1
|
Iqbal A, Hafeez Kamran S, Siddique F, Ishtiaq S, Hameed M, Manzoor M. Modulatory effects of rutin and vitamin A on hyperglycemia induced glycation, oxidative stress and inflammation in high-fat-fructose diet animal model. PLoS One 2024; 19:e0303060. [PMID: 38723008 PMCID: PMC11081234 DOI: 10.1371/journal.pone.0303060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
In the current study we investigated the impact of combination of rutin and vitamin A on glycated products, the glyoxalase system, oxidative markers, and inflammation in animals fed a high-fat high-fructose (HFFD) diet. Thirty rats were randomly divided into six groups (n = 5). The treatments, metformin (120 mg/kg), rutin (100 mg/kg), vitamin A (43 IU/kg), and a combination of rutin (100 mg/kg) and vitamin A (43 IU/kg) were given to relevant groups of rats along with high-fructose high-fat diet for 42 days. HbA1c, D-lactate, Glyoxylase-1, Hexokinase 2, malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), nuclear transcription factor-B (NF-κB), interleukin-6 (IL-6), interleukin-8 (IL-8) and histological examinations were performed after 42 days. The docking simulations were conducted using Auto Dock package. The combined effects of rutin and vitamin A in treated rats significantly (p < 0.001) reduced HbA1c, hexokinase 2, and D-lactate levels while preventing cellular damage. The combination dramatically (p < 0.001) decreased MDA, CAT, and GPx in treated rats and decreased the expression of inflammatory cytokines such as IL-6 andIL-8, as well as the transcription factor NF-κB. The molecular docking investigations revealed that rutin had a strong affinity for several important biomolecules, including as NF-κB, Catalase, MDA, IL-6, hexokinase 2, and GPx. The results propose beneficial impact of rutin and vitamin A as a convincing treatment strategy to treat AGE-related disorders, such as diabetes, autism, alzheimer's, atherosclerosis.
Collapse
Affiliation(s)
- Aqsa Iqbal
- Faculty of Pharmaceutical and Allied Health Sciences, Department of Pharmacology, Institute of Pharmacy, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Sairah Hafeez Kamran
- Faculty of Pharmaceutical and Allied Health Sciences, Department of Pharmacology, Institute of Pharmacy, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Farhan Siddique
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Saiqa Ishtiaq
- Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Punjab, Pakistan
| | - Misbah Hameed
- Faculty of Pharmaceutical and Allied Health Sciences, Department of Pharmaceutics, Institute of Pharmacy, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Mobina Manzoor
- Faculty of Pharmaceutical and Allied Health Sciences, Department of Pharmaceutics, Institute of Pharmacy, Lahore College for Women University, Lahore, Punjab, Pakistan
| |
Collapse
|
2
|
Habibullah M, Jemmieh K, Ouda A, Haider MZ, Malki MI, Elzouki AN. Metabolic-associated fatty liver disease: a selective review of pathogenesis, diagnostic approaches, and therapeutic strategies. Front Med (Lausanne) 2024; 11:1291501. [PMID: 38323033 PMCID: PMC10845138 DOI: 10.3389/fmed.2024.1291501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Background Metabolic associated fatty liver disease (MAFLD) is a novel terminology introduced in 2020 to provide a more accurate description of fatty liver disease associated with metabolic dysfunction. It replaces the outdated term nonalcoholic fatty liver disease (NAFLD) and aims to improve diagnostic criteria and tailored treatment strategies for the disease. NAFLD, the most prevalent liver disease in western industrialized nations, has been steadily increasing in prevalence and is associated with serious complications such as cirrhosis and hepatocellular carcinoma. It is also linked to insulin resistance syndrome and cardiovascular diseases. However, current studies on NAFLD have limitations in meeting necessary histological endpoints. Objective This literature review aims to consolidate recent knowledge and discoveries concerning MAFLD, integrating the diverse aspects of the disease. Specifically, it focuses on analyzing the diagnostic criteria for MAFLD, differentiating it from NAFLD and alcoholic fatty liver disease (AFLD), and exploring the epidemiology, clinical manifestations, pathogenesis, and management approaches associated with MAFLD. The review also explores the associations between MAFLD and other conditions. It discusses the heightened mortality risk associated with MAFLD and its link to chronic kidney disease (CKD), showing that MAFLD exhibits enhanced diagnostic accuracy for identifying patients with CKD compared to NAFLD. The association between MAFLD and incident/prevalent CKD is supported by cohort studies and meta-analyses. Conclusion This literature review highlights the importance of MAFLD as a distinct terminology for fatty liver disease associated with metabolic dysfunction. The review provides insights into the diagnostic criteria, associations with CKD, and management approaches for MAFLD. Further research is needed to develop more accurate diagnostic tools for advanced fibrosis in MAFLD and to explore the underlying mechanisms linking MAFLD with other conditions. This review serves as a valuable resource for researchers and healthcare professionals seeking a comprehensive understanding of MAFLD.
Collapse
Affiliation(s)
| | - Khaleed Jemmieh
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Amr Ouda
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | | | - Abdel-Naser Elzouki
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Internal Medicine Department, Hamad General Hospital, Doha, Qatar
- Weill Cornell Medical Qatar, Doha, Qatar
| |
Collapse
|
3
|
Insulin Resistance and High Blood Pressure: Mechanistic Insight on the Role of the Kidney. Biomedicines 2022; 10:biomedicines10102374. [PMID: 36289636 PMCID: PMC9598512 DOI: 10.3390/biomedicines10102374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
The metabolic effects of insulin predominate in skeletal muscle, fat, and liver where the hormone binds to its receptor, thereby priming a series of cell-specific and biochemically diverse intracellular mechanisms. In the presence of a good secretory reserve in the pancreatic islets, a decrease in insulin sensitivity in the metabolic target tissues leads to compensatory hyperinsulinemia. A large body of evidence obtained in clinical and experimental studies indicates that insulin resistance and the related hyperinsulinemia are causally involved in some forms of arterial hypertension. Much of this involvement can be ascribed to the impact of insulin on renal sodium transport, although additional mechanisms might be involved. Solid evidence indicates that insulin causes sodium and water retention, and both endogenous and exogenous hyperinsulinemia have been correlated to increased blood pressure. Although important information was gathered on the cellular mechanisms that are triggered by insulin in metabolic tissues and on their abnormalities, knowledge of the insulin-related mechanisms possibly involved in blood pressure regulation is limited. In this review, we summarize the current understanding of the cellular mechanisms that are involved in the pro-hypertensive actions of insulin, focusing on the contribution of insulin to the renal regulation of sodium balance and body fluids.
Collapse
|
4
|
Chen S, Wu F, Yang C, Zhao C, Cheng N, Cao W, Zhao H. Alternative to Sugar, Honey Does Not Provoke Insulin Resistance in Rats Based on Lipid Profiles, Inflammation, and IRS/PI3K/AKT Signaling Pathways Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10194-10208. [PMID: 35971648 DOI: 10.1021/acs.jafc.2c03639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insulin resistance (IR) is the central link to metabolic syndrome (MS), and IR prevention has become the key to overcoming this worldwide public health problem. A diet rich in simple sugars is an important pathogenic factor in IR development. To investigate the effect of honey on IR compared to the sugar-water diet, we analyzed phenolics and oligosaccharides in jujube honey and rape honey based on LC-MS and silane derivatization/GC-MS. The effects of different diets on glucose and lipid profile, histopathology and IR-related mechanism pathways were analyzed and compared by equal sugar levels intervention of fructose, fructose + glucose and two kinds of unifloral honey (high-/low-dose) in rats. The results suggested that sugar-equivalent honey, which differs from sugar solution, especially 17.1 g/kg BW jujube honey rich in phenolics (1.971 mg/100 g of isoquercitrin) and oligosaccharides (2.18 g/100 g of turanose), suppressed IR via maintaining glucose (OGTT and ITT) and lipid (TC, TG, LDL-C, HDL-C, and NEFA) homeostasis, improving histological structural abnormalities of the liver, adipose and skeletal muscle, reducing oxidative stress (GSH-Px and MDA) and inflammation (IL-6 and TNF-α), modulating the NF-κB (NF-κB gene expression was down-regulated to 0.94) and IRS/PI3K/AKT signaling pathways (e.g., AKT and GLUT2 expression in liver increased by 4.56 and 13.37 times, respectively) as well as reshaping the gut microbiota. These revealed a potential nutritional contribution of substituting honey for simple sugar in the diet, providing a theoretical basis for controlling IR development via dietary modification and supplementation.
Collapse
Affiliation(s)
- Sinan Chen
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Chenchen Yang
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Cheng Zhao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Ni Cheng
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| |
Collapse
|
5
|
Woyames J, Souza AFP, Miranda RA, Oliveira LS, Caetano B, Andrade CBV, Fortunato RS, Atella GC, Trevenzoli IH, Souza LL, Pazos-Moura CC. Maternal high-fat diet aggravates fructose-induced mitochondrial damage in skeletal muscles and causes differentiated adaptive responses on lipid metabolism in adult male offspring. J Nutr Biochem 2022; 104:108976. [PMID: 35245653 DOI: 10.1016/j.jnutbio.2022.108976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/18/2021] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Maternal high-fat diet (HFD) is associated with metabolic disturbances in the offspring. Fructose is a highly consumed lipogenic sugar; however, it is unknown whether skeletal muscle of maternal HFD offspring respond differentially to a fructose overload. Female Wistar rats received standard diet (STD: 9% fat) or isocaloric high-fat diet (HFD: 29% fat) during 8 weeks before mating until weaning. After weaning, male offspring received STD and, from 120 to 150 days-old, they drank water or 15% fructose in water (STD-F and HFD-F). At 150th day, we collected the oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles. Fructose-treated groups exhibited hypertriglyceridemia, regardless of maternal diet. Soleus of maternal HFD offspring showed increased triglycerides and monounsaturated fatty acid content, independent of fructose, with increased fatty acid transporters and lipogenesis markers. The EDL exhibited unaltered triglycerides content, with an apparent equilibrium between lipogenesis and lipid oxidation markers in HFD, and higher lipid uptake (fatty acid-binding protein 4) accompanied by enhanced monounsaturated fatty acid in fructose-treated groups. Mitochondrial complexes proteins and Tfam mRNA were increased in the soleus of HFD, while uncoupling protein 3 was decreased markedly in HFD-F. In EDL, maternal HFD increased ATP synthase, while fructose decreased Tfam predominantly in STD offspring. Maternal HFD and fructose induced mitochondria ultrastructural damage, intensified in HFD-F in both muscles. Thus, alterations in molecular markers of lipid metabolism and mitochondrial function in response to fructose are modified by an isocaloric and moderate maternal HFD and are fiber-type specific, representing adaptation/maladaptation mechanisms associated with higher skeletal muscle fructose-induced mitochondria injury in adult offspring.
Collapse
Affiliation(s)
- Juliana Woyames
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | | | - Rosiane Aparecida Miranda
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Lorraine Soares Oliveira
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Bruna Caetano
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | | | - Rodrigo Soares Fortunato
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Luana Lopes Souza
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | | |
Collapse
|
6
|
Attenuation of carbohydrate metabolism and lipid profile by methanolic extract of Euphorbia helioscopia and improvement of beta cell function in a type 2 diabetic rat model. BMC Complement Med Ther 2022; 22:23. [PMID: 35078449 PMCID: PMC8790830 DOI: 10.1186/s12906-022-03507-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Background Traditional plant-based remedies prescribed to treat diabetes have shown promise in research-based setting. Current research was conducted to examine the antidiabetic and antioxidant effects of methanolic extract of a folk herbal plant Euphorbia helioscopia in a rat model of type 2 diabetes. Methods Diabetes was induced in male Wistar rats by administering 5% sucrose in drinking water and cafeteria diet for 8 weeks with subsequent nicotinamide and streptozotocin administration. Diabetic rats were then distributed into four individual groups (n = 8); Positive control (PC; no treatment), standard control (SC; Metformin @ 10 mg/kg bw), treatment 1 (EH1, E. helioscopia methanolic extract @200 mg/kg bw) and treatment 2 (EH2, E. helioscopia methanolic extract @400 mg/kg bw). After 21 days of treatments, the rats were decapitated for blood collection. Serum was evaluated for antidiabetic potential, antioxidant and lipid profile, thyroid hormone, amylin, leptin, and carbohydrate metabolic enzymes. Data were analyzed statistically by one-way analysis of variance (ANOVA). Results Serum levels of glucagon, glucose and C-peptide were significantly (P ≤ 0.05) decreased in EH1 (1915.33 ± 98.26a pg/ml, 122.59 ± 2.99a mg/dl, 277.59 ± 28.41a pg/ml respectively) and EH2 (1575.28 ± 56.46a pg/ml, 106.04 ± 5.21a mg/dl, 395.06 ± 42.55a pg/ml respectively) as compared to the PC (3135.78 ± 189.46bpg/ml, 191.24 ± 17.75bmg/dl, 671.70 ± 109.75b pg/ml respectively) group. A similar trend was observed in serum insulin levels in EH1 and EH2 groups. The plant’s methanolic extract effectively reduced the total oxidant status (TOS) and MDA levels in the diabetic rats and increased the total antioxidant capacity (TAC) along with an increased level of SOD, Catalase, Paraoxonase, and arylesterase. The plant extract also induced antihyperlipidemic activity and recovered the thyroid hormones, amylin, and leptin levels to normal. The activity of different carbohydrate metabolic enzymes like Pyruvate Kinase, Glucose 6 phosphate dehydrogenase, phosphofructokinase, and glucokinase has also been restored by the extract treatment. Conclusion Current study indicates the antioxidant and antidiabetic potential of E. helioscopia methanolic extract in normalizing the lipid profile, thyroid hormones, amylin, leptin, and carbohydrate metabolism in type 2 diabetic rat model.
Collapse
|
7
|
Liu Y, Wei Y, Wu L, Lin X, Sun R, Chen H, Shen S, Deng G. Fructose Induces Insulin Resistance of Gestational Diabetes Mellitus in Mice via the NLRP3 Inflammasome Pathway. Front Nutr 2022; 9:839174. [PMID: 35495917 PMCID: PMC9040551 DOI: 10.3389/fnut.2022.839174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Insulin resistance (IR), which is affected by dietary factors, is the main pathology underlying of gestational diabetes mellitus (GDM). Fructose (Fru), a sugar found in fruits, honey, and food sweeteners, has been reported to induce IR and inflammation. This study explored the effects and mechanisms of Fru on IR of GDM in pregnant and postpartum mice and their offspring. METHODS The 6-week-old female C57BL/6J mice were randomly divided into control (Chow) and fructose (Fru) groups, with the latter receiving 20% (w/v) Fru in drinking water from 2 weeks before pregnancy to the end of pregnancy. The effects of Fru on IR and inflammation were determined using serum parameters, glucose metabolism tests, immunohistochemistry, and western blotting. RESULTS Compared with the Chow group mice, pregnant mice treated with Fru exhibited greater gestational weight gain, higher fasting blood glucose and insulin concentrations, and a higher homeostasis model of assessment (HOMA) for IR index, but a lower HOMA for insulin sensitivity index. Treatment with Fru also increased the concentrations of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), IL-17, and C-reactive protein in sera and the expression of IL-6, TNF-α, IL-17, and IL-1β mRNA in liver tissues of pregnant mice. Both CD68 and IL-1β positive cell were increased in Fru-treated mice compared with in Chow mice. Fru treatment also promoted IR and inflammation in mice at 4 weeks after delivery and in offspring mice. Mechanistically, Fru promoted the nuclear translocation of nuclear factor-kappa B (NF-κB) p65 to activate the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome. CONCLUSIONS Exposure to Fru before and during pregnancy induced IR in pregnant mice, which continued at 4 weeks postpartum and affected the offspring. The effects of Fru may be associated with activation of the NF-κB-NLRP3 pathway.
Collapse
Affiliation(s)
- Yao Liu
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Yuanhuan Wei
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Lanlan Wu
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Xiaoping Lin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ruifang Sun
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Hengying Chen
- Injury Prevention Research Center, Shantou University Medical College, Shantou, China
| | - Siwen Shen
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Guifang Deng
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
- *Correspondence: Guifang Deng
| |
Collapse
|
8
|
Shirif AZ, Kovačević S, Brkljačić J, Teofilović A, Elaković I, Djordjevic A, Matić G. Decreased Glucocorticoid Signaling Potentiates Lipid-Induced Inflammation and Contributes to Insulin Resistance in the Skeletal Muscle of Fructose-Fed Male Rats Exposed to Stress. Int J Mol Sci 2021; 22:ijms22137206. [PMID: 34281257 PMCID: PMC8269441 DOI: 10.3390/ijms22137206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023] Open
Abstract
The modern lifestyle brings both excessive fructose consumption and daily exposure to stress which could lead to metabolic disturbances and type 2 diabetes. Muscles are important points of glucose and lipid metabolism, with a crucial role in the maintenance of systemic energy homeostasis. We investigated whether 9-week fructose-enriched diet, with and without exposure to 4-week unpredictable stress, disturbs insulin signaling in the skeletal muscle of male rats and evaluated potential contributory roles of muscle lipid metabolism, glucocorticoid signaling and inflammation. The combination of fructose-enriched diet and stress increased peroxisome proliferator-activated receptors-α and -δ and stimulated lipid uptake, lipolysis and β-oxidation in the muscle of fructose-fed stressed rats. Combination of treatment also decreased systemic insulin sensitivity judged by lower R-QUICKI, and lowered muscle protein content and stimulatory phosphorylations of insulin receptor supstrate-1 and Akt, as well as the level of 11β-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptor. At the same time, increased levels of protein tyrosine phosphatase-1B, nuclear factor-κB, tumor necrosis factor-α, were observed in the muscle of fructose-fed stressed rats. Based on these results, we propose that decreased glucocorticoid signaling in the skeletal muscle can make a setting for lipid-induced inflammation and the development of insulin resistance in fructose-fed stressed rats.
Collapse
|
9
|
Federico A, Rosato V, Masarone M, Torre P, Dallio M, Romeo M, Persico M. The Role of Fructose in Non-Alcoholic Steatohepatitis: Old Relationship and New Insights. Nutrients 2021; 13:1314. [PMID: 33923525 PMCID: PMC8074203 DOI: 10.3390/nu13041314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the result of hepatic fat overload not due to alcohol consumption and potentially evolving to advanced fibrosis, cirrhosis, and hepatocellular carcinoma. Fructose is a naturally occurring simple sugar widely used in food industry linked to glucose to form sucrose, largely contained in hypercaloric food and beverages. An increasing amount of evidence in scientific literature highlighted a detrimental effect of dietary fructose consumption on metabolic disorders such as insulin resistance, obesity, hepatic steatosis, and NAFLD-related fibrosis as well. An excessive fructose consumption has been associated with NAFLD development and progression to more clinically severe phenotypes by exerting various toxic effects, including increased fatty acid production, oxidative stress, and worsening insulin resistance. Furthermore, some studies in this context demonstrated even a crucial role in liver cancer progression. Despite this compelling evidence, the molecular mechanisms by which fructose elicits those effects on liver metabolism remain unclear. Emerging data suggest that dietary fructose may directly alter the expression of genes involved in lipid metabolism, including those that increase hepatic fat accumulation or reduce hepatic fat removal. This review aimed to summarize the current understanding of fructose metabolism on NAFLD pathogenesis and progression.
Collapse
Affiliation(s)
- Alessandro Federico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.D.); (M.R.)
| | - Valerio Rosato
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Mario Masarone
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
| | - Pietro Torre
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.D.); (M.R.)
| | - Mario Romeo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.D.); (M.R.)
| | - Marcello Persico
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
| |
Collapse
|
10
|
Ahmed Y, Ali ZY, Mohamed MA, Rashed LA, Mohamed EK. Impact of combined therapy of mesenchymal stem cells and sitagliptin on a metabolic syndrome rat model. J Diabetes Metab Disord 2021; 20:551-560. [PMID: 34222076 DOI: 10.1007/s40200-021-00778-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/20/2021] [Indexed: 12/20/2022]
Abstract
Background Emerging evidence suggests that mesenchymal stem cells (MSCs) have many anti-inflammatory and regenerative properties, which makes it a suitable candidate for the treatment of many diseases including metabolic syndrome (MetS). However, a major difficulty with stem cell therapy is to maintain cell viability, properties and function after implantation in vivo. This study aims to test the hypothesis that the combined therapy of MSCs and sitagliptin can effectively ameliorate MetS complications induced by high-fat and high-fructose diet (HFFD) in rats. Methods Rats were fed either standard diet (Control group) or HFFD. After 3 months, a group of HFFD animals was injected by a single dose of MSCs, another group received a daily oral dose of 10 mg/kg b.w. of sitagliptin, and the third group received the combined therapy of MSCs + sitagliptin for 1 month. Results Both MSCs and sitagliptin restored insulin sensitivity and reduced the HOMA-IR value in HFFD rats. The hepatic IRS-1 and Akt at both gene and protein levels, as well as the hepatic protein levels of IR and GLUT4 were improved. Downregulation of CHOP and NF-κB and upregulation of hepatic HO-1 expression and activity were also reported. Although MSCs and sitagliptin as monotherapy lead to remarkable effects, the dual application revealed the best results. Interestingly, histological findings confirmed these protective effects of the combined therapy against MetS complications. Conclusion Combined therapy of MSCs and sitagliptin can efficiently ameliorate the insulin resistance and promote the regeneration of hepatocytes in the metabolic syndrome rat model.
Collapse
Affiliation(s)
- Yossra Ahmed
- King Saud University, Riyadh, Saudi Arabia.,Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Zeinab Y Ali
- National Organization of Drug Control and Research, Cairo, Egypt
| | - Mona A Mohamed
- Biochemistry Unit, Chemistry Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Laila A Rashed
- Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ehsan K Mohamed
- National Organization of Drug Control and Research, Cairo, Egypt
| |
Collapse
|
11
|
Konda PY, Chennupati V, Dasari S, Sharma N, Muthulingam M, Ramakrishnan R, Sade A, Jagadheeshkumar V, Natesan V, Jaiswal KK. Ethno-pharmacological insulin signaling induction of aqueous extract of Syzygium paniculatum fruits in a high-fat diet induced hepatic insulin resistance. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113576. [PMID: 33171270 DOI: 10.1016/j.jep.2020.113576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/05/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ethnopharmacological significance of the fruits of Syzygium paniculatum Gaertn (Magenta Cherry) is widely recognized in the Indian traditional medicine system to treat various disorders, such as diabetes, hyperlipidaemia, hypertension, and cardiovascular problems. AIM OF THE STUDY This research work investigated the supplementation of the aqueous extract of S. paniculatum fruit (AESPF) on liver function; the molecular effects on the expression of the protein of insulin receptor (IR) and insulin receptor substrate 1 (IRS-1) in high-fat diet-induced hepatic insulin resistance in the rat model. MATERIALS AND METHODS High-fat diet was used to induce obesity in albino Wistar for 120 days. Biochemical, enzymatic, and histopathological analysis, as well as analysis of hepatic insulin resistance proteins and expression of IRS-1, were performed. RESULTS The supplementation of AESPF with a dose of 100 mg/kg bw significantly reduced bodyweight, blood sugar, insulin, lipid profiles, and liver enzymes. Hepatic insulin resistance was improved with a reduced level of IR and IRS-1 to protein levels. HFD alters the sensitivity of hepatocytes to insulin due to the down-regulation of insulin receptor proteins. CONCLUSIONS The fruits of S. paniculatum possess biological activities to alleviate all risky effects by regulating hepatic lipogenesis activity that can be used in the progress of medication for HFD-induced hepatic insulin resistance and metabolic disorders.
Collapse
Affiliation(s)
| | - Vidyasagar Chennupati
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517 502, India
| | - Sreenivasulu Dasari
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517 502, India
| | - Nishesh Sharma
- Department of Biotechnology, Uttaranchal University, Dehradun, Uttarakhand, 248 007, India
| | - Muthukumaran Muthulingam
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605 014, India
| | - Ranjani Ramakrishnan
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517 502, India
| | - Ankanna Sade
- Department of Botany, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517 502, India
| | | | - Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, 608 002, India.
| | - Krishna Kumar Jaiswal
- Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand, 248 007, India.
| |
Collapse
|
12
|
Oyebode O, Zuma L, Lucky Erukainure O, Koorbanally N, Islam MS. Bridelia ferruginea inhibits key carbohydrate digesting enzyme and intestinal glucose absorption and modulates glucose metabolism in diabetic rats. Arch Physiol Biochem 2020; 129:671-681. [PMID: 33370536 DOI: 10.1080/13813455.2020.1861026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The antidiabetic potentials of the dichloromethene, ethyl acetate, butanol and aqueous fractions of Bridelia ferruginea leaves were investigated using in vitro, ex vivo and in vivo models. In vitro and ex vivo antidiabetic activities revealed the butanol (BFBF) to be the most active of the fractions, and thus selected for in vivo study. Diabetes was induced using the fructose-streptozotocin model. Treatments with BFBF significantly reduced blood glucose level and improved glucose tolerance, serum insulin level and sensitivity as well as suppressed hyperlipidaemia and serum nephropathy markers. Histopathological analysis revealed the ability of BFBF to protect and regenerate pancreatic β-cells. BFBF significantly elevated glutathione level, catalase and superoxide dismutase activities, while depleting MDA level in serums and kidney of diabetic rats. Phenols, steroids, terpenoids, aliphatic and aromatic compounds were identified in the fractions following GC-MS analysis. Overall, results from this study propose that BFBF possess potent antidiabetic activity.
Collapse
Affiliation(s)
- Olajumoke Oyebode
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Lindiwe Zuma
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ochuko Lucky Erukainure
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Neil Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Lelis DDF, Andrade JMO, Almenara CCP, Broseguini-Filho GB, Mill JG, Baldo MP. High fructose intake and the route towards cardiometabolic diseases. Life Sci 2020; 259:118235. [DOI: 10.1016/j.lfs.2020.118235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
|
14
|
Dewdney B, Roberts A, Qiao L, George J, Hebbard L. A Sweet Connection? Fructose's Role in Hepatocellular Carcinoma. Biomolecules 2020; 10:E496. [PMID: 32218179 PMCID: PMC7226025 DOI: 10.3390/biom10040496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma is one of few cancer types that continues to grow in incidence and mortality worldwide. With the alarming increase in diabetes and obesity rates, the higher rates of hepatocellular carcinoma are a result of underlying non-alcoholic fatty liver disease. Many have attributed disease progression to an excess consumption of fructose sugar. Fructose has known toxic effects on the liver, including increased fatty acid production, increased oxidative stress, and insulin resistance. These effects have been linked to non-alcoholic fatty liver (NAFLD) disease and a progression to non-alcoholic steatohepatitis (NASH). While the literature suggests fructose may enhance liver cancer progression, the precise mechanisms in which fructose induces tumor formation remains largely unclear. In this review, we summarize the current understanding of fructose metabolism in liver disease and liver tumor development. Furthermore, we consider the latest knowledge of cancer cell metabolism and speculate on additional mechanisms of fructose metabolism in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Brittany Dewdney
- Molecular and Cell Biology, and The Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia; (B.D.); (A.R.)
| | - Alexandra Roberts
- Molecular and Cell Biology, and The Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia; (B.D.); (A.R.)
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney NSW 2145, Australia; (L.Q.); (J.G.)
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney NSW 2145, Australia; (L.Q.); (J.G.)
| | - Lionel Hebbard
- Molecular and Cell Biology, and The Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia; (B.D.); (A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney NSW 2145, Australia; (L.Q.); (J.G.)
| |
Collapse
|
15
|
Softic S, Stanhope KL, Boucher J, Divanovic S, Lanaspa MA, Johnson RJ, Kahn CR. Fructose and hepatic insulin resistance. Crit Rev Clin Lab Sci 2020; 57:308-322. [PMID: 31935149 DOI: 10.1080/10408363.2019.1711360] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive caloric intake in a form of high-fat diet (HFD) was long thought to be the major risk factor for development of obesity and its complications, such as fatty liver disease and insulin resistance. Recently, there has been a paradigm shift and more attention is attributed to the effects of sugar-sweetened beverages (SSBs) as one of the culprits of the obesity epidemic. In this review, we present the data invoking fructose intake with development of hepatic insulin resistance in human studies and discuss the pathways by which fructose impairs hepatic insulin action in experimental animal models. First, we described well-characterized pathways by which fructose metabolism indirectly leads to hepatic insulin resistance. These include unequivocal effects of fructose to promote de novo lipogenesis (DNL), impair fatty acid oxidation (FAO), induce endoplasmic reticulum (ER) stress and trigger hepatic inflammation. Additionally, we entertained the hypothesis that fructose can directly impede insulin signaling in the liver. This appears to be mediated by reduced insulin receptor and insulin receptor substrate 2 (IRS2) expression, increased protein-tyrosine phosphatase 1B (PTP1b) activity, whereas knockdown of ketohexokinase (KHK), the rate-limiting enzyme of fructose metabolism, increased insulin sensitivity. In summary, dietary fructose intake strongly promotes hepatic insulin resistance via complex interplay of several metabolic pathways, at least some of which are independent of increased weight gain and caloric intake. The current evidence shows that the fructose, but not glucose, component of dietary sugar drives metabolic complications and contradicts the notion that fructose is merely a source of palatable calories that leads to increased weight gain and insulin resistance.
Collapse
Affiliation(s)
- Samir Softic
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY, USA.,Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, CO, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| |
Collapse
|
16
|
Mohamed MA, Ahmed MA, Abd Elbast SA, Ali NA. Rice bran oil ameliorates hepatic insulin resistance by improving insulin signaling in fructose fed-rats. J Diabetes Metab Disord 2019; 18:89-97. [PMID: 31275879 DOI: 10.1007/s40200-019-00394-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/28/2019] [Indexed: 12/28/2022]
Abstract
Background Insulin resistance is an inadequate metabolic response of the peripheral tissue to circulating insulin. It plays an important pathophysiological role in type 2 diabetes mellitus. The purpose of the study was to investigate the molecular effects of rice bran oil (RBO) on the gene expression of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), glucose transporters-4 and 5 (GLUT-4 and 5) in insulin-resistant rats induced by high fructose diet (HFD). Methods Rats were divided into six groups (10 rats each) as follows: Groups 1 and 2: rats received a standard diet with corn oil or RBO (as the sole source of fat), respectively. Group 3: animals fed on HFD, which was furtherly divided into 2 sub-groups: rats fed HFD either for one (HFD1) or for 2 months (HFD2). Group 4, rats fed HFD containing RBO for 1 month (HFD1 + RBO), while rats in group 5 fed HFD for 30 days then RBO was added to the diet for another 30 days (HFD2 + RBO). Serum levels of glucose and insulin, as well as hepatic gene expression of insulin receptors and glucose transporters were determined. Livers were isolated for histopathological study. Results HFD induced insulin resistance with a reduction in the hepatic level of insulin receptor and glucose transporters at both protein and molecular levels. Addition of RBO improved the insulin sensitivity and up-regulated the expression of the tested genes. Conclusion HFD impaired the insulin sensitivity of the hepatocytes by down-regulating the insulin receptor genes. Addition of RBO alleviated all the hazardous effects.
Collapse
Affiliation(s)
- Mona A Mohamed
- 1Biochemistry Division, Chemistry Department, Faculty of Science, Al-Azhar University, P.O.: 11754, Cairo, Egypt
| | - Mervat A Ahmed
- 2Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | | | - Nehad A Ali
- 2Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
17
|
Astbury S, Song A, Zhou M, Nielsen B, Hoedl A, Willing BP, Symonds ME, Bell RC. High Fructose Intake During Pregnancy in Rats Influences the Maternal Microbiome and Gut Development in the Offspring. Front Genet 2018; 9:203. [PMID: 29971089 PMCID: PMC6018152 DOI: 10.3389/fgene.2018.00203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/22/2018] [Indexed: 01/13/2023] Open
Abstract
Studies in pregnant women indicate the maternal microbiome changes during pregnancy so as to benefit the mother and fetus. In contrast, disruption of the maternal microbiota around birth can compromise normal bacterial colonisation of the infant's gastrointestinal tract. This may then inhibit development of the gut so as to increase susceptibility to inflammation and reduce barrier function. The impact of modulating fructose intake on the maternal microbiome through pregnancy is unknown, therefore we examined the effect of fructose supplementation on the maternal microbiome together with the immediate and next generation effects in the offspring. Wistar rat dams were divided into control and fructose fed groups that received 10% fructose in their drinking water from 8 weeks of age and throughout pregnancy (10-13 weeks). Maternal fecal and blood samples were collected pre-mating (9 weeks) and during early (gestational day 4-7) and late pregnancy (gestational day 19-21). We show supplementation of the maternal diet with fructose appears to significantly modulate the maternal microbiome, with a significant reduction in Lactobacillus and Bacteroides. In offspring maintained on this diet up to pregnancy and term there was a reduction in gene expression of markers of gut barrier function that could adversely affect its function. An exacerbated insulin response to pregnancy, reduced birth weight, but increased fat mass was also observed in these offspring. In conclusion dietary supplementation with fructose modulates the maternal microbiome in ways that could adversely affect fetal growth and later gut development.
Collapse
Affiliation(s)
- Stuart Astbury
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Aleida Song
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Mi Zhou
- Division of Animal Science, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Brent Nielsen
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Abha Hoedl
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Benjamin P Willing
- Division of Animal Science, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michael E Symonds
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Rhonda C Bell
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Rukavina Mikusic NL, Kouyoumdzian NM, Del Mauro JS, Cao G, Trida V, Gironacci MM, Puyó AM, Toblli JE, Fernández BE, Choi MR. Effects of chronic fructose overload on renal dopaminergic system: alteration of urinary L-dopa/dopamine index correlates to hypertension and precedes kidney structural damage. J Nutr Biochem 2017; 51:47-55. [PMID: 29091814 DOI: 10.1016/j.jnutbio.2017.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 01/11/2023]
Abstract
Insulin resistance induced by a high-fructose diet has been associated to hypertension and renal damage. The aim of this work was to assess alterations in the urinary L-dopa/dopamine ratio over three time periods in rats with insulin resistance induced by fructose overload and its correlation with blood pressure levels and the presence of microalbuminuria and reduced nephrin expression as markers of renal structural damage. Male Sprague-Dawley rats were randomly divided into six groups: control (C) (C4, C8 and C12) with tap water to drink and fructose-overloaded (FO) rats (FO4, FO8 and FO12) with a fructose solution (10% w/v) to drink for 4, 8 and 12 weeks. A significant increase of the urinary L-dopa/dopamine ratio was found in FO rats since week 4, which positively correlated to the development of hypertension and preceded in time the onset of microalbuminuria and reduced nephrin expression observed on week 12 of treatment. The alteration of this ratio was associated to an impairment of the renal dopaminergic system, evidenced by a reduction in renal dopamine transporters and dopamine D1 receptor expression, leading to an overexpression and overactivation of the enzyme Na+, K+-ATPase with sodium retention. In conclusion, urinary L-dopa/dopamine ratio alteration in rats with fructose overload positively correlated to the development of hypertension and preceded in time the onset of renal structural damage. This is the first study to propose the use of the urinary L-dopa/dopamine index as marker of renal dysfunction that temporarily precedes kidney structural damage induced by fructose overload.
Collapse
Affiliation(s)
- Natalia L Rukavina Mikusic
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina.
| | - Nicolás M Kouyoumdzian
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Julieta S Del Mauro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Gabriel Cao
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Hospital Alemán, Laboratorio de Medicina Experimental, Av Pueyrredón 1640, C1118AAT CABA, Buenos Aires, Argentina
| | - Verónica Trida
- Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Mariela M Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Ana M Puyó
- Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Jorge E Toblli
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Hospital Alemán, Laboratorio de Medicina Experimental, Av Pueyrredón 1640, C1118AAT CABA, Buenos Aires, Argentina
| | - Belisario E Fernández
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina; Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Av. Gral Las Heras 2191, C1127AAD CABA, Buenos Aires, Argentina
| | - Marcelo R Choi
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| |
Collapse
|
19
|
Frantz EDC, Medeiros RF, Giori IG, Lima JBS, Bento-Bernardes T, Gaique TG, Fernandes-Santos C, Fernandes T, Oliveira EM, Vieira CP, Conte-Junior CA, Oliveira KJ, Nobrega ACL. Exercise training modulates the hepatic renin-angiotensin system in fructose-fed rats. Exp Physiol 2017. [PMID: 28626963 DOI: 10.1113/ep085924] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the effects of exercise training on the hepatic renin-angiotensin system and their contribution to damage resulting from fructose overload in rats? What is the main finding and its importance? Exercise training attenuated the deleterious actions of the angiotensin-converting enzyme/angiotensin II/angiotensin II type 1 receptor axis and increased expression of the counter-regulatory (angiotensin-converting enzyme 2/angiotensin (1-7)/Mas receptor) axis in the liver. Therefore, our study provides evidence that exercise training modulates the hepatic renin-angiotensin system, which contributes to reducing the progression of metabolic dysfunction and non-alcoholic fatty liver disease in fructose-fed rats. The renin-angiotensin system (RAS) has been implicated in the development of metabolic syndrome. We investigated whether the hepatic RAS is modulated by exercise training and whether this modulation improves the deleterious effects of fructose overload in rats. Male Wistar rats were divided into (n = 8 each) control (CT), exercise control (CT-Ex), high-fructose (HFr) and exercise high-fructose (HFr-Ex) groups. Fructose-drinking rats received d-fructose (100 g l-1 ). After 2 weeks, CT-Ex and HFr-Ex rats were assigned to a treadmill training protocol at moderate intensity for 8 weeks (60 min day-1 , 4 days per week). We assessed body mass, glucose and lipid metabolism, hepatic histopathology, angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity, the angiotensin concentration and the expression profile of proteins affecting the hepatic RAS, gluconeogenesis and inflammation. Neither fructose overload nor exercise training influenced body mass gain and serum ACE and ACE2 activity. The HFr group showed hyperinsulinaemia, but exercise training normalized this parameter. Exercise training was effective in preventing hepatic steatosis and in preventing triacylglycerol and glycogen accumulation. Furthermore, exercise improved the response to the deleterious effects of HFr overload by normalizing the gluconeogenesis pathway and the protein levels of interleukin-6 and tumour necrosis factor-α. The HFr rats displayed increased hepatic ACE activity and protein expression and angiotensin II concentration, which were attenuated by exercise training. Exercise training restored the ACE2/angiotensin-(1-7)/Mas receptor axis. Exercise training may favour the counter-regulatory ACE2/angiotensin-(1-7)/Mas receptor axis over the classical RAS (ACE/angiotensin II/angiotensin II type 1 receptor axis), which could be responsible for the reduction of metabolic dysfunction and the prevention of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Eliete Dalla Corte Frantz
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Renata Frauches Medeiros
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Isabele Gomes Giori
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | - Thais Bento-Bernardes
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Thaiane Gadioli Gaique
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carla Paulo Vieira
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Karen Jesus Oliveira
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Antonio Claudio Lucas Nobrega
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
| |
Collapse
|
20
|
Bellamkonda R, Karuna R, Sasi Bhusana Rao B, Haritha K, Manjunatha B, Silpa S, Saralakumari D. Beneficiary effect of Commiphora mukul ethanolic extract against high fructose diet induced abnormalities in carbohydrate and lipid metabolism in wistar rats. J Tradit Complement Med 2017; 8:203-211. [PMID: 29322010 PMCID: PMC5755988 DOI: 10.1016/j.jtcme.2017.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 02/02/2023] Open
Abstract
The present study was proposed to elucidate the effect of Commiphora mukul gum resin elthanolic extract treatment on alterations in carbohydrate and lipid metabolisms in rats fed with high-fructose diet. Male Wistar rats were divided into four groups: two of these groups (group C and C+CM) were fed with standard pellet diet and the other two groups (group F and F+CM) were fed with high fructose (66 %) diet. C. mukul suspension in 5% Tween-80 in distilled water (200 mg/kg body weight/day) was administered orally to group C+CM and group F+CM. At the end of 60-day experimental period, biochemical parameters related to carbohydrate and lipid metabolisms were assayed. C. mukul treatment completely prevented the fructose-induced increased body weight, hyperglycemia, and hypertriglyceridemia. Hyperinsulinemia and insulin resistance observed in group F decreased significantly with C. mukul treatment in group F+CM. The alterations observed in the activities of enzymes of carbohydrate and lipid metabolisms and contents of hepatic tissue lipids in group F rats were significantly restored to near normal values by C. mukul treatment in group F+CM. In conclusion, our study demonstrated that C. mukul treatment is effective in preventing fructose-induced insulin resistance and hypertriglyceridemia while attenuating the fructose induced alterations in carbohydrate and lipid metabolisms by the extract which was further supported by histopathological results from liver samples which showed regeneration of the hepatocytes. This study suggests that the plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it.
Collapse
Affiliation(s)
- Ramesh Bellamkonda
- Department of Food Techhnology - Vikramasimhapuri University, Nellore, 524003, Andhra Pradesh, India
| | - Rasineni Karuna
- Department of Internal Medicine, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Bongu Sasi Bhusana Rao
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, 515003, Andhra Pradesh, India
| | - Ketham Haritha
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, 515003, Andhra Pradesh, India
| | - Bengeppagari Manjunatha
- Department of Life Sciences, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, P. O. Box: 171-5-231B, Ecuador
| | - Somavarapu Silpa
- Department of Food Techhnology - Vikramasimhapuri University, Nellore, 524003, Andhra Pradesh, India
| | - Desireddy Saralakumari
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, 515003, Andhra Pradesh, India
| |
Collapse
|
21
|
Pterostilbene ameliorates insulin sensitivity, glycemic control and oxidative stress in fructose-fed diabetic rats. Life Sci 2017. [PMID: 28629731 DOI: 10.1016/j.lfs.2017.06.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS The present investigation was designed to explore the effectiveness of pterostilbene (PT) on insulin resistance, metabolic syndrome and oxidative stress in fructose-fed insulin resistant rats. MAIN METHODS Age-matched, male Sprague-Dawley rats (330±30g body weight) were allocated into five groups (n=10). Control (C) group received 65% cornstarch, and the diabetic (D) group received 65% fructose for eight weeks. The third group (D+PT20) received 65% fructose and PT 20mg/kg/day for eight weeks. The fourth group (D+PT40) received 65% fructose and PT 40mg/kg/day for eight weeks. The fifth group (D+M) received 65% fructose and metformin (M) 100mg/kg/day for eight weeks. PT was dissolved in 10% β-cyclodextrin and given orally to rats. Several biochemical parameters were determined to assess the PT efficacy against insulin resistance, metabolic complications, and hepatic oxidative stress. KEY FINDINGS Significantly high HOMA-IR (p<0.001) values in D group compared to C group indicate the presence of insulin resistance. Significantly high levels of TBARS (p<0.001) and decreased levels of SOD (p<0.001) and GSH (p<0.001) in hepatic tissues of D group indicate oxidative stress associated with insulin resistance. Pterostilbene treatment to fructose-fed diabetic rats significantly decreased HOMA-IR (p<0.001) values. Furthermore, PT treatment significantly decreased hepatic TBARS (p<0.001) and increased SOD (p<0.001) and GSH (p<0.001) levels in fructose-fed diabetic rats. SIGNIFICANCE Current study reveals that PT is successful in ameliorating glycemic control, insulin sensitivity while diminishing metabolic disturbances and hepatic oxidative stress in a fructose-induced T2DM rat model.
Collapse
|
22
|
Creus A, Benmelej A, Villafañe N, Lombardo YB. Dietary Salba (Salvia hispanica L) improves the altered metabolic fate of glucose and reduces increased collagen deposition in the heart of insulin-resistant rats. Prostaglandins Leukot Essent Fatty Acids 2017; 121:30-39. [PMID: 28651695 DOI: 10.1016/j.plefa.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
Abstract
This study reports the effects of dietary Salba (chia) seeds on the mechanisms underlying impaired glucose metabolism in the heart of dyslipemic insulin-resistant rats fed a sucrose-rich diet (SRD). Wistar rats were fed a SRD for 3 months. Afterwards, half the animals continued with the SRD; in the other half's diet chia seeds replaced corn oil (CO) for three months (SRD+chia). In the control group, corn starch replaced sucrose. The replacement of CO by chia seeds in the SRD restored the activities of key enzymes involved in heart glucose metabolism decreasing fatty acid oxidation. Chia seeds normalized insulin stimulated GLUT-4 transporter, the abundance of IRS-1 and pAMPK, changed the profile of fatty acid phospholipids, reduced left-ventricle collagen deposition and normalized hypertension and dyslipidemia. New evidence is provided concerning the effects of dietary chia seeds in improving the altered metabolic fate of glucose in the heart of dyslipemic insulin-resistant rats.
Collapse
Affiliation(s)
- Agustina Creus
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina
| | - Adriana Benmelej
- Department of Morphology, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina
| | - Noelia Villafañe
- Department of Morphology, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina
| | - Yolanda B Lombardo
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina.
| |
Collapse
|
23
|
Mathur R, Sehgal R, Rajora P, Sharma S, Kumar R, Mathur S. Aegle marmelos impedes onset of insulin resistance syndrome in rats provided with drinking fructose from weaning to adulthood stages of development — a mechanistic study. Can J Physiol Pharmacol 2017; 95:572-579. [DOI: 10.1139/cjpp-2016-0236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, we explored the effect of aqueous extract of leaves of Aegle marmelos (AM) on hepatic carbohydrate metabolism and insulin downstream signalling in rats given fructose (15%) in drinking water from weaning to adulthood. Wistar albino rats (4 weeks old) were randomly divided into normal control (NC), fructose control (FC), and treatment (AMT) groups and were fed for a period of 8 weeks the following diets: chow + water, chow + fructose (15%), and chow + fructose (15%) + AM (500 mg/kg per day, p.o.), respectively. Compared with the NC group, the FC group was found to have significantly (p < 0.05) raised levels of fasting blood glucose, lipid, visceral mass, plasma insulin and leptin, glycogen, and gluconeogenesis enzyme but decreased glycolytic enzyme activity. Raised levels of glucose transporter 2 protein but decreased activity of phosphatidylinositol-3-kinase (PI3K/Akt) and Janus kinase – signal transducer and activator of transcription-3 (JAK–STAT3) in hepatic tissue indicate a state of insulin and leptin resistance in the FC group. A significant (p < 0.05) lowering of physical and glycemic parameters, strengthening of the hepatic glycolytic pathway over the gluconeogenic pathway, and upregulation of the PI3K/Akt and JAK–STAT3 pathways was observed in the AMT group, as compared with the FC group. For the first time, the mechanism underlying the development of insulin resistance syndrome is delineated here, along with the potential of A. marmelos to impede it.
Collapse
Affiliation(s)
- Rajani Mathur
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Pushp Vihar, Sec III, M.B. Road, New Delhi 110017, India
| | - Ratika Sehgal
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Pushp Vihar, Sec III, M.B. Road, New Delhi 110017, India
| | - Preety Rajora
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Pushp Vihar, Sec III, M.B. Road, New Delhi 110017, India
| | - Shveta Sharma
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Pushp Vihar, Sec III, M.B. Road, New Delhi 110017, India
| | - Rajesh Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Pushp Vihar, Sec III, M.B. Road, New Delhi 110017, India
| | - Sandeep Mathur
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
24
|
Felice JI, Schurman L, McCarthy AD, Sedlinsky C, Aguirre JI, Cortizo AM. Effects of fructose-induced metabolic syndrome on rat skeletal cells and tissue, and their responses to metformin treatment. Diabetes Res Clin Pract 2017; 126:202-213. [PMID: 28259010 DOI: 10.1016/j.diabres.2017.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/06/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022]
Abstract
AIMS Deleterious effects of metabolic syndrome (MS) on bone are still controversial. In this study we evaluated the effects of a fructose-induced MS, and/or an oral treatment with metformin on the osteogenic potential of bone marrow mesenchymal stromal cells (MSC), as well as on bone formation and architecture. METHODS 32 male 8week-old Wistar rats were assigned to four groups: control (C), control plus oral metformin (CM), rats receiving 10% fructose in drinking water (FRD), and FRD plus metformin (FRDM). Samples were collected to measure blood parameters, and to perform pQCT analysis and static and dynamic histomorphometry. MSC were isolated to determine their osteogenic potential. RESULTS Metformin improved blood parameters in FRDM rats. pQCT and static and dynamic histomorphometry showed no significant differences in trabecular and cortical bone parameters among groups. FRD reduced TRAP expression and osteocyte density in trabecular bone and metformin only normalized osteocyte density. FRD decreased the osteogenic potential of MSC and metformin administration could revert some of these parameters. CONCLUSIONS FRD-induced MS shows reduction in MSC osteogenic potential, in osteocyte density and in TRAP activity. Oral metformin treatment was able to prevent trabecular osteocyte loss and the reduction in extracellular mineralization induced by FRD-induced MS.
Collapse
Affiliation(s)
- Juan Ignacio Felice
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - León Schurman
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Antonio Desmond McCarthy
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Claudia Sedlinsky
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - José Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Ana María Cortizo
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina.
| |
Collapse
|
25
|
Ramos VW, Batista LO, Cordeiro EM, Oliveira GV, Albuquerque KT. High-monosaccharide intake inhibits anorexigenic hypothalamic insulin response in male rats. Nutr Neurosci 2017; 21:337-340. [PMID: 28276261 DOI: 10.1080/1028415x.2017.1288339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of this research is to evaluate if intake of 20% fructose solution is able to change the anorexigenic hypothalamic insulin action. METHODS Thirty day-old male Wistar rats were randomly assigned to one of the following groups: standard chow and water for the rats (Control group, C) and standard chow and 20% fructose solution for the rats (Fructose group, F).These treatments lasted 8 weeks. Three-month-old rats from group C and F received insulin or saline intracerebroventricular injections for evaluation of 24 h food intake, phosphorylated forms of the IR (p-IR) and Akt (p-Akt) proteins and quantified hypothalamic insulin receptor (IR) and insulin receptor substrate 1 (IRS-1) proteins. RESULTS Insulin injection was able to decrease food intake in group C compared to 0.9% saline. However, insulin infusion failed to inhibit 24 h food intake in group F compared to 0.9% saline. The hypothalamic content of the IRS-1 was 37% higher in group F as well as p-Akt protein was significant higher vs. group C. CONCLUSION We concluded that the 20% fructose solution compromised insulin signaling considering that it inhibited the anorexigenic hypothalamic response to acute injection of this hormone and increase of IRS-1 and p-Akt content.
Collapse
Affiliation(s)
- Viviane Wagner Ramos
- a Programa de Pós-graduação em Nutrição , Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro , Brasil.,d Macaé Municipal Government , Rio de Janeiro , Brasil
| | - Leandro Oliveira Batista
- a Programa de Pós-graduação em Nutrição , Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro , Brasil.,c Laboratório de Nutrição Experimental (LABNEX) , Universidade Federal do Rio de Janeiro campus Macaé (UFRJ-Macaé), Macaé, Rio de Janeiro , Brasil
| | - Elisaldo Mendes Cordeiro
- b Programa de Pós-graduação em Produtos Bioativos e Biociências , Universidade Federal do Rio de Janeiro campus Macaé (UFRJ-Macaé), Macaé, Rio de Janeiro , Brasil.,d Macaé Municipal Government , Rio de Janeiro , Brasil
| | - Gustavo Vieira Oliveira
- b Programa de Pós-graduação em Produtos Bioativos e Biociências , Universidade Federal do Rio de Janeiro campus Macaé (UFRJ-Macaé), Macaé, Rio de Janeiro , Brasil
| | - Kelse Tibau Albuquerque
- a Programa de Pós-graduação em Nutrição , Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro , Brasil.,b Programa de Pós-graduação em Produtos Bioativos e Biociências , Universidade Federal do Rio de Janeiro campus Macaé (UFRJ-Macaé), Macaé, Rio de Janeiro , Brasil.,c Laboratório de Nutrição Experimental (LABNEX) , Universidade Federal do Rio de Janeiro campus Macaé (UFRJ-Macaé), Macaé, Rio de Janeiro , Brasil
| |
Collapse
|
26
|
Rattanavichit Y, Chukijrungroat N, Saengsirisuwan V. Sex differences in the metabolic dysfunction and insulin resistance of skeletal muscle glucose transport following high fructose ingestion. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1200-R1212. [PMID: 27834291 DOI: 10.1152/ajpregu.00230.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 01/20/2023]
Abstract
The role of high fructose ingestion (HFI) in the development of conditions mimicking human metabolic syndrome has mostly been demonstrated in male animals; however, the extent of HFI-induced metabolic alterations in females remains unclear. The present study investigated whether HFI-induced metabolic perturbations differ between sexes and whether HFI aggravates the metabolic disturbances under ovarian hormone deprivation. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were given either water or liquid fructose (10% wt/vol) for 6 wk. Blood pressure, glucose tolerance, insulin-stimulated glucose transport activity and signaling proteins, including insulin receptor (IR), insulin receptor substrate 1 (IRS-1), Akt, Akt substrate of 160 kDa (AS160), AMPKα, JNK, p38 MAPK, angiotensin-converting enzyme (ACE), ANG II type 1 receptor (AT1R), ACE2, and Mas receptor (MasR) in skeletal muscle, were evaluated. We found that HFI led to glucose intolerance and hypertension in male and OVX rats but not in female rats with intact ovaries. Moreover, HFI did not induce insulin resistance in the skeletal muscle of female and OVX rats but impaired the insulin-stimulated glucose transport activity in the skeletal muscle of male rats, which was accompanied by lower insulin-stimulated IRS-1 Tyr989 (44%), Akt Ser473 (30%), and AS160 Ser588 (43%), and increases in insulin-stimulated IRS-1 Ser307 (78%), JNK Thr183/Tyr185 (69%), and p38 MAPK Thr180/Tyr182 (81%). The results from the present study show sex differences in the development of metabolic syndrome-like conditions and indicate the protective role of female sex hormones against HFI-induced cardiometabolic abnormalities.
Collapse
Affiliation(s)
- Yupaporn Rattanavichit
- Exercise Physiology Laboratory, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Natsasi Chukijrungroat
- Exercise Physiology Laboratory, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Vitoon Saengsirisuwan
- Exercise Physiology Laboratory, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
27
|
Liver ubiquitome uncovers nutrient-stress-mediated trafficking and secretion of complement C3. Cell Death Dis 2016; 7:e2411. [PMID: 27735945 PMCID: PMC5133979 DOI: 10.1038/cddis.2016.312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/28/2016] [Accepted: 09/02/2016] [Indexed: 12/25/2022]
Abstract
Adaptation to changes in nutrient availability is crucial for cells and organisms. Posttranslational modifications of signaling proteins are very dynamic and are therefore key to promptly respond to nutrient deprivation or overload. Herein we screened for ubiquitylation of proteins in the livers of fasted and refed mice using a comprehensive systemic proteomic approach. Among 1641 identified proteins, 117 were differentially ubiquitylated upon fasting or refeeding. Endoplasmic reticulum (ER) and secretory proteins were enriched in the livers of refed mice in part owing to an ER-stress-mediated response engaging retro-translocation and ubiquitylation of proteins from the ER. Complement C3, an innate immune factor, emerged as the most prominent ER-related hit of our screen. Accordingly, we found that secretion of C3 from the liver and primary hepatocytes as well as its dynamic trafficking are nutrient dependent. Finally, obese mice with a chronic nutrient overload show constitutive trafficking of C3 in the livers despite acute changes in nutrition, which goes in line with increased C3 levels and low-grade inflammation reported for obese patients. Our study thus suggests that nutrient sensing in the liver is coupled to release of C3 and potentially its metabolic and inflammatory functions.
Collapse
|
28
|
Osman I, Poulose N, Ganapathy V, Segar L. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells. Eur J Pharmacol 2016; 791:703-710. [PMID: 27729247 DOI: 10.1016/j.ejphar.2016.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022]
Abstract
Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[14C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia.
Collapse
Affiliation(s)
- Islam Osman
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Ninu Poulose
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Lakshman Segar
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Vascular Biology Center, Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
29
|
Mukai Y, Hoshi F, Sato S. Effect of fructose on the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase in HepG2 cells stimulated with placental lactogen. ACTA ACUST UNITED AC 2016; 107:206-210. [DOI: 10.1002/bdrb.21186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Yuuka Mukai
- School of Nutrition and Dietetics, Faculty of Health and Social Work; Kanagawa University of Human Services; Kanagawa Japan
- Division of Health and Social Services, Graduate Course of Health and Social Work; Kanagawa University of Human Services Graduate School; Kanagawa Japan
| | - Fumika Hoshi
- Division of Health and Social Services, Graduate Course of Health and Social Work; Kanagawa University of Human Services Graduate School; Kanagawa Japan
| | - Shin Sato
- Department of Nutrition; Aomori University of Health and Welfare; Aomori Japan
| |
Collapse
|
30
|
Fructose Beverage Consumption Induces a Metabolic Syndrome Phenotype in the Rat: A Systematic Review and Meta-Analysis. Nutrients 2016; 8:nu8090577. [PMID: 27657120 PMCID: PMC5037561 DOI: 10.3390/nu8090577] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/30/2016] [Accepted: 09/13/2016] [Indexed: 01/13/2023] Open
Abstract
A high intake of refined carbohydrates, particularly the monosaccharide fructose, has been attributed to the growing epidemics of obesity and type-2 diabetes. Animal studies have helped elucidate the metabolic effects of dietary fructose, however, variations in study design make it difficult to draw conclusions. The aim of this study was to review the effects of fructose beverage consumption on body weight, systolic blood pressure and blood glucose, insulin and triglyceride concentrations in validated rat models. We searched Ovid Embase Classic + EmbaseMedline and Ovid Medline databases and included studies that used adolescent/adult male rats, with fructose beverage consumption for >3 weeks. Data from 26 studies were pooled by an inverse variance weighting method using random effects models, expressed as standardized mean differences (SMD) with 95% confidence intervals (CI). Overall, 10%–21% w/v fructose beverage consumption was associated with increased rodent body weight (SMD, 0.62 (95% CI: 0.18, 1.06)), systolic blood pressure (SMD, 2.94 (95% CI: 2.10, 3.77)) and blood glucose (SMD, 0.77 (95% CI: 0.36, 1.19)), insulin (SMD, 2.32 (95% CI: 1.57, 3.07)) and triglyceride (SMD, 1.87 (95% CI: 1.39, 2.34)) concentrations. Therefore, the consumption of a low concentration fructose beverage is sufficient to cause early signs of the metabolic syndrome in adult rats.
Collapse
|
31
|
Seyssel K, Meugnier E, Lê KA, Durand C, Disse E, Blond E, Pays L, Nataf S, Brozek J, Vidal H, Tappy L, Laville M. Fructose overfeeding in first-degree relatives of type 2 diabetic patients impacts energy metabolism and mitochondrial functions in skeletal muscle. Mol Nutr Food Res 2016; 60:2691-2699. [PMID: 27468128 DOI: 10.1002/mnfr.201600407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/06/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Abstract
SCOPE The aim of the study was to assess the effects of a high-fructose diet (HFrD) on skeletal muscle transcriptomic response in healthy offspring of patients with type 2 diabetes, a subgroup of individuals prone to metabolic disorders. METHODS AND RESULTS Ten healthy normal weight first-degree relatives of type 2 diabetic patients were submitted to a HFrD (+3.5 g fructose/kg fat-free mass per day) during 7 days. A global transcriptomic analysis was performed on skeletal muscle biopsies combined with in vitro experiments using primary myotubes. Transcriptomic analysis highlighted profound effects on fatty acid oxidation and mitochondrial pathways supporting the whole-body metabolic shift with the preferential use of carbohydrates instead of lipids. Bioinformatics tools pointed out possible transcription factors orchestrating this genomic regulation, such as PPARα and NR4A2. In vitro experiments in human myotubes suggested an indirect action of fructose in skeletal muscle, which seemed to be independent from lactate, uric acid, or nitric oxide. CONCLUSION This study shows therefore that a large cluster of genes related to energy metabolism, mitochondrial function, and lipid oxidation was downregulated after 7 days of HFrD, thus supporting the concept that overconsumption of fructose-containing foods could contribute to metabolic deterioration in humans.
Collapse
Affiliation(s)
- Kevin Seyssel
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Emmanuelle Meugnier
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France
| | - Kim-Anne Lê
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christine Durand
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France
| | - Emmanuel Disse
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Emilie Blond
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Laurent Pays
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,Banque de Cellules et de Tissus, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Serge Nataf
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,Banque de Cellules et de Tissus, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | | | - Hubert Vidal
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Luc Tappy
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Martine Laville
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| |
Collapse
|
32
|
Saad AF, Dickerson J, Kechichian TB, Yin H, Gamble P, Salazar A, Patrikeev I, Motamedi M, Saade GR, Costantine MM. High-fructose diet in pregnancy leads to fetal programming of hypertension, insulin resistance, and obesity in adult offspring. Am J Obstet Gynecol 2016; 215:378.e1-6. [PMID: 27060421 DOI: 10.1016/j.ajog.2016.03.038] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Consumption of fructose-rich diets in the United States is on the rise and thought to be associated with obesity and cardiometabolic diseases. OBJECTIVE We sought to determine the effects of antenatal exposure to high-fructose diet on offspring's development of metabolic syndrome-like phenotype and other cardiovascular disease risk factors later in life. STUDY DESIGN Pregnant C57BL/6J dams were randomly allocated to fructose solution (10% wt/vol, n = 10) or water (n = 10) as the only drinking fluid from day 1 of pregnancy until delivery. After weaning, pups were started on regular chow, and evaluated at 1 year of life. We measured percent visceral adipose tissue and liver fat infiltrates using computed tomography, and blood pressure using CODA nonivasive monitor. Intraperitoneal glucose tolerance testing with corresponding insulin concentrations were obtained. Serum concentrations of glucose, insulin, triglycerides, total cholesterol, leptin, and adiponectin were measured in duplicate using standardized assays. Fasting homeostatic model assessment was also calculated to assess insulin resistance. P values <.05 were considered statistically significant. RESULTS Maternal weight, pup number, and average weight at birth were similar between the 2 groups. Male and female fructose group offspring had higher peak glucose and area under the intraperitoneal glucose tolerance testing curve compared with control, and higher mean arterial pressure compared to control. Female fructose group offspring were heavier and had higher percent visceral adipose tissue, liver fat infiltrates, homeostatic model assessment of insulin resistance scores, insulin area under the intraperitoneal glucose tolerance testing curve, and serum concentrations of leptin, and lower concentrations of adiponectin compared to female control offspring. No significant differences in these parameters were noted in male offspring. Serum concentrations of triglycerides or total cholesterol were not different between the 2 groups for either gender. CONCLUSION Maternal intake of high fructose leads to fetal programming of adult obesity, hypertension, and metabolic dysfunction, all risk factors for cardiovascular disease. This fetal programming is more pronounced in female offspring. Limiting intake of high fructose-enriched diets in pregnancy may have significant impact on long-term health.
Collapse
|
33
|
Abd El-Wahab HMF, Mohamed MA, El Sayed HH, Bauomy AE. Modulatory effects of rice bran and its oil on lipid metabolism in insulin resistance rats. J Food Biochem 2016. [DOI: 10.1111/jfbc.12318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hanan M. F. Abd El-Wahab
- Department of Biochemistry and Nutrition; Women's College for Art, Science and Education, Ain Shams University; Cairo Egypt
| | - Mona A. Mohamed
- Biochemistry Division, Department of Chemistry, Faculty of Science; Al-Azhar University; Cairo Egypt
| | - Hanaa H. El Sayed
- Department of Nutrition Biochemistry and Metabolism; National Nutrition Institute; Cairo Egypt
| | - Alshimaa E. Bauomy
- Bachelor of Science, Al-Azhar University and Diploma in Biochemistry and Analytical chemistry, Menoufia University; Cairo Egypt
| |
Collapse
|
34
|
Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism 2016; 65:1049-61. [PMID: 26997538 PMCID: PMC4931958 DOI: 10.1016/j.metabol.2016.02.014] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/05/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022]
Abstract
The exposure of hepatocytes to high concentrations of lipids and carbohydrates and the ensuing hepatocellular injury are termed lipotoxicity and glucotoxicity, respectively. A common denominator is metabolic derangement, especially in regards to intracellular energy homeostasis, which is brought on by glucose intolerance and insulin resistance in tissues. In this review, we highlight the lipids and carbohydrates that provoke hepatocyte injury and the mechanisms involved in lipotoxicity and glucotoxicity, including endoplasmic reticulum stress, oxidative stress and mitochondrial impairment. Through upregulation of proteins involved in various pathways including PKR-like ER kinase (PERK), CCAAT/enhancer-binding homologous protein (CHOP), c-Jun NH2-terminal kinase-1 (JNK), Bcl-2 interacting mediator (BIM), p53 upregulated modulator of apoptosis (PUMA), and eventually caspases, hepatocytes in lipotoxic states ultimately undergo apoptosis. The protective role of certain lipids and possible targets for pharmacological therapy are explored. Finally, we discuss the role of high fructose and glucose diets in contributing to organelle impairment and poor glucose transport mechanisms, which perpetuate hyperglycemia and hyperlipidemia by shunting of excess carbohydrates into lipogenesis.
Collapse
Affiliation(s)
- Manoela Mota
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Bubu A Banini
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sophie C Cazanave
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Arun J Sanyal
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
35
|
Stanišić J, Korićanac G, Ćulafić T, Romić S, Stojiljković M, Kostić M, Pantelić M, Tepavčević S. Low intensity exercise prevents disturbances in rat cardiac insulin signaling and endothelial nitric oxide synthase induced by high fructose diet. Mol Cell Endocrinol 2016; 420:97-104. [PMID: 26644274 DOI: 10.1016/j.mce.2015.11.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/30/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
Increase in fructose consumption together with decrease in physical activity contributes to the development of metabolic syndrome and consequently cardiovascular diseases. The current study examined the preventive role of exercise on defects in cardiac insulin signaling and function of endothelial nitric oxide synthase (eNOS) in fructose fed rats. Male Wistar rats were divided into control, sedentary fructose (received 10% fructose for 9 weeks) and exercise fructose (additionally exposed to low intensity exercise) groups. Concentration of triglycerides, glucose, insulin and visceral adipose tissue weight were determined to estimate metabolic syndrome development. Expression and/or phosphorylation of cardiac insulin receptor (IR), insulin receptor substrate 1 (IRS1), tyrosine-specific protein phosphatase 1B (PTP1B), Akt, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and eNOS were evaluated. Fructose overload increased visceral adipose tissue, insulin concentration and homeostasis model assessment index. Exercise managed to decrease visceral adiposity and insulin level and to increase insulin sensitivity. Fructose diet increased level of cardiac PTP1B and pIRS1 (Ser307), while levels of IR and ERK1/2, as well as pIRS1 (Tyr 632), pAkt (Ser473, Thr308) and pERK1/2 were decreased. These disturbances were accompanied by reduced phosphorylation of eNOS at Ser1177. Exercise managed to prevent most of the disturbances in insulin signaling caused by fructose diet (except phosphorylation of IRS1 at Tyr 632 and phosphorylation and protein expression of ERK1/2) and consequently restored function of eNOS. Low intensity exercise could be considered as efficient treatment of cardiac insulin resistance induced by fructose diet.
Collapse
Affiliation(s)
- Jelena Stanišić
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
| | - Goran Korićanac
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
| | - Tijana Ćulafić
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
| | - Snježana Romić
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
| | - Mojca Stojiljković
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
| | - Milan Kostić
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
| | - Marija Pantelić
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
| | - Snežana Tepavčević
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia.
| |
Collapse
|
36
|
Montgomery MK, Fiveash CE, Braude JP, Osborne B, Brown SHJ, Mitchell TW, Turner N. Disparate metabolic response to fructose feeding between different mouse strains. Sci Rep 2015; 5:18474. [PMID: 26690387 PMCID: PMC4686880 DOI: 10.1038/srep18474] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Diets enriched in fructose (FR) increase lipogenesis in the liver, leading to hepatic lipid accumulation and the development of insulin resistance. Previously, we have shown that in contrast to other mouse strains, BALB/c mice are resistant to high fat diet-induced metabolic deterioration, potentially due to a lack of ectopic lipid accumulation in the liver. In this study we have compared the metabolic response of BALB/c and C57BL/6 (BL6) mice to a fructose-enriched diet. Both strains of mice increased adiposity in response to FR-feeding, while only BL6 mice displayed elevated hepatic triglyceride (TAG) accumulation and glucose intolerance. The lack of hepatic TAG accumulation in BALB/c mice appeared to be linked to an altered balance between lipogenic and lipolytic pathways, while the protection from fructose-induced glucose intolerance in this strain was likely related to low levels of ER stress, a slight elevation in insulin levels and an altered profile of diacylglycerol species in the liver. Collectively these findings highlight the multifactorial nature of metabolic defects that develop in response to changes in the intake of specific nutrients and the divergent response of different mouse strains to dietary challenges.
Collapse
Affiliation(s)
- M K Montgomery
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - C E Fiveash
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - J P Braude
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - B Osborne
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - S H J Brown
- School of Health Sciences, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - T W Mitchell
- School of Health Sciences, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - N Turner
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| |
Collapse
|
37
|
Sharawy MH, El-Awady MS, Megahed N, Gameil NM. The ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) attenuates insulin resistance through suppressing GLUT-2 in rat liver. Can J Physiol Pharmacol 2015; 94:488-97. [PMID: 26871756 DOI: 10.1139/cjpp-2015-0385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study investigates the effect of the ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) on insulin resistance induced by high-fructose diet (HFD) in rats. Male Sprague Dawley rats were fed 60% HFD for 12 weeks and HMB (320 mg·kg(-1)·day(-1), orally) for 4 weeks. HFD significantly increased fasting insulin, fasting glucose, glycosylated hemoglobin (HBA1C), liver glycogen content, and homeostasis model assessment of insulin resistance (HOMA-IR) index, while it decreased glucose and insulin tolerance. Furthermore, HFD significantly increased serum triglycerides (TG), low density lipoprotein cholesterol (LDL-C), and very low density lipoprotein cholesterol (VLDL-C) levels, while it significantly decreased high density lipoprotein cholesterol (HDL-C). Moreover, HFD significantly increased mRNA expression of glucose transporter type-2 (GLUT-2), the mammalian target of rapamycin (mTOR), and sterol regulatory element-binding protein-1c (SREBP-1c) but decreased peroxisome proliferator-activated receptor-alpha (PPAR-α) in liver. Aortic relaxation to acetylcholine (ACh) was impaired and histopathology showed severe hepatic steatosis. HMB significantly increased insulin tolerance and decreased fasting insulin, HOMA-IR, HBA1C, hepatic glycogen content, serum TG, LDL-C, and VLDL-C. Additionally, HMB enhanced ACh-induced relaxation, ameliorated hepatic steatosis, and decreased mRNA expression of GLUT-2. In conclusion, HMB may attenuate insulin resistance and hepatic steatosis through inhibiting GLUT-2 in liver.
Collapse
Affiliation(s)
- Maha H Sharawy
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed S El-Awady
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nirmeen Megahed
- b Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Nariman M Gameil
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
38
|
Sharawy MH, El-Awady MS, Megahed N, Gameil NM. Attenuation of insulin resistance in rats by agmatine: role of SREBP-1c, mTOR and GLUT-2. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:45-56. [PMID: 26449613 DOI: 10.1007/s00210-015-1174-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022]
Abstract
Insulin resistance is a serious health condition worldwide; however, its exact mechanisms are still unclear. This study investigates agmatine (AGM; an endogenous metabolite of L-arginine) effects on insulin resistance induced by high fructose diet (HFD) in rats and the possible involved mechanisms. Sprague Dawley rats were fed 60% HFD for 12 weeks, and AGM (10 mg/kg/day, orally) was given from week 9 to 12. AGM significantly reduced HFD-induced elevation in fasting insulin level, homeostasis model assessment of insulin resistance (HOMA-IR) index and liver glycogen content from 3.44-, 3.62- and 2.07- to 2.59-, 2.78- and 1.3-fold, respectively, compared to the control group, while it increased HFD-induced reduction in glucose tolerance. Additionally, AGM significantly decreased HFD-induced elevation in serum triglycerides, low density lipoprotein cholesterol and very low density lipoprotein cholesterol levels from 3.18-, 2.97- and 4.75- to 1.25-, 1.25- and 1.07-fold, respectively, compared to control group. Conversely, AGM had no significant effect on HFD-induced changes in fasting glucose, glycosylated hemoglobin, insulin tolerance and high density lipoprotein cholesterol. Furthermore, AGM significantly reduced HFD-induced elevation in mRNA expression of glucose transporter type-2 (GLUT-2), mammalian target of rapamycin (mTOR) and sterol regulatory element-binding protein-1c (SREBP-1c) without affecting that of peroxisome proliferator-activated receptor-alpha (PPAR-α) in the liver. Additionally, AGM enhanced ACh-induced aortic relaxation and attenuated liver steatosis induced by HFD. In conclusion, AGM may have a therapeutic potential in insulin resistance through suppressing SREBP-1c, mTOR and GLUT-2 in liver.
Collapse
Affiliation(s)
- Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Nirmeen Megahed
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nariman M Gameil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
39
|
Castro MC, Massa ML, Arbeláez LG, Schinella G, Gagliardino JJ, Francini F. Fructose-induced inflammation, insulin resistance and oxidative stress: A liver pathological triad effectively disrupted by lipoic acid. Life Sci 2015; 137:1-6. [DOI: 10.1016/j.lfs.2015.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/01/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022]
|
40
|
Kantar Ş, Türközkan N, Bircan FS, Paşaoğlu ÖT. Beneficial effects of melatonin on serum nitric oxide, homocysteine, and ADMA levels in fructose-fed rats. PHARMACEUTICAL BIOLOGY 2015; 53:1035-41. [PMID: 25609150 DOI: 10.3109/13880209.2014.957782] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
CONTEXT Melatonin, a pineal hormone and a potent antioxidant, has important roles in metabolic regulation. OBJECTIVE This study investigated serum asymmetric dimethylarginine (ADMA), homocysteine (Hcy), nitric oxide (NO) levels, known to be reliable markers of cardiovascular diseases, and determined possible protective effects of melatonin in fructose-fed rats. MATERIALS AND METHODS Sprague-Dawley rats were divided into four groups: control, fructose, melatonin, and fructose plus melatonin. Metabolic syndrome was induced in rats by 20% (w/v) fructose solution in tap water, and melatonin was administered at the dose of 20 mg/kg bw per day by oral gavage. After 8 weeks, serum lipids, glucose, insulin, ADMA, Hcy, and NOx (the stable end products of NO) levels were quantified. RESULTS Fructose administration caused a statistically significant increase in systolic blood pressure (SBP), serum insulin, triglycerides, and very low-density lipoprotein (VLDL)-cholesterol levels compared with the control group and the metabolic syndrome model was successfully demonstrated. In comparison with the control group, fructose caused a significant increase in serum ADMA, Hcy, and NOx levels. Melatonin counteracted the changes in SBP, serum ADMA, and Hcy levels found in rats both alone and administered with fructose. DISCUSSION AND CONCLUSION These results show that high fructose consumption leads to elevated SBP, atherogenic lipid profile, increased serum ADMA, and Hcy levels and melatonin treatment has beneficial effects on these biochemical parameters in rats. Melatonin might be beneficial for the prevention and/or treatment of the cardiovascular complications of metabolic syndrome not only by reducing the well-known risk factors of the disease but also by diminishing blood ADMA and Hcy levels.
Collapse
Affiliation(s)
- Şerife Kantar
- Department of Biochemistry, Faculty of Medicine, Gazi University , Ankara , Turkey and
| | | | | | | |
Collapse
|
41
|
Ross AP, Darling JN, Parent MB. Excess intake of fat and sugar potentiates epinephrine-induced hyperglycemia in male rats. J Diabetes Complications 2015; 29:329-37. [PMID: 25716573 DOI: 10.1016/j.jdiacomp.2014.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/08/2014] [Accepted: 12/24/2014] [Indexed: 02/06/2023]
Abstract
AIMS Over the past five decades, per capita caloric intake has increased significantly, and diet- and stress-related diseases are more prevalent. The stress hormone epinephrine stimulates hepatic glucose release during a stress response. The present experiment tested the hypothesis that excess caloric intake alters this ability of epinephrine to increase blood glucose. METHODS Sprague-Dawley rats were fed a high-energy cafeteria-style diet (HED). Weight gain during the first 5 days on the diet was used to divide the rats into an HED-lean group and HED-obese group. After 9 weeks, the rats were injected with epinephrine, and blood glucose was measured. RESULTS HED-obese rats gained body and fat mass, and developed insulin resistance (IR) and hepatic steatosis. HED-lean and control rats did not differ. Epinephrine produced larger increases in blood glucose in the HED-obese rats than in the HED-lean and control rats. Removing the high-energy components of the diet for 4 weeks reversed the potentiated effects of epinephrine on glucose and corrected the IR but not the steatosis or obesity. CONCLUSIONS Consumption of a high-energy cafeteria diet potentiates epinephrine-induced hyperglycemia. This effect is associated with insulin resistance but not adiposity or steatosis and is reversed by 4 weeks of standard chow.
Collapse
Affiliation(s)
- Amy P Ross
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, USA
| | - Jenna N Darling
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, USA
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, USA.
| |
Collapse
|
42
|
Nakajima VM, Macedo GA, Macedo JA. Citrus bioactive phenolics: Role in the obesity treatment. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.02.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
43
|
Cambri LT, Ribeiro C, Botezelli JD, Ghezzi AC, Mello MAR. Muscle glycogen metabolism changes in rats fed early postnatal a fructose-rich diet after maternal protein malnutrition: effects of acute physical exercise at the maximal lactate steady-state intensity. Diabetol Metab Syndr 2014; 6:118. [PMID: 25400700 PMCID: PMC4232698 DOI: 10.1186/1758-5996-6-118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 10/03/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The objective was to evaluate the muscle glucose metabolism in rats fed a fructose-rich diet after fetal protein malnutrition, at rest and after acute physical exercise at maximal lactate steady-state intensity. METHODS The male offspring born of mothers fed on a balanced or low-protein diet were split in four groups until 60 days: Balanced (B): balanced diet during the whole period; Balanced/Fructose (BF): balanced diet in utero and fructose-rich diet after birth; Low protein/Balanced (LB): low-protein diet in utero and balanced diet after birth; Low protein/Fructose (LF): low protein diet in utero and fructose-rich diet after birth. RESULTS Acute physical exercise reduced the muscle glycogen concentrations in all groups, although the LF group showed higher concentrations at rest. There was no difference among the groups in the glucose uptake and oxidation rates in the isolated soleus muscle neither at rest nor after acute exercise. However, glycogen synthesis was higher in the LF muscle than in the others at rest. Acute physical exercise increased glycogen synthesis in all groups, and the LF group showed the highest values. CONCLUSION The fructose-rich diet administered in rats after fetal protein malnutrition alters muscle glycogen concentrations and glycogen synthesis in the rest and after acute exercise at maximal lactate steady-state intensity.
Collapse
Affiliation(s)
- Lucieli T Cambri
- />São Paulo State University (UNESP), Rio Claro, SP Brazil
- />Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil. Physical Education Department, UFMT, Av. Fernando Corrêa da Costa, 2367 - Boa Esperança, Cuiabá, Zip-Code:- 78060-900 MT Brazil
| | - Carla Ribeiro
- />São Paulo State University (UNESP), Rio Claro, SP Brazil
| | | | - Ana C Ghezzi
- />São Paulo State University (UNESP), Rio Claro, SP Brazil
| | - Maria AR Mello
- />São Paulo State University (UNESP), Rio Claro, SP Brazil
| |
Collapse
|
44
|
Rawat AK, Korthikunta V, Gautam S, Pal S, Tadigoppula N, Tamrakar AK, Srivastava AK. 4-Hydroxyisoleucine improves insulin resistance by promoting mitochondrial biogenesis and act through AMPK and Akt dependent pathway. Fitoterapia 2014; 99:307-17. [PMID: 25454462 DOI: 10.1016/j.fitote.2014.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 11/18/2022]
Abstract
4-Hydroxyisoleucine (4-HIL) is an unusual amino acid isolated from fenugreek seeds (Trigonella foenum graecum L). Various studies have shown that it acts as an antidiabetic agent yet its mechanism of action is not clear. We therefore investigated the effect 4-HIL on the high fructose diet fed streptozotocin induced diabetic rats and L6 myotubes. 4-HIL (50 mg/kg) has improved blood lipid profile, glucose tolerance and insulin sensitivity in a diabetic rat model. It has increased the glucose uptake in L6 myotubes in AMPK-dependent manner and upregulated the expression of genes (PGC-1α, PGC-1β, CPT 1 and CPT 2), which have role in mitochondrial biogenesis and energy metabolism in the liver, skeletal muscles as well as in L6 myotubes. Interestingly, it also increased the AMPK and Akt expression along with their phosphorylated forms in the liver and muscle tissues of treated animals. Altogether we concluded that 4-HIL acts to improve insulin resistance by promoting mitochondrial biogenesis in high fructose diet fed STZ induced diabetic rats.
Collapse
Affiliation(s)
- Arun Kumar Rawat
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | - Venkateswarlu Korthikunta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | - Sudeep Gautam
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | - Savita Pal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | - Narender Tadigoppula
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | | | | |
Collapse
|
45
|
Beneficial effects of soluble dietary Jerusalem artichoke (Helianthus tuberosus) in the prevention of the onset of type 2 diabetes and non-alcoholic fatty liver disease in high-fructose diet-fed rats. Br J Nutr 2014; 112:709-17. [PMID: 24968200 DOI: 10.1017/s0007114514001421] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Jerusalem artichoke (JA) has the potential to attenuate lipid disturbances and insulin resistance (IR), but the underlying mechanisms are not well understood. In the present study, we elucidated the physiological responses and mechanisms of JA intervention with a comprehensive transcriptome analysis. Wistar rats were fed a control diet, a 60 % fructose-enriched diet (FRU), or a FRU with 10 % JA (n 6-7) for 4 weeks. An oral glucose tolerance test was carried out on day 21. Liver samples were collected for biochemical and global gene expression analyses (GeneChip® Rat Genome 230 2.0 Array, Affymetrix). Fructose feeding resulted in IR and hepatic TAG accumulation; dietary JA supplementation significantly improved these changes. Transcriptomic profiling revealed that the expression of malic enzyme 1 (Me1), associated with fatty acid synthesis; decorin (Dcn), related to fibrosis; and cytochrome P450, family 1, subfamily a, polypeptide 2 (Cyp1a2) and nicotinamide phosphoribosyltransferase (Nampt), associated with inflammation, was differentially altered by the FRU, whereas dietary JA supplementation significantly improved the expression of these genes. We established for the first time the molecular mechanisms driving the beneficial effects of JA in the prevention of type 2 diabetes and non-alcoholic fatty liver disease. We propose that 10 % JA supplementation may be beneficial for the prevention of the onset of these diseases.
Collapse
|
46
|
Impact of gentamicin coadministration along with high fructose feeding on progression of renal failure and metabolic syndrome in Sprague-Dawley rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:823879. [PMID: 25045706 PMCID: PMC4090614 DOI: 10.1155/2014/823879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/24/2014] [Accepted: 05/03/2014] [Indexed: 01/13/2023]
Abstract
The current study evaluates the impact of high fructose feeding in rat model of gentamicin induced nephrotoxicity. Sprague-Dawley rats weighing 180–200 g were randomized into four groups; (C) received standard rodents chow with free access to ad libitum drinking water for 8 weeks and was considered as control, (F) received standard rodents chow with free access to drinking water supplemented with 20% (W/V) fructose for the same abovementioned period, (FG) was fed as group F and was given 80 mg/kg (body weight)/day gentamicin sulphate intraperitoneally during the last 20 days of the feeding period, and (G) was given gentamicin as above and fed as group C. Renal function was assessed at the end of the treatment period through measuring serum creatinine, uric acid and albumin, creatinine clearance, absolute and fractional excretion of both sodium and potassium, twenty-four-hour urinary excretion of albumin, and renal histology. For metabolic syndrome assessment, fasting plasma glucose and insulin were measured and oral glucose tolerance test was performed throughout the treatment period. Results showed that gentamicin enhances progression of fructose induced metabolic syndrome. On the other hand, fructose pretreatment before gentamicin injection produced a comparable degree of renal dysfunction to those which were given fructose-free water but the picture of nephrotoxicity was somewhat altered as it was characterized by higher extent of glomerular congestion and protein urea. Overall, more vigilance is required when nephrotoxic drugs are prescribed for patients with fructose induced metabolic syndrome.
Collapse
|
47
|
Bakoma B, Berké B, Eklu-Gadegbeku K, Agbonon A, Aklikokou K, Gbeassor M, Moore N. Effect of Bridelia ferruginea Benth (Euphorbiaceae) ethyl acetate and acetone fractions on insulin resistance in fructose drinking mice. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:896-899. [PMID: 24704594 DOI: 10.1016/j.jep.2014.03.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/18/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Bridelia ferruginea is traditionally used as a treatment for type 2 diabetes. The present study was investigated to evaluate the effect of Bridelia ferruginea root bark fractions on some markers of type 2 diabetes on fructose drinking mice. MATERIALS AND METHODS Mice received a solution of fructose 15% during 42 days ad libitum; at the 15th day to the 42nd day, they received distilled water for fructose drinking control group, metformin 50 mg/kg per day or fractions 50 mg/kg per day for treatment groups. The normal control group received only distilled water during the experiment. After 6 weeks of experiment, OGTT, fasting blood glucose, plasma insulin, triglycerides (TG), total cholesterol, AST and ALT levels were measured. RESULTS Fructose drinking control group (F) showed significant (p<0.001) increase of glucose tolerance, plasma levels of total cholesterol, triglycerides and insulin index for insulin resistance (Homeostasis Model Assessment ratio HOMA-IR) as compared to normal control mice. In treated groups, there was a significant reduction of glucose intolerance respectively 74% (p<0.001), 25% (p<0.5) and 92% (p<0.001) for ethyl acetate fraction, acetone fraction and metformin at the same dose of 50 mg/kg per day during 4 weeks administration. In ethyl acetate fraction and metformin treated groups, biochemical parameters and insulin index were significantly (p<0.001) lower than that of fructose drinking control group. CONCLUSIONS This indicates that Bridelia ferruginea root bark ethyl acetate fraction improved insulin resistance as metformin significantly in type 2 diabetes.
Collapse
Affiliation(s)
- Batomayena Bakoma
- Department of Animal Physiology, Faculty of Sciences, University of Lome, Togo; Department of Pharmacology, University of Bordeaux Segalen, 33076 Bordeaux, France.
| | - Bénédicte Berké
- Department of Pharmacology, University of Bordeaux Segalen, 33076 Bordeaux, France
| | | | - Amegnona Agbonon
- Department of Animal Physiology, Faculty of Sciences, University of Lome, Togo
| | - Kodjo Aklikokou
- Department of Animal Physiology, Faculty of Sciences, University of Lome, Togo
| | - Messanvi Gbeassor
- Department of Animal Physiology, Faculty of Sciences, University of Lome, Togo
| | - Nicholas Moore
- Department of Pharmacology, University of Bordeaux Segalen, 33076 Bordeaux, France
| |
Collapse
|
48
|
Sciacqua A, Perticone M, Falbo T, Grillo N, Tassone EJ, Sinopoli F, Lo Russo C, Succurro E, Andreozzi F, Sesti G, Perticone F. Dietary patterns and 1-h post-load glucose in essential hypertension. Nutr Metab Cardiovasc Dis 2014; 24:547-553. [PMID: 24462366 DOI: 10.1016/j.numecd.2013.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/08/2013] [Accepted: 11/15/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS Normoglucosetolerants (NGT) are considered at low risk, even if a 1-h post-load glucose (PLG) value ≥ 155 mg dl(-1) identifies NGTs at high risk of type-2 diabetes (T2D) and sub-clinical organ damage. Specific dietary factors may affect insulin sensitivity and the risk of T2D. However, it is unknown whether dietary components affect 1-h PLG in hypertensive NGT. Therefore, we investigate the effect of dietary patterns on 1-h PLG. METHODS AND RESULTS We selected 188 subjects (94 NGTs < 155 mg dl(-1) and 94 NGTs ≥ 155 mg dl(-1) PLG), well matched for age, gender and body mass index (BMI). Insulin sensitivity was evaluated using the Matsuda index. Dietary intake was quantified by a semiquantitative food frequency questionnaire (FEQ) validated in the European Investigation into Cancer and Nutrition (EPIC) study. The NGT ≥ 155 group had significantly reduced insulin sensitivity (40.3 ± 19.8 vs. 73.3 ± 28.8; P < 0.0001). With the exclusion of total calories, lipids, alcohol and fiber consumption we observed a significant difference, between groups, in starch (214.1 ± 52.4 vs. 268.8 ± 71.8 g; P < 0.0001), saturated (27.4 ± 8.7 vs. 24.1 ± 8.5 g; P = 0.009), monounsaturated (45.5 ± 8.9 vs. 48.8 ± 10.7 g; P = 0.023) and polyunsaturated fatty acids (FAs) (14.5 ± 4.0 vs. 16.8 ± 4.7 g; P < 0.0001), fructose (14.5 ± 5.3 vs. 11.2 ± 4.8 g; P < 0.0001), and oligosaccharides (103.2 ± 26.6 vs. 89.9 ± 29.2 g; P = 0.001) consumption. In the whole population, starch was the major predictor of 1-h PLG, explaining 23.2% of variation (P < 0.0001). In the NGT < 155 group, fructose was the strongest predictor, accounting for 15.4% of the variation; BMI, gender and polyunsaturated FAs added another 6.6%, 3.6% and 3.2%, respectively. In the NGT ≥ 155 group, saturated and polyunsaturated FAs were retained as the major predictors of 1-h PLG, explaining 18.2% and 11.4% of the variation. CONCLUSIONS The present data demonstrate that dietary patterns affect 1-h PLG, remarking the importance of both quantitative and qualitative composition of a diet.
Collapse
Affiliation(s)
- A Sciacqua
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - M Perticone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - T Falbo
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - N Grillo
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - E J Tassone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - F Sinopoli
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - C Lo Russo
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - E Succurro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - F Andreozzi
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - G Sesti
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - F Perticone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
49
|
Mukai Y, Ozaki H, Serita Y, Sato S. Maternal fructose intake during pregnancy modulates hepatic and hypothalamic AMP-activated protein kinase signalling in a sex-specific manner in offspring. Clin Exp Pharmacol Physiol 2014; 41:331-7. [DOI: 10.1111/1440-1681.12225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Yuuka Mukai
- Department of Nutrition; Faculty of Health Sciences; Aomori University of Health and Welfare; Aomori Japan
| | - Haruka Ozaki
- Department of Nutrition; Faculty of Health Sciences; Aomori University of Health and Welfare; Aomori Japan
| | - Yuko Serita
- Department of Nutrition; Faculty of Health Sciences; Aomori University of Health and Welfare; Aomori Japan
| | - Shin Sato
- Department of Nutrition; Faculty of Health Sciences; Aomori University of Health and Welfare; Aomori Japan
| |
Collapse
|
50
|
Effect of dietary intake of avocado oil and olive oil on biochemical markers of liver function in sucrose-fed rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:595479. [PMID: 24860825 PMCID: PMC4016882 DOI: 10.1155/2014/595479] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 12/31/2022]
Abstract
Metabolic changes, along with cardiovascular and hepatic factors, are associated with the development of diseases such as diabetes, dyslipidemia, and obesity. We evaluated the effect of avocado oil supplementation (centrifuged and solvent extracted), compared with olive oil, upon the hepatic function in sucrose-fed rats. Twenty-five rats were divided into five groups: control (basal diet), a sucrose-fed group (basal diet plus 30% sucrose solution), and three other groups (S-OO, S-AOC, and S-AOS, indicating basal diet plus 30% sucrose solution plus olive oil OO, avocado oil extracted by centrifugation AOC or using solvent AOS, resp.). Glucose, total cholesterol, triglycerides, total protein, albumin, globulin, direct bilirubin, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, alkaline phosphatase, cholinesterase, and α-amylase concentrations were determined and avocado oil effect on them was studied. In some cases the induced metabolic alteration significantly affected total protein and bilirubin levels and also had a highly significant effect on α-amylase levels. AOC and AOS exhibited effects similar to those of olive oil, according to the nonsignificant difference in fatty acid profile observed by other authors. Avocado oil consumption could be beneficial in the control of altered metabolic profile illnesses as it presents effects on hepatic function biochemical markers similar to olive oil.
Collapse
|