1
|
Syed-Abdul MM. Lipid Metabolism in Metabolic-Associated Steatotic Liver Disease (MASLD). Metabolites 2023; 14:12. [PMID: 38248815 PMCID: PMC10818604 DOI: 10.3390/metabo14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Metabolic-associated steatotic liver disease (MASLD) is a cluster of pathological conditions primarily developed due to the accumulation of ectopic fat in the hepatocytes. During the severe form of the disease, i.e., metabolic-associated steatohepatitis (MASH), accumulated lipids promote lipotoxicity, resulting in cellular inflammation, oxidative stress, and hepatocellular ballooning. If left untreated, the advanced form of the disease progresses to fibrosis of the tissue, resulting in irreversible hepatic cirrhosis or the development of hepatocellular carcinoma. Although numerous mechanisms have been identified as significant contributors to the development and advancement of MASLD, altered lipid metabolism continues to stand out as a major factor contributing to the disease. This paper briefly discusses the dysregulation in lipid metabolism during various stages of MASLD.
Collapse
Affiliation(s)
- Majid Mufaqam Syed-Abdul
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
2
|
Syed-Abdul MM, Moore MP, Wheeler AA, Ganga RR, Diaz-Arias A, Petroski GF, Rector RS, Ibdah JA, Parks EJ. Isotope Labeling and Biochemical Assessment of Liver-Triacylglycerol in Patients with Different Levels of Histologically-Graded Liver Disease. J Nutr 2023; 153:3418-3429. [PMID: 37774841 PMCID: PMC10843901 DOI: 10.1016/j.tjnut.2023.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) prevalence is rapidly growing, and fatty liver has been found in a quarter of the US population. Increased liver lipids, particularly those derived from the pathway of de novo lipogenesis (DNL), have been identified as a hallmark feature in individuals with high liver fat. This has led to much activity in basic science and drug development in this area. No studies to date have investigated the contribution of DNL across a spectrum of disease, although it is clear that inhibition of DNL has been shown to reduce liver fat. OBJECTIVES The purpose of this study was to determine whether liver lipid synthesis increases across the continuum of liver injury. METHODS Individuals (n = 49) consumed deuterated water for 10 d before their scheduled bariatric surgeries to label DNL; blood and liver tissue samples were obtained on the day of the surgery. Liver lipid concentrations were quantitated, and levels of protein and gene expression assessed. RESULTS Increased liver DNL, measured isotopically, was significantly associated with liver fatty acid synthase protein content (R = 0.470, P = 0.003), total steatosis assessed by histology (R = 0.526, P = 0.0008), and the fraction of DNL fatty acids in plasma very low-density lipoprotein-triacylglycerol (R = 0.747, P < 0.001). Regression analysis revealed a parabolic relationship between fractional liver DNL (percent) and NAFLD activity score (R = 0.538, P = 0.0004). CONCLUSION These data demonstrate that higher DNL is associated with early to mid stages of liver disease, and this pathway may be an effective target for the treatment of NAFLD and nonalcoholic steatohepatitis. This study was registered at clinicaltrials.gov as NCT03683589.
Collapse
Affiliation(s)
- Majid M Syed-Abdul
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Mary P Moore
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Research Services-Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States
| | - Andrew A Wheeler
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Rama R Ganga
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Alberto Diaz-Arias
- Boyce & Bynum Pathology Professional Services, Division of Gastrointestinal & Hepatobiliary Pathology, Columbia, MO, United States
| | - Gregory F Petroski
- Biostatistics Unit, School of Medicine, University of Missouri, Columbia, MO, United States
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Research Services-Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Jamal A Ibdah
- Research Services-Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
3
|
Salvador AF, Shyu CR, Parks EJ. Measurement of lipid flux to advance translational research: evolution of classic methods to the future of precision health. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1348-1353. [PMID: 36075949 PMCID: PMC9534914 DOI: 10.1038/s12276-022-00838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past 70 years, the study of lipid metabolism has led to important discoveries in identifying the underlying mechanisms of chronic diseases. Advances in the use of stable isotopes and mass spectrometry in humans have expanded our knowledge of target molecules that contribute to pathologies and lipid metabolic pathways. These advances have been leveraged within two research paths, leading to the ability (1) to quantitate lipid flux to understand the fundamentals of human physiology and pathology and (2) to perform untargeted analyses of human blood and tissues derived from a single timepoint to identify lipidomic patterns that predict disease. This review describes the physiological and analytical parameters that influence these measurements and how these issues will propel the coming together of the two fields of metabolic tracing and lipidomics. The potential of data science to advance these fields is also discussed. Future developments are needed to increase the precision of lipid measurements in human samples, leading to discoveries in how individuals vary in their production, storage, and use of lipids. New techniques are critical to support clinical strategies to prevent disease and to identify mechanisms by which treatments confer health benefits with the overall goal of reducing the burden of human disease. Personalized tracking of how lipid (fat) metabolism changes over time could lead to improvements in the diagnosis and treatment of several diseases. Elizabeth Parks and colleagues from the University of Missouri, Columbia, USA, discuss the ways in which researchers use stable isotope labeling to monitor the kinetics of fatty acids and other lipids in the body. Usually, lipid quantities are measured only at a single timepoint, however the tracking of lipid turnover over time provides further diagnostic information. Aided by new techniques such as high-throughput mass spectrometry and machine learning, researchers are now able to continuously map total lipid contents in individual patients. The transition of measurements of lipid flux from the research laboratory to the doctor’s office will likely play a role in a new era of precision medicine.
Collapse
Affiliation(s)
- Amadeo F Salvador
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.,Department of Electrical Engineering and Computer Science, Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Chi-Ren Shyu
- Department of Electrical Engineering and Computer Science, Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA. .,Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
4
|
Signaling Pathway of Taurine-Induced Upregulation of TXNIP. Metabolites 2022; 12:metabo12070636. [PMID: 35888758 PMCID: PMC9317136 DOI: 10.3390/metabo12070636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Taurine, a sulfur-containing β-amino acid, is present at high concentrations in mammalian tissues and plays an important role in several essential biological processes. However, the genetic mechanisms involved in these physiological processes associated with taurine remain unclear. In this study, we investigated the regulatory mechanism underlying the taurine-induced transcriptional enhancement of the thioredoxin-interacting protein (TXNIP). The results showed that taurine significantly increased the luciferase activity of the human TXNIP promoter. Further, deletion analysis of the TXNIP promoter showed that taurine induced luciferase activity only in the TXNIP promoter region (+200 to +218). Furthermore, by employing a bioinformatic analysis using the TRANSFAC database, we focused on Tst-1 and Ets-1 as candidates involved in taurine-induced transcription and found that the mutation in the Ets-1 sequence did not enhance transcriptional activity by taurine. Additionally, chromatin immunoprecipitation assays indicated that the binding of Ets-1 to the TXNIP promoter region was enhanced by taurine. Taurine also increased the levels of phosphorylated Ets-1, indicating activation of Ets-1 pathway by taurine. Moreover, an ERK cascade inhibitor significantly suppressed the taurine-induced increase in TXNIP mRNA levels and transcriptional enhancement of TXNIP. These results suggest that taurine enhances TXNIP expression by activating transcription factor Ets-1 via the ERK cascade.
Collapse
|
5
|
Xu C, Li XF, Gao LL, Ding ZR, Huang XP, Li YY, Xie DZ. Molecular characterization of thioredoxin-interacting protein (TXNIP) from Megalobrama amblycephala and its potential roles in high glucose-induced inflammatory response. Int J Biol Macromol 2021; 188:460-472. [PMID: 34391784 DOI: 10.1016/j.ijbiomac.2021.08.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022]
Abstract
This study aimed to characterize the full-length cDNA of thioredoxin-interacting protein (TXNIP) from Megalobrama amblycephala, and investigate its roles in high glucose (HC)-induced inflammatory response. The cDNA obtained covered 2706-bp with an open reading frame of 1203-bp encoding 400 amino acids, compared to Cyprinus carpio, it showed 89.96% homology. The highest expression of txnip was observed in head kidney followed by spleen and liver. After a 12-week feeding trial, high-carbohydrate diet remarkably increased txnip expression in liver and white muscle. Glucose administration resulted in a remarkably increased liver txnip expression, which peaked at 1 h. Thereafter, the expression decreased remarkably to the basal value at 12 h. However, insulin injection resulted in a significant decrease in txnip expression with minimum values attained at 2 h. Subsequently, it gradually increased to the normal values. Moreover, in the in-vitro study, over-expression of txnip along with remarkably increased il-1β and il-6 expression in hepatocytes, and its knockdown led to remarkably reduced il-1β expression. Furthermore, metformin treatment remarkably increased the cell viability and trx expression of hepatocytes under high glucose, while the opposite was true for ROS levels, LDH activity, the ALT/AST ratio, Txnip protein content and the transcriptions of txnip, tnfα and il-1β.
Collapse
Affiliation(s)
- Chao Xu
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| | - Liu-Ling Gao
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhi-Rong Ding
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiao-Ping Huang
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuan-You Li
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Di-Zhi Xie
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
6
|
Thioredoxin-Interacting Protein (TXNIP) with Focus on Brain and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21249357. [PMID: 33302545 PMCID: PMC7764580 DOI: 10.3390/ijms21249357] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The development of new therapeutic approaches to diseases relies on the identification of key molecular targets involved in amplifying disease processes. One such molecule is thioredoxin-interacting protein (TXNIP), also designated thioredoxin-binding protein-2 (TBP-2), a member of the α-arrestin family of proteins and a central regulator of glucose and lipid metabolism, involved in diabetes-associated vascular endothelial dysfunction and inflammation. TXNIP sequesters reduced thioredoxin (TRX), inhibiting its function, resulting in increased oxidative stress. Many different cellular stress factors regulate TXNIP expression, including high glucose, endoplasmic reticulum stress, free radicals, hypoxia, nitric oxide, insulin, and adenosine-containing molecules. TXNIP is also directly involved in inflammatory activation through its interaction with the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome complex. Neurodegenerative diseases such as Alzheimer’s disease have significant pathologies associated with increased oxidative stress, inflammation, and vascular dysfunctions. In addition, as dysfunctions in glucose and cellular metabolism have been associated with such brain diseases, a role for TXNIP in neurodegeneration has actively been investigated. In this review, we will focus on the current state of the understanding of possible normal and pathological functions of TXNIP in the central nervous system from studies of in vitro neural cells and the brains of humans and experimental animals with reference to other studies. As TXNIP can be expressed by neurons, microglia, astrocytes, and endothelial cells, a complex pattern of regulation and function in the brain is suggested. We will examine data suggesting TXNIP as a therapeutic target for neurodegenerative diseases where further research is needed.
Collapse
|
7
|
Park HS, Song JW, Park JH, Lim BK, Moon OS, Son HY, Lee JH, Gao B, Won YS, Kwon HJ. TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation. Autophagy 2020; 17:2549-2564. [PMID: 33190588 DOI: 10.1080/15548627.2020.1834711] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Impaired macroautophagy/autophagy has been implicated in experimental and human nonalcoholic steatohepatitis (NASH). However, the mechanism underlying autophagy dysregulation in NASH is largely unknown. Here, we investigated the role and mechanism of TXNIP/VDUP1 (thioredoxin interacting protein), a key mediator of cellular stress responses, in the pathogenesis of NASH. Hepatic TXNIP expression was upregulated in nonalcoholic fatty liver disease (NAFLD) patients and in methionine choline-deficient (MCD) diet-fed mice, as well as in palmitic acid (PA)-treated hepatocytes. Upregulation of hepatic TXNIP was positively correlated with impaired autophagy, as evidenced by a decreased number of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) puncta and increased SQSTM1/p62 (sequestosome 1) expression. Deletion of the Txnip gene enhanced hepatic steatosis, inflammation, and fibrosis, accompanied by impaired autophagy and fatty acid oxidation (FAO) in MCD diet-fed mice. Mechanistically, TXNIP directly interacted with and positively regulated p-PRKAA, leading to inactivation of MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) and nuclear translocation of TFEB (transcription factor EB), which in turn promoted autophagy. Inhibition of MTORC1 by rapamycin induced autophagy and increased the expression levels of FAO-related genes and concomitantly attenuated lipid accumulation in PA-treated txnip-knockout (KO) hepatocytes, which was further abolished by silencing of Atg7. Rapamycin treatment also attenuated MCD diet-induced steatosis, inflammation, and fibrosis with increased TFEB nuclear translocation and restored FAO in txnip-KO mice. Our findings suggest that elevated TXNIP ameliorates steatohepatitis by interacting with PRKAA and thereby inducing autophagy and FAO. Targeting TXNIP may be a potential therapeutic approach for NASH.Abbreviations: ACOX1: acyl-Coenzyme A oxidase 1, palmitoyl; ACSL1: acyl-CoA synthetase long-chain family member 1; ACTA2/α-SMA: actin, alpha 2, smooth muscle, aorta; ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; AMPK: AMP-activated protein kinase; ATG: autophagy-related; BafA1: bafilomycin A1; COL1A1/Col1α1: collagen, type I, alpha 1; CPT1A: carnitine palmitoyltransferase 1a, liver; CQ: chloroquine; DGAT1: diacylglycerol O-acyltransferase 1; DGAT2: diacylglycerol O-acyltransferase 2; ECI2/Peci: enoyl-Coenzyme A isomerase 2; EHHADH: enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase; FAO: fatty acid oxidation; FASN: fatty acid synthase; FFA: free fatty acids; GFP: green fluorescent protein; GK/GYK: glycerol kinase; GOT1/AST: glutamic-oxaloacetic transaminase 1, soluble; GPAM: glycerol-3-phosphate acyltransferase, mitochondrial; GPT/ALT: glutamic pyruvic transaminase, soluble; H&E: hematoxylin and eosin; IL1B/IL-1β: interleukin 1 beta; IL6: interleukin 6; IOD: integral optical density; KO: knockout; Leu: leupeptin; LPIN1: lipin 1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MCD: methionine choline-deficient; MMP9: matrix metallopeptidase 9; mRNA: messenger RNA; MTORC1: mechanistic target of rapamycin kinase complex 1; NAFLD: nonalcoholic fatty liver diseases; NASH: nonalcoholic steatohepatitis; PA: palmitic acid; PPARA/PPARα: peroxisome proliferator activated receptor alpha; PPARG/PPARγ: peroxisome proliferator activated receptor gamma; qRT-PCR: quantitative real-time PCR; RPS6KB1/p70S6K1: ribosomal protein S6 kinase, polypeptide 1; RPTOR: regulatory associated protein of MTOR complex 1; SCD1: stearoyl-Coenzyme A desaturase 1; SEM: standard error of the mean; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TG: triglyceride; TGFB/TGF-β: transforming growth factor, beta; TIMP1: tissue inhibitor of metalloproteinase 1; TNF/TNF-α: tumor necrosis factor; TXNIP/VDUP1: thioredoxin interacting protein; WT: wild-type.
Collapse
Affiliation(s)
- Hee-Seon Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Ji-Won Song
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Jin-Ho Park
- Department of Biomedical Science, Jungwon University, Chungbuk, Korea
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Chungbuk, Korea
| | - Og-Sung Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Korea
| | - Hwa-Young Son
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Jae-Hyuk Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Korea
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
8
|
Mashek DG. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD. Mol Metab 2020; 50:101115. [PMID: 33186758 PMCID: PMC8324678 DOI: 10.1016/j.molmet.2020.101115] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is defined by the abundance of lipid droplets (LDs) in hepatocytes. While historically considered simply depots for energy storage, LDs are increasingly recognized to impact a wide range of biological processes that influence cellular metabolism, signaling, and function. While progress has been made toward understanding the factors leading to LD accumulation (i.e. steatosis) and its progression to advanced stages of NAFLD and/or systemic metabolic dysfunction, much remains to be resolved. SCOPE OF REVIEW This review covers many facets of LD biology. We provide a brief overview of the major pathways of lipid accretion and degradation that contribute to steatosis and how they are altered in NAFLD. The major focus is on the relationship between LDs and cell function and the detailed mechanisms that couple or uncouple steatosis from the severity and progression of NAFLD and systemic comorbidities. The importance of specific lipids and proteins within or on LDs as key components that determine whether LD accumulation is linked to cellular and metabolic dysfunction is presented. We discuss emerging areas of LD biology and future research directions that are needed to advance our understanding of the role of LDs in NAFLD etiology. MAJOR CONCLUSIONS Impairments in LD breakdown appear to contribute to disease progression, but inefficient incorporation of fatty acids (FAs) into LD-containing triacylglycerol (TAG) and the consequential changes in FA partitioning also affect NAFLD etiology. Increased LD abundance in hepatocytes does not necessarily equate to cellular dysfunction. While LD accumulation is the prerequisite step for most NAFLD cases, the protein and lipid composition of LDs are critical factors in determining the progression from simple steatosis. Further defining the detailed molecular mechanisms linking LDs to metabolic dysfunction is important for designing effective therapeutic approaches targeting NAFLD and its comorbidities.
Collapse
Affiliation(s)
- Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Minnesota, Suite 6-155, 321 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Yoshihara E. TXNIP/TBP-2: A Master Regulator for Glucose Homeostasis. Antioxidants (Basel) 2020; 9:E765. [PMID: 32824669 PMCID: PMC7464905 DOI: 10.3390/antiox9080765] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Identification of thioredoxin binding protein-2 (TBP-2), which is currently known as thioredoxin interacting protein (TXNIP), as an important binding partner for thioredoxin (TRX) revealed that an evolutionarily conserved reduction-oxidation (redox) signal complex plays an important role for pathophysiology. Due to the reducing activity of TRX, the TRX/TXNIP signal complex has been shown to be an important regulator for redox-related signal transduction in many types of cells in various species. In addition to its role in redox-dependent regulation, TXNIP has cellular functions that are performed in a redox-independent manner, which largely rely on their scaffolding function as an ancestral α-Arrestin family. Both the redox-dependent and -independent TXNIP functions serve as regulatory pathways in glucose metabolism. This review highlights the key advances in understanding TXNIP function as a master regulator for whole-body glucose homeostasis. The potential for therapeutic advantages of targeting TXNIP in diabetes and the future direction of the study are also discussed.
Collapse
Affiliation(s)
- Eiji Yoshihara
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Katsu-Jiménez Y, Vázquez-Calvo C, Maffezzini C, Halldin M, Peng X, Freyer C, Wredenberg A, Giménez-Cassina A, Wedell A, Arnér ESJ. Absence of TXNIP in Humans Leads to Lactic Acidosis and Low Serum Methionine Linked to Deficient Respiration on Pyruvate. Diabetes 2019; 68:709-723. [PMID: 30755400 DOI: 10.2337/db18-0557] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/21/2019] [Indexed: 11/13/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) is an α-arrestin that can bind to and inhibit the antioxidant protein thioredoxin (TXN). TXNIP expression is induced by glucose and promotes β-cell apoptosis in the pancreas, and deletion of its gene in mouse models protects against diabetes. TXNIP is currently studied as a potential new target for antidiabetic drug therapy. In this study, we describe a family with a mutation in the TXNIP gene leading to nondetectable expression of TXNIP protein. Symptoms of affected family members include lactic acidosis and low serum methionine levels. Using patient-derived TXNIP-deficient fibroblasts and myoblasts, we show that oxidative phosphorylation is impaired in these cells when given glucose and pyruvate but normalized with malate. Isolated mitochondria from these cells appear to have normal respiratory function. The cells also display a transcriptional pattern suggestive of a high basal activation of the Nrf2 transcription factor. We conclude that a complete lack of TXNIP in human is nonlethal and leads to specific metabolic distortions that are, at least in part, linked to a deficient respiration on pyruvate. The results give important insights into the impact of TXNIP in humans and thus help to further advance the development of antidiabetic drugs targeting this protein.
Collapse
Affiliation(s)
- Yurika Katsu-Jiménez
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Carmela Vázquez-Calvo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Maffezzini
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Halldin
- Department of Women's and Children's Health, Akademiska University Hospital, Uppsala, Sweden
| | - Xiaoxiao Peng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christoph Freyer
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wredenberg
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alfredo Giménez-Cassina
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Madrid, Spain
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Tinkov AA, Bjørklund G, Skalny AV, Holmgren A, Skalnaya MG, Chirumbolo S, Aaseth J. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker? Cell Mol Life Sci 2018; 75:1567-1586. [PMID: 29327078 PMCID: PMC11105605 DOI: 10.1007/s00018-018-2745-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
Abstract
Mammalian thioredoxin reductase (TrxR) is a selenoprotein with three existing isoenzymes (TrxR1, TrxR2, and TrxR3), which is found primarily intracellularly but also in extracellular fluids. The main substrate thioredoxin (Trx) is similarly found (as Trx1 and Trx2) in various intracellular compartments, in blood plasma, and is the cell's major disulfide reductase. Thioredoxin reductase is necessary as a NADPH-dependent reducing agent in biochemical reactions involving Trx. Genetic and environmental factors like selenium status influence the activity of TrxR. Research shows that the Trx/TrxR system plays a significant role in the physiology of the adipose tissue, in carbohydrate metabolism, insulin production and sensitivity, blood pressure regulation, inflammation, chemotactic activity of macrophages, and atherogenesis. Based on recent research, it has been reported that the modulation of the Trx/TrxR system may be considered as a new target in the management of the metabolic syndrome, insulin resistance, and type 2 diabetes, as well as in the treatment of hypertension and atherosclerosis. In this review evidence about a possible role of this system as a marker of the metabolic syndrome is reported.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Trace Element Institute for UNESCO, Lyon, France
- Orenburg State University, Orenburg, Russia
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institute, Stockholm, Sweden
| | | | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
- Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
12
|
Alhawiti NM, Al Mahri S, Aziz MA, Malik SS, Mohammad S. TXNIP in Metabolic Regulation: Physiological Role and Therapeutic Outlook. Curr Drug Targets 2018; 18:1095-1103. [PMID: 28137209 PMCID: PMC5543564 DOI: 10.2174/1389450118666170130145514] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
Abstract
Background & Objective: Thioredoxin-interacting protein (TXNIP) also known as thioredoxin binding protein-2 is a ubiquitously expressed protein that interacts and negatively regulates expression and function of Thioredoxin (TXN). Over the last few years, TXNIP has attracted considerable attention due to its wide-ranging functions impacting several aspects of energy metabolism. TXNIP acts as an important regulator of glucose and lipid metabolism through pleiotropic actions including regulation of β-cell function, hepatic glucose production, peripheral glucose uptake, adipogenesis, and substrate utilization. Overexpression of TXNIP in animal models has been shown to induce apoptosis of pancreatic β-cells, reduce insulin sensitivity in peripheral tissues like skeletal muscle and adipose, and decrease energy expenditure. On the contrary, TXNIP deficient animals are protected from diet induced insulin resistance and type 2 diabetes. Summary: Consequently, targeting TXNIP is thought to offer novel therapeutic opportunity and TXNIP inhibitors have the potential to become a powerful therapeutic tool for the treatment of diabetes mellitus. Here we summarize the current state of our understanding of TXNIP biology, highlight its role in metabolic regulation and raise critical questions that could help future research to exploit TXNIP as a therapeutic target.
Collapse
Affiliation(s)
- Naif Mohammad Alhawiti
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Saeed Al Mahri
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Mohammad Azhar Aziz
- Colorectal Cancer Research Program, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Shuja Shafi Malik
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Sameer Mohammad
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Yodoi J, Matsuo Y, Tian H, Masutani H, Inamoto T. Anti-Inflammatory Thioredoxin Family Proteins for Medicare, Healthcare and Aging Care. Nutrients 2017; 9:nu9101081. [PMID: 28961169 PMCID: PMC5691698 DOI: 10.3390/nu9101081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
Human thioredoxin (TRX) is a 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys-, which is induced by biological stress due to oxidative damage, metabolic dysfunction, chemicals, infection/inflammation, irradiation, or hypoxia/ischemia-reperfusion. Our research has demonstrated that exogenous TRX is effective in a wide variety of inflammatory diseases, including viral pneumonia, acute lung injury, gastric injury, and dermatitis, as well as in the prevention and amelioration of food allergies. Preclinical and clinical studies using recombinant TRX (rhTRX) are now underway. We have also identified substances that induce the expression of TRX in the body, in vegetables and other plant ingredients. Skincare products are being developed that take advantage of the anti-inflammatory and anti-allergic action of TRX. Furthermore, we are currently engaged in the highly efficient production of pure rhTRX in several plants, such as lettuce, grain and rice.
Collapse
Affiliation(s)
- Junji Yodoi
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Hai Tian
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Department of Anatomy, Basic Medicine Science, Medical College, Shaoxing University, No 900 Cengnan Avenue, Shaoxing 312000, China.
| | - Hiroshi Masutani
- Terni Health Care University, 80-1 Bessho-cho, Tenri, Nara 632-0018, Japan.
| | - Takashi Inamoto
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Terni Health Care University, 80-1 Bessho-cho, Tenri, Nara 632-0018, Japan.
| |
Collapse
|
14
|
Shao D, Han J, Hou X, Fry J, Behring JB, Seta F, Long MT, Roy HK, Cohen RA, Matsui R, Bachschmid MM. Glutaredoxin-1 Deficiency Causes Fatty Liver and Dyslipidemia by Inhibiting Sirtuin-1. Antioxid Redox Signal 2017; 27:313-327. [PMID: 27958883 PMCID: PMC5563925 DOI: 10.1089/ars.2016.6716] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Nonalcoholic fatty liver (NAFL) is a common liver disease associated with metabolic syndrome, obesity, and diabetes that is rising in prevalence worldwide. Various molecular perturbations of key regulators and enzymes in hepatic lipid metabolism cause NAFL. However, redox regulation through glutathione (GSH) adducts in NAFL remains largely elusive. Glutaredoxin-1 (Glrx) is a small thioltransferase that removes protein GSH adducts without having direct antioxidant properties. The liver contains abundant Glrx but its metabolic function is unknown. RESULTS Here we report that normal diet-fed Glrx-deficient mice (Glrx-/-) spontaneously develop obesity, hyperlipidemia, and hepatic steatosis by 8 months of age. Adenoviral Glrx repletion in the liver of Glrx-/- mice corrected lipid metabolism. Glrx-/- mice exhibited decreased sirtuin-1 (SirT1) activity that leads to hyperacetylation and activation of SREBP-1 and upregulation of key hepatic enzymes involved in lipid synthesis. We found that GSH adducts inhibited SirT1 activity in Glrx-/- mice. Hepatic expression of nonoxidizable cysteine mutant SirT1 corrected hepatic lipids in Glrx-/- mice. Wild-type mice fed high-fat diet develop metabolic syndrome, diabetes, and NAFL within several months. Glrx deficiency accelerated high-fat-induced NAFL and progression to steatohepatitis, manifested by hepatic damage and inflammation. INNOVATION These data suggest an essential role of hepatic Glrx in regulating SirT1, which controls protein glutathione adducts in the pathogenesis of hepatic steatosis. CONCLUSION We provide a novel redox-dependent mechanism for regulation of hepatic lipid metabolism, and propose that upregulation of hepatic Glrx may be a beneficial strategy for NAFL. Antioxid. Redox Signal. 27, 313-327.
Collapse
Affiliation(s)
- Di Shao
- 1 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts
| | - Jingyan Han
- 1 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts
| | - Xiuyun Hou
- 1 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts
| | - Jessica Fry
- 1 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts
| | - Jessica B Behring
- 1 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts
| | - Francesca Seta
- 1 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts
| | - Michelle T Long
- 3 Division of Gastroenterology, Boston Medical Center , Boston, Massachusetts
| | - Hemant K Roy
- 3 Division of Gastroenterology, Boston Medical Center , Boston, Massachusetts
| | - Richard A Cohen
- 1 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts.,2 Cardiovascular Proteomics Center, Boston University School of Medicine , Boston, Massachusetts
| | - Reiko Matsui
- 1 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts
| | - Markus M Bachschmid
- 1 Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts.,2 Cardiovascular Proteomics Center, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
15
|
Du C, Wu M, Liu H, Ren Y, Du Y, Wu H, Wei J, Liu C, Yao F, Wang H, Zhu Y, Duan H, Shi Y. Thioredoxin-interacting protein regulates lipid metabolism via Akt/mTOR pathway in diabetic kidney disease. Int J Biochem Cell Biol 2016; 79:1-13. [PMID: 27497988 DOI: 10.1016/j.biocel.2016.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/30/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Abnormal lipid metabolism contributes to the renal lipid accumulation, which is associated with diabetic kidney disease, but its precise mechanism remains unclear. The growing evidence demonstrates that thioredoxin-interacting protein is involved in regulating cellular glucose and lipid metabolism. Here, we investigated the effects of thioredoxin-interacting protein on lipid accumulation in diabetic kidney disease. In contrast to the diabetic wild-type mice, the physical and biochemical parameters were improved in the diabetic thioredoxin-interacting protein knockout mice. The increased renal lipid accumulation, expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1, and phosphorylated Akt and mTOR associated with diabetes in wild-type mice was attenuated in diabetic thioredoxin-interacting protein knockout mice. Furthermore, thioredoxin-interacting protein knockout significantly increased the expression of peroxisome proliferator-activated receptor-α, acyl-coenzyme A oxidase 1 and carnitine palmitoyltransferaser 1 in diabetic kidneys. In vitro experiments, using HK-2 cells, revealed that knockdown of thioredoxin-interacting protein inhibited high glucose-mediated lipid accumulation, expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1, as well as activation of Akt and mTOR. Moreover, knockdown of thioredoxin-interacting protein reversed high glucose-induced reduction of peroxisome proliferator-activated receptor-α, acyl-coenzyme A oxidase 1 and carnitine palmitoyltransferaser 1 expression in HK-2 cells. Importantly, blockade of Akt/mTOR signaling pathway with LY294002, a specific PI3K inhibitor, replicated these effects of thioredoxin-interacting protein silencing. Taken together, these data suggest that thioredoxin-interacting protein deficiency alleviates diabetic renal lipid accumulation through regulation of Akt/mTOR pathway, thioredoxin-interacting protein may be a potential therapeutic target for diabetic kidney disease.
Collapse
Affiliation(s)
- Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China.
| | - Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yunzhuo Ren
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China.
| | - Yunxia Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Jinying Wei
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Chuxin Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Fang Yao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Yan Zhu
- Laboratorical Center for Electron Microscopy, Hebei Medical University, Shijiazhuang, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China.
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China.
| |
Collapse
|
16
|
Kineman RD, Majumdar N, Subbaiah PV, Cordoba-Chacon J. Hepatic PPARγ Is Not Essential for the Rapid Development of Steatosis After Loss of Hepatic GH Signaling, in Adult Male Mice. Endocrinology 2016; 157:1728-35. [PMID: 26950202 PMCID: PMC4870866 DOI: 10.1210/en.2015-2077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Our group has previously reported de novo lipogenesis (DNL) and hepatic triglyceride content increases in chow-fed male mice within 7 days of hepatocyte-specific GH receptor knockdown (aLivGHRkd). Here, we report that these changes are associated with an increase in hepatic expression of peroxisome proliferator-activated receptor γ (PPARγ), consistent with previous reports showing steatosis is associated with an increase in PPARγ expression in mice with congenital loss of hepatic GH signaling. PPARγ is thought to be an important driver of steatosis by enhancing DNL, as well as increasing the uptake and esterification of extrahepatic fatty acids (FAs). In order to determine whether hepatic PPARγ is critical for the rapid development of steatosis in the aLivGHRkd mouse model, we have generated aLivGHRkd mice, with or without PPARγ (ie, adult-onset, hepatocyte-specific double knockout of GHR and PPARγ). Hepatic PPARγ was not required for the rapid increase in liver triglyceride content or FA indexes of DNL (16:0/18:2 and 16:1/16:0). However, loss of hepatic PPARγ blunted the rise in fatty acid translocase/CD36 and monoacylglycerol acyltransferase 1 expression induced by aLivGHRkd, and this was associated with a reduction in the hepatic content of 18:2. These results suggest that the major role of PPARγ is to enhance pathways critical in uptake and reesterification of extrahepatic FA. Because FAs have been reported to directly increase PPARγ expression, we speculate that in the aLivGHRkd mouse, the FA produced by DNL enhances the expression of PPARγ, which in turn increases extrahepatic FA uptake, thereby further enhancing PPARγ activity and exacerbating steatosis overtime.
Collapse
Affiliation(s)
- Rhonda D Kineman
- Research and Development Division (R.D.K., N.M., P.V.S., J.C.-C.), Jesse Brown Veterans Affairs Medical Center; and Department of Medicine (R.D.K., N.M., P.V.S., J.C.-C.), Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Neena Majumdar
- Research and Development Division (R.D.K., N.M., P.V.S., J.C.-C.), Jesse Brown Veterans Affairs Medical Center; and Department of Medicine (R.D.K., N.M., P.V.S., J.C.-C.), Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Papasani V Subbaiah
- Research and Development Division (R.D.K., N.M., P.V.S., J.C.-C.), Jesse Brown Veterans Affairs Medical Center; and Department of Medicine (R.D.K., N.M., P.V.S., J.C.-C.), Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Jose Cordoba-Chacon
- Research and Development Division (R.D.K., N.M., P.V.S., J.C.-C.), Jesse Brown Veterans Affairs Medical Center; and Department of Medicine (R.D.K., N.M., P.V.S., J.C.-C.), Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois 60612
| |
Collapse
|
17
|
Santoro N, Caprio S, Pierpont B, Van Name M, Savoye M, Parks EJ. Hepatic De Novo Lipogenesis in Obese Youth Is Modulated by a Common Variant in the GCKR Gene. J Clin Endocrinol Metab 2015; 100:E1125-32. [PMID: 26043229 PMCID: PMC4524990 DOI: 10.1210/jc.2015-1587] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study's aim was to evaluate whether the GCKR rs1260326 variant increases hepatic de novo lipogenesis (DNL). SETTING AND DESIGN To test this hypothesis, 14 adolescents, seven homozygous for the common allele (CC) and seven homozygous for the risk allele (TT), underwent measurement of hepatic DNL during the fasting state and after consumption of a carbohydrate (CHO) drink (75 g glucose and 25 g fructose). DNL was assessed through incorporation of deuterium in the palmitate contained in the very low-density lipoprotein. RESULTS Subjects with TT demonstrated higher fasting fractional DNL (P = .036) and a lower increase in fractional DNL after the CHO challenge (P = .016). With regard to absolute lipogenesis, TT subjects had both higher fasting rates (P = .015) and 44% greater area under the curve of absolute lipogenesis during the study (P = .016), compared to CC subjects. Furthermore, subjects carrying the TT genotype showed higher basal rates of glucose oxidation (P = .0028) and a lower ability than CC subjects to increase the rates of glucose oxidation after the CHO load (P = .054). CONCLUSIONS This study reports for the first time rates of DNL in obese adolescents and suggests that the GCKR rs1260326 gene variant, which is associated with greater glycolysis, increases hepatic DNL. These data highlight the role of glycolytic carbon flux in liver lipid synthesis and hypertriglyceridemia in these youngsters.
Collapse
Affiliation(s)
- Nicola Santoro
- Department of Pediatrics (N.S., S.C., B.P., M.V.N., M.S.), Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Medicine (E.J.P.), University of Missouri, Colombia, Missouri 65211
| | - Sonia Caprio
- Department of Pediatrics (N.S., S.C., B.P., M.V.N., M.S.), Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Medicine (E.J.P.), University of Missouri, Colombia, Missouri 65211
| | - Bridget Pierpont
- Department of Pediatrics (N.S., S.C., B.P., M.V.N., M.S.), Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Medicine (E.J.P.), University of Missouri, Colombia, Missouri 65211
| | - Michelle Van Name
- Department of Pediatrics (N.S., S.C., B.P., M.V.N., M.S.), Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Medicine (E.J.P.), University of Missouri, Colombia, Missouri 65211
| | - Mary Savoye
- Department of Pediatrics (N.S., S.C., B.P., M.V.N., M.S.), Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Medicine (E.J.P.), University of Missouri, Colombia, Missouri 65211
| | - Elizabeth J Parks
- Department of Pediatrics (N.S., S.C., B.P., M.V.N., M.S.), Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Medicine (E.J.P.), University of Missouri, Colombia, Missouri 65211
| |
Collapse
|
18
|
Lee S, Min Kim S, Dotimas J, Li L, Feener EP, Baldus S, Myers RB, Chutkow WA, Patwari P, Yoshioka J, Lee RT. Thioredoxin-interacting protein regulates protein disulfide isomerases and endoplasmic reticulum stress. EMBO Mol Med 2014; 6:732-43. [PMID: 24843047 PMCID: PMC4203352 DOI: 10.15252/emmm.201302561] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is responsible for protein folding, modification, and trafficking.
Accumulation of unfolded or misfolded proteins represents the condition of ER stress and triggers
the unfolded protein response (UPR), a key mechanism linking supply of excess nutrients to insulin
resistance and type 2 diabetes in obesity. The ER harbors proteins that participate in protein
folding including protein disulfide isomerases (PDIs). Changes in PDI activity are associated with
protein misfolding and ER stress. Here, we show that thioredoxin-interacting protein (Txnip), a
member of the arrestin protein superfamily and one of the most strongly induced proteins in diabetic
patients, regulates PDI activity and UPR signaling. We found that Txnip binds to PDIs and increases
their enzymatic activity. Genetic deletion of Txnip in cells and mice led to increased protein
ubiquitination and splicing of the UPR regulated transcription factor X-box-binding protein 1
(Xbp1s) at baseline as well as under ER stress. Our results reveal Txnip as a novel direct regulator
of PDI activity and a feedback mechanism of UPR signaling to decrease ER stress.
Collapse
Affiliation(s)
- Samuel Lee
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA The Cardiovascular Division, Department of Medicine, Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA Department III of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Soo Min Kim
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA The Cardiovascular Division, Department of Medicine, Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA
| | - James Dotimas
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA The Cardiovascular Division, Department of Medicine, Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA
| | - Letitia Li
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA The Cardiovascular Division, Department of Medicine, Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA
| | - Edward P Feener
- The Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Stephan Baldus
- Department III of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Ronald B Myers
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA The Cardiovascular Division, Department of Medicine, Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA
| | - William A Chutkow
- The Cardiovascular Division, Department of Medicine, Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA
| | - Parth Patwari
- The Cardiovascular Division, Department of Medicine, Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA
| | - Jun Yoshioka
- The Cardiovascular Division, Department of Medicine, Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA
| | - Richard T Lee
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA The Cardiovascular Division, Department of Medicine, Harvard Medical School Brigham and Women's Hospital, Cambridge, MA, USA
| |
Collapse
|
19
|
DeBalsi KL, Wong KE, Koves TR, Slentz DH, Seiler SE, Wittmann AH, Ilkayeva OR, Stevens RD, Perry CGR, Lark DS, Hui ST, Szweda L, Neufer PD, Muoio DM. Targeted metabolomics connects thioredoxin-interacting protein (TXNIP) to mitochondrial fuel selection and regulation of specific oxidoreductase enzymes in skeletal muscle. J Biol Chem 2014; 289:8106-20. [PMID: 24482226 DOI: 10.1074/jbc.m113.511535] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is an α-arrestin family member involved in redox sensing and metabolic control. Growing evidence links TXNIP to mitochondrial function, but the molecular nature of this relationship has remained poorly defined. Herein, we employed targeted metabolomics and comprehensive bioenergetic analyses to evaluate oxidative metabolism and respiratory kinetics in mouse models of total body (TKO) and skeletal muscle-specific (TXNIP(SKM-/-)) Txnip deficiency. Compared with littermate controls, both TKO and TXNIP(SKM-/-) mice had reduced exercise tolerance in association with muscle-specific impairments in substrate oxidation. Oxidative insufficiencies in TXNIP null muscles were not due to perturbations in mitochondrial mass, the electron transport chain, or emission of reactive oxygen species. Instead, metabolic profiling analyses led to the discovery that TXNIP deficiency causes marked deficits in enzymes required for catabolism of branched chain amino acids, ketones, and lactate, along with more modest reductions in enzymes of β-oxidation and the tricarboxylic acid cycle. The decrements in enzyme activity were accompanied by comparable deficits in protein abundance without changes in mRNA expression, implying dysregulation of protein synthesis or stability. Considering that TXNIP expression increases in response to starvation, diabetes, and exercise, these findings point to a novel role for TXNIP in coordinating mitochondrial fuel switching in response to nutrient availability.
Collapse
|
20
|
Yoshihara E, Masaki S, Matsuo Y, Chen Z, Tian H, Yodoi J. Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol 2014; 4:514. [PMID: 24409188 PMCID: PMC3885921 DOI: 10.3389/fimmu.2013.00514] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/27/2013] [Indexed: 12/13/2022] Open
Abstract
During the past few decades, it has been widely recognized that Reduction-Oxidation (redox) responses occurring at the intra- and extra-cellular levels are one of most important biological phenomena and dysregulated redox responses are involved in the initiation and progression of multiple diseases. Thioredoxin1 (Trx1) and Thioredoxin2 (Trx2), mainly located in the cytoplasm and mitochondria, respectively, are ubiquitously expressed in variety of cells and control cellular reactive oxygen species by reducing the disulfides into thiol groups. Thioredoxin interacting protein (Txnip/thioredoxin binding protein-2/vitamin D3 upregulated protein) directly binds to Trx1 and Trx2 (Trx) and inhibit the reducing activity of Trx through their disulfide exchange. Recent studies have revealed that Trx1 and Txnip are involved in some critical redox-dependent signal pathways including NLRP-3 inflammasome activation in a redox-dependent manner. Therefore, Trx/Txnip, a redox-sensitive signaling complex is a regulator of cellular redox status and has emerged as a key component in the link between redox regulation and the pathogenesis of diseases. Here, we review the novel functional concept of the redox-related protein complex, named “Redoxisome,” consisting of Trx/Txnip, as a critical regulator for intra- and extra-cellular redox signaling, involved in the pathogenesis of various diseases such as cancer, autoimmune disease, and diabetes.
Collapse
Affiliation(s)
- Eiji Yoshihara
- Institute for Virus Research, Kyoto University , Kyoto , Japan
| | - So Masaki
- Institute for Virus Research, Kyoto University , Kyoto , Japan
| | | | - Zhe Chen
- Institute for Virus Research, Kyoto University , Kyoto , Japan
| | - Hai Tian
- Advanced Chemical Technology Center in Kyoto (ACT Kyoto), JBPA Research Institute , Kyoto , Japan ; Redox Bio Science Inc. , Kyoto , Japan
| | - Junji Yodoi
- Institute for Virus Research, Kyoto University , Kyoto , Japan ; Advanced Chemical Technology Center in Kyoto (ACT Kyoto), JBPA Research Institute , Kyoto , Japan ; Redox Bio Science Inc. , Kyoto , Japan
| |
Collapse
|
21
|
Lee SY, Lee HS, Kim EY, Ko JJ, Yoon TK, Lee WS, Lee KA. Thioredoxin-interacting protein regulates glucose metabolism and affects cytoplasmic streaming in mouse oocytes. PLoS One 2013; 8:e70708. [PMID: 23976953 PMCID: PMC3747264 DOI: 10.1371/journal.pone.0070708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/20/2013] [Indexed: 01/01/2023] Open
Abstract
Thioredoxin-interacting protein (Txnip) regulates intracellular redox state and prompts oxidative stress by binding to and inhibiting Thioredoxin (Trx). In addition, via a Trx-independent mechanism, Txnip regulates glucose metabolism and thus maintains intracellular glucose levels. Previously, we found Txnip mRNA highly expressed in immature germinal vesicle (GV) oocytes, but currently there is no report describing the role of Txnip in oocytes. Therefore, we conducted the present study to determine the function of Txnip in mouse oocytes' maturation and meiosis by using RNA interference (RNAi) method. Upon specific depletion of Txnip, 79.5% of oocytes were arrested at metaphase I (MI) stage. Time-lapse video microscopy analysis revealed that the formation of granules in the oocyte cytoplasm increased concurrent with retarded cytoplasmic streaming after Txnip RNAi treatment. Txnip RNAi-treated oocytes had upregulated glucose uptake and lactate production. To confirm the supposition that mechanism responsible for these observed phenomena involves increased lactate in oocytes, we cultured oocytes in high lactate medium and observed the same increased granule formation and retarded cytoplasmic streaming as found by Txnip RNAi. The MI-arrested oocytes exhibited scattered microtubules and aggregated chromosomes indicating that actin networking was disturbed by Txnip RNAi. Therefore, we conclude that Txnip is a critical regulator of glucose metabolism in oocytes and is involved in maintaining cytoplasmic streaming in mouse oocytes.
Collapse
Affiliation(s)
- Su-Yeon Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Hyun-Seo Lee
- DNA Repair Research Center, Chosun University, Gwangju, Korea
| | - Eun-Young Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Jung-Jae Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Tae Ki Yoon
- Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Woo-Sik Lee
- Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
- Fertility Center, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| |
Collapse
|
22
|
Lee S, Kim SM, Lee RT. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 2013; 18:1165-207. [PMID: 22607099 PMCID: PMC3579385 DOI: 10.1089/ars.2011.4322] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The thioredoxin (Trx) system is one of the central antioxidant systems in mammalian cells, maintaining a reducing environment by catalyzing electron flux from nicotinamide adenine dinucleotide phosphate through Trx reductase to Trx, which reduces its target proteins using highly conserved thiol groups. While the importance of protecting cells from the detrimental effects of reactive oxygen species is clear, decades of research in this field revealed that there is a network of redox-sensitive proteins forming redox-dependent signaling pathways that are crucial for fundamental cellular processes, including metabolism, proliferation, differentiation, migration, and apoptosis. Trx participates in signaling pathways interacting with different proteins to control their dynamic regulation of structure and function. In this review, we focus on Trx target proteins that are involved in redox-dependent signaling pathways. Specifically, Trx-dependent reductive enzymes that participate in classical redox reactions and redox-sensitive signaling molecules are discussed in greater detail. The latter are extensively discussed, as ongoing research unveils more and more details about the complex signaling networks of Trx-sensitive signaling molecules such as apoptosis signal-regulating kinase 1, Trx interacting protein, and phosphatase and tensin homolog, thus highlighting the potential direct and indirect impact of their redox-dependent interaction with Trx. Overall, the findings that are described here illustrate the importance and complexity of Trx-dependent, redox-sensitive signaling in the cell. Our increasing understanding of the components and mechanisms of these signaling pathways could lead to the identification of new potential targets for the treatment of diseases, including cancer and diabetes.
Collapse
Affiliation(s)
- Samuel Lee
- The Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | | |
Collapse
|
23
|
Wong RW, Hagen T. Mechanistic target of rapamycin (mTOR) dependent regulation of thioredoxin interacting protein (TXNIP) transcription in hypoxia. Biochem Biophys Res Commun 2013; 433:40-6. [DOI: 10.1016/j.bbrc.2013.02.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/15/2013] [Indexed: 12/20/2022]
|
24
|
Gondo Y, Satsu H, Ishimoto Y, Iwamoto T, Shimizu M. Effect of taurine on mRNA expression of thioredoxin interacting protein in Caco-2 cells. Biochem Biophys Res Commun 2012; 426:433-7. [PMID: 22960072 DOI: 10.1016/j.bbrc.2012.08.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/24/2022]
Abstract
Taurine (2-aminoethanesulfonic acid), a sulfur-containing β-amino acid, plays an important role in several essential biological processes; although, the underlying mechanisms for these regulatory functions remain to be elucidated, especially at the genetic level. We investigated the effects of taurine on the gene expression profile in Caco-2 cells using DNA microarray. Taurine increased the mRNA expression of thioredoxin interacting protein (TXNIP), which is involved in various metabolisms and diseases. β-Alanine or γ-aminobutyric acid (GABA), which are structurally or functionally related to taurine, did not increase TXNIP mRNA expression. These suggest the expression of TXNIP mRNA is induced specifically by taurine. β-Alanine is also known to be a substrate of taurine transporter (TAUT) and competitively inhibits taurine uptake. Inhibition of taurine uptake by β-alanine eliminated the up-regulation of TXNIP, which suggests TAUT is involved in inducing TXNIP mRNA expression. The up-regulation of TXNIP mRNA expression by taurine was also observed at the protein level. Furthermore, taurine significantly increased TXNIP promoter activity. Our present study demonstrated the taurine-specific phenomenon of TXNIP up-regulation, which sheds light on the physiological function of taurine.
Collapse
Affiliation(s)
- Yusuke Gondo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
25
|
Depner CM, Torres-Gonzalez M, Tripathy S, Milne G, Jump DB. Menhaden oil decreases high-fat diet-induced markers of hepatic damage, steatosis, inflammation, and fibrosis in obese Ldlr-/- mice. J Nutr 2012; 142:1495-503. [PMID: 22739374 PMCID: PMC3397337 DOI: 10.3945/jn.112.158865] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The frequency of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) has increased in parallel with obesity in the United States. NASH is progressive and characterized by hepatic damage, inflammation, fibrosis, and oxidative stress. Because C20-22 (n-3) PUFA are established regulators of lipid metabolism and inflammation, we tested the hypothesis that C20-22 (n-3) PUFA in menhaden oil (MO) prevent high-fat (HF) diet-induced fatty liver disease in mice. Wild-type (WT) and Ldlr(-/-) C57BL/6J mice were fed the following diets for 12 wk: nonpurified (NP), HF with lard (60% of energy from fat), HF-high-cholesterol with olive oil (HFHC-OO; 54.4% of energy from fat, 0.5% cholesterol), or HFHC-OO supplemented with MO (HFHC-MO). When compared with the NP diet, the HF and HFHC-OO diets induced hepatosteatosis and hepatic damage [elevated plasma alanine aminotransferase (ALT) and aspartate aminotransferases] and elevated hepatic expression of markers of inflammation (monocyte chemoattractant protein-1), fibrosis (procollagen 1α1), and oxidative stress (heme oxygenase-1) (P ≤ 0.05). Hepatic damage (i.e., ALT) correlated (r = 0.74, P < 0.05) with quantitatively higher (>140%, P < 0.05) hepatic cholesterol in Ldlr(-/-) mice fed the HFHC-OO diet than WT mice fed the HF or HFHC-OO diets. Plasma and hepatic markers of liver damage, steatosis, inflammation, and fibrosis, but not oxidative stress, were lower in WT and Ldlr(-/-) mice fed the HFHC-MO diet compared with the HFHC-OO diet (P < 0.05). In conclusion, MO [C20-22 (n-3) PUFA at 2% of energy] decreases many, but not all, HF diet-induced markers of fatty liver disease in mice.
Collapse
Affiliation(s)
- Christopher M. Depner
- School of Biological and Population Health Sciences and the Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Moises Torres-Gonzalez
- School of Biological and Population Health Sciences and the Linus Pauling Institute, Oregon State University, Corvallis, OR,Endocrinology and Cardiology, School of Medicine, University of California–San Diego, La Jolla, CA; and
| | - Sasmita Tripathy
- School of Biological and Population Health Sciences and the Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Ginger Milne
- Eicosanoid Core Laboratory, Vanderbilt University Medical Center, Division of Clinical Pharmacology, Nashville, TN
| | - Donald B. Jump
- School of Biological and Population Health Sciences and the Linus Pauling Institute, Oregon State University, Corvallis, OR,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Chai TF, Hong SY, He H, Zheng L, Hagen T, Luo Y, Yu FX. A potential mechanism of metformin-mediated regulation of glucose homeostasis: inhibition of Thioredoxin-interacting protein (Txnip) gene expression. Cell Signal 2012; 24:1700-5. [PMID: 22561086 DOI: 10.1016/j.cellsig.2012.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/20/2012] [Accepted: 04/21/2012] [Indexed: 12/11/2022]
Abstract
Metformin (dimethylbiguanide) is widely used among diabetic patients to lower the blood sugar level. Although several mechanisms have been proposed, its mode of action in enhancing peripheral glucose uptake and inhibiting hepatic glucose production is not fully understood. Thioredoxin-interacting protein (Txnip) is known to play important roles in glucose metabolism by inhibiting cellular glucose uptake and metabolism and promoting hepatic gluconeogenesis. The expression of the gene encoding Txnip is regulated in a glucose dependent manner via the Mondo:MLX transcription factor complex. In the present study, we report that Txnip mRNA as well as protein expression in cultured cells is markedly reduced upon metformin administration. The binding of Mondo:MLX to the Txnip gene promoter is reduced, suggesting that the transcription of the Txnip gene is repressed by metformin. Moreover, we show that the effect of metformin on Txnip gene transcription is due to the inhibition of mitochondrial complex I and increased glycolysis, and is partially mediated by the AMP activated kinase (AMPK). These observations prompt us to propose that the novel action of metformin on the Txnip gene expression may contribute to its therapeutic effects in the treatment of type II diabetes.
Collapse
Affiliation(s)
- Tin Fan Chai
- Department of Biochemistry, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
27
|
Spindel ON, World C, Berk BC. Thioredoxin interacting protein: redox dependent and independent regulatory mechanisms. Antioxid Redox Signal 2012; 16:587-96. [PMID: 21929372 PMCID: PMC3270053 DOI: 10.1089/ars.2011.4137] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/19/2011] [Accepted: 09/19/2011] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The thioredoxin-interacting protein (TXNIP, also termed VDUP1 for vitamin D upregulated protein or TBP2 for thioredoxin-binding protein) was originally discovered by virtue of its strong regulation by vitamin D. Recently, TXNIP has been found to regulate the cellular reduction-oxidation (redox) state by binding to and inhibiting thioredoxin (TRX) in a redox-dependent fashion. RECENT ADVANCES Studies of the Hcb-19 mouse, TXNIP nonsense mutated mouse, demonstrate redox-mediated roles in lipid and glucose metabolism, cardiac function, inflammation, and carcinogenesis. Exciting recent data indicate important roles for TXNIP in redox independent signaling. Specifically, sequence analysis revealed that TXNIP is a member of the classical visual/β-arrestin superfamily, and is one of the six members of the arrestin domain-containing (ARRDC, or α-arrestin) family. CRITICAL ISSUES Although the function of α-arrestins is not well known, recent studies suggest roles in endocytosis and protein ubiquitination through PPxY motifs in their C-terminal tails. Importantly, the ability of TXNIP to inhibit glucose uptake was found to be independent of TRX binding. Further investigation showed that several metabolic functions of TXNIP were due to the arrestin domains, thus further supporting the importance of redox independent functions of TXNIP. FUTURE DIRECTIONS Since TXNIP transcription and protein stability are highly regulated by multiple tissue-specific stimuli, it appears that TXNIP should be a good therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Oded N. Spindel
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Department of Pharmacology and Physiology, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Cameron World
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Bradford C. Berk
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Department of Pharmacology and Physiology, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
28
|
Shetty S, Ramos-Roman MA, Cho YR, Brown J, Plutzky J, Muise ES, Horton JD, Scherer PE, Parks EJ. Enhanced fatty acid flux triggered by adiponectin overexpression. Endocrinology 2012; 153:113-22. [PMID: 22045665 PMCID: PMC3249680 DOI: 10.1210/en.2011-1339] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/30/2011] [Indexed: 12/30/2022]
Abstract
Adiponectin overexpression in mice increases insulin sensitivity independent of adiposity. Here, we combined stable isotope infusion and in vivo measurements of lipid flux with transcriptomic analysis to characterize fatty acid metabolism in transgenic mice that overexpress adiponectin via the aP2-promoter (ADNTg). Compared with controls, fasted ADNTg mice demonstrated a 31% reduction in plasma free fatty acid concentrations (P = 0.008), a doubling of ketones (P = 0.028), and a 68% increase in free fatty acid turnover in plasma (15.1 ± 1.5 vs. 25.3 ± 6.8 mg/kg · min, P = 0.011). ADNTg mice had 2-fold more brown adipose tissue mass, and triglyceride synthesis and turnover were 5-fold greater in this organ (P = 0.046). Epididymal white adipose tissue was slightly reduced, possibly due to the approximately 1.5-fold increase in the expression of genes involved in oxidation (peroxisome proliferator-activated receptor α, peroxisome proliferator-activated receptor-γ coactivator 1α, and uncoupling protein 3). In ADNTg liver, lipogenic gene expression was reduced, but there was an unexpected increase in the expression of retinoid pathway genes (hepatic retinol binding protein 1 and retinoic acid receptor beta and adipose Cyp26A1) and liver retinyl ester content (64% higher, P < 0.02). Combined, these data support a physiological link between adiponectin signaling and increased efficiency of triglyceride synthesis and hydrolysis, a process that can be controlled by retinoids. Interactions between adiponectin and retinoids may underlie adiponectin's effects on intermediary metabolism.
Collapse
Affiliation(s)
- Shoba Shetty
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9052, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Masutani H, Yoshihara E, Masaki S, Chen Z, Yodoi J. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus. J Clin Biochem Nutr 2011; 50:23-34. [PMID: 22247597 PMCID: PMC3246179 DOI: 10.3164/jcbn.11-36sr] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/05/2011] [Indexed: 01/05/2023] Open
Abstract
Thioredoxin binding protein -2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein -2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein -2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein -2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein -2 in metabolic control. Enhancement of thioredoxin binding protein -2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein -2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein -2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β(2)-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hiroshi Masutani
- Institute for Virus Research, Graduate School of Biostudies, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
30
|
Comprehensive analysis of PPARalpha-dependent regulation of hepatic lipid metabolism by expression profiling. PPAR Res 2011; 2007:26839. [PMID: 18288265 PMCID: PMC2233741 DOI: 10.1155/2007/26839] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 07/25/2007] [Indexed: 01/30/2023] Open
Abstract
PPARα is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARα in hepatic lipid metabolism, many PPARα-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPARα-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPARα target genes, livers from several animal studies in which PPARα was activated and/or disabled were analyzed by Affymetrix GeneChips. Numerous novel PPARα-regulated genes relevant to lipid metabolism were identified. Out of this set of genes, eight genes were singled out for study of PPARα-dependent regulation in mouse liver and in mouse, rat, and human primary hepatocytes, including thioredoxin interacting protein (Txnip), electron-transferring-flavoprotein β polypeptide (Etfb), electron-transferring-flavoprotein dehydrogenase (Etfdh), phosphatidylcholine transfer protein (Pctp), endothelial lipase (EL, Lipg), adipose triglyceride lipase (Pnpla2), hormone-sensitive lipase (HSL, Lipe), and monoglyceride lipase (Mgll). Using an in silico screening approach, one or more PPAR response elements (PPREs) were identified in each of these genes. Regulation of Pnpla2, Lipe, and Mgll, which are involved in triglyceride hydrolysis, was studied under conditions of elevated hepatic lipids. In wild-type mice fed a high fat diet, the decrease in hepatic lipids following treatment with the PPARα agonist Wy14643 was paralleled by significant up-regulation of Pnpla2, Lipe, and Mgll, suggesting that induction of triglyceride hydrolysis may contribute to the anti-steatotic role of PPARα. Our study illustrates the power of transcriptional profiling to uncover novel PPARα-regulated genes and pathways in liver.
Collapse
|
31
|
Kwon HJ, Won YS, Yoon YD, Yoon WK, Nam KH, Choi IP, Kim DY, Kim HC. Vitamin D3 up-regulated protein 1 deficiency accelerates liver regeneration after partial hepatectomy in mice. J Hepatol 2011; 54:1168-76. [PMID: 21145821 DOI: 10.1016/j.jhep.2010.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 08/24/2010] [Accepted: 09/07/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Liver regeneration is a complicated process involving a variety of interacting factors. Vitamin D3 up-regulated protein 1 (VDUP1) is a potent growth suppressor that, upon over-expression, inhibits tumor cell proliferation and cell-cycle progression. Here, we investigated the function of VDUP1 in liver regeneration following hepatectomy in mice. METHODS Liver regeneration after 70% partial hepatectomy (PH) was compared in VDUP1 knockout (KO) and wild-type (WT) mice, and the activities of proliferative- and cell-cycle-related signaling pathways were measured. RESULTS Compared with WT mice, liver recovery was significantly accelerated in VDUP1 KO mice during the first day after PH, in association with increased DNA synthesis. Consistent with this observation, the expression levels of key cell-cycle regulatory proteins, including cyclin D, cyclin E, cyclin-dependent kinase 4 (CDK4), p21, and p27, were markedly altered in the livers of VDUP1 KO mice. Induction of growth factors and activation of proliferative signaling pathway components including extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, glycogen synthase kinase 3β (GSK3β), mammalian target of rapamycin (mTOR), and p70S6 kinase (p70(S6K)), occurred much earlier and to a greater extent in VDUP1 KO mouse livers. In addition, primary hepatocytes isolated from VDUP1 KO mice displayed increased activation of ERK1/2 and Akt in response to HGF and TGF-α. CONCLUSIONS Our results reveal an important role for VDUP1 in the regulation of proliferative signaling during liver regeneration. Altered activation of genes involved in ERK1/2 and Akt signaling pathways may explain the accelerated growth responses seen in VDUP1 KO mice.
Collapse
Affiliation(s)
- Hyo-Jung Kwon
- Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chai TF, Leck YC, He H, Yu FX, Luo Y, Hagen T. Hypoxia-inducible factor independent down-regulation of thioredoxin-interacting protein in hypoxia. FEBS Lett 2010; 585:492-8. [PMID: 21192937 DOI: 10.1016/j.febslet.2010.12.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/09/2010] [Accepted: 12/21/2010] [Indexed: 01/05/2023]
Abstract
Thioredoxin-Interacting Protein (Txnip) is an important regulator of glucose metabolism and functions by inhibiting cellular glucose uptake. The expression of the Txnip gene is sensitive to glucose availability and is negatively correlated with the glycolytic rate. Here we show that hypoxia induces a rapid decrease in Txnip mRNA and protein expression in a Hypoxia-Inducible Factor independent manner. Hypoxia caused reduced binding of the glucose responsive MondoA:Mlx transcription factor to the carbohydrate response elements (ChoREs) in the Txnip promoter. Our data suggest that hypoxia decreases MondoA:Mlx activity by increasing glycolytic flux, leading to the depletion of glycolytic intermediates which normally activate MondoA:Mlx. Hypoxia dependent Txnip down-regulation may be an important compensatory mechanism through which cancer cells adapt their metabolism to low oxygen concentrations.
Collapse
Affiliation(s)
- Tin Fan Chai
- Department of Biochemistry, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
33
|
Dunn LL, Buckle AM, Cooke JP, Ng MKC. The emerging role of the thioredoxin system in angiogenesis. Arterioscler Thromb Vasc Biol 2010; 30:2089-98. [PMID: 20798378 DOI: 10.1161/atvbaha.110.209643] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although there have been a multitude of studies, the mechanisms of angiogenesis remain incompletely understood. Increasing evidence suggests that cellular redox homeostasis is an important regulator of angiogenesis. The thioredoxin (TRX) system functions as an endogenous antioxidant that can exert influence over endothelial cell function via modulation of cellular redox status. It has become apparent that the cytosolic TRX1 isoform participates in both canonical and novel angiogenic signaling pathways and may represent an avenue for therapeutic exploitation. Recent studies have further identified a role for the mitochondrial isoform TRX2 in ischemia-induced angiogenesis. TRX-interacting protein (TXNIP) is the endogenous inhibitor of TRX redox activity that has been implicated in growth factor-mediated angiogenesis. As TXNIP is strongly induced by glucose, this molecule could be of consequence to disordered angiogenesis manifest in diabetes mellitus. This review will focus on data implicating the TRX system in endothelial cell homeostasis and angiogenesis.
Collapse
Affiliation(s)
- Louise L Dunn
- Department of Cardiology, Royal Prince Alfred Hospital, Missenden Rd, Camperdown, New South Wales, Australia.
| | | | | | | |
Collapse
|
34
|
Yu FX, Chai TF, He H, Hagen T, Luo Y. Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J Biol Chem 2010; 285:25822-30. [PMID: 20558747 PMCID: PMC2919144 DOI: 10.1074/jbc.m110.108290] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 06/16/2010] [Indexed: 11/06/2022] Open
Abstract
Thioredoxin-interacting protein (Txnip) has important functions in regulating cellular metabolism including glucose utilization; the expression of the Txnip gene is sensitive to the availability of glucose and other fuels. Here, we show that Txnip expression is down-regulated at the transcriptional level by diverse inhibitors of mitochondrial oxidative phosphorylation (OXPHOS). The effect of these OXPHOS inhibitors is mediated by earlier identified carbohydrate-response elements (ChoREs) on the Txnip promoter and the ChoRE-associated transcription factors Max-like protein X (MLX) and MondoA (or carbohydrate-response element-binding protein (ChREBP)) involved in glucose-induced Txnip expression, suggesting that inhibited oxidative phosphorylation compromises glucose-induced effects on Txnip expression. We also show that the OXPHOS inhibitors repress the Txnip transcription most likely by inducing the glycolytic rate, and increased glycolytic flux decreases the levels of glycolytic intermediates important for the function of MLX and MondoA (or ChREBP). Our findings suggest that the Txnip expression is tightly correlated with glycolytic flux, which is regulated by oxidative phosphorylation status. The identified link between the Txnip expression and glycolytic activity implies a mechanism by which the cellular glucose uptake/homeostasis is regulated in response to various metabolic cues, oxidative phosphorylation status, and other physiological signals, and this may facilitate our efforts toward understanding metabolism in normal or cancer cells.
Collapse
Affiliation(s)
- Fa-Xing Yu
- From the Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, and
| | - Tin Fan Chai
- the Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore
| | - Hongpeng He
- From the Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, and
| | - Thilo Hagen
- the Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore
| | - Yan Luo
- From the Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, and
- the Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore
| |
Collapse
|
35
|
Yu FX, Luo Y. Tandem ChoRE and CCAAT motifs and associated factors regulate Txnip expression in response to glucose or adenosine-containing molecules. PLoS One 2009; 4:e8397. [PMID: 20027290 PMCID: PMC2791861 DOI: 10.1371/journal.pone.0008397] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 11/30/2009] [Indexed: 12/18/2022] Open
Abstract
Background Thioredoxin interacting protein (Txnip) is a multifunctional protein involved in regulation of cell cycle events and cellular metabolism. The expression of Txnip is known to be induced by glucose, adenosine-containing molecules, and other physiological cues; however, the underlying regulatory mechanisms remain elusive. Methodology/Principal Findings In this study, using promoter reporter, electrophoresis mobility shift (EMSA), and chromatin immuno-precipitation (ChIP) assays, we have identified an additional carbohydrate response element (ChoRE) on the promoter of Txnip gene, which functions cooperatively with the earlier identified ChoRE to mediate optimal Txnip expression. However, these two ChoREs are not sufficient to mediate the induction of Txnip expression by glucose or adenosine-containing molecules; and two CCAAT boxes, both of which can recruit nuclear factor Y (NF-Y) to the Txnip promoter, are also required for the induction. Accordingly, we have found that the function of ChoREs and associated factors is contingent on tandem CCAAT boxes, in that occupancy of the Txnip promoter by NF-Y is a prerequisite for efficacious recruitment of Mondo/MLX to ChoREs under glucose stimulation. Conclusions/Significance Our findings suggest a synergy between the tandem CCAAT and ChoRE motifs and associated NF-Y and Mondo/MLX transcription factors in enhancing transcription from the Txnip promoter. This piece of information will be helpful for future dissection of molecular mechanisms governing the transcriptional regulation of Txnip, a glucose responsive gene.
Collapse
Affiliation(s)
- Fa-Xing Yu
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Yan Luo
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
36
|
Ahsan MK, Okuyama H, Hoshino Y, Oka SI, Masutani H, Yodoi J, Nakamura H. Thioredoxin-binding protein-2 deficiency enhances methionine-choline deficient diet-induced hepatic steatosis but inhibits steatohepatitis in mice. Antioxid Redox Signal 2009; 11:2573-84. [PMID: 19764881 DOI: 10.1089/ars.2009.2385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In nonalcoholic fatty liver disease, oxidative stress is believed to play a crucial role as a second-hit for the progression of simple steatosis to steatohepatitis. Thioredoxin (TRX) is a potent antioxidant molecule that exerts anti-apoptotic and anti-inflammatory functions. TRX-binding protein-2 (TBP-2) is an endogenous negative regulator of TRX. Deficiency of TBP-2 in mice causes hyperlipidemia, hepatic steatosis, hypoglycemia, and bleeding tendency, resembling Reye syndrome in a fasting/glucose-deficient state. The aim of this study was to investigate the role of TBP-2 in the development of nonalcoholic steatohepatitis (NASH). TBP-2-deficient (TBP-2(-/-)) and wild-type (WT) mice were fed either a normal or methionine-choline-deficient (MCD) diet for up to 10 weeks. Compared with WT mice, TBP-2(-/-) mice showed severe simple steatosis rather than steatohepatitis. However, oxidative stress determined by lipid peroxidation and DNA damage, neutrophil infiltration, and hepatic fibrosis were attenuated in TBP-2(-/-) mice. PCR analysis showed the expressions of fibrosis-inducing and inflammatory cytokine-related genes were less in TBP-2(-/-) mice. Moreover, leptin, SREBP1c, PPARgamma, and adipogenesis-lipogenesis-related genes were upregulated in TBP-2(-/-) mice. These results strongly suggested that TBP-2 might be involved in pathogenesis of NASH in WT mice, and inhibitors of TBP-2 could be useful in the prevention or treatment of NASH.
Collapse
Affiliation(s)
- Md Kaimul Ahsan
- Thioredoxin Project, Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Yu FX, Goh SR, Dai RP, Luo Y. Adenosine-containing molecules amplify glucose signaling and enhance txnip expression. Mol Endocrinol 2009; 23:932-42. [PMID: 19246513 PMCID: PMC5419282 DOI: 10.1210/me.2008-0383] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 02/19/2009] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic cells sense extracellular glucose concentrations via diverse mechanisms to regulate the expression of genes involved in metabolic control. One such example is the tight correlation between the expression of thioredoxin-interacting protein (Txnip) and extracellular glucose levels. In this report, we show that the transcription of the Txnip gene is induced by adenosine-containing molecules, of which an intact adenosine moiety is necessary and sufficient. Txnip promoter contains a carbohydrate response element, which mediates the induction of Txnip expression by these molecules in a glucose-dependent manner. Max-like protein X and MondoA are transcription factors previously shown to stimulate glucose-dependent Txnip expression and are shown here to convey stimulatory signals from extracellular adenosine-containing molecules to the Txnip promoter. The regulatory role of these molecules may be exerted via amplifying glucose signaling. Hence, this revelation may pave the way for interventions aimed toward metabolic disorders resulting from abnormal glucose homeostasis.
Collapse
Affiliation(s)
- Fa-Xing Yu
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | | | | | | |
Collapse
|
38
|
Masson E, Koren S, Razik F, Goldberg H, Kwan EP, Sheu L, Gaisano HY, Fantus IG. High beta-cell mass prevents streptozotocin-induced diabetes in thioredoxin-interacting protein-deficient mice. Am J Physiol Endocrinol Metab 2009; 296:E1251-61. [PMID: 19223654 PMCID: PMC2981602 DOI: 10.1152/ajpendo.90619.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thioredoxin-interacting protein (TxNIP) is an endogenous inhibitor of thioredoxin, a ubiquitous thiol oxidoreductase, that regulates cellular redox status. Diabetic mice exhibit increased expression of TxNIP in pancreatic islets, and recent studies suggest that TxNIP is a proapoptotic factor in beta-cells that may contribute to the development of diabetes. Here, we examined the role of TxNIP deficiency in vivo in the development of insulin-deficient diabetes and whether it impacted on pancreatic beta-cell mass and/or insulin secretion. TxNIP-deficient (Hcb-19/TxNIP(-/-)) mice had lower baseline glycemia, higher circulating insulin concentrations, and higher total pancreatic insulin content and beta-cell mass than control mice (C3H). Hcb-19/TxNIP(-/-) did not develop hyperglycemia when injected with standard multiple low doses of streptozotocin (STZ), in contrast to C3H controls. Surprisingly, although beta-cell mass remained higher in Hcb-19/TxNIP(-/-) mice compared with C3H after STZ exposure, the relative decrease induced by STZ was as great or even greater in the TxNIP-deficient animals. Consistently, cultured pancreatic INS-1 cells transfected with small-interfering RNA against TxNIP were more sensitive to cell death induced by direct exposure to STZ or to the combination of inflammatory cytokines interleukin-1beta, interferon-gamma, and tumor necrosis factor-alpha. Furthermore, when corrected for insulin content, isolated pancreatic islets from TxNIP(-/-) mice exhibited reduced glucose-induced insulin secretion. These data indicate that TxNIP functions as a regulator of beta-cell mass and influences insulin secretion. In conclusion, the relative resistance of TxNIP-deficient mice to STZ-induced diabetes appears to be because of an increase in beta-cell mass. However, TxNIP deficiency is associated with sensitization to STZ- and cytokine-induced beta-cell death, indicating complex regulatory roles of TxNIP under different physiological and pathological conditions.
Collapse
Affiliation(s)
- Elodie Masson
- Dept. of Medicine, Mount Sinai Hospital, 60 Murray St., Lebovic Bldg, Rm. 5028, Toronto, ON, Canada M5T 3L9
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kaimul AM, Nakamura H, Masutani H, Yodoi J. Thioredoxin and thioredoxin-binding protein-2 in cancer and metabolic syndrome. Free Radic Biol Med 2007; 43:861-8. [PMID: 17697931 DOI: 10.1016/j.freeradbiomed.2007.05.032] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 05/25/2007] [Accepted: 05/25/2007] [Indexed: 12/27/2022]
Abstract
Thioredoxin (TRX), a small redox-active multifunctional protein, acts as a potent antioxidant and a redox regulator in signal transduction. TRX expression is elevated in various types of human cancer. Overexpression of TRX introduces resistance to anti-cancer drugs or radiation-induced apoptosis; however, there is no evidence that the incidence of cancer is frequent in TRX-transgenic mice or that the administration of recombinant human TRX enhances tumor growth. Plasma/serum level of TRX is a good marker for oxidative stress-induced various disorders, including metabolic syndrome. Thioredoxin-binding protein-2 (TBP-2), which was originally identified as a negative regulator of TRX, acts as a growth suppressor and a regulator in lipid metabolism. TBP-2 expression is downregulated in various types of human cancer. TBP-2 deficiency induces lipid dysfunction and a phenotype resembling Reye syndrome. Thus, TRX and TBP-2 play important roles in the pathophysiology of cancer and metabolic syndrome by direct interaction or by independent mechanisms.
Collapse
Affiliation(s)
- Ahsan M Kaimul
- Thioredoxin Project, Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, 54 Shogoin, Kawahara-cho, Sakyo, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
40
|
Parikh H, Carlsson E, Chutkow WA, Johansson LE, Storgaard H, Poulsen P, Saxena R, Ladd C, Schulze PC, Mazzini MJ, Jensen CB, Krook A, Björnholm M, Tornqvist H, Zierath JR, Ridderstråle M, Altshuler D, Lee RT, Vaag A, Groop LC, Mootha VK. TXNIP regulates peripheral glucose metabolism in humans. PLoS Med 2007; 4:e158. [PMID: 17472435 PMCID: PMC1858708 DOI: 10.1371/journal.pmed.0040158] [Citation(s) in RCA: 387] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 03/01/2007] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure. METHODS AND FINDINGS We combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein (TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely correlated to total body measures of glucose uptake. Forced expression of TXNIP in cultured adipocytes significantly reduced glucose uptake, while silencing with RNA interference in adipocytes and in skeletal muscle enhanced glucose uptake, confirming that the gene product is also a regulator of glucose uptake. TXNIP expression is consistently elevated in the muscle of prediabetics and diabetics, although in a panel of 4,450 Scandinavian individuals, we found no evidence for association between common genetic variation in the TXNIP gene and T2DM. CONCLUSIONS TXNIP regulates both insulin-dependent and insulin-independent pathways of glucose uptake in human skeletal muscle. Combined with recent studies that have implicated TXNIP in pancreatic beta-cell glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose homeostasis preceding overt T2DM.
Collapse
Affiliation(s)
- Hemang Parikh
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, University Hospital Malmö, Malmö, Sweden
| | - Emma Carlsson
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, University Hospital Malmö, Malmö, Sweden
- Steno Diabetes Center, Gentofte, Denmark
| | - William A Chutkow
- Cardiovascular Division, Brigham and Women's Hospital, Cambridge, Massachusetts, United States of America
| | - Lovisa E Johansson
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, University Hospital Malmö, Malmö, Sweden
| | | | | | - Richa Saxena
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christine Ladd
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - P. Christian Schulze
- Cardiovascular Division, Brigham and Women's Hospital, Cambridge, Massachusetts, United States of America
| | - Michael J Mazzini
- Cardiovascular Division, Brigham and Women's Hospital, Cambridge, Massachusetts, United States of America
| | | | - Anna Krook
- Department of Physiology and Pharmacology, Section Integrative Physiology, Karolinska Institute, Stockholm, Sweden
| | - Marie Björnholm
- Department of Molecular Medicine and Surgical Sciences, Section Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | - Juleen R Zierath
- Department of Molecular Medicine and Surgical Sciences, Section Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Ridderstråle
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, University Hospital Malmö, Malmö, Sweden
| | - David Altshuler
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard T Lee
- Cardiovascular Division, Brigham and Women's Hospital, Cambridge, Massachusetts, United States of America
| | - Allan Vaag
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, University Hospital Malmö, Malmö, Sweden
- Steno Diabetes Center, Gentofte, Denmark
| | - Leif C Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, University Hospital Malmö, Malmö, Sweden
- Program in Molecular Medicine, Helsinki University, Helsinki, Finland
- * To whom correspondence should be addressed. E-mail: (LCG); (VKM)
| | - Vamsi K Mootha
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail: (LCG); (VKM)
| |
Collapse
|
41
|
Ma L, Robinson LN, Towle HC. ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver. J Biol Chem 2006; 281:28721-30. [PMID: 16885160 DOI: 10.1074/jbc.m601576200] [Citation(s) in RCA: 273] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In mammals, glucose-regulated gene expression has been best characterized in the liver, where increased glucose metabolism induces transcription of genes encoding enzymes involved in de novo lipogenesis. ChREBP and Mlx dimerize and function together as a glucose-responsive transcription factor to regulate target genes, such as liver-type pyruvate kinase, acetyl-CoA carboxylase 1, and fatty acid synthase. To identify additional glucose-responsive genes in the liver, we used microarray analysis to compare gene expression patterns in low and high glucose conditions in hepatocytes. Target genes of ChREBP.Mlx were simultaneously identified by gene profiling in the presence or absence of a dominant negative Mlx. Of 224 genes that are induced by glucose, 139 genes (62%) were also inhibited by the dominant negative Mlx. Lipogenic enzyme genes involved in the entire pathway of de novo lipogenesis were found to be glucose-responsive target genes of ChREBP.Mlx. Genes encoding enzymes in other metabolic pathways and numerous regulators of metabolism were also identified. To determine if any of these genes are direct targets of ChREBP.Mlx, we searched for ChoRE-like sequences in the 5'-flanking regions of several genes that responded rapidly to glucose. ChoRE sequences that bound to ChREBP.Mlx and supported a glucose response were identified in two additional genes. Combining all of the known ChoRE sequences, we generated a modified ChoRE consensus sequence, CAYGNGN(5)CNCRTG. In summary, ChREBP.Mlx is the principal transcription factor regulating glucose-responsive genes in the liver and coordinately regulates a family of genes required for glucose utilization and energy storage.
Collapse
Affiliation(s)
- Lin Ma
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
42
|
Reue K, Vergnes L. Approaches to lipid metabolism gene identification and characterization in the postgenomic era. J Lipid Res 2006; 47:1891-907. [PMID: 16835441 DOI: 10.1194/jlr.r600020-jlr200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The availability of genomic resources has already had a tremendous impact on biomedical research. In this review, we describe how whole genome sequence and high-throughput functional genomics projects have facilitated the identification and characterization of important genes in lipid metabolism and disease. We review key approaches and lipid genes identified in the first years of this century and discuss how genomic resources are likely to streamline gene identification and functional characterization in the future.
Collapse
Affiliation(s)
- Karen Reue
- Department of Human Genetics and Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
43
|
Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005. [PMID: 15864352 DOI: 10.1172/jci200523621] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by the accumulation of excess liver triacylglycerol (TAG), inflammation, and liver damage. The goal of the present study was to directly quantify the biological sources of hepatic and plasma lipoprotein TAG in NAFLD. Patients (5 male and 4 female; 44 +/- 10 years of age) scheduled for a medically indicated liver biopsy were infused with and orally fed stable isotopes for 4 days to label and track serum nonesterified fatty acids (NEFAs), dietary fatty acids, and those derived from the de novo lipogenesis (DNL) pathway, present in liver tissue and lipoprotein TAG. Hepatic and lipoprotein TAG fatty acids were analyzed by gas chromatography/mass spectrometry. NAFLD patients were obese, with fasting hypertriglyceridemia and hyperinsulinemia. Of the TAG accounted for in liver, 59.0% +/- 9.9% of TAG arose from NEFAs; 26.1% +/- 6.7%, from DNL; and 14.9% +/- 7.0%, from the diet. The pattern of labeling in VLDL was similar to that in liver, and throughout the 4 days of labeling, the liver demonstrated reciprocal use of adipose and dietary fatty acids. DNL was elevated in the fasting state and demonstrated no diurnal variation. These quantitative metabolic data document that both elevated peripheral fatty acids and DNL contribute to the accumulation of hepatic and lipoprotein fat in NAFLD.
Collapse
Affiliation(s)
- Kerry L Donnelly
- Department of Food Science and Nutrition, University of Minnesota, Twin Cities, St. Paul, Minnesota, 55108, USA
| | | | | | | | | | | |
Collapse
|
44
|
Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005; 115:1343-51. [PMID: 15864352 PMCID: PMC1087172 DOI: 10.1172/jci23621] [Citation(s) in RCA: 2488] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 02/01/2005] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by the accumulation of excess liver triacylglycerol (TAG), inflammation, and liver damage. The goal of the present study was to directly quantify the biological sources of hepatic and plasma lipoprotein TAG in NAFLD. Patients (5 male and 4 female; 44 +/- 10 years of age) scheduled for a medically indicated liver biopsy were infused with and orally fed stable isotopes for 4 days to label and track serum nonesterified fatty acids (NEFAs), dietary fatty acids, and those derived from the de novo lipogenesis (DNL) pathway, present in liver tissue and lipoprotein TAG. Hepatic and lipoprotein TAG fatty acids were analyzed by gas chromatography/mass spectrometry. NAFLD patients were obese, with fasting hypertriglyceridemia and hyperinsulinemia. Of the TAG accounted for in liver, 59.0% +/- 9.9% of TAG arose from NEFAs; 26.1% +/- 6.7%, from DNL; and 14.9% +/- 7.0%, from the diet. The pattern of labeling in VLDL was similar to that in liver, and throughout the 4 days of labeling, the liver demonstrated reciprocal use of adipose and dietary fatty acids. DNL was elevated in the fasting state and demonstrated no diurnal variation. These quantitative metabolic data document that both elevated peripheral fatty acids and DNL contribute to the accumulation of hepatic and lipoprotein fat in NAFLD.
Collapse
Affiliation(s)
- Kerry L Donnelly
- Department of Food Science and Nutrition, University of Minnesota, Twin Cities, St. Paul, Minnesota, 55108, USA
| | | | | | | | | | | |
Collapse
|
45
|
Sheth SS, Castellani LW, Chari S, Wagg C, Thipphavong CK, Bodnar JS, Tontonoz P, Attie AD, Lopaschuk GD, Lusis AJ. Thioredoxin-interacting protein deficiency disrupts the fasting-feeding metabolic transition. J Lipid Res 2005; 46:123-34. [PMID: 15520447 DOI: 10.1194/jlr.m400341-jlr200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Through a positional cloning approach, the thioredoxin-interacting protein gene (Txnip) was recently identified as causal for a form of combined hyperlipidemia in mice (Bodnar, J. S., A. Chatterjee, L. W. Castellani, D. A. Ross, J. Ohmen, J. Cavalcoli, C. Wu, K. M. Dains, J. Catanese, M. Chu, S. S. Sheth, K. Charugundla, P. Demant, D. B. West, P. de Jong, and A. J. Lusis. 2002. Positional cloning of the combined hyperlipidemia gene Hyplip1. Nat. Genet. 30: 110-116). We now show that Txnip-deficient mice in the fed state exhibit a metabolic profile similar to fasted mice, including increased levels of plasma ketone bodies and free fatty acids, decreased glucose, and increased hepatic expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha, phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and acyl-CoA oxidase. Dramatic differences in the expression of key metabolic enzymes were also observed in other tissues, and the fat-to-muscle ratio of Txnip-deficient mice was increased by approximately 40%. We demonstrate an effect of Txnip on the redox status, as the Txnip-deficient mice in the fed state had a significant increase in the ratio of NADH to NAD(+). Surprisingly, we observed that Txnip-deficient mice and wild-type mice had similar levels of thioredoxin activity, suggesting that the effects of Txnip deficiency may be mediated in part by other interactions. These results indicate a role for Txnip in the metabolic response to feeding and the maintenance of the redox status.
Collapse
Affiliation(s)
- Sonal S Sheth
- Department of Human Genetics, Medicine, Molecular Biology Institute, University of California, Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Baar RA, Dingfelder CS, Smith LA, Bernlohr DA, Wu C, Lange AJ, Parks EJ. Investigation of in vivo fatty acid metabolism in AFABP/aP2(-/-) mice. Am J Physiol Endocrinol Metab 2005; 288:E187-93. [PMID: 15367400 DOI: 10.1152/ajpendo.00256.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The metabolic impact of the murine adipocyte fatty acid-binding protein (AFABP/aP2) on lipid metabolism was investigated in the AFABP/aP2(-/-) mouse and compared with wild-type C57BL/6J littermates. Mice were weaned on a high-fat diet (59% of energy from fat) and acclimated to meal feeding. Stable isotopes were administered, and indirect calorimetry was performed to quantitate fatty acid flux, dietary fatty acid utilization, and substrate oxidation. Consistent with previous in situ and in vitro studies, fasting serum nonesterified fatty acid (NEFA) release was significantly reduced in AFABP/aP2(-/-) (17.1 +/- 9.0 vs. 51.9 +/- 22.9 mg.kg(-1).min(-1)). AFABP/aP2(-/-) exhibited higher serum NEFA (1.4 +/- 0.6 vs. 0.8 +/- 0.4 mmol/l, AFABP/aP2(-/-) vs. C57BL/6J, respectively) and triacylglycerol (TAG; 0.23 +/- 0.09 vs. 0.13 +/- 0.10 mmol/l) and accumulated more TAG in liver tissue (2.9 +/- 2.3 vs. 1.1 +/- 0.8% wet wt) in the fasted state. For the liver-TAG pool, 16.4 +/- 7.3% of TAG-fatty acids were derived from serum NEFA in AFABP/aP2(-/-). In contrast, a significantly greater portion of C57BL/6J liver-TAG was derived from serum NEFA (42.3 +/- 25.5%) during tracer infusion. For adipose-TAG stores, only 0.29 +/- 0.04% was derived from serum NEFA in AFABP/aP2(-/-), and, in C57BL/6J, 1.85 +/- 0.97% of adipose-TAG was derived from NEFA. In addition, AFABP/aP2(-/-) preferentially oxidized glucose relative to fatty acids in the fed state. These data demonstrate that in vivo disruption of AFABP/aP2(-/-) leads to changes in the following two major metabolic processes: 1) decreased adipose NEFA efflux and 2) preferential utilization of glucose relative to fatty acids.
Collapse
Affiliation(s)
- Rachel A Baar
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|