1
|
Zhang J, Zhang Y, Chen J, Xu M, Guan X, Wu C, Zhang S, Qu H, Chu J, Xu Y, Gu M, Liu Y, Xu G. Sugar transporter modulates nitrogen-determined tillering and yield formation in rice. Nat Commun 2024; 15:9233. [PMID: 39455567 PMCID: PMC11512014 DOI: 10.1038/s41467-024-53651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Nitrogen (N) fertilizer application ensures crop production and food security worldwide. N-controlled boosting of shoot branching that is also referred as tillering can improve planting density for increasing grain yield of cereals. Here, we report that Sugar Transporter Protein 28 (OsSTP28) as a key regulator of N-responsive tillering and yield formation in rice. N supply inhibits the expression of OsSTP28, resulting in glucose accumulation in the apoplast of tiller buds, which in turn suppresses the expression of a transcriptional inhibitor ORYZA SATIVA HOMEOBOX 15 (OSH15) via an epigenetic mechanism to activate gibberellin 2-oxidases (GA2oxs)-facilitated gibberellin catabolism in shoot base. Thereby, OsSTP28-OSH15-GA2oxs module reduces the level of bioactive gibberellin in shoot base upon increased N supply, and consequently promotes tillering and grain yield. Moreover, we identify an elite allele of OsSTP28 that can effectively promote N-responsive tillering and yield formation, thus representing a valuable breeding target of N use efficiency improvement for agricultural sustainability.
Collapse
Affiliation(s)
- Jinfei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyi Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingguang Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Mengfan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cui Wu
- College of Life Sciences, Nanjing Agriculture University, Nanjing, 210095, China
| | - Shunan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifeng Xu
- College of Life Sciences, Nanjing Agriculture University, Nanjing, 210095, China
| | - Mian Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Guohua Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Zhang W, Tao J, Chang Y, Wang D, Wu Y, Gu C, Tao W, Wang H, Xie X, Zhang Y. Cytokinin catabolism and transport are involved in strigolactone-modulated rice tiller bud elongation fueled by phosphate and nitrogen supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108982. [PMID: 39089046 DOI: 10.1016/j.plaphy.2024.108982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
Phosphate (P) and nitrogen (N) fertilization affect rice tillering, indicating that P- and N-regulated tiller growth has a crucial effect on grain yield. Cytokinins and strigolactones (SLs) promote and inhibit tiller bud outgrowth, respectively; however, the underlying mechanisms are unclear. In this study, tiller bud outgrowth and cytokinin fractions were evaluated in rice plants fertilized at different levels of P and N. Low phosphate or nitrogen (LP or LN) reduced rice tiller numbers and bud elongation, in line with low cytokinin levels in tiller buds and xylem sap as well as low TCSn:GUS expression, a sensitive cytokinin signal reporter, in the stem base. Furthermore, exogenous cytokinin (6-benzylaminopurin, 6-BA) administration restored bud length and TCSn:GUS activity in LP- and LN-treated plants to similar levels as control plants. The TCSn:GUS activity and tiller bud outgrowth were less affected by LP and LN supplies in SL-synthetic and SL-signaling mutants (d17 and d53) compared to LP- and LN-treated wild-type (WT) plants, indicating that SL modulate tiller bud elongation under LP and LN supplies by reducing the cytokinin levels in tiller buds. OsCKX9 (a cytokinin catabolism gene) transcription in buds and roots was induced by LP, LN supplies and by adding the SL analog GR24. A reduced response of cytokinin fractions to LP and LN supplies was observed in tiller buds and xylem sap of the d53 mutant compared to WT plants. These results suggest that cytokinin catabolism and transport are involved in SL-modulated rice tillering fueled by P and N fertilization.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyuan Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyao Chang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daojian Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaoyao Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changxiao Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqing Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongmei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaonan Xie
- Weed Science Center, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Japan
| | - Yali Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Fan C, Li Y, Zhang J, Zhao Y, Zhang Y, Zhu J, Gao X, Liang Y, Qiu Y, Song J, Wang G. Multi-Omics Revealed Regulatory Mechanisms Underlying the Flowering of Ferula sinkiangensis across Three Dimensions. Genes (Basel) 2024; 15:1275. [PMID: 39457399 PMCID: PMC11508013 DOI: 10.3390/genes15101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Backgroud/Objectives: Ferula spp. is an essential crop in Central Asia with pronounced economic benefits governed by its flowering process. However, the mechanisms of the flowering phenotype remain unclear. Methods: In this study, using F. sinkiangensis as a model plant, we integrated transcriptome, proteome, and metabolome analyses to compare the multilayer differences in leaves and roots of plants with flowering and unflowering phenotypes. Results: We found that several variations in the transcriptome, proteome, and metabolome were closely associated with flowering. The Photosynthesis and Phenylpropanoid biosynthesis pathways in plants with the flowering phenotype were more active. Additionally, three flowering genes, named FL2-FL4, were upregulated in the leaves of flowering plants. Notably, six transcription factors were potentially responsible for regulating the expression of FL2-FL4 in the leaves to mediate flowering process of F. sinkiangensis. Moreover, genes relevant to Photosynthesis and Phenylpropanoid biosynthesis were also involved in regulating the expression of FL2-FL4 in flowering plants. Conclusions: The active regulation network together with Photosynthesis and Phenylpropanoid biosynthesis were essential for inducing the expression of flowering-related genes in leaves to promote the flowering process of F. sinkiangensis.
Collapse
Affiliation(s)
- Congzhao Fan
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100193, China; (C.F.); (Y.L.); (J.S.)
- Xinjiang Key Laboratory of Chinese Materia Medica and Ethnic Materia Medica, Xinjiang Institute of Chinese Materia Medica and Ethnical Materia, Urumqi 830011, China; (J.Z.); (Y.Z.); (J.Z.); (Y.Q.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science, and Technology, Xinjiang University, Urumqi 830017, China; (Y.Z.); (X.G.); (Y.L.)
| | - Yanfei Li
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100193, China; (C.F.); (Y.L.); (J.S.)
| | - Jizhao Zhang
- Xinjiang Key Laboratory of Chinese Materia Medica and Ethnic Materia Medica, Xinjiang Institute of Chinese Materia Medica and Ethnical Materia, Urumqi 830011, China; (J.Z.); (Y.Z.); (J.Z.); (Y.Q.)
| | - Yaqin Zhao
- Xinjiang Key Laboratory of Chinese Materia Medica and Ethnic Materia Medica, Xinjiang Institute of Chinese Materia Medica and Ethnical Materia, Urumqi 830011, China; (J.Z.); (Y.Z.); (J.Z.); (Y.Q.)
| | - Yigong Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science, and Technology, Xinjiang University, Urumqi 830017, China; (Y.Z.); (X.G.); (Y.L.)
| | - Jun Zhu
- Xinjiang Key Laboratory of Chinese Materia Medica and Ethnic Materia Medica, Xinjiang Institute of Chinese Materia Medica and Ethnical Materia, Urumqi 830011, China; (J.Z.); (Y.Z.); (J.Z.); (Y.Q.)
| | - Xingwang Gao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science, and Technology, Xinjiang University, Urumqi 830017, China; (Y.Z.); (X.G.); (Y.L.)
| | - Yan Liang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science, and Technology, Xinjiang University, Urumqi 830017, China; (Y.Z.); (X.G.); (Y.L.)
| | - Yuanjin Qiu
- Xinjiang Key Laboratory of Chinese Materia Medica and Ethnic Materia Medica, Xinjiang Institute of Chinese Materia Medica and Ethnical Materia, Urumqi 830011, China; (J.Z.); (Y.Z.); (J.Z.); (Y.Q.)
| | - Jingyuan Song
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100193, China; (C.F.); (Y.L.); (J.S.)
| | - Guoping Wang
- Xinjiang Key Laboratory of Chinese Materia Medica and Ethnic Materia Medica, Xinjiang Institute of Chinese Materia Medica and Ethnical Materia, Urumqi 830011, China; (J.Z.); (Y.Z.); (J.Z.); (Y.Q.)
| |
Collapse
|
4
|
Desaint H, Héreil A, Belinchon-Moreno J, Carretero Y, Pelpoir E, Pascal M, Brault M, Dumont D, Lecompte F, Laugier P, Duboscq R, Bitton F, Grumic M, Giraud C, Ferrante P, Giuliano G, Sunseri F, Causse M. Integration of QTL and transcriptome approaches for the identification of genes involved in tomato response to nitrogen deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5880-5896. [PMID: 38869971 DOI: 10.1093/jxb/erae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
Optimizing plant nitrogen (N) usage and inhibiting N leaching loss in the soil-crop system is crucial to maintaining crop yield and reducing environmental pollution. This study aimed at identifying quantitative trait loci (QTLs) and differentially expressed genes (DEGs) between two N treatments in order to list candidate genes related to nitrogen-related contrasting traits in tomato varieties. We characterized a genetic diversity core-collection (CC) and a multi-parental advanced generation intercross (MAGIC) tomato population grown in a greenhouse under two nitrogen levels and assessed several N-related traits and mapped QTLs. Transcriptome response under the two N conditions was also investigated through RNA sequencing of fruit and leaves in four parents of the MAGIC population. Significant differences in response to N input reduction were observed at the phenotypic level for biomass and N-related traits. Twenty-seven QTLs were detected for three target traits (leaf N content, leaf nitrogen balance index, and petiole NO3- content), 10 and six in the low and high N condition, respectively, while 19 QTLs were identified for plasticity traits. At the transcriptome level, 4752 and 2405 DEGs were detected between the two N conditions in leaves and fruits, respectively, among which 3628 (50.6%) in leaves and 1717 (71.4%) in fruit were genotype specific. When considering all the genotypes, 1677 DEGs were shared between organs or tissues. Finally, we integrated DEG and QTL analyses to identify the most promising candidate genes. The results highlighted a complex genetic architecture of N homeostasis in tomato and novel putative genes useful for breeding tomato varieties requiring less N input.
Collapse
Affiliation(s)
| | | | | | | | | | - Michel Pascal
- INRAE, UR407, Pathologie Végétale, 84143 Montfavet, France
| | | | | | | | | | | | | | | | | | - Paola Ferrante
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | - Giovanni Giuliano
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | | | | |
Collapse
|
5
|
Zhao H, Ge M, Zhang F, Du D, Zhao Z, Shen C, Hao Q, Xiao M, Shi X, Wang J, Fan M. Integrated morphological, physiological and transcriptomic analyses reveal the responses of Toona sinensis seedlings to low-nitrogen stress. Genomics 2024; 116:110899. [PMID: 39047875 DOI: 10.1016/j.ygeno.2024.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Nitrogen is one of the most essential elements for plant growth and development. In this study, the growth, physiology, and transcriptome of Toona sinensis (A. Juss) Roem seedlings were compared between low-nitrogen (LN) and normal-nitrogen (NN) conditions. These results indicate that LN stress adversely influences T. sinensis seedling growth. The activities of key enzymes related to nitrogen assimilation and phytohormone contents were altered by LN stress. A total of 2828 differentially expressed genes (DEGs) in roots and 1547 in leaves were identified between the LN and NN treatments. A differential enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways indicated that nitrogen and sugar metabolism, flavonoid biosynthesis, plant hormone signal transduction, and ABC transporters, were strongly affected by LN stress. In summary, this research provides information for further understanding the response of T. sinensis to LN stress.
Collapse
Affiliation(s)
- Hu Zhao
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China.
| | - Miaomiao Ge
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Fengzhe Zhang
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Didi Du
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Zilu Zhao
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Cheng Shen
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Qingping Hao
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Min Xiao
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Xiaopu Shi
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China.
| | - Juan Wang
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Mingqin Fan
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| |
Collapse
|
6
|
Wang H, Li X, Meng B, Fan Y, Khan SU, Qian M, Zhang M, Yang H, Lu K. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1897-1912. [PMID: 38386569 PMCID: PMC11182599 DOI: 10.1111/pbi.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.
Collapse
Affiliation(s)
- Hui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Haikun Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
- Engineering Research Center of South Upland Agriculture, Ministry of EducationChongqingP.R. China
- Academy of Agricultural SciencesSouthwest UniversityBeibeiChongqingP.R. China
| |
Collapse
|
7
|
Hu Z, Huang X, Xia H, Zhang Z, Lu H, Wang X, Sun Y, Cui M, Yang S, Kant S, Xu G, Sun S. Transcription factor OsSHR2 regulates rice architecture and yield per plant in response to nitrogen. PLANTA 2024; 259:148. [PMID: 38717679 DOI: 10.1007/s00425-024-04400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/23/2024]
Abstract
MAIN CONCLUSION Mutation of OsSHR2 adversely impacted root and shoot growth and impaired plant response to N conditions, further reducing the yield per plant. Nitrogen (N) is a crucial factor that regulates the plant architecture. There is still a lack of research on it. In our study, it was observed that the knockout of the SHORTROOT 2 (OsSHR2) which was induced by N deficiency, can significantly affect the regulation of plant architecture response to N in rice. Under N deficiency, the mutation of OsSHR2 significantly reduced root growth, and impaired the sensitivity of the root meristem length to N deficiency. The mutants were found to have approximately a 15% reduction in plant height compared to wild type. But mutants showed a significant increase in tillering at post-heading stage, approximately 26% more than the wild type, particularly in high N conditions. In addition, due to reduced seed setting rate and 1000-grain weight, mutant yield was significantly decreased by approximately 33% under low N fertilizer supply. The mutation also changed the distribution of N between the vegetative and reproductive organs. Our findings suggest that the transcription factor OsSHR2 plays a regulatory role in the response of plant architecture and yield per plant to N in rice.
Collapse
Affiliation(s)
- Zhi Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huihuang Xia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhantian Zhang
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Huixin Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yafei Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agriculture Science, Shanghai, 201403, China
| | - Mengyuan Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, 3400, Australia
| | - Guohua Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Li D, Wang J, Chen R, Chen J, Zong J, Li L, Hao D, Guo H. Review: Nitrogen acquisition, assimilation, and seasonal cycling in perennial grasses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112054. [PMID: 38423392 DOI: 10.1016/j.plantsci.2024.112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Perennial grasses seasonal nitrogen (N) cycle extends the residence and reuse time of N within the plant system, thereby enhancing N use efficiency. Currently, the mechanism of N metabolism has been extensively examined in model plants and annual grasses, and although perennial grasses exhibit similarities, they also possess distinct characteristics. Apart from assimilating and utilizing N throughout the growing season, perennial grasses also translocate N from aerial parts to perennial tissues, such as rhizomes, after autumn senescence. Subsequently, they remobilize the N from these perennial tissues to support new growth in the subsequent year, thereby ensuring their persistence. Previous studies indicate that the seasonal storage and remobilization of N in perennial grasses are not significantly associated with winter survival despite some amino acids and proteins associated with low temperature tolerance accumulating, but primarily with regrowth during the subsequent spring green-up stage. Further investigation can be conducted in perennial grasses to explore the correlation between stored N and dormant bud outgrowth in perennial tissues, such as rhizomes, during the spring green-up stage, building upon previous research on the relationship between N and axillary bud outgrowth in annual grasses. This exploration on seasonal N cycling in perennial grasses can offer valuable theoretical insights for new perennial grasses varieties with high N use efficiency through the application of gene editing and other advanced technologies.
Collapse
Affiliation(s)
- Dandan Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Jingjing Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Rongrong Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Jingbo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Junqin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Ling Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Dongli Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China.
| |
Collapse
|
9
|
Yamanashi T, Takeshi S, Sasaki S, Takashima K, Kaneko T, Ishimaru Y, Uozumi N. Utilizing plasma-generated N 2O 5 gas from atmospheric air as a novel gaseous nitrogen source for plants. PLANT MOLECULAR BIOLOGY 2024; 114:35. [PMID: 38587705 PMCID: PMC11001677 DOI: 10.1007/s11103-024-01438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
Fixing atmospheric nitrogen for use as fertilizer is a crucial process in promoting plant growth and enhancing crop yields in agricultural production. Currently, the chemical production of nitrogen fertilizer from atmospheric N2 relies on the energy-intensive Haber-Bosch process. Therefore, developing a low-cost and easily applicable method for fixing nitrogen from the air would provide a beneficial alternative. In this study, we tested the utilization of dinitrogen pentoxide (N2O5) gas, generated from oxygen and nitrogen present in ambient air with the help of a portable plasma device, as a nitrogen source for the model plant Arabidopsis thaliana. Nitrogen-deficient plants supplied with medium treated with N2O5, were able to overcome nitrogen deficiency, similar to those provided with medium containing a conventional nitrogen source. However, prolonged direct exposure of plants to N2O5 gas adversely affected their growth. Short-time exposure of plants to N2O5 gas mitigated its toxicity and was able to support growth. Moreover, when the exposure of N2O5 and the contact with plants were physically separated, plants cultured under nitrogen deficiency were able to grow. This study shows that N2O5 gas generated from atmospheric nitrogen can be used as an effective nutrient for plants, indicating its potential to serve as an alternative nitrogen fertilization method for promoting plant growth.
Collapse
Affiliation(s)
- Taro Yamanashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Shouki Takeshi
- Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-05, Sendai, 980-8579, Japan
| | - Shota Sasaki
- Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-05, Sendai, 980-8579, Japan
| | - Keisuke Takashima
- Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-05, Sendai, 980-8579, Japan
| | - Toshiro Kaneko
- Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-05, Sendai, 980-8579, Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan.
| |
Collapse
|
10
|
Fang C, Du H, Wang L, Liu B, Kong F. Mechanisms underlying key agronomic traits and implications for molecular breeding in soybean. J Genet Genomics 2024; 51:379-393. [PMID: 37717820 DOI: 10.1016/j.jgg.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is an important crop that provides protein and vegetable oil for human consumption. As soybean is a photoperiod-sensitive crop, its cultivation and yield are limited by the photoperiodic conditions in the field. In contrast to other major crops, soybean has a special plant architecture and a special symbiotic nitrogen fixation system, representing two unique breeding directions. Thus, flowering time, plant architecture, and symbiotic nitrogen fixation are three critical or unique yield-determining factors. This review summarizes the progress made in our understanding of these three critical yield-determining factors in soybean. Meanwhile, we propose potential research directions to increase soybean production, discuss the application of genomics and genomic-assisted breeding, and explore research directions to address future challenges, particularly those posed by global climate changes.
Collapse
Affiliation(s)
- Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Lingshuang Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
11
|
Wang T, Jin Y, Deng L, Li F, Wang Z, Zhu Y, Wu Y, Qu H, Zhang S, Liu Y, Mei H, Luo L, Yan M, Gu M, Xu G. The transcription factor MYB110 regulates plant height, lodging resistance, and grain yield in rice. THE PLANT CELL 2024; 36:298-323. [PMID: 37847093 PMCID: PMC10827323 DOI: 10.1093/plcell/koad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
The high-yielding Green Revolution varieties of cereal crops are characterized by a semidwarf architecture and lodging resistance. Plant height is tightly regulated by the availability of phosphate (Pi), yet the underlying mechanism remains obscure. Here, we report that rice (Oryza sativa) R2R3-type Myeloblastosis (MYB) transcription factor MYB110 is a Pi-dependent negative regulator of plant height. MYB110 is a direct target of PHOSPHATE STARVATION RESPONSE 2 (OsPHR2) and regulates OsPHR2-mediated inhibition of rice height. Inactivation of MYB110 increased culm diameter and bending resistance, leading to enhanced lodging resistance despite increased plant height. Strikingly, the grain yield of myb110 mutants was elevated under both high- and low-Pi regimes. Two divergent haplotypes based on single nucleotide polymorphisms in the putative promoter of MYB110 corresponded with its transcript levels and plant height in response to Pi availability. Thus, fine-tuning MYB110 expression may be a potent strategy for further increasing the yield of Green Revolution cereal crop varieties.
Collapse
Affiliation(s)
- Tingting Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Jin
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiao Deng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongye Qu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanwei Mei
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Lijun Luo
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Ming Yan
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Mian Gu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
12
|
Wen D, Yang L, Ni K, Xu X, Yu L, Elrys AS, Meng L, Zhou J, Zhu T, Müller C. Topography-driven differences in soil N transformation constrain N availability in karst ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168363. [PMID: 37939962 DOI: 10.1016/j.scitotenv.2023.168363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Fragile karst ecosystems are characterized by complex topographic landscapes associated with high variations in vegetation restoration. Identifying the characteristics and driving factors of nitrogen (N) availability across the topographic gradient is essential to guide vegetation restoration in karst regions. In this study, we collected soil samples and plant leaves along the topographic gradient (ridge, upper slope, middle slope, and foot slope) of convex slopes in the karst fault basin of southwest China, and determined the indicators reflecting soil N availability, N transformation rates, and their controlling factors. Our results showed that foliar N content and δ15N value, soil inorganic N content and δ15N value, and foliar N:P ratio were substantially lower on the steep hillslopes than on the flat top ridge. Steep slope soils also had a lower enzyme C:N ratio but a higher enzyme N:P ratio than the flat ridge soils. Furthermore, the vector angles calculated by soil extracellular enzyme analysis were below 45o in all studied soils and decreased significantly with increasing slope, indicating that microbial growth was generally limited by N. These results jointly suggest the declines in soil N availability across the topographic gradient, which are further explained by the changes in soil inherent N transformation processes. As the slope became steeper, soil mineralization and autotrophic nitrification (ONH4) rates decreased significantly, while ratio of microbial NH4+ immobilization to ONH4 and NH4+ adsorption rate increased significantly, indicating the decrease in soil inorganic N supply capacity. We further found that deteriorated soil structure, decreased soil organic matter and calcium content, altered microbial abundance, and increased ratios of fungi to bacteria and gram-positive bacteria to gram-negative bacteria were the primary drivers of reduced N transformation rates and N availability across the topographic gradient. Overall, this study highlights the critical role of the topography in controlling soil N availability by regulating N transformation processes in karst regions. The topography should be considered an important factor affecting the functions and services of karst ecosystems.
Collapse
Affiliation(s)
- Dongni Wen
- College of Tropical Crops, Hainan University, Haikou 570100, China; Key Laboratory of Karst Dynamics, MLR & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Lin Yang
- Key Laboratory of Karst Dynamics, MLR & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Kang Ni
- Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
| | - Longfei Yu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ahmed S Elrys
- College of Tropical Crops, Hainan University, Haikou 570100, China
| | - Lei Meng
- College of Tropical Crops, Hainan University, Haikou 570100, China
| | - Jinxing Zhou
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Tongbin Zhu
- Key Laboratory of Karst Dynamics, MLR & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany.
| | - Christoph Müller
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany; Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; School of Biology and Environmental Science and Earth Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
13
|
Soto-Cerda BJ, Larama G, Cloutier S, Fofana B, Inostroza-Blancheteau C, Aravena G. The Genetic Dissection of Nitrogen Use-Related Traits in Flax ( Linum usitatissimum L.) at the Seedling Stage through the Integration of Multi-Locus GWAS, RNA-seq and Genomic Selection. Int J Mol Sci 2023; 24:17624. [PMID: 38139451 PMCID: PMC10743809 DOI: 10.3390/ijms242417624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Nitrogen (N), the most important macro-nutrient for plant growth and development, is a key factor that determines crop yield. Yet its excessive applications pollute the environment and are expensive. Hence, studying nitrogen use efficiency (NUE) in crops is fundamental for sustainable agriculture. Here, an association panel consisting of 123 flax accessions was evaluated for 21 NUE-related traits at the seedling stage under optimum N (N+) and N deficiency (N-) treatments to dissect the genetic architecture of NUE-related traits using a multi-omics approach integrating genome-wide association studies (GWAS), transcriptome analysis and genomic selection (GS). Root traits exhibited significant and positive correlations with NUE under N- conditions (r = 0.33 to 0.43, p < 0.05). A total of 359 QTLs were identified, accounting for 0.11% to 23.1% of the phenotypic variation in NUE-related traits. Transcriptomic analysis identified 1034 differentially expressed genes (DEGs) under contrasting N conditions. DEGs involved in N metabolism, root development, amino acid transport and catabolism and others, were found near the QTLs. GS models to predict NUE stress tolerance index (NUE_STI) trait were tested using a random genome-wide SNP dataset and a GWAS-derived QTLs dataset. The latter produced superior prediction accuracy (r = 0.62 to 0.79) compared to the genome-wide SNP marker dataset (r = 0.11) for NUE_STI. Our results provide insights into the QTL architecture of NUE-related traits, identify candidate genes for further studies, and propose genomic breeding tools to achieve superior NUE in flax under low N input.
Collapse
Affiliation(s)
- Braulio J. Soto-Cerda
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile
| | - Giovanni Larama
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada;
| | - Bourlaye Fofana
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile
| | - Gabriela Aravena
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
| |
Collapse
|
14
|
Wu J, Sun LQ, Song Y, Bai Y, Wan GY, Wang JX, Xia JQ, Zhang ZY, Zhang ZS, Zhao Z, Xiang CB. The OsNLP3/4-OsRFL module regulates nitrogen-promoted panicle architecture in rice. THE NEW PHYTOLOGIST 2023; 240:2404-2418. [PMID: 37845836 DOI: 10.1111/nph.19318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/16/2023] [Indexed: 10/18/2023]
Abstract
Rice panicles, a major component of yield, are regulated by phytohormones and nutrients. How mineral nutrients promote panicle architecture remains largely unknown. Here, we report that NIN-LIKE PROTEIN3 and 4 (OsNLP3/4) are crucial positive regulators of rice panicle architecture in response to nitrogen (N). Loss-of-function mutants of either OsNLP3 or OsNLP4 produced smaller panicles with reduced primary and secondary branches and fewer grains than wild-type, whereas their overexpression plants showed the opposite phenotypes. The OsNLP3/4-regulated panicle architecture was positively correlated with N availability. OsNLP3/4 directly bind to the promoter of OsRFL and activate its expression to promote inflorescence meristem development. Furthermore, OsRFL activates OsMOC1 expression by binding to its promoter. Our findings reveal the novel N-responsive OsNLP3/4-OsRFL-OsMOC1 module that integrates N availability to regulate panicle architecture, shedding light on how N nutrient signals regulate panicle architecture and providing candidate targets for the improvement of crop yield.
Collapse
Affiliation(s)
- Jie Wu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Liang-Qi Sun
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Ying Song
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Yu Bai
- Experimental Center of Engineering and Materials Science, University of Science and Technology of China, Hefei, 230027, China
| | - Guang-Yu Wan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Jing-Xian Wang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Zheng-Yi Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Zi-Sheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Zhong Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| |
Collapse
|
15
|
Cheng P, Wang Y, Cai C, Li L, Zeng Y, Cheng X, Shen W. Molecular hydrogen positively regulates nitrate uptake and seed size by targeting nitrate reductase. PLANT PHYSIOLOGY 2023; 193:2734-2749. [PMID: 37625793 DOI: 10.1093/plphys/kiad474] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Although the sources of molecular hydrogen (H2) synthesis in plants remain to be fully elucidated, ample evidence shows that plant-based H2 can regulate development and stress responses. Here, we present genetic and molecular evidence indicating that nitrate reductase (NR) might be a target of H2 sensing that positively regulates nitrogen use efficiency (NUE) and seed size in Arabidopsis (Arabidopsis thaliana). The expression level of NR and changes of NUE under control and, in particular, low nitrogen supply were positively associated with H2 addition supplied exogenously or through genetic manipulation. The improvement in nitrate assimilation achieved by H2 was also mediated via NR dephosphorylation. H2 control of seed size was impaired by NR mutation. Further genetic evidence revealed that H2, NR, and nitric oxide can synergistically regulate nitrate assimilation in response to N starvation conditions. Collectively, our data indicate that NR might be a target for H2 sensing, ultimately positively regulating nitrate uptake and seed size. These results provide insights into H2 signaling and its functions in plant metabolism.
Collapse
Affiliation(s)
- Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenxu Cai
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zeng
- Life Science Group, Air Liquide (China) R&D Co., Ltd., Shanghai 201108, China
| | - Xu Cheng
- Life Science Group, Air Liquide (China) R&D Co., Ltd., Shanghai 201108, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Buoso S, Lodovici A, Salvatori N, Tomasi N, Arkoun M, Maillard A, Marroni F, Alberti G, Peressotti A, Pinton R, Zanin L. Nitrogen nutrition and xylem sap composition in Zea mays: effect of urea, ammonium and nitrate on ionomic and metabolic profiles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111825. [PMID: 37572967 DOI: 10.1016/j.plantsci.2023.111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
In plants the communication between organs is mainly carried out via the xylem and phloem. The concentration and the molecular species of some phytohormones, assimilates and inorganic ions that are translocated in the xylem vessel play a key role in the systemic nutritional signaling in plants. In this work the composition of the xylem sap of maize was investigated at the metabolic and ionomic level depending on the N form available in the nutrient solution. Plants were grown up to 7 days in hydroponic system under N-free nutrient solution or nutrient solution containing N in form of nitrate, urea, ammonium or a combination of urea and ammonium. For the first time this work provides evidence that the ureic nutrition reduced the water translocation in maize plants more than mineral N forms. This result correlates with those obtained from the analyses of photosynthetic parameters (stomatal conductance and transpiration rate) suggesting a parsimonious use of water by maize plants under urea nutrition. A peculiar composition in amino acids and phytohormones (i.e. S, Gln, Pro, ABA) of the xylem sap under urea nutrition could explain differences in xylem sap exudation in comparison to plants treated with mineral N forms. The knowledge improvement of urea nutrition will allow to further perform good agronomic strategies to improve the resilience of maize crop to water stress.
Collapse
Affiliation(s)
- Sara Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Arianna Lodovici
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Nicole Salvatori
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy; Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Nicola Tomasi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, Saint-Malo 35400, France
| | - Anne Maillard
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, Saint-Malo 35400, France
| | - Fabio Marroni
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Giorgio Alberti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Alessandro Peressotti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Roberto Pinton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Laura Zanin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| |
Collapse
|
17
|
Peng L, Xiao H, Li R, Zeng Y, Gu M, Moran N, Yu L, Xu G. Potassium transporter OsHAK18 mediates potassium and sodium circulation and sugar translocation in rice. PLANT PHYSIOLOGY 2023; 193:2003-2020. [PMID: 37527483 DOI: 10.1093/plphys/kiad435] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/23/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
High-affinity potassium (K+) transporter (HAK)/K+ uptake permease (KUP)/K+ transporter (KT) have been identified in all genome-sequenced terrestrial plants. They play an important role in K+ acquisition and translocation and in enhancing salt tolerance. Here, we report that plasma membrane-located OsHAK18 functions in K+ and sodium (Na+) circulation and sugar translocation in rice (Oryza sativa). OsHAK18 was expressed mainly, though not exclusively, in vascular tissues and particularly in the phloem. Knockout (KO) of OsHAK18 reduced K+ concentration in phloem sap and roots but increased K+ accumulation in the shoot of both 'Nipponbare' and 'Zhonghua11' cultivars, while overexpression (OX) of OsHAK18 driven by its endogenous promoter increased K+ concentration in phloem sap and roots and promoted Na+ retrieval from the shoot to the root under salt stress. Split-root experimental analysis of rubidium (Rb+) uptake and circulation indicated that OsHAK18-OX promoted Rb+ translocation from the shoot to the root. In addition, OsHAK18-KO increased while OsHAK18-OX reduced soluble sugar content in the shoot and oppositely affected the sugar concentration in the phloem and its content in the root. Moreover, OsHAK18-OX dramatically increased grain yield and physiological K+ utilization efficiency. Our results suggest that-unlike other OsHAKs analyzed heretofore-OsHAK18 is critical for K+ and Na+ recirculation from the shoot to the root and enhances the source-to-sink translocation of photo-assimilates.
Collapse
Affiliation(s)
- Lirun Peng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huojun Xiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ran Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Zeng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mian Gu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nava Moran
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ling Yu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Yuan Y, Khourchi S, Li S, Du Y, Delaplace P. Unlocking the Multifaceted Mechanisms of Bud Outgrowth: Advances in Understanding Shoot Branching. PLANTS (BASEL, SWITZERLAND) 2023; 12:3628. [PMID: 37896091 PMCID: PMC10610460 DOI: 10.3390/plants12203628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Shoot branching is a complex and tightly regulated developmental process that is essential for determining plant architecture and crop yields. The outgrowth of tiller buds is a crucial step in shoot branching, and it is influenced by a variety of internal and external cues. This review provides an extensive overview of the genetic, plant hormonal, and environmental factors that regulate shoot branching in several plant species, including rice, Arabidopsis, tomato, and wheat. We especially highlight the central role of TEOSINTE BRANCHED 1 (TB1), a key gene in orchestrating bud outgrowth. In addition, we discuss how the phytohormones cytokinins, strigolactones, and auxin interact to regulate tillering/branching. We also shed light on the involvement of sugar, an integral component of plant development, which can impact bud outgrowth in both trophic and signaling ways. Finally, we emphasize the substantial influence of environmental factors, such as light, temperature, water availability, biotic stresses, and nutrients, on shoot branching. In summary, this review offers a comprehensive evaluation of the multifaced regulatory mechanisms that underpin shoot branching and highlights the adaptable nature of plants to survive and persist in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Yundong Yuan
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Said Khourchi
- Plant Sciences, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Shujia Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Du
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Pierre Delaplace
- Plant Sciences, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
19
|
Luo Z, Jones D, Philp-Wright S, Putterill J, Snowden KC. Transcriptomic analysis implicates ABA signaling and carbon supply in the differential outgrowth of petunia axillary buds. BMC PLANT BIOLOGY 2023; 23:482. [PMID: 37814235 PMCID: PMC10563266 DOI: 10.1186/s12870-023-04505-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Shoot branching of flowering plants exhibits phenotypic plasticity and variability. This plasticity is determined by the activity of axillary meristems, which in turn is influenced by endogenous and exogenous cues such as nutrients and light. In many species, not all buds on the main shoot develop into branches despite favorable growing conditions. In petunia, basal axillary buds (buds 1-3) typically do not grow out to form branches, while more apical axillary buds (buds 6 and 7) are competent to grow. RESULTS The genetic regulation of buds was explored using transcriptome analyses of petunia axillary buds at different positions on the main stem. To suppress or promote bud outgrowth, we grew the plants in media with differing phosphate (P) levels. Using RNA-seq, we found many (> 5000) differentially expressed genes between bud 6 or 7, and bud 2. In addition, more genes were differentially expressed when we transferred the plants from low P to high P medium, compared with shifting from high P to low P medium. Buds 6 and 7 had increased transcript abundance of cytokinin and auxin-related genes, whereas the basal non-growing buds (bud 2 and to a lesser extent bud 3) had higher expression of strigolactone, abscisic acid, and dormancy-related genes, suggesting the outgrowth of these basal buds was actively suppressed. Consistent with this, the expression of ABA associated genes decreased significantly in apical buds after stimulating growth by switching the medium from low P to high P. Furthermore, comparisons between our data and transcriptome data from other species suggest that the suppression of outgrowth of bud 2 was correlated with a limited supply of carbon to these axillary buds. Candidate genes that might repress bud outgrowth were identified by co-expression analysis. CONCLUSIONS Plants need to balance growth of axillary buds into branches to fit with available resources while allowing some buds to remain dormant to grow after the loss of plant parts or in response to a change in environmental conditions. Here we demonstrate that different buds on the same plant with different developmental potentials have quite different transcriptome profiles.
Collapse
Affiliation(s)
- Zhiwei Luo
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Dan Jones
- NetValue Limited, Hamilton, New Zealand
| | - Sarah Philp-Wright
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna Putterill
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
20
|
Li C, Feng Y, Tian P, Yu X. Mathematical Estimation of Endogenous Proline as a Bioindicator to Regulate the Stress of Trivalent Chromium on Rice Plants Grown in Different Nitrogenous Conditions. TOXICS 2023; 11:803. [PMID: 37888654 PMCID: PMC10611392 DOI: 10.3390/toxics11100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
The accumulation of proline impacts the defense mechanisms of plants against the harmful effects of adverse environmental conditions; however, its concentration in plants is associated with the metabolism of N. Therefore, the effects of exogenous organic [glutamate (Glu)/arginine (Arg)] and inorganic [nitrate (NO3-)/ammonium (NH4+)] N on the accumulation of proline (Pro) in rice plants under trivalent chromium [Cr(III)] stress were studied through using the mass balance matrix model (MBMM). Application of 'NH4+' showed the largest contribution to the Pro content in rice shoots under different concentrations of Cr(III), followed by 'NO3-', 'Arg', and 'Glu' applications. On the other hand, 'Arg' application displayed the largest contribution to the Pro content in roots under Cr(III) stress, followed by 'NH4+', 'Glu', and 'NO3-' applications. The combined application of 'NH4++Arg' showed the greatest contribution to the Pro content in both roots and shoots of Cr(III)-treated rice seedlings, while the application of 'NO3-+Glu' showed the least contribution to the Pro content in rice seedlings. The current study indicated that the endogenous level of Pro in rice seedlings is quite sensitive to Cr(III) stress under different N sources, and the mathematical modeling showed a reliable result while estimating the relationship between Pro content and N source application.
Collapse
Affiliation(s)
| | | | | | - Xiaozhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, China (Y.F.)
| |
Collapse
|
21
|
Zhang H, Zhang X, Xiao J. Epigenetic Regulation of Nitrogen Signaling and Adaptation in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2725. [PMID: 37514337 PMCID: PMC10386408 DOI: 10.3390/plants12142725] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Nitrogen (N) is a crucial nutrient that plays a significant role in enhancing crop yield. Its availability, including both supply and deficiency, serves as a crucial signal for plant development. However, excessive N use in agriculture leads to environmental and economic issues. Enhancing nitrogen use efficiency (NUE) is, therefore, essential to minimize negative impacts. Prior studies have investigated the genetic factors involved in N responses and the process of low-nitrogen (LN) adaptation. In this review, we discuss recent advances in understanding how epigenetic modifications, including DNA methylation, histone modification, and small RNA, participate in the regulation of N response and LN adaptation. We highlight the importance of decoding the epigenome at various levels to accelerate the functional study of how plants respond to N availability. Understanding the epigenetic control of N signaling and adaptation can lead to new strategies to improve NUE and enhance crop productivity sustainably.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing 100101, China
| |
Collapse
|
22
|
Basu U, Parida SK. Restructuring plant types for developing tailor-made crops. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1106-1122. [PMID: 34260135 PMCID: PMC10214764 DOI: 10.1111/pbi.13666] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 05/27/2023]
Abstract
Plants have adapted to different environmental niches by fine-tuning the developmental factors working together to regulate traits. Variations in the developmental factors result in a wide range of quantitative variations in these traits that helped plants survive better. The major developmental pathways affecting plant architecture are also under the control of such pathways. Most notable are the CLAVATA-WUSCHEL pathway regulating shoot apical meristem fate, GID1-DELLA module influencing plant height and tillering, LAZY1-TAC1 module controlling branch/tiller angle and the TFL1-FT determining the floral fate in plants. Allelic variants of these key regulators selected during domestication shaped the crops the way we know them today. There is immense yield potential in the 'ideal plant architecture' of a crop. With the available genome-editing techniques, possibilities are not restricted to naturally occurring variations. Using a transient reprogramming system, one can screen the effect of several developmental gene expressions in novel ecosystems to identify the best targets. We can use the plant's fine-tuning mechanism for customizing crops to specific environments. The process of crop domestication can be accelerated with a proper understanding of these developmental pathways. It is time to step forward towards the next-generation molecular breeding for restructuring plant types in crops ensuring yield stability.
Collapse
Affiliation(s)
- Udita Basu
- Genomics‐Assisted Breeding and Crop Improvement LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| | - Swarup K. Parida
- Genomics‐Assisted Breeding and Crop Improvement LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| |
Collapse
|
23
|
Yang X, Yang G, Wei X, Huang W, Fang Z. OsAAP15, an amino acid transporter in response to nitrogen concentration, mediates panicle branching and grain yield in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111640. [PMID: 36804388 DOI: 10.1016/j.plantsci.2023.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
N is essential for plant architecture, particularly tillering. However, whether and how N mediates panicle branching and influences rice grain yield remains unclear. In order to identify genes and pathways associated with N-regulated panicle branching, we treated rice with different concentrations of N to determine the key genes by transcriptomic analysis and function verification. We measured panicle growth in response to N, and found that panicle branching benefits from 2 mM exogenous N, and 2-5 mM N is essential for vascular bundle, phloem, and xylem development in these branches. Interestingly, total N concentrations increased continuously with N 0-2 mM and decreased continuously with N 5-15 mM, whereas the concentrations of amino acids Tyr and Val increased continuously with N 0-15 mM in the panicle. Furthermore, N metabolism, phytohormone signal transduction, stress response, and photosynthesis pathways play important roles in response to nitrogen of regulating panicle branching. Altered expression of key N-response amino acid transporter gene OsAAP15 positively regulated panicle branching at low N concentrations, however, OsAAP15 negatively influenced it at high N concentrations. Overexpression of OsAAP15 in the field significantly increased primary and secondary branches, filled grain number, and grain yield by regulating the concentrations of amino acids Tyr and Val in the panicle. Taken together, OsAAP15, an amino acid transporter in response to nitrogen concentration, could mediate panicle branching and grain yield, and it may have applications in rice breeding to improve grain yield under extreme N concentrations.
Collapse
Affiliation(s)
- Xiuyan Yang
- Institute of Rice Industry Technology Research, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Guo Yang
- Institute of Rice Industry Technology Research, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Xilin Wei
- Institute of Rice Industry Technology Research, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
24
|
Sigalas PP, Buchner P, Thomas SG, Jamois F, Arkoun M, Yvin JC, Bennett MJ, Hawkesford MJ. Nutritional and tissue-specific regulation of cytochrome P450 CYP711A MAX1 homologues and strigolactone biosynthesis in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1890-1910. [PMID: 36626359 PMCID: PMC10049918 DOI: 10.1093/jxb/erad008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Strigolactones (SLs) are a class of phytohormones regulating branching/tillering, and their biosynthesis has been associated with nutritional signals and plant adaptation to nutrient-limiting conditions. The enzymes in the SL biosynthetic pathway downstream of carlactone are of interest as they are responsible for structural diversity in SLs, particularly cytochrome P450 CYP711A subfamily members, such as MORE AXILLARY GROWTH1 (MAX1) in Arabidopsis. We identified 13 MAX1 homologues in wheat, clustering in four clades and five homoeologous subgroups. The utilization of RNA-sequencing data revealed a distinct expression pattern of MAX1 homologues in above- and below-ground tissues, providing insights into the distinct roles of MAX1 homologues in wheat. In addition, a transcriptional analysis showed that SL biosynthetic genes were systematically regulated by nitrogen supply. Nitrogen limitation led to larger transcriptional changes in the basal nodes than phosphorus limitation, which was consistent with the observed tillering suppression, as wheat showed higher sensitivity to nitrogen. The opposite was observed in roots, with phosphorus limitation leading to stronger induction of most SL biosynthetic genes compared with nitrogen limitation. The observed tissue-specific regulation of SL biosynthetic genes in response to nutritional signals is likely to reflect the dual role of SLs as rhizosphere signals and branching inhibitors.
Collapse
Affiliation(s)
| | - Peter Buchner
- Rothamsted Research, West Common, Harpenden AL5 2JQ, UK
| | | | - Frank Jamois
- Laboratoire de Physico-Chimie et Bioanalytique, Centre Mondial de l’Innovation Roullier, Timac Agro International, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation Roullier, Timac Agro International, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Jean-Claude Yvin
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation Roullier, Timac Agro International, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Malcolm J Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | |
Collapse
|
25
|
Sun H, Guo X, Zhu X, Gu P, Zhang W, Tao W, Wang D, Wu Y, Zhao Q, Xu G, Fu X, Zhang Y. Strigolactone and gibberellin signaling coordinately regulate metabolic adaptations to changes in nitrogen availability in rice. MOLECULAR PLANT 2023; 16:588-598. [PMID: 36683328 DOI: 10.1016/j.molp.2023.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/21/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Modern semi-dwarf rice varieties of the "Green Revolution" require a high supply of nitrogen (N) fertilizer to produce high yields. A better understanding of the interplay between N metabolism and plant developmental processes is required for improved N-use efficiency and agricultural sustainability. Here, we show that strigolactones (SLs) modulate root metabolic and developmental adaptations to low N availability for ensuring efficient uptake and translocation of available N. The key repressor DWARF 53 (D53) of the SL signaling pathway interacts with the transcription factor GROWTH-REGULATING FACTOR 4 (GRF4) and prevents GRF4 from binding to its target gene promoters. N limitation induces the accumulation of SLs, which in turn promotes SL-mediated degradation of D53, leading to the release of GRF4 and thus promoting the expression of genes associated with N metabolism. N limitation also induces degradation of the DELLA protein SLENDER RICE 1 (SLR1) in an D14- and D53-dependent manner, effectively releasing GRF4 from competitive inhibition caused by SLR1. Collectively, our findings reveal a previously unrecognized mechanism underlying SL and gibberellin crosstalk in response to N availability, advancing our understanding of plant growth-metabolic coordination and facilitating the design of the strategies for improving N-use efficiency in high-yield crops.
Collapse
Affiliation(s)
- Huwei Sun
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoli Guo
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiuli Zhu
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengyuan Gu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenqing Tao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Daojian Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunzhe Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzhi Zhao
- Key Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yali Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
26
|
Li B, Wei A, Tong X, Han Y, Liu N, Chen Z, Yang H, Wu H, Lv M, Wang NN, Du S. A Genome-Wide Association Study to Identify Novel Candidate Genes Related to Low-Nitrogen Tolerance in Cucumber (Cucumis sativus L.). Genes (Basel) 2023; 14:genes14030662. [PMID: 36980933 PMCID: PMC10048605 DOI: 10.3390/genes14030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Cucumber is one of the most important vegetables, and nitrogen is essential for the growth and fruit production of cucumbers. It is crucial to develop cultivars with nitrogen limitation tolerance or high nitrogen efficiency for green and efficient development in cucumber industry. To reveal the genetic basis of cucumber response to nitrogen starvation, a genome-wide association study (GWAS) was conducted on a collection of a genetically diverse population of cucumber (Cucumis sativus L.) comprising 88 inbred and DH accessions including the North China type, the Eurasian type, the Japanese and South China type mixed subtype, and the South China type subtype. Phenotypic evaluation of six traits under control (14 mM) and treatment (3.5 mM) N conditions depicted the presence of broad natural variation in the studied population. The GWAS results showed that there were significant differences in the population for nitrogen limitation treatment. Nine significant loci were identified corresponding to six LD blocks, three of which overlapped. Sixteen genes were selected by GO annotation associated with nitrogen. Five low-nitrogen stress tolerance genes were finally identified by gene haplotype analysis: CsaV3_3G003630 (CsNRPD1), CsaV3_3G002970 (CsNRT1.1), CsaV3_4G030260 (CsSnRK2.5), CsaV3_4G026940, and CsaV3_3G011820 (CsNPF5.2). Taken together, the experimental data and identification of candidate genes presented in this study offer valuable insights and serve as a useful reference for the genetic enhancement of nitrogen limitation tolerance in cucumbers.
Collapse
Affiliation(s)
- Bowen Li
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Aimin Wei
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Xueqiang Tong
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Yike Han
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Nan Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Zhengwu Chen
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Hongyu Yang
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Huaxiang Wu
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Mingjie Lv
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300061, China
| | - Ning Ning Wang
- College of Life Science, Nankai University, Tianjin 300071, China
- College of Agricultural Science, Nankai University, Tianjin 300071, China
| | - Shengli Du
- College of Life Science, Nankai University, Tianjin 300071, China
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
- Correspondence:
| |
Collapse
|
27
|
Xiong E, Qu X, Li J, Liu H, Ma H, Zhang D, Chu S, Jiao Y. The soybean ubiquitin-proteasome system: Current knowledge and future perspective. THE PLANT GENOME 2023; 16:e20281. [PMID: 36345561 DOI: 10.1002/tpg2.20281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Increasing soybean [Glycine max (L.) Merr.] yield has become a worldwide scientific problem in the world. Many studies have shown that ubiquitination plays a key role in stress response and yield formation. In the UniProtKB database, 2,429 ubiquitin-related proteins were predicted in soybean, however, <20 were studied. One key way to address this lack of progress in increasing soybean yield will be a deeper understanding of the ubiquitin-proteasome system (UPS) in soybean. In this review, we summarized the current knowledge about soybean ubiquitin-related proteins and discussed the method of combining phenotype, mutant library, transgenic system, genomics, and proteomics approaches to facilitate the exploration of the soybean UPS. We also proposed the strategy of applying the UPS in soybean improvement based on related studies in model plants. Our review will be helpful for soybean scientists to learn current research progress of the soybean UPS and further lay a theoretical reference for the molecular improvement of soybean in future research by use of this knowledge.
Collapse
Affiliation(s)
- Erhui Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Xuelian Qu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Junfeng Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Hongli Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Hui Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| |
Collapse
|
28
|
Choi SJ, Lee Z, Jeong E, Kim S, Seo JS, Um T, Shim JS. Signaling pathways underlying nitrogen transport and metabolism in plants. BMB Rep 2023; 56:56-64. [PMID: 36658636 PMCID: PMC9978367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 01/21/2023] Open
Abstract
Nitrogen (N) is an essential macronutrient required for plant growth and crop production. However, N in soil is usually insufficient for plant growth. Thus, chemical N fertilizer has been extensively used to increase crop production. Due to negative effects of N rich fertilizer on the environment, improving N usage has been a major issue in the field of plant science to achieve sustainable production of crops. For that reason, many efforts have been made to elucidate how plants regulate N uptake and utilization according to their surrounding habitat over the last 30 years. Here, we provide recent advances focusing on regulation of N uptake, allocation of N by N transporting system, and signaling pathway controlling N responses in plants. [BMB Reports 2023; 56(2): 56-64].
Collapse
Affiliation(s)
- Su Jeong Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Zion Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Eui Jeong
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Sohyun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Jun Sung Seo
- Crop Biotechnology Institute, Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Taeyoung Um
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea,Corresponding author. Tel: +82-62-530-0507; Fax: +82-62-530-2199; E-mail:
| |
Collapse
|
29
|
Mészáros M, Hnátková H, Čonka P, Lošák T, Náměstek J. Effect of spring nitrogen fertilization on bearing and branching behaviors of young apple trees. PLoS One 2023; 18:e0285194. [PMID: 37141246 PMCID: PMC10159155 DOI: 10.1371/journal.pone.0285194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
The total aboveground biomass production, nutritional status, bearing and branching behaviors of the central leader and one year old shoots of young apple trees have been analyzed. The shoots were further characterized according to the length, shoot demography, and the production of terminal and lateral flowers. All the characteristics are described in connection with nitrogen supply and cultivar. Nitrogen represents one of the major macronutrients involved in the growth and development of the fruit trees. The understanding of the effect of nitrogen supply for flower bud formation can be further improved by detailed analyses of tree architecture. While the biomass production was cultivar specific, the trees within particular cultivar were characterized by almost similar growth with respect to the nitrogen supply. Cultivar ´Rubinola´ exhibited similar branching pattern, but higher vigor than ´Topaz´. As a result of higher apical dominance, ´Rubinola´ produced higher proportion of long shoots, but a lower quality of short shoots than ´Topaz´. Consequently, cultivar ´Rubinola´ produced only few terminal flowers on short shoots and lateral flowers dominantly in the distal zone, while ´Topaz´ was characterized by intensive terminal flowering, but the lateral flowers were more abundant in the median zone. Even a lower dose of spring nitrogen improved the flower bud formation on both terminal and lateral positions extending the flowering zone on one-year-old shoots. This further changed the branching and bearing behavior of the apple trees, which particularly allows to optimize their fertilization management. However, this effect appears to be further regulated by mechanism connected with apical dominance.
Collapse
Affiliation(s)
- Martin Mészáros
- Department of Technology, Research and Breeding Institute of Pomology Holovousy Ltd., Hořice, Czech Republic
| | - Hana Hnátková
- Department of Technology, Research and Breeding Institute of Pomology Holovousy Ltd., Hořice, Czech Republic
| | - Patrik Čonka
- Department of Technology, Research and Breeding Institute of Pomology Holovousy Ltd., Hořice, Czech Republic
| | - Tomáš Lošák
- Mendel University in Brno, Brno, Czech Republic
| | - Jan Náměstek
- Department of Technology, Research and Breeding Institute of Pomology Holovousy Ltd., Hořice, Czech Republic
| |
Collapse
|
30
|
Kasemsap P, Bloom AJ. Breeding for Higher Yields of Wheat and Rice through Modifying Nitrogen Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 12:85. [PMID: 36616214 PMCID: PMC9823454 DOI: 10.3390/plants12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Wheat and rice produce nutritious grains that provide 32% of the protein in the human diet globally. Here, we examine how genetic modifications to improve assimilation of the inorganic nitrogen forms ammonium and nitrate into protein influence grain yield of these crops. Successful breeding for modified nitrogen metabolism has focused on genes that coordinate nitrogen and carbon metabolism, including those that regulate tillering, heading date, and ammonium assimilation. Gaps in our current understanding include (1) species differences among candidate genes in nitrogen metabolism pathways, (2) the extent to which relative abundance of these nitrogen forms across natural soil environments shape crop responses, and (3) natural variation and genetic architecture of nitrogen-mediated yield improvement. Despite extensive research on the genetics of nitrogen metabolism since the rise of synthetic fertilizers, only a few projects targeting nitrogen pathways have resulted in development of cultivars with higher yields. To continue improving grain yield and quality, breeding strategies need to focus concurrently on both carbon and nitrogen assimilation and consider manipulating genes with smaller effects or that underlie regulatory networks as well as genes directly associated with nitrogen metabolism.
Collapse
Affiliation(s)
- Pornpipat Kasemsap
- Department of Plant Sciences, University of California at Davis, Mailstop 3, Davis, CA 95616, USA
| | | |
Collapse
|
31
|
Jiang Z, Wang M, Nicolas M, Ogé L, Pérez-Garcia MD, Crespel L, Li G, Ding Y, Le Gourrierec J, Grappin P, Sakr S. Glucose-6-Phosphate Dehydrogenases: The Hidden Players of Plant Physiology. Int J Mol Sci 2022; 23:16128. [PMID: 36555768 PMCID: PMC9785579 DOI: 10.3390/ijms232416128] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) catalyzes a metabolic hub between glycolysis and the pentose phosphate pathway (PPP), which is the oxidation of glucose-6-phosphate (G6P) to 6-phosphogluconolactone concomitantly with the production of nicotinamide adenine dinucleotide phosphate (NADPH), a reducing power. It is considered to be the rate-limiting step that governs carbon flow through the oxidative pentose phosphate pathway (OPPP). The OPPP is the main supplier of reductant (NADPH) for several "reducing" biosynthetic reactions. Although it is involved in multiple physiological processes, current knowledge on its exact role and regulation is still piecemeal. The present review provides a concise and comprehensive picture of the diversity of plant G6PDHs and their role in seed germination, nitrogen assimilation, plant branching, and plant response to abiotic stress. This work will help define future research directions to improve our knowledge of G6PDHs in plant physiology and to integrate this hidden player in plant performance.
Collapse
Affiliation(s)
- Zhengrong Jiang
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Wang
- Dryland-Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Michael Nicolas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laurent Ogé
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | | | - Laurent Crespel
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - José Le Gourrierec
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Philippe Grappin
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Soulaiman Sakr
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| |
Collapse
|
32
|
Zhang W, Wu X, Wang D, Wu D, Fu Y, Bian C, Jin L, Zhang Y. Leaf cytokinin accumulation promotes potato growth in mixed nitrogen supply by coordination of nitrogen and carbon metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111416. [PMID: 35995109 DOI: 10.1016/j.plantsci.2022.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The source and sink balance determines crop growth, which is largely modulated by nitrogen (N) supplies. The use of mixed ammonium and nitrate as N supply can improve plant growth, however mechanisms involving the coordination of carbon and N metabolism are not well understood. Here, we investigated potato plants responding to N forms and confirmed that, compared with sole nitrate supply, mixed N (75 %/25 % nitrate/ammonium) enhanced leaf area, photosynthetic activity and N metabolism and accordingly resulted in outgrowth of stolons and shoot axillary buds. Cytokinin transportation in xylem sap and local cytokinin synthesis in leaves were up-regulated in mixed-N-treated potato plants relative to sole nitrate provision; and exogenous application of 6-benzylaminopurine in addition to sole nitrate restored leaf area, photosynthetic capacity and N content in leaves to the similar as those under mixed-N treatment. Partial defoliation, an effective method to enhance the sink strength, induced more cytokinin content in leaflets under two treatments relative to their respective controls and ultimately resulted in larger photosynthesis capacity and leaf area. These results suggest that mixed-N-enhanced plant growth through the coordination of carbon and N metabolism largely depends on the signal molecule cytokinin modulated by N supplies.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Daojian Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Daxia Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihan Fu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunsong Bian
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liping Jin
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
33
|
Liu X, Jiang H, Yang J, Han J, Jin M, Zhang H, Chen L, Chen S, Teng S. Comprehensive QTL analyses of nitrogen use efficiency in indica rice. FRONTIERS IN PLANT SCIENCE 2022; 13:992225. [PMID: 36212385 PMCID: PMC9539535 DOI: 10.3389/fpls.2022.992225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen-use efficiency (NUE) in rice is a complex quantitative trait involved in multiple biological processes and agronomic traits; however, the genetic basis and regulatory network of NUE remain largely unknown. We constructed a high-resolution microarray-based genetic map for 261 recombinant inbred lines derived from two indica parents. Using 2,345 bin markers, comprehensive analyses of quantitative trait loci (QTLs) of seven key agronomic traits under two different N levels were performed. A total of 11 non-redundant QTLs for effective panicle number (EPN), 7 for grain number per panicle, 13 for thousand-grain weight, 2 for seed-setting percentage, 15 for plant height, 12 for panicle length, and 6 for grain yield per plant were identified. The QTL regions were as small as 512 kb on average, and more than half spanned an interval smaller than 100 kb. Using this advantage, we identified possible candidate genes of two major EPN-related QTLs. One QTL detected under both N levels possibly encodes a DELLA protein SLR1, which is known to regulate NUE, although the natural variations of this protein have not been reported. The other QTL detected only under a high N level could encode the transcription factor OsbZIP59. We also predicted the possible candidate genes for another three of the NUE-related QTLs. Our results provide a reference for improving NUE-related QTL cloning and promote our understanding of NUE regulation in indica rice.
Collapse
Affiliation(s)
- Xiuyan Liu
- College of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hong Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Yang
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jiajia Han
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Mengxian Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sheng Teng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Zinta R, Tiwari JK, Buckseth T, Thakur K, Goutam U, Kumar D, Challam C, Bhatia N, Poonia AK, Naik S, Singh RK, Thakur AK, Dalamu D, Luthra SK, Kumar V, Kumar M. Root system architecture for abiotic stress tolerance in potato: Lessons from plants. FRONTIERS IN PLANT SCIENCE 2022; 13:926214. [PMID: 36212284 PMCID: PMC9539750 DOI: 10.3389/fpls.2022.926214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The root is an important plant organ, which uptakes nutrients and water from the soil, and provides anchorage for the plant. Abiotic stresses like heat, drought, nutrients, salinity, and cold are the major problems of potato cultivation. Substantial research advances have been achieved in cereals and model plants on root system architecture (RSA), and so root ideotype (e.g., maize) have been developed for efficient nutrient capture to enhance nutrient use efficiency along with genes regulating root architecture in plants. However, limited work is available on potatoes, with a few illustrations on root morphology in drought and nitrogen stress. The role of root architecture in potatoes has been investigated to some extent under heat, drought, and nitrogen stresses. Hence, this mini-review aims to update knowledge and prospects of strengthening RSA research by applying multi-disciplinary physiological, biochemical, and molecular approaches to abiotic stress tolerance to potatoes with lessons learned from model plants, cereals, and other plants.
Collapse
Affiliation(s)
- Rasna Zinta
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- Lovely Professional University, Phagwada, Punjab, India
| | - Jagesh Kumar Tiwari
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Tanuja Buckseth
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Kanika Thakur
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Umesh Goutam
- Lovely Professional University, Phagwada, Punjab, India
| | - Devendra Kumar
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Regional Station, Meerut, India
| | - Clarissa Challam
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Regional Station, Shillong, India
| | - Nisha Bhatia
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Anuj K. Poonia
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Sharmistha Naik
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
- Indian Council of Agricultural Research (ICAR)-National Research Centre for Grapes, Pune, Maharashtra, India
| | - Rajesh K. Singh
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Ajay K. Thakur
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Dalamu Dalamu
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Satish K. Luthra
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Regional Station, Meerut, India
| | - Vinod Kumar
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Manoj Kumar
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Regional Station, Meerut, India
| |
Collapse
|
35
|
Maywald NJ, Mang M, Pahls N, Neumann G, Ludewig U, Francioli D. Ammonium fertilization increases the susceptibility to fungal leaf and root pathogens in winter wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:946584. [PMID: 36160997 PMCID: PMC9500508 DOI: 10.3389/fpls.2022.946584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) fertilization is indispensable for high yields in agriculture due to its central role in plant growth and fitness. Different N forms affect plant defense against foliar pathogens and may alter soil-plant-microbe interactions. To date, however, the complex relationships between N forms and host defense are poorly understood. For this purpose, nitrate, ammonium, and cyanamide were compared in greenhouse pot trials with the aim to suppress two important fungal wheat pathogens Blumeria graminis f. sp. tritici (Bgt) and Gaeumannomyces graminis f. sp. tritici (Ggt). Wheat inoculated with the foliar pathogen Bgt was comparatively up to 80% less infested when fertilized with nitrate or cyanamide than with ammonium. Likewise, soil inoculation with the fungal pathogen Ggt revealed a 38% higher percentage of take-all infected roots in ammonium-fertilized plants. The bacterial rhizosphere microbiome was little affected by the N form, whereas the fungal community composition and structure were shaped by the different N fertilization, as revealed from metabarcoding data. Importantly, we observed a higher abundance of fungal pathogenic taxa in the ammonium-fertilized treatment compared to the other N treatments. Taken together, our findings demonstrated the critical role of fertilized N forms for host-pathogen interactions and wheat rhizosphere microbiome assemblage, which are relevant for plant fitness and performance.
Collapse
|
36
|
Kabange NR, Lee SM, Shin D, Lee JY, Kwon Y, Kang JW, Cha JK, Park H, Alibu S, Lee JH. Multiple Facets of Nitrogen: From Atmospheric Gas to Indispensable Agricultural Input. Life (Basel) 2022; 12:1272. [PMID: 36013451 PMCID: PMC9410007 DOI: 10.3390/life12081272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Nitrogen (N) is a gas and the fifth most abundant element naturally found in the atmosphere. N's role in agriculture and plant metabolism has been widely investigated for decades, and extensive information regarding this subject is available. However, the advent of sequencing technology and the advances in plant biotechnology, coupled with the growing interest in functional genomics-related studies and the various environmental challenges, have paved novel paths to rediscovering the fundamentals of N and its dynamics in physiological and biological processes, as well as biochemical reactions under both normal and stress conditions. This work provides a comprehensive review on multiple facets of N and N-containing compounds in plants disseminated in the literature to better appreciate N in its multiple dimensions. Here, some of the ancient but fundamental aspects of N are revived and the advances in our understanding of N in the metabolism of plants is portrayed. It is established that N is indispensable for achieving high plant productivity and fitness. However, the use of N-rich fertilizers in relatively higher amounts negatively affects the environment. Therefore, a paradigm shift is important to shape to the future use of N-rich fertilizers in crop production and their contribution to the current global greenhouse gases (GHGs) budget would help tackle current global environmental challenges toward a sustainable agriculture.
Collapse
Affiliation(s)
- Nkulu Rolly Kabange
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - So-Myeong Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Dongjin Shin
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Ji-Yoon Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Youngho Kwon
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Ju-Won Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Jin-Kyung Cha
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Hyeonjin Park
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| | - Simon Alibu
- National Crops Resources Research Institute (NaCRRI), NARO, Entebbe 7084, Uganda
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
| |
Collapse
|
37
|
Shen C, Li Q, An Y, Zhou Y, Zhang Y, He F, Chen L, Liu C, Mao W, Wang X, Liang H, Yin W, Xia X. The transcription factor GNC optimizes nitrogen use efficiency and growth by up-regulating the expression of nitrate uptake and assimilation genes in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4778-4792. [PMID: 35526197 DOI: 10.1093/jxb/erac190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Plants have evolved complex mechanisms to cope with the fluctuating environmental availability of nitrogen. However, potential genes modulating plant responses to nitrate are yet to be characterized. Here, a poplar GATA transcription factor gene PdGNC (GATA nitrate-inducible carbon-metabolism-involved) was found to be strongly induced by low nitrate. Overexpressing PdGNC in poplar clone 717-1B4 (P. tremula × alba) significantly improved nitrate uptake, remobilization, and assimilation with higher nitrogen use efficiency (NUE) and faster growth, particularly under low nitrate conditions. Conversely, CRISPR/Cas9-mediated poplar mutant gnc exhibited decreased nitrate uptake, relocation, and assimilation, combined with lower NUE and slower growth. Assays with yeast one-hybrid, electrophoretic mobility shift, and a dual-luciferase reporter showed that PdGNC directly activated the promoters of nitrogen pathway genes PdNRT2.4b, PdNR, PdNiR, and PdGS2, leading to a significant increase in nitrate utilization in poplar. As expected, the enhanced NUE promoted growth under low nitrate availability. Taken together, our data show that PdGNC plays an important role in the regulation of NUE and growth in poplar by improving nitrate acquisition, remobilization, and assimilation, and provide a promising strategy for molecular breeding to improve productivity under nitrogen limitation in trees.
Collapse
Affiliation(s)
- Chao Shen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Qing Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Yi An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Yangyan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Yue Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Fang He
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Lingyun Chen
- Hangzhou Lifeng Seed Co., Ltd, Hangzhou, Zhejiang 310000, China
| | - Chao Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Wei Mao
- Salver Academy of Botany, Rizhao, Shandong 276800, China
| | - Xiaofei Wang
- Salver Academy of Botany, Rizhao, Shandong 276800, China
| | - Haiying Liang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Weilun Yin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| |
Collapse
|
38
|
Effects of Fertilization on Morphological and Physiological Characteristics and Environmental Cost of Maize (Zea mays L.). SUSTAINABILITY 2022. [DOI: 10.3390/su14148866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Maize (Zea mays L.) is one of the most important crops in the world and fertilization is the most important management practice which contributes to high yield. The objective of this study was to determine the effect of different fertilizers on maize crop and their contribution to the carbon footprint. The experiments were conducted in a commercial field in the area of Thessaloniki during the growing seasons of 2019 and 2020. During the experiment a number of physiological and morphological characteristics, and the energy output/input ratio, energy efficiency, and carbon footprint were determined. The results of the experiment showed that the inorganic fertilizers and manure improved the morphological and physiological characteristics that were studied compared to the green manure treatment and the control. In addition, it appeared most of the energy input of maize cultivation is from fertilizers (52%), followed by diesel (25%) and the use of machinery (14%). The treatments with the slow release fertilizers and the manure gave satisfactory results with an average of 42.1 Mg ha−1 in 2019 and 43.6 Mg ha−1 in 2020 for both fertilization treatments. Therefore, it is necessary to use the appropriate fertilizers in order to maintain the productivity of the crop and reduce the environmental costs.
Collapse
|
39
|
Barłóg P, Grzebisz W, Łukowiak R. Fertilizers and Fertilization Strategies Mitigating Soil Factors Constraining Efficiency of Nitrogen in Plant Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1855. [PMID: 35890489 PMCID: PMC9319167 DOI: 10.3390/plants11141855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Fertilizer Use Efficiency (FUE) is a measure of the potential of an applied fertilizer to increase its impact on the uptake and utilization of nitrogen (N) present in the soil/plant system. The productivity of N depends on the supply of those nutrients in a well-defined stage of yield formation that are decisive for its uptake and utilization. Traditionally, plant nutritional status is evaluated by using chemical methods. However, nowadays, to correct fertilizer doses, the absorption and reflection of solar radiation is used. Fertilization efficiency can be increased not only by adjusting the fertilizer dose to the plant's requirements, but also by removing all of the soil factors that constrain nutrient uptake and their transport from soil to root surface. Among them, soil compaction and pH are relatively easy to correct. The goal of new the formulas of N fertilizers is to increase the availability of N by synchronization of its release with the plant demand. The aim of non-nitrogenous fertilizers is to increase the availability of nutrients that control the effectiveness of N present in the soil/plant system. A wide range of actions is required to reduce the amount of N which can pollute ecosystems adjacent to fields.
Collapse
|
40
|
Genetic Diversity and Genome-Wide Association Study of Architectural Traits of Spray Cut Chrysanthemum Varieties. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The architecture of spray cut chrysanthemum is crucial for the quality and quantity of cut flower production. However, the mechanism underlying plant architecture still needs to be clarified. In this study, we measured nine architecture-related traits of 195 spray cut chrysanthemum varieties during a two-year period. The results showed that the number of upper primary branches, number of lateral flower buds and primary branch length widely varied. Additionally, plant height had a significant positive correlation with number of leaf nodes and total number of lateral buds. Number of upper primary branches had a significant negative correlation with primary branch diameter, primary branch angle and primary branch length. Plant height, total number of lateral buds, number of upper primary branches, stem diameter, primary branch diameter and primary branch length were vulnerable to environmental impacts. All varieties could be divided into five categories according to cluster analysis, and the typical plant architecture of the varieties was summarized. Finally, a genome-wide association study (GWAS) was performed to find potential functional genes.
Collapse
|
41
|
Kumar R, Pareek NK, Kumar U, Javed T, Al-Huqail AA, Rathore VS, Nangia V, Choudhary A, Nanda G, Ali HM, Siddiqui MH, Youesf AF, Telesiński A, Kalaji HM. Coupling Effects of Nitrogen and Irrigation Levels on Growth Attributes, Nitrogen Use Efficiency, and Economics of Cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:890181. [PMID: 35651778 PMCID: PMC9149569 DOI: 10.3389/fpls.2022.890181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/28/2022] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) fertilization plays a pivotal role in physiomorphological attributes and yield formation of field-grown cotton (Gossypium hirsutum L.), but little is known of its interaction with irrigation levels. Therefore, this study was conducted with an objective of evaluating the impact of irrigation and nitrogen levels on growth attributes and nitrogen use efficiency of Bt cotton (Gossypium spp.) in the hot arid region. The experiment consisted of a factorial arrangement of three irrigation levels (200, 400, and 600 mm) and four nitrogen rates (0, 75, 150, and 225 kg ha-1) in a split-plot design with three replications. Nitrogen fertilization and irrigation levels influenced cotton growth attributes and yield. The highest leaf area index, dry matter accumulation, crop growth rate, and relative growth rate were achieved at 225 kg N ha-1 and irrigation level 600 mm as compared to other experimental treatments. Similarly, nitrogen uptake and content by seed, lint, and stalk and total nitrogen uptake recorded maximum at 225 kg N ha-1 and irrigation level 600 mm. Interestingly, the treatment of 600 mm of irrigation and 150 kg N ha-1 displayed significant increase in nitrogen use efficiency indices such as agronomic efficiency of nitrogen (AEN) and recovery efficiency of nitrogen (REN), while partial factor productivity of nitrogen (PFPN) and internal nitrogen use efficiency (iNUE) were significantly higher with application of 600 mm of irrigation and nitrogen application rate of 75 kg ha-1. Application of 600 mm of irrigation along with 225 kg N ha-1 resulted in significant increase in gross return, net return, and B:C ratio than any other treatment combinations. So, application of 600 mm of irrigation along with 225 kg N ha-1 could be recommended for achieving higher growth and yield, as well as profitability of Bt cotton under hot arid region and similar agroecologies.
Collapse
Affiliation(s)
- Rakesh Kumar
- College of Agriculture, Swami Keshwanand Rajasthan Agricultural University (SKRAU), Bikaner, India
| | - Narendra Kumar Pareek
- College of Agriculture, Swami Keshwanand Rajasthan Agricultural University (SKRAU), Bikaner, India
| | - Uttam Kumar
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Asma A. Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Vinay Nangia
- International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria
| | - Ashok Choudhary
- College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Gangadhar Nanda
- Animal Production Research Institute, Dr. Rajendra Prasad Central Agricultural University, Pusa, India
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed F. Youesf
- Department of Horticulture, College of Agriculture, University of Al-Azhar, Asyut, Egypt
| | - Arkadiusz Telesiński
- Department of Bioengineering, West Pomeranian University of Technology, Szczecin, Poland
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
- Institute of Technology and Life Sciences - National Research Institute, Falenty, Poland
| |
Collapse
|
42
|
Javed T, I I, Singhal RK, Shabbir R, Shah AN, Kumar P, Jinger D, Dharmappa PM, Shad MA, Saha D, Anuragi H, Adamski R, Siuta D. Recent Advances in Agronomic and Physio-Molecular Approaches for Improving Nitrogen Use Efficiency in Crop Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:877544. [PMID: 35574130 PMCID: PMC9106419 DOI: 10.3389/fpls.2022.877544] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 05/05/2023]
Abstract
The efficiency with which plants use nutrients to create biomass and/or grain is determined by the interaction of environmental and plant intrinsic factors. The major macronutrients, especially nitrogen (N), limit plant growth and development (1.5-2% of dry biomass) and have a direct impact on global food supply, fertilizer demand, and concern with environmental health. In the present time, the global consumption of N fertilizer is nearly 120 MT (million tons), and the N efficiency ranges from 25 to 50% of applied N. The dynamic range of ideal internal N concentrations is extremely large, necessitating stringent management to ensure that its requirements are met across various categories of developmental and environmental situations. Furthermore, approximately 60 percent of arable land is mineral deficient and/or mineral toxic around the world. The use of chemical fertilizers adds to the cost of production for the farmers and also increases environmental pollution. Therefore, the present study focused on the advancement in fertilizer approaches, comprising the use of biochar, zeolite, and customized nano and bio-fertilizers which had shown to be effective in improving nitrogen use efficiency (NUE) with lower soil degradation. Consequently, adopting precision farming, crop modeling, and the use of remote sensing technologies such as chlorophyll meters, leaf color charts, etc. assist in reducing the application of N fertilizer. This study also discussed the role of crucial plant attributes such as root structure architecture in improving the uptake and transport of N efficiency. The crosstalk of N with other soil nutrients plays a crucial role in nutrient homeostasis, which is also discussed thoroughly in this analysis. At the end, this review highlights the more efficient and accurate molecular strategies and techniques such as N transporters, transgenes, and omics, which are opening up intriguing possibilities for the detailed investigation of the molecular components that contribute to nitrogen utilization efficiency, thus expanding our knowledge of plant nutrition for future global food security.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Indu I
- Indian Council of Agricultural Research (ICAR)-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rajesh Kumar Singhal
- Indian Council of Agricultural Research (ICAR)-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Breeding and Genetics, Seed Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Pawan Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Arid Horticulture, Bikaner, India
| | - Dinesh Jinger
- Research Centre, Indian Council of Agricultural Research (ICAR)-Indian Institute of Soil and Water Conservation, Anand, India
| | - Prathibha M. Dharmappa
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Horticultural Research, Bengaluru, India
| | - Munsif Ali Shad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene, Hubei Hongshan Laboratory, Wuhan, China
| | - Debanjana Saha
- Centurion University of Technology and Management, Jatni, India
| | - Hirdayesh Anuragi
- Indian Council of Agricultural Research (ICAR)- Central Agroforestry Research Institute, Jhansi, India
| | - Robert Adamski
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| | - Dorota Siuta
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| |
Collapse
|
43
|
Sunflower Photosynthetic Characteristics, Nitrogen Uptake, and Nitrogen Use Efficiency under Different Soil Salinity and Nitrogen Applications. WATER 2022. [DOI: 10.3390/w14060982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Understanding salinity and fertilizer interaction is of great importance to improve crop production and fertilizer use efficiency in saline areas. To evaluate the interactive effects of different soil salinity levels and nitrogen (N) applications rates on the sunflower photosynthetic characteristics of N uptake and N use efficiency, a two-year field experiment was conducted in Hetao Irrigation District, China. The experiment consisted of three initial salinity (IS) levels expressed as the electrical conductivity of a saturated soil extract (ECe) (S0: 1.72–2.61 dS/m; S1: 4.73–5.90 dS/m; S2: 6.85–9.04 dS/m) and four N rates (45, 90, 135, and 180 kg/ha), referred as N0–N3, respectively. The results indicated that the net photosynthetic rate (Pn) of sunflowers treated with S0 and S1 levels both had a significant decrease in the bud stage, and then reached their maximum at anthesis. However, during the crop cycle, the Pn at S2 level only had small fluctuations and still remained at a high level (>40 μmol CO2/(m2 s)) at the early mature stage. When increasing IS levels from S0 to S1, the plant N uptake (PNU) under the same N rates were only decreased by less than 10% at maturity, whereas the decline was expanded to 17.2–45.7% from S1 to S2. Additionally, though applying the N2 rate could not increase sunflower PNU at the S0 and S1 levels, its N use efficiency was better than those under N3. Meanwhile, at the S2 level, the application of the N0 rate produced a higher N productive efficiency (NPE) and N uptake efficiency (NUPE) than the other N rates. Therefore, our study proposed recommended rates of N fertilizer (S0 and S1: 135 kg/ha, S2: 45 kg/ha) for sunflowers under different saline conditions.
Collapse
|
44
|
Wang M, Ogé L, Pérez Garcia MD, Launay-Avon A, Clément G, Le Gourrierec J, Hamama L, Sakr S. Antagonistic Effect of Sucrose Availability and Auxin on Rosa Axillary Bud Metabolism and Signaling, Based on the Transcriptomics and Metabolomics Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:830840. [PMID: 35392520 PMCID: PMC8982072 DOI: 10.3389/fpls.2022.830840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Shoot branching is crucial for successful plant development and plant response to environmental factors. Extensive investigations have revealed the involvement of an intricate regulatory network including hormones and sugars. Recent studies have demonstrated that two major systemic regulators-auxin and sugar-antagonistically regulate plant branching. However, little is known regarding the molecular mechanisms involved in this crosstalk. We carried out two complementary untargeted approaches-RNA-seq and metabolomics-on explant stem buds fed with different concentrations of auxin and sucrose resulting in dormant and non-dormant buds. Buds responded to the combined effect of auxin and sugar by massive reprogramming of the transcriptome and metabolome. The antagonistic effect of sucrose and auxin targeted several important physiological processes, including sink strength, the amino acid metabolism, the sulfate metabolism, ribosome biogenesis, the nucleic acid metabolism, and phytohormone signaling. Further experiments revealed a role of the TOR-kinase signaling pathway in bud outgrowth through at least downregulation of Rosa hybrida BRANCHED1 (RhBRC1). These new findings represent a cornerstone to further investigate the diverse molecular mechanisms that drive the integration of endogenous factors during shoot branching.
Collapse
Affiliation(s)
- Ming Wang
- Dryland-Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Laurent Ogé
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Alexandra Launay-Avon
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jose Le Gourrierec
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Latifa Hamama
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Soulaiman Sakr
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
45
|
Xie H, Zhao W, Li W, Zhang Y, Hajný J, Han H. Small signaling peptides mediate plant adaptions to abiotic environmental stress. PLANTA 2022; 255:72. [PMID: 35218440 DOI: 10.1007/s00425-022-03859-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/14/2022] [Indexed: 05/27/2023]
Abstract
Peptide-receptor complexes activate distinct downstream regulatory networks to mediate plant adaptions to abiotic environmental stress. Plants are constantly exposed to various adverse environmental factors; thus they must adjust their growth accordingly. Plants recruit small secretory peptides to adapt to these detrimental environments. These small peptides, which are perceived by their corresponding receptors and/or co-receptors, act as local- or long-distance mobile signaling molecules to establish cell-to-cell regulatory networks, resulting in optimal cellular and physiological outputs. In this review, we highlight recent advances on the regulatory role of small peptides in plant abiotic responses and nutrients signaling.
Collapse
Affiliation(s)
- Heping Xie
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Wen Zhao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Weilin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Yuzhou Zhang
- College of Life Science, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Jakub Hajný
- Laboratory of Growth Regulators, Institute of Experimental Botany and Palacký University, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China.
| |
Collapse
|
46
|
Disease‐mediated nutrient dynamics: Coupling host‐pathogen interactions with ecosystem elements and energy. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Yang D, Zhao J, Bi C, Li L, Wang Z. Transcriptome and Proteomics Analysis of Wheat Seedling Roots Reveals That Increasing NH 4 +/NO 3 - Ratio Induced Root Lignification and Reduced Nitrogen Utilization. FRONTIERS IN PLANT SCIENCE 2022; 12:797260. [PMID: 35095967 PMCID: PMC8792948 DOI: 10.3389/fpls.2021.797260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 06/12/2023]
Abstract
Wheat growth and nitrogen (N) uptake gradually decrease in response to high NH4 +/NO3 - ratio. However, the mechanisms underlying the response of wheat seedling roots to changes in NH4 +/NO3 - ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH4 +/NO3 - ratios (N a : 100/0; N r1: 75/25, N r2: 50/50, N r3: 25/75, and N n : 0/100). High NH4 +/NO3 - ratio significantly reduced leaf relative chlorophyll content, Fv/Fm, and ΦII values. Both total root length and specific root length decreased with increasing NH4 +/NO3 - ratios. Moreover, the rise in NH4 +/NO3 - ratio significantly promoted O2 - production. Furthermore, transcriptome sequencing and tandem mass tag-based quantitative proteome analyses identified 14,376 differentially expressed genes (DEGs) and 1,819 differentially expressed proteins (DEPs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that glutathione metabolism and phenylpropanoid biosynthesis were the main two shared enriched pathways across ratio comparisons. Upregulated DEGs and DEPs involving glutathione S-transferases may contribute to the prevention of oxidative stress. An increment in the NH4 +/NO3 - ratio induced the expression of genes and proteins involved in lignin biosynthesis, which increased root lignin content. Additionally, phylogenetic tree analysis showed that both A0A3B6NPP6 and A0A3B6LM09 belong to the cinnamyl-alcohol dehydrogenase subfamily. Fifteen downregulated DEGs were identified as high-affinity nitrate transporters or nitrate transporters. Upregulated TraesCS3D02G344800 and TraesCS3A02G350800 were involved in ammonium transport. Downregulated A0A3B6Q9B3 is involved in nitrate transport, whereas A0A3B6PQS3 is a ferredoxin-nitrite reductase. This may explain why an increase in the NH4 +/NO3 - ratio significantly reduced root NO3 --N content but increased NH4 +-N content. Overall, these results demonstrated that increasing the NH4 +/NO3 - ratio at the seedling stage induced the accumulation of reactive oxygen species, which in turn enhanced root glutathione metabolism and lignification, thereby resulting in increased root oxidative tolerance at the cost of reducing nitrate transport and utilization, which reduced leaf photosynthetic capacity and, ultimately, plant biomass accumulation.
Collapse
|
48
|
The Effect of Cultivation Practices on Agronomic Performance, Elemental Composition and Isotopic Signature of Spring Oat (Avena sativa L.). PLANTS 2022; 11:plants11020169. [PMID: 35050057 PMCID: PMC8778240 DOI: 10.3390/plants11020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
The present study investigated the effects of cultivation practices on grain (oats) yield and yield components, such as straw yield, harvest index, thousand kernel weight, and plant lodging. In addition, multi-element composition and isotopic signature (δ13C, δ15N) of the oat grains were studied. The spring oat cultivar ‘Noni’ was grown in a long-term field experiment during 2015–2020, using three management practices: control without organic amendment, incorporation of manure every third year and incorporation of crop residues/cover crop in the rotation. Synthetic nitrogen (N) (0, 55, 110 and 165 kg/ha) was applied during oat development in each system. Multi-element analysis of mature grains from two consecutive years (2016 and 2017) was performed using EDXRF spectroscopy, while stable isotope ratios of carbon (C) and nitrogen (N) were obtained using an elemental analyzer coupled to an isotope ratio mass spectrometer (EA/IRMS). The results show how cultivation practices affect yield components and isotopic and elemental signatures. Increasing the N rate improved both the oat grain and straw yields and increased susceptibility to lodging. The results show how the elemental content (Si, Ca, Zn, Fe, Ti, Br and Rb) in the oat grains were influenced by intensification, and a noticeable decrease in elemental content at higher N rates was the result of a dilution effect of increased dry matter production. The mean δ15N values in oat grains ranged from 2.5‰ to 6.4‰ and decreased with increasing N rate, while δ13C values ranged from −29.9‰ to –28.9‰. Based on the δ15N values, it was possible to detect the addition of synthetic N above an N rate of 55 kg/ha, although it was impossible to differentiate between different management practices using stable isotopes.
Collapse
|
49
|
Gu P, Luo F, Tao W, Li Y, Wang D, Wu X, Ju X, Chao L, Zhang Y. Higher nitrogen content and auxin export from rice tiller enhance low-ammonium-dependent tiller outgrowth. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153562. [PMID: 34798463 DOI: 10.1016/j.jplph.2021.153562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
In the early growth stage, nutrient uptake by rice roots is weak. However, rice tillering at this stage would require high N input. Thus, it is vital to clarify the mechanism involved in tillering capacity with low N inputs. In this report, two widely-planted japonica cultivars (cvs Yangyujing 2 and Nanjing 45) were selected mainly because, unlike cv. Nanjing 45, cv. Yangyujing 2 shows low-N-induced tiller outgrowth. Responses of tillers in two rice cultivars to mixture of N forms versus sole NH4+ supply were similar, suggesting that NH4+ plays a pivotal role in N-modulated rice tillering. Under low NH4+ supply, higher expression of OsAMT1.2, OsAMT1.3, OsGS1;2, and OsGS2 was recorded in the roots of cv. Yangyujing 2 in comparison with cv. Nanjing 45, ultimately resulting in higher N content and dry weight in cv. Yangyujing 2. Stronger 3H-IAA export from tiller stems was observed in cv. Yangyujing 2, mainly due to higher expression level of auxin efflux transporters. Moreover, tillers in auxin efflux transporter mutant ospin9 did not respond to NH4+ supply relative to wild-type plants. These findings can be used in the molecular breeding of rice varieties to simultaneously improve rice population productivity and reduce N fertilizer input.
Collapse
Affiliation(s)
- Pengyuan Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feifei Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqing Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daojian Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinxin Ju
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Chao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
50
|
Dziewit K, Pěnčík A, Dobrzyńska K, Novák O, Szal B, Podgórska A. Spatiotemporal auxin distribution in Arabidopsis tissues is regulated by anabolic and catabolic reactions under long-term ammonium stress. BMC PLANT BIOLOGY 2021; 21:602. [PMID: 34922457 PMCID: PMC8684078 DOI: 10.1186/s12870-021-03385-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/01/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND The plant hormone auxin is a major coordinator of plant growth and development in response to diverse environmental signals, including nutritional conditions. Sole ammonium (NH4+) nutrition is one of the unique growth-suppressing conditions for plants. Therefore, the quest to understand NH4+-mediated developmental defects led us to analyze auxin metabolism. RESULTS Indole-3-acetic acid (IAA), the most predominant natural auxin, accumulates in the leaves and roots of mature Arabidopsis thaliana plants grown on NH4+, but not in the root tips. We found changes at the expressional level in reactions leading to IAA biosynthesis and deactivation in different tissues. Finally, NH4+ nutrition would facilitate the formation of inactive oxidized IAA as the final product. CONCLUSIONS NH4+-mediated accelerated auxin turnover rates implicate transient and local IAA peaks. A noticeable auxin pattern in tissues correlates with the developmental adaptations of the short and highly branched root system of NH4+-grown plants. Therefore, the spatiotemporal distribution of auxin might be a root-shaping signal specific to adjust to NH4+-stress conditions.
Collapse
Affiliation(s)
- Kacper Dziewit
- Institute of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Katarzyna Dobrzyńska
- Institute of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Bożena Szal
- Institute of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland
| | - Anna Podgórska
- Institute of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| |
Collapse
|