermore, the barley genotypes showed a strong correlation between H+ efflux and K+ influx under drought stress, which was further confirmed by the significant up-regulation of HvHA1 and HvHA2. These results suggested an important role of plasma membrane H+-ATPase activity and/or expression in regulating the activity of K+ transporters and channels under drought stress. Taken together, it may be concluded that the genotypic difference in drought stress tolerance in barley is conferred by the difference in the ability to regulate K+ transporters and channels in root epidermis and stele.
Collapse
Affiliation(s)
- Kangfeng Cai
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Huaizhou Gao
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaojian Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuo Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Zhigang Han
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Chen
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Fanrong Zeng
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Hu H, Choudhury S, Shabala S, Gupta S, Zhou M. Genomic regions on chromosome 5H containing a novel QTL conferring barley yellow dwarf virus-PAV (BYDV-PAV) tolerance in barley. Sci Rep 2019; 9:11298. [PMID: 31383904 PMCID: PMC6683297 DOI: 10.1038/s41598-019-47820-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/24/2019] [Indexed: 11/08/2022] Open
Abstract
Barley yellow dwarf virus is a widespread disease affecting plant growth and yield in cereal crops including barley. Complete resistance to BYDV encoded by a single gene is lacking in barley. To identify novel resistance genes that can be further utilised in breeding for plant disease resistance, a doubled haploid population originated from a cultivated barley with a known resistance gene and a wild barley was constructed and assessed for barley yellow dwarf tolerance in three trials with two in Tasmania (TAS) and one in Western Australia (WA). We identified two Quantitative trait loci (QTL) in both Tasmanian trials, and four QTL in Western Australian trial. Two QTL from TAS trials were also detected from WA. The QTL on chromosome 3H corresponds to the known major resistance gene Ryd2. The other QTL, Qbyd-5H, represents a potential new resistance locus and contributed 7.0~10.4% of total phenotypic variation in the three trials. It was mapped within the interval of 125.76~139.24 cM of chromosome 5H. Two additional minor effect QTL were identified on chromosome 7H from WA trial, contributing slightly less effect on BYD tolerance. The consistently detected new gene on chromosome 5H will potentially serve as a novel source of tolerance to achieve more sustainable resistance to BYDV in barley.
Collapse
Affiliation(s)
- Hongliang Hu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Shormin Choudhury
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Sanjiv Gupta
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, 6150, Australia
- Plant Pathology, Department of Primary Industries & Regional Development WA, 3 Baron Hay Court, South Perth, 6151, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
| |
Collapse
|
30
|
Different Roles of Heat Shock Proteins (70 kDa) During Abiotic Stresses in Barley ( Hordeum vulgare) Genotypes. PLANTS 2019; 8:plants8080248. [PMID: 31357401 PMCID: PMC6724185 DOI: 10.3390/plants8080248] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
In this work, the involvement of heat shock proteins (HSP70) in barley (Hordeum vulgare) has been studied in response to drought and salinity. Thus, 3 barley genotypes usually cultivated and/or selected in Italy, 3 Middle East/North Africa landraces and genotypes and 1 improved genotype from ICARDA have been studied to identify those varieties showing the best stress response. Preliminarily, a bioinformatic characterization of the HSP70s protein family in barley has been made by using annotated Arabidopsis protein sequences. This study identified 20 putative HSP70s orthologs in the barley genome. The construction of un-rooted phylogenetic trees showed the partition into four main branches, and multiple subcellular localizations. The enhanced HSP70s presence upon salt and drought stress was investigated by both immunoblotting and expression analyses. It is worth noting the Northern Africa landraces showed peculiar tolerance behavior versus drought and salt stresses. The drought and salinity conditions indicated the involvement of specific HSP70s to counteract abiotic stress. Particularly, the expression of cytosolic MLOC_67581, mitochondrial MLOC_50972, and encoding for HSP70 isoforms showed different expressions and occurrence upon stress. Therefore, genotypes originated in the semi-arid area of the Mediterranean area can represent an important genetic source for the improvement of commonly cultivated high-yielding varieties.
Collapse
|
31
|
Zeng J, Ye Z, He X, Zhang G. Identification of microRNAs and their targets responding to low-potassium stress in two barley genotypes differing in low-K tolerance. JOURNAL OF PLANT PHYSIOLOGY 2019; 234-235:44-53. [PMID: 30665047 DOI: 10.1016/j.jplph.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 05/24/2023]
Abstract
MicroRNAs (miRNAs) have diverse and crucial roles in plant growth and development, including in the response to abiotic stresses. Although plant responses to K deficiency are well documented at the physiological and transcriptional levels, the miRNA-mediated post-transcriptional pathways are still not clearly elucidated. In this study, high-throughput sequencing and degradome analysis were performed using two barley genotypes differing in low-K tolerance (XZ149, tolerant and ZD9, sensitive), to determine the genotypic difference in miRNAs profiling. A total of 270 miRNAs were detected in the roots of XZ149 and ZD9 at 2 d and 10 d after low-K treatment, of which 195 were commonly found in both genotypes. Their targets were further investigated by bioinformatics prediction and degradome sequencing approach. The results showed that ata-miR1432-5p might act as a regulator participating in Ca2+ signaling pathways in response to low-K stress. The difference in the miR444/MADS-box model as well as pathways mediated by miR319/TCP4 and miR396/GRF could be attributed to high tolerance to low-K stress in XZ149. In addition, other conserved and novel miRNAs families associated with low-K tolerance were also detected. The current results provide molecular evidence for understanding the possible involvement of miRNAs in the regulation of low-K tolerance.
Collapse
Affiliation(s)
- Jianbin Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zhilan Ye
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaoyan He
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Zhang M, Fu MM, Qiu CW, Cao F, Chen ZH, Zhang G, Wu F. Response of Tibetan Wild Barley Genotypes to Drought Stress and Identification of Quantitative Trait Loci by Genome-Wide Association Analysis. Int J Mol Sci 2019; 20:E791. [PMID: 30759829 PMCID: PMC6387302 DOI: 10.3390/ijms20030791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 11/23/2022] Open
Abstract
Tibetan wild barley has been identified to show large genetic variation and stress tolerance. A genome-wide association (GWA) analysis was performed to detect quantitative trait loci (QTLs) for drought tolerance using 777 Diversity Array Technology (DArT) markers and morphological and physiological traits of 166 Tibetan wild barley accessions in both hydroponic and pot experiments. Large genotypic variation for these traits was found; and population structure and kinship analysis identified three subpopulations among these barley genotypes. The average LD (linkage disequilibrium) decay distance was 5.16 cM, with the minimum on 6H (0.03 cM) and the maximum on 4H (23.48 cM). A total of 91 DArT markers were identified to be associated with drought tolerance-related traits, with 33, 26, 16, 1, 3, and 12 associations for morphological traits, H⁺K⁺-ATPase activity, antioxidant enzyme activities, malondialdehyde (MDA) content, soluble protein content, and potassium concentration, respectively. Furthermore, 7 and 24 putative candidate genes were identified based on the reference Meta-QTL map and by searching the Barleymap. The present study implicated that Tibetan annual wild barley from Qinghai⁻Tibet Plateau is rich in genetic variation for drought stress. The QTLs detected by genome-wide association analysis could be used in marker-assisting breeding for drought-tolerant barley genotypes and provide useful information for discovery and functional analysis of key genes in the future.
Collapse
Affiliation(s)
- Mian Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China.
| | - Man-Man Fu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Campus, University of Western Sydney, Penrith, NSW 2751, Australia.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
33
|
Torralbo F, Vicente R, Morcuende R, González-Murua C, Aranjuelo I. C and N metabolism in barley leaves and peduncles modulates responsiveness to changing CO2. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:599-611. [PMID: 30476207 PMCID: PMC6322569 DOI: 10.1093/jxb/ery380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/05/2018] [Indexed: 05/22/2023]
Abstract
Balancing of leaf carbohydrates is a key process for maximising crop performance in elevated CO2 environments. With the aim of testing the role of the carbon sink-source relationship under different CO2 conditions, we performed two experiments with two barley genotypes (Harrington and RCSL-89) exposed to changing CO2. In Experiment 1, the genotypes were exposed to 400 and 700 ppm CO2. Elevated CO2 induced photosynthetic acclimation in Harrington that was linked with the depletion of Rubisco protein. In contrast, a higher peduncle carbohydrate-storage capacity in RSCL-89 was associated with a better balance of leaf carbohydrates that could help to maximize the photosynthetic capacity under elevated CO2. In Experiment 2, plants that were grown at 400 ppm or 700 ppm CO2 for 5 weeks were switched to 700 ppm or 400 ppm CO2, respectively. Raising CO2 to 700 ppm increased photosynthetic rates with a reduction in leaf carbohydrate content and an improvement in N assimilation. The increase in nitrate content was associated with up-regulation of genes of protein transcripts of photosynthesis and N assimilation that favoured plant performance under elevated CO2. Finally, decreasing the CO2 from 700 ppm to 400 ppm revealed that both stomatal closure and inhibited expression of light-harvesting proteins negatively affected photosynthetic performance and plant growth.
Collapse
Affiliation(s)
- Fernando Torralbo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
- Instituto de Agrobiotecnología (IdAB)-CSIC, Avenida de Pamplona, Mutilva Baja, Spain
| | - Rubén Vicente
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Salamanca, Spain
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| | - Rosa Morcuende
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Salamanca, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Iker Aranjuelo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
- Instituto de Agrobiotecnología (IdAB)-CSIC, Avenida de Pamplona, Mutilva Baja, Spain
| |
Collapse
|
34
|
Zeng J, Quan X, He X, Cai S, Ye Z, Chen G, Zhang G. Root and leaf metabolite profiles analysis reveals the adaptive strategies to low potassium stress in barley. BMC PLANT BIOLOGY 2018; 18:187. [PMID: 30200885 PMCID: PMC6131769 DOI: 10.1186/s12870-018-1404-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/30/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Potassium (K) deficiency in arable land is one of the most important factors affecting crop productivity. Development of low K (LK) tolerant crop cultivars is regarded as a best economic and effective approach for solving the issue of LK. In previous studies, we found a wider variation of LK tolerance in the Tibetan wild barley accessions than cultivated barley. However, the mechanism of LK tolerance in wild barley is still elusive. RESULTS In this study, two wild barley genotypes (XZ153, LK tolerant and XZ141, LK sensitive) and one cultivar (LuDaoMai, LK tolerant) was used to investigate metabolome changes in response to LK stress. Totally 57 kinds of metabolites were identified in roots and leaves of three genotypes at 16 d after LK treatment. In general, accumulation of amino acids and sugars was enhanced in both roots and leaves, while organic acids were reduced under LK stress compared to the control. Meanwhile, the concentrations of the negatively charged amino acids (Asp and Glu) and most organic acids was reduced in both roots and leaves, but more positively charged amino acids (Lys and Gln) were increased in three genotypes under LK. XZ153 had less reduction than other two genotypes in biomass and chlorophyll content under LK stress and showed greater antioxidant capacity as reflected by more synthesis of active oxygen scavengers. Higher LK tolerance of XZ153 may also be attributed to its less carbohydrate consumption and more storage of glucose and other sugars, thus providing more energy for plant growth under LK stress. Moreover, phenylpropanoid metabolic pathway mediated by PAL differed among three genotypes, which is closely associated with the genotypic difference in LK tolerance. CONCLUSIONS LK tolerance in the wild barley is attributed to more active phenylpropanoid metabolic pathway mediated by PAL, energy use economy by reducing carbohydrate consumption and storage of glucose and other sugars, and higher antioxidant defense ability under LK stress.
Collapse
Affiliation(s)
- Jianbin Zeng
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Xiaoyan Quan
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Xiaoyan He
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Shengguan Cai
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Zhilan Ye
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Guang Chen
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Guoping Zhang
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
35
|
Ashoub A, Müller N, Jiménez-Gómez JM, Brüggemann W. Prominent alterations of wild barley leaf transcriptome in response to individual and combined drought acclimation and heat shock conditions. PHYSIOLOGIA PLANTARUM 2018; 163:18-29. [PMID: 29111595 DOI: 10.1111/ppl.12667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Under field conditions, drought and heat stress typically happen simultaneously and their negative impact on the agricultural production is expected to increase worldwide under the climate change scenario. In this study, we performed RNA-sequencing analysis on leaves of wild barley (Hordeum spontaneum) originated from the northern coastal region of Egypt following individual drought acclimation (DA) and heat shock (HS) treatments and their combination (CS, combined stresses) to distinguish the unique and shared differentially expressed genes (DEG). Results indicated that the number of unique genes that were differentially expressed following HS treatment exceeded the number of those expressed following DA. In addition, the number of genes that were uniquely differentially expressed in response to CS treatment exceeded the number of those of shared responses to individual DA and HS treatments. These results indicate a better adaptation of the Mediterranean wild barley to drought conditions when compared with heat stress. It also manifests that the wild barley response to CS tends to be unique rather than common. Annotation of DEG showed that metabolic processes were the most influenced biological function in response to the applied stresses.
Collapse
Affiliation(s)
- Ahmed Ashoub
- Institute of Ecology, Evolution, and Diversity, Johann Wolfgang Goethe-University Frankfurt, Frankfurt am Main, Germany
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
| | - Niels Müller
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - José M Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Wolfgang Brüggemann
- Institute of Ecology, Evolution, and Diversity, Johann Wolfgang Goethe-University Frankfurt, Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| |
Collapse
|
36
|
Merchuk-Ovnat L, Silberman R, Laiba E, Maurer A, Pillen K, Faigenboim A, Fridman E. Genome scan identifies flowering-independent effects of barley HsDry2.2 locus on yield traits under water deficit. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1765-1779. [PMID: 29365127 PMCID: PMC5888960 DOI: 10.1093/jxb/ery016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/09/2018] [Indexed: 05/02/2023]
Abstract
Increasing crop productivity under conditions of climate change requires the identification, selection, and utilization of novel alleles for breeding. In this study, we analysed the genotype and field phenotype of the barley HEB-25 multi-parent mapping population under well-watered and water-limited environments for two years. A genome-wide association study (GWAS) for genotype × environment interactions was performed for 10 traits including flowering time (heading time, HEA) and plant grain yield (PGY). Comparison of the GWAS for traits per se (i.e. regardless of the environment) with a study for quantitative trait loci (QTLs) × environment interactions (Q×E), indicates the prevalence of Q×E mostly for reproductive traits. One Q×E locus on chromosome 2, Hordeum spontaneum Dry2.2 (HsDry2.2), showed a positive and conditional effect on PGY and grain number (GN). The wild allele significantly reduced HEA; however, this earliness was not conditioned by water deficit. Furthermore, BC2F1 lines segregating for the HsDry2.2 locus showed that the wild allele conferred an advantage over the cultivated allele in PGY, GN, and harvest index, as well as modified shoot morphology, a longer grain-filling period, and reduced senescence (only under drought). This suggests the presence of an adaptation mechanism against water deficit rather than an escape mechanism. The study highlights the value of evaluating wild relatives in search of novel alleles and provides clues to resilience mechanisms underlying crop adaptations to abiotic stress.
Collapse
Affiliation(s)
- Lianne Merchuk-Ovnat
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Roi Silberman
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
- The Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot Israel
| | - Efrat Laiba
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Adi Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Eyal Fridman
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| |
Collapse
|
37
|
Herzig P, Maurer A, Draba V, Sharma R, Draicchio F, Bull H, Milne L, Thomas WTB, Flavell AJ, Pillen K. Contrasting genetic regulation of plant development in wild barley grown in two European environments revealed by nested association mapping. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1517-1531. [PMID: 29361127 PMCID: PMC5888909 DOI: 10.1093/jxb/ery002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/19/2017] [Indexed: 05/22/2023]
Abstract
Barley is cultivated more widely than the other major world crops because it adapts well to environmental constraints, such as drought, heat, and day length. To better understand the genetic control of local adaptation in barley, we studied development in the nested association mapping population HEB-25, derived from crossing 25 wild barley accessions with the cultivar 'Barke'. HEB-25 was cultivated in replicated field trials in Dundee (Scotland) and Halle (Germany), differing in regard to day length, precipitation, and temperature. Applying a genome-wide association study, we located 60 and 66 quantitative trait locus (QTL) regions regulating eight plant development traits in Dundee and Halle, respectively. A number of QTLs could be explained by known major genes such as PHOTOPERIOD 1 (Ppd-H1) and FLOWERING LOCUS T (HvFT-1) that regulate plant development. In addition, we observed that developmental traits in HEB-25 were partly controlled via genotype × environment and genotype × donor interactions, defined as location-specific and family-specific QTL effects. Our findings indicate that QTL alleles are available in the wild barley gene pool that show contrasting effects on plant development, which may be deployed to improve adaptation of cultivated barley to future environmental changes.
Collapse
Affiliation(s)
- Paul Herzig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Vera Draba
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
- Interdisciplinary Center of Crop Plant Research (IZN), Halle, Germany
| | - Rajiv Sharma
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie, Dundee, Scotland, UK
| | - Fulvia Draicchio
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie, Dundee, Scotland, UK
| | - Hazel Bull
- The James Hutton Institute (JHI), Invergowrie, Dundee, Scotland, UK
| | - Linda Milne
- The James Hutton Institute (JHI), Invergowrie, Dundee, Scotland, UK
| | | | - Andrew J Flavell
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie, Dundee, Scotland, UK
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
- Correspondence:
| |
Collapse
|
38
|
Xu Y, Wu Y, Wu J. Capturing pair-wise epistatic effects associated with three agronomic traits in barley. Genetica 2018; 146:161-170. [PMID: 29349538 DOI: 10.1007/s10709-018-0008-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/11/2018] [Indexed: 11/25/2022]
Abstract
Genetic association mapping has been widely applied to determine genetic markers favorably associated with a trait of interest and provide information for marker-assisted selection. Many association mapping studies commonly focus on main effects due to intolerable computing intensity. This study aims to select several sets of DNA markers with potential epistasis to maximize genetic variations of some key agronomic traits in barley. By doing so, we integrated a MDR (multifactor dimensionality reduction) method with a forward variable selection approach. This integrated approach was used to determine single nucleotide polymorphism pairs with epistasis effects associated with three agronomic traits: heading date, plant height, and grain yield in barley from the barley Coordinated Agricultural Project. Our results showed that four, seven, and five SNP pairs accounted for 51.06, 45.66 and 40.42% for heading date, plant height, and grain yield, respectively with epistasis being considered, while corresponding contributions to these three traits were 45.32, 31.39, 31.31%, respectively without epistasis being included. The results suggested that epistasis model was more effective than non-epistasis model in this study and can be more preferred for other applications.
Collapse
Affiliation(s)
- Yi Xu
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Box 2140C, Brookings, SD, 57007, USA
| | - Yajun Wu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Jixiang Wu
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Box 2140C, Brookings, SD, 57007, USA.
| |
Collapse
|
39
|
Noble TJ, Tao Y, Mace ES, Williams B, Jordan DR, Douglas CA, Mundree SG. Characterization of Linkage Disequilibrium and Population Structure in a Mungbean Diversity Panel. FRONTIERS IN PLANT SCIENCE 2018; 8:2102. [PMID: 29375590 PMCID: PMC5770403 DOI: 10.3389/fpls.2017.02102] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/27/2017] [Indexed: 05/28/2023]
Abstract
Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] is an important grain legume globally, providing a high-quality plant protein source largely produced and consumed in South and East Asia. This study aimed to characterize a mungbean diversity panel consisting of 466 cultivated accessions and demonstrate its utility by conducting a pilot genome-wide association study of seed coat color. In addition 16 wild accessions were genotyped for comparison and in total over 22,000 polymorphic genome-wide SNPs were identified and used to analyze the genetic diversity, population structure, linkage disequilibrium (LD) of mungbean. Polymorphism was lower in the cultivated accessions in comparison to the wild accessions, with average polymorphism information content values 0.174, versus 0.305 in wild mungbean. LD decayed in ∼100 kb in cultivated lines, a distance higher than the linkage decay of ∼60 kb estimated in wild mungbean. Four distinct subgroups were identified within the cultivated lines, which broadly corresponded to geographic origin and seed characteristics. In a pilot genome-wide association mapping study of seed coat color, five genomic regions associated were identified, two of which were close to seed coat color genes in other species. This mungbean diversity panel constitutes a valuable resource for genetic dissection of important agronomical traits to accelerate mungbean breeding.
Collapse
Affiliation(s)
- Thomas J. Noble
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Warwick, QLD, Australia
| | - Emma S. Mace
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - David R. Jordan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Warwick, QLD, Australia
| | - Colin A. Douglas
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Sagadevan G. Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
40
|
Enriching Genomic Resources and Transcriptional Profile Analysis of Miscanthus sinensis under Drought Stress Based on RNA Sequencing. Int J Genomics 2017; 2017:9184731. [PMID: 29318138 PMCID: PMC5727683 DOI: 10.1155/2017/9184731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/18/2017] [Indexed: 11/23/2022] Open
Abstract
Miscanthus × giganteus is wildly cultivated as a potential biofuel feedstock around the world; however, the narrow genetic basis and sterile characteristics have become a limitation for its utilization. As a progenitor of M. × giganteus, M. sinensis is widely distributed around East Asia providing well abiotic stress tolerance. To enrich the M. sinensis genomic databases and resources, we sequenced and annotated the transcriptome of M. sinensis by using an Illumina HiSeq 2000 platform. Approximately 316 million high-quality trimmed reads were generated from 349 million raw reads, and a total of 114,747 unigenes were obtained after de novo assembly. Furthermore, 95,897 (83.57%) unigenes were annotated to at least one database including NR, Swiss-Prot, KEGG, COG, GO, and NT, supporting that the sequences obtained were annotated properly. Differentially expressed gene analysis indicates that drought stress 15 days could be a critical period for M. sinensis response to drought stress. The high-throughput transcriptome sequencing of M. sinensis under drought stress has greatly enriched the current genomic available resources. The comparison of DEGs under different periods of drought stress identified a wealth of candidate genes involved in drought tolerance regulatory networks, which will facilitate further genetic improvement and molecular studies of the M. sinensis.
Collapse
|
41
|
Nie G, Tang L, Zhang Y, Huang L, Ma X, Cao X, Pan L, Zhang X, Zhang X. Development of SSR Markers Based on Transcriptome Sequencing and Association Analysis with Drought Tolerance in Perennial Grass Miscanthus from China. FRONTIERS IN PLANT SCIENCE 2017; 8:801. [PMID: 28559912 PMCID: PMC5432562 DOI: 10.3389/fpls.2017.00801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/28/2017] [Indexed: 05/02/2023]
Abstract
Drought has become a critical environmental stress affecting on plant in temperate area. As one of the promising bio-energy crops to sustainable biomass production, the genus Miscanthus has been widely studied around the world. However, the most widely used hybrid cultivar among this genus, Miscanthus × giganteus is proved poor drought tolerance compared to some parental species. Here we mainly focused on Miscanthus sinensis, which is one of the progenitors of M. × giganteus providing a comparable yield and well abiotic stress tolerance in some places. The main objectives were to characterize the physiological and photosynthetic respond to drought stress and to develop simple sequence repeats (SSRs) markers associated with drought tolerance by transcriptome sequencing within an originally collection of 44 Miscanthus genotypes from southwest China. Significant phenotypic differences were observed among genotypes, and the average of leaf relative water content (RWC) were severely affected by drought stress decreasing from 88.27 to 43.21%, which could well contribute to separating the drought resistant and drought sensitive genotype of Miscanthus. Furthermore, a total of 16,566 gene-associated SSRs markers were identified based on Illumina RNA sequencing under drought conditions, and 93 of them were randomly selected to validate. In total, 70 (75.3%) SSRs were successfully amplified and the generated loci from 30 polymorphic SSRs were used to estimate the genetic differentiation and population structure. Finally, two optimum subgroups of the population were determined by structure analysis and based on association analysis, seven significant associations were identified including two markers with leaf RWC and five markers with photosynthetic traits. With the rich sequencing resources annotation, such associations would serve an efficient tool for Miscanthus drought response mechanism study and facilitate genetic improvement of drought resistant for this species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xinquan Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural UniversitySichuan, China
| |
Collapse
|
42
|
Ogrodowicz P, Adamski T, Mikołajczak K, Kuczyńska A, Surma M, Krajewski P, Sawikowska A, Górny AG, Gudyś K, Szarejko I, Guzy-Wróbelska J, Krystkowiak K. QTLs for earliness and yield-forming traits in the Lubuski × CamB barley RIL population under various water regimes. J Appl Genet 2017; 58:49-65. [PMID: 27503092 PMCID: PMC5243898 DOI: 10.1007/s13353-016-0363-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022]
Abstract
Drought has become more frequent in Central Europe causing large losses in cereal yields, especially of spring crops. The development of new varieties with increased tolerance to drought is a key tool for improvement of agricultural productivity. Material for the study consisted of 100 barley recombinant inbred lines (RILs) (LCam) derived from the cross between Syrian and European parents. The RILs and parental genotypes were examined in greenhouse experiments under well-watered and water-deficit conditions. During vegetation the date of heading, yield and yield-related traits were measured. RIL population was genotyped with microsatellite and single nucleotide polymorphism markers. This population, together with two other populations, was the basis for the consensus map construction, which was used for identification of quantitative trait loci (QTLs) affecting the traits. The studied lines showed a large variability in heading date. It was noted that drought-treatment negatively affected the yield and its components, especially when applied at the flag leaf stage. In total, 60 QTLs were detected on all the barley chromosomes. The largest number of QTLs was found on chromosome 2H. The main QTL associated with heading, located on chromosome 2H (Q.HD.LC-2H), was identified at SNP marker 5880-2547, in the vicinity of Ppd-H1 gene. SNP 5880-2547 was also the closest marker to QTLs associated with plant architecture, spike morphology and grain yield. The present study showed that the earliness allele from the Syrian parent, as introduced into the genome of an European variety could result in an improvement of barley yield performance under drought conditions.
Collapse
Affiliation(s)
- Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Tadeusz Adamski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Maria Surma
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Aneta Sawikowska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Andrzej G Górny
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Kornelia Gudyś
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Justyna Guzy-Wróbelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Karolina Krystkowiak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| |
Collapse
|
43
|
Lauer JC, Yap K, Cu S, Burton RA, Eglinton JK. Novel Barley (1→3,1→4)-β-Glucan Endohydrolase Alleles Confer Increased Enzyme Thermostability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:421-428. [PMID: 27936680 DOI: 10.1021/acs.jafc.6b04287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Barley (1→3,1→4)-β-glucan endohydrolases (β-glucanases; EI and EII) are primarily responsible for hydrolyzing high molecular weight (1→3,1→4)-β-glucans (β-glucan) during germination. Incomplete endosperm modification during malting results in residual β-glucan that can contribute to increased wort viscosity and beer chill haze. Four newly identified forms of EI and EII and the reference enzymes EI-a and EII-a were expressed in Escherichia coli, and the recombinant proteins were characterized for enzyme kinetics and thermostability. EI and EII variants that exhibited higher residual β-glucanase activity than EI-a and EII-a after heat treatment also exhibited increased substrate affinity and decreased turnover rates. The novel EII-l form exhibited significantly increased thermostability compared with the reference EII-a when activity was measured at elevated temperature. EII-l exhibited a T50 value, which indicates the temperature at which 50% of β-glucanase activity remains, 1.3 °C higher than that of EII-a. The irreversible thermal inactivation difference between EII-a and EII-l after 5 min of heat treatment at 56 °C was 11.9%. The functional significance of the three amino acid differences between EII-a and EII-l was examined by making combinatorial mutations in EII-a using site-directed mutagenesis. The S20G and D284E amino acid substitutions were shown to be responsible for the increase in EII-1 thermostability.
Collapse
Affiliation(s)
- Juanita C Lauer
- School of Agriculture, Food & Wine, The University of Adelaide , Waite Campus, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Kuok Yap
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food & Wine, The University of Adelaide , Waite Campus, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Suong Cu
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food & Wine, The University of Adelaide , Waite Campus, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food & Wine, The University of Adelaide , Waite Campus, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Jason K Eglinton
- School of Agriculture, Food & Wine, The University of Adelaide , Waite Campus, PMB 1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
44
|
Cantalapiedra CP, García-Pereira MJ, Gracia MP, Igartua E, Casas AM, Contreras-Moreira B. Large Differences in Gene Expression Responses to Drought and Heat Stress between Elite Barley Cultivar Scarlett and a Spanish Landrace. FRONTIERS IN PLANT SCIENCE 2017; 8:647. [PMID: 28507554 PMCID: PMC5410667 DOI: 10.3389/fpls.2017.00647] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/10/2017] [Indexed: 05/05/2023]
Abstract
Drought causes important losses in crop production every season. Improvement for drought tolerance could take advantage of the diversity held in germplasm collections, much of which has not been incorporated yet into modern breeding. Spanish landraces constitute a promising resource for barley breeding, as they were widely grown until last century and still show good yielding ability under stress. Here, we study the transcriptome expression landscape in two genotypes, an outstanding Spanish landrace-derived inbred line (SBCC073) and a modern cultivar (Scarlett). Gene expression of adult plants after prolonged stresses, either drought or drought combined with heat, was monitored. Transcriptome of mature leaves presented little changes under severe drought, whereas abundant gene expression changes were observed under combined mild drought and heat. Developing inflorescences of SBCC073 exhibited mostly unaltered gene expression, whereas numerous changes were found in the same tissues for Scarlett. Genotypic differences in physiological traits and gene expression patterns confirmed the different behavior of landrace SBCC073 and cultivar Scarlett under abiotic stress, suggesting that they responded to stress following different strategies. A comparison with related studies in barley, addressing gene expression responses to drought, revealed common biological processes, but moderate agreement regarding individual differentially expressed transcripts. Special emphasis was put in the search of co-expressed genes and underlying common regulatory motifs. Overall, 11 transcription factors were identified, and one of them matched cis-regulatory motifs discovered upstream of co-expressed genes involved in those responses.
Collapse
Affiliation(s)
- Carlos P. Cantalapiedra
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - María J. García-Pereira
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - María P. Gracia
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Ana M. Casas
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
- Fundación ARAIDZaragoza, Spain
- *Correspondence: Bruno Contreras-Moreira
| |
Collapse
|
45
|
Guo W, Chen T, Hussain N, Zhang G, Jiang L. Characterization of Salinity Tolerance of Transgenic Rice Lines Harboring HsCBL8 of Wild Barley ( Hordeum spontanum) Line from Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2016; 7:1678. [PMID: 27891136 PMCID: PMC5102885 DOI: 10.3389/fpls.2016.01678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/25/2016] [Indexed: 05/08/2023]
Abstract
Rice is more sensitive to salinity, particularly at its early vegetative and later productive stages. Wild plants growing in harsh environments such as wild barley from Qinghai-Tibet Plateau adapt to the adverse environment with allelic variations at the loci responsible for stressful environment, which could be used for rice genetic improvement. In this study, we overexpressed HsCBL8 encoding a calcium-sensor calcineurin B-like (CBL) protein in rice. The gene was isolated from XZ166, a wild-barley (Hordeum spontanum) line originated from Qinghai-Tibet Plateau. We found that XZ166 responded to high NaCl concentration (200 mM) with more HsCBL8 transcripts than CM72, a cultivated barley line known for salinity tolerance. XZ166 is significantly different from CM72 with nucleotide sequences at HsCBL8. The overexpression of HsCBL8 in rice resulted in significant improvement of water protection in vivo and plasma membrane, more proline accumulation, and a reduction of overall Na+ uptake but little change in K+ concentration in the plant tissues. Notably, HsCBL8 did not act on some genes downstream of the rice CBL family genes, suggesting an interesting interaction between HsCBL8 and unknown factors to be further investigated.
Collapse
Affiliation(s)
- Wanli Guo
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
- Department of Biotechnology, College of Life Science, Zhejiang Sci-Tech UniversityHangzhou, China
| | - Tianlong Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Nazim Hussain
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Guoping Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Lixi Jiang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| |
Collapse
|
46
|
Shen Q, Fu L, Dai F, Jiang L, Zhang G, Wu D. Multi-omics analysis reveals molecular mechanisms of shoot adaption to salt stress in Tibetan wild barley. BMC Genomics 2016; 17:889. [PMID: 27821058 PMCID: PMC5100661 DOI: 10.1186/s12864-016-3242-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Tibetan wild barley (Hordeum spontaneum L.) has been confirmed to contain elite accessions in tolerance to abiotic stresses, including salinity. However, molecular mechanisms underlying genotypic difference of salt tolerance in wild barley are unknown. RESULTS In this study, two Tibetan wild barley accessions (XZ26 and XZ169), differing greatly in salt tolerance, were used to determine changes of ionomic, metabolomic and proteomic profiles in the shoots exposed to salt stress at seedling stage. Compared with XZ169, XZ26 showed better shoot growth and less Na accumulation after 7 days treatments. Salt stress caused significant reduction in concentrations of sucrose and metabolites involved in glycolysis pathway in XZ169, and elevated level of tricarboxylic acid (TCA) cycle, as reflected by up-accumulation of citric acid, aconitic acid and succinic acid, especially under high salinity, but not in XZ26. Correspondingly, proteomic analysis further proved the findings from the metabolomic study. CONCLUSION XZ26 maintained a lower Na concentration in the shoots and developed superior shoot adaptive strategies to salt stress. The current result provides possible utilization of Tibetan wild barley in developing barley cultivars for salt tolerance.
Collapse
Affiliation(s)
- Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Fei Dai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Lixi Jiang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
47
|
Quan X, Qian Q, Ye Z, Zeng J, Han Z, Zhang G. Metabolic analysis of two contrasting wild barley genotypes grown hydroponically reveals adaptive strategies in response to low nitrogen stress. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:59-67. [PMID: 27693987 DOI: 10.1016/j.jplph.2016.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/03/2016] [Accepted: 07/28/2016] [Indexed: 05/21/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plants. The increasingly severe environmental problems caused by N fertilizer application urge alleviation of N fertilizer dependence in crop production. In previous studies, we identified the Tibetan wild barley accessions with high tolerance to low nitrogen (LN). In this study, metabolic analysis was done on two wild genotypes (XZ149, tolerant and XZ56, sensitive) to understand the mechanism of LN tolerance, using a hydroponic experiment. Leaf and root samples were taken at seven time points within 18 d after LN treatment, respectively. XZ149 was much less affected by low N stress than XZ56 in plant biomass. A total of 51 differentially accumulated metabolites were identified between LN and normal N treated plants. LN stress induced tissue-specific changes in carbon and nitrogen partitioning, and XZ149 had a pattern of energy-saving amino acids accumulation and carbon distribution in favor of root growth that contribute to its higher LN tolerance. Moreover, XZ149 is highly capable of producing energy and maintaining the redox homeostasis under LN stress. The current results revealed the mechanisms underlying the wild barley in high LN tolerance and provided the valuable references for developing barley cultivars with LN tolerance.
Collapse
Affiliation(s)
- Xiaoyan Quan
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiufeng Qian
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhilan Ye
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianbin Zeng
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhigang Han
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Guoping Zhang
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
48
|
Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley. Sci Rep 2016; 6:36122. [PMID: 27786300 PMCID: PMC5081693 DOI: 10.1038/srep36122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
The origin and domestication of cultivated barley have long been under debate. A population-based resequencing and phylogenetic analysis of the single copy of RPB2 gene was used to address barley domestication, to explore genetic differentiation of barley populations on the worldwide scale, and to understand gene-pool exchanges during the spread and subsequent development of barley cultivation. Our results revealed significant genetic differentiation among three geographically distinct wild barley populations. Differences in haplotype composition among populations from different geographical regions revealed that modern cultivated barley originated from two major wild barley populations: one from the Near East Fertile Crescent and the other from the Tibetan Plateau, supporting polyphyletic origin of cultivated barley. The results of haplotype frequencies supported multiple domestications coupled with widespread introgression events that generated genetic admixture between divergent barley gene pools. Our results not only provide important insight into the domestication and evolution of cultivated barley, but also enhance our understanding of introgression and distinct selection pressures in different environments on shaping the genetic diversity of worldwide barley populations, thus further facilitating the effective use of the wild barley germplasm.
Collapse
|
49
|
Cardinal MJ, Kaur R, Singh J. Genetic Transformation of Hordeum vulgare ssp. spontaneum for the Development of a Transposon-Based Insertional Mutagenesis System. Mol Biotechnol 2016; 58:672-683. [PMID: 27480175 DOI: 10.1007/s12033-016-9967-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Domestication and intensive selective breeding of plants has triggered erosion of genetic diversity of important stress-related alleles. Researchers highlight the potential of using wild accessions as a gene source for improvement of cereals such as barley, which has major economic and social importance worldwide. Previously, we have successfully introduced the maize Ac/Ds transposon system for gene identification in cultivated barley. The objective of current research was to investigate the response of Hordeum vulgare ssp. spontaneum wild barley accessions in tissue culture to standardize parameters for introduction of Ac/Ds transposons through genetic transformation. We investigated the response of ten wild barley genotypes for callus induction, regenerative green callus induction and regeneration of fertile plants. The activity of exogenous Ac/Ds elements was observed through a transient assay on immature wild barley embryos/callus whereby transformed embryos/calli were identified by the expression of GUS. Transient Ds expression bombardment experiments were performed on 352 pieces of callus (3-5 mm each) or immature embryos in 4 genotypes of wild barley. The transformation frequency of putative transgenic callus lines based on transient GUS expression ranged between 72 and100 % in wild barley genotypes. This is the first report of a transformation system in H. vulgare ssp. spontaneum.
Collapse
Affiliation(s)
- Marie-Josée Cardinal
- Plant Science Department, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Rajvinder Kaur
- Department of Bioresource Engineering, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Jaswinder Singh
- Plant Science Department, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
50
|
Abou-Elwafa SF. Association mapping for yield and yield-contributing traits in barley under drought conditions with genome-based SSR markers. C R Biol 2016; 339:153-162. [PMID: 27129392 DOI: 10.1016/j.crvi.2016.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
Drought negatively affects plant development, growth, yield, and ultimately production of crop species. Association analysis of yield and yield-contributing traits was conducted for a barley germplasm collection consisting 107 wild (Hordeum spontaneum L.) genotypes, originating from 12 countries using 76 SSR markers. Phenotypic evaluations were performed for days to heading, plant height, number of tillers/plant, spike length, thousand kernel weight, single plant yield under well-watered and drought-stress conditions. Highly significant differences between well-watered and drought-stress conditions were observed in all measured traits. Association analysis revealed a total of 83 significant marker-trait associations for all six measured traits. The results revealed that several chromosomal regions significantly influence more than one trait, suggesting a possible existence of pleiotropic or indirect effects. The phenotypic variation explained by individual marker-trait associations ranged from 5.08 to 27.84%. The results demonstrated that wild barley is a valuable source for improving yield and yield-contributing traits for drought tolerance. Our data provide a tool kit for the potential application of marker-assisted selection for drought tolerance in barley.
Collapse
|