1
|
Vecchiotti D, Clementi L, Cornacchia E, Di Vito Nolfi M, Verzella D, Capece D, Zazzeroni F, Angelucci A. Evidence of the Link between Stroma Remodeling and Prostate Cancer Prognosis. Cancers (Basel) 2024; 16:3215. [PMID: 39335188 PMCID: PMC11430343 DOI: 10.3390/cancers16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate molecular biomarkers able to avoid overtreatment in patients with pathological indolent cancers. To date, the paradigmatic change in the view of cancer pathogenesis prompts to look for prognostic biomarkers not only in cancer epithelial cells but also in the tumor microenvironment. PCa ecology has been defined with increasing details in the last few years, and a number of promising key markers associated with the reactive stroma are now available. Here, we provide an updated description of the most biologically significant and cited prognosis-oriented microenvironment biomarkers derived from the main reactive processes during PCa pathogenesis: tissue adaptations, inflammatory response and metabolic reprogramming. Proposed biomarkers include factors involved in stromal cell differentiation, cancer-normal cell crosstalk, angiogenesis, extracellular matrix remodeling and energy metabolism.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Letizia Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Emanuele Cornacchia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
2
|
Ak Ç, Sayar Z, Thibault G, Burlingame EA, Kuykendall MJ, Eng J, Chitsazan A, Chin K, Adey AC, Boniface C, Spellman PT, Thomas GV, Kopp RP, Demir E, Chang YH, Stavrinides V, Eksi SE. Multiplex imaging of localized prostate tumors reveals altered spatial organization of AR-positive cells in the microenvironment. iScience 2024; 27:110668. [PMID: 39246442 PMCID: PMC11379676 DOI: 10.1016/j.isci.2024.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Mapping the spatial interactions of cancer, immune, and stromal cell states presents novel opportunities for patient stratification and for advancing immunotherapy. While single-cell studies revealed significant molecular heterogeneity in prostate cancer cells, the impact of spatial stromal cell heterogeneity remains poorly understood. Here, we used cyclic immunofluorescent imaging on whole-tissue sections to uncover novel spatial associations between cancer and stromal cells in low- and high-grade prostate tumors and tumor-adjacent normal tissues. Our results provide a spatial map of single cells and recurrent cellular neighborhoods in the prostate tumor microenvironment of treatment-naive patients. We report unique populations of mast cells that show distinct spatial associations with M2 macrophages and regulatory T cells. Our results show disease-specific neighborhoods that are primarily driven by androgen receptor-positive (AR+) stromal cells and identify inflammatory gene networks active in AR+ prostate stroma.
Collapse
Affiliation(s)
- Çiğdem Ak
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Zeynep Sayar
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Guillaume Thibault
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Erik A Burlingame
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - M J Kuykendall
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Jennifer Eng
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Alex Chitsazan
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Koei Chin
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Andrew C Adey
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Christopher Boniface
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Paul T Spellman
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - George V Thomas
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Pathology & Laboratory Medicine, School of Medicine, OHSU, Portland, OR 97239, USA
| | - Ryan P Kopp
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Urology, School of Medicine, Knight Cancer Institute, Portland, OR 97239, USA
| | - Emek Demir
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Division of Oncological Sciences, School of Medicine, OHSU, Portland, OR 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | | | - Sebnem Ece Eksi
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| |
Collapse
|
3
|
Ager CR, Obradovic A, McCann P, Chaimowitz M, Wang ALE, Shaikh N, Shah P, Pan S, Laplaca CJ, Virk RK, Hill JC, Jugler C, DeFranco G, Bhattacharya N, Scher HI, DeCastro GJ, Anderson CB, McKiernan JM, Spina CS, Stein MN, Runcie K, Drake CG, Califano A, Dallos MC. Neoadjuvant androgen deprivation therapy with or without Fc-enhanced non-fucosylated anti-CTLA-4 (BMS-986218) in high risk localized prostate cancer: a randomized phase 1 trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.09.24313308. [PMID: 39314954 PMCID: PMC11419205 DOI: 10.1101/2024.09.09.24313308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Men with high-risk localized prostate cancer exhibit high rates of post-surgical recurrence. In these patients, androgen deprivation therapy (ADT) is immunomodulatory, however increased infiltration of regulatory T cells (Tregs) may limit the antitumor immune effects of ADT. We designed a neoadjuvant clinical trial to test whether BMS-986218 - a next-generation non-fucosylated anti-CTLA-4 antibody engineered for enhanced antibody-dependent cellular cytotoxicity or phagocytosis (ADCC/P) - depletes intratumoral Tregs and augments the response to ADT. In this single-center, two-arm, open-label study, 24 men with high-risk localized prostate cancer were randomized to receive a single dose of ADT with or without two pre-operative doses of BMS-986218 (anti-CTLA4-NF) prior to radical prostatectomy. Treatment was well tolerated and feasible in the neoadjuvant setting. A secondary clinical outcome was the rate of disease recurrence, which was lower than predicted in both arms. Mechanistically, anti-CTLA4-NF reduced ADT-induced Treg accumulation through engagement of CD16a/FCGR3A on tumor macrophages, and depth of Treg depletion was quantitatively associated with clinical outcome. Increased intratumoral dendritic cell (DC) frequencies also associated with lack of recurrence, and pre-clinical data suggest ADCC/P-competent anti-CTLA-4 antibodies elicit activation and expansion of tumor DCs. Patients receiving anti-CTLA4-NF also exhibited phenotypic signatures of enhanced antitumor T cell priming. In total, this study provides the first-in-human evidence of Treg depletion by glycoengineered antibodies targeting CTLA-4 in humans and their potential in combination with ADT in prostate cancer patients with high-risk of recurrence.
Collapse
Affiliation(s)
- Casey R Ager
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
- Department of Urology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Aleksandar Obradovic
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Patrick McCann
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY
| | - Matthew Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Alexander L E Wang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Neha Shaikh
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Parin Shah
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Samuel Pan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Caroline J Laplaca
- Department of Urology, Columbia University Irving Medical Center, New York, NY
| | - Renu K Virk
- Department of Pathology, Columbia University Irving Medical Center, New York, NY
| | - Jessica C Hill
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Collin Jugler
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Grace DeFranco
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
| | | | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - James M McKiernan
- Department of Urology, Columbia University Irving Medical Center, New York, NY
| | - Catherine S Spina
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY
| | - Mark N Stein
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
| | - Karie Runcie
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
| | - Charles G Drake
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
- Department of Urology, Columbia University Irving Medical Center, New York, NY
- Current Address: JnJ Innovative Medicine, Springhouse, PA
| | - Andrea Califano
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Chan Zuckerberg Biohub New York, New York, NY, USA
| | - Matthew C Dallos
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
4
|
Guo H, Zhang C, Shen YK, Zhang JD, Yang FY, Liang F, Wang W, Liu YT, Wang GZ, Zhou GB. PD-L2 mediates tobacco smoking-induced recruitment of regulatory T cells via the RGMB/NFκB/CCL20 cascade. Cell Biol Toxicol 2024; 40:56. [PMID: 39042313 PMCID: PMC11266262 DOI: 10.1007/s10565-024-09892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Programmed cell death ligand 2 (PD-L2), a ligand for the receptor programmed cell death 1 (PD-1), has an identity of 34% with its twin ligand PD-L1 and exhibits higher binding affinity with PD-1 than PD-L1. However, the role of PD-L2 in non-small cell lung cancer (NSCLC) progression, especially tobacco-induced cancer progression, has not been fully understood. Here, we found that PD-L2 promoted tumor growth in murine models with recruitment of regulatory T cells (Tregs). In patients with NSCLC, PD-L2 expression level in tumor samples was higher than in counterpart normal controls and was positively associated with patients' response to anti-PD-1 treatment. Mechanismly, PD-L2 bound its receptor Repulsive guidance molecule B (RGMB) on cancer cells and activated extracellular signal-regulated kinase (Erk) and nuclear factor κB (NFκB), leading to increased production of chemokine CCL20, which recruited Tregs and contributed to NSCLC progression. Consistently, knockdown of RGMB or NFκB p65 inhibited PD-L2-induced CCL20 production, and silencing of PD-L2 repressed Treg recruitment by NSCLC cells. Furthermore, cigarette smoke and carcinogen benzo(a)pyrene (BaP) upregulated PD-L2 in lung epithelial cells via aryl hydrocarbon receptor (AhR)-mediated transcription activation, whose deficiency markedly suppressed BaP-induced PD-L2 upregulation. These results suggest that PD-L2 mediates tobacco-induced recruitment of Tregs via the RGMB/NFκB/CCL20 cascade, and targeting this pathway might have therapeutic potentials in NSCLC.
Collapse
Affiliation(s)
- Hua Guo
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chen Zhang
- School of Life Sciences and Engineering, Handan University, Handan, Hebei Province, 056005, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu-Ke Shen
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian-Dong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Shanxi Bethune Hospital Affiliated with Shanxi Academy of Medical Sciences, Taiyuan, Shanxi Province, 030032, China
| | - Fu-Ying Yang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fan Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, 100101, China
- School of Basic Medicine, Weifang Medical University, Shandong, 261000, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yu-Tao Liu
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Gui-Zhen Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Knutson KL. Regulation of Tumor Dendritic Cells by Programmed Cell Death 1 Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1397-1405. [PMID: 38621195 PMCID: PMC11027937 DOI: 10.4049/jimmunol.2300674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/18/2024] [Indexed: 04/17/2024]
Abstract
The advent of immune checkpoint blockade therapy has revolutionized cancer treatments and is partly responsible for the significant decline in cancer-related mortality observed during the last decade. Immune checkpoint inhibitors, such as anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1), have demonstrated remarkable clinical successes in a subset of cancer patients. However, a considerable proportion of patients remain refractory to immune checkpoint blockade, prompting the exploration of mechanisms of treatment resistance. Whereas much emphasis has been placed on the role of PD-L1 and PD-1 in regulating the activity of tumor-infiltrating T cells, recent studies have now shown that this immunoregulatory axis also directly regulates myeloid cell activity in the tumor microenvironment including tumor-infiltrating dendritic cells. In this review, I discuss the most recent advances in the understanding of how PD-1, PD-L1, and programmed cell death ligand 2 regulate the function of tumor-infiltrating dendritic cells, emphasizing the need for further mechanistic studies that could facilitate the development of novel combination immunotherapies for improved cancer patient benefit.
Collapse
|
6
|
Lautert-Dutra W, Melo CM, Chaves LP, Sousa FC, Crozier C, Dion D, Avante FS, Saggioro FP, dos Reis RB, Archangelo LF, Bayani J, Squire JA. Investigating the Role of SNAI1 and ZEB1 Expression in Prostate Cancer Progression and Immune Modulation of the Tumor Microenvironment. Cancers (Basel) 2024; 16:1480. [PMID: 38672562 PMCID: PMC11048607 DOI: 10.3390/cancers16081480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Prostate cancer (PCa) is an immunologically cold tumor and the molecular processes that underlie this behavior are poorly understood. In this study, we investigated a primary cohort of intermediate-risk PCa (n = 51) using two NanoString profiling panels designed to study cancer progression and immune response. We identified differentially expressed genes (DEGs) and pathways associated with biochemical recurrence (BCR) and clinical risk. Confirmatory analysis was performed using the TCGA-PRAD cohort. Noteworthy DEGs included collagens such as COL1A1, COL1A2, and COL3A1. Changes in the distribution of collagens may influence the immune activity in the tumor microenvironment (TME). In addition, immune-related DEGs such as THY1, IRF5, and HLA-DRA were also identified. Enrichment analysis highlighted pathways such as those associated with angiogenesis, TGF-beta, UV response, and EMT. Among the 39 significant DEGs, 11 (28%) were identified as EMT target genes for ZEB1 using the Harmonizome database. Elevated ZEB1 expression correlated with reduced BCR risk. Immune landscape analysis revealed that ZEB1 was associated with increased immunosuppressive cell types in the TME, such as naïve B cells and M2 macrophages. Increased expression of both ZEB1 and SNAI1 was associated with elevated immune checkpoint expression. In the future, modulation of EMT could be beneficial for overcoming immunotherapy resistance in a cold tumor, such as PCa.
Collapse
Affiliation(s)
- William Lautert-Dutra
- Department of Genetics, Faculty of Medicine at Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (W.L.-D.); (C.M.M.); (L.P.C.)
| | - Camila Morais Melo
- Department of Genetics, Faculty of Medicine at Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (W.L.-D.); (C.M.M.); (L.P.C.)
| | - Luiz Paulo Chaves
- Department of Genetics, Faculty of Medicine at Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (W.L.-D.); (C.M.M.); (L.P.C.)
| | - Francisco Cesar Sousa
- Division of Urology, Department of Surgery and Anatomy, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (F.C.S.); (F.S.A.); (R.B.d.R.)
| | - Cheryl Crozier
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; (C.C.); (D.D.); (J.B.)
| | - Dan Dion
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; (C.C.); (D.D.); (J.B.)
| | - Filipe S. Avante
- Division of Urology, Department of Surgery and Anatomy, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (F.C.S.); (F.S.A.); (R.B.d.R.)
| | - Fabiano Pinto Saggioro
- Department of Pathology, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil;
| | - Rodolfo Borges dos Reis
- Division of Urology, Department of Surgery and Anatomy, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (F.C.S.); (F.S.A.); (R.B.d.R.)
| | - Leticia Fröhlich Archangelo
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil;
| | - Jane Bayani
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; (C.C.); (D.D.); (J.B.)
- Laboratory Medicine and Pathology, University of Toronto, Toronto, ON M5G 1E2, Canada
| | - Jeremy A. Squire
- Department of Genetics, Faculty of Medicine at Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (W.L.-D.); (C.M.M.); (L.P.C.)
- Division of Urology, Department of Surgery and Anatomy, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil; (F.C.S.); (F.S.A.); (R.B.d.R.)
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L3N6, Canada
| |
Collapse
|
7
|
De Velasco MA, Kura Y, Fujita K, Uemura H. Moving toward improved immune checkpoint immunotherapy for advanced prostate cancer. Int J Urol 2024; 31:307-324. [PMID: 38167824 DOI: 10.1111/iju.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024]
Abstract
Human prostate cancer is a heterogenous malignancy that responds poorly to immunotherapy targeting immune checkpoints. The immunosuppressive tumor microenvironment that is typical of human prostate cancer has been the main obstacle to these treatments. The effectiveness of these therapies is also hindered by acquired resistance, leading to slow progress in prostate cancer immunotherapy. Results from the highly anticipated late-stage clinical trials of PD-1/PD-L1 immune checkpoint blockade in patients with advanced prostate cancer have highlighted some of the obstacles to immunotherapy. Despite the setbacks, there is much that has been learned about the mechanisms that drive resistance, and new strategies are being developed and tested. Here, we review the status of immune checkpoint blockade and the immunosuppressive tumor microenvironment and discuss factors contributing to innate and adaptive resistance to immune checkpoint blockade within the context of prostate cancer. We then examine current strategies aiming to overcome these challenges as well as prospects.
Collapse
Affiliation(s)
- Marco A De Velasco
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yurie Kura
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
8
|
Angappulige DH, Mahajan NP, Mahajan K. Epigenetic underpinnings of tumor-immune dynamics in prostate cancer immune suppression. Trends Cancer 2024; 10:369-381. [PMID: 38341319 DOI: 10.1016/j.trecan.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/12/2024]
Abstract
Prostate cancer (PC) is immunosuppressive and refractory to immunotherapy. Infiltration of myeloid-derived suppressor cells (MDSCs) and senescent-like neutrophils and T cell exhaustion are observed in the tumor microenvironment (TME) following androgen receptor (AR) antagonism with antiandrogens or androgen ablation. De novo post-translational acetylation of the AR, HOXB13, and H2A at K609, K13, and K130, respectively, and phosphorylation of H4 at Y88 have emerged as key epigenetic modifications associated with castration-resistant PC (CRPC). The resulting chromatin changes are integrated into cellular processes via phosphorylation of the AR, ACK1, ATPF1A, and SREBP1 at Y267, Y284, Y243/Y246, and Y673/Y951, respectively. In this review, we discuss how these de novo epigenetic alterations drive resistance and how efforts aimed at targeting these regulators may overcome immune suppression observed in PC.
Collapse
Affiliation(s)
- Duminduni Hewa Angappulige
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Yang Y, Yan X, Bai X, Yang J, Song J. Programmed cell death-ligand 2: new insights in cancer. Front Immunol 2024; 15:1359532. [PMID: 38605944 PMCID: PMC11006960 DOI: 10.3389/fimmu.2024.1359532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment, with the anti-PD-1/PD-L1 axis therapy demonstrating significant clinical efficacy across various tumor types. However, it should be noted that this therapy is not universally effective for all PD-L1-positive patients, highlighting the need to expedite research on the second ligand of PD-1, known as Programmed Cell Death Receptor Ligand 2 (PD-L2). As an immune checkpoint molecule, PD-L2 was reported to be associated with patient's prognosis and plays a pivotal role in cancer cell immune escape. An in-depth understanding of the regulatory process of PD-L2 expression may stratify patients to benefit from anti-PD-1 immunotherapy. Our review focuses on exploring PD-L2 expression in different tumors, its correlation with prognosis, regulatory factors, and the interplay between PD-L2 and tumor treatment, which may provide a notable avenue in developing immune combination therapy and improving the clinical efficacy of anti-PD-1 therapies.
Collapse
Affiliation(s)
- Yukang Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Xia Yan
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xueqi Bai
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiayang Yang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianbo Song
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Rasmussen M, Fredsøe J, Salachan PV, Blanke MPL, Larsen SH, Ulhøi BP, Jensen JB, Borre M, Sørensen KD. Stroma-specific gene expression signature identifies prostate cancer subtype with high recurrence risk. NPJ Precis Oncol 2024; 8:48. [PMID: 38395986 PMCID: PMC10891092 DOI: 10.1038/s41698-024-00540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Current prognostic tools cannot clearly distinguish indolent and aggressive prostate cancer (PC). We hypothesized that analyzing individual contributions of epithelial and stromal components in localized PC (LPC) could improve risk stratification, as stromal subtypes may have been overlooked due to the emphasis on malignant epithelial cells. Hence, we derived molecular subtypes of PC using gene expression analysis of LPC samples from prostatectomy patients (cohort 1, n = 127) and validated these subtypes in two independent prostatectomy cohorts (cohort 2, n = 406, cohort 3, n = 126). Stroma and epithelium-specific signatures were established from laser-capture microdissection data and non-negative matrix factorization was used to identify subtypes based on these signatures. Subtypes were functionally characterized by gene set and cell type enrichment analyses, and survival analysis was conducted. Three epithelial (E1-E3) and three stromal (S1-S3) PC subtypes were identified. While subtyping based on epithelial signatures showed inconsistent associations to biochemical recurrence (BCR), subtyping by stromal signatures was significantly associated with BCR in all three cohorts, with subtype S3 indicating high BCR risk. Subtype S3 exhibited distinct features, including significantly decreased cell-polarity and myogenesis, significantly increased infiltration of M2-polarized macrophages and CD8 + T-cells compared to subtype S1. For patients clinically classified as CAPRA-S intermediate risk, S3 improved prediction of BCR. This study demonstrates the potential of stromal signatures in identification of clinically relevant PC subtypes, and further indicated that stromal characterization may enhance risk stratification in LPC and may be particularly promising in cases with high prognostic ambiguity based on clinical parameters.
Collapse
Affiliation(s)
- Martin Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Fredsøe
- Department of Molecular Medicine, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Paul Vinu Salachan
- Department of Molecular Medicine, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marcus Pii Lunau Blanke
- Department of Molecular Medicine, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stine Hesselby Larsen
- Department of Molecular Medicine, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Jørgen Bjerggaard Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Gødstrup Hospital, Herning, Denmark
| | - Michael Borre
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Karina Dalsgaard Sørensen
- Department of Molecular Medicine, Aarhus University Hospital (AUH), Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
11
|
Yamasaki S, Shimizu K, Fujii SI. Tumor epitope spreading by a novel multivalent therapeutic cellular vaccine targeting cancer antigens to invariant NKT-triggered dendritic cells in situ. Front Immunol 2024; 15:1345037. [PMID: 38361934 PMCID: PMC10867576 DOI: 10.3389/fimmu.2024.1345037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Cancer is categorized into two types based on the microenvironment: cold and hot tumors. The former is challenging to stimulate through immunity. The immunogenicity of cancer relies on the quality and quantity of cancer antigens, whether recognized by T cells or not. Successful cancer immunotherapy hinges on the cancer cell type, antigenicity and subsequent immune reactions. The T cell response is particularly crucial for secondary epitope spreading, although the factors affecting these mechanisms remain unknown. Prostate cancer often becomes resistant to standard therapy despite identifying several antigens, placing it among immunologically cold tumors. We aim to leverage prostate cancer antigens to investigate the potential induction of epitope spreading in cold tumors. This study specifically focuses on identifying factors involved in secondary epitope spreading based on artificial adjuvant vector cell (aAVC) therapy, a method established as invariant natural killer T (iNKT) -licensed DC therapy. Methods We concentrated on three prostate cancer antigens (prostate-specific membrane antigen (PSMA), prostate-specific antigen (PSA), and prostatic acid phosphatase (PAP)). By introducing allogeneic cells with the antigen and murine CD1d mRNA, followed by α-galactosylceramide (α-GalCer) loading, we generated five types of aAVCs, i.e, monovalent, divalent and trivalent antigen-expressing aAVCs and four types of prostate antigen-expressing cold tumors. We evaluated iNKT activation and antigen-specific CD8+ T cell responses against tumor cells prompted by the aAVCs. Results Our study revealed that monovalent aAVCs, expressing a single prostate antigen, primed T cells for primary tumor antigens and also induced T cells targeting additional tumor antigens by triggering a tumor antigen-spreading response. When we investigated the immune response by trivalent aAVC (aAVC-PROS), aAVC-PROS therapy elicited multiple antigen-specific CD8+ T cells simultaneously. These CD8+ T cells exhibited both preventive and therapeutic effects against tumor progression. Conclusions The findings from this study highlight the promising role of tumor antigen-expressing aAVCs, in inducing efficient epitope spreading and generating robust immune responses against cancer. Our results also propose that multivalent antigen-expressing aAVCs present a promising therapeutic option and could be a more comprehensive therapy for treating cold tumors like prostate cancer.
Collapse
Affiliation(s)
- Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Research Center for Integrative Medical Science (IMS), Yokohama, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Research Center for Integrative Medical Science (IMS), Yokohama, Japan
- aAVC Drug Translational Unit, RIKEN Center for Integrative Medical Science (IMS), Yokohama, Japan
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Research Center for Integrative Medical Science (IMS), Yokohama, Japan
- aAVC Drug Translational Unit, RIKEN Center for Integrative Medical Science (IMS), Yokohama, Japan
- RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama, Japan
| |
Collapse
|
12
|
Shi A, Yan M, Pang B, Pang L, Wang Y, Lan Y, Zhang X, Xu J, Ping Y, Hu J. Dissecting cellular states of infiltrating microenvironment cells in melanoma by integrating single-cell and bulk transcriptome analysis. BMC Immunol 2023; 24:52. [PMID: 38082384 PMCID: PMC10714533 DOI: 10.1186/s12865-023-00587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cellular states of different immune cells can affect the activity of the whole immune microenvironment. METHODS Here, leveraging reference profiles of microenvironment cell states that were constructed based on single-cell RNA-seq data of melanoma, we dissected the composition of microenvironment cell states across 463 skin cutaneous melanoma (SKCM) bulk samples through CIBERSORT-based deconvolution of gene expression profiles and revealed high heterogeneity of their distribution. Correspondence analysis on the estimated cellular fractions of melanoma bulk samples was performed to identify immune phenotypes. Based on the publicly available clinical survival and therapy data, we analyzed the relationship between immune phenotypes and clinical outcomes of melanoma. RESULTS By analysis of the relationships among those cell states, we further identified three distinct tumor microenvironment immune phenotypes: "immune hot/active", "immune cold-suppressive" and "immune cold-exhausted". They were characterized by markedly different patterns of cell states: most notably the CD8 T Cytotoxic state, CD8 T Mixed state, B non-regulatory state and cancer-associated fibroblasts (CAFs), depicting distinct types of antitumor immune response (or immune activity). These phenotypes had prognostic significance for progression-free survival and implications in response to immune therapy in an independent cohort of anti-PD1 treated melanoma patients. CONCLUSIONS The proposed strategy of leveraging single-cell data to dissect the composition of microenvironment cell states in individual bulk tumors can also extend to other cancer types, and our results highlight the importance of microenvironment cell states for the understanding of tumor immunity.
Collapse
Affiliation(s)
- Aiai Shi
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, China
| | - Min Yan
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Bo Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xinxin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Jinyuan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Jing Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
13
|
Parvez A, Choudhary F, Mudgal P, Khan R, Qureshi KA, Farooqi H, Aspatwar A. PD-1 and PD-L1: architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Front Immunol 2023; 14:1296341. [PMID: 38106415 PMCID: PMC10722272 DOI: 10.3389/fimmu.2023.1296341] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
PD-1 (Programmed Cell Death Protein-1) and PD-L1 (Programmed Cell Death Ligand-1) play a crucial role in regulating the immune system and preventing autoimmunity. Cancer cells can manipulate this system, allowing them to escape immune detection and promote tumor growth. Therapies targeting the PD-1/PD-L1 pathway have transformed cancer treatment and have demonstrated significant effectiveness against various cancer types. This study delves into the structure and signaling dynamics of PD-1 and its ligands PD-L1/PD-L2, the diverse PD-1/PD-L1 inhibitors and their efficacy, and the resistance observed in some patients. Furthermore, this study explored the challenges associated with the PD-1/PD-L1 inhibitor treatment approach. Recent advancements in the combination of immunotherapy with chemotherapy, radiation, and surgical procedures to enhance patient outcomes have also been highlighted. Overall, this study offers an in-depth overview of the significance of PD-1/PD-L1 in cancer immunotherapy and its future implications in oncology.
Collapse
Affiliation(s)
- Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Furqan Choudhary
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Priyal Mudgal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Rahila Khan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, Saudi Arabia
| | - Humaira Farooqi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
14
|
Su Q, Zhu Y, He B, Dai B, Mu W, Tian J. A novel tumor purity and immune infiltration-related model for predicting distant metastasis-free survival in prostate cancer. Eur J Med Res 2023; 28:545. [PMID: 38017548 PMCID: PMC10683297 DOI: 10.1186/s40001-023-01522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND umor cells, immune cells and stromal cells jointly modify tumor development and progression. We aim to explore the potential effects of tumor purity on the immune microenvironment, genetic landscape and prognosis in prostate cancer (PCa). METHODS Tumor purity of prostate cancer patients was extracted from The cancer genome atlas (TCGA). Immune cellular proportions were calculated by the CIBERSORT. To identify critical modules related to tumor purity, we used weighted gene co-expression network analysis (WGCNA). Using STRING and Cytoscape, protein-protein interaction (PPI) networks were constructed and analyzed. A Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Disease Ontology (DO), and Gene Set Enrichment Analysis (GSEA) enrichment analysis of identified modules was conducted. To identify the expression of key genes at protein levels, we used the Human Protein Atlas (HPA) platform. RESULTS A model of tumor purity score (TPS) was constructed in the gene expression omnibus series (GSE) 116,918 cohort. TCGA cohort served as a validation set and was employed to validate the TPS. TPS model, as an independent prognostic factor of distant metastasis-free survival (DMFS) in PCa. Patients had higher tumor purity and better prognosis in the low-TPS group. Tumor purity was related to the infiltration of mast cells and macrophage cells positively, whereas related to the infiltration of dendritic cells, T cells and B cells negatively in PCa. The nomogram based on TPS, Age, Gleason score and T stage had a good predictive value and could evaluate the prognosis of PCa metastasis. GO and KEGG enrichment analyses showed that hub genes mainly participate in T cell activation and T-helper lymphocytes (TH) differentiation. Hub genes were mainly enriched in primary immunodeficiency disease, according to DO analysis. SLAMF8 was identified as the most critical gene by Cytoscape and HPA analysis. CONCLUSIONS Dynamic changes in the immune microenvironment associated with tumor purity could correlate with a poor DMFS of low-purity PCa. The TPS can predict the DMFS of PCa. In addition, prostate cancer metastases may be related to immunosuppression caused by a disorder of the immune microenvironment.
Collapse
Affiliation(s)
- Qiang Su
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, People's Republic of China, Beijing, 100191, China
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yongbei Zhu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, People's Republic of China, Beijing, 100191, China
| | - Bingxi He
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, People's Republic of China, Beijing, 100191, China
| | - Bin Dai
- Neurosurgery department, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Wei Mu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, People's Republic of China, Beijing, 100191, China.
| | - Jie Tian
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, People's Republic of China, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
15
|
Handke A, Kesch C, Fendler WP, Telli T, Liu Y, Hakansson A, Davicioni E, Hughes J, Song H, Lueckerath K, Herrmann K, Hadaschik B, Seifert R. Analysing the tumor transcriptome of prostate cancer to predict efficacy of Lu-PSMA therapy. J Immunother Cancer 2023; 11:e007354. [PMID: 37857524 PMCID: PMC10603337 DOI: 10.1136/jitc-2023-007354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/21/2023] Open
Abstract
RATIONALE 177Lu-PSMA ([177Lu]Lutetium-PSMA-617) therapy is an effective treatment option for patients with prostate specific membrane antigen (PSMA)-positive metastatic castration-resistant prostate cancer, but still shows a non-responder rate of approximately 30%. Combination regimes of programmed death-ligand 1 (PD-L1) inhibition and concomitant 177Lu-PSMA therapy have been proposed to increase the response rate. However, the interplay of immune landscape and 177Lu-PSMA therapy efficacy is poorly understood. METHODS Between March 2018 and December 2021, a total of 168 patients were referred to 177Lu-PSMA therapy in our department and received a mean total dose of 21.9 GBq (three cycles in mean). All patients received baseline PSMA positron emission tomography to assess the PSMA uptake. The histopathological specimen of the primary prostate tumor was available with sufficient RNA passing quality control steps for genomic analysis in n=23 patients. In this subset of patients, tumor RNA transcriptomic analyses assessed 74 immune-related features in total, out of which n=24 signatures were not co-correlated and investigated further for outcome prognostication. RESULTS In the subset of patients who received 177Lu-PSMA therapy, PD-L1 was not significantly associated with OS (HR per SD change (95% CI) 0.74 (0.42 to 1.30); SD: 0.18; p=0.29). In contrast, PD-L2 signature was positively associated with longer OS (HR per SD change 0.46 (95% CI 0.29 to 0.74); SD: 0.24; p=0.001; median OS 17.2 vs 5.7 months in higher vs lower PD-L2 patients). In addition, PD-L2 signature correlated with PSA-response (ϱ=-0.46; p=0.04). The PD-L2 signature association with OS was significantly moderated by L-Lactatdehydrogenase (LDH) levels (Cox model interaction p=0.01). CONCLUSION Higher PD-L2 signature might be associated with a better response to 177Lu-PSMA therapy and warrants further studies investigating additional immunotherapy. In contrast, PD-L1 was not associated with outcome. The protective effect of PD-L2 signature might be present only in men with lower LDH levels.
Collapse
Affiliation(s)
- Analena Handke
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Claudia Kesch
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Wolfgang Peter Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Tugce Telli
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Yang Liu
- Veracyte, Inc, Decipher Biosciences Inc, Vancouver, BC, Canada
| | | | - Elai Davicioni
- Veracyte, Inc, Decipher Biosciences Inc, Vancouver, BC, Canada
| | - Jason Hughes
- Veracyte, Inc, Decipher Biosciences Inc, Vancouver, BC, Canada
| | - Hong Song
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Katharina Lueckerath
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| |
Collapse
|
16
|
Molina OE, LaRue H, Simonyan D, Hovington H, Têtu B, Fradet V, Lacombe L, Toren P, Bergeron A, Fradet Y. High infiltration of CD209 + dendritic cells and CD163 + macrophages in the peritumor area of prostate cancer is predictive of late adverse outcomes. Front Immunol 2023; 14:1205266. [PMID: 37435060 PMCID: PMC10331466 DOI: 10.3389/fimmu.2023.1205266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Prostate cancer (PCa) shows considerable variation in clinical outcomes between individuals with similar diseases. The initial host-tumor interaction as assessed by detailed analysis of tumor infiltrating immune cells within the primary tumor may dictate tumor evolution and late clinical outcomes. In this study, we assessed the association between clinical outcomes and dendritic cell (DC) or macrophage (MΦ) tumor infiltration as well as with expression of genes related to their functions. Methods Infiltration and localization of immature DC, mature DC, total MΦ and M2-type MΦ was analyzed by immunohistochemistry in 99 radical prostatectomy specimens from patients with 15.5 years median clinical follow-up using antibodies against CD209, CD83, CD68 and CD163, respectively. The density of positive cells for each marker in various tumor areas was determined. In addition, expression of immune genes associated with DC and MΦ was tested in a series of 50 radical prostatectomy specimens by Taqman Low-Density Array with similarly long follow-up. Gene expression was classified as low and high after unsupervised hierarchical clustering. Numbers and ratio of positive cells and levels of gene expression were correlated with endpoints such as biochemical recurrence (BCR), need for definitive androgen deprivation therapy (ADT) or lethal PCa using Cox regression analyses and/or Kaplan-Meier curves. Results Positive immune cells were observed in tumor, tumor margin, and normal-like adjacent epithelium areas. CD209+ and CD163+ cells were more abundant at the tumor margin. Higher CD209+/CD83+ cell density ratio at the tumor margin was associated with higher risk of ADT and lethal PCa while higher density of CD163+ cells in the normal-like adjacent epithelium was associated with a higher risk of lethal PCa. A combination of 5 genes expressed at high levels correlated with a shorter survival without ADT and lethal PCa. Among these five genes, expression of IL12A and CD163 was correlated to each other and was associated with shorter survival without BCR and ADT/lethal PCa, respectively. Conclusion A higher level of infiltration of CD209+ immature DC and CD163+ M2-type MΦ in the peritumor area was associated with late adverse clinical outcomes.
Collapse
Affiliation(s)
- Oscar Eduardo Molina
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Hélène LaRue
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - David Simonyan
- Plateforme de Recherche Clinique et Évaluative, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Hélène Hovington
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Bernard Têtu
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Vincent Fradet
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Louis Lacombe
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Paul Toren
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| |
Collapse
|
17
|
Han S, Shi T, Liao Y, Chen D, Yang F, Wang M, Ma J, Li H, Xu Y, Zhu T, Chen W, Wang G, Han Y, Xu C, Wang W, Cai S, Zhang X, Xing N. Tumor immune contexture predicts recurrence after prostatectomy and efficacy of androgen deprivation and immunotherapy in prostate cancer. J Transl Med 2023; 21:194. [PMID: 36918939 PMCID: PMC10012744 DOI: 10.1186/s12967-022-03827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/11/2022] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Prostate cancer is one of the most common cancers in men with notable interpatient heterogeneity. Implications of the immune microenvironment in predicting the biochemical recurrence-free survival (BCRFS) after radical prostatectomy and the efficacy of systemic therapies in prostate cancer remain ambiguous. METHODS The tumor immune contexture score (TICS) involving eight immune contexture-related signatures was developed using seven cohorts of 1120 patients treated with radical prostatectomy (training: GSE46602, GSE54460, GSE70769, and GSE94767; validation: GSE70768, DKFZ2018, and TCGA). The association between the TICS and treatment efficacy was investigated in GSE111177 (androgen deprivation therapy [ADT]) and EGAS00001004050 (ipilimumab). RESULTS A high TICS was associated with prolonged BCRFS after radical prostatectomy in the training (HR = 0.32, 95% CI 0.24-0.45, P < 0.001) and the validation cohorts (HR = 0.45, 95% CI 0.32-0.62, P < 0.001). The TICS showed stable prognostic power independent of tumor stage, surgical margin, pre-treatment prostatic specific antigen (PSA), and Gleason score (multivariable HR = 0.50, 95% CI 0.39-0.63, P < 0.001). Adding the TICS into the prognostic model constructed using clinicopathological features significantly improved its 1/2/3/4/5-year area under curve (P < 0.05). A low TICS was associated with high homologous recombination deficiency scores, abnormally activated pathways concerning DNA replication, cell cycle, steroid hormone biosynthesis, and drug metabolism, and fewer tumor-infiltrating immune cells (P < 0.05). The patients with a high TICS had favorable BCRFS with ADT (HR = 0.25, 95% CI 0.06-0.99, P = 0.034) or ipilimumab monotherapy (HR = 0.23, 95% CI 0.06-0.81, P = 0.012). CONCLUSIONS Our study delineates the associations of tumor immune contexture with molecular features, recurrence after radical prostatectomy, and the efficacy of ADT and immunotherapy. The TICS may improve the existing risk stratification systems and serve as a patient-selection tool for ADT and immunotherapy in prostate cancer.
Collapse
Affiliation(s)
- Sujun Han
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Taoping Shi
- Department of Urology, Chinese PLA General Hospital, No 28 Fuxing Road, Beijing, 100853, China
| | - Yuchen Liao
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mingshuai Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jing Ma
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Hu Li
- Department of Urology, Shanxian Central Hospital of Shandong Province, Heze, 274300, Shandong, China
| | - Yu Xu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Tengfei Zhu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Wenxi Chen
- Burning Rock Biotech, Guangzhou, 510300, China
| | | | - Yusheng Han
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, No 28 Fuxing Road, Beijing, 100853, China.
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
18
|
Bedeschi M, Marino N, Cavassi E, Piccinini F, Tesei A. Cancer-Associated Fibroblast: Role in Prostate Cancer Progression to Metastatic Disease and Therapeutic Resistance. Cells 2023; 12:cells12050802. [PMID: 36899938 PMCID: PMC10000679 DOI: 10.3390/cells12050802] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in European males. Although therapeutic approaches have changed in recent years, and several new drugs have been approved by the Food and Drug Administration (FDA), androgen deprivation therapy (ADT) remains the standard of care. Currently, PCa represents a clinical and economic burden due to the development of resistance to ADT, paving the way to cancer progression, metastasis, and to long-term side effects induced by ADT and radio-chemotherapeutic regimens. In light of this, a growing number of studies are focusing on the tumor microenvironment (TME) because of its role in supporting tumor growth. Cancer-associated fibroblasts (CAFs) have a central function in the TME because they communicate with prostate cancer cells, altering their metabolism and sensitivity to drugs; hence, targeted therapy against the TME, and, in particular, CAFs, could represent an alternative therapeutic approach to defeat therapy resistance in PCa. In this review, we focus on different CAF origins, subsets, and functions to highlight their potential in future therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Martina Bedeschi
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
- Correspondence: (M.B.); (A.T.); Tel.: +39-0543739932 (A.T.)
| | - Noemi Marino
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Elena Cavassi
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Filippo Piccinini
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Anna Tesei
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
- Correspondence: (M.B.); (A.T.); Tel.: +39-0543739932 (A.T.)
| |
Collapse
|
19
|
Saudi A, Banday V, Zirakzadeh AA, Selinger M, Forsberg J, Holmbom M, Henriksson J, Waldén M, Alamdari F, Aljabery F, Winqvist O, Sherif A. Immune-Activated B Cells Are Dominant in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15030920. [PMID: 36765877 PMCID: PMC9913271 DOI: 10.3390/cancers15030920] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
B cells are multifaceted immune cells responding robustly during immune surveillance against tumor antigens by presentation to T cells and switched immunoglobulin production. However, B cells are unstudied in prostate cancer (PCa). We used flow cytometry to analyze B-cell subpopulations in peripheral blood and lymph nodes from intermediate-high risk PCa patients. B-cell subpopulations were related to clinicopathological factors. B-cell-receptor single-cell sequencing and VDJ analysis identified clonal B-cell expansion in blood and lymph nodes. Pathological staging was pT2 in 16%, pT3a in 48%, and pT3b in 36%. Lymph node metastases occurred in 5/25 patients (20%). Compared to healthy donors, the peripheral blood CD19+ B-cell compartment was significantly decreased in PCa patients and dominated by naïve B cells. The nodal B-cell compartment had significantly increased fractions of CD19+ B cells and switched memory B cells. Plasmablasts were observed in tumor-draining sentinel lymph nodes (SNs). VDJ analysis revealed clonal expansion in lymph nodes. Thus, activated B cells are increased in SNs from PCa patients. The increased fraction of switched memory cells and plasmablasts together with the presence of clonally expanded B cells indicate tumor-specific T-cell-dependent responses from B cells, supporting an important role for B cells in the protection against tumors.
Collapse
Affiliation(s)
- Aws Saudi
- Department of Urology, Medical Faculty, Linköping University, 581 85 Linköping, Sweden
- Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, 581 85 Linköping, Sweden
| | - Viqar Banday
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umea University, 901 85 Umea, Sweden
- Department of Clinical Microbiology, Immunology, Umea University, 901 85 Umeå, Sweden
| | | | - Martin Selinger
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå Centre for Microbial Research, 6K and 6L, Umeå University, 901 87 Umeå, Sweden
| | - Jon Forsberg
- Department of Urology, Medical Faculty, Linköping University, 581 85 Linköping, Sweden
| | - Martin Holmbom
- Department of Urology, Medical Faculty, Linköping University, 581 85 Linköping, Sweden
| | - Johan Henriksson
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå Centre for Microbial Research, 6K and 6L, Umeå University, 901 87 Umeå, Sweden
| | - Mauritz Waldén
- Department of Urology, Central Hospital of Karlstad, 652 30 Karlstad, Sweden
| | - Farhood Alamdari
- Department of Urology, Västmanland Hospital, 721 89 Västerås, Sweden
| | - Firas Aljabery
- Department of Urology, Medical Faculty, Linköping University, 581 85 Linköping, Sweden
- Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, 581 85 Linköping, Sweden
| | - Ola Winqvist
- ABClabs, BioClinicum, Campus Solna, 171 76 Stockholm, Sweden
| | - Amir Sherif
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umea University, 901 85 Umea, Sweden
- Correspondence:
| |
Collapse
|
20
|
Mathiesen A, Haynes B, Huyck R, Brown M, Dobrian A. Adipose Tissue-Derived Extracellular Vesicles Contribute to Phenotypic Plasticity of Prostate Cancer Cells. Int J Mol Sci 2023; 24:1229. [PMID: 36674745 PMCID: PMC9864182 DOI: 10.3390/ijms24021229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Metastatic prostate cancer is one of the leading causes of male cancer deaths in the western world. Obesity significantly increases the risk of metastatic disease and is associated with a higher mortality rate. Systemic chronic inflammation can result from a variety of conditions, including obesity, where adipose tissue inflammation is a major contributor. Adipose tissue endothelial cells (EC) exposed to inflammation become dysfunctional and produce a secretome, including extracellular vesicles (EV), that can impact function of cells in distant tissues, including malignant cells. The aim of this study was to explore the potential role of EVs produced by obese adipose tissue and the ECs exposed to pro-inflammatory cytokines on prostate cancer phenotypic plasticity in vitro. We demonstrate that PC3ML metastatic prostate cancer cells exposed to EVs from adipose tissue ECs and to EVs from human adipose tissue total explants display reduced invasion and increased proliferation. The latter functional changes could be attributed to the EV miRNA cargo. We also show that the functional shift is TWIST1-dependent and is consistent with mesenchymal-to-epithelial transition, which is key to establishment of secondary tumor growth. Understanding the complex effects of EVs on prostate cancer cells of different phenotypes is key before their intended use as therapeutics.
Collapse
Affiliation(s)
- Allison Mathiesen
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Bronson Haynes
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Ryan Huyck
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Michael Brown
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Anca Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
21
|
dos Reis FD, Jerónimo C, Correia MP. Epigenetic modulation and prostate cancer: Paving the way for NK cell anti-tumor immunity. Front Immunol 2023; 14:1152572. [PMID: 37090711 PMCID: PMC10113550 DOI: 10.3389/fimmu.2023.1152572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Immunoepigenetics is a growing field, as there is mounting evidence on the key role played by epigenetic mechanisms in the regulation of tumor immune cell recognition and control of immune cell anti-tumor responses. Moreover, it is increasingly acknowledgeable a tie between epigenetic regulation and prostate cancer (PCa) development and progression. PCa is intrinsically a cold tumor, with scarce immune cell infiltration and low inflammatory tumor microenvironment. However, Natural Killer (NK) cells, main anti-tumor effector immune cells, have been frequently linked to improved PCa prognosis. The role that epigenetic-related mechanisms might have in regulating both NK cell recognition of PCa tumor cells and NK cell functions in PCa is still mainly unknown. Epigenetic modulating drugs have been showing boundless therapeutic potential as anti-tumor agents, however their role in immune cell regulation and recognition is scarce. In this review, we focused on studies addressing modulation of epigenetic mechanisms involved in NK cell-mediated responses, including both the epigenetic modulation of tumor cell NK ligand expression and NK cell receptor expression and function in different tumor models, highlighting studies in PCa. The integrated knowledge from diverse epigenetic modulation mechanisms promoting NK cell-mediated immunity in various tumor models might open doors for the development of novel epigenetic-based therapeutic options for PCa management.
Collapse
Affiliation(s)
- Filipa D. dos Reis
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Master Program in Oncology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
- *Correspondence: Margareta P. Correia,
| |
Collapse
|
22
|
Feng E, Rydzewski NR, Zhang M, Lundberg A, Bootsma M, Helzer KT, Lang JM, Aggarwal R, Small EJ, Quigley DA, Sjöström M, Zhao SG. Intrinsic Molecular Subtypes of Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2022; 28:5396-5404. [PMID: 36260524 PMCID: PMC9890931 DOI: 10.1158/1078-0432.ccr-22-2567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Although numerous biology-driven subtypes have been described previously in metastatic castration-resistant prostate cancer (mCRPC), unsupervised molecular subtyping based on gene expression has been less studied, especially using large cohorts. Thus, we sought to identify the intrinsic molecular subtypes of mCRPC and assess molecular and clinical correlates in the largest combined cohort of mCRPC samples with gene expression data available to date. EXPERIMENTAL DESIGN We combined and batch-effect corrected gene expression data from four mCRPC cohorts from the Fred Hutchinson Cancer Research Center (N = 157), a small-cell neuroendocrine (NE) prostate cancer (SCNC)-enriched cohort from Weill Cornell Medicine (N = 49), and cohorts from the Stand Up 2 Cancer/Prostate Cancer Foundation East Coast Dream Team (N = 266) and the West Coast Dream Team (N = 162). RESULTS Hierarchical clustering of RNA-sequencing data from these 634 mCRPC samples identified two distinct adenocarcinoma subtypes, one of which (adeno-immune) was characterized by higher gene expression of immune pathways, higher CIBERSORTx immune scores, diminished ASI benefit, and non-lymph node metastasis tropism compared with an adeno-classic subtype. We also identified two distinct subtypes with enrichment for an NE phenotype, including an NE-liver subgroup characterized by liver metastasis tropism, PTEN loss, and APC and SPOP mutations compared with an NE-classic subgroup. CONCLUSIONS Our results emphasize the heterogeneity of mCRPC beyond currently accepted molecular phenotypes, and suggest that future studies should consider incorporating transcriptome-wide profiling to better understand how these differences impact treatment responses and outcomes.
Collapse
Affiliation(s)
- Eric Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Nicholas R Rydzewski
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
- Radiation Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Meng Zhang
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Arian Lundberg
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Matthew Bootsma
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Kyle T Helzer
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
- University of Wisconsin, Carbone Cancer Center, Madison, Wisconsin
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - David A Quigley
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
- Division of Oncology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
- University of Wisconsin, Carbone Cancer Center, Madison, Wisconsin
- William S. Middleton Memorial Hospital, Madison, Wisconsin
| |
Collapse
|
23
|
Wang Y, Du J, Gao Z, Sun H, Mei M, Wang Y, Ren Y, Zhou X. Evolving landscape of PD-L2: bring new light to checkpoint immunotherapy. Br J Cancer 2022; 128:1196-1207. [PMID: 36522474 PMCID: PMC10050415 DOI: 10.1038/s41416-022-02084-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
AbstractImmune checkpoint blockade therapy targeting programmed cell death protein 1 (PD-1) has revolutionized the landscape of multiple human cancer types, including head and neck squamous carcinoma (HNSCC). Programmed death ligand-2 (PD-L2), a PD-1 ligand, mediates cancer cell immune escape (or tolerance independent of PD-L1) and predicts poor prognosis of patients with HNSCC. Therefore, an in-depth understanding of the regulatory process of PD-L2 expression may stratify patients with HNSCC to benefit from anti-PD-1 immunotherapy. In this review, we summarised the PD-L2 expression and its immune-dependent and independent functions in HNSCC and other solid tumours. We focused on recent findings on the mechanisms that regulate PD-L2 at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels, also in intercellular communication of tumour microenvironment (TME). We also discussed the prospects of using small molecular agents indirectly targeting PD-L2 in cancer therapy. These findings may provide a notable avenue in developing novel and effective PD-L2-targeted therapeutic strategies for immune combination therapy and uncovering biomarkers that improve the clinical efficacy of anti-PD-1 therapies.
Collapse
|
24
|
Bian Z, Chen J, Liu C, Ge Q, Zhang M, Meng J, Liang C. Landscape of the intratumroal microenvironment in bladder cancer: Implications for prognosis and immunotherapy. Comput Struct Biotechnol J 2022; 21:74-85. [PMID: 36514337 PMCID: PMC9730156 DOI: 10.1016/j.csbj.2022.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction This study aims to present the landscape of the intratumoral microenvironment and by which establish a classification system that can be used to predict the prognosis of bladder cancer patients and their response to anti-PD-L1 immunotherapy. Methods The expression profiles of 1554 bladder cancer cases were downloaded from seven public datasets. Single-sample gene set enrichment analysis (ssGSEA), univariate Cox regression analysis, and meta-analysis were employed to establish the bladder cancer immune prognostic index (BCIPI). Extensive analyses were executed to investigate the association between BCIPI and overall survival, tumor-infiltrated immunocytes, immunotherapeutic response, mutation load, etc. Results The results obtained from seven independent cohorts and meta-analyses suggested that the BCIPI is an effective classification system for estimating bladder cancer patients' overall survival. Patients in the BCIPI-High subgroup revealed different immunophenotypic outcomes from those in the BCIPI-Low subgroup regarding tumor-infiltrated immunocytes and mutated genes. Subsequent analysis suggested that patients in the BCIPI-High subgroup were more sensitive to anti-PD-L1 immunotherapy than those in the BCIPI-Low subgroup. Conclusions The newly established BCIPI is a valuable tool for predicting overall survival outcomes and immunotherapeutic responses in patients with bladder cancer.
Collapse
Key Words
- AJCC, American Joint Committee on Cancer
- Anti-PD-L1, Antitumor response to atezolizumab
- BCG, Bacillus Calmette-Guerin
- BCIPI, Bladder cancer immune prognostic index
- Bladder cancer
- CNVs, Copy number variations
- FDA, Food and Drug Administration
- FPKM, Fragments per kilobase per million
- Genomic
- ICI, Immune checkpoint inhibitor
- IHC, Immunohistochemistry
- Immunotherapy
- MES, Mesenchymal transition
- NES, Normalized enrichment score
- Overall survival
- RMA, Robust multiarray average
- RMS, Restricted mean survival
- TPM, Transcripts per kilobase million
- ssGSEA, Single-sample GSEA
Collapse
Affiliation(s)
- Zichen Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Chang Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China,Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China,Corresponding authors at: Jixi Road 218, Shushan District, Hefei City 230022, Anhui Province, China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China,Corresponding authors at: Jixi Road 218, Shushan District, Hefei City 230022, Anhui Province, China.
| |
Collapse
|
25
|
Wang S, Chen L, Liu W. Matrix stiffness-dependent STEAP3 coordinated with PD-L2 identify tumor responding to sorafenib treatment in hepatocellular carcinoma. Cancer Cell Int 2022; 22:318. [PMID: 36229881 PMCID: PMC9563531 DOI: 10.1186/s12935-022-02634-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ferroptosis have been implicated in tumorigenesis, tumor progression, and chemo- and immuno-therapy in cirrhotic hepatocellular carcinoma (HCC), indicating its association with matrix stiffness and clinical benefit of targeting drugs or immune checkpoint inhibitor. Here, we postulated that increased matrix stiffness reduces ferroptosis and impairs tumor immunity by regulating the expression of ferroptosis- and immune-related genes in HCC, which might be a robust predictor of therapeutic efficacy. METHODS Using publicly available tissue microarray datasets, liver cancer rat model, and clinical specimen, ferroptosis-related differential genes in HCV-infected cirrhotic HCC and its mechanical heterogeneous pattern of expression were screened and identified. Further investigation on the underlying mechanism of matrix stiffness-regulated ferroptosis and the expression of immune mediator were performed. Finally, threshold analysis of HCC cases with sorafenib treatment revealed the value of clinical applications of these potential predictors. RESULTS STEAP3 was identified as the ferroptosis-related differential genes in HCV-infected cirrhotic HCC. Stiffer matrix decreased STEAP3 in the invasive front area of HCC and the liver cirrhotic tissue. Contrarily, softer matrix induced STEAP3 in the central area of HCC and the normal liver tissue. Immunological correlation of STEAP3 in cirrhotic HCC showed that STEAP3-mediated immune infiltration of CD4+ T and CD8+ T cells, macrophages, neutrophils, and dendritic cells and HCC prognosis, predicting to regulate immune infiltration. Overexpression of STEAP3 induced ferroptosis and inhibited the expression of immune mediator of PD-L2 on a stiff matrix. Especially, the ferroptosis- and immune-related gene predictive biomarker (FIGPB), including STEAP3 and PD-L2, predicts better clinical benefit of sorafenib in HCC patients. CONCLUSIONS This finding identifies matrix stiffness impairs ferroptosis and anti-tumor immunity by mediating STEAP3 and PD-L2. More importantly, coordinated with PD-L2, matrix stiffness-dependent STEAP3 could be applied as the independent predictors to favorable sorafenib response, and thus targeting it could be a potential diagnosis and treatment strategy for HCC.
Collapse
Affiliation(s)
- Shunxi Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Long Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China. .,Bioengineering Institute of Chongqing University, 174 Shazheng Street, Chongqing, 400000, China.
| |
Collapse
|
26
|
Awasthi S, Grass GD, Torres-Roca J, Johnstone PAS, Pow-Sang J, Dhillon J, Park J, Rounbehler RJ, Davicioni E, Hakansson A, Liu Y, Fink AK, DeRenzis A, Creed JH, Poch M, Li R, Manley B, Fernandez D, Naghavi A, Gage K, Lu-Yao G, Katsoulakis E, Burri RJ, Leone A, Ercole CE, Palmer JD, Vapiwala N, Deville C, Rebbeck TR, Dicker AP, Kelly W, Yamoah K. Genomic Testing in Localized Prostate Cancer Can Identify Subsets of African Americans With Aggressive Disease. J Natl Cancer Inst 2022; 114:1656-1664. [PMID: 36053178 PMCID: PMC9745424 DOI: 10.1093/jnci/djac162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/22/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Personalized genomic classifiers have transformed the management of prostate cancer (PCa) by identifying the most aggressive subsets of PCa. Nevertheless, the performance of genomic classifiers to risk classify African American men is thus far lacking in a prospective setting. METHODS This is a prospective study of the Decipher genomic classifier for National Comprehensive Cancer Network low- and intermediate-risk PCa. Study-eligible non-African American men were matched to African American men. Diagnostic biopsy specimens were processed to estimate Decipher scores. Samples accrued in NCT02723734, a prospective study, were interrogated to determine the genomic risk of reclassification (GrR) between conventional clinical risk classifiers and the Decipher score. RESULTS The final analysis included a clinically balanced cohort of 226 patients with complete genomic information (113 African American men and 113 non-African American men). A higher proportion of African American men with National Comprehensive Cancer Network-classified low-risk (18.2%) and favorable intermediate-risk (37.8%) PCa had a higher Decipher score than non-African American men. Self-identified African American men were twice more likely than non-African American men to experience GrR (relative risk [RR] = 2.23, 95% confidence interval [CI] = 1.02 to 4.90; P = .04). In an ancestry-determined race model, we consistently validated a higher risk of reclassification in African American men (RR = 5.26, 95% CI = 1.66 to 16.63; P = .004). Race-stratified analysis of GrR vs non-GrR tumors also revealed molecular differences in these tumor subtypes. CONCLUSIONS Integration of genomic classifiers with clinically based risk classification can help identify the subset of African American men with localized PCa who harbor high genomic risk of early metastatic disease. It is vital to identify and appropriately risk stratify the subset of African American men with aggressive disease who may benefit from more targeted interventions.
Collapse
Affiliation(s)
| | - G Daniel Grass
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | | | - Julio Pow-Sang
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jasreman Dhillon
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jong Park
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | | | | | - Yang Liu
- Veracyte Inc, South San Francisco, CA, USA
| | - Angelina K Fink
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Amanda DeRenzis
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jordan H Creed
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Michael Poch
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Roger Li
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Brandon Manley
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Daniel Fernandez
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Arash Naghavi
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Kenneth Gage
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Grace Lu-Yao
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | - Joshua D Palmer
- The James Cancer Hospital at Ohio State University, Columbus, OH, USA
| | - Neha Vapiwala
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Adam P Dicker
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, USA
| | - William Kelly
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, USA
| | - Kosj Yamoah
- Correspondence: Kosj Yamoah, MD, PhD, Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA (e-mail: )
| |
Collapse
|
27
|
Zhou Q, Yang C, Mou Z, Wu S, Dai X, Chen X, Ou Y, Zhang L, Sha J, Jiang H. Identification and validation of a poor clinical outcome subtype of primary prostate cancer with Midkine abundance. Cancer Sci 2022; 113:3698-3709. [PMID: 36018546 PMCID: PMC9633304 DOI: 10.1111/cas.15546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies identified Midkine (MDK) as playing a key role in immune regulation. In this study, we aimed to discover the clinical significance and translational relevance in prostate cancer (PCa). We retrospectively analyzed 759 PCa patients who underwent radical prostatectomy from Huashan Hospital, Fudan University (training cohort, n = 369) and Chinese Prostate Cancer Consortium (validation cohort, n = 390). A total of 325 PCa patients from The Cancer Genome Atlas (TCGA) database (external cohort) were analyzed for exploration. Immune landscape and antitumor immunity were assessed through immunohistochemistry and flow cytometry. Patient‐derived explant culture system was applied for evaluating the targeting potential of MDK. We found that intratumoral MDK expression correlated with PCa progression, which indicated an unfavorable biochemical recurrence (BCR)‐free survival for postoperative PCa patients. Addition of MDK expression to the postoperative risk assessment tool CAPRA‐S could improve its prognostic value. Tumors with MDK abundance characterized the tumor‐infiltrating CD8+ T cells with less cytotoxicity production and increased immune checkpoint expression, which were accompanied by enriched immunosuppressive contexture. Moreover, MDK inhibition could reactivate CD8+ T cell antitumor immunity. MDK mRNA expression negatively correlated with androgen receptor activity signature and positively associated with radiotherapy‐related signature. In conclusion, intratumoral MDK expression could serve as an independent prognosticator for BCR in postoperative PCa patients. MDK expression impaired the antitumor function of CD8+ T cells through orchestrating an immunoevasive microenvironment, which could be reversed by MDK inhibition. Moreover, tumors with MDK enrichment possessed potential sensitivity to postoperative radiotherapy while resistance to adjuvant hormonal therapy of PCa. MDK could be considered as a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Limin Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianjun Sha
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Chen H, Wu M, Xia H, Du S, Zhou G, Long G, Zhu Y, Huang X, Yang D. FLT3LG and IFITM3P6 consolidate T cell activity in the bone marrow microenvironment and are prognostic factors in acute myelocytic leukemia. Front Immunol 2022; 13:980911. [PMID: 36081495 PMCID: PMC9445253 DOI: 10.3389/fimmu.2022.980911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Acute myelocytic leukemia (AML) is a malignancy of the stem cell precursors of the myeloid lineage. CD4+ and CD8+ T cells play pivotal roles in influencing AML progression but are functionally suppressed in the bone marrow microenvironment. We aimed to find hub genes related to T cell exhaustion and suppression, thereby providing evidence for immunotherapy. In this study, gene transcriptome expression data from TCGA and TARGET databases were utilized to find key genes. Firstly, CIBERSORT immune cell infiltration algorithm and WGCNA method were used to identify CD4+ and CD8+ T cells-related genes. Univariate and multivariate cox regression analyses were then introduced to construct the overall survival prognosis model and included hub genes. The ESTIMATE and ssGSEA scoring methods were used to analyze the correlation between the hub genes and immune activity. Single-cell transcriptome analysis was applied to detect the immune cells expressing hub genes, hence, to detect exact mechanisms. Consequently, FLT3LG and IFITM3P6 were determined to be positively correlated with patients’ overall survival and microenvironment immune activity. Further study suggested FLT3-FLT3LG and IFITM3P6-miR-6748-3p-CBX7 signaling axes were involved in CD4+ and CD8+ T cells activation. This may be one of the mechanisms of T cells suppression in AML.
Collapse
Affiliation(s)
- Haiyan Chen
- Institute for Cancer Research, School of Basic Medical Science of Xi’an Jiaotong University, Xi’an, China
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Wu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hongping Xia
- Department of Pathology, School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Songjie Du
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital & The Affifiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Guangfeng Long
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Zhu
- Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xu Huang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Daheng Yang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Daheng Yang,
| |
Collapse
|
29
|
Chandran E, Meininger L, Karzai F, Madan RA. Signaling new therapeutic opportunities: cytokines in prostate cancer. Expert Opin Biol Ther 2022; 22:1233-1243. [PMID: 35930001 DOI: 10.1080/14712598.2022.2108701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite FDA approval of sipuleucel-T in 2010, endeavors to use immune checkpoint inhibitors in unselected prostate cancer patients have not improved clinical outcomes. These efforts include studies with anti-PD1/PD-L1 and anti-CTLA-4 alone and in combination with existing standards of care. These strategies are generally T-cell centric and disregard the broader complex and pleiotropic components of the prostate cancer tumor microenvironment such as natural killer cells, myeloid-derived suppressor cells and tumor associated macrophages. AREAS COVERED We performed an online literature search and undertook a review of existing pre-clinical and clinical literature for cytokine-based therapy relating to prostate cancer, specifically on interleukin (IL)-2, IL-15, IL-12, IL-23, IL-8 and transforming growth factor (TGF)-β. EXPERT OPINION Cytokine-based therapies present an alternative immune strategy to target the pleiotropic prostate cancer tumor microenvironment beyond T-cells. Future immunotherapy strategies in prostate cancer should address these immune cell populations which may play more important roles in the prostate cancer tumor microenvironment.
Collapse
Affiliation(s)
- Elias Chandran
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luke Meininger
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Yu G, Bao J, Zhan M, Wang J, Li X, Gu X, Song S, Yang Q, Liu Y, Wang Z, Xu B. Comprehensive Analysis of m5C Methylation Regulatory Genes and Tumor Microenvironment in Prostate Cancer. Front Immunol 2022; 13:914577. [PMID: 35757739 PMCID: PMC9226312 DOI: 10.3389/fimmu.2022.914577] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Background 5-Methylcytidine (m5C) methylation is an emerging epigenetic modification in recent years, which is associated with the development and progression of various cancers. However, the prognostic value of m5C regulatory genes and the correlation between m5C methylation and the tumor microenvironment (TME) in prostate cancer remain unknown. Methods In the current study, the genetic and transcriptional alterations and prognostic value of m5C regulatory genes were investigated in The Cancer Genome Atlas and Gene Expression Omnibus datasets. Then, an m5C prognostic model was established by LASSO Cox regression analysis. Gene set variation analyses (GSVA), gene set enrichment analysis (GSEA), clinical relevance, and TME analyses were conducted to explain the biological functions and quantify the TME scores between high-risk and low-risk subgroups. m5C regulatory gene clusters and m5C immune subtypes were identified using consensus unsupervised clustering analysis. The Cell-type Identification By Estimating Relative Subsets of RNA Transcripts algorithm was used to calculate the contents of immune cells. Results TET3 was upregulated at transcriptional levels in PCa compared with normal tissues, and a high TET3 expression was associated with poor prognosis. An m5C prognostic model consisting of 3 genes (NSUN2, TET3, and YBX1) was developed and a nomogram was constructed for improving the clinical applicability of the model. Functional analysis revealed the enrichment of pathways and the biological processes associated with RNA regulation and immune function. Significant differences were also found in the expression levels of m5C regulatory genes, TME scores, and immune cell infiltration levels between different risk subgroups. We identified two distinct m5C gene clusters and found their correlation with patient prognosis and immune cell infiltration characteristics. Naive B cells, CD8+ T cells, M1 macrophages and M2 macrophages were obtained and 2 m5C immune subtypes were identified. CTLA4, NSUN6, TET1, and TET3 were differentially expressed between immune subtypes. The expression of CTLA4 was found to be correlated with the degree of immune cell infiltration. Conclusions Our comprehensive analysis of m5C regulatory genes in PCa demonstrated their potential roles in the prognosis, clinical features, and TME. These findings may improve our understanding of m5C regulatory genes in the tumor biology of PCa.
Collapse
Affiliation(s)
- Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiahao Bao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiangyi Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinjuan Li
- General Medical Department, Yangpu Daqiao Community Health Service Center, Shanghai, China
| | - Xin Gu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shangqing Song
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Yang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yushan Liu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Trigos AS, Pasam A, Banks P, Wallace R, Guo C, Keam S, Thorne H, Mitchell C, Lade S, Clouston D, Hakansson A, Liu Y, Blyth B, Murphy D, Lawrentschuk N, Bolton D, Moon D, Darcy P, Haupt Y, Williams SG, Castro E, Olmos D, Goode D, Neeson P, Sandhu S. Tumor immune microenvironment of primary prostate cancer with and without germline mutations in homologous recombination repair genes. J Immunother Cancer 2022; 10:jitc-2021-003744. [PMID: 35764368 PMCID: PMC9240881 DOI: 10.1136/jitc-2021-003744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Aberrations in homologous recombination repair (HRR) genes are emerging as important biomarkers for personalized treatment in prostate cancer (PCa). HRR deficiency (HRD) could affect the tumor immune microenvironment (TIME), potentially contributing to differential responses to poly ADP-ribose polymerase (PARP) inhibitors and immune checkpoint inhibitors. Spatial distribution of immune cells in a range of cancers identifies novel disease subtypes and is related to prognosis. In this study we aimed to determine the differences in the TIME of PCa with and without germline (g) HRR mutations. METHODS We performed gene expression analysis, multiplex immunohistochemistry of T and B cells and quantitative spatial analysis of PCa samples from 36 patients with gHRD and 26 patients with sporadic PCa. Samples were archival tumor tissue from radical prostatectomies with the exception of one biopsy. Results were validated in several independent cohorts. RESULTS Although the composition of the T cell and B cells was similar in the tumor areas of gHRD-mutated and sporadic tumors, the spatial profiles differed between these cohorts. We describe two T-cell spatial profiles across primary PCa, a clustered immune spatial (CIS) profile characterized by dense clusters of CD4+ T cells closely interacting with PD-L1+ cells, and a free immune spatial (FIS) profile of CD8+ cells in close proximity to tumor cells. gHRD tumors had a more T-cell inflamed microenvironment than sporadic tumors. The CIS profile was mainly observed in sporadic tumors, whereas a FIS profile was enriched in gHRD tumors. A FIS profile was associated with lower Gleason scores, smaller tumors and longer time to biochemical recurrence and metastasis. CONCLUSIONS gHRD-mutated tumors have a distinct immune microenvironment compared with sporadic tumors. Spatial profiling of T-cells provides additional information beyond T-cell density and is associated with time to biochemical recurrence, time to metastasis, tumor size and Gleason scores.
Collapse
Affiliation(s)
- Anna Sofia Trigos
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anupama Pasam
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Patricia Banks
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Roslyn Wallace
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Christina Guo
- Institute of Cancer Research Sutton, Sutton, Surrey, UK,Royal Marsden Hospital Sutton, Sutton, London, UK
| | - Simon Keam
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Heather Thorne
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - kConFab
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Stephen Lade
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | - Yang Liu
- Veracyte Inc, South San Francisco, California, USA
| | - Benjamin Blyth
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Declan Murphy
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nathan Lawrentschuk
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Daniel Moon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Phil Darcy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ygal Haupt
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott G Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Elena Castro
- Instituto de Investigacion Biomedica de Malaga, Malaga, Spain
| | - David Olmos
- Instituto de Investigacion Biomedica de Malaga, Malaga, Spain,Medical Oncology Department, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - David Goode
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Neeson
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shahneen Sandhu
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Classon J, Zamboni M, Engblom C, Alkass K, Mantovani G, Pou C, Nkulikiyimfura D, Brodin P, Druid H, Mold J, Frisén J. Prostate cancer disease recurrence after radical prostatectomy is associated with HLA type and local cytomegalovirus immunity. Mol Oncol 2022; 16:3452-3464. [PMID: 35712787 PMCID: PMC9533687 DOI: 10.1002/1878-0261.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022] Open
Abstract
Prostate cancer is a heterogeneous disease with a need for new prognostic biomarkers. Human leukocyte antigen (HLA) genes are highly polymorphic genes central to antigen presentation to T‐cells. Two alleles, HLA‐A*02:01 and HLA‐A*24:02, have been associated with prognosis in patients diagnosed with de novo metastatic prostate cancer. We leveraged the next‐generation sequenced cohorts CPC‐GENE and TCGA‐PRAD to examine HLA alleles, antiviral T‐cell receptors and prostate cancer disease recurrence after prostatectomy. Carrying HLA‐A*02:01 (111/229; 48% of patients) was independently associated with disease recurrence in patients with low‐intermediate risk prostate cancer. HLA‐A*11 (carried by 42/441; 10% of patients) was independently associated with rapid disease recurrence in patients with high‐risk prostate cancer. Moreover, HLA‐A*02:01 carriers in which anti‐cytomegalovirus T‐cell receptors (CMV‐TCR) were identified in tumors (13/144; 10% of all patients in the cohort) had a higher risk of disease recurrence than CMV‐TCR‐negative patients. These findings suggest that HLA‐type and CMV immunity may be valuable biomarkers for prostate cancer progression.
Collapse
Affiliation(s)
- Johanna Classon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Margherita Zamboni
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Engblom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kanar Alkass
- Department of Pathology and Oncology, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Mantovani
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Pou
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Dieudonné Nkulikiyimfura
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Druid
- Department of Pathology and Oncology, Karolinska Institutet, Stockholm, Sweden
| | - Jeff Mold
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Sentana-Lledo D, Sartor O, Balk SP, Einstein DJ. Immune mechanisms behind prostate cancer in men of African ancestry: A review. Prostate 2022; 82:883-893. [PMID: 35254710 PMCID: PMC9875381 DOI: 10.1002/pros.24333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Men of African ancestry (AA) with prostate cancer suffer from worse outcomes. However, a recent analysis of patients treated with the dendritic cell vaccine sipuleucel-T for prostate cancer suggested that AA patients could have improved outcomes relative to whites. METHODS We conducted a focused literature review of Medline-indexed articles and clinical trials listed on clinicaltrials.gov. RESULTS We identify several studies pointing to enrichment of inflammatory cellular infiltrates and cytokine signaling among AA patients with prostate cancer. We outline potential genomic and transcriptomic alterations that may contribute to immunogenicity. Last, we investigate differences in host immunity and vaccine responsiveness that may be enhanced in AA patients. CONCLUSIONS AA patients with prostate cancer may be enriched for an immunogenic phenotype. Dedicated studies are needed to better understand the immune mechanisms that contribute to existing cancer disparities and test immune-based therapies in this population.
Collapse
Affiliation(s)
- Daniel Sentana-Lledo
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Oliver Sartor
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Steven P. Balk
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - David J. Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Wong NKY, Dong X, Lin YY, Xue H, Wu R, Lin D, Collins C, Wang Y. Framework of Intrinsic Immune Landscape of Dormant Prostate Cancer. Cells 2022; 11:cells11091550. [PMID: 35563856 PMCID: PMC9105276 DOI: 10.3390/cells11091550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Androgen deprivation therapy (ADT) is the standard therapy for men with advanced prostate cancer (PCa). PCa often responds to ADT and enters a dormancy period, which can be recognized clinically as a minimal residual disease. However, the majority of these patients will eventually experience a relapse in the form of castration-resistant PCa with poor survival. Therefore, ADT-induced dormancy is a unique time window for treatment that can provide a cure. The study of this well-recognized phase of prostate cancer progression is largely hindered by the scarcity of appropriate clinical tissue and clinically relevant preclinical models. Here, we report the utility of unique and clinically relevant patient-derived xenograft models in the study of the intrinsic immune landscape of dormant PCa. Using data from RNA sequencing, we have reconstructed the immune evasion mechanisms that can be utilized by dormant PCa cells. Since dormant PCa cells need to evade the host immune surveillance for survival, our results provide a framework for further study and for devising immunomodulatory mechanisms that can eliminate dormant PCa cells.
Collapse
Affiliation(s)
- Nelson K. Y. Wong
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Yen-Yi Lin
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Colin Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
- Correspondence: ; Tel.: +1-604-675-8013
| |
Collapse
|
35
|
SNAP25 is a potential prognostic biomarker for prostate cancer. Cancer Cell Int 2022; 22:144. [PMID: 35392903 PMCID: PMC8991690 DOI: 10.1186/s12935-022-02558-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/22/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most lethal cancers in male individuals. The synaptosome associated protein 25 (SNAP25) gene is a key mediator of multiple biological functions in tumors. However, its significant impact on the prognosis in PCa remains to be elucidated. METHODS We performed a comprehensive analysis of the Cancer Genome Atlas dataset (TCGA) to identify the differentially expressed genes between PCa and normal prostate tissue. We subjected the differentially expressed genes to gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes functional analysis, and constructed a protein-protein interaction network. We then screened for pivotal genes to identify the hub genes of prognostic significance by performing Cox regression analysis. We identified SNAP25 as one such gene and analyzed the relationship between its expression in PCa to poor prognosis using GEPIA interactive web server. RESULTS TCGA database demonstrated that SNAP25 was significantly downregulated in PCa. The progressive decrease in SNAP25 expression with the increase in the clinical staging and grading of PCa demonstrates that reduced SNAP25 expression considerably exacerbates the clinical presentation. Our findings confirm that SNAP25 expression strongly correlates with overall survival, which was determined using the Gleason score. We also validated the role of SNAP25 expression in the prognosis of patients with PCa. We used Gene Set Enrichment and Gene Ontology analyses to evaluate the function of SNAP25 and further explored the association between SNAP25 expression and tumor-infiltrating immune cells using the Tumor Immune Assessment Resource database. We found for the first time that SNAP25 is involved in the activation, differentiation, and migration of immune cells in PCa. Its expression was positively correlated with immune cell infiltration, including B cells, CD8+ T cells, CD4+ T cells, neutrophils, dendritic cells, macrophages, and natural killer cells. SNAP25 expression also positively correlated with chemokines/chemokine receptors, suggesting that SNAP25 may regulate the migration of immune cells. In addition, our experimental results verified the low expression of SNAP25 in PCa cells. CONCLUSION Our findings indicate a relationship between SNAP25 expression and PCa, demonstrating that SNAP25 is a potential prognostic biomarker due to its vital role in immune infiltration.
Collapse
|
36
|
Yamoah K, Awasthi S, Mahal B, Zhao SG, Grass D, Berglund A, Abraham-Miranda J, Gerke T, Rounbehler RJ, Davicioni E, Liu Y, Park J, Cleveland JL, Pow-Sang JM, Fernandez D, Torres-Roca J, Karnes RJ, Schaeffer E, Freedland S, Spratt DE, Den RB, Rebbeck TR, Feng F. Novel Transcriptomic Interactions Between Immune Content and Genomic Classifier Predict Lethal Outcomes in High-grade Prostate Cancer. Eur Urol 2022; 81:325-330. [PMID: 33303244 PMCID: PMC9838823 DOI: 10.1016/j.eururo.2020.11.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/20/2020] [Indexed: 01/16/2023]
Abstract
Grade group 4 and 5 (GG-45) prostate cancer (PCa) patients are at the highest risk of lethal outcomes, yet lack genomic risk stratification for prognosis and treatment selection. Here, we assess whether transcriptomic interactions between tumor immune content score (ICS) and the Decipher genomic classifier can identify most lethal subsets of GG-45 PCa. We utilized whole transcriptome data from 8071 tumor tissue (6071 prostatectomy and 2000 treatment-naïve biopsy samples) to derive four immunogenomic subtypes using ICS and Decipher. When compared across all grade groups, GG-45 samples had the highest proportion of most aggressive subtype-ICSHigh/DecipherHigh. Subsequent analyses within the GG-45 patient samples (n = 1420) revealed that the ICSHigh/DecipherHigh subtype was associated with increased genomic radiosensitivity. Additionally, in a multivariable model (n = 335), ICSHigh/DecipherHigh subtype had a significantly higher risk of distant metastasis (hazard ratio [HR] = 5.41; 95% confidence interval [CI], 2.76-10.6; p ≤ 0.0001) and PCa-specific mortality (HR = 10.6; 95% CI, 4.18-26.94; p ≤ 0.0001) as compared with ICSLow/DecipherLow. The novel immunogenomic subtypes establish a very strong synergistic interaction between ICS and Decipher in identifying GG-45 patients who experience the most lethal outcomes. PATIENT SUMMARY: In this analysis, we identified a novel interaction between the total immune content of prostate tumors and genomic classifier to identify the most lethal subset of patients with grade groups 4 and 5. Our results will aid in the subtyping of aggressive prostate cancer patients who may benefit from combined immune-radiotherapy modalities.
Collapse
Affiliation(s)
- Kosj Yamoah
- H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA;,Corresponding author. 12902 Magnolia Drive, Tampa, FL 33612, USA. Tel. +1-813-745-3053; Fax: 813-745-7231. (K. Yamoah)
| | | | | | | | - Daniel Grass
- H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Anders Berglund
- H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Travis Gerke
- H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Elai Davicioni
- Decipher Bioscience, Vancouver, British Columbia, Canada
| | - Yang Liu
- Decipher Bioscience, Vancouver, British Columbia, Canada
| | - Jong Park
- H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | - Daniel Fernandez
- H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | - Edward Schaeffer
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | - Felix Feng
- University of California, San Francisco, CA, USA
| |
Collapse
|
37
|
Sakellakis M, Flores L, Ramachandran S. Patterns of indolence in prostate cancer (Review). Exp Ther Med 2022; 23:351. [PMID: 35493432 PMCID: PMC9019743 DOI: 10.3892/etm.2022.11278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Although prostate cancer is a major cause of cancer-related mortality worldwide, most patients will have a relatively indolent clinical course. Contrary to most other types of cancer, even the diagnosis of locally advanced or metastatic disease is not always lethal. The present review aimed to summarize what is known regarding the underlying mechanisms related to the indolent course of subsets of prostate cancer, at various stages. The data suggested that no specific gene alteration by itself was responsible for carcinogenesis or disease aggressiveness. However, pathway analysis identified genetic aberrations in multiple critical pathways that tend to accumulate over the course of the disease. The progression from indolence into aggressive disease is associated with a complex interplay in which genetic and epigenetic factors are involved. The effect of the immune tumor microenvironment is also very important. Emerging evidence has suggested that the upregulation of pathways related to cellular aging and senescence can identify patients with indolent disease. In addition, a number of tumors enter a long-lasting quiescent state. Further research will determine whether halting tumor evolution is a feasible option, and whether the life of patients can be markedly prolonged by inducing tumor senescence or long-term dormancy.
Collapse
Affiliation(s)
- Minas Sakellakis
- Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, 18547 Athens, Greece
| | - Laura Flores
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
| | - Sumankalai Ramachandran
- Department of Genitourinary Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
| |
Collapse
|
38
|
Peña-Romero AC, Orenes-Piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel) 2022; 14:1681. [PMID: 35406451 PMCID: PMC8996887 DOI: 10.3390/cancers14071681] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Our body is constantly exposed to pathogens or external threats, but with the immune response that our body can develop, we can fight off and defeat possible attacks or infections. Nevertheless, sometimes this threat comes from an internal factor. Situations such as the existence of a tumour also cause our immune system (IS) to be put on alert. Indeed, the link between immunology and cancer is evident these days, with IS being used as one of the important targets for treating cancer. Our IS is able to eliminate those abnormal or damaged cells found in our body, preventing the uncontrolled proliferation of tumour cells that can lead to cancer. However, in several cases, tumour cells can escape from the IS. It has been observed that immune cells, the extracellular matrix, blood vessels, fat cells and various molecules could support tumour growth and development. Thus, the developing tumour receives structural support, irrigation and energy, among other resources, making its survival and progression possible. All these components that accompany and help the tumour to survive and to grow are called the tumour microenvironment (TME). Given the importance of its presence in the tumour development process, this review will focus on one of the components of the TME: immune cells. Immune cells can support anti-tumour immune response protecting us against tumour cells; nevertheless, they can also behave as pro-tumoural cells, thus promoting tumour progression and survival. In this review, the anti-tumour and pro-tumour immunity of several immune cells will be discussed. In addition, the TME influence on this dual effect will be also analysed.
Collapse
Affiliation(s)
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, 30120 Murcia, Spain;
| |
Collapse
|
39
|
Risk subtyping and prognostic assessment of prostate cancer based on consensus genes. Commun Biol 2022; 5:233. [PMID: 35293897 PMCID: PMC8924191 DOI: 10.1038/s42003-022-03164-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 02/14/2022] [Indexed: 01/20/2023] Open
Abstract
Prostate cancer (PCa) is the most frequent malignancy in male urogenital system around worldwide. We performed molecular subtyping and prognostic assessment based on consensus genes in patients with PCa. Five cohorts containing 1,046 PCa patients with RNA expression profiles and recorded clinical follow-up information were included. Univariate, multivariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) Cox regression were used to select prognostic genes and establish the signature. Immunohistochemistry staining, cell proliferation, migration and invasion assays were used to assess the biological functions of key genes. Thirty-nine intersecting consensus prognostic genes from five independent cohorts were identified. Subsequently, an eleven-consensus-gene classifier was established. In addition, multivariate Cox regression analyses showed that the classifier served as an independent indicator of recurrence-free survival in three of the five cohorts. Combined receiver operating characteristic (ROC) analysis achieved synthesized effects by combining the classifier with clinicopathological features in four of five cohorts. SRD5A2 inhibits cell proliferation, while ITGA11 promotes cell migration and invasion, possibly through the PI3K/AKT signaling pathway. To conclude, we established and validated an eleven-consensus-gene classifier, which may add prognostic value to the currently available staging system. By analysis of gene expression profiles of prostate cancer patients from multiple platforms, an eleven-consensus-gene classifier is constructed to provide a robust tool for the prediction of recurrence-free survival.
Collapse
|
40
|
Inflammation and Prostate Cancer: A Multidisciplinary Approach to Identifying Opportunities for Treatment and Prevention. Cancers (Basel) 2022; 14:cancers14061367. [PMID: 35326519 PMCID: PMC8946208 DOI: 10.3390/cancers14061367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a major cause of disease for men globally. Inflammation, an established hallmark of cancer, is frequently observed in the prostate, though its contribution to prostate cancer risks and outcomes is not fully understood. Prostate cancer is biologically and clinically heterogeneous, and there is now evidence that inflammation and immunological characteristics vary by the genomic and mutational landscape of the tumor. Moreover, it is now recognized that risk factor profiles vary between tumor subgroups, as defined by histopathological and molecular features. Here, we provide a review centered around the relationship between inflammation and prostate cancer, with a consideration of molecular tumor features and a particular focus on the advanced and lethal stages of disease. We summarize findings from epidemiological studies of the etiology and role of inflammation in prostate cancer. We discuss the pathology of prostate inflammation, and consider approaches for assessing the tumor immune microenvironment in epidemiological studies. We review emerging clinical therapies targeting immune biology within the context of prostate cancer. Finally, we consider potentially modifiable risk factors and corresponding lifestyle interventions that may affect prostate inflammation, impacting outcomes. These emerging insights will provide some hints for the development of treatment and prevention strategies for advanced and lethal prostate cancer.
Collapse
|
41
|
Wang D, Wan Z, Yang Q, Chen J, Liu Y, Lu F, Tang J. Sonodynamical reversion of immunosuppressive microenvironment in prostate cancer via engineered exosomes. Drug Deliv 2022; 29:702-713. [PMID: 35236203 PMCID: PMC8903759 DOI: 10.1080/10717544.2022.2044937] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer (PCa) responds poorly to routine immunotherapy due to the tumor immunosuppressive microenvironment. Here, we describe an ultrasound-based drug delivery strategy to stimulate potent anti-tumor immunity via exosomes encapsulated with sonosensitizers Chlorin e6 (Ce6) and immune adjuvant R848, namely ExoCe6+R848. ExoCe6+R848 was constructed by simple co-incubation of Ce6 and R848 with HEK 293T cell-derived exosomes. The properties of exosomes were not affected after loading Ce6 and R848, and the exosomes were accumulated in the tumor site after intratumoral injection. In vitro and in vivo assays showed that ultrasonic irradiation enhanced R848-mediated DCs maturation when ExoCe6+R848 was engulfed by DCs, as demonstrated by the upregulated expression of CD80 and CD86. Furthermore, these engineered exosomes together with ultrasound irradiation could synergistically reprogram macrophages from an immunosuppressive M2-like phenotype to an anti-tumor M1-like phenotype, further activating effector T cells and reverting the immunosuppressive microenvironment. The exosome delivery strategy not only supplies a paradigm for overcoming side effects of systemic delivery of Ce6 and R848, but also offers an effective combination regimen of cancer immunotherapy.
Collapse
Affiliation(s)
- Dingyi Wang
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi' an, People's Republic of China
| | - Qian Yang
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianmei Chen
- Department of Health Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yunnan Liu
- Department of Ultrasound, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Fan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie Tang
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
42
|
Agarwal N, Azad A, Carles J, Chowdhury S, McGregor B, Merseburger AS, Oudard S, Saad F, Soares A, Benzaghou F, Kerloeguen Y, Kimura A, Mohamed N, Panneerselvam A, Wang F, Pal S. A phase III, randomized, open-label study (CONTACT-02) of cabozantinib plus atezolizumab versus second novel hormone therapy in patients with metastatic castration-resistant prostate cancer. Future Oncol 2022; 18:1185-1198. [PMID: 35034502 DOI: 10.2217/fon-2021-1096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cabozantinib inhibits multiple receptor tyrosine kinases, including the TAM kinase family, and may enhance response to immune checkpoint inhibitors. One cohort of the ongoing phase Ib COSMIC-021 study (NCT03170960) evaluating cabozantinib plus the PD-L1 inhibitor atezolizumab in men with metastatic castration-resistant prostate cancer (mCRPC) that has progressed in soft tissue on/after enzalutamide and/or abiraterone treatment for metastatic disease has shown promising efficacy. Here, we describe the rationale and design of a phase III trial of cabozantinib plus atezolizumab versus a second novel hormone therapy (NHT) in patients who have previously received an NHT for mCRPC, metastatic castration-sensitive PC or nonmetastatic CRPC and have measurable visceral disease and/or extrapelvic adenopathy - a population with a significant unmet need for treatment options. Trial Registration Clinical Trial Registration: NCT04446117 (ClinicalTrials.gov) Registered on 24 June 2020.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Huntsman Cancer Institute (NCI-CCC), University of Utah, Salt Lake City, UT 84112, USA
| | - Arun Azad
- Peter MacCallum Cancer Centre & Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Joan Carles
- Vall d'Hebron Institut d'Oncología, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Simon Chowdhury
- Guy's, King's & St. Thomas' Hospitals, & Sarah Cannon Research Institute, London, SE1, UK
| | - Bradley McGregor
- Lank Center of Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, 23562, Lübeck, Germany
| | - Stéphane Oudard
- Department of Medical Oncology, European Georges Pompidou Hospital, University of Paris, 75015 Paris, France
| | - Fred Saad
- Department of Urology, Centre Hospitalier de l'Université de Montréal/CRCHUM, Montreal, QC, Canada
| | - Andrey Soares
- Department of Oncology, Hospital Israelita Albert Einstein, São Paulo, 05652-900, Brazil
- Department of Oncology, Centro Paulista de Oncologia/Oncoclínicas, São Paulo, 01452-000, Brazil
| | | | | | - Akiko Kimura
- Takeda Pharmaceutical Company Limited, Osaka, 540-8645, Japan
| | | | | | - Fong Wang
- Exelixis, Inc., Alameda, CA 94502, USA
| | - Sumanta Pal
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
43
|
Sumitomo R, Huang CL, Fujita M, Cho H, Date H. Differential expression of PD‑L1 and PD‑L2 is associated with the tumor microenvironment of TILs and M2 TAMs and tumor differentiation in non‑small cell lung cancer. Oncol Rep 2022; 47:73. [PMID: 35169863 PMCID: PMC8867258 DOI: 10.3892/or.2022.8284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
To improve the treatment strategy of immune-checkpoint inhibitors for non-small cell lung cancer (NSCLC), a comprehensive analysis of programmed death-ligand (PD-L)1 and PD-L2 expression is clinically important. The expression of PD-L1 and PD-L2 on both tumor cells (TCs) and tumor-infiltrating immune cells (ICs) was investigated, with respect to tumor-infiltrating lymphocytes (TILs) and M2 tumor-associated macrophages (TAMs), which are key components of the tumor microenvironment, in 175 patients with resected NSCLC. The TIL and M2 TAM densities were associated with the expression of PD-L1 on the two TCs (both P<0.0001) and ICs (both P<0.0001). The TIL and M2 TAM densities were also associated with the expression of PD-L2 on both TCs (P=0.0494 and P=0.0452, respectively) and ICs (P=0.0048 and P=0.0125, respectively). However, there was no correlation between the percentage of PD-L1-positive TCs and the percentage of PD-L2-positive TCs (r=0.019; P=0.8049). Meanwhile, tumor differentiation was significantly associated with the PD-L1 expression on TCs and ICs (P=0.0002 and P<0.0001, respectively). By contrast, tumor differentiation was inversely associated with the PD-L2 expression on both TCs and ICs (P=0.0260 and P=0.0326, respectively). In conclusion, the combined evaluation of PD-L1 and PD-L2 expression could be clinically important in the treatment strategy of immune-checkpoint inhibitors in patients with NSCLC. In particular, the evaluation of PD-L2 expression may be necessary for patients with PD-L1-negative NSCLC.
Collapse
Affiliation(s)
- Ryota Sumitomo
- Department of Thoracic Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Kita‑ku, Osaka 530‑8480, Japan
| | - Cheng-Long Huang
- Department of Thoracic Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Kita‑ku, Osaka 530‑8480, Japan
| | - Masaaki Fujita
- Department of Oncology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Kita‑ku, Osaka 530‑8480, Japan
| | - Hiroyuki Cho
- Department of Thoracic Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Kita‑ku, Osaka 530‑8480, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Shogoin, Sakyo‑ku, Kyoto 606‑8507, Japan
| |
Collapse
|
44
|
Feng D, Shi X, Xiong Q, Zhang F, Li D, Wei W, Yang L. A Ferroptosis-Related Gene Prognostic Index Associated With Biochemical Recurrence and Radiation Resistance for Patients With Prostate Cancer Undergoing Radical Radiotherapy. Front Cell Dev Biol 2022; 10:803766. [PMID: 35223835 PMCID: PMC8867172 DOI: 10.3389/fcell.2022.803766] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
Background: Ferroptosis is a new type of programmed cell death which has been reported to be involved in the development of various cancers. In this study, we attempted to explore the possible links between ferroptosis and prostate cancer (PCa), and a novel ferroptosis-related gene prognostic index (FGPI) was constructed to predict biochemical recurrence (BCR) and radiation resistance for PCa patients undergoing radical radiotherapy (RRT). Moreover, the tumor immune microenvironment (TME) of PCa was analyzed. Methods: We merged four GEO datasets by removing batch effects. All analyses were conducted with R version 3.6.3 and its suitable packages. Cytoscape 3.8.2 was used to establish a network of transcriptional factor and competing endogenous RNA. Results: We established the FGPI based on ACSL3 and EPAS1. We observed that FGPI was an independent risk factor of BCR for PCa patients (HR: 3.03; 95% CI: 1.68–5.48), consistent with the result of internal validation (HR: 3.44; 95% CI: 1.68–7.05). Furthermore, FGPI showed high ability to identify radiation resistance (AUC: 0.963; 95% CI: 0.882–1.00). LncRNA PART1 was significantly associated with BCR and might modulate the mRNA expression of EPAS1 and ACSL3 through interactions with 60 miRNAs. Gene set enrichment analysis indicated that FGPI was enriched in epithelial–mesenchymal transition, allograft rejection, TGF beta signaling pathway, and ECM receptor interaction. Immune checkpoint and m6A analyses showed that PD-L2, CD96, and METTL14 were differentially expressed between BCR and no BCR groups, among which CD96 was significantly associated with BCR-free survival (HR: 1.79; 95% CI: 1.06–3.03). We observed that cancer-related fibroblasts (CAFs), macrophages, stromal score, immune score, estimate score, and tumor purity were differentially expressed between BCR and no BCR groups and closely related to BCR-free survival (HRs were 2.17, 1.79, 2.20, 1.93, 1.92, and 0.52 for cancer-related fibroblasts, macrophages, stromal score, immune score, estimate score, and tumor purity, respectively). Moreover, cancer-related fibroblasts (coefficient: 0.20), stromal score (coefficient: 0.14), immune score (coefficient: 0.14), estimate score (coefficient: 0.15), and tumor purity (coefficient: −0.15) were significantly related to FGPI, among which higher positive correlation between cancer-related fibroblasts and FGPI was observed. Conclusion: We found that FGPI based on ACSL3 and EPAS1 might be used to predict BCR and radiation resistance for PCa patients. CD96 and PD-L2 might be a possible target for drug action. Besides, we highlighted the importance of immune evasion in the process of BCR.
Collapse
|
45
|
Feng P, Li Y, Tian Z, Qian Y, Miao X, Zhang Y. Analysis of Gene Co-Expression Network to Identify the Role of CD8 + T Cell Infiltration-Related Biomarkers in High-Grade Glioma. Int J Gen Med 2022; 15:1879-1890. [PMID: 35228815 PMCID: PMC8881922 DOI: 10.2147/ijgm.s348470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background High-grade glioma is a type of heterogeneous lethal brain tumor most common in adults. At present, immune checkpoint inhibitors (ICIs) are being considered for first-line therapeutics for malignant GBM. Nonetheless, molecular markers for malignant GBM are unavailable at present. As a result, it is important to explore molecular markers related to immunity for GBM. Materials and Methods The present study adopted a deconvolution algorithm for quantifying immunocyte composition and measuring gene expression, and used weighted gene co-expression network analysis (WGCNA) to analyze GBM expression data obtained from Gene Expression Omnibus (GEO), Chinese Glioma Genome Atlas (CGGA), and the Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) databases. Thereafter, key CD8+ T cell infiltration-related genes and modules were identified, and database analysis was conducted to verify the therapeutic and immune features of the selected genes. Results From this study, CD8+ T cell-related modules were identified. By using consistent clustering analysis, two panels of genes (red and green) with the highest correlation with CD8+ T cells infiltration were used to construct high-, low-expression groups, silent and/or mixed group of T cell infiltrations. In the high and low CD8+ T cell infiltration groups, a total of 535 differential genes were obtained, of which ten genes (RPS5, RPS6, FAU, RPS19, RPS23, RPS15A, RPS29, RPS14, RPS16, RPS27A) were identified through protein–protein interactions and co-expression network analysis. Post Cox regression and Kaplan–Meier (K-M) survival analysis, RPS5, RPS6, and RPS16 were selected as candidate prognostic biomarkers related to CD8+ T cells. Conclusion The three associated genes RPS5, RPS6, and RPS16 were markedly related to degree of T cell infiltration and immune-related activated. We identified their potential biomarkers and therapeutic targets associated with the extent of CD8+ T cell infiltration in GBM.
Collapse
Affiliation(s)
- Peng Feng
- Neurosurgery, Shaanxi Provincial People’s Hospital, Xian, 710068, People’s Republic of China
| | - Yuchen Li
- Hengyang Medical School, University of South China, Hengyang, 421001, People’s Republic of China
| | - Zhijie Tian
- Neurosurgery, Shaanxi Provincial People’s Hospital, Xian, 710068, People’s Republic of China
| | - Yuan Qian
- Neurosurgery, Shaanxi Provincial People’s Hospital, Xian, 710068, People’s Republic of China
| | - Xingyu Miao
- Neurosurgery, Shaanxi Provincial People’s Hospital, Xian, 710068, People’s Republic of China
- Correspondence: Xingyu Miao; Yuelin Zhang, Email ;
| | - Yuelin Zhang
- Xi’an Medical University, Xian, 710021, People’s Republic of China
| |
Collapse
|
46
|
Hagiwara M, Fushimi A, Bhattacharya A, Yamashita N, Morimoto Y, Oya M, Withers HG, Hu Q, Liu T, Liu S, Wong KK, Long MD, Kufe D. MUC1-C integrates type II interferon and chromatin remodeling pathways in immunosuppression of prostate cancer. Oncoimmunology 2022; 11:2029298. [PMID: 35127252 PMCID: PMC8812775 DOI: 10.1080/2162402x.2022.2029298] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The oncogenic MUC1-C protein drives dedifferentiation of castrate resistant prostate cancer (CRPC) cells in association with chromatin remodeling. The present work demonstrates that MUC1-C is necessary for expression of IFNGR1 and activation of the type II interferon-gamma (IFN-γ) pathway. We show that MUC1-C→ARID1A/BAF signaling induces IFNGR1 transcription and that MUC1-C-induced activation of the NuRD complex suppresses FBXW7 in stabilizing the IFNGR1 protein. MUC1-C and NuRD were also necessary for expression of the downstream STAT1 and IRF1 transcription factors. We further demonstrate that MUC1-C and PBRM1/PBAF are necessary for IRF1-induced expression of (i) IDO1, WARS and PTGES, which metabolically suppress the immune tumor microenvironment (TME), and (ii) the ISG15 and SERPINB9 inhibitors of T cell function. Of translational relevance, we show that MUC1 associates with expression of IFNGR1, STAT1 and IRF1, as well as the downstream IDO1, WARS, PTGES, ISG15 and SERPINB9 immunosuppressive effectors in CRPC tumors. Analyses of scRNA-seq data further demonstrate that MUC1 correlates with cancer stem cell (CSC) and IFN gene signatures across CRPC cells. Consistent with these results, MUC1 associates with immune cell-depleted "cold" CRPC TMEs. These findings demonstrate that MUC1-C integrates chronic activation of the type II IFN-γ pathway and induction of chromatin remodeling complexes in linking the CSC state with immune evasion.
Collapse
Affiliation(s)
- Masayuki Hagiwara
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Atsushi Fushimi
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Nami Yamashita
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Henry G. Withers
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kwok K. Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Donald Kufe
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
47
|
Shan Z, Zhao Y, Zhang J, Yan Z, Wang T, Mao F, Teng Y, Peng L, Chen W, Wang P, Cheng P, Tian W, Chen J, Chen W, Zhuang Y. FasL + PD-L2 + Identifies a Novel Immunosuppressive Neutrophil Population in Human Gastric Cancer That Promotes Disease Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103543. [PMID: 34957697 PMCID: PMC8844550 DOI: 10.1002/advs.202103543] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/28/2021] [Indexed: 05/05/2023]
Abstract
Neutrophils constitute abundant cellular components in human gastric cancer (GC) tissues, but their protumorigenic subset in pathogenesis of GC progression is unclear. Here, it is found that patients with GC show significantly higher neutrophil infiltration in tumors that is regulated by CXCL12-CXCR4 chemotaxis. These tumor-infiltrating neutrophils express high level immunosuppressive molecules FasL and PD-L2, and this FasL+ PD-L2+ neutrophil subset with a unique phenotype constitutes at least 20% of all neutrophils in advanced GC and predicts poor patient survival. Tumor induces neutrophils to express FasL and PD-L2 proteins with similar phenotype to those in GC tumors in both time-dependent and dose-dependent manners. Mechanistically, Th17 cell-derived IL-17A and tumor cell-derived G-CSF can significantly induce neutrophil FasL and PD-L2 expression via activating ERK-NF-κB and JAK-STAT3 signaling pathway, respectively. Importantly, upon over-expressing FasL and PD-L2, neutrophils acquire immunosuppressive functions on tumor-specific CD8+ T-cells and promote the growth and progression of human GC tumors in vitro and in vivo, which can be reversed by blocking FasL and PD-L2 on these neutrophils. Thus, the work identifies a novel protumorigenic FasL+ PD-L2+ neutrophil subset in GC and provides new insights for human cancer immunosuppression and anti-cancer therapies targeting these pathogenic cells.
Collapse
Affiliation(s)
- Zhi‐Guo Shan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal SurgerySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Yong‐Liang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal SurgerySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Jin‐Yu Zhang
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
| | - Zong‐Bao Yan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal SurgerySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Ting‐Ting Wang
- Chongqing Key Research Laboratory for Drug MetabolismDepartment of PharmacologyChongqing Medical UniversityChongqing400016China
| | - Fang‐Yuan Mao
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
| | - Yong‐Sheng Teng
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
| | - Liu‐Sheng Peng
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
| | - Wan‐Yan Chen
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
| | - Pan Wang
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
| | - Ping Cheng
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
| | - Wen‐Qing Tian
- Department of Endocrinologythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Jun Chen
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal SurgerySouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Weisan Chen
- La Trobe Institute of Molecular ScienceLa Trobe UniversityBundooraVictoria3085Australia
| | - Yuan Zhuang
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy and Laboratory MedicineThird Military Medical UniversityChongqing400038China
- Department of Gastroenterologythe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuan646000China
- Jiangsu Key Laboratory of Medical Science and Laboratory MedicineSchool of MedicineJiangsu UniversityJiangsu21013China
- Department of GastroenterologySouthwest HospitalThird Military Medical UniversityChongqing400038China
- Department of Gastroenterologythe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhou563003China
| |
Collapse
|
48
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Ascani S, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Gandhi J, Nicoli D, Farnetti E, Piana S, Tafuni A, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review (Part 6): Correlation of PD-L1 Expression with the Status of Mismatch Repair System, BRCA, PTEN, and Other Genes. Biomedicines 2022; 10:236. [PMID: 35203446 PMCID: PMC8868626 DOI: 10.3390/biomedicines10020236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Pembrolizumab (anti-PD-1) is allowed in selected metastatic castration-resistant prostate cancer (PC) patients showing microsatellite instability/mismatch repair system deficiency (MSI-H/dMMR). BRCA1/2 loss-of-function is linked to hereditary PCs and homologous recombination DNA-repair system deficiency: poly-ADP-ribose-polymerase inhibitors can be administered to BRCA-mutated PC patients. Recently, docetaxel-refractory metastatic castration-resistant PC patients with BRCA1/2 or ATM somatic mutations had higher response rates to pembrolizumab. PTEN regulates cell cycle/proliferation/apoptosis through pathways including the AKT/mTOR, which upregulates PD-L1 expression in PC. Our systematic literature review (PRISMA guidelines) investigated the potential correlations between PD-L1 and MMR/MSI/BRCA/PTEN statuses in PC, discussing few other relevant genes. Excluding selection biases, 74/677 (11%) PCs showed dMMR/MSI; 8/67 (12%) of dMMR/MSI cases were PD-L1+. dMMR-PCs included ductal (3%) and acinar (14%) PCs (all cases tested for MSI were acinar-PCs). In total, 15/39 (39%) PCs harbored BRCA1/2 aberrations: limited data are available for PD-L1 expression in these patients. 13/137 (10%) PTEN- PCs were PD-L1+; 10/29 (35%) PD-L1+ PCs showed PTEN negativity. SPOP mutations may increase PD-L1 levels, while the potential correlation between PD-L1 and ERG expression in PC should be clarified. Further research should verify how the efficacy of PD-1 inhibitors in metastatic castration-resistant PCs is related to dMMR/MSI, DNA-damage repair genes defects, or PD-L1 expression.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asuncion 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Davide Nicoli
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Enrico Farnetti
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Simonetta Piana
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Alessandro Tafuni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
49
|
Marvaso G, Volpe S, Pepa M, Zaffaroni M, Corrao G, Augugliaro M, Nolè F, De Cobelli O, Jereczek-Fossa BA. Recent Advances in the Management of Hormone-Sensitive Oligometastatic Prostate Cancer. Cancer Manag Res 2022; 14:89-101. [PMID: 35023972 PMCID: PMC8747627 DOI: 10.2147/cmar.s321136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
After primary treatment for prostate cancer with either radical prostatectomy or radiotherapy, a significant proportion of patients are at risk of developing metastases. In recent years, a deeper understanding of the underlying biology together with improved imaging techniques and the advent of new therapeutic options including metastases-directed therapies and new drugs have revolutionized the management of low-burden metastatic disease, also known as oligometastatic state. The purpose of this narrative review is to report the recent developments in the management of hormone-sensitive oligometastatic prostate cancer patients.
Collapse
Affiliation(s)
- Giulia Marvaso
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefania Volpe
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Matteo Pepa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Corrao
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Matteo Augugliaro
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Franco Nolè
- Medical Oncology Division of Urogenital & Head & Neck Tumors, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Ottavio De Cobelli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Urology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
50
|
Xia XF, Wang YQ, Shao SY, Zhao XY, Zhang SG, Li ZY, Yuan YC, Zhang N. The relationship between urologic cancer outcomes and national Human Development Index: trend in recent years. BMC Urol 2022; 22:2. [PMID: 35012527 PMCID: PMC8744298 DOI: 10.1186/s12894-022-00953-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To describe the influence of the socioeconomic development on worldwide age-standardized incidence and mortality rates, as well as mortality-to-incidence ratio (MIR) and 5-year net survival of urologic cancer patients in recent years. METHODS The Human Development Index (HDI) values were obtained from the United Nations Development Programme, data on age-standardized incidence/mortality rates of prostate, bladder and kidney cancer were retrieved from the GLOBOCAN database, 5-year net survival was provided by the CONCORD-3 program. We then evaluated the association between incidence/MIR/survival and HDI, with a focus on geographic variability as well as temporal patterns during the last 6 years. RESULTS Urologic cancer incidence rates were positively correlated with HDIs, and MIRs were negatively correlated with HDIs. Prostate cancer survival also correlated positively with HDIs, solidly confirming the interrelation among cancer indicators and socioeconomic factors. Most countries experienced incidence decline over the most recent 6 years, and a substantial reduction in MIR was observed. Survival rates of prostate cancer have simultaneously improved. CONCLUSION Development has a prominent influence on urologic cancer outcomes. HDI values are significantly correlated with cancer incidence, MIR and survival rates. HDI values have risen along with increased incidence and improved outcomes of urologic caner in recent years.
Collapse
Affiliation(s)
- Xiao-Fang Xia
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yi-Qiu Wang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shi-Yi Shao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin-Yu Zhao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shi-Geng Zhang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhong-Yi Li
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yi-Chu Yuan
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Nan Zhang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|