1
|
Li J, Yao X, Zhang J, Li M, Xie Q, Yang Y, Chen G, Zhang X, Hu Z. Genome-Wide Identification and Expression Analysis of Hexokinase Gene Family Under Abiotic Stress in Tomato. PLANTS (BASEL, SWITZERLAND) 2025; 14:441. [PMID: 39943003 PMCID: PMC11819920 DOI: 10.3390/plants14030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025]
Abstract
In plants, hexokinase (HXK) is a kind of bifunctional enzyme involved in sugar metabolism and sugar signal transduction that plays important roles in plant growth and development and stress response. Some HXK genes without a phosphorylation function have been found in Arabidopsis, tobacco, etc., but these genes have not been identified in tomato. Therefore, further genome-wide systematic identification and characterization is necessary for tomato HXK genes. In this study, six HXK genes were identified from the tomato genome distributed across six different chromosomes, named SlHXK1-6. Gene structure analysis showed that the SlHXK genes contain the same number of introns and exons. Gene duplication and collinearity analysis revealed two pairs of tandem repeats among SlHXKs, and a higher collinearity between tomatoes and potatoes were found. Response elements associated with phytohormones, abiotic stresses, and growth and development were identified in the promoter sequences of SlHXKs. Quantitative real-time PCR (qRT-PCR) results further indicated the potential role of SlHXKs in tomato development and stress responses. The expression levels of most SlHXKs were significantly induced by abiotic stress, hormone, and sugar solution treatments. In particular, the expression of SlHXK1 was significantly induced by various treatments. Functional complementation experiments were performed using HXK-deficient yeast strain YSH7.4-3C (hxk1, hxk2, and glk1), and the results showed that SlHXK5 and SlHXK6 were unable to phosphorylate glucose and fructose in yeast. In conclusion, these results provide valuable foundations for further exploring the sugar metabolism and sugar signal transduction mechanisms of HXK and the functions of SlHXK genes in various abiotic stresses, and some SlHXKs may be key genes for enhancing plants' tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing 400030, China; (J.L.); (Q.X.); (Y.Y.); (G.C.)
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China;
| | - Xiong Yao
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China;
| | - Jianling Zhang
- Laboratory of Plant Germplasm Resources Innovation and Utilization, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China;
| | - Maoyu Li
- Chongqing Seed Station, Chongqing 401121, China;
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing 400030, China; (J.L.); (Q.X.); (Y.Y.); (G.C.)
| | - Yingwu Yang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing 400030, China; (J.L.); (Q.X.); (Y.Y.); (G.C.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing 400030, China; (J.L.); (Q.X.); (Y.Y.); (G.C.)
| | - Xianwei Zhang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China;
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing 400030, China; (J.L.); (Q.X.); (Y.Y.); (G.C.)
| |
Collapse
|
2
|
Wu Y, Chen H, Wu M, Zhou Y, Yu C, Yang Q, Rolland F, Van de Poel B, Bouzayen M, Hu N, Wang Y, Liu M. A vacuolar invertase gene SlVI modulates sugar metabolism and postharvest fruit quality and stress resistance in tomato. HORTICULTURE RESEARCH 2025; 12:uhae283. [PMID: 39866960 PMCID: PMC11758369 DOI: 10.1093/hr/uhae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/21/2024] [Indexed: 01/28/2025]
Abstract
Sugars act as signaling molecules to modulate various growth processes and enhance plant tolerance to various abiotic and biotic stresses. Moreover, sugars contribute to the postharvest flavor in fleshy fruit crops. To date, the regulation of sugar metabolism and its effect in plant growth, fruit ripening, postharvest quality, and stress resistance remains not fully understood. In this study, we investigated the role of tomato gene encoding a vacuolar invertase, hydrolyzing sucrose to glucose and fructose. SlVI is specifically expressed during the tomato fruit ripening process. We found that overexpression of SlVI resulted in increased leaf size and early flowering, while knockout of SlVI led to increased fruit sucrose content, enhanced fruit firmness, and elevated resistance of postharvest fruit to Botrytis cinerea. Moreover, the content of naringenin and total soluble solids was significantly increased in SlVI knockout fruit at postharvest stage. Transcriptome analysis showed a negative feedback regulation triggered by sucrose accumulation in SlVI knockout fruit resulting in a downregulation of BAM3 and AMY2, which are critical for starch degradation. Moreover, genes associated with cell wall, cutin, wax, and flavonoid biosynthesis and pathogen resistance were upregulated in SlVI knockout fruit. Conversely, the expression levels of genes involved in cell wall degradation were decreased in knockout fruit. These results are consistent with the enhanced postharvest quality and resistance. Our findings not only provide new insights into the relationship between tomato fruit sucrose content and postharvest fruit quality, but also suggest new strategies to enhance fruit quality and extend postharvest shelf life.
Collapse
Affiliation(s)
- Yu Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Haonan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yuanyi Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Chuying Yu
- Vegetable Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, Guangxi, China
| | - Qihong Yang
- Vegetable Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, Guangxi, China
| | - Filip Rolland
- Laboratory of Plant Metabolic Signaling, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
- KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Bram Van de Poel
- KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
- Molecular Plant Hormone Physiology Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Heverlee, Belgium
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, 31320 Toulouse, France
| | - Nan Hu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, Guangxi, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
3
|
Xia S, Zhao Y, Deng Q, Han X, Wang X. VvRF2b interacts with VvTOR and influences VvTOR-regulated sugar metabolism in grape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112276. [PMID: 39362500 DOI: 10.1016/j.plantsci.2024.112276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The production of top-quality wines is closely related to the quality of the wine grapes. In wine grapes (Vitis vinifera L., Vv), sugar is a crucial determinant of berry quality, regulated by an interplay of various transcription factors and key kinases. Many transcription factors involved in sugar metabolism remain unexplored. Target of Rapamycin (TOR) is an important protein kinase in plants, recently found to regulate sugar metabolism in grapes. However, transcription factors or other factors involved in this process are rarely reported. Here, we utilized transgenic callus tissues from 'Cabernet Sauvignon' grape fruit engineered via gene overexpression (oe) and CRISPR/Cas9-based gene knockout (ko), and discovered a bZIP transcription factor, VvRF2b, whose knockout resulted in increased accumulation of fructose and sucrose, indicating that VvRF2b is a negative regulator of sugar accumulation. Subcellular localization and transcriptional activation tests showed that VvRF2b is an activator of transcription located both in the nucleus and cell membrane. Analysis of VvRF2b and VvTOR gene levels and sugar contents (glucose, fructose, and sucrose) in 'Cabernet Sauvignon' grape fruits at 30, 70, and 90 days after bloom (DAB) revealed that VvRF2b is expressed more highly during fruit development, while VvTOR is expressed more during the sugar accumulation phase, furthermore, VvTOR gene levels in koVvRF2b transgenic calli increased significantly, suggesting a strong relationship between the knockout of VvRF2b and the overexpression of VvTOR. Additionally, bimolecular fluorescence complementation and luciferase complementation assays demonstrated the interaction between VvRF2b and VvTOR proteins. After knocking out the VvRF2b gene in oeVvTOR calli, it was found that the knockout of VvRF2b promotes VvTOR-regulated sucrose accumulation and enhances the expression of sugar metabolism-related genes regulated by VvTOR. In summary, our results suggest that VvRF2b interacts with VvTOR protein and influences VvTOR-regulated sugar metabolism.
Collapse
Affiliation(s)
- Shuang Xia
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ying Zhao
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Qiaoyun Deng
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaoyu Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiuqin Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Li YT, Liu DH, Luo Y, Abbas Khan M, Mahmood Alam S, Liu YZ. Transcriptome analysis reveals the key network of axillary bud outgrowth modulated by topping in citrus. Gene 2024; 926:148623. [PMID: 38821328 DOI: 10.1016/j.gene.2024.148623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Topping, an important tree shaping and pruning technique, can promote the outgrowth of citrus axillary buds. However, the underlying molecular mechanism is still unclear. In this study, spring shoots of Citrus reticulata 'Huagan No.2' were topped and transcriptome was compared between axillary buds of topped and untopped shoots at 6 and 11 days after topping (DAT). 1944 and 2394 differentially expressed genes (DEGs) were found at 6 and 11 DAT, respectively. KEGG analysis revealed that many DEGs were related to starch and sucrose metabolism, signal transduction of auxin, cytokinin and abscisic acid. Specially, transcript levels of auxin synthesis, transport, and signaling-related genes (SAURs and ARF5), cytokinin signal transduction related genes (CRE1, AHP and Type-A ARRs), ABA signal responsive genes (PYL and ABF) were up-regulated by topping; while transcript levels of auxin receptor TIR1, auxin responsive genes AUX/IAAs, ABA signal transduction related gene PP2Cs and synthesis related genes NCED3 were down-regulated. On the other hand, the contents of sucrose and fructose in axillary buds of topped shoots were significantly higher than those in untopped shoots; transcript levels of 16 genes related to sucrose synthase, hexokinase, sucrose phosphate synthase, endoglucanase and glucosidase, were up-regulated in axillary buds after topping. In addition, transcript levels of genes related to trehalose 6-phosphate metabolism and glycolysis/tricarboxylic acid (TCA) cycle, as well to some transcription factors including Pkinase, Pkinase_Tyr, Kinesin, AP2/ERF, P450, MYB, NAC and Cyclin_c, significantly responded to topping. Taken together, the present results suggested that topping promoted citrus axillary bud outgrowth through comprehensively regulating plant hormone and carbohydrate metabolism, as well as signal transduction. These results deepened our understanding of citrus axillary bud outgrowth by topping and laid a foundation for further research on the molecular mechanisms of citrus axillary bud outgrowth.
Collapse
Affiliation(s)
- Yan-Ting Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops / College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dong-Hai Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops / College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yin Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops / College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Abbas Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops / College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shariq Mahmood Alam
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops / College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yong-Zhong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops / College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
5
|
Acharya TP, Malladi A, Nambeesan SU. Sustained carbon import supports sugar accumulation and anthocyanin biosynthesis during fruit development and ripening in blueberry (Vaccinium ashei). Sci Rep 2024; 14:24964. [PMID: 39443596 PMCID: PMC11500416 DOI: 10.1038/s41598-024-74929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Fruit ripening is a highly coordinated process involving molecular and biochemical changes that collectively determine fruit quality. The underlying metabolic programs and their transitions leading to fruit ripening remain largely under-characterized in blueberry (Vaccinium sp.), which exhibits atypical climacteric behavior. In this study, we focused on sugar, acid and anthocyanin metabolism in two rabbiteye blueberry cultivars, Premier and Powderblue, during fruit development and ripening. Concentrations of the three major sugars, sucrose (Suc), glucose (Glc), and fructose (Fru) increased steadily during fruit development leading up to ripening, and increased dramatically by around 2-fold in 'Premier' and 2- to 3-fold in 'Powderblue' during the final stage of fruit ripening. Starch concentration was very low throughout fruit development in both cultivars indicating that it does not serve the role of a major transitory carbon (C) storage form in blueberry fruit. Together, these patterns indicate continued import of C, likely in the form of Suc, throughout blueberry fruit development. Concentrations of the predominant acids, malate and quinate, decreased during ripening, and may contribute to increased shikimate biosynthesis which, in-turn, allows for downstream phenylpropanoid metabolism leading to anthocyanin synthesis. Consistently, anthocyanin concentrations were highest in fully ripened blue fruit. Weighted gene co-expression network analysis (WGCNA) was performed using a 'Powderblue' fruit ripening transcriptome and targeted fruit metabolite concentration data. A 'dark turquoise' module positively correlated with sugars and anthocyanins, and negatively correlated with acids (malate, quinate), was identified. Gene Ontology (GO) enrichment analysis of this module identified transcripts related to sugar, acid, and phenylpropanoid metabolism pathways. Among these, increased transcript abundance of a VACUOLAR INVERTASE during ripening was consistent with sugar storage in the vacuole. In general, transcript abundance of the glycolysis pathway genes was upregulated during ripening. The transcript abundance of PHOSPHOENOLPYRUVATE (PEP) CARBOXYKINASE increased during fruit ripening and was negatively correlated with malate concentration, suggesting increased malate conversion to PEP, which supports anthocyanin production during fruit ripening. This was further supported by the co-upregulation of several anthocyanin biosynthesis-related genes. Together, this study provides insights into important metabolic programs, and their underlying gene expression patterns during fruit development and ripening in blueberry.
Collapse
Affiliation(s)
- Tej P Acharya
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, USA
- U.S. Department of Agriculture, Agriculture Research Service, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, USA
| | - Anish Malladi
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, USA
| | - Savithri U Nambeesan
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, USA.
| |
Collapse
|
6
|
Rüscher D, Vasina VV, Knoblauch J, Bellin L, Pommerrenig B, Alseekh S, Fernie AR, Neuhaus HE, Knoblauch M, Sonnewald U, Zierer W. Symplasmic phloem loading and subcellular transport in storage roots are key factors for carbon allocation in cassava. PLANT PHYSIOLOGY 2024; 196:1322-1339. [PMID: 38775728 PMCID: PMC11483629 DOI: 10.1093/plphys/kiae298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/05/2024] [Indexed: 10/03/2024]
Abstract
Cassava (Manihot esculenta) is a deciduous woody perennial shrub that stores large amounts of carbon and water in its storage roots. Previous studies have shown that assimilating unloading into storage roots happens symplasmically once secondary anatomy is established. However, mechanisms controlling phloem loading and overall carbon partitioning to different cassava tissues remain unclear. Here, we used a combination of histological, transcriptional, and biochemical analyses on different cassava tissues and at different timepoints to better understand source-sink carbon allocation. We found that cassava likely utilizes a predominantly passive symplasmic phloem loading strategy, indicated by the lack of expression of genes coding for key players of sucrose transport, the existence of branched plasmodesmata in the companion cell/bundle sheath interface of minor leaf veins, and very high leaf sucrose concentrations. Furthermore, we showed that tissue-specific changes in anatomy and non-structural carbohydrate contents are associated with tissue-specific modification in gene expression for sucrose cleavage/synthesis, as well as subcellular compartmentalization of sugars. Overall, our data suggest that carbon allocation during storage root filling is mostly facilitated symplasmically and is likely mostly regulated by local tissue demand and subcellular compartmentalization.
Collapse
Affiliation(s)
- David Rüscher
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Viktoriya V Vasina
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Leo Bellin
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Saleh Alseekh
- Division of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Alisdair R Fernie
- Division of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - H Ekkehard Neuhaus
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Wolfgang Zierer
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
7
|
Abbas ZK, Al-Huqail AA, Abdel Kawy AH, Abdulhai RA, Albalawi DA, AlShaqhaa MA, Alsubeie MS, Darwish DBE, Abdelhameed AA, Soudy FA, Makki RM, Aljabri M, Al-Sulami N, Ali M, Zayed M. Harnessing de novo transcriptome sequencing to identify and characterize genes regulating carbohydrate biosynthesis pathways in Salvia guaranitica L. FRONTIERS IN PLANT SCIENCE 2024; 15:1467432. [PMID: 39391775 PMCID: PMC11464306 DOI: 10.3389/fpls.2024.1467432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024]
Abstract
Introduction Carbohydrate compounds serve multifaceted roles, from energy sources to stress protectants, found across diverse organisms including bacteria, fungi, and plants. Despite this broad importance, the molecular genetic framework underlying carbohydrate biosynthesis pathways, such as starch, sucrose, and glycolysis/gluconeogenesis in Salvia guaranitica, remains largely unexplored. Methods In this study, the Illumina-HiSeq 2500 platform was used to sequence the transcripts of S. guaranitica leaves, generating approximately 8.2 Gb of raw data. After filtering and removing adapter sequences, 38 million reads comprising 210 million high-quality nucleotide bases were obtained. De novo assembly resulted in 75,100 unigenes, which were annotated to establish a comprehensive database for investigating starch, sucrose, and glycolysis biosynthesis. Functional analyses of glucose-6-phosphate isomerase (SgGPI), trehalose-6-phosphate synthase/phosphatase (SgT6PS), and sucrose synthase (SgSUS) were performed using transgenic Arabidopsis thaliana. Results Among the unigenes, 410 were identified as putatively involved in these metabolic pathways, including 175 related to glycolysis/gluconeogenesis and 235 to starch and sucrose biosynthesis. Overexpression of SgGPI, SgT6PS, and SgSUS in transgenic A. thaliana enhanced leaf area, accelerated flower formation, and promoted overall growth compared to wild-type plants. Discussion These findings lay a foundation for understanding the roles of starch, sucrose, and glycolysis biosynthesis genes in S. guaranitica, offering insights into future metabolic engineering strategies for enhancing the production of valuable carbohydrate compounds in S. guaranitica or other plants.
Collapse
Affiliation(s)
- Zahid Khorshid Abbas
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aesha H. Abdel Kawy
- Plant Ecophysiology Unit, Plant Ecology and Range Management Department, Desert Research Center, Cairo, Egypt
| | - Rabab A. Abdulhai
- Botany Department, Faculty of Women, Ain Shams University, Cairo, Egypt
| | - Doha A. Albalawi
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Moodi Saham Alsubeie
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | | | - Ahmed Ali Abdelhameed
- Agricultural Botany Department (Genetics), Faculty of Agriculture, Al-Azhar University, Assuit, Egypt
| | - Fathia A. Soudy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Rania M. Makki
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Maha Aljabri
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nadiah Al-Sulami
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Mohammed Ali
- Maryout Research Station, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Muhammad Zayed
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
8
|
Khongmaluan M, Aesomnuk W, Dumhai R, Pitaloka MK, Xiao Y, Xia R, Kraithong T, Phonsatta N, Panya A, Ruanjaichon V, Wanchana S, Arikit S. Whole-Genome Resequencing Identifies SNPs in Sucrose Synthase and Sugar Transporter Genes Associated with Sweetness in Coconut. PLANTS (BASEL, SWITZERLAND) 2024; 13:2548. [PMID: 39339523 PMCID: PMC11434861 DOI: 10.3390/plants13182548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Coconut (Cocos nucifera L.) is an important agricultural commodity with substantial economic and nutritional value, widely used for various products, including coconut water. The sweetness is an important quality trait of coconut water, which is influenced by genetic and environmental factors. In this study, we utilized next-generation sequencing to identify genetic variations in the coconut genome associated with the sweetness of coconut water. Whole-genome resequencing of 49 coconut accessions, including diverse germplasm and an F2 population of 81 individuals, revealed ~27 M SNPs and ~1.5 M InDels. Sugar content measured by °Bx was highly variable across all accessions tested, with dwarf varieties generally sweeter. A comprehensive analysis of the sugar profiles revealed that sucrose was the major sugar contributing to sweetness. Allele mining of the 148 genes involved in sugar metabolism and transport and genotype-phenotype association tests revealed two significant SNPs in the hexose carrier protein (Cnu01G018720) and sucrose synthase (Cnu09G011120) genes associated with the higher sugar content in both the germplasm and F2 populations. This research provides valuable insights into the genetic basis of coconut sweetness and offers molecular markers for breeding programs aimed at improving coconut water quality. The identified variants can improve the selection process in breeding high-quality sweet coconut varieties and thus support the economic sustainability of coconut cultivation.
Collapse
Affiliation(s)
- Manlika Khongmaluan
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Wanchana Aesomnuk
- Rice Science Center, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Reajina Dumhai
- Rice Science Center, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Mutiara K Pitaloka
- Research Center for Applied Botany, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor KM 46, Bogor 16911, Indonesia
| | - Yong Xiao
- Coconut Research Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou 571339, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Tippaya Kraithong
- Chumphon Horticulture Research Center, Department of Agriculture, Bangkok 10900, Thailand
| | - Natthaporn Phonsatta
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Atikorn Panya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Rice Science Center, Kasetsart University, Nakhon Pathom 73140, Thailand
| |
Collapse
|
9
|
Lu L, Delrot S, Liang Z. From acidity to sweetness: a comprehensive review of carbon accumulation in grape berries. MOLECULAR HORTICULTURE 2024; 4:22. [PMID: 38835095 DOI: 10.1186/s43897-024-00100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Most of the carbon found in fruits at harvest is imported by the phloem. Imported carbon provide the material needed for the accumulation of sugars, organic acids, secondary compounds, in addition to the material needed for the synthesis of cell walls. The accumulation of sugars during fruit development influences not only sweetness but also various parameters controlling fruit composition (fruit "quality"). The accumulation of organic acids and sugar in grape berry flesh cells is a key process for berry development and ripening. The present review presents an update of the research on grape berry development, anatomical structure, sugar and acid metabolism, sugar transporters, and regulatory factors.
Collapse
Affiliation(s)
- Lizhen Lu
- State Key Laboratory of Plant Diversity and Prominent Crop, Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Serge Delrot
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, Villenave d'Ornon, 33882, France
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Prominent Crop, Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
10
|
Shi Y, Hu G, Wang Y, Liang Q, Su D, Lu W, Deng W, Bouzayen M, Liu Y, Li Z, Huang B. The SlGRAS9-SlZHD17 transcriptional cascade regulates chlorophyll and carbohydrate metabolism contributing to fruit quality traits in tomato. THE NEW PHYTOLOGIST 2024; 241:2540-2557. [PMID: 38263687 DOI: 10.1111/nph.19530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Some essential components of fleshy fruits are dependent on photosynthetic activity and carbohydrate metabolism. Nevertheless, the regulatory mechanisms linking chlorophyll and carbohydrate metabolism remain partially understood. Here, we uncovered the role of SlGRAS9 and SlZHD17 transcription factors in controlling chlorophyll and carbohydrate accumulation in tomato fruit. Knockout or knockdown of SlGRAS9 or SlZHD17 resulted in marked increase in chlorophyll content, reprogrammed chloroplast biogenesis and enhanced accumulation of starch and soluble sugars. Combined genome-wide transcriptomic profiling and promoter-binding experiments unveiled a complex mechanism in which the SlGRAS9/SlZHD17 regulatory module modulates the expression of chloroplast and sugar metabolism either via a sequential transcriptional cascade or through binding of both TFs to the same gene promoters, or, alternatively, via parallel pathways where each of the TFs act on different target genes. For instance, the regulation of SlAGPaseS1 and SlSUS1 is mediated by SlZHD17 whereas that of SlVI and SlGLK1 occurs only through SlGRAS9 without the intervention of SlZHD17. Both SlGRAS9 and SlZHD17 can also directly bind the promoter of SlPOR-B to regulate its expression. Taken together, our findings uncover two important regulators acting synergistically to manipulate chlorophyll and carbohydrate accumulation and provide new potential breeding targets for improving fruit quality in fleshy fruits.
Collapse
Affiliation(s)
- Yuan Shi
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Guojian Hu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
- Laboratoire de Recherche en Sciences Vegetales - Genomique et Biotechnologie des Fruits - UMR5546, Universite de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, 31326, France
| | - Yan Wang
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Qin Liang
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Deding Su
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Wang Lu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Mondher Bouzayen
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
- Laboratoire de Recherche en Sciences Vegetales - Genomique et Biotechnologie des Fruits - UMR5546, Universite de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, 31326, France
| | - Yudong Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
11
|
Puzanskiy RK, Romanyuk DA, Kirpichnikova AA, Yemelyanov VV, Shishova MF. Plant Heterotrophic Cultures: No Food, No Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:277. [PMID: 38256830 PMCID: PMC10821431 DOI: 10.3390/plants13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Plant cells are capable of uptaking exogenous organic substances. This inherited trait allows the development of heterotrophic cell cultures in various plants. The most common of them are Nicotiana tabacum and Arabidopsis thaliana. Plant cells are widely used in academic studies and as factories for valuable substance production. The repertoire of compounds supporting the heterotrophic growth of plant cells is limited. The best growth of cultures is ensured by oligosaccharides and their cleavage products. Primarily, these are sucrose, raffinose, glucose and fructose. Other molecules such as glycerol, carbonic acids, starch, and mannitol have the ability to support growth occasionally, or in combination with another substrate. Culture growth is accompanied by processes of specialization, such as elongation growth. This determines the pattern of the carbon budget. Culture ageing is closely linked to substrate depletion, changes in medium composition, and cell physiological rearrangements. A lack of substrate leads to starvation, which results in a decrease in physiological activity and the mobilization of resources, and finally in the loss of viability. The cause of the instability of cultivated cells may be the non-optimal metabolism under cultural conditions or the insufficiency of internal regulation.
Collapse
Affiliation(s)
- Roman K. Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia;
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia;
| | | | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| |
Collapse
|
12
|
Ma M, Zhu T, Cheng X, Li M, Yuan G, Li C, Zhang A, Lu C, Fang Y, Zhang Y. Sucrose phosphate synthase 8 is required for the remobilization of carbon reserves in rice stems during grain filling. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:137-151. [PMID: 37738583 DOI: 10.1093/jxb/erad375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Carbon reserve remobilization in stems is closely related to rice grain filling. Sucrose phosphate synthase (SPS) is highly associated with carbon reserve remobilization. In this study, we investigated the expression pattern of SPS genes in various rice tissues, and found that SPS8 is the major SPS isoform in rice stems during the grain-filling stage. We then constructed sps8 mutants using the CRISPR/Cas9 system. The SPS activity of the sps8 mutants was markedly reduced in the stems. In addition, the sps8 mutants exhibited significant starch accumulation in stems. 14C-labelling experiments revealed that the remobilization of non-structural carbohydrates from rice stems to grains was impaired in the sps8 mutants. In the sps8 mutants, grain filling was delayed and yield decreased by 15% due to a reduced percentage of ripened grains. RNA sequencing and quantitative PCR analyses indicated that the genes involved in starch synthesis and degradation were up-regulated in the sps8 mutant stems. In addition, the activity of the enzymes involved in starch synthesis and degradation was increased in the sps8 stems. These results demonstrate that SPS8 is required for carbon reserve remobilization from rice stems to grains, and that its absence may enhance 'futile cycles' of starch synthesis and degradation in rice stems.
Collapse
Affiliation(s)
- Mingyang Ma
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tong Zhu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiuyue Cheng
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Mengyu Li
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Guoliang Yuan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Changbao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Aihong Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ying Fang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
13
|
Gou N, Chen C, Huang M, Zhang Y, Bai H, Li H, Wang L, Wuyun T. Transcriptome and Metabolome Analyses Reveal Sugar and Acid Accumulation during Apricot Fruit Development. Int J Mol Sci 2023; 24:16992. [PMID: 38069317 PMCID: PMC10707722 DOI: 10.3390/ijms242316992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The apricot (Prunus armeniaca L.) is a fruit that belongs to the Rosaceae family; it has a unique flavor and is of important economic and nutritional value. The composition and content of soluble sugars and organic acids in fruit are key factors in determining the flavor quality. However, the molecular mechanism of sugar and acid accumulation in apricots remains unclear. We measured sucrose, fructose, glucose, sorbitol, starch, malate, citric acid, titratable acid, and pH, and investigated the transcriptome profiles of three apricots (the high-sugar cultivar 'Shushanggan', common-sugar cultivar 'Sungold', and low-sugar cultivar 'F43') at three distinct developmental phases. The findings indicated that 'Shushanggan' accumulates a greater amount of sucrose, glucose, fructose, and sorbitol, and less citric acid and titratable acid, resulting in a better flavor; 'Sungold' mainly accumulates more sucrose and less citric acid and starch for the second flavor; and 'F43' mainly accumulates more titratable acid, citric acid, and starch for a lesser degree of sweetness. We investigated the DEGs associated with the starch and sucrose metabolism pathways, citrate cycle pathway, glycolysis pathway, and a handful of sugar transporter proteins, which were considered to be important regulators of sugar and acid accumulation. Additionally, an analysis of the co-expression network of weighted genes unveiled a robust correlation between the brown module and sucrose, glucose, and fructose, with VIP being identified as a hub gene that interacted with four sugar transporter proteins (SLC35B3, SLC32A, SLC2A8, and SLC2A13), as well as three structural genes for sugar and acid metabolism (MUR3, E3.2.1.67, and CSLD). Furthermore, we found some lncRNAs and miRNAs that regulate these genes. Our findings provide clues to the functional genes related to sugar metabolism, and lay the foundation for the selection and cultivation of high-sugar apricots in the future.
Collapse
Affiliation(s)
- Ningning Gou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Chen Chen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Mengzhen Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Yujing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Haikun Bai
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Lin Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| | - Tana Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (N.G.); (C.C.); (M.H.); (Y.Z.); (H.B.); (H.L.); (L.W.)
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou 450003, China
- Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou 450003, China
| |
Collapse
|
14
|
Ezura K, Nomura Y, Ariizumi T. Molecular, hormonal, and metabolic mechanisms of fruit set, the ovary-to-fruit transition, in horticultural crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6254-6268. [PMID: 37279328 DOI: 10.1093/jxb/erad214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Fruit set is the process by which the ovary develops into a fruit and is an important factor in determining fruit yield. Fruit set is induced by two hormones, auxin and gibberellin, and the activation of their signaling pathways, partly by suppressing various negative regulators. Many studies have investigated the structural changes and gene networks in the ovary during fruit set, revealing the cytological and molecular mechanisms. In tomato (Solanum lycopersicum), SlIAA9 and SlDELLA/PROCERA act as auxin and gibberellin signaling repressors, respectively, and are important regulators of the activity of transcription factors and downstream gene expression involved in fruit set. Upon pollination, SlIAA9 and SlDELLA are degraded, which subsequently activates downstream cascades and mainly contributes to active cell division and cell elongation, respectively, in ovaries during fruit setting. According to current knowledge, the gibberellin pathway functions as the most downstream signal in fruit set induction, and therefore its role in fruit set has been extensively explored. Furthermore, multi-omics analysis has revealed the detailed dynamics of gene expression and metabolites downstream of gibberellins, highlighting the rapid activation of central carbon metabolism. This review will outline the relevant mechanisms at the molecular and metabolic levels during fruit set, particularly focusing on tomato.
Collapse
Affiliation(s)
- Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo 102-0083, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yukako Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
15
|
Mira MM, Hill RD, Hilo A, Langer M, Robertson S, Igamberdiev AU, Wilkins O, Rolletschek H, Stasolla C. Plant stem cells under low oxygen: metabolic rewiring by phytoglobin underlies stem cell functionality. PLANT PHYSIOLOGY 2023; 193:1416-1432. [PMID: 37311198 DOI: 10.1093/plphys/kiad344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Root growth in maize (Zea mays L.) is regulated by the activity of the quiescent center (QC) stem cells located within the root apical meristem. Here, we show that despite being highly hypoxic under normal oxygen tension, QC stem cells are vulnerable to hypoxic stress, which causes their degradation with subsequent inhibition of root growth. Under low oxygen, QC stem cells became depleted of starch and soluble sugars and exhibited reliance on glycolytic fermentation with the impairment of the TCA cycle through the depressed activity of several enzymes, including pyruvate dehydrogenase (PDH). This finding suggests that carbohydrate delivery from the shoot might be insufficient to meet the metabolic demand of QC stem cells during stress. Some metabolic changes characteristic of the hypoxic response in mature root cells were not observed in the QC. Hypoxia-responsive genes, such as PYRUVATE DECARBOXYLASE (PDC) and ALCOHOL DEHYDROGENASE (ADH), were not activated in response to hypoxia, despite an increase in ADH activity. Increases in phosphoenolpyruvate (PEP) with little change in steady-state levels of succinate were also atypical responses to low-oxygen tensions. Overexpression of PHYTOGLOBIN 1 (ZmPgb1.1) preserved the functionality of the QC stem cells during stress. The QC stem cell preservation was underpinned by extensive metabolic rewiring centered around activation of the TCA cycle and retention of carbohydrate storage products, denoting a more efficient energy production and diminished demand for carbohydrates under conditions where nutrient transport may be limiting. Overall, this study provides an overview of metabolic responses occurring in plant stem cells during oxygen deficiency.
Collapse
Affiliation(s)
- Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
- Department of Botany and Microbiology, Tanta University, Tanta 31527, Egypt
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Matthias Langer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sean Robertson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C5S7, Canada
| | - Olivia Wilkins
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| |
Collapse
|
16
|
Ren Y, Liao S, Xu Y. An update on sugar allocation and accumulation in fruits. PLANT PHYSIOLOGY 2023; 193:888-899. [PMID: 37224524 DOI: 10.1093/plphys/kiad294] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Fruit sweetness is determined by the amount and composition of sugars in the edible flesh. The accumulation of sugar is a highly orchestrated process that requires coordination of numerous metabolic enzymes and sugar transporters. This coordination enables partitioning and long-distance translocation of photoassimilates from source tissues to sink organs. In fruit crops, sugars ultimately accumulate in the sink fruit. Whereas tremendous progress has been achieved in understanding the function of individual genes associated with sugar metabolism and sugar transport in non-fruit crops, there is less known about the sugar transporters and metabolic enzymes responsible for sugar accumulation in fruit crop species. This review identifies knowledge gaps and can serve as a foundation for future studies, with comprehensive updates focusing on (1) the physiological roles of the metabolic enzymes and sugar transporters responsible for sugar allocation and partitioning and that contribute to sugar accumulation in fruit crops; and (2) the molecular mechanisms underlying the transcriptional and posttranslational regulation of sugar transport and metabolism. We also provide insights into the challenges and future directions of studies on sugar transporters and metabolic enzymes and name several promising genes that should be targeted with gene editing in the pursuit of optimized sugar allocation and partitioning to enhance sugar accumulation in fruits.
Collapse
Affiliation(s)
- Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shengjin Liao
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| |
Collapse
|
17
|
Pérez NV, Ramírez-Sotelo G, Yáñez-Fernández J, Castro-Rodríguez DC. Role of Thermal Process on the Physicochemical and Rheological Properties and Antioxidant Capacity of a New Functional Beverage Based on Coconut Water and Rice Flour. ACS OMEGA 2023; 8:26938-26947. [PMID: 37546632 PMCID: PMC10398844 DOI: 10.1021/acsomega.3c01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Different substrates have been implemented for the production of functional beverages. To avoid the presence of pathogens, beverages have been subjected to thermal treatments, such as sterilization or pasteurization, which can interfere with the physicochemical, rheological, functional, and organoleptic properties of the final product. The objective of the present study was to evaluate the effects of heat treatment on the physicochemical properties, such as acidity, pH, total solids, density, total and reducing sugar, as well as the antioxidant activity of a beverage formulated from rice flour (RF) and coconut water (CW). Three beverage formulations were evaluated: A (2% RF; 98% CW), B (5% RF; 95% CW), and C (8% RF; 92% CW), each of which was subjected to two heat treatments: sterilized (121 °C/15 psi/15 min) or pasteurized (60 °C/60 min and subsequently 73 °C/15 s). The heat treatments increased the acidity and reducing sugars but decreased pH, total sugar, and antioxidant activity. As for the rheological properties, the mixtures were pseudoplastic fluid. The physicochemical properties from RF and CW mixtures were dependent on the heat treatment, but these can be introduced as new nondairy substrates for the elaboration of functional beverages to be consumed mainly by those lactose intolerant.
Collapse
Affiliation(s)
- Naella
Sandivel Valencia Pérez
- Unidad
Profesional Interdisciplinaria de Biotecnología (UPIBI), Instituto Politécnico Nacional (IPN), Ciudad de Mexico 07738, Mexico
| | - Guadalupe Ramírez-Sotelo
- Unidad
Profesional Interdisciplinaria de Biotecnología (UPIBI), Instituto Politécnico Nacional (IPN), Ciudad de Mexico 07738, Mexico
| | - Jorge Yáñez-Fernández
- Unidad
Profesional Interdisciplinaria de Biotecnología (UPIBI), Instituto Politécnico Nacional (IPN), Ciudad de Mexico 07738, Mexico
| | - Diana C Castro-Rodríguez
- CONACyT-Cátedras,
Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición
SZ, Mexico City 14080, Mexico
| |
Collapse
|
18
|
Chen Q, Qu M, Chen Q, Meng X, Fan H. Phosphoproteomics analysis of the effect of target of rapamycin kinase inhibition on Cucumis sativus in response to Podosphaera xanthii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107641. [PMID: 36940522 DOI: 10.1016/j.plaphy.2023.107641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Target of rapamycin (TOR) kinase is a conserved sensor of cell growth in yeasts, plants, and mammals. Despite the extensive research on the TOR complex in various biological processes, large-scale phosphoproteomics analysis of TOR phosphorylation events upon environmental stress are scarce. Powdery mildew caused by Podosphaera xanthii poses a major threat to the quality and yield of cucumber (Cucumis sativus L.). Previous studies concluded that TOR participated in abiotic and biotic stress responses. Hence, studying the underlying mechanism of TOR-P. xanthii infection is particularly important. In this study, we performed a quantitative phosphoproteomics studies of Cucumis against P. xanthii attack under AZD-8055 (TOR inhibitor) pretreatment. A total of 3384 phosphopeptides were identified from the 1699 phosphoproteins. The Motif-X analysis showed high sensitivity and specificity of serine sites under AZD-8055-treatment or P. xanthii stress, and TOR exhibited a unique preference for proline at +1 position and glycine at -1 position to enhance the phosphorylation response to P. xanthii. The functional analysis suggested that the unique responses were attributed to proteins related to plant hormone signaling, mitogen-activated protein kinase cascade signaling, phosphatidylinositol signaling system, and circadian rhythm; and calcium signaling- and defense response-related proteins. Our results provided rich resources for understanding the molecular mechanism of how the TOR kinase controlled plant growth and stress adaptation.
Collapse
Affiliation(s)
- Qiumin Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mengqi Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qinglei Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biology and Genetic Improvement of Fruit Vegetables of Shenyang, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biology and Genetic Improvement of Fruit Vegetables of Shenyang, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
19
|
Determination of 3'-Sialyllactose in Edible Bird's Nests and the Effect of Stewing Conditions on the 3'-Sialyllactose Content of Edible Bird's Nest Products. Molecules 2023; 28:molecules28041703. [PMID: 36838693 PMCID: PMC9965600 DOI: 10.3390/molecules28041703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Sialyllactose is an acidic oligosaccharide that has an immune-protective effect against pathogens and contributes to developing the immune system and intestinal microbes. In this study, a method for the determination of 3'-sialyllactose by high-performance liquid chromatography tandem mass spectrometry was established. The sample was treated with 0.1% formic acid methanol solution, and the gradient elution was performed with 0.05% formic acid water and 0.1% formic acid acetonitrile. The hydrophilic liquid chromatographic column was used for separation. The results showed that the linearity was good in the concentration range of 1~160 μg/L. The limit of detection (LOD) and the limit of quantification (LOQ) of the method were 0.3 μg/kg and 1.0 μg/kg, the recovery range was 91.6%~98.4%, and the relative standard deviation (RSD) was 1.5%~2.2%. This method is fast and sensitive. In addition, the 3'-sialyllactose content in edible bird's nest products produced by different processes was studied. It was found that within the tested range, 3'-sialyllactose in edible bird's nest products increased with the intensity of stewing and increased with the addition of sugar. In short, the results provided a new method for detecting the nutritional value of edible bird's nests, as well as a new direction for improving the nutritional value of edible bird's nest products.
Collapse
|
20
|
Barbosa ACO, Rocha DS, Silva GCB, Santos MGM, Camillo LR, de Oliveira PHGA, Cavalari AA, Costa MGC. Dynamics of the sucrose metabolism and related gene expression in tomato fruits under water deficit. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:159-172. [PMID: 36875726 PMCID: PMC9981854 DOI: 10.1007/s12298-023-01288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The impact of water deficit on sucrose metabolism in sink organs like the fruit remains poorly known despite the need to improve fruit crops resilience to drought in the face of climate change. The present study investigated the effects of water deficit on sucrose metabolism and related gene expression in tomato fruits, aiming to identify candidate genes for improving fruit quality upon low water availability. Tomato plants were subjected to irrigated control and water deficit (-60% water supply compared to control) treatments, which were applied from the first fruit set to first fruit maturity stages. The results have shown that water deficit significantly reduced fruit dry biomass and number, among other plant physiological and growth variables, but substantially increased the total soluble solids content. The determination of soluble sugars on the basis of fruit dry weight revealed an active accumulation of sucrose and concomitant reduction in glucose and fructose levels in response to water deficit. The complete repertoire of genes encoding sucrose synthase (SUSY1-7), sucrose-phosphate synthase (SPS1-4), and cytosolic (CIN1-8), vacuolar (VIN1-2) and cell wall invertases (WIN1-4) was identified and characterized, of which SlSUSY4, SlSPS1, SlCIN3, SlVIN2, and SlCWIN2 were shown to be positively regulated by water deficit. Collectively, these results show that water deficit regulates positively the expression of certain genes from different gene families related to sucrose metabolism in fruits, favoring the active accumulation of sucrose in this organ under water-limiting conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01288-7.
Collapse
Affiliation(s)
- Ana C. O. Barbosa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Dilson S. Rocha
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Glaucia C. B. Silva
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Miguel G. M. Santos
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Luciana R. Camillo
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Paulo H. G. A. de Oliveira
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| | - Aline A. Cavalari
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, São Paulo, Diadema 09913-030 Brazil
| | - Marcio G. C. Costa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia 45662-900 Brazil
| |
Collapse
|
21
|
Consentino BB, Vultaggio L, Iacuzzi N, La Bella S, De Pasquale C, Rouphael Y, Ntatsi G, Virga G, Sabatino L. Iodine Biofortification and Seaweed Extract-Based Biostimulant Supply Interactively Drive the Yield, Quality, and Functional Traits in Strawberry Fruits. PLANTS (BASEL, SWITZERLAND) 2023; 12:245. [PMID: 36678959 PMCID: PMC9863389 DOI: 10.3390/plants12020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The horticultural sector is seeking innovative and sustainable agronomic practices which could lead to enhanced yield and product quality. Currently, plant biofortification is recognized as a valuable technique to improve microelement concentrations in plant tissues. Among trace elements, iodine (I) is an essential microelement for human nutrition. Concomitantly, the application of biostimulants may improve overall plant production and quality traits. With the above background in mind, an experiment was designed with the aim of assessing the interactive impact of a seaweed extract-based biostimulant (SwE) (0 mL L-1 (served as control) or 3 mL L-1 (optimal dosage)) and 0, 100, 300, or 600 mg L-1 I on the growth parameters, yield, fruit quality, minerals, and functional characteristics of the tunnel-grown "Savana" strawberry. SwE foliar application improved the plant growth-related traits, total and marketable yield, fruit color parameters, soluble solids content, nitrogen (N), potassium (K), and magnesium (Mg) fruit concentrations. Furthermore, an enhancement in the fruit dry matter content, ascorbic acid, and I concentration in fruits was detected when the SwE supply interacted with a mild I dose (100 or 300 mg L-1). The research underlined that combining SwE application and I biofortification increased the strawberry yield and quality and enhanced the plant nutritional status variation, thereby, determining a boosted strawberry I tolerance.
Collapse
Affiliation(s)
- Beppe Benedetto Consentino
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy
| | - Lorena Vultaggio
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy
| | - Nicolò Iacuzzi
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy
| | - Salvatore La Bella
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy
| | - Claudio De Pasquale
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Giuseppe Virga
- Research Consortium for the Development of Innovative Agro-Environmental Systems (Corissia), Via della Libertà 203, 90143 Palermo, Italy
| | - Leo Sabatino
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy
| |
Collapse
|
22
|
Effects of brown seaweed extract, silicon, and selenium on fruit quality and yield of tomato under different substrates. PLoS One 2022; 17:e0277923. [PMID: 36480512 PMCID: PMC9731418 DOI: 10.1371/journal.pone.0277923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 11/06/2022] [Indexed: 12/13/2022] Open
Abstract
Tomatoes (Lycopersicun esculentum L.) are an important group of vegetable crops that have high economical and nutritional value. The use of fertilizers and appropriate substrates is one of the important strategies that can assist in increasing the yield and quality of fruits. The present study aimed to investigate the effects of exogenous seaweed extract (Nizamuddinia zanardinii), silicon (Na2SiO3), and selenium (Na2SeO3) on quality attributes and fruit yield (FY) of tomato under palm peat + perlite and coco peat + perlite substrates. Seaweed extract significantly improved several of the fruit quality attributes such as total carbohydrate content, total soluble solids (TSS), and pH as well as the FY. The results showed that silicon (Si) (75 mg) was the best foliar spray treatment to enhance the fruit firmness (30.46 N), fruit volume (196.8 cm3), and FY (3320.5 g). The highest amount of plant yield (3429.33 g) was obtained by the interaction effects of silicon (75 mg L-1) under the effect of palm peat. The use of selenium (Se) led to improvements in flavor index (TSS/TA). Also, the application of palm peat + perlite substrate caused an increase in vitamin C (16.62 mg/100g FW), compared to other substrates (14.27 mg/100g FW). The present study suggested that foliar spray with seaweed extract and Si had beneficial effects on the quality and FY of tomatoes. Also, the palm peat substrate can be used as a good alternative to the coco peat substrate in the hydroponic system.
Collapse
|
23
|
Campos NA, Colombié S, Moing A, Cassan C, Amah D, Swennen R, Gibon Y, Carpentier SC. From fruit growth to ripening in plantain: a careful balance between carbohydrate synthesis and breakdown. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4832-4849. [PMID: 35512676 PMCID: PMC9366326 DOI: 10.1093/jxb/erac187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
In this study, we aimed to investigate for the first time different fruit development stages in plantain banana in order gain insights into the order of appearance and dominance of specific enzymes and fluxes. We examined fruit development in two plantain banana cultivars during the period between 2-12 weeks after bunch emergence using high-throughput proteomics, quantification of major metabolites, and analyses of metabolic fluxes. Starch synthesis and breakdown are processes that take place simultaneously. During the first 10 weeks fruits accumulated up to 48% of their dry weight as starch, and glucose 6-phosphate and fructose were important precursors. We found a unique amyloplast transporter and hypothesize that it facilitates the import of fructose. We identified an invertase originating from the Musa balbisiana genome that would enable carbon flow back to growth and starch synthesis and maintain a high starch content even during ripening. Enzymes associated with the initiation of ripening were involved in ethylene and auxin metabolism, starch breakdown, pulp softening, and ascorbate biosynthesis. The initiation of ripening was cultivar specific, with faster initiation being particularly linked to the 1-aminocyclopropane-1-carboxylate oxidase and 4-alpha glucanotransferase disproportionating enzymes. Information of this kind is fundamental to determining the optimal time for picking the fruit in order to reduce post-harvest losses, and has potential applications for breeding to improve fruit quality.
Collapse
Affiliation(s)
| | - Sophie Colombié
- INRAE, Fruit Biology and Pathology, Université De Bordeaux, UMR 1332, 33140 Villenave d’Ornon, France
| | - Annick Moing
- INRAE, Fruit Biology and Pathology, Université De Bordeaux, UMR 1332, 33140 Villenave d’Ornon, France
| | - Cedric Cassan
- INRAE, Fruit Biology and Pathology, Université De Bordeaux, UMR 1332, 33140 Villenave d’Ornon, France
| | - Delphine Amah
- IITA, Crop Breeding, Ibadan 200001, Oyo State, Nigeria
| | - Rony Swennen
- Biosystems Department, KULeuven, 3001 Leuven, Belgium
- IITA, Crop Breeding, PO Box 7878, Kampala, Uganda
| | - Yves Gibon
- INRAE, Fruit Biology and Pathology, Université De Bordeaux, UMR 1332, 33140 Villenave d’Ornon, France
| | | |
Collapse
|
24
|
Jeandet P, Formela-Luboińska M, Labudda M, Morkunas I. The Role of Sugars in Plant Responses to Stress and Their Regulatory Function during Development. Int J Mol Sci 2022; 23:ijms23095161. [PMID: 35563551 PMCID: PMC9099517 DOI: 10.3390/ijms23095161] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their role as energy and carbon sources and their regulatory functions, sugars influence all phases of the plant life cycle, interact with other signaling molecules, including phytohormones, and control plant growth and development [...].
Collapse
Affiliation(s)
- Philippe Jeandet
- Research Unit “Induced Resistance and Plant Bioprotection”, Department of Biology and Biochemistry, Faculty of Sciences, University of Reims, EA 4707–USC INRAe 1488, SFR Condorcet FR CNRS 3417, P.O. Box 1039, CEDEX 02, 51687 Reims, France
- Correspondence: (P.J.); (I.M.)
| | - Magda Formela-Luboińska
- Department of Plant Physiology, Poznań University of Life Sciences, Wołynska 35, 60-637 Poznań, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołynska 35, 60-637 Poznań, Poland;
- Correspondence: (P.J.); (I.M.)
| |
Collapse
|
25
|
Yu JQ, Gu KD, Zhang LL, Sun CH, Zhang QY, Wang JH, Wang CK, Wang WY, Du MC, Hu DG. MdbHLH3 modulates apple soluble sugar content by activating phosphofructokinase gene expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:884-900. [PMID: 35199464 DOI: 10.1111/jipb.13236] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Sugars are involved in plant growth, fruit quality, and signaling perception. Therefore, understanding the mechanisms involved in soluble sugar accumulation is essential to understand fruit development. Here, we report that MdPFPβ, a pyrophosphate-dependent phosphofructokinase gene, regulates soluble sugar accumulation by enhancing the photosynthetic performance and sugar-metabolizing enzyme activities in apple (Malus domestica Borkh.). Biochemical analysis revealed that a basic helix-loop-helix (bHLH) transcription factor, MdbHLH3, binds to the MdPFPβ promoter and activates its expression, thus promoting soluble sugar accumulation in apple fruit. In addition, MdPFPβ overexpression in tomato influenced photosynthesis and carbon metabolism in the plant. Furthermore, we determined that MdbHLH3 increases photosynthetic rates and soluble sugar accumulation in apple by activating MdPFPβ expression. Our results thus shed light on the mechanism of soluble sugar accumulation in apple leaves and fruit: MdbHLH3 regulates soluble sugar accumulation by activating MdPFPβ gene expression and coordinating carbohydrate allocation.
Collapse
Affiliation(s)
- Jian-Qiang Yu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Kai-Di Gu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Li-Li Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Quan-Yan Zhang
- College of Resources and Environment, Linyi University, Linyi, 276005, China
| | - Jia-Hui Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Wen-Yan Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Meng-Chi Du
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Tai'an, 271018, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, 271018, China
| |
Collapse
|
26
|
Morin A, Kadi F, Porcheron B, Vriet C, Maurousset L, Lemoine R, Pourtau N, Doidy J. Genome-wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought. PHYSIOLOGIA PLANTARUM 2022; 174:e13673. [PMID: 35307852 DOI: 10.1111/ppl.13673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 05/11/2023]
Abstract
Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy-rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene families is critically scarce in legumes. Here, we performed a systematic search for invertase families in 16 Fabaceae genomes. For instance, we identified 19 invertase genes in the model plant Medicago and 17 accessions in the agronomic crop Pisum sativum. Our comprehensive phylogenetic analysis sets a milestone for the scientific community as we propose a new nomenclature to correctly name plant invertases. Thus, neutral invertases were classified into four clades of cytosolic invertase (CINV). Acid invertases were classified into two cell wall invertase clades (CWINV) and two vacuolar invertase clades (VINV). Then, we explored transcriptional regulation of the pea invertase family, focusing on seed development and water stress. Invertase expression decreased sharply from embryogenesis to seed-filling stages, consistent with higher sucrose and lower monosaccharide contents. The vacuolar invertase PsVINV1.1 clearly marked the transition between both developmental stages. We hypothesize that the predominantly expressed cell wall invertase, PsCWINV1.2, may drive sucrose unloading towards developing seeds. The same candidates, PsVINV1.1 and PsCWINV1.2, were also regulated by water deficit during embryonic stage. We suggest that PsVINV1.1 along with vacuolar sugar transporters maintain cellular osmotic pressure and PsCWINV1.2 control hexose provision, thereby ensuring embryo survival in drought conditions. Altogether, our findings provide novel insights into the regulation of plant carbon metabolism in a challenging environment.
Collapse
Affiliation(s)
- Amélie Morin
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Fadia Kadi
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Benoit Porcheron
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Cécile Vriet
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Laurence Maurousset
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Rémi Lemoine
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Nathalie Pourtau
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| | - Joan Doidy
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France
| |
Collapse
|
27
|
Samkumar A, Karppinen K, Dhakal B, Martinussen I, Jaakola L. Insights into sugar metabolism during bilberry (Vaccinium myrtillus L.) fruit development. PHYSIOLOGIA PLANTARUM 2022; 174:e13657. [PMID: 35243654 PMCID: PMC9313557 DOI: 10.1111/ppl.13657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 06/12/2023]
Abstract
Bilberry fruit is regarded as one of the best natural sources of anthocyanins and is widely explored for its health-beneficial compounds. Besides anthocyanins, one of the major attributes that determine the berry quality is the accumulation of sugars that provide sweetness and flavor to ripening fruit. In this study, we have identified 25 sugar metabolism-related genes in bilberry, including invertases (INVs), hexokinases (HKs), fructokinases (FKs), sucrose synthases (SSs), sucrose phosphate synthases (SPSs), and sucrose phosphate phosphatases (SPPs). The results indicate that isoforms of the identified genes are expressed differentially during berry development, suggesting specialized functions. The highest sugar content was found in ripe berries, with fructose and glucose dominating accompanied by low sucrose amount. The related enzyme activities during berry development and ripening were further analyzed to understand the molecular mechanism of sugar accumulation. The activity of INVs in the cell wall and vacuole increased toward ripe berries. Amylase activity involved in starch metabolism was not detected in unripe berries but was found in ripe berries. Sucrose resynthesizing SS enzyme activity was detected upon early ripening and had the highest activity in ripe berries. Interestingly, our transcriptome data showed that supplemental irradiation with red and blue light triggered upregulation of several sugar metabolism-related genes, including α- and β-amylases. Also, differential expression patterns in responses to red and blue light were found across sucrose, galactose, and sugar-alcohol metabolism. Our enzymological and transcriptional data provide new understanding of the bilberry fruit sugar metabolism having major effect on fruit quality.
Collapse
Affiliation(s)
- Amos Samkumar
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Katja Karppinen
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Binita Dhakal
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Inger Martinussen
- Division of Food Production and SocietyNorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Laura Jaakola
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
- Division of Food Production and SocietyNorwegian Institute of Bioeconomy ResearchÅsNorway
| |
Collapse
|
28
|
Lama K, Chai L, Peer R, Ma H, Yeselson Y, Schaffer AA, Flaishman MA. Extreme sugar accumulation in late fig ripening is accompanied by global changes in sugar metabolism and transporter gene expression. PHYSIOLOGIA PLANTARUM 2022; 174:e13648. [PMID: 35150009 PMCID: PMC9305157 DOI: 10.1111/ppl.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Female fig (Ficus carica L.) fruit are characterized by a major increase in volume and sugar content during the final week of development. A detailed developmental analysis of water and dry matter accumulation during these final days indicated a temporal separation between the increase in volume due to increasing water content and a subsequent sharp increase in sugar content during a few days. The results present fig as an extreme example of sugar import and accumulation, with calculated import rates that are one order of magnitude higher than those of other sugar-accumulating sweet fruit species. To shed light on the metabolic changes occurring during this period, we followed the expression pattern of 80 genes encoding sugar metabolism enzymes and sugar transporter proteins identified in fig fruit. A parallel comparison with male fig fruits, which do not accumulate sugar during ripening, highlighted the genes specifically related to sugar accumulation. Tissue-specific analysis indicated that the expression of genes involved in sugar metabolism and transport undergoes a global transition.
Collapse
Affiliation(s)
- Kumar Lama
- Institute of Plant SciencesAgricultural Research OrganizationBet‐DaganIsrael
- Department of Life Sciences, School of ScienceKathmandu UniversityDhulikhelNepal
| | - Li‐Juan Chai
- Institute of Plant SciencesAgricultural Research OrganizationBet‐DaganIsrael
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxiChina
| | - Reut Peer
- Institute of Plant SciencesAgricultural Research OrganizationBet‐DaganIsrael
| | - Huiqin Ma
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Yelena Yeselson
- Institute of Postharvest and Food Sciences, Agricultural Research OrganizationBet‐DaganIsrael
| | - Arthur A. Schaffer
- Institute of Postharvest and Food Sciences, Agricultural Research OrganizationBet‐DaganIsrael
| | - Moshe A. Flaishman
- Institute of Plant SciencesAgricultural Research OrganizationBet‐DaganIsrael
| |
Collapse
|
29
|
Wu J, Chen H, Chen W, Zhong Q, Zhang M, Chen W. Effect of ultrasonic treatment on the activity of sugar metabolism relative enzymes and quality of coconut water. ULTRASONICS SONOCHEMISTRY 2021; 79:105780. [PMID: 34628309 PMCID: PMC8501503 DOI: 10.1016/j.ultsonch.2021.105780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
In this study, tender coconuts were treated with high-intensity ultrasound (US) for 20 min at a frequency of 20 kHz and a power of 2400 W. Compared with control group, US treated coconut water had a higher content of total soluble solid and sugar/acid ratio along with a lower pH value and conductivity, and the contents of sucrose, fructose and glucose were also higher. Results from HS-SPME/GC-MS showed that there was no significant difference in the content of volatile compounds in coconut water before and after US treatment. The activities of sugar metabolism enzymes such as sucrose phosphate synthase, sucrose synthase, acid invertase (AI) and neutral invertase were inhibited by US, of which AI had the strongest inactivation. Circular dichroism and fluorescence spectra showed that the secondary and tertiary structure of AI molecule were destroyed with the increase of US intensity and time, which was confirmed by the change of particle size distribution pattern and scanning electron microscopy. Molecular docking and molecular dynamics showed that US treatment prevented the recognition and binding of sucrose and AI molecules, thereby inhibiting the decomposition of sucrose. In conclusion, our results indicate that US can inhibit the activity of AI and maintain the sugar content to increase the quality as well as extend the shelflife of coconut water, which will bring more commercial value.
Collapse
Affiliation(s)
- Jilin Wu
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, PR China
| | - Haiming Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, PR China; Maritime Academy, Hainan Vocational University of Science and Technology, 18 Qingshan Road, Haikou, Hainan 571126, PR China
| | - Wenxue Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, PR China
| | - Qiuping Zhong
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, PR China
| | - Ming Zhang
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, PR China.
| | - Weijun Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, PR China.
| |
Collapse
|
30
|
Combined Profiling of Transcriptome and DNA Methylome Reveal Genes Involved in Accumulation of Soluble Sugars and Organic Acid in Apple Fruits. Foods 2021; 10:foods10092198. [PMID: 34574306 PMCID: PMC8467953 DOI: 10.3390/foods10092198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Organic acids and soluble sugars are the major determinants of fruit organoleptic quality. Additionally, DNA methylation has crucial regulatory effects on various processes. However, the epigenetic modifications in the regulation of organic acid and soluble sugar accumulation in apple fruits remain uncharacterized. In this study, DNA methylation and the transcriptome were compared between ‘Honeycrisp’ and ‘Qinguan’ mature fruits, which differ significantly regarding soluble sugar and organic acid contents. In both ‘Honeycrisp’ and ‘Qinguan’ mature fruits, the CG context had the highest level of DNA methylation, and then CHG and CHH contexts. The number and distribution of differentially methylated regions (DMRs) varied among genic regions and transposable elements. The DNA methylation levels in all three contexts in the DMRs were significantly higher in ‘Honeycrisp’ mature fruits than in ‘Qinguan’ mature fruits. A combined methylation and transcriptome analysis revealed a negative correlation between methylation levels and gene expression in DMRs in promoters and gene bodies in the CG and CHG contexts and in gene bodies in the CHH context. Two candidate genes (MdTSTa and MdMa11), which encode tonoplast-localized proteins, potentially associated with fruit soluble sugar contents and acidity were identified based on expression and DNA methylation levels. Overexpression of MdTSTa in tomato increased the fruit soluble sugar content. Moreover, transient expression of MdMa11 in tobacco leaves significantly decreased the pH value. Our results reflect the diversity in epigenetic modifications influencing gene expression and will facilitate further elucidating the complex mechanism underlying fruit soluble sugar and organic acid accumulation.
Collapse
|
31
|
Chen T, Zhang Z, Li B, Qin G, Tian S. Molecular basis for optimizing sugar metabolism and transport during fruit development. ABIOTECH 2021; 2:330-340. [PMID: 36303881 PMCID: PMC9590571 DOI: 10.1007/s42994-021-00061-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022]
Abstract
Sugars are fundamental metabolites synthesized in leaves and further delivered to fruit in fruit crops. They not only provide "sweetness" as fruit quality traits, but also function as signaling molecules to modulate the responses of fruit to environmental stimuli. Therefore, the understanding to the molecular basis for sugar metabolism and transport is crucial for improving fruit quality and dissecting responses to abiotic/biotic factors. Here, we provide a review for molecular components involved in sugar metabolism and transport, crosstalk with hormone signaling, and the roles of sugars in responses to abiotic and biotic stresses. Moreover, we also envisage the strategies for optimizing sugar metabolism during fruit quality maintenance.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
32
|
Walker RP, Bonghi C, Varotto S, Battistelli A, Burbidge CA, Castellarin SD, Chen ZH, Darriet P, Moscatello S, Rienth M, Sweetman C, Famiani F. Sucrose Metabolism and Transport in Grapevines, with Emphasis on Berries and Leaves, and Insights Gained from a Cross-Species Comparison. Int J Mol Sci 2021; 22:7794. [PMID: 34360556 PMCID: PMC8345980 DOI: 10.3390/ijms22157794] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
In grapevines, as in other plants, sucrose and its constituents glucose and fructose are fundamentally important and carry out a multitude of roles. The aims of this review are three-fold. First, to provide a summary of the metabolism and transport of sucrose in grapevines, together with new insights and interpretations. Second, to stress the importance of considering the compartmentation of metabolism. Third, to outline the key role of acid invertase in osmoregulation associated with sucrose metabolism and transport in plants.
Collapse
Affiliation(s)
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, 35020 Legnaro, Italy;
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, 35020 Legnaro, Italy;
| | - Alberto Battistelli
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, 05010 Porano, Italy; (A.B.); (S.M.)
| | | | - Simone D. Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 0Z4, Canada;
| | - Zhi-Hui Chen
- College of Life Science, University of Dundee, Dundee DD1 5EH, UK;
| | - Philippe Darriet
- Cenologie, Institut des Sciences de la Vigne et du Vin (ISVV), 33140 Villenave d’Ornon, France;
| | - Stefano Moscatello
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, 05010 Porano, Italy; (A.B.); (S.M.)
| | - Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, 1260 Nyon, Switzerland;
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide, SA 5001, Australia;
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121 Perugia, Italy
| |
Collapse
|
33
|
Luo A, Zhou C, Chen J. The Associated With Carbon Conversion Rate and Source-Sink Enzyme Activity in Tomato Fruit Subjected to Water Stress and Potassium Application. FRONTIERS IN PLANT SCIENCE 2021; 12:681145. [PMID: 34220901 PMCID: PMC8245005 DOI: 10.3389/fpls.2021.681145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 06/01/2023]
Abstract
Carbon metabolism in higher plants is a basic physiological metabolism, and carbon allocation and conversion require the activity of various enzymes in metabolic processes that alter the content and overall composition of sugars in the sink organ. However, it is not known how various enzymes affect carbon metabolism when tomato plants are subjected to water stress or treated with potassium. Although the process of carbon metabolism is very complex, we used the carbon conversion rate to compare and analyze the enzyme activities related to sugar metabolism and find out which carbon conversion rate are the most important. Results showed that water stress and potassium increased carbon import flux in the fruit, which was beneficial to carbon accumulation. Water deficit increased the activity of sucrose synthase (SuSy) and starch phosphorylase (SP) and decreased the activity of sucrose phosphate synthase (SPS) and adenosine diphosphate glucose pyrophosphorylase (AGPase) in the source. Water stress increased the activity of acid invertase (AI), SuSy and SP but decreased the activity of AGPase in the sink. Potassium modified the balance of enzymes active in sugar and starch metabolism by increasing the activity of AI, SuSy, SPS and SP and significantly decreasing the activity of AGPase, resulting in increase of hexose. Canonical correlational analysis revealed that the carbon conversion rate was mainly affected by the relative rate of conversion of sucrose to fructose and glucose [p1(t)] and glucose to starch [p5m(t)]. SuSy and AGPase had the greatest effect on enzyme activity in the fruit; respectively regulated p 1(t) and p 5m(t).
Collapse
Affiliation(s)
- Anrong Luo
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - Chenni Zhou
- Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agriculture and Animal Husbandry University), Ministry of Education, Nyingchi, China
| | - Jinliang Chen
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Harada T, Horiguchi I, Ueyama S, Murai A, Tsuzuki C. Comprehensive analysis of sucrolytic enzyme gene families in carnation (Dianthus caryophyllus L.). PHYTOCHEMISTRY 2021; 185:112607. [PMID: 33774571 DOI: 10.1016/j.phytochem.2020.112607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 11/09/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Sucrose plays crucial roles in growth and responses of plants to the environment, including those in ornamental species. During post-harvest handling of cut flowers, sucrose degradation is an essential process of inter- and intra-cellular carbon partitioning affecting flower opening and senescence and, subsequently, flower quality. However, complete information about the molecular basis of sucrose degradation in ornamental flowers, which can be catalyzed by two kinds of sucrolytic enzymes, invertase (INV), and sucrose synthase (SUS), is not available from past reports. The present study shows that sucrose treatment of carnation (Dianthus caryophyllus L.) florets increased starch content in petals, accompanied by decreased vacuolar INV (VIN) activity and increased SUS activity. However, hypoxic treatment of carnation florets decreased sucrose content and cell-wall INV (CWIN) activity in petals. In silico analysis using the carnation genome database identified six CWIN, three VIN, eight cytoplasmic INV (CIN), and five SUS genes. Real-time RT-PCR analysis confirmed that these genes are differentially expressed in carnation petals in response to sucrose and hypoxic treatments, partially corresponding to the changes in enzyme activities. In contrast to DcSUS1 (Dca4507.1), a SUS gene already reported in carnation, which showed preferential expression under aerated conditions, the expression of DcSUS2 (Dca22218.1), an undescribed carnation SUS gene, was enhanced under hypoxia similarly to an alcohol dehydrogenase gene DcADH1 (Dca18671.1). These results suggest that sugar metabolism in carnation petals is regulated in response to environmental cues, accompanied by modulated activities and gene expression of a set of sucrolytic enzymes.
Collapse
Affiliation(s)
- Taro Harada
- Graduate School of Education, Okayama University, Okayama, 700-8530, Japan.
| | - Itsuku Horiguchi
- Department of Science Education, Faculty of Education, Okayama University, Okayama, 700-8530, Japan
| | - Sayaka Ueyama
- Department of Science Education, Faculty of Education, Okayama University, Okayama, 700-8530, Japan
| | - Ai Murai
- Department of Science Education, Faculty of Education, Okayama University, Okayama, 700-8530, Japan
| | - Chie Tsuzuki
- Department of Science Education, Faculty of Education, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
35
|
Structure and Expression Analysis of Sucrose Phosphate Synthase, Sucrose Synthase and Invertase Gene Families in Solanum lycopersicum. Int J Mol Sci 2021; 22:ijms22094698. [PMID: 33946733 PMCID: PMC8124378 DOI: 10.3390/ijms22094698] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Sucrose phosphate synthase (SPS), sucrose synthase (SUS) and invertase (INV) are all encoded by multigene families. In tomato (Solanum lycopersicum), a comprehensive analysis of structure characteristics of these family genes is still lacking, and the functions of individual isoforms of these families are mostly unclear under stress. Here, the structure characteristics of the three families in tomato were analyzed; moreover, as a first step toward understanding the functions of isoforms of these proteins under stress, the tissue expression pattern and stress response of these genes were also investigated. The results showed that four SPS genes, six SUS genes and nineteen INV genes were identified in tomato. The subfamily differentiation of SlSPS and SlSUS might have completed before the split of monocotyledons and dicotyledons. The conserved motifs were mostly consistent within each protein family/subfamily. These genes demonstrated differential expressions among family members and tissues, and in response to polyethylene glycerol, NaCl, H2O2, abscisic acid or salicylic acid treatment. Our results suggest that each isoform of these families may have different functions in different tissues and under environmental stimuli. SlSPS1, SlSPS3, SlSUS1, SlSUS3, SlSUS4, SlINVAN5 and SlINVAN7 demonstrated consistent expression responses and may be the major genes responding to exogenous stimuli.
Collapse
|
36
|
Li M, He Q, Huang Y, Luo Y, Zhang Y, Chen Q, Wang Y, Lin Y, Zhang Y, Liu Z, Wang XR, Tang H. Sucrose synthase gene family in Brassica juncea: genomic organization, evolutionary comparisons, and expression regulation. PeerJ 2021; 9:e10878. [PMID: 33854830 PMCID: PMC7953879 DOI: 10.7717/peerj.10878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Sucrose synthase (SUS) plays an important role in sucrose metabolism and plant development. The SUS gene family has been identified in many plants, however, there is no definitive study of SUS gene in Brassica juncea. In this study, 14 SUS family genes were identified and comprehensively analyzed using bioinformatics tools. The analyzed parameters included their family member characteristics, chromosomal locations, gene structures and phylogenetic as well as transcript expression profiles. Phylogenetic analysis revealed that the 14 members could be allocated into three groups: SUS I, SUS II and SUS III. Comparisons of the exon/intron structure of the mustard SUS gene indicated that its structure is highly conserved. The conserved structure is attributed to purification selection during evolution. Expansion of the SUS gene family is associated with fragment and tandem duplications of the mustard SUS gene family. Collinearity analysis among species revealed that the SUS gene family could be lost or mutated to varying degrees after the genome was doubled, or when Brassica rapa and Brassica nigra hybridized to form Brassica juncea. The expression patterns of BjuSUSs vary among different stages of mustard stem swelling. Transcriptomics revealed that the BjuSUS01-04 expression levels were the most elevated. It has been hypothesized that they play an important role in sucrose metabolism during stem development. The expression levels of some BjuSUSs were significantly up-regulated when they were treated with plant hormones. However, when subjected to abiotic stress factors, their expression levels were suppressed. This study establishes SUS gene functions during mustard stem development and stress.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qi He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ying Huang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Zejing Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Rong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
37
|
Gradual Application of Potassium Fertilizer Elevated the Sugar Conversion Mechanism and Yield of Waxy and Sweet Fresh-Eaten Maize in the Semiarid Cold Region. J FOOD QUALITY 2021. [DOI: 10.1155/2021/6611124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fresh-eaten maize (Zea mays L.) is favored by consumers for its unique flavor, good health, and medical effects. Heilongjiang province is a semiarid cold region with the annual output of 3.35 billion ears, and the demand for fresh eaten maize is increasing in the region. Therefore, improving its yield and quality is urgently needed in this area. In this study, two of thirty varieties (waxy maize Jin-262 and sweet maize Jingke-183) were used and five proportions of potassium (K2O, 120 kg/ha) were applied at sowing, jointing, and large trumpet stages to identify the high yield and quality of fresh-eaten maize under a semiarid cold ecological condition in Daqing, Heilongjiang province, China, during 2017-2018. The results from the screening of eighteen maize varieties showed that waxy maize Jin-262 and sweet maize Jingke-183 had higher starch content and soluble sucrose contents than those of other varieties. While the potassium proportions application during the sowing (20%), jointing (40%), and large trumpet stages (40%) had further significantly increased the starch content, soluble sugar content, sucrose content, and sucrose metabolic enzymes activities of Jin-262 and Jingke-183, however, the yields of Jin-262 and Jingke-183 had increased by applying potassium fertilizer during the sowing stages (50%) and jointing stages (50%). Considering the overall higher maize quality, we recommended the waxy maize Jin-262 and sweet maize Jingke-183 varieties along with application of 20% (sowing), 40% (jointing), and 40% (large trumpet stages) of 120 kg/ha potassium fertilizer for the improvement of grain quality of maize planting in the semiarid cold region. Otherwise, reasonable gradual potassium fertilization might be a wiser option.
Collapse
|
38
|
Yu J, Gu K, Sun C, Zhang Q, Wang J, Ma F, You C, Hu D, Hao Y. The apple bHLH transcription factor MdbHLH3 functions in determining the fruit carbohydrates and malate. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:285-299. [PMID: 32757335 PMCID: PMC7868978 DOI: 10.1111/pbi.13461] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/26/2020] [Indexed: 05/21/2023]
Abstract
Changes in carbohydrates and organic acids largely determine the palatability of edible tissues of horticulture crops. Elucidating the potential molecular mechanisms involved in the change in carbohydrates and organic acids, and their temporal and spatial crosstalk are key steps in understanding fruit developmental processes. Here, we used apple (Malus domestica Borkh.) as research materials and found that MdbHLH3, a basic helix-loop-helix transcription factor (bHLH TF), modulates the accumulation of malate and carbohydrates. Biochemical analyses demonstrated that MdbHLH3 directly binds to the promoter of MdcyMDH that encodes an apple cytosolic NAD-dependent malate dehydrogenase, activating its transcriptional expression, thereby promoting malate accumulation in apple fruits. Additionally, MdbHLH3 overexpression increased the photosynthetic capacity and carbohydrate levels in apple leaves and also enhanced the carbohydrate accumulation in fruits by adjusting carbohydrate allocation from sources to sinks. Overall, our findings provide new insights into the mechanism of how the bHLH TF MdbHLH3 modulates the fruit quality. It directly regulates the expression of cytosolic malate dehydrogenase MdcyMDH to coordinate carbohydrate allocation and malate accumulation in apple.
Collapse
Affiliation(s)
- Jian‐Qiang Yu
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
| | - Kai‐Di Gu
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
| | - Cui‐Hui Sun
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
| | - Quan‐Yan Zhang
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
| | - Jia‐Hui Wang
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
| | - Fang‐Fang Ma
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
| | - Chun‐Xiang You
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm InnovationTai’anShandongChina
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTai’anShandongChina
| | - Da‐Gang Hu
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm InnovationTai’anShandongChina
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTai’anShandongChina
| | - Yu‐Jin Hao
- National Key Laboratory of Crop BiologyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai’anShandongChina
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm InnovationTai’anShandongChina
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyTai’anShandongChina
| |
Collapse
|
39
|
Kitashova A, Schneider K, Fürtauer L, Schröder L, Scheibenbogen T, Fürtauer S, Nägele T. Impaired chloroplast positioning affects photosynthetic capacity and regulation of the central carbohydrate metabolism during cold acclimation. PHOTOSYNTHESIS RESEARCH 2021; 147:49-60. [PMID: 33211260 PMCID: PMC7728637 DOI: 10.1007/s11120-020-00795-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/06/2020] [Indexed: 05/02/2023]
Abstract
Photosynthesis and carbohydrate metabolism of higher plants need to be tightly regulated to prevent tissue damage during environmental changes. The intracellular position of chloroplasts changes due to a changing light regime. Chloroplast avoidance and accumulation response under high and low light, respectively, are well known phenomena, and deficiency of chloroplast movement has been shown to result in photodamage and reduced biomass accumulation. Yet, effects of chloroplast positioning on underlying metabolic regulation are less well understood. Here, we analysed photosynthesis together with metabolites and enzyme activities of the central carbohydrate metabolism during cold acclimation of the chloroplast unusual positioning 1 (chup1) mutant of Arabidopsis thaliana. We compared cold acclimation under ambient and low light and found that maximum quantum yield of PSII was significantly lower in chup1 than in Col-0 under both conditions. Our findings indicated that net CO2 assimilation in chup1 is rather limited by biochemistry than by photochemistry. Further, cold-induced dynamics of sucrose phosphate synthase differed significantly between both genotypes. Together with a reduced rate of sucrose cycling derived from kinetic model simulations our study provides evidence for a central role of chloroplast positioning for photosynthetic and metabolic acclimation to low temperature.
Collapse
Affiliation(s)
- Anastasia Kitashova
- Department Biology I, Plant Evolutionary Cell Biology, LMU München, 82152, Planegg-Martinsried, Germany
| | - Katja Schneider
- Department Biology I, Plant Development, LMU München, 82152, Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Department Biology I, Plant Evolutionary Cell Biology, LMU München, 82152, Planegg-Martinsried, Germany
| | - Laura Schröder
- Department Biology I, Plant Evolutionary Cell Biology, LMU München, 82152, Planegg-Martinsried, Germany
| | - Tim Scheibenbogen
- Department Biology I, Plant Evolutionary Cell Biology, LMU München, 82152, Planegg-Martinsried, Germany
| | - Siegfried Fürtauer
- Department Biology I, Plant Evolutionary Cell Biology, LMU München, 82152, Planegg-Martinsried, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354, Freising, Germany
| | - Thomas Nägele
- Department Biology I, Plant Evolutionary Cell Biology, LMU München, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
40
|
Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%. Sci Rep 2020; 10:17219. [PMID: 33057137 PMCID: PMC7560729 DOI: 10.1038/s41598-020-73709-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The capacity to assimilate carbon and nitrogen, to transport the resultant sugars and amino acids to sink tissues, and to convert the incoming sugars and amino acids into storage compounds in the sink tissues, are key determinants of crop yield. Given that all of these processes have the potential to co-limit growth, multiple genetic interventions in source and sink tissues, plus transport processes may be necessary to reach the full yield potential of a crop. We used biolistic combinatorial co-transformation (up to 20 transgenes) for increasing C and N flows with the purpose of increasing tomato fruit yield. We observed an increased fruit yield of up to 23%. To better explore the reconfiguration of metabolic networks in these transformants, we generated a dataset encompassing physiological parameters, gene expression and metabolite profiling on plants grown under glasshouse or polytunnel conditions. A Sparse Partial Least Squares regression model was able to explain the combination of genes that contributed to increased fruit yield. This combinatorial study of multiple transgenes targeting primary metabolism thus offers opportunities to probe the genetic basis of metabolic and phenotypic variation, providing insight into the difficulties in choosing the correct combination of targets for engineering increased fruit yield.
Collapse
|
41
|
Hadjipieri M, Georgiadou EC, Costa F, Fotopoulos V, Manganaris GA. Dissection of the incidence and severity of purple spot physiological disorder in loquat fruit through a physiological and molecular approach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:980-986. [PMID: 33039939 DOI: 10.1016/j.plaphy.2020.06.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Loquat (Eriobotrya japonica) fruit marketability is affected by the incidence and severity of purple spot (PS), a pre-harvest physiological disorder showing an evident skin discoloration with depressed surface. Despite its impact in limiting the cultivation and economic potential of loquat, the etiology of this disorder is still poorly understood. To this end, our study aimed to investigate and disclose possible mechanisms underlying PS development. The intensity and severity of PS in three loquat cultivars ('Morphitiki', 'Karantoki' and 'Obusa') was phenotypically monitored during successive on-tree fruit developmental stages. 'Obusa' fruits harvested at commercial maturity stage showed the highest incidence of purple spot (58.6%), while 'Morphitiki' fruits did not show any symptoms. 'Karantoki' fruits demonstrated an intermediate response, with 31.3% of the fruit being affected. Thereafter, fruits with 30-50% PS severity were selected and used for further analysis; peel tissue was removed from both symptomatic and asymptomatic tissue of the same fruit for all examined cultivars. 'Karantoki' fruit with PS were characterized by the highest accumulation of total soluble sugars, sucrose, glucose and fructose contents, while the concentration of these primary metabolites was the lowest in asymptomatic fruit of 'Obusa', exception made for the sucrose. The incidence of PS was also transcriptionally investigated by assessing the mRNA profile of important genes involved in polyphenolic (PAL1, PAL2 and PPO1) and carbohydrate (CWI2, CWI3, SPS1, SPS2, NI2, NI3, SuSy, HXK, FRK and VI) pathway. The enhanced expression levels of CWI3 and VI genes in symptomatic fruit of the highly susceptible cultivar 'Obusa' highlight a cultivar-specific type of response. Notably, SuSy registered significantly suppressed levels in symptomatic tissue of both 'Obusa' and 'Karantoki'. To what extent PPO is associated with PS incidence and whether the etiology of the disorder can be assigned to an oxidative process triggered and coordinated by its action need to be further elucidated. The aforementioned genes are suggested to be further examined as potential markers towards a more sophisticated and informed characterization of purple spot detection in loquat fruit.
Collapse
Affiliation(s)
- Margarita Hadjipieri
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology & Food Science, 3603, Lemesos, Cyprus
| | - Egli C Georgiadou
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology & Food Science, 3603, Lemesos, Cyprus
| | - Fabrizio Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All' Adige, Trento, Italy; Center Agriculture Food Environment, University of Trento, Via E. Mach 1, 38010, San Michele All'Adige, Italy
| | - Vasileios Fotopoulos
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology & Food Science, 3603, Lemesos, Cyprus
| | - George A Manganaris
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology & Food Science, 3603, Lemesos, Cyprus.
| |
Collapse
|
42
|
Xing S, Chen K, Zhu H, Zhang R, Zhang H, Li B, Gao C. Fine-tuning sugar content in strawberry. Genome Biol 2020; 21:230. [PMID: 32883370 PMCID: PMC7470447 DOI: 10.1186/s13059-020-02146-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/17/2020] [Indexed: 01/30/2023] Open
Abstract
Fine-tuning quantitative traits for continuous subtle phenotypes is highly advantageous. We engineer the highly conserved upstream open reading frame (uORF) of FvebZIPs1.1 in strawberry (Fragaria vesca), using base editor A3A-PBE. Seven novel alleles are generated. Sugar content of the homozygous T1 mutant lines is 33.9-83.6% higher than that of the wild-type. We also recover a series of transgene-free mutants with 35 novel genotypes containing a continuum of sugar content. All the novel genotypes could be immediately fixed in subsequent generations by asexual reproduction. Genome editing coupled with asexual reproduction offers tremendous opportunities for quantitative trait improvement.
Collapse
Affiliation(s)
- Sinian Xing
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Haocheng Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bingbing Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
43
|
Abstract
Fruit set is the process whereby ovaries develop into fruits after pollination and fertilization. The process is induced by the phytohormone gibberellin (GA) in tomatoes, as determined by the constitutive GA response mutant procera However, the role of GA on the metabolic behavior in fruit-setting ovaries remains largely unknown. This study explored the biochemical mechanisms of fruit set using a network analysis of integrated transcriptome, proteome, metabolome, and enzyme activity data. Our results revealed that fruit set involves the activation of central carbon metabolism, with increased hexoses, hexose phosphates, and downstream metabolites, including intermediates and derivatives of glycolysis, the tricarboxylic acid cycle, and associated organic and amino acids. The network analysis also identified the transcriptional hub gene SlHB15A, that coordinated metabolic activation. Furthermore, a kinetic model of sucrose metabolism predicted that the sucrose cycle had high activity levels in unpollinated ovaries, whereas it was shut down when sugars rapidly accumulated in vacuoles in fruit-setting ovaries, in a time-dependent manner via tonoplastic sugar carriers. Moreover, fruit set at least partly required the activity of fructokinase, which may pull fructose out of the vacuole, and this could feed the downstream pathways. Collectively, our results indicate that GA cascades enhance sink capacities, by up-regulating central metabolic enzyme capacities at both transcriptional and posttranscriptional levels. This leads to increased sucrose uptake and carbon fluxes for the production of the constituents of biomass and energy that are essential for rapid ovary growth during the initiation of fruit set.
Collapse
|
44
|
Aremu AO, Fawole OA, Makunga NP, Masondo NA, Moyo M, Buthelezi NMD, Amoo SO, Spíchal L, Doležal K. Applications of Cytokinins in Horticultural Fruit Crops: Trends and Future Prospects. Biomolecules 2020; 10:biom10091222. [PMID: 32842660 PMCID: PMC7563339 DOI: 10.3390/biom10091222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Cytokinins (CKs) are a chemically diverse class of plant growth regulators, exhibiting wide-ranging actions on plant growth and development, hence their exploitation in agriculture for crop improvement and management. Their coordinated regulatory effects and cross-talk interactions with other phytohormones and signaling networks are highly sophisticated, eliciting and controlling varied biological processes at the cellular to organismal levels. In this review, we briefly introduce the mode of action and general molecular biological effects of naturally occurring CKs before highlighting the great variability in the response of fruit crops to CK-based innovations. We present a comprehensive compilation of research linked to the application of CKs in non-model crop species in different phases of fruit production and management. By doing so, it is clear that the effects of CKs on fruit set, development, maturation, and ripening are not necessarily generic, even for cultivars within the same species, illustrating the magnitude of yet unknown intricate biochemical and genetic mechanisms regulating these processes in different fruit crops. Current approaches using genomic-to-metabolomic analysis are providing new insights into the in planta mechanisms of CKs, pinpointing the underlying CK-derived actions that may serve as potential targets for improving crop-specific traits and the development of new solutions for the preharvest and postharvest management of fruit crops. Where information is available, CK molecular biology is discussed in the context of its present and future implications in the applications of CKs to fruits of horticultural significance.
Collapse
Affiliation(s)
- Adeyemi O. Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, South Africa;
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, South Africa
- Correspondence: (A.O.A.); (O.A.F.); (N.P.M.); Tel.: +27-18-389-2573 (A.O.A.); +27-11-559-7237 (O.A.F.); +27-21-808-3061 (N.P.M.)
| | - Olaniyi A. Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524, Auckland Park 2006, South Africa;
- Correspondence: (A.O.A.); (O.A.F.); (N.P.M.); Tel.: +27-18-389-2573 (A.O.A.); +27-11-559-7237 (O.A.F.); +27-21-808-3061 (N.P.M.)
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
- Correspondence: (A.O.A.); (O.A.F.); (N.P.M.); Tel.: +27-18-389-2573 (A.O.A.); +27-11-559-7237 (O.A.F.); +27-21-808-3061 (N.P.M.)
| | - Nqobile A. Masondo
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
| | - Mack Moyo
- Department of Horticulture, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa;
| | - Nana M. D. Buthelezi
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524, Auckland Park 2006, South Africa;
| | - Stephen O. Amoo
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, South Africa;
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524, Auckland Park 2006, South Africa;
- Agricultural Research Council, Roodeplaat Vegetable and Ornamental Plants, Private Bag X293, Pretoria 0001, South Africa
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (L.S.); (K.D.)
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (L.S.); (K.D.)
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
45
|
Chen J, Vercambre G, Kang S, Bertin N, Gautier H, Génard M. Fruit water content as an indication of sugar metabolism improves simulation of carbohydrate accumulation in tomato fruit. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5010-5026. [PMID: 32472678 PMCID: PMC7410181 DOI: 10.1093/jxb/eraa225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/04/2020] [Indexed: 05/29/2023]
Abstract
Although fleshy fruit is mainly made up of water, little is known about the impact of its water status on sugar metabolism and its composition. In order to verify whether fruit water status is an important driver of carbohydrate composition in tomato fruit, an adaptation of the SUGAR model proposed previously by M. Génard and M. Souty was used. Two versions of the model, with or without integrating the influence of fruit water content on carbohydrate metabolism, were proposed and then assessed with the data sets from two genotypes, Levovil and Cervil, grown under different conditions. The results showed that, for both genotypes, soluble sugars and starch were better fitted by the model when the effects of water content on carbohydrate metabolism were taken into consideration. Water content might play a regulatory role in the carbon metabolism from sugars to compounds other than sugars and starch in Cervil fruit, and from sugars to starch in Levovil fruit. While water content influences tomato fruit carbohydrate concentrations by both metabolism and dilution/dehydration effects in the early developmental stage, it is mainly by dilution/dehydration effects in the late stage. The possible mechanisms underlying the effect of the fruit water content on carbohydrate metabolism are also discussed.
Collapse
Affiliation(s)
- Jinliang Chen
- UR 1115 Plantes et Systèmes de Culture Horticoles, INRAE, Avignon Cedex 9, France
- UMR 1287 EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, ISVV, Villenave d’Ornon, France
| | - Gilles Vercambre
- UR 1115 Plantes et Systèmes de Culture Horticoles, INRAE, Avignon Cedex 9, France
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - Nadia Bertin
- UR 1115 Plantes et Systèmes de Culture Horticoles, INRAE, Avignon Cedex 9, France
| | - Hélène Gautier
- UR 1115 Plantes et Systèmes de Culture Horticoles, INRAE, Avignon Cedex 9, France
| | - Michel Génard
- UR 1115 Plantes et Systèmes de Culture Horticoles, INRAE, Avignon Cedex 9, France
| |
Collapse
|
46
|
Li L, Wu HX, Ma XW, Xu WT, Liang QZ, Zhan RL, Wang SB. Transcriptional mechanism of differential sugar accumulation in pulp of two contrasting mango (Mangifera indica L.) cultivars. Genomics 2020; 112:4505-4515. [PMID: 32735916 DOI: 10.1016/j.ygeno.2020.07.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
Temporal transcriptome analysis combined with targeted metabolomics was employed to investigate the mechanisms of high sugar accumulation in fruit pulp of two contrasting mango cultivars. Ten sugar metabolites were identified in mango pulp with the most dominant being d-glucose. Analysis of the gene expression patterns revealed that the high-sugar cultivar prioritized the conversion of sucrose to d-glucose by up-regulating invertases and β-glucosidases and increased other genes directly contributing to the synthesis of sucrose and d-glucose. In contrast, it repressed the expression of genes converting sucrose, d-glucose and other sugars into intermediates compounds for downstream processes. It also strongly increased the expression of alpha-amylases which may promote high degradation of starch into d-glucose. Besides, ¾ of the sugar transporters was strongly up-regulated, indicative of their preponderant role in sugar accumulation in mango fruit. Overall, this study provides a good insight into the regulation pattern of high sugar accumulation in mango pulp.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Hong-Xia Wu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Xiao-Wei Ma
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Wen-Tian Xu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Qing-Zhi Liang
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Ru-Lin Zhan
- Haikou Experimental Station (Institute of Tropical Fruit Tree), Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Song-Biao Wang
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China.
| |
Collapse
|
47
|
Optimization of nucleotide sugar supply for polysaccharide formation via thermodynamic buffering. Biochem J 2020; 477:341-356. [PMID: 31967651 DOI: 10.1042/bcj20190807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Plant polysaccharides (cellulose, hemicellulose, pectin, starch) are either direct (i.e. leaf starch) or indirect products of photosynthesis, and they belong to the most abundant organic compounds in nature. Although each of these polymers is made by a specific enzymatic machinery, frequently in different cell locations, details of their synthesis share certain common features. Thus, the production of these polysaccharides is preceded by the formation of nucleotide sugars catalyzed by fully reversible reactions of various enzymes, mostly pyrophosphorylases. These 'buffering' enzymes are, generally, quite active and operate close to equilibrium. The nucleotide sugars are then used as substrates for irreversible reactions of various polysaccharide-synthesizing glycosyltransferases ('engine' enzymes), e.g. plastidial starch synthases, or plasma membrane-bound cellulose synthase and callose synthase, or ER/Golgi-located variety of glycosyltransferases forming hemicellulose and pectin backbones. Alternatively, the irreversible step might also be provided by a carrier transporting a given immediate precursor across a membrane. Here, we argue that local equilibria, established within metabolic pathways and cycles resulting in polysaccharide production, bring stability to the system via the arrangement of a flexible supply of nucleotide sugars. This metabolic system is itself under control of adenylate kinase and nucleoside-diphosphate kinase, which determine the availability of nucleotides (adenylates, uridylates, guanylates and cytidylates) and Mg2+, the latter serving as a feedback signal from the nucleotide metabolome. Under these conditions, the supply of nucleotide sugars to engine enzymes is stable and constant, and the metabolic process becomes optimized in its load and consumption, making the system steady and self-regulated.
Collapse
|
48
|
Luo A, Kang S, Chen J. SUGAR Model-Assisted Analysis of Carbon Allocation and Transformation in Tomato Fruit Under Different Water Along With Potassium Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:712. [PMID: 32582246 PMCID: PMC7292204 DOI: 10.3389/fpls.2020.00712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/05/2020] [Indexed: 05/02/2023]
Abstract
Carbohydrate concentrations in fruit are closely related to the availability of water and mineral nutrients. Water stress and minerals alter the assimilation, operation, and distribution of carbohydrates, thereby affecting the fruit quality. The SUGAR model was used to investigate the carbon balance in tomato fruit during different growth stages when available water was varied and potassium added. Further, we quantitatively studied the distribution of photoassimilates such as structural carbohydrates, soluble sugars, and starch in fruit and evaluated their response to water and potassium supply. The results revealed that the carbon allocation and transformation dynamically changed during the all growth stages; in fact, variation in carbon content showed similar trends for different water along with potassium treatments, carbon allocation during the early development stages was mainly to starch and structural carbon compounds. The relative rate of carbon conversion of soluble sugars to structural carbon compounds (k 3) and of soluble sugars to starch (k 5m ) peaked during the initial stage and then dropped during fruit growth and development stages. Carbon was primarily allocated as soluble sugars and starch was converted to soluble sugars at fruit maturation. k 3(t) and k 5m (t) approached zero at the end of the growth stage, mainly due to sugar accumulation. Potassium application can significantly raise carbon flows imported (C supply ) from the phloem into the fruit and thus increased carbon allocation to soluble sugars over the entire growth period. Potassium addition during the fruit maturation stage decreased the content of starch and other carbon compounds. Water deficit regulated carbon allocation and increased soluble sugar content but reduced structural carbon content, thereby improving fruit quality.
Collapse
Affiliation(s)
- Anrong Luo
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
| | - Jinliang Chen
- UR 1115 Plantes et Systèmes de Culture Horticoles, INRA, Avignon, France
- UMR 1287 EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, Villenave d’Ornon, France
| |
Collapse
|
49
|
Effect of Seaweed Extract on Productivity and Quality Attributes of Four Onion Cultivars. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6020028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The excessive use of chemicals and inorganic fertilizers by farmers to increase crop yield is detrimental to the environment and human health. Application of biostimulants such as seaweed extract (SWE) in agriculture could be an effective and eco-friendly alternative to inorganic fertilizers. Biostimulants are natural organic degradable substances. Their application serves as a source of nutrition for crops, possibly improving growth and productivity when applied in combination with the fertilizers. The current study was conducted to evaluate the vegetative growth, reproductive behavior and quality attributes of four onion cultivars, ‘Lambada’, ‘Red Bone’, ‘Nasarpuri’, and ‘Phulkara’, in response to different concentrations of commercial SWE. Four levels of SWE extract were used, 0% (control), 0.5%, 1%, 2%, and 3%, which were applied as a foliar spray to each cultivar. The application of 0.5% SWE caused a significant increase in total soluble solids, mineral content (N, P, and K), bulb weight and yield. Application at 3% SWE increased ascorbic acid as compared to control. The cultivars responded in different ways regarding bulb dry weight and bulb and neck diameter. Among all cultivars, ‘Lambada’ showed the maximum bulb dry matter, ‘Phulkara’ showed enhanced neck diameter whereas ‘Red Bone’ showed maximum leaf length. It is concluded that 0.5% SWE increased the yield, nutrient contents, and total soluble solids (TSS) of the four onion cultivars whereas 3% SWE, the highest concentration, increased ascorbic acid in different onion cultivars.
Collapse
|
50
|
Hu W, Huang Y, Loka DA, Bai H, Liu Y, Wang S, Zhou Z. Drought-induced disturbance of carbohydrate metabolism in anthers and male abortion of two Gossypium hirsutum cultivars differing in drought tolerance. PLANT CELL REPORTS 2020; 39:195-206. [PMID: 31680208 DOI: 10.1007/s00299-019-02483-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Cotton pollen abortion, under drought stress, was closely associated with changes in anther carbohydrate metabolism, and pollen abortion rate due to drought was higher in drought-sensitive cultivars than drought-tolerant cultivars. Cotton reproductive failure under drought stress is intrinsically connected with altered male fertility, however, studies investigating the effect of drought stress on cotton male fertility are nonexistent. Thus, a drought stress experiment was conducted with two cotton cultivars, differing in drought tolerance, to study pollen fertility and anthers' physiology. Results indicated that drought stress reduced pollen fertility of both cultivars due to decreases in anther starch and adenosine triphosphate (ATP) synthesis. Lower assimilate supply capacity in conjunction with impaired activities of ADP-glucose pyrophosphorylase and soluble starch synthase were the main reasons for the decreased starch levels in drought-stressed anthers. The decreased activities of sucrose synthetase and acid invertase were responsible for the higher sucrose level in drought-stressed anthers than well-watered anthers and the changing trend of sucrose was intensified by the decreased expressions of sucrose synthase genes (GhSusA, GhSusB, GhSusD) and acid invertase genes (GhINV1, GhINV2). However, despite sucrose degradation being limited in drought-stressed anthers, glucose level was higher in droughted anthers than well-watered ones, and that might be attributed to the down-regulated respiration since decreased anther ATP levels were detected in drought-stressed plants. Furthermore, compared to the drought-tolerant cultivar, pollen fertility was more suppressed by drought stress for the drought-sensitive cultivar, and that was attributed to the larger decrease in starch and ATP contents.
Collapse
Affiliation(s)
- Wei Hu
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yanjun Huang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Dimitra A Loka
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization, 41335, Larissa, Greece
| | - Hua Bai
- School of Agricultural Sciences, Northwest Missouri State University, Maryville, MO, 64468, USA
| | - Yu Liu
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shanshan Wang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|